
Game-based Learning
Motion-based Educational Game

Per Olav Flaten
Henrik Reitan

Master of Science in Informatics

Supervisor: Alf Inge Wang, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Problem Description

Title: Game-based Learning
Sub-title: Motion-based Educational Game

This project focuses on the development, testing and experimentation with
motion-based educational games. The games will use body movement as
input to provide a natural user interface and will provide learning through
gesture based movement.

The project consists of a state-of the-art study, prototyping and develop-
ment, testing and experimentation with real users, and analysis of the ex-
perimental data.

The project will utilize technology like Kinect or similar.

Assignment given: 13:01.2015
Supervisor: Alf Inge Wang

Abstract

This master's project is dedicated to investigate the potential for educa-
tional games with a motion controller based interface. Through professor
Alf Inge Wang at NTNU we were assigned the task of brainstorming and
developing a concept that would utilize motion controllers, more speci�-
cally the Microsoft Kinect, and investigate if it could be useful outside of a
traditional game setting. Additionally it was expressed a desire to have em-
phasis on reusable software that would bene�t future projects investigating
the same area or using the same technology.

Throughout our research period we have discovered several interesting things.
We found that although the Kinect failed to gain any traction on its in-
tended area of use, it is a very impressive piece of a�ordable technology
that is worth investigating further. Educational games have varying pop-
ularity among consumers due to the di�culty of �nding a formula that
combines the values of education and fun in a good way. A teacher will
want a game that can be adapted into a curriculum, which the students can
learn from, while the students themselves will want a game than is engaging
and entertaining.

Using the Kinect SDK and the MonoGame framework we were able to
develop a prototype of a basic grammar game, 4-6 players will stand in
front of the kinect and be designated a word from a sentence. Through
discussion and cooperation the players will need to exchange words between
each other until they agree on how the sentence should be. The prototype
was tested in an experiment with a group of third graders who also answered
a questionnaire for our data gathering.

We conclude in this report that there is de�nitely potential in the idea of
using motion controllers for educational purposes that is worth exploring
further. The children who tried our prototype expressed great enthusiasm
over interactive play in a subject that is normally considered dull for pupils
of this age group. With this report and the software we have produced we
hope that we have accomplished to make fundament for future endeavours
in the topic of using motion controllers for educational games.

Sammendrag

Denne masteroppgaven er dedikert til å utforske potensialet for læringsspill
som er styrt via bevegelsessensorer. Gjennom professor Alf Inge Wang hos
NTNU ble vi gitt i oppgave å tenke ut og utvikle et konsept som skal bruke
bevegelsessensorer, mer spesi�kt Microsoft Kinect, til å �nne ut om den kan
være nyttig i bruksområder utenfor et mer tradisjonelt dataspill. I tillegg
ble det utrykt et ønske om å gjøre programvaren gjenbrukbar til nytte for
framtidige prosjekter som undersøker samme felt eller teknologi.

Gjennom vår forskningsperiode har vi oppdaget �ere interessante ting. Vi
har funnet at selv om Kinect sensoren ikke ble en suksess på sitt tiltenkte
bruksområde så er det like fullt et imponerede og rimelig stykke teknologi
som er verdt å undersøke nærmere. Læringsspill har hatt varierende pop-
ulæritet blant forbrukere grunnet vanskeligheten med å �nne en god balanse
i kombinasjonen læring og spill. En lærer vil ha et spill som kan tilpasses
inn i pensum, og som elevene kan lære av, mens elevene på en annen side
vil være mer interesserte i et spill som er engasjerende og morsomt.

Ved å ta i bruk Kinect SDK og MonoGame rammeverket var vi i stand til å
utvikle en prototype for et grunnleggende grammatikkspill, 4-6 spillere vil
stå foran Kinect sensoren og hver spiller vil bli tildelt et ord fra en setning.
Gjennom diskusjon og samarbeid må spillerne utveksle ord seg imellom til
de blir enige om hvordan setningen skal utformes. Prototypen ble testet
i et eksperiment med en gruppe av tredjeklassinger som også svarte på et
spørreskjema i forbindelse med vår datainnsamling.

Vi konkluderer i denne rapporten med at det de�nitivt �nnes et potensiale i
ideen med å bruke bevegelsessensorer for læringsspill som er verdt å utforske
videre. Barna som prøvde vår prototype uttrykte stor entusiasme over å få
delta interaktivt i ett tema som vanligvis blir betraktet som kjedelig for
elever på denne aldersgruppen. Fra denne rapporten og programvaren som
vi har laget så håper vi å ha oppnådd et fundament for framtidige forsøk
basert på å ta i bruk bevegelsessensorer for læringsspill.

Preface

This Master Thesis is the presentation of the work devoted by Per Olav
Flaten and Henrik Reitan during the fall semester 2015 and spring semester
2016. This project will conclude our master's degree in Informatics with
specialization in Game Technology at the Norwegian University of Science
and Technology (NTNU) with the Department of Computer and Informa-
tion Science (IDI) under the supervision of Alf Inge Wang.

We would like to express our gratitude to Martin Almvik and Mikael Rino
Solstad for helping us test our prototype and its functionality, we would
like to thank Linda Skistad and the children at the Eberg SFO for helping
us with our experiment, and of course we want to thank Alf Inge Wang for
providing us with supervision, assistance, and feedback during the course
of the thesis.

Trondheim, June 8th, 2016

Per Olav Flaten Henrik Reitan

Contents

I Introduction 1

1 Thesis Information 3

1.1 Context . 3

1.2 Personal Motivation . 3

1.3 Goals . 3

1.4 Thesis Structure . 4

1.4.1 Introduction . 4

1.4.2 Research . 4

1.4.3 Own Contribution 4

1.4.4 Conclusion . 5

1.4.5 Appendices . 5

2 Methodology 6

2.1 Goals and Research Questions 6

2.1.1 Goal Question Metric 6

2.1.2 Research Goals . 7

2.1.3 Summary . 9

2.2 Process . 9

2.2.1 Literature Study . 9

2.2.2 Prototype Development 10

2.2.3 Questionnaire . 11

2.2.4 Observation . 11

2.2.5 Practical Issues . 11

2.2.6 Summary . 12

II Research 13

3 Motion Capture Technology 15

3.1 Microsoft Kinect . 15

3.2 Hardware Comparison . 16

3.3 Software . 17

3.4 Summary . 18

4 Game Development Technology 19

4.1 The Game Loop . 19

4.1.1 Initialize and Load 20

4.1.2 Update . 21

4.1.3 Draw . 21

4.1.4 Unload . 21

4.2 Engines and Frameworks . 21

4.2.1 Unity . 22

4.2.2 Xenko . 23

4.2.3 Microsoft XNA . 23

4.2.4 MonoGame . 24

4.2.5 FNA . 25

4.2.6 CocosSharp . 25

4.3 Summary . 26

5 Serious Games 28

5.1 Common Types of Serious Games 28

5.1.1 Edutainment . 29

5.1.2 Games for Health . 30

5.1.3 Simulation . 30

5.2 Examples . 31

5.2.1 The Oregon Trail . 31

5.2.2 The Incredible Machine (TIM) 32

5.2.3 America's Army . 33

5.2.4 X-Plane . 34

5.2.5 Wii Fit . 35

5.3 Summary . 36

6 Designing an Engaging Game 37

6.1 Intrinsic and Extrinsic Motivation 37

6.2 Challenge . 38

6.3 Fantasy . 39

6.4 Curiosity . 40

6.5 Summary . 41

7 Related Work 42

7.1 Evaluation of an Interactive Campaign using Motion Sensing
Technology . 42

7.2 Learning Recycling From Playing a Kinect Game 42

7.3 Summary . 42

III Own Contribution 43

8 Microsoft Kinect 45

8.1 Kinect v2 Sensor . 45

8.2 The Kinect for Windows SDK 2.0 45

8.2.1 What is Included in the Kit 46

8.2.2 Kinect Studio . 46

8.2.3 Visual Gesture Builder 47

8.3 Body Tracking . 49

9 Framework 50

9.1 Design goals . 50

9.1.1 Modi�ability . 50

9.1.2 Reusability . 50

9.1.3 Usability . 51

9.2 Engines and Frameworks . 51

9.2.1 Microsoft Kinect . 51

9.2.2 MonoGame . 52

9.2.3 Empty Keys UI . 53

9.3 Architecture and Implementation 54

9.3.1 Modules Overview 55

9.3.2 Motion Control Module 56

9.3.3 User Interface Module 59

9.3.4 Game Logic Module 60

9.3.5 Game Core Module 60

10 Game 65

10.1 Concept . 65

10.1.1 Background . 65

10.1.2 Platform . 65

10.1.3 Target Audience . 66

10.1.4 Gameplay . 66

10.2 Relation to the Original Concept 69

10.2.1 Original Gameplay 69

10.2.2 Changes from Original Concept 71

10.3 Prototype . 71

10.3.1 Technical Issues . 74

11 Experiment 76

11.1 Experiment Context . 76

11.1.1 Research Group . 76

11.1.2 Participants . 76

11.1.3 Location . 77

11.1.4 Experiment Procedure 77

11.1.5 Questionnaire . 78

11.1.6 Interviews . 79

11.2 Questionnaire results . 79

11.3 Observation results . 84

12 Discussion 87

12.1 Using a Motion Controlled Multiplayer Game for Education 87

12.2 Important Factors for Designing a Game 89

12.3 Technology . 91

IV Conclusion 93

13 Summary 95

14 Future Work 97

V Appendices 101

A Questionnaire 103

B Questionnaire Results 106

C Class Diagrams 112

C.1 Motion Controller Module 112

C.2 User Interface Module . 113

C.3 Game Logic Module . 114

C.4 Game Core Module . 115

List of Figures

2.1 Goal Question Metric. 6

3.1 Microsoft Kinect v1 Sensor 16

4.1 The Game Loop . 20

4.2 Unity . 22

4.3 Xenko . 23

4.4 XNA . 24

4.5 MonoGame . 24

4.6 FNA . 25

4.7 CocosSharp . 26

5.1 Kahoot! . 30

5.2 The Oregon Trail . 32

5.3 The Incredible Machine . 33

5.4 America's Army . 34

5.5 X-Plane . 35

5.6 Wii Fit . 36

6.1 Extrinsic and Intrinsic Fantasy 40

8.1 Kinect Studio . 47

8.2 Visual Gesture Builder . 48

8.3 Visual Gesture Builder Live Preview 48

9.1 Empty Keys . 53

9.2 Module Overview . 55

9.3 Visual Studio Project Screenshot 56

9.4 Class Diagram for the Motion Control Module 57

9.5 Code extract from IMotionController.cs 57

9.6 Code extract from MotionController.cs 58

9.7 Class Diagram for the User Interface Module 59

9.8 Class Diagram for the Game Core Module 61

9.9 Communication between Game and WordPlayGame 63

9.10 Communication between Game and MotionController 64

9.11 Communication between Game and User Interface 64

10.1 Game Flow . 68

10.2 Game concept sketch . 69

10.3 Example situation - Incorrect attempt 70

10.4 Example situation - Correct attempt 70

10.5 Our Prototype in Silhouette Mode 72

10.6 Our Prototype in Color Mode 73

10.7 Our Prototype in Infrared Mode 73

11.1 Eberg SFO . 77

11.2 How Often Do You Play Games? 79

11.3 Have You Ever Played Educational Games? 80

11.4 Have You Tried Motion Controllers Before? 80

11.5 Would You Want Games to be Used in Addition to Ordinary
Education? . 81

11.6 Did you feel that it was easier to focus on the tasks than in
normal classes? . 82

11.7 Is it easier to start a discussion about the tasks when they
are in a game than when they occur in normal classes? . . . 82

11.8 Was it easy to know if the given answer was correct or not? . 83

11.9 Did you feel that time passed by fast while playing? 84

List of Tables

2.1 Goal Question Metric . 7

2.2 Research Goal 1 . 8

2.3 Research Goal 2 . 8

2.4 Research Goal 3 . 9

3.1 Kinect Hardware Speci�cation Comparison 17

3.2 Kinect SDK Comparison . 18

20

1

Part I

Introduction

An introduction to our thesis, covers thesis structure, our methodology, and
background information about the project.

2

3

1 Thesis Information

Here we will describe some general information about the thesis, starting
with the thesis structure. Afterwards we will go into more details on our
project's context, before we have a bit on our personal motivation, followed
by the goals we hope to achieve.

1.1 Context

This project covers the work done in conjunction with our master's thesis as
part of our master's programme in informatics, with specialisation in game
technology, at the Norwegian University of Science and Technology.

The project partially builds upon the �ndings in the projects presented in
Section 7 Related Work, but also stems from an interesting in having more
research that can be used in future projects. The �eld of motion controlled
educational games is practically non-existent, this leaves a lot of questions
unanswered.

1.2 Personal Motivation

Both of us have a large interest in games and technology in general, being
able to apply this into the largest project we will undertake during our
education is part of the reason we chose this project in particular. We both
believe that there is potential for applying game technology into the regular
education curriculum, especially for the earlier parts of primary school.

Many of the subjects that are generally considered as dull could bene�t
greatly from giving the students more variation in how they can learn about
the di�erent topics. If we can �gure out a way to also give them a moti-
vational boost, we would be able to show that there are several reasons to
start considering the implementation of more game technology in school.

1.3 Goals

The main goal of this project is to research the basis for using motion control
in an educational game, and if the addition of motion control has an e�ect on

4 1 THESIS INFORMATION

how the players interact with the game. Our focus will be on whether using
motion control can improve the degree of intrinsic motivation the player's
experience while playing the game, as well as to map out some reactions
in regard to motion controllers. We want to know if there is any reason to
spend resources on developing this type of games aimed at education, and
if they can have a positive e�ect on educational gain.

In addition we will attempt to develop a framework that is suited for future
work with similar projects. This is to reduce the amount of time that would
be required for implementing the basic functionality of motion controllers,
and instead allow more focus on creating the games themselves. Doing this
could allow future projects to aim towards an even larger scope.

1.4 Thesis Structure

The thesis is structured according to our process in the project. Starting
with an introduction to the project, then our �ndings from the literature
study in research, followed by our own contribution to the subject, and
lastly a summary of our project as well as some comments on future work.

1.4.1 Introduction

Covers the context of the project, our motivation for working on this project,
and the goals this project hopes to achieve.

1.4.2 Research

The �ndings from our literature study covering the subjects Motion Capture
Technology, Game Development Technology, Serious Games, Designing an
Engaging Game, and Related Work.

1.4.3 Own Contribution

Presents our work on the prototype, our framework, and our experiment.

1.4 Thesis Structure 5

1.4.4 Conclusion

A summary of the project and our recommendations for future work.

1.4.5 Appendices

Contains our subsidiary documents that did not �t into our regular sections
due to size or relevance.

6 2 METHODOLOGY

2 Methodology

In this chapter we will present the methods we will use during this project.
Starting with our goals and research questions, and how we reached them,
using theGoalQuestionMetric (GQM) [13] approach. We then go through
our process and the di�erent approaches we have used to gather data and
any potential practical issues that may arise.

2.1 Goals and Research Questions

This section details the questions we want to answer with this project, and
the method of which we have used to re�ne them into a more quanti�able
form. The questions aim to identify the usefulness of educational games,
and the impact of using less traditional input methods, as well as the social
aspect. We have used the GQMMetric to reach these questions.

2.1.1 Goal Question Metric

The GQM approach is focused on de�ning useful questions with measur-
able metrics. To achieve this GQM works in a top-down fashion resulting
in a measurement model with three levels. This model, shown in Figure
2.1, is de�ned with a goal as the conceptual level, the question being the
operational level, and metric on the quantitative level.

Figure 2.1: Goal Question Metric.

2.1 Goals and Research Questions 7

This hierarchical structure starting with the goal specifying the purpose/is-
sue to be measured. The goal is then re�ned into several sub questions that
are easier to measure individually compared to the goal. Each question is
then further re�ned into metrics, which are either objective or somewhat
subjective in nature, ie. customer satisfaction is hard to measure completely
objectively. Table 2.1 shows an example of the GQM in practice.

Goal
Purpose Improve
Issue the timeliness of
Object (Process) change request processing
Viewpoint from the manager's viewpoint
Question What is the current change request processing speed?

Metric
Average cycle time
Standard deviation
% case of the upper limit

Question Is the performance of the process improving?

Metric
Current average cycle time
Baseline average cycle time

100

Subjective rating of managers satisfaction

Table 2.1: Goal Question Metric

GQM has shown to be practical for creating research goals relating to soft-
ware development, if the goal is to �make the program better�, this is very
hard without identifying some more narrowed down questions on the oper-
ational level, and then deciding on the quanti�able metrics.

2.1.2 Research Goals

Table 2.2 through 2.4 shows our overarching goals as well as the research
questions they have been broken down into, as well as the metrics for the
questions. The main purpose of this report is to provide satisfactory answers
for these questions.

8 2 METHODOLOGY

Goal 1
The study seeks to explore if motion-controlled application can have a
positive e�ect on educational gain.

RQ 1.1:
Is there a bene�t for using motion-control as input compared to
traditional control methods? (motivation, engagement,
ease of use)

Metric
Questionnaires
Observation
Literature study

RQ 1.2:
Does a cooperative game increase the amount of
discussion/cooperation between people in a classroom compared
to traditional teaching?

Metric
Questionnaires
Observation
Literature study

Table 2.2: Research Goal 1

Goal 2
The study seeks to explore the possibilities and maturity of motion-capture
technology.

RQ 2.1:
How easy is it to start developing a motion-capture application?
(SDK's, API's, etc)

Metric Literature study

RQ 2.2:
How mature is the current technology, is the hardware available
for the average developer good enough?

Metric
Literature study
Experimentation with the Microsoft Kinect v2

RQ 2.3:
Is it easy for a new user to adapt to using motion controllers as
opposed to more traditional input devices?

Metric
Observation
Questionnaire

Table 2.3: Research Goal 2

2.2 Process 9

Goal 3
The study seeks to map the most important factors for creating an
engaging and fun game.
RQ 3.1: How do we keep the player(s) interested in the game over time?

Metric
Questionnaires
Literature study

RQ 3.2: What are important factors to consider when designing a game?

Metric
Questionnaires
Literature study

Table 2.4: Research Goal 3

2.1.3 Summary

Many of our research questions require gathering general information about
motion capture and educational games, these will mainly be answered by
a literature study. While the more practical oriented ones, will require
experimentation with our own prototype.

2.2 Process

This section will detail the metrics used to answer our research questions,
as well as our reasoning behind them. We will also look at some potential
practical issues and how best to avoid them.

2.2.1 Literature Study

A literature study is one of the most used methods for any research, re-
viewing literature relevant to the subject at hand. The purpose of this is
to familiarize oneself with the research topic, and thus increase the credibil-
ity of the research. Our sources for this project will be published articles,
documentation on the web, and other master's theses. The topics of our
literature study are:

10 2 METHODOLOGY

Motion Capture Technology will cover basic information about the
workings and usage of the technology. We will also cover the Microsoft
Kinect sensor in a bit more detail, as this is the one we had available during
our project.

Engines and Frameworks showcases the game engines and frameworks
most compatible for use with C#. We have focused on this since we will
be using the Microsoft Kinect, whose o�cial SDK is .NET based and thus
making C# the preferred language for us.

Serious Games de�nes the term as it is used in our project, as well as
listing some of the more common subgenres, and examples.

Designing an Engaging Game is where we go into more general game
design theory, touching upon subjects such as �ow. The principles covered
here play a large role when designing a game, as an oversight will often
harm the enjoyment of the game.

Related Work covers two master's theses which also worked with motion
technology.

2.2.2 Prototype Development

Our research in this project is based upon gathering information about how
well a motion controlled educational game is received, and if it can have a
positive impact on learning when compared to more traditional educational
methods. To collect data on this we need to develop a prototype that �ts
these criteria. Considering that this type of technology is relatively new,
we are also interested in the maturity of the development tools that are
available, especially compared to how they behaved only a few years back
as shown from the master's theses in Section 7 Related Work.

As opposed to just creating a simple game prototype for use in this project,
we also want to develop a more general usage framework that can be used in
future projects. This also helps ensure that our prototype will be as �exible
as possible, keeping the intricacies of the motion tracking away from the
actual game implementation, so that it can be used to easier create other
games in the future.

2.2 Process 11

2.2.3 Questionnaire

We have decided to use a questionnaire to help us gather data on the users
of our prototype system. The data we are interested in is simple background
information such as age, gaming habits, and experience with similar tech-
nology to see if this impacts their perception and educational gain of our
game. In addition to this, we want to gather opinions on whether they feel
that using games like this could be useful in education. Since our game will
be aimed at children, the format of the questionnaire will be mostly yes/no
answers with a few questions that have a more open answer. This is to keep
the questionnaire easy to answer, so that we can ensure the information we
get is as accurate as possible. Experience has shown that scaling questions
often end up with results that are either very positive, very negative, or
simply just neutral because it is di�cult to quantify impressions such as
fun on a scale from one to ten. In addition to the questionnaire we will be
talking to the players after they are done, to gauge the overall impressions,
so we can see if there is anything they want to give us feedback on that goes
outside the questionnaire.

2.2.4 Observation

Observing how people play the game can give us information that is di�cult
to come by using more structured data gathering methods, like interviews.
It is particularly useful to discern whether our control schemes and graphical
interfaces are intuitive enough. In this project we are also interested in see-
ing whether solving tasks in a game format makes the players more inclined
to discuss solutions compared to when working in a traditional classroom
setting, this would however require some assistance from a teacher or similar
who works with the kids on a regular basis and knows how they normally
behave to compare. Data gathering with observation can be di�cult, since
things like taking notes while someone is playing could impact their be-
haviour. As such we will try to write down impressions between sessions,
and then compare with the questionnaire result afterwards.

2.2.5 Practical Issues

Considering the nature of this project, there are several possible issues that
can occur. This is a given in any software development project when dealing

12 2 METHODOLOGY

with unknown technology, but we also have some potential problems regard-
ing the execution of the experiment. One such problem can be �nding a
suitable location to perform the experiment, we aim to contact a school or
an after school programme, so we can gather a useful number of participants
of the right age. We might also �nd some problems with the body tracking
when it is applied to the smaller stature of the children compared to how
it is calibrated. In regards to the questionnaire there is a possibility that
the answers will be skewed towards being positive due to the children not
wanting to disappoint us, this is a main reason to keep it anonymous and
combine the results with data from observation.

2.2.6 Summary

Of the methods presented here we will attempt to �nd answers to our re-
search goals with the literature study, and these �ndings will be tried and
tested during the development of our prototype, and the experiment. We
believe this will give us enough data to come to a conclusion for our research
questions.

13

Part II

Research

A short examination of the underlying motion capture technology, games,
and using them as an educational tool.

14

15

3 Motion Capture Technology

Since our project entails using motion capture as the primary input method,
this section will give a general background about the subject, as well as more
in depth information about the Microsoft Kinect sensor that we use in our
prototype. Motion capture, or motion tracking, is de�ned as the process of
recording the movement of people or objects. The most known usage of this
is the entertainment industry, where an actor's movements are transferred
to a digitally animated avatar. It also has applications for the military, in
sports, and even in the medical �elds. In these �elds the resulting data and
animations are used for more in-depth analysis of movement than what is
realistically possible to do in real time. Most equipment used for motion
capture is based on optical systems, where cameras detect markers placed
on the persons or objects being tracked. These markers are either pas-
sive or active, with active markers sending out light on their own, while
passive markers are either brightly colored or re�ecting signals from the
camera device. With the development of more advanced computer vision
techniques we also have markerless optical tracking, such as the Microsoft
Kinect, which comprises a normal color camera, and infrared depth track-
ing. The markerless versions are more aimed at the consumer market so
far, with the tracking being less precise than the marker based systems, but
they also cost signi�cantly less.

3.1 Microsoft Kinect

The Kinect, shown in Figure 3.1 is Microsoft's version of motion tracking
for the home consoles, an answer to Nintendo's Wii Remote, and Sony's
PlayStation Move. Initially sold for the Xbox 360, there are now improved
versions for the Xbox One as well as PC. Microsoft have also released a
software development kit that allows developers to write applications that
utilize the Kinect. The initial version for the Xbox 360 was fairly well
received, but not a huge success much due to the fact that the cost was
about three quarters of an actual Xbox, as well as somewhat intimidating
space requirements. The second version, which came as an integrated part
of the Xbox One, gathered a somewhat colder reception. This was much due
to the fact that people assumed this was a large cost increase compared to
a version of the Xbox without the kinect, as well as some privacy concerns
since it was said that the kinect would always be �on� to listen for commands
to start the Xbox via voice activation. It is a very capable piece of hardware,

16 3 MOTION CAPTURE TECHNOLOGY

despite its low cost, and have been used for many research projects related
to computer vision and motion capture.

Figure 3.1: Microsoft Kinect v1 Sensor

3.2 Hardware Comparison

On the hardware side the two Kinect versions are similar, they both have a
color camera similar to a webcam, an infrared camera that functions as a
depth sensor, and a microphone array that captures positional audio. Table
3.1 shows the di�erent speci�cations of the kinect versions, both versions
of the Kinect have an e�ective distance of depth tracking at approximately
0.5 to 4.5 meters. The v1 has a smaller �eld of view than the v2, but
compensates with a tilt motor that can adjust the focus of the sensors.
The largest di�erence between the two is the jump from USB 2.0 to USB
3.0 allowing a lot more data to be transferred, this made it possible to
equip the v2 with a 1080p resolution camera while keeping the framerate
at 30. Additionally the increased data rate has increased the number of
fully trackable skeletons to 6, up from 2 on the v1, as well as 26 instead
of 20 joints per skeleton. The v2 can also display a video stream from the
infrared camera, which the v1 is unable to.

3.3 Software 17

Kinect v1 Kinect v2

Color Camera 640x480 @30 fps 1920x1080 @30 fps
Depth Camera 320x240 512x424
Infrared Camera None 512x424

Max Depth Distance ~4.5 m ~4.5 m
Min Depth Distance 40 cm 50 cm

Horizontal Field of View 57 degrees 70 degrees
Vertical Field of View 43 degrees 60 degrees

Tilt Motor Yes No
Skeleton Joints De�ned 20 joints 26
Full Skeletons Tracked 2 6

USB Standard 2.0 3.0

Table 3.1: Kinect Hardware Speci�cation Comparison

3.3 Software

Table 3.2 compares the di�erent available development kits with support
for the Kinect. The easiest to use and most comprehensive SDK for the
Kinect is the o�cial kit from Microsoft themselves. This SDK includes
everything needed to start creating applications for the Kinect written in
any .NET compatible language, such as C#, Visual Basic, or C++. The
SDK includes several examples and test applications that can be used to
troubleshoot the Kinect itself or help in development of new applications.
The main drawback of the o�cial SDK is that it is proprietary, and no
way to look at the actual source code for the drivers, it also only works on
Windows. To use the Kinect on other operating system it requires the use
of third party drivers. The most popular third party driver for the Kinect is
libfreenect from the OpenKinect group, they provide drivers for both the v1
and v2. Using such drivers however, does not provide the full functionality of
the SDK, requiring pairing with other libraries or frameworks for computer
vision to provide skeleton tracking and similar features that are built into
Microsoft's SDK.

18 3 MOTION CAPTURE TECHNOLOGY

Kinect SDK 1.8 Kinect SDK 2.0 OpenKinect

Author Microsoft Microsoft Open Source
Kinect v1.0 Supported Not supported Supported
Kinect v2.0 Not supported Supported Supported

License Proprietary Proprietary
Apache v2 &

GPL v2

Language
.NET compatible, .NET compatible, C/C++, C#,

Visual C++ Visual C++ Python, Ruby,
Actionscript, Java

OS Windows Windows
Windows, OS X,

Linux

Table 3.2: Kinect SDK Comparison

Additionally there is a framework called OpenNI (Open Natural Interac-
tion) [7] which has been developed to act as an abstraction layer between
multiple supported hardware devices, including the Kinect. It has not been
included in the comparison because it is believed to not be very relevant any-
more. The original OpenNI project was acquired by Apple and shut down
in November 2013, since then a new open-source project called OpenNI 2
has surfaced, but any concrete information on the capabilities and features
of said project is hard to come by.

3.4 Summary

Since we have a Kinect v2 Sensor for use with our experiments, we want
our prototype to build upon its strong features, mainly the advanced skele-
ton tracking that handles up to six people at once together with the large
tracking area. This is very well suited for a multiplayer game, especially in
a classroom setting, considering that the only real downside to tracking this
many people at once is the requirement for a large room.

19

4 Game Development Technology

This section is devoted to �nding possible candidates for frameworks or
engines that meets our requirements. For a simple mock prototype we
do not require a high level of functionality of features, however the bare
essentials should be covered, which is:

• An implementation of the Game Loop.

• Handling of Graphics.

• Handling of Audio.

Additionally the framework or engine should be compatible with the Kinect
SDK.

This section will start with explaining what we mean by the game loop, be-
fore we review possible candidates for engine/framework for our prototype.

4.1 The Game Loop

Most computer/video games are made using some variant of the Game Loop
[3], which is represented in Figure 4.1. The Game Loop is responsible for
handling the game initialization, update and draw mechanics, where update
and draw usually runs once for every frame rendered in an endless loop until
termination of the game has been requested.

20 4 GAME DEVELOPMENT TECHNOLOGY

Figure 4.1: The Game Loop

4.1.1 Initialize and Load

The �Initialize and Load� step is where data, graphics, audio, etc. is instan-
tiated and loaded, it is usually executed only once after the game is started

4.2 Engines and Frameworks 21

and before the �Update� and �Draw� for the �rst frame is invoked. If the
software supports it, graphics may be loaded onto the GPU.

4.1.2 Update

The �Update� step is invoked before �Draw� of any frame in the game. This
is where data is updated and prepared in the event of any changes so that
it is ready to be rendered, one example of change being the result of I/O
input like mouse and keyboard.

4.1.3 Draw

The �Draw� step is invoked after �Update� of any frame in the game. This
is where the actual rendering takes place.

4.1.4 Unload

The �Unload� step is where all game data is unloaded before the game shuts
down.

4.2 Engines and Frameworks

One of the �rst question we would like to answer is �What game engine or
framework should we choose for developing a game?�. The list of candidates
are seemingly endless, to narrow it down we will only look at popular choices
in relation with the C# programming language, as C# is the most relevant
when developing with the Kinect in mind. C/C++ is also a relevant alter-
native, however the project members does not have much experience with
C/C++, whereas they are quite familiar with C#.

The second question is �What do we need? An engine or a framework?�.
Keeping in mind that a framework is usually built to solve a speci�c issue,
while an engine may be densely packed with features that go beyond the
scope of what we are trying to accomplish.

22 4 GAME DEVELOPMENT TECHNOLOGY

The di�erences between a game framework and an engine is not clearly
de�ned, however it is generally understood that a framework is a set of
libraries packed together to solve a speci�c issue, while a game engine is
a set of frameworks bundled together, usually with an editor. An engine
comes with many tools and eases the burdens of programming on the de-
veloper, which makes development much more accessible to those who does
not strictly come from a programming background. However a game built
on frameworks instead of an engine will usually be more modi�able and
easier to upgrade to newer technology as it does not have to follow the rigid
�recipe� set from an engine and its editor. For C#, Unity is the most pop-
ular game engine, and Microsoft XNA is the most popular framework. All
engines and frameworks listed in Section 4.2.1-4.2.6 uses some variant of the
�Game Loop�, which is described in Section 4.1 The Game Loop.

4.2.1 Unity

Figure 4.2: Unity

Unity [8], Figure 4.2.1, is a commercial game engine which is widely used,
and is one of the most popular engines currently on the market. The lat-
est edition supports scripting in the languages C# and JavaScript. Two of
the major reasons it has become so established amongst game developers is
that it is easy to use, and have wide platform support, spanning from PC,
Consoles, Mobile and even platforms that are not common like Smart TV's.
It has been used to make games such as Ori and the Blind Forest, Endless
Legend, Dungeon of the Endless, Satellite Reign, Hearthstone, Cities Sky-
lines, and many more. It uses a custom made edition of Mono to achieve
support for all the platforms. This custom edition is based o� of the rules
and conventions of .NET 2.0, with some added modi�cations that allows

4.2 Engines and Frameworks 23

developer to script with certain .NET 3.5 features on code �les within the
Unity environment. This however, means that it is incompatible with the
o�cial Kinect SDK which requires .NET 4.0 at minimum. To circumvent
this issue Microsoft has made a custom Unity add-on that allows developers
to use the Kinect in Unity.

4.2.2 Xenko

Figure 4.3: Xenko

Xenko [10], Figure 4.3, is a open-source game engine for development of
games in a C# environment, meaning that it provides its own editor, how-
ever it generates a C# project following the standards established by Mi-
crosoft, meaning the Xenko editor is optional for those who prefer using
an IDE instead. It supports Windows, Android, iOS and Windows Phone,
there is also some functional experimental support for Linux, OS X and
Consoles. Xenko is fairly new, so unfortunately there are not many exam-
ples of games made with it, however it is fully compatible with the o�cial
Kinect SDK.

4.2.3 Microsoft XNA

24 4 GAME DEVELOPMENT TECHNOLOGY

Figure 4.4: XNA

XNA [11], Figure 4.4, is arguably the best known framework for game de-
velopment in the C# programming language. Developed by Microsoft it
supports platforms such as Windows, Xbox 360 and Windows Phone. It
has been used in development of titles such as Bastion, Apatheon, Rogue
Legacy, Fez, Stardew Valley and more. It is also fully compatible with the
o�cial Kinect SDK. Unfortunately it has been discontinued by Microsoft
which makes it an unideal candidate for development with reusability in
mind.

4.2.4 MonoGame

Figure 4.5: MonoGame

MonoGame [5], Figure 4.5, is an open source game development frame-
work maintained by MonoProject (known for Mono, MonoDevelop, etc.),
as a derivative of XNA. Originally started out as a wrapper library to port

4.2 Engines and Frameworks 25

games developed in the XNA framework to other platforms, it eventually
evolved into a stand-alone framework. Of all the frameworks for C# game
development, MonoGame currently has the biggest community and highest
development rate. It supports platforms such as Windows, Linux, OS X,
iOS, Android, Xbox One, PS4. Bastion, Fez and Stardew Valley are ex-
amples of games that started development in XNA, but has been ported to
other platforms using MonoGame. Since MonoGame is just a framework
that can be implemented into a standard C# project it is fully compatible
with the o�cial Kinect SDK.

4.2.5 FNA

Figure 4.6: FNA

FNA [2], Figure 4.6, is an open source game development framework made
and maintained by Ethan Lee, and just like MonoGame it is also a derivative
of XNA. It is a fairly young and immature project so information about it
is sparse. It supports PC platforms exclusively, namely Windows, Linux
and OS X, and just like MonoGame it is fully compatible with the o�cial
Kinect SDK for the same reasons.

4.2.6 CocosSharp

26 4 GAME DEVELOPMENT TECHNOLOGY

Figure 4.7: CocosSharp

CocosSharp [1], Figure 4.7, is an open source game development frame-
work maintained by Xamarin(known for the Xamarin Platform, Xamarin
Forms, Xamarin Studio, etc.). It is built on top of MonoGame with C#
implementations of the API of the already well established open source
game development frameworks of Cocos2D and Cocos3D. Like FNA it is a
relatively young project so there is not much concrete information on the
framework. Since it is built on top of MonoGame it can run any platform
that MonoGame supports, and for the same reason it is also compatible
with the o�cial Kinect SDK.

4.3 Summary

It is evident that there is no lack of alternatives when it comes to doing game
development in C# for the Kinect, all the candidates we have found are solid
and feature complete. Some however, like Xenko, FNA, and CocosSharp
have the disadvantage of being introduced relatively recently to the market,
which makes it hard to favor them in the interest of building a prototype
that can be reused, modi�ed, or expanded upon for later research projects,
as any of these projects may or may not be relevant in the future. Since XNA
is discontinued it is clearly not a candidate, but it was important to mention
either way because it has been so important for C# game development, and
many of the potential candidates are derivatives of XNA. Unity is usually
the crowd favorite for game development in C#, however the lack of support
for the o�cial Kinect SDK is worrying.

Xenko or MonoGame seem to be the best and safest choices in the interest
of building reusable software. Xenko is still a fairly new engine, and the

4.3 Summary 27

project team does not have much experience with it, but it appears to be
quite capable. MonoGame is probably the strongest contender because of
its popularity and devoted developers.

Conclusively it also is worth noting that choosing any XNA or any derivative
will provide the bene�t of easy portability, since they are all designed to be
easy to convert from one to another.

28 5 SERIOUS GAMES

5 Serious Games

As we are developing an educational game, which is a subcategory of Serious
Games, this section will give a de�nition for this term, and present some gen-
eral history and examples. There is no formal de�nition for serious games,
but most attempts converge towards �A game that has a purpose other than
entertainment�. The term serious game predates computer games, but the
principles remain the same, and computer technology have greatly increased
the possibilities.

�Reduced to its formal essence, a game is an activity among two
or more independent decision-makers seeking to achieve their
objectives in some limiting context. A more conventional def-
inition would say that a game is a context with rules among
adversaries trying to win objectives. We are concerned with se-
rious games in the sense that these games have an explicit and
carefully thought-out educational purpose and are not intended
to be played primarily for amusement.� Serious Games, Clark
Abt, 1970

Most serious games are meant to be entertaining as this is the main mo-
tivation behind calling them games in the �rst place. These games are
supposed to assist in education, training, or other purposes such as mar-
keting. In the marketing case the games are in a large degree just normal
games with an elevated degree of product placement, while games that focus
on education and training often see substantial di�erences when compared
to regular games only meant for the purpose of entertaining. While a lot
of the serious games developed over the years have been focused on regular
education such as language and math, these have not proven very success-
ful. The most successful versions of serious games are those focused around
situations and skills that are di�cult to exercise due to being either too
dangerous, time consuming, or expensive.

5.1 Common Types of Serious Games

This chapter will present some of the most popular types of serious games,
and try to explain the reasoning behind why they are created and used.

5.1 Common Types of Serious Games 29

5.1.1 Edutainment

As the name suggests, edutainment is a term used for entertainment that is
designed to also educate. Most of these focus primarily on the entertainment
part, with the educative components are a small part of the whole. But there
are cases which are almost purely educational with little to no focus on the
entertainment value. Video games intended for edutainment started out in
the 1980's when computers began being available for classroom use, and
games including Oregon Trail and the Munchers series gained popularity.
With computers becoming more common over the 1990's, the number of
edutainment games exploded. However, the interest for these games did
not last, as most of them were generally bad.

�Most existing edutainment products combine the entertainment
value of a bad lecture with the educational value of a bad game�
Squire & Jenkins, 2003, p.8

Much of the reason for the failing of these games was that they usually
were just a variation on drilling exercises, repeating the same task over
and over. Games that went in a di�erent direction, by promoting creative
thinking and unusual problems became popular, one such game was The
Incredible Machine (TIM). This type of game have not found their way into
classrooms in the same degree as the ones from the early 80', much due
to the fact that they do not �t any particular curriculum. Judging by the
trends over the years, it is most likely that in the future we will not have
games dedicated to teaching speci�cs subjects in the degree that we have
seen. Instead we will probably have more game technology complimenting
the traditional teaching, such as the general-purpose quiz game Kahoot! as
shown in Figure 5.1.

30 5 SERIOUS GAMES

Figure 5.1: Kahoot!

5.1.2 Games for Health

Health focused serious game is one of the fastest growing sub genres, with
a wide range of applications. Many of these games utilize the motivational
factor of games to lessen the burden of more monotonous tasks for instance
in physical therapy. In some cases the act of gaming itself has proven
bene�cial in terms of health, many stroke patients have shown increased
recovery rate from the �ne hand-eye coordination required in many games.
There have also been shown a correlation between gaming experience and
performance in laparoscopic surgery. We also have games like wii �t, that
physically tracks the player and help guide workouts, and similar games for
rehabilitation. Games have even been used to treat post traumatic stress
disorder for war veterans [15].

5.1.3 Simulation

Simulation games is a genre by itself, but combined with the serious games
term we have a smaller subset consisting of more realistic simulators. This

5.2 Examples 31

is a broad category including management, life, sports, medical, military,
vehicular, social, and more. While most of these are very much games,
such as SimCity, there are cases that are more or less equal to their real
life counterpart, like very advanced driving simulators with specialized in-
put devices. Simulators have gotten a lot of attention over the years and
inspired many impressive setups, not only by professional companies, but
also enthusiasts building entire plane cockpits in their garage. One of the
largest actors, not only in the simulation business, but also in the serious
games business as a whole, is the US military. They have been responsible
for creating many di�erent simulations of all kinds of situations, meeting
di�erent cultures, war scenarios, vehicular training, environment adaption,
and more. In addition to this they have also commissioned two games,
America's Army (2002) and Full Spectrum Warrior (2004) intended for the
general public to aid with recruitment and spreading knowledge about the
military.

5.2 Examples

5.2.1 The Oregon Trail

The Oregon Trail, Figure 5.2, is an �edutainment� title made in the 70's for
the purpose of teaching students about american history, more speci�cally
the 19th century life of the pioneers travelling from Independence to Oregon.
Originally the game started out in the classroom as a concept of combining
learning with an extra element of fun to grab the attention of the students.
The players found it entertaining and it became popular and successful, to
the level where people worldwide still talk about it 30-40 years later.

32 5 SERIOUS GAMES

Figure 5.2: The Oregon Trail

5.2.2 The Incredible Machine (TIM)

TIM, Figure 5.3, is an �edutainment� puzzle game that puts the player in
the position of having to solve contraptions similar to a Rube Goldberg
machine. TIM challenged players to think outside the box to solve abstract
problems and became quite popular, however it was critiqued by teachers
for having a game format that was di�cult to adapt to a curriculum.

5.2 Examples 33

Figure 5.3: The Incredible Machine

5.2.3 America's Army

America's Army, Figure 5.4, is a �rst person tactical shooter created to
provide a virtual experience of being a soldier. The game was published
by the US Army in 2002, as a free download. The game has since seen
numerous updates and several re-releases on new engines with the latest in
2013. Despite being what could be called a PR stunt, the game was well
received with great review scores and several awards. Much of this reception
is credited to the realistic portrayal of soldiering, including basic training,
instead just the gami�ed �ghting that most similar games portray. It also
includes an optional medical training, which has been credited to saving
lives in at least two situations, where players used the knowledge from the
game in actual emergencies.

34 5 SERIOUS GAMES

Figure 5.4: America's Army

5.2.4 X-Plane

X-Plane, Figure 5.5, is a �Simulation� title, more speci�cally a �ight simula-
tor that aims to deliver a realistic �ying experience. It is FAA approved and
is used for pilot training [9], advertising such features as Arti�cially Con-
trolled Air Tra�c Controller, an extensive amount of airports from real life,
a wide range of aircrafts available, training on autopilot and other things.

5.2 Examples 35

Figure 5.5: X-Plane

5.2.5 Wii Fit

Wii Fit, Figure 5.6, is a �Games for Health� title for the Nintendo Wii that
by an extra peripheral allowed the players to do exercises and measure BMI
amongst other things in their living room. The e�ectiveness of the Wii Fit
has been debated, as the intensity in the exercises is lackluster and will
most likely not yield much bene�ts unless the player was in poor shape to
begin with. It has however been reported with successful use in the �eld of
physiotherapy rehabilitation.

36 5 SERIOUS GAMES

Figure 5.6: Wii Fit

5.3 Summary

What we can gather from this is that the most successful serious games,
are indeed still games. All of the most memorable of these provide an
experience that, in terms of entertainment, rivals games that are purely
aimed for this purpose. Most serious games end up with so much focus
being directed at the serious part that there is no room left for any fun.
As shown by the trends in the early 90's, the odds that anyone will prefer
a mainly educational game over one aimed at entertainment is fairly low.
Considering this, we believe that instead of trying to compete with other
games, we should compete with the traditional blackboard teaching methods
and introduce an alternative to this instead.

37

6 Designing an Engaging Game

In terms of technology game development have changed drastically over the
years, and will continue to do so. However, when it comes to the core aspects
of game development, there has not been any real change. The reason people
still play games is because they still �nd them fun, and the reason for this
has not changed on a fundamental level. This means that the article by
Malone [16] about what makes games intrinsically motivating, as well as
the study by Sweetser and Wyeth [18] on �ow elements in games, based
upon Mihaly Csikszentmihalyis studies on �ow, are still relevant for this
project. All of these studies have researched the psychology behind things
we �nd interesting, and isolated it to apply to game elements such as the user
interface and sounds. Although Malone lists �ve things that are important
for a game to be engaging, and Sweetser and Wyeth identi�es eight di�erent
�ow elements, they can be broken down to three main categories. These
categories are challenge, fantasy, and curiosity.

6.1 Intrinsic and Extrinsic Motivation

Intrinsic motivation comes from a sense of accomplishment and enjoyment,
something you do just because you enjoy doing it. Whereas extrinsic moti-
vation involves some external factor motivating you to do something, either
to gain a reward or avoid some negative consequence. Hobbies are mostly
intrinsically motivated as this is something people do for their own enjoy-
ment, while work and most day to day tasks such as cleaning are extrinsically
motivated.

There is also a special phenomenon related to this called the overjusti�cation
e�ect. This occurs when you provide someone that is already intrinsically
motivated for a task with an additional extrinsic motivation. The result
of this is that the degree of intrinsic motivation diminishes because the
activity now feels less ful�lling when the external reward is missing. Games
are for most people mostly intrinsically motivated, the enjoyment comes
from the feelings of accomplishment that often accompanies the e�ect of
�ow, or being in the zone. Achieving this is reliant on several factors within
the three categories mentioned above.

38 6 DESIGNING AN ENGAGING GAME

6.2 Challenge

Creating a suitable level of di�culty is possibly the hardest part about
designing a game, and often also the most important part. Suitable in
this context does not entail a single level of di�culty, but scaling it in a
way that keeps it on a level that changes according to the player's own
skill development. If a game is too easy the player will get bored and
lose interest, while if it is too di�cult frustration will occur and the player
might give up. Most games today become more challenging as you progress,
unlocking more complex mechanics or harder enemies, in addition to often
giving a choice to select a preferred di�culty level before starting the game.
Competitive multiplayer games handle this by matching players of similar
experience and skill together to even the playing �eld, often by also giving
players a transparent ranking system to track their own and other people's
progress.

First of all, to achieve a challenge you must present a goal that needs to be
reached. This goal then needs to be clearly de�ned, so that the player knows
what to do, and there needs to be clear feedback on the progress towards
said goal. A fact that is especially important in serious/educational games
is that the goal itself is not to learn, but learning is a way to achieve the
goal. The purpose of the game, and the goals in the game itself, are usually
not the same. For instance in a driving simulator a good goal would be
getting safely to a destination, not �learning to drive safely� which is the
skill required to reach the goal.

To avoid players dismissing the game too soon, it should require little to no
knowledge before starting the game, it should be possible to jump straight
into the game and get started without reading the manual. In most games
this is achieved by having one or more tutorial levels in the start of the game
to familiarize the player with the basic mechanics, controls, and graphics
interface. This makes the initial learning necessities an integrated part of
the game, which avoids the need to look for external sources of informa-
tion. Introduction of new game mechanics and other rule changes should
be introduced gradually so the player is not overwhelmed at the beginning,
while also making the game more challenging as it progresses. Doing this
ensures that the challenge ramps up as the player's skill increases.

Lastly, the game controls are a very important. The player needs to feel
that he is in control of his character and/or units, and be able to issue
commands e�ectively. To attain a large enough level of control for the

6.3 Fantasy 39

player it is important to consider all aspects of the game interface. Input
devices need to be responsive and precise. The graphics interface, including
sound, need to show feedback immediately when required as a response to
commands from the player. If the interfaces are too clunky to use it will
not matter how intriguing the story is, or how good the mechanics are, the
player will stop playing the game because of undue frustration. It is also
important that the player feels that he is discovering and planning strategies
on his own, not just uncovering what the designers put in place. If this is
done poorly it will feel more like pressing buttons to play a movie instead
of a game.

All in all the challenge aspect has a huge impact in how a game is perceived
by the player, and is a very important part of the design process. Most
aspects of a game relates to challenge in one way or another, even if it is
just displaying the current objective or playing a sound when a point is
scored.

6.3 Fantasy

Computer games in general involve a fantasy aspect. The di�erent im-
plementations however vary widely, including both extrinsic and intrinsic
fantasies. Common for all is that the fantasies are used to invoke curios-
ity and interest in playing the game. Fantasies that are very emotionally
involving including topics like war, competition and destruction are more
popular than the ones that invoke very little emotional involvement.

Fantasies are categorized as either extrinsic or intrinsic, shown in Figure
6.1. Extrinsic fantasies depend on the correct usage of a skill, such as right
or wrong answers, or the time it takes to answer. In these types of games
the fantasy itself has no impact on the skill usage, the actual problem could
easily be presented in a myriad of other ways, one example of a game with
an extrinsic fantasy is hangman. For intrinsic fantasies the usage of the skill
also depends on what happens in the fantasy, the required responses change
as input is given to the game. In a racing game for instance, the current
speed would impact the amount of time needed to take a turn.

40 6 DESIGNING AN ENGAGING GAME

Figure 6.1: Extrinsic and Intrinsic Fantasy

These fantasies have a wide range of realism, often varied to suit the skills
needed to complete the given goals. For instance an arcade focused racing
game could quickly become boring if the player had to constantly keep track
of fuel, oil pressure, and other small tasks, however these things could be
very helpful if the game was intended to train professional drivers instead.
Depending on whether the fantasy is extrinsic or intrinsic, and the amount
of realism involved, the skills acquired from playing the game could in some
cases be applicable to a real world counterpart of the fantasy, like in a
driving simulator.

6.4 Curiosity

Invoking the player's curiosity is a crucial part in maintaining their interest
in the game. This is also highly dependant on the challenge level. The com-
plexity of the required by the game has to be balanced towards the player's
current level of knowledge. Optimally, the player should have enough knowl-
edge about the environment that he can predict what might happen, but
also still be surprised by being wrong. Although challenge and curiosity are
closely related, it is more bene�cial from an analytical standpoint to look
at them individually. Curiosity is also divided into two categories, sensory
and cognitive.

�Challenge could be explained as curiosity about one's own abil-
ity. Curiosity could be explained as a challenge to one's under-
standing� - Thomas W. Malone

6.5 Summary 41

Sensory curiosity is the response to changes in the environment, such as
light, sound, or movement. In his book �Four Arguments for the Elimination
of Television�, Jerry Mander [17] makes an interesting observation regarding
how this is manipulated in di�erent types of television programs. He notes
the number of �technical events� such as camera angle changes, zoom, and
similar changes to the picture per minute. The average number of events
for commercials were 20 to 30, while regular programs has about 8 to 10,
with public television on 2 to 3. This shows that adding more events can
be a simple way to boost interest by engaging the sensory curiosity.

Cognitive curiosity is based upon wanting to expand on currently existing
knowledge. The degree of curiosity is largely related to the knowledge one
already has about a subject. With no knowledge at all, the curiosity level
is normally low to nonexistent, while having a good grasp on a subject
more often will lead to wanting to learn even more. You are much more
likely to want to �nish a story that is ninety percent complete compared
to ten percent complete. Cognitive curiosity is also triggered by getting
information that at �rst con�icts with what is currently known. For instance
knowing that plants survive by photosynthesis, then hearing about plants
that survive in complete darkness.

Utilizing this information in games can be done by graphical or sound e�ect
to arouse sensory curiosity, and by handling the information �ow carefully
to match the player's current knowledge. The feedback and responses to
actions should be clear and concise, with the accompanying information
being constructive to aid in the educational aspect where applicable.

6.5 Summary

The main points we can take with us from this is that we need a way to
scale the di�culty, as well as having a user interface with clear and concise
feedback. We also need to make sure the controls feel intuitive, since this
greatly in�uences the player experience. On top of this we should have a
small tutorial that explains how the game is played, to eliminate the need
for any instructions before starting.

42 7 RELATED WORK

7 Related Work

Here we will show the work of two earlier master thesis projects that are also
using the Kinect sensor. Both of these projects created game prototypes
using the Kinect v1 sensor, one with the OpenNI framework, and one using
the Microsoft Kinect framework.

7.1 Evaluation of an Interactive Campaign using Mo-

tion Sensing Technology

This project, from 2012 by Mari Hansen Asplem and Mia Aasbakken [12],
created a motion controlled game to be used in public spaces. The goal of
the project is to map out people's reactions to this type of installations and
judge if there is a use for them. In order to �gure this out, they created a
game where the player use their own silhouette to gather balls in a basket.
Since the focus of this project was more on people's behaviour and reactions
than on the pedagogical aspect, their results give a great deal of insight into
how to best approach creating a game aimed at a public setting.

7.2 Learning Recycling From Playing a Kinect Game

José de Jesús Luis González Ibáñez performed a study in 2013, creating
a motion controlled educational game with the goal of teaching recycling
[14]. This project had a focus on how to best create a game that is fun,
while still keeping the learning aspect. There is a multiplayer aspect in this
game as well, with both cooperative and competitive modes, although due
to the older version of kinect it is limited to two players. The results show
an interesting trend in that the multiplayer mode is largely preferred over
single player, by over 90%.

7.3 Summary

From these two projects we can gather that there are many unexplored
potential uses for the combination of motion tracking and game technology.
Combining the �ndings of Asplem and Aasbakken, as well as the more game
related project of Ibáñez, gives a good foundation of results.

43

Part III

Own Contribution

Our results and �ndings from working with this project.

44

45

8 Microsoft Kinect

In this section we will present our experiences from working with the Kinect
v2 sensor combined with the Kinect for Windows SDK 2.0, both from Mi-
crosoft.

8.1 Kinect v2 Sensor

This is the latest of the two sensors in the Kinect family, with superior
technical specs and tools compared to the �rst iteration as shown in Section
3.1 Microsoft Kinect. Due to the larger �eld of view this sensor is easier
to place, because it is less restrictive in terms of angling the camera. The
improvements in image quality and tracking speed gained from the increased
bandwidth of USB 3.0 is noticeable. However, the sensor is limited to USB
controllers from Intel and Renesas [4], using other types can result in issues
such as losing the connection, corrupted image frames, and even with some
of them not detecting the sensor at all. These are not common issues, but it
is a good idea to be aware of the possibility and research accordingly. The
fact that the sensor does not work at all with a USB 2.0 port also limits
the usage of some older computers. The Kinect v1 also required periodical
calibration to keep performance at an optimal level, to do this you needed
a Kinect Calibration Card which was recognised by the sensor and then
aligned with a position on the screen. Calibration is no longer necessary on
the Kinect v2 as this is handled automatically.

8.2 The Kinect for Windows SDK 2.0

The Kinect for Windows SDK 2.0 is the latest version of development tools
from Microsoft meant to assist the development of applications using the
Kinect v2 sensor. The SDK is available from Microsoft's web site free of
charge (the Kinect v2 sensor is not). Installing the kit was very straightfor-
ward. There is also add-ons for Unity pro and Visual Studio. We installed
the NuGet packages from within Visual Studio to add Kinect capabilities
to our projects.

46 8 MICROSOFT KINECT

8.2.1 What is Included in the Kit

The installation �le includes the driver for the Kinect sensor itself, small
programs showing the di�erent sensor capabilities, assembly �les, Kinect
studio, a beta version of Visual Gesture Builder, and Visual Studio (VS)
solutions for the example programs. We found the demo programs helpful
for understanding the di�erent sensor modes on the Kinect. The VS solu-
tions was a big help for getting started with the project. Although the C#
examples are based on Windows Presentation Foundation (WPF), which
we were not using, the general logic and approach were the same.

8.2.2 Kinect Studio

Kinect Studio, displayed in Figure 8.1, can be used to monitor the data
streams from the Kinect v2 sensor in real time, as well as create eXtended
Event File (.xef) �les that functions as recordings. It has access to all
the data streams, such as color, infrared, depth, audio, and body. This
is probably the �rst application you'd want to launch after installing the
SDK, mainly to ensure that everything is working correctly. It is very
helpful when placing the Kinect, being able to see the sensor input while
adjusting the angle and positioning. It can also play back the .xef �les for
other application, by sending the data via the Kinect sensor driver. This
allows testing applications on a non changing data set, instead of using live
input from the Kinect. If Microsoft decides to implement the functionality
to allow programmatically controlling Kinect Studio, it would in theory be
possible to create automated tests for Kinect based applications without
even having a Kinect sensor plugged in.

8.2 The Kinect for Windows SDK 2.0 47

Figure 8.1: Kinect Studio

8.2.3 Visual Gesture Builder

Visual Gesture Builder (VGB), shown in Figure 8.2, is the main tool for
creating a Gesture DataBase (.gdb) �le, which is used to recognise gestures
with the Kinect's skeleton tracking capabilities. VGB uses the recordings
from Kinect Studio to create and test gdb �les. To create a gesture in VGB
you create a new solution, like in Visual Studio, and add a new project to
that solution for each gesture. Then one or more clips from the Kinect Stu-
dio recordings are added to each project. These clips are manually tagged
to indicate whether the gesture is being performed, before they are fed
through machine learning algorithms (which ones depend on the type of
gesture) which results in a gesture �le. This gesture �le can then be man-
ually checked by doing a live preview in VGB, as shown in Figure 8.3,
showing how con�dent the system is that the gesture is being performed. If
the result is not satisfactory, you can go back and add more clips, or redo

48 8 MICROSOFT KINECT

the tags on the previous one. Once all the required gesture �les have been
created, a gdb �le is generated by combining these, this �le can then be
used to recognise these gestures by another program.

Figure 8.2: Visual Gesture Builder

Figure 8.3: Visual Gesture Builder Live Preview

8.3 Body Tracking 49

8.3 Body Tracking

Implementing the body tracking itself was fairly easy thanks to the example
projects. There are some things about how it behaves though that is worth
noting. When deciding on gestures to use, it is useful to use the monitoring
functions in Kinect Studio to check if they may be di�cult to track. Moni-
toring the skeleton �gure displayed there will show if there is any problems
detecting the relevant joint points. Gestures that might obscure the line of
sight for the Kinect can cause problems getting detected, we tried with a
gesture that required crossed arms, and this did not work well. Looking at
the body source with Kinect Studio showed a lot of jittering of the elbow
joints during the gesture, due to the occlusion caused by the crossed arms,
this made it di�cult for the sensor to get good data.

Tracking multiple people at once is fairly simple when using the Kinect
for Windows 2.0 SDK, for each person the software returns a body frame.
This frame contains all of the data related to body tracking, and some
identi�cation functions, such as an id for each registered body. This id
however, does not solve everything. The assigned id is an arbitrary integer,
and it does happen that a body disappears from the tracking for a frame or
two sometimes, for instance if someone walks too close to the sensor. If this
happens the same body will get a new random id, this means that the id is
not good enough identi�cation by itself. In our case we decided to arrange
the bodies according to their x-coordinate instead of relying on the assigned
id.

50 9 FRAMEWORK

9 Framework

This section will explain our system in detail. We will start with an overview
of the system, before we go over each module showing how they are imple-
mented, before �nishing with the module that binds it all together.

9.1 Design goals

Our main goal with this framework is aimed at having someone else use it for
future projects that also involves creating motion controlled applications.
With this in mind we have decided that the main goals of this framework
should be modi�ability, reusability, and usability.

9.1.1 Modi�ability

Modi�ability relates to how much of an impact changing one part of a
system will have on the rest of the system. Ideally the impact should be
small, but the extra cost of preparing for this could outweigh the gain. It
is important for this framework since we do not know how it would be used
in the future. It has to be possible to make changes without causing large
ripple e�ects throughout the system. We have attempted to minimise the
impact future changes would have by splitting the framework into smaller
modules, each with their own specialised tasks. In addition we have focused
on increasing cohesion and reducing coupling, often via encapsulation.

9.1.2 Reusability

Reusability is de�ned as the reuse of existing assets, with varying degree
of modi�cation. A simple example of reuse is adapting a function from an
earlier project. Our solution �le also contains two startup projects, enabling
building both a DirectX and an OpenGL version. This should be easy to
port over to other operating systems.

9.2 Engines and Frameworks 51

9.1.3 Usability

Usability describes how quickly a new user can start using a product e�-
ciently. In this case it would mean how quickly they would be able to use
the framework to creating a functional application. Usually it is used to
describe an application, where the user refers to the end-user and covers
items such as user interface and persisting user states. In this case however,
we need to tweak it a little so that it covers future users of our framework,
who also are developers. The main steps we have taken to make it easier to
use is separating it into logical modules with recognisable naming, hoping
that anyone using it will �nd the structure intuitive.

9.2 Engines and Frameworks

Here we will explain our choices in regards to the frameworks and engines
we have decided to use for this project. We will cover which factors we felt
were most crucial, and our experience with using them.

Note that we will mention NuGet [6] packages several times in this section,
NuGet is a standardized way of importing frameworks into a .NET/Mono
source code project and is supported by most major IDEs that are designed
for these kind of projects, Visual Studio, Xamarin Studio, and MonoDevelop
will automatically download the NuGet packages pre-build.

9.2.1 Microsoft Kinect

As we were provided with a Kinect sensor, the project naturally focused on
SDK's aimed at this speci�c sensor. While all the alternatives likely would
have had enough functionality for this project, there are a couple reasons
why we speci�cally went for the o�cial SDK. The code module provided
with the o�cial Microsoft Kinect for Windows SDK provides the necessary
classes for connecting to the sensor, getting data frames from the sensor,
and some helpful functions for transforming this data into useful formats
for less specialised classes.

Considering the fact that we had no requirements to make this system
available for platforms other than Windows, the main downside of using the

52 9 FRAMEWORK

code supplied by Microsoft disappeared. If we had multiplatform support
as a priority we would have had to go for something else.

The main reason we chose this over OpenNI in the end was mainly the
supplied documentation, which also include a lot of useful code samples.
These saved us a lot of time, since they showed us how to best utilise the
di�erent features of the Kinect. It also allowed us to use the gesture tools
provided by the SDK, presented in Section 8.2 The Kinect for Windows
SDK 2.0, which greatly simpli�es the amount of work required to create
gestures that can be used in the system.

All that is needed to start using this module is installing the NuGet package.
In addition the Kinect driver included in the SDK is required to get the
application to utilise the sensor, but it is possible to start programming
without it. After installing the NuGet package, all that is needed is creating
a .NET compatible project and including the Kinect based namespaces.

9.2.2 MonoGame

In Section 4.2 Engines and Frameworks we have reviewed several possible
candidates with the favorites being Xenko and MonoGame. Ultimately we
ended up deciding on MonoGame, primarily because it feels like the safest
framework to use in the interest of building software that can be reused
in the future. One factor that is not previously mentioned is that the
project members were already familiar with Microsoft XNA, which is almost
identical with MonoGame from a coder's perspective. The Xenko engine
was mentioned as another interesting candidate, but given the previously
mentioned reasons, and the fact that our game concept is not complex
enough to warrant the introduction of an engine, MonoGame was the more
reasonable choice.

Using MonoGame for our project can be best described as �smooth sail-
ing�, there has been no apparent bugs or di�culties, aside from one where
using OpenGL in Windows would refuse to toggle Full Screen mode, but
this did not a�ect us much as all team members were using Windows and
could switch to DirectX. Almost every tutorial or code sample for XNA are
directly applicable to MonoGame, so there is plenty material to �nd that
helped us develop using MonoGame. One minor di�erence is the tool in the
SDK provided to organize and build assets (graphics, audio, shaders, etc.),
in XNA this was a tool within Visual Studio, in MonoGame it is provided

9.2 Engines and Frameworks 53

as a stand alone application. From our experiences with it we would say
MonoGame is a robust framework that we can recommend to anyone with
programming knowledge who is interested in making simple games.

MonoGame is implemented into our project as a NuGet package, however
installing the SDK is still needed as the Content Builder is required to build
the project.

9.2.3 Empty Keys UI

Figure 9.1: Empty Keys

On top of MonoGame we also needed a framework for creating a user in-
terface, as this is not included in the MonoGame package. For the sake of
building reusable software we wanted a framework that was feature com-
plete, while also being actively maintained and updated. As far as we could
tell Empty Keys, Figure 9.1, was the only framework that �lled those crite-
rias. Empty Keys is a UI framework compatible with .xaml forms popular-
ized by Microsoft WPF, this also means that by choosing this framework
we are given the added bonus of being able to design our UI using the
.xaml designer provided in Visual Studio. Empty Keys is compatible with
MonoGame, Xenko and FNA, which is another good thing as it means we
could with minimal e�ort replace MonoGame with Xenko or FNA.

An alternative to using Empty Keys would have been to create our own UI
using sprites and drawings in MonoGame, which we consider a reasonable
alternative in our case, as the UI required for our prototype was very simple.
We decided however, that this was best left as a last resort if we could not
�nd any frameworks that simpli�ed creating user interfaces.

Unfortunately we had some issues �guring out how to implement Empty
Keys into our application. Documentation or tutorials for Empty Keys is
sparse, there is a sample project available however it is not very evident on
how you are supposed to set up a project using Empty Keys. We spent

54 9 FRAMEWORK

too much time trying to tackle this obstacle, but once it was set up and
functional development resumed, our productivity increased greatly as it
was easy to further develop and extend the user interface.

There were primarily two things we were struggling with:

1. As it turns out, for Empty Keys to work the developers needs to attach
a pre-build step with the �Empty Keys Generator� to their project.
The generator takes the .xaml �les and generates source code �les
from them, which will be used in the actual build. We had failed to
notice this, much due to the lack of documentation, and spent a long
time trying to understand why the user interface in the game did not
re�ect what we were seeing in the designer.

2. Not everything from WPF is supported. Certain parameters are miss-
ing completely, User Controls, which is how WPF splits a user view
into separate smaller view components did not seem to be at all func-
tional.

Overall we had a great time working with Empty Keys, it is just a shame
that the tutorials and documentation leave something to be desired, for
someone already familiar with frameworks using .xaml technology like WPF
and Xamarin Forms, Empty Keys is a great framework once it is properly
set up.

Empty Keys is included in our project as a NuGet package, where the
generator is also included.

9.3 Architecture and Implementation

This section will explain our system in detail. We will start with an overview
of the system, before we go over each module showing how they are imple-
mented, before �nishing with the module that binds it all together. Most
of the following sections contain simpli�ed class diagrams, the full versions
of these can be found in Appendix C Class Diagrams.

9.3 Architecture and Implementation 55

9.3.1 Modules Overview

A rough overview of our System is presented in Figure 9.2. It consists
of four modules that we ourselves have created, namely Motion Control,
Game Core, Game Logic, and User Interface. In addition to this we have
implemented the third party frameworks MonoGame, Empty Keys, and
Kinect SDK. We have decided to give the modules generic names in this
report for the sake of simplicity, so here we will give a brief presentation
on what each module does and what would be their respective C# project
counterparts in our Visual Studio solution as seen in Figure 9.3. Detailed
descriptions of each module can be found in Section 9.3.2-9.3.5.

Figure 9.2: Module Overview

56 9 FRAMEWORK

Figure 9.3: Visual Studio Project Screenshot

The Motion Control Module is a framework for handling motion con-
troller hardware, more details in Section 9.3.2. The corresponding C#
project would be MotionControlWrapper.

The User Interface Module contains the UI, this is put in a separate
project to make the UI more independent, more details in Section 9.3.3. The
corresponding C# project would be MotionWordPlay.UserInterface.

The Game Logic Module contains all the logic for our word play game,
more details in Section 9.3.4. The corresponding C# project would be
WordPlay.

The Game Core Module is the implementation module, it imports all
other modules, encapsulates them and add game speci�c functionality like
graphics, more details in Section 9.3.5. The corresponding C# project
would beMotionWordPlay, MotionWordPlay.WindowsDX andMo-
tionWordPlay.DesktopGL.

9.3.2 Motion Control Module

This module handles everything related to motion control, including sensor
communication and skeleton tracking. The main purpose of this module is

9.3 Architecture and Implementation 57

to abstract this functionality away from the rest of the system. This is ac-
complished by using a factory pattern that creates a class which implements
our IMotionController interface, as shown in Figure 9.4. In the current state
of the system, the only type of motion controller is our implementation for
the Kinect v2 sensor, using the o�cial Kinect NuGet package.

Figure 9.4: Class Diagram for the Motion Control Module

One example of how this interface works is the way we poll and utilise
the data frames used for drawing our di�erent display modes. Instead of
returning the di�erent frame objects created by the Kinect, the interface
speci�es that they should be returned as byte arrays, shown in Figure 9.5.
Luckily for us the frames themselves have functions implemented to do this
conversion.

byte [] MostRecentColorFrame { get ; }

Figure 9.5: Code extract from IMotionController.cs

This byte array is then passed through the interface before it is converted
to a Texture2D by MonoGame using the UpdateFrame function, which is
then used by the Draw function in MotionController.cs which is part of the
Game Core Module, shown in Figure 9.6.

58 9 FRAMEWORK

private stat ic void UpdateFrame (Texture2D frame , byte
[] data , Action pollNewFrame)

{
pollNewFrame () ;

i f (data != null)
{

frame . SetData (data) ;
}

}

private stat ic void DrawFrame(Texture2D frame ,
Spr i teBatch spr i t eBatch)

{
i f (frame != null)
{

spr i t eBatch .Draw(frame , Vector2 . Zero) ;
}

}

Figure 9.6: Code extract from MotionController.cs

The intention here is that any future users of this framework can implement
their own implementations for other sensors using the same interface. This
allows the addition of new sensors, or even just new versions of drivers for
existing sensors, without changing any other parts of the system. Every
change regarding sensors and their capabilities are contained within the
module itself, even if they require a drastically di�erent implementation
compared to the Kinect within the module. This means that no matter
what may change within the module, as long as the interface itself stays
untouched, it will be compatible with any other modules that depend on it.

We assume that most sensors have their own implementation of body and
gesture tracking, hence we have decided to create a general class for provid-
ing these results to the rest of the system. This is the GestureResult class,
which only contains standard data types, thus ensuring compatibility.

9.3 Architecture and Implementation 59

9.3.3 User Interface Module

Our user interface module is based upon .xaml schemas that in turn gets
generated into C# classes. The GUI is designed as an view in a .xaml
schema, with view model classes for the element types where we have data
bindings.

An overview of how this looks in our game is illustrated in Figure 9.7.
We have a view which represents the GUI as a whole, and view models
for the PuzzleFraction and TextBlock custom elements which has bindable
data. TextBlock in this case is a simple textbox with a data binding for the
text itself, while PuzzleFraction is an extended version which also allows
modifying the positioning. The bindings in these custom elements allow us
to modify the GUI during runtime, like changing the visibility, text, or the
element positions. This is how we manage to get the text boxes containing
our sentence fragments to follow the player silhouettes during play.

Figure 9.7: Class Diagram for the User Interface Module

The User Interface Module uses the Empty Keys framework which as pre-
viously mentioned in Section 9.2.3 Empty Keys UI supports MonoGame,
FNA, and Xenko, it achieves this by providing separate assemblies for each
of the alternatives. We have explicitly used the assembly for MonoGame
in this module, however since it is entirely separate from any MonoGame
implementation (this is handled in the Game Core Module, Section 9.3.5
Game Core Module) it can be easily converted to FNA or Xenko by re-
placing the assembly. The assembly is implemented as a NuGet package
which makes the conversion even easier assuming the IDE used by future
developers has convenient NuGet support.

60 9 FRAMEWORK

9.3.4 Game Logic Module

Here we have gathered the functions pertaining the game itself. The module
consists of a single class for this particular game implementation. This class
handles everything related to the game logic itself, such as loading tasks
from �les, the current score, the number of players in the game, and also
keeps track of how the current task is progressing.

While the module itself is small, mostly due to the fact that the game
concept we have implemented is simple, this only shows the strengths of
our other modules. This small class was everything we needed to get a
working game that is controlled with the Kinect. And while more advanced
game concepts would surely need larger implementations, this shows that
it is de�nitely possible to develop a new game on top of our framework in
a relatively short amount of time.

9.3.5 Game Core Module

This is the module that binds everything together, as shown in Figure 9.8.
The Game class controls the basic MonoGame functionality, such as setting
up a graphics device, loading content, display resolution, and initialising
our other modules. The Game Loop, as mentioned in Section 4.1 Game
Development Technology, is implemented in the Game class which extends
the Game template class from MonoGame.

9.3 Architecture and Implementation 61

Figure 9.8: Class Diagram for the Game Core Module

MonoGame supports various platforms, for our project platform support
is not really relevant as long as we support at least Windows since that

62 9 FRAMEWORK

is the native desktop environment for the Kinect. Xbox One is of course
also considered native for the Kinect, however in order to develop for that
console there is a set of o�cial requirements that needs to be ful�lled so
we decided not to. We still support two platforms however, which are both
desktop platforms, one for DirectX and one for OpenGL. The OpenGL
platform can in theory be executed on Linux and OS X, however without
functional Kinect drivers the game would not work properly.

MonoGame handles multiple platform support by providing separate indi-
vidual assemblies for each platform, we have organized this in Visual Studio
by dividing the Game Core Module into three projects, one shared project
and two launcher projects. A shared project in Visual Studio is essentially
just a collection of code �les, nothing more, and this is where we store all of
our Game Core code. The launcher projects will then reference the shared
project, import assemblies to solve references that might be needed by the
code in the shared project, and provide a launcher �le that makes sure the
game actually start. The launcher project is also where it would be suitable
to write platform speci�c code, but as we have worked mostly on Windows
with DirectX there never came an occasion where we had to do that, it is
still nice to know that we had the option if we needed it.

There is no communication that runs directly between the other modules,
everything is handled through the game core module. Each module is repre-
sented by a single class each. This is done to ensure that any future projects
building upon this framework can easily reuse or replace modules as they
see �t, without breaking any functionality contained in other modules.

Game logic is handled through our WordPlayWrapper, which has events
that �res when something important happens in the game, such as getting
a correct answer. This cross-module communication is illustrated in Figure
9.9. These events are then used within the Game class to update the GUI or
other functionality that is not accessible from the game logic module itself.
WordPlayWrapper is a wrapper class which is intended to encapsulate much
of the work with initializing the game logic module, as well as providing an
easier way to access the information in the game logic module that is relevant
for our game core module.

9.3 Architecture and Implementation 63

Figure 9.9: Communication between Game and WordPlayGame

The InputHandler, as illustrated in Figure 9.10, takes care of anything re-
lated to input, including motion control. Gesture controls via the motion
control module is handled similarly, whenever a gesture is registered an
event is �red and the Game class can use the passed information to notify
other modules, such as the game logic module. This class is created to keep
all of the input methods gathered, while also avoiding having functionality
for this in the Game class itself, as well as easing the potential work involved
with adding new input methods in the future. Motion control within the
InputHandler is taken care of by our MotionController class. This works to-
wards objects that implements our IMotionController interface, which are
provided through the MotionControllerFactory class. Currently there is
only one class that implements this interface, namely the Kinectv2. This
is the class that controls communication with the Kinect sensor. To im-
plement another sensor type, it is necessary to create a similar class which
also implements the IMotionController interface, and supply this to the
MotionController via the MotionControllerFactory.

64 9 FRAMEWORK

Figure 9.10: Communication between Game and MotionController

The user interface module is accessed through our EmptyKeysWrapper class
(shown in Figure 9.11), which �lls a purpose similar to the WordPlayWrap-
per, namely allowing Game access to the di�erent GUI components while
abstracting some of the actual implementation. This class is aimed to pro-
vide wrapper functionality speci�cally for the Empty Keys Framework, if
any developer wanted to use a di�erent user interface framework they would
have to make a new class that extends the IUserInterface and provide their
own wrapper functionality. The User Interface Module would also need to
be replaced since it is essentially a set Empty Keys speci�c code.

Figure 9.11: Communication between Game and User Interface

65

10 Game

In addition to developing a framework intended to reduce the workload
when creating games for use with motion controllers, we have created a
game prototype. This is both to test our own framework, and for gathering
data via an experiment. We will present our game concept, show how this
has evolved since the original concept which was created before we started
working with the Kinect, and detail our �nal prototype including the results
from the playtesting.

10.1 Concept

The game concept is arguably the most important part of any game devel-
opment process. Although poor execution of a good concept can still make
the result fail, even �awless execution will be helpless to save a bad concept.
In this section we will show the goals we want our prototype to ful�ll, as well
as how the consideration of these translated into our �nal game concept.

10.1.1 Background

Our assignment is very clear on the fact that we have to develop a game
intended to encourage learning, this has thus become one of our main goals.
In addition to this we also want to do something new, which is very di�cult
in terms of game development. Since we are developing a game, which
should be inherently fun, we want to aim this prototype at the more tedious
part of education, namely repetition exercises. These are most prominent
in math and language courses, especially at the lower levels of education.
Our target audience has therefore become the �rst half or so of elementary
school. Instead of trying to replace the current learning methods, we want
to expand upon them. In particular we want to encourage more discussions
between the students themselves, and thus make them learn more from each
other.

10.1.2 Platform

The concept is intended for use on a Windows PC with a Kinect sensor, but
could be adapted to any platform with the ability to do full body tracking
of multiple people.

66 10 GAME

10.1.3 Target Audience

The game is primarily targeted towards elementary school children that
needs a motivation boost to take an interest in the written language and
the rules behind it. Grammar, wordplay, etc. is something we �nd that
most people are bored with easily. This leads to a lack of practice which in
turn leads to a lack of knowledge. We believe that introducing an element
of social interaction, both in terms of competitiveness and discussion, will
increase the motivation to learn about these topics.

10.1.4 Gameplay

In order to achieve a game that is suitable for an audience with a great
degree of variation in preferences, gaming experience, and academic ability,
we need to have our core gameplay elements relatively simple. The game
needs to be easy to both understand and play, but it also need to be enough
of a challenge to keep players interested. From the results based upon �The
Recycling Game� in section 7.2 we can conclude that a multiplayer game is
preferred. Considering that the Kinect v2 sensor can track up to six persons
at once, combined with the space requirements to do this, we believe our
game should be targeted at a classroom setting. A typical scenario could
then be having a group of students playing the game, while the rest of
the class works individually with textbook exercises. In this case the game
should be related to the subject at hand and, ideally, tailored to �t the
textbooks.

With regard to these points, we have decided to build a prototype focused on
language courses, grammar in particular, where the players arrange words
to build proper sentences.

Our original concept outlined several di�erent types of tasks that could
be suited for this game. We have decided to focus on arranging sentences,
displaying a sentences with the word order scrambled, which needs to be put
back together in the right order. This type of task is easy to understand,
and should be su�ciently di�cult for our target audience. The original
concept was based upon having the players change position relative to the
words. However this caused some issues when they passed by each other,
as the Kinect lost track of the person walking behind, thus losing the ID.
In order to remedy this we changed it so they instead swap their assigned
words with another person, for instance player three and player �ve can

10.1 Concept 67

swap their words by doing a predecided gesture, and thus change the order.
This is continued until the players are satis�ed that they have created the
correct sentence, and then do a gesture indicating that they want to lock
their answer. When they do the game checks if it is correct, and if it is
the score will get updated and the players are given a new task. The game
keeps going like this until a set number of tasks is completed. There is also
a bonus for getting several correct in a row to encourage getting it right the
�rst time, instead of going for a more brute-force approach. We believe this
can create a better foundation for discussion. There is a timer running in
the game, but we do not use it to calculate score. This is because we want
to encourage discussion between the players, and time pressure can be a
detriment to this. The �ow of a game session is shown in Figure 10.1.

68 10 GAME

Figure 10.1: Game Flow

10.2 Relation to the Original Concept 69

10.2 Relation to the Original Concept

First up is the gameplay section of our original concept, in its unaltered
state, which we based our prototype on. Our target audience and platform
sections are still the same as their originals, and thus need no further dis-
cussion in this chapter. Following this we will detail how and why things
changed since the �rst iteration of our concept.

10.2.1 Original Gameplay

Gameplay is mainly built upon having the players move words between
themselves to arrange them in the correct order. A sketch of how this might
look is shown in Figure 10.2, with �gures 10.3 and 10.4 showing how it might
look when an attempted answer is either correct or incorrect. Players will
be able to move words around by swapping their positions relative to each
other, making this a shu�e puzzle that needs solving in addition to �nding
the correct word order.

Figure 10.2: Game concept sketch

Main game �ow:

1. The game presents the problem along with a short countdown.

2. The game then reveals the initial ordering of the words, and starts
deducting points for time spent.

70 10 GAME

3. Players arrange the words into what they believe is the correct order.

4. Players lock in their answer.

5. The game shows feedback on whether the answer was correct or not.
If the answer is incorrect: moves back to 3. and deducts points for
every word in the wrong position. Additional reductions if there are
several misses in a row to discourage a try/fail approach.

6. Correct answer adds points based on time spent, and a bonus if correct
on �rst try.

7. If the time or number of problem limit is reached the game proceeds
to the score screen, else it goes back to 1.

Figure 10.3: Example situation - Incorrect attempt

Figure 10.4: Example situation - Correct attempt

10.3 Prototype 71

Example problem types:

• Arranging sentences: Scrambled sentences that needs rearranging to
become grammatically correct.

• Word classes: Identifying and placing words in the right categories
such as Nouns, Verbs or Adjectives.

• Verb tenses: Ordering a verbs tenses in the correct order.

10.2.2 Changes from Original Concept

The most fundamental change since our original concept is the fact that we
no longer require the players themselves to move around. We thought this
would make the game more involving, as opposed to standing on one spot
all the time, but we discovered that there were some technical limitations
to this, more on this in Section 8.3 Body Tracking. Remedying this would
require us to develop our of system for skeleton tracking, a task that would
be far too large of an undertaking for us to complete as a part of this project.
Instead we adjusted the concept to have the players swap the words.

In addition to this, we have only implemented one type of task. This is
mostly due to time constraint, but also the fact that although having several
types would be bene�cial for a complete game experience, we do not need
them in order to create a prototype intended to test if the concept can work.

10.3 Prototype

Since section 9 Framework covers the technical aspect of our implementa-
tion, this section will instead cover the game functionality and behaviour
during our experiment. The prototype is simple, but does what we have
outlined in our concept. Our main goals with this prototype is con�rm-
ing the functionality of our framework, mapping the Kinect behaviour in
practice, and lastly having something playable to use in our experiment.

72 10 GAME

We have not implemented any menu system, the game starts in a waiting
state expecting a set number of players when launched. To start the game
from here all of the players need to do a gesture. There are two gestures im-
plemented, one is �Raised Hands�, and the other is �Hands Forward�. These
are fairly self-explanatory, �Raised Hands� require the player the place both
hands straight up, while �Hands Forward� is both hands straight ahead.
The reason we have only two gestures is simply that we did not need more
for our concept to work. Our �Raised Hands� gesture is used for two pur-
poses. Firstly we use it to start the game, and second the players perform
this gesture again when they want to lock their answer. To swap the words
assigned to players during play, any two players perform the �Hands For-
ward� gesture. This will swap the words they have been assigned. If more
than two players perform �Hands Forward� at once, only two will be used.

Our graphical style is simple, the main mode for displaying players is show-
ing their tracked silhouette on a black background, displayed in Figure 10.5,
using the silhouette frames provided by the Kinect sensor, with each silhou-
ette having a random prede�ned color. We have also implemented other
display modes supported by the Kinect, namely color, shown in Figure
10.6, and infrared, shown in Figure 10.7. Color acts as a regular web cam-
era, showing the feed from the camera implemented on the Kinect. Infrared
does the same, only that it shows data from the infrared sensor as a black
and white image, as opposed to a color image. The prototype defaults to
the silhouette mode on startup, but the display mode can be changed using
the number keys on the keyboard. We decided to use the silhouette frame as
default because it is the one that best shows how the Kinect is interpreting
the input.

Figure 10.5: Our Prototype in Silhouette Mode

10.3 Prototype 73

Figure 10.6: Our Prototype in Color Mode

Figure 10.7: Our Prototype in Infrared Mode

74 10 GAME

10.3.1 Technical Issues

During our experiment, which also doubled a bit as a playtesting session
since this was the only time we had been able to get anyone from our
target audience to test the prototype, we discovered that we had some
technical issues. At �rst this seemed like it could potentially stop the whole
experiment, but we managed to remedy the problem enough to get the
prototype playable.

The biggest issue was getting our gestures to register, our �Raised Hands�
gesture in particular. Using the diagnostic tools in the Kinect SDK showed
that it was registering with a hundred percent con�dence level, but we had
no luck getting it to work in our prototype. We managed to narrow down
the issue to being connected to tracking several people at once, one player
showed full con�dence levels on the tracking, while the rest hovered around
thirty to forty percent. We then tried lowering the threshold value for
allowing the gesture to register. This helped the issue, but did not �x it.
Ultimately we did not get a working solution for this problem, so we instead
used the keyboard shortcuts to bypass the problem altogether. Whenever
the players performed the gesture as they should, we pressed the key for
the corresponding function. This allowed us to test the game as if it was
working as intended, even though it was not.

Luckily the �Hands Forward� gesture was working as it should, allowing us
to test the game as we wanted, even if the answer locking was being done
by us instead of the players themselves. Having this gesture was much more
critical, as we did not have any way to bypass this functionality using the
keyboard. It was reassuring to see that the word swapping was working as
intended up to six players, as we had previously only managed to test it
with up to four. We never had time to �nd the exact reason for the gesture
issues, but we do have a number of theories.

It is possible that the light could have been part of the issue, we ended
up being situated alongside some large windows giving us a fair amount of
sunlight. We did cover them up as best we could but there was no way to
block the light completely. This was probably not the main issue, but it
could have had an adverse e�ect on the sensor input which relies on infrared
data. We tried adjusting the angle and position of the Kinect itself, in case
the di�erence when compared to how we had it in our lab had any impact
on the readings. After moving it up fairly high giving it a good view of
all the players, and making sure it could easily track the joints related to

10.3 Prototype 75

the gestures, we still did not see any improvements. This indicates that the
sensor position does not matter to a large degree, as long as the sensor has
a clear line of sight to every player.

Our most likely contender as to why we struggled with the gestures is that
we had not been thorough enough when creating our gesture database. This
database is generated based upon machine learning using potentially several
video clips per gesture, we only used one clip for each gesture because this
was working well when we were testing it. While it is not possible for us to
actually test if this is the reason, we strongly recommend anyone working on
something similar to use several recordings of the same gesture, preferably
with di�erent people.

76 11 EXPERIMENT

11 Experiment

Here we will present our experiment, which is where we obtained most of our
results regarding the potential of using a game such as this for educational
purposes..

11.1 Experiment Context

This section will describe the practicalities of our experiment, such as the
research group, our participants, location, as well as our results from the
questionnaire and observations. The experiment was performed on Monday
30.05.2016 at Eberg SFO.

11.1.1 Research Group

Per Olav Flaten & Henrik Reitan: Handled the main parts of the
experiment, setting up the equipment, sorting out the technical di�culties,
and explaining the game as well as the questionnaire to the participants.
We took turns monitoring the game while the students played, giving the
other more room to make observations.

Alf Inge Wang: Our supervisor on this project, he tipped us about con-
tacting Eberg SFO to see if they had opportunity to help with the experi-
ment. He also helped the students �ll out the questionnaire, aided us with
observations, and even jumped in to play the game when one of the students
have to go before they �nished playing.

11.1.2 Participants

We were lucky enough to get a group of third graders in the after school
programme at Eberg SFO. This �t perfectly with our intended audience.
However, since this was an after school programme, we were not able to get
a lot of students.

11.1 Experiment Context 77

11.1.3 Location

The experiment was performed at Eberg SFO, pictured in Figure 11.1, part
of Eberg elementary school, which is relatively new, opened in 1997. The
sta� was helpful and enthusiastic about the experiment from the start. We
were placed in a corner part of a larger room, where there was a projector
for us to connect a laptop. Although we were in a multi-use room, we ended
up being the only ones there because the students were outside this time of
day. Thanks to this we could do the experiment without any neighbouring
activities impacting our work. We had some issues getting the participants
to maintain their positions due to their energy levels, this was remedied by
placing them on chairs instead of standing.

Figure 11.1: Eberg SFO

11.1.4 Experiment Procedure

Once we had our equipment set up, and chairs in place, we started having
technical issues. We discuss the actual issues in Section 10.3.1 Technical

78 11 EXPERIMENT

Issues. These issues did not slow us down for long, but we did have to send
back the �rst groups of students for a while until we got things sorted out.
The students were sorted into groups of �ve beforehand by the sta�, and
we had no knowledge about who was in what group, and because we had to
delay the �rst group this caused some mix ups and minor confusion between
the groups. This delay sparked some con�icts among the students, as they
believed that some of the other groups had skipped their turn.

As soon as we got things working we had no more problems during the
experiment. Even having the players �ll out the questionnaire after playing
was no problem, we had somewhat expected them to complain and make
a fuzz about this since �lling out forms is not generally known to be very
exciting. Most of them had no problem reading the questions, but we did
make sure to read them out loud so we avoided any potential misunder-
standings. With our participant group being smaller than we had prepared
for, we gave them several turns instead. This allowed us to test the modes
for di�erent amounts of players with the same group, giving us a better read
on the change in di�culty.

One good thing about the fact that we had this few participants was that
we could skip a lot of explaining on how to play the game, and instead focus
on having them actually play it. The second group of students appeared
while the �rst was playing, so we could also show them by example.

11.1.5 Questionnaire

Our questionnaire was designed to �t our target audience of young children,
this includes having mostly yes or no style questions, and relatively simple
language. We had hoped to be able to gather more responses to get a
dataset that could be used on its own, but instead we have used it as a
complement to our observations. There were some responses here that went
against what the students said out loud, which is good, this is what we
wanted to use the questionnaire for. It is much easier, especially for kids
this age, to give negative feedback if they can do it anonymously, though
some were de�nitely not afraid to speak their mind.

Ideally, having a questionnaire like this should be performed with the stu-
dents separated. It was obvious that the answers given by one student,
often also said out loud, swayed the other participants. This is something
we would advise any other projects to do, but we did not focus much on
this due to our small number of participants.

11.2 Questionnaire results 79

11.1.6 Interviews

We did not conduct any formal interviews in the traditional sense, but we
did get some comments during the playtesting. In addition to this, since
our questionnaire got a bit compromised, we tried to get the participants
to discuss the questions a bit between themselves. This allowed us to catch
up on things that were not necessarily covered by the questionnaire itself.

11.2 Questionnaire results

Here we will cover our most interesting �ndings from our questionnaire, the
full set of questions can be found in Appendix A Questionnaire, and the full
set of results in Appendix B Questionnaire Results. We had a group of nine
participants, with six girls and three boys, all third graders. Considering
the small number of participants we did not distinguish between genders to
see if there was any patterns to the answers, we believe this would only lead
to potentially false claims. All except one claimed to have tried educational
games before. There was also a surprisingly even distribution in terms of
gaming habits. This is shown in Figure 11.2, we had three participants
each claiming to play games �almost every day�, �a few times a week�, and
�rarely�.

Figure 11.2: How Often Do You Play Games?

80 11 EXPERIMENT

All but one of our participants reported having played educational games
before, re�ected in Figure 11.3, although they were initially a bit unsure
what the term meant.When we further explained that it meant games that
focused on teaching a subject like for instance math, most of of them recalled
having tried something of the sort.

Figure 11.3: Have You Ever Played Educational Games?

We also wanted to see if any of the participants had any experience using
motion controllers from before, as this could have an impact on both how
quickly they learned the control the game and their impressions. The re-
sponse, shown in Figure 11.4, was somewhat as we expected. A majority
of the participants have tried the Nintendo Wii, and some have tried other
alternatives, including the Kinect.

Figure 11.4: Have You Tried Motion Controllers Before?

11.2 Questionnaire results 81

Once our questions started about our game prototype itself, the answers
we got became less varied. Two thirds of our questions, such as �Did you
�nd the game fun?� and �Did you feel that you learned something from
the game?� all received 100% yes answers. This was more or less expected,
especially considering the age group, but we did get some interesting results
nonetheless. Even though everyone claimed that they learned something
from playing our game, became more motivated to learn, and said they
would have played the game at home if given the chance, a third of them said
they would not want to incorporate games alongside traditional education,
as shown in Figure 11.5.

Figure 11.5: Would You Want Games to be Used in Addition to Ordinary
Education?

When we asked about whether they felt it was easier to focus on the tasks
when compared to traditional teaching we got some interesting results,
shown in Figure 11.6. Four participants said no, with the other �ve saying
yes. This is interesting because what we observed somewhat indicates that
they all worked fairly well on the tasks. One potential cause for this is that
they did not feel that they really had to focus on it because it was �just a
game�, and did not realise themselves the level of concentration they were
displaying.

82 11 EXPERIMENT

Figure 11.6: Did you feel that it was easier to focus on the tasks than in
normal classes?

With the multiplayer aspect in mind, we asked if the participants felt it
was easier to get a discussion going than it would be in a normal class.
Response was mostly towards yes again, depicted in Figure 11.7, but we
did have three participants that said no. This matches well with what we
observed, with some players being eager to take charge, leaving less room
for the more quiet students.

Figure 11.7: Is it easier to start a discussion about the tasks when they are
in a game than when they occur in normal classes?

11.2 Questionnaire results 83

We also asked whether the participants found it easy to know if the answers
they gave were correct or not, shown in Figure 11.8. Three participants said
no, but we believe this could also be due to the fact that our �rst group of
testers never got any wrong answers, and thus never experienced the actual
feedback related to this question. Still, it is an indication that we should
have even clearer feedback on correct answers as well.

Figure 11.8: Was it easy to know if the given answer was correct or not?

After this we asked whether they felt time passed by fast while they were
playing, as shown in Figure 11.9. Only two out of the nine participants said
no, this indicates that most of the players found the game engaging enough
that they to some degree forgot about everything else. This is a good result,
showing that our prototype might have real potential.

84 11 EXPERIMENT

Figure 11.9: Did you feel that time passed by fast while playing?

At the end of the questionnaire we had a �eld where we asked for the
participants input on what we should do to improve the game. The most
common comment to this was that they wanted to control which color they
were assigned, this was not something we had even considered before this
point. Following this, the second most common, was that the game was too
easy. Also, they wanted it to last longer. The game length is something we
can change on the �y, but we decided not to as it was already a challenge
to keep a group of six third graders sitting still for the sessions we were
running at six tasks per playthrough. In a more structured setting than
what we had, for instance a normal class in a classroom with their regular
teacher, a larger set of tasks could be more suitable.

All in all, we feel that the answers we got on our questionnaire were overall
good, if a little small to be an ideal dataset. The answers given re�ect what
we observed, and for the most part, what we expected.

11.3 Observation results

The kids at the SFO had not been informed beforehand that we would be
coming to test a game. We did get some reactions once we arrived however,
all kinds of variations on questions like who we were, and what we were
doing there. This did not stop once we had our equipment up and running,
once the Kinect was up and silhouettes started showing up on the canvas

11.3 Observation results 85

displaying people in the vicinity, more and more kids started coming up to
us asking if this was a game and whether they could play. Obviously we
had at least succeeded in creating something capable of generating some
curiosity.

Once we got everything set up and our technical issues sorted out, we started
testing the game with a group of 4 participants. As mentioned before, get-
ting the players to understand the game was easy enough. Having them
stand in one place so they avoided overlapping their silhouettes, and thus
making the Kinect struggle, was nearly impossible. This was much due to
the fact that they found it interesting to see how their silhouettes interacted.
Especially the fact that if you got close enough they merged into one color,
and when separated again one player would get a new color. After a bit
of struggle getting them started with the actual game instead of just play-
ing with the silhouettes, we ended up setting down chairs with a suitable
distance in between so we had the players situated as ideal as possible for
the body tracking. Everyone was also noticeably calmer when sitting down,
compared to when they were jumping around and running in between each
other to see what would happen to the silhouettes.

The �rst round with four players went by smoothly after getting everyone
placed on their chairs. There were no problems with understanding how to
play the game, despite several of the players having never tried a motion
controlled game before. The �rst round went by quickly, and ended up with
a perfect score, the players never locked a wrong answer. One main reason
these tasks went by as quickly as they did was that to a large degree a single
person, usually the one that spotted a solution �rst, just took charge and
everyone agreed. This combined with the fact that the �rst word had a
capital letter, and the last word having punctuation, made the four player
tasks too easy. Most likely, we should have had separate types of tasks for
less players than �ve.

When we upped the number of players to �ve, each of the tasks took a little
bit longer, and there was a noticeable increase in the amount of word swaps
they were doing before locking in the answer. In addition we started seeing
situations where three or four of the players wanted to lock the answer,
with one or two disagreeing with what they had. This was exactly what
we wanted to see, as this lead to the players having to discuss their answer
until everyone agreed on a solution. We still did not see any real problems
getting to the correct solution, with only a few wrong answers actually being
locked.

86 11 EXPERIMENT

Running the game with six players, we started to see some struggles ap-
pearing. With just over half of the answers being locked correctly. This
was much more interesting to watch, when the tasks started getting more
challenging, more of the participants began speaking up as well. We also
noticed that the ones that had been struggling a bit more with actually
reading the words joined the discussions, probably because they got the
time to �nish reading before someone else had already found the solution.

All of the participants were eager to try the game, and most played three or
four sessions, with di�erent amounts of players. This allowed us to observe
di�erences between the di�erent sets of tasks more clearly since we could
see how their behaviour changed when things became more di�cult, instead
of having a separate group of people for each set. There was one thing we
would have liked, that we did not get the chance to try. Having an observer
that knew how the kids normally behave during class, like a teacher, that
could tell us if there was any noticeable di�erences in how they approached
the tasks and the amount of participation in the discussions.

From these observations we think the ideal number of players for the current
state of the game is �ve or six, at least for third graders. Four players ended
up making the tasks too easy, and thus negate the educational gain. Fourth
graders would probably �nd the tasks to easy altogether, but it might be
suitable for second graders with above average reading skills. Overall we
were really happy about the results we got from the third graders.

87

12 Discussion

The main goal of this thesis is to �gure out whether or not there is a basis for
focusing on developing motion controlled educational games. We have split
this into three smaller subcategories, with one focusing on the feasibility
of developing these without already having extensive knowledge about the
technology, another on more general game design, and lastly if there is any
signs that this kind of games could in fact have an e�ect on learning. This
section will cover both of these, and discuss our work and �ndings in relation
to our research questions. We will start with our �ndings and observations
related to using motion controllers, as well as a bit on educational games in
general. Following this we shall cover our results related to the technology
itself.

12.1 Using a Motion Controlled Multiplayer Game for

Education

The aim of this thesis was mainly to research if using motion controllers in
educational games could have any bene�ts. Our research questions relevant
for this are:

• RQ 1.1: Is there a bene�t for using motion-control as input compared
to traditional control methods?

• RQ 1.2: Does a cooperative game increase the amount of discussion/-
cooperation between people in a classroom compared to traditional
teaching?

• RQ 2.3: Is it easy for a new user to adapt to using motion controllers
as opposed to more traditional input devices?

Our experiment involving our prototype game and the third grade students
at Eberg SFO have given us a clear indication that there is a great potential
for increasing educational gain by using motion controlled games alongside
regular classes. The combination of motion control and multiplayer seemed
to be especially well suited for engaging players in this age group.

Any concerns we had about the students having di�culty adjusting to us-
ing the motion controls, as opposed to traditional input like keyboard and

88 12 DISCUSSION

mouse or controllers, were quickly taken away. Although the majority had
tried motion controllers before, only a few had experience with a type that
did not involve physical controllers. This turned out to be a non-issue as
the students were quick to grasp the concept, some even before we had ex-
plained how the game worked. Turns out using silhouette as the display
mode made things more intuitive, as it shows how the scene is interpreted
by the Kinect. The students started experimenting with how the silhou-
ettes followed their movements and interacted with each other as soon as
they were able to get in front of the screen. They even asked if they could
dance around in front of the sensor after they were �nished playing a round.
Obviously the current generation of kids are quick to pick up on new types
of technology and controller schemes. Even though this would require some
more testing focus on this very subject, we believe that there should not be
any issues introducing a motion controlled game for a full class of students
and have them playing within minutes.

Based on the response we got from the students, using motion controllers as
a replacement for the more traditional input methods did not matter much
for their ability to play the game itself. But they did �nd it more interesting
than they probably would have done if they had been sitting on individual
screens using a keyboard. Our experiment did not show any real di�erence
to how long it took for the players to get comfortable with the Kinect in
regards to their gaming habits. This indicates that the intuitive nature of
using your own body as a controller as opposed to any intermediary, such
as a keyboard, is more easily picked up by non-gamers. In addition, using
the player's own bodies as the controllers makes them feel more like a part
of the game, instead of just controlling an avatar on the screen. However,
this means that the responsiveness of the controls are more important than
ever, it easily feels clunky if the game is too slow to register the player
movements.

Adding the multiplayer aspect into the mix with education and motion con-
trollers seemed to be a good idea. First of all this allows us to create games
that has the ability to let every student in a class have a turn during a single
period, by letting larger groups play at once. This could help with adding
variety to the classes where a lot of the time is spent working on individual
or group tasks, while at the same time encouraging more discussion and
learning with the motivation being getting the game's high score within the
class. Our observations pointed out that the students were quick to start
discussing the answers to the tasks between themselves, showing that the
threshold for speaking up was low. Assuming this is a general trend when

12.2 Important Factors for Designing a Game 89

playing games, we believe that using games to present the tasks can create
more discussions within the related topics, thus increasing the amount the
students are learning from each other. With a well structured game, the
students also would not need much supervision (although it is interesting to
watch them discuss solutions), making it entirely possible to have a game
session going alongside the regular class.

Much of the feedback we received from the experiment was based upon the
di�culty of the tasks, as well as the overall length of a round. For the sake
of the experiment we did not want to have each group spend too much time
on each round, we instead had several players come back and try again.
This did have the unfortunate e�ect that the game ended when the players
had really gotten into it and were not quite ready for it to be over yet.
We consider this a good sign, as it means they most likely would not have
lost interest for a while still. In our prototype the di�culty of the game
was directly proportional to the amount of players, since the length of our
sentences was one word per player. This lead to the four player groups
having an easier time than the six player group. The ideal �x for this would
be to create tasks type where the di�culty is not related to the number of
players, and ideally having several types.

Overall we have some positive results, and believe they could warrant further
investigation. More conclusive evidence gathered by having a much larger
scale on the experiment, and ideally including several subjects of education,
would further the insight on this topic immensely.

12.2 Important Factors for Designing a Game

When creating an educational game it is imperative that we do not forget to
include aspects that make the game fun and engaging. There is no point in
creating an educational game that no one will want to play. To circumvent
this issue we have tried to answer the following research questions:

• RQ 3.1: How do we keep the player(s) interested in the game over
time?

• RQ 3.2: What are important factors to consider when designing a
game?

90 12 DISCUSSION

Since we had every student participating in our experiment coming back
wanting to play more after their �rst turn was done, we must have been
doing something right when creating our prototype. As our goal was to be
able to create something that could be used alongside textbook tasks during
classes, having the students come back to play more of their own volition
was much better than we had hoped for.

Because our focus have been on creating a game prototype that was to be
used in the lower end of elementary school, it was important that the game
concept was not overly complex. We have focused on the �ndings in Section
6 Designing an Engaging Game. The research covered here lists some inter-
esting facts about how to best design a game to keep the players interest.
In particular it lists the need to provide the player with a continuous stream
of choices to be made. This does not necessarily entail answering questions
constantly, but rather subtle things they do not really think about. In our
case this is covered by the fact that they players need to shu�e the words
back into the correct order. And although there was no extra reward for
doing it in the correct order, they became inherently focused on doing in
the most e�cient fashion.

Giving the players ample feedback about both how they are doing, and
that the game is responding to their actions is also important. Our way
of telling them if their answer was wrong is simply showing a dialogue
box with the words �Incorrect answer, try again!� with bright red letters.
This is a simple, but e�ective, way of conveying their progress during the
game. If their answer is correct we show them a similar dialogue box with
green colored text telling them their new score, and bonus points if they
have managed several correct answers in a row. We believe the positive
reinforcement of a combo system is more e�ective than subtracting points
for giving the wrong answer.

There is also a timer in our prototype, but this is not used for impacting
the score in any way currently, because the added pressure of having to
hurry the tasks could impact the likelihood of meaningful discussions in a
negative way. It is however useful when trying to gauging the most suitable
number of tasks per round.

Any time when new types of tasks are implemented to the game, it is
important to consider the impact they have on the gameplay. The tasks
have to be of a suitable di�culty, preferably scaleable to �t the players
preferences. Adding variety to the types of tasks is bene�cial to keep the

12.3 Technology 91

player's interest, but could also be hazardous for their concentration if the
pacing gets broken up too much.

12.3 Technology

Working with motion controller technology has been interesting, and as this
is a relatively new �eld of study there is not a whole lot of previous work to
build upon. Our research questions related to the motion technology are:

• RQ 2.1: How easy is it to start developing a motion-capture appli-
cation?

• RQ 2.2: How mature is the current technology, is the hardware avail-
able for the average developer good enough?

In regards to the hardware, at least in the case of the Kinect, it is plenty
powerful. When it comes to deciding which API and drivers to use with
such hardware however, it becomes more complicated. There are several
possible combinations of drivers and frameworks to use when creating a
motion controlled application, and more often than not, the documentation
is lacking. It is di�cult to decide on which one suits your needs best.
In some cases, like linux support, it is easy to for instance discard the
Microsoft SDK since it only works on Windows, but this still does not cover
all the alternatives. Some of the best sources of information is blogs run
by developers who have had the same issue before, but most of the time
these refer to older versions of the available software, thus often failing to
mention that one tiny detail that would have �nalised your decision due to
a change in a newer version.

Our impression is that most of the alternatives can do the job, and the �nal
decision should instead be based on what you want to combine it with. If the
project is based upon WPF for instance, the Microsoft SDK for the Kinect
would be a prime candidate, not only because of the inherent compatibility,
but also the included code samples targeting the same platform. Likewise
if the project is focused in supporting several types of sensors, and running
on any platform, OpenNI is likely to be the better choice. This is a major
part of our motivation to develop our framework, as explained in Section
9Framework, is to assist in the starting phase of a new project by providing
a foundation to build upon.

92 12 DISCUSSION

While there are several alternatives to the Kinect, all of the hardware op-
tions are essentially the same thing, an infrared camera. The important
work is done on the software side, this consists of using computer vision
techniques to translate the infrared input into a depth image, and from
there extrapolating to other features like skeleton tracking. The skeleton
tracking implementations vary in function between the di�erent alterna-
tives, but the core of them remain the same; keeping track of where the
users are, and how they move. These di�erences become apparent in things
such as what types of gestures are supported, and the number of possible
users that can be tracked at once. The skeleton tracking is the most com-
plex part of these frameworks, and the one that helps developers the most.
Implementing your own skeleton tracking system would be a huge amount
of work, assuming you have the skill to do it. Not needing to do all this
allows more time to focus on game design and developing features, instead
of doing all the groundwork.

Getting a hold of a sensor for use with a motion controlled application
is for the most part a�ordable, there are several alternatives that most
hobbyists should be able to a�ord. When it comes to the software part,
most of the alternatives are open source, and free. While some others, such
as the Microsoft Kinect SDK, are proprietary, they are freely available but
only supports their speci�ed hardware counterpart, and do not allow any
changing of the drivers themselves.

93

Part IV

Conclusion

A summary of our project, and suggestions for further work.

94

95

13 Summary

Over the course of this master's thesis we have designed, developed, and
evaluated a motion controlled educational game. We started the project
with a literature study to get familiar with the subject at hand, as well
as some research into the technology we would base the project on. The
literature study helped us decide on how to progress with our project, espe-
cially in terms of how we wanted to design our prototype. Our focus quickly
turned towards making a multiplayer game, especially targeted towards a
younger audience. This decision came from both personal dislike for how
much of the earlier years of education are structured, as well as a belief that
we could have an actual impact on how it could be shaped for the future.

During the project we performed an experiment involving third year ele-
mentary school students, where we had them try out our newly developed
prototype. One of the main goals of our design was to be able to allow
a whole class to play the game during one period, something we achieved.
We were able to have six students play at once, which makes it feasible
to allow a whole class to play during a relatively short amount of time by
assigning them to rotating groups. The observations we noted during the
experiment were largely positive, the students enjoyed the game (especially
well noticed by the fact that several came back multiple times), they were
actively discussing the tasks they were given, and everyone was eager to
participate from the start. Engagement levels during the experiment were
way higher than we had anticipated beforehand, especially when consider-
ing the simplicity of our game. This only shows how much of an impact
adding some less used elements into the mix can have, not only the motion
controls but also the multiplayer focus. Neither of these things have been
prevalent in educational games targeting this age group, with motion con-
trols largely non-existent in general. They also showed much interest for
the Kinect itself, many of the students had experience with motion controls
from before, but only a couple had tried a system based on camera tracking.
Some of the interest in the game could be explained by the novelty factor
of motion tracking, and might be argued that it gets old quick, but we still
believe that this is an area of usage that has potential.

All of our student participants claimed that they preferred games like this
to be multiplayer. Adding a social aspect to the games often lead to an
increase in playtime. Even when the game itself is not intended to be
directly competitive, players often create competitions among their friends
and social circle to compare how well they do, just look at the Flappy Bird

96 13 SUMMARY

craze from a short time back. This competitive aspect is a good motivator,
and if harnessed correctly it can lead to an increase in educational gain as
the students want to spend more time playing the game.

The technology itself has also gotten a thorough review during our project.
As far as we can tell the main drawback to using this kind of motion tracking
for the average home user is the amount of open space required. In terms of
cost the technology is starting to get a�ordable by most, in the case of the
Kinect it even came bundled with the Xbox console for a while. However,
there is a distinct lack of good games that utilise it. Taking into account
the low interest for having such things at home also a�ected our decision to
aim our prototype at a classroom setting. All of our �ndings suggest that
this is something that should be taken further, with more feature complete
games, and a larger pool of test participants.

97

14 Future Work

The combination of motion capture and multiplayer educational games is
an area that still warrants further exploration. Both the observations we
noted during the experiment and the feedback we received on our question-
naire show that there is a great deal of potential for this kind of games.
The only problem is how to best tap into this potential, not to mention
getting through the bureaucracy needed to get it implemented in any kind
of approved curriculum. Throughout the project we have gathered some
pointers on which areas need more work before we believe this topic can
be closed, as well as which technical aspects of our prototype that needs
addressing.

First and foremost we would like to see a larger study than what we were
able to perform with our experiment, namely a larger amount of participants
with more varying age, varied types of tasks, and di�erent subjects.

The game prototype itself is far from a �nished product. A menu system
would bene�t it nicely by working as a sort of tutorial for getting used to
controlling the game using gestures, there should also be a small tutorial
available that could assist new users on how to play. The user interface
needs to be made more clear, and scale better to di�erent screen sizes. We
also saw the the horizontal alignment on the textboxes containing the single
words did not quite match the players positions.

There should be a highscore list, this would increase the level of compet-
itiveness among the players and thus increase motivation to keep playing.
We also had several requests on our questionnaire to add more customisa-
tion options, such as nicknames and choosing their own silhouette color for
each individual player. It should be possible to modify the game length by
setting the amount of tasks for a round before starting.

Support for di�erent topics should be implemented, ideally allowing for a
mix of several subjects to the chosen at the start. Examples include math
or di�erent languages. In addition to this there should be more variation
in the tasks within one subject. There should be an accompanying tool
to con�gure the tasks that can appear in the game, this would allow for
instance teachers to modify the subjects covered in the game to suit their
curriculum.

For the game itself we have identi�ed two more issues that needs to be
�xed. One is the game over screen, currently this is only a short message

98 14 FUTURE WORK

showing the words �Game Over� and the score acquired from this round.
The other issue is somewhat related to this, namely sound. We currently
have no sound implementation as this was not important for a prototype,
we are even more sure about this after experiencing the noise level six third
graders can produce during a gaming session. However it is something that
greatly impacts how �nished a product feels and should be implemented.

Lastly, we experienced issues having our gestures register during the exper-
iment. This was most likely caused by us not being thorough enough when
creating our gesture database �le. Ideally this should be done by work-
ing with several recordings of di�erent people performing the same gesture.
Since we had everything working out just �ne in our lab we assumed this
would be the case when we were to test the prototype, which it was not. We
also recommend using someone from the target audience when creating this
gesture, as a possible reason for the problems is the di�erence is physical
size between us university students which did the recordings in this project,
and the third graders who were testing it.

REFERENCES 99

References

[1] CocosSharp Repository. https://github.com/mono/CocosSharp.

[2] FNA Homepage. https://fna-xna.github.io/.

[3] Game Loop. http://gameprogrammingpatterns.com/game-loop.

html.

[4] Kinect Issues. https://support.xbox.

com/en-US/xbox-on-windows/accessories/

kinect-for-windows-v2-known-issues.

[5] MonoGame Homepage. http://www.monogame.net/.

[6] NuGet Wikipedia. https://en.wikipedia.org/wiki/NuGet.

[7] OpenNI Wiki. https://en.wikipedia.org/wiki/OpenNI.

[8] Unity Homepage. https://unity3d.com/.

[9] X-Plane certi�ed. http://www.x-plane.com/pro/certified/.

[10] Xenko Homepage. http://xenko.com/.

[11] XNA Wikipedia. https://en.wikipedia.org/wiki/Microsoft_XNA.

[12] Mari Hansen Asplem and Mia Aasbakken. Evaluation of, an Inter-
active Campaign. Exploring the use of a motion-controlled game in
a public space. Master's thesis, Norwegian University of Science and
Technology, June 2012.

[13] Victor R. Basili and Gianluigi Caldiera. Goal Question Metric
paradigm. Encyclopedia of Software Engineering, 1994.

[14] Jose de Jesus Luis Gonzales Ibanez. Motion Capture in Educational
Games. Master's thesis, Norwegian University of Science and Technol-
ogy, June 2013.

[15] Sue Halpern. Virtual Iraq, Using simulation to treat a new generation
of traumatized veterans. The New Yorker, 2008.

[16] Thomas W. Malone. What Makes Things Fun to Learn? A Study of
Intrinsically Motivating Computer Games, 1980.

https://github.com/mono/CocosSharp
https://fna-xna.github.io/
http://gameprogrammingpatterns.com/game-loop.html
http://gameprogrammingpatterns.com/game-loop.html
https://support.xbox.com/en-US/xbox-on-windows/accessories/kinect-for-windows-v2-known-issues
https://support.xbox.com/en-US/xbox-on-windows/accessories/kinect-for-windows-v2-known-issues
https://support.xbox.com/en-US/xbox-on-windows/accessories/kinect-for-windows-v2-known-issues
http://www.monogame.net/
https://en.wikipedia.org/wiki/NuGet
https://en.wikipedia.org/wiki/OpenNI
https://unity3d.com/
http://www.x-plane.com/pro/certified/
http://xenko.com/
https://en.wikipedia.org/wiki/Microsoft_XNA

100 REFERENCES

[17] Jerry Mander. Four Arguments for the Elimination of Television.
HarperCollins, 1978.

[18] Penelope Sweetster and Peta Wyeth. GameFlow: A Model for Evalu-
ating Player Enjoyment in Games. ACM Computers in Entertainment,

Vol 3, 2005.

101

Part V

Appendices

Anything and everything that did not have a place earlier in the thesis.

102

Spørreundersøkelse Eksperiment

Bakgrunnsinformasjon

1. Er du gutt eller jente?
Mark only one oval.

 Gutt

 Jente

2. Hvilken klasse går du i?
Mark only one oval.

 1

 2

 3

 4

3. Hvor ofte spiller du data/videospill?
Mark only one oval.

 Nesten hver dag

 Noen ganger i uka

 Sjeldnere

4. Har du spilt læringsspill?
Mark only one oval.

 Ja

 Nei

5. Har du prøvd bevegelseskontrollere før? Hvis ja, hvilke?
Check all that apply.

 Nei

 Nintendo Wii

 Playstation Move

 Microsoft Kinect (Xbox)

 Andre

Om Spillet

103

A Questionnaire

6. Synes du spillet var morsomt?
Mark only one oval.

 Ja

 Nei

7. Var det enkelt nok å forstå hva dere skulle gjøre i spillet?
Mark only one oval.

 Ja

 Nei

8. Var det bedre å spille et læringsspill med Kinect enn med mus/tastatur?
Mark only one oval.

 Ja

 Nei

9. Foretrekker du et læringsspill der mange kan spille samtidig?
Mark only one oval.

 Ja

 Nei

10. Lærte du noe av spillet?
Mark only one oval.

 Ja

 Nei

11. Kunne du tenkt deg at spill hadde blitt brukt i tillegg til vanlig undervisning?
Mark only one oval.

 Ja

 Nei

12. Ble du mer motivert av å lære om å lage setninger med spill enn av vanlig
undervisning?
Mark only one oval.

 Ja

 Nei

13. Følte du at det var lettere å konsentrere seg om oppgavene enn i vanlig
undervisning?
Mark only one oval.

 Ja

 Nei

14. Er det enklere å starte en diskusjon om oppgavene når det er i et spill i forhold til
vanlig undervisning?
Mark only one oval.

 Ja

 Nei

15. Synes du at det er en fordel å kunne samarbeide med andre?
Mark only one oval.

 Ja

 Nei

16. Var det enkelt å vite om svaret som ble gitt var riktig eller galt?
Mark only one oval.

 Ja

 Nei

17. Synes du tiden gikk fort mens du spilte?
Mark only one oval.

 Ja

 Nei

18. Var det viktig å samarbeide for å gjøre det bra i spillet?
Mark only one oval.

 Ja

 Nei

19. Synes du dere samarbeidet godt?
Mark only one oval.

 Ja

 Nei

20. Ville du spilt dette hjemme om du hadde hatt muligheten?
Mark only one oval.

 Ja

 Nei

21. Hva tror du vi bør gjøre for å få spillet bedre?

Gutt 3 33.3%
Jente 6 66.7%

1 0 0%
2 0 0%
3 9 100%
4 0 0%

Nesten hver dag 3 33.3%
Noen ganger i uka 3 33.3%

Sjeldnere 3 33.3%

9 responses
Summary

Bakgrunnsinformasjon

Er du gutt eller jente?

Hvilken klasse går du i?

Hvor ofte spiller du data/videospill?

66.7%

33.3%

100%

33.3%

33.3%

33.3%

106 B QUESTIONNAIRE RESULTS

B Questionnaire Results

Ja 8 88.9%
Nei 1 11.1%

Nei 3 33.3%
Nintendo Wii 6 66.7%

Playstation Move 2 22.2%
Microsoft Kinect (Xbox) 2 22.2%

Andre 2 22.2%

Ja 9 100%
Nei 0 0%

Ja 9 100%
Nei 0 0%

Har du spilt læringsspill?

Har du prøvd bevegelseskontrollere før? Hvis ja, hvilke?

Om Spillet

Synes du spillet var morsomt?

Var det enkelt nok å forstå hva dere skulle gjøre i spillet?

88.9%

0 1 2 3 4 5

Nei

Nintendo Wii

Playstation M…

Microsoft Kin…

Andre

100%

Ja 9 100%
Nei 0 0%

Ja 9 100%
Nei 0 0%

Ja 9 100%
Nei 0 0%

Ja 6 66.7%
Nei 3 33.3%

Var det bedre å spille et læringsspill med Kinect enn med mus/tastatur?

Foretrekker du et læringsspill der mange kan spille samtidig?

Lærte du noe av spillet?

Kunne du tenkt deg at spill hadde blitt brukt i tillegg til vanlig undervisning?

100%

100%

100%

100%

33.3%

66.7%

Ja 9 100%
Nei 0 0%

Ja 5 55.6%
Nei 4 44.4%

Ja 6 66.7%
Nei 3 33.3%

Ja 9 100%
Nei 0 0%

Ja 6 66.7%

Ble du mer motivert av å lære om å lage setninger med spill enn av vanlig
undervisning?

Følte du at det var lettere å konsentrere seg om oppgavene enn i vanlig
undervisning?

Er det enklere å starte en diskusjon om oppgavene når det er i et spill i
forhold til vanlig undervisning?

Synes du at det er en fordel å kunne samarbeide med andre?

Var det enkelt å vite om svaret som ble gitt var riktig eller galt?

100%

44.4%

55.6%

33.3%

66.7%

100%

Nei 3 33.3%

Ja 7 77.8%
Nei 2 22.2%

Ja 9 100%
Nei 0 0%

Ja 9 100%
Nei 0 0%

Ja 9 100%
Nei 0 0%

Synes du tiden gikk fort mens du spilte?

Var det viktig å samarbeide for å gjøre det bra i spillet?

Synes du dere samarbeidet godt?

Ville du spilt dette hjemme om du hadde hatt muligheten?

33.3%

66.7%

22.2%

77.8%

100%

100%

Hva tror du vi bør gjøre for å få spillet bedre?

Kontrollere hvilken farge du får

Flere oppgaver Vanskeligere

Flere oppgaver

Fler oppgaver Vanskeligere

Kontrollere hvilken farge du får Mer spennende bakgrunn

Number of daily responses

100%

0.0

2.5

5.0

7.5

10.0

112 C CLASS DIAGRAMS

C Class Diagrams

C.1 Motion Controller Module

C.2 User Interface Module 113

C.2 User Interface Module

114 C CLASS DIAGRAMS

C.3 Game Logic Module

C.4 Game Core Module 115

C.4 Game Core Module

	I Introduction
	Thesis Information
	Context
	Personal Motivation
	Goals
	Thesis Structure
	Introduction
	Research
	Own Contribution
	Conclusion
	Appendices

	Methodology
	Goals and Research Questions
	Goal Question Metric
	Research Goals
	Summary

	Process
	Literature Study
	Prototype Development
	Questionnaire
	Observation
	Practical Issues
	Summary

	II Research
	Motion Capture Technology
	Microsoft Kinect
	Hardware Comparison
	Software
	Summary

	Game Development Technology
	The Game Loop
	Initialize and Load
	Update
	Draw
	Unload

	Engines and Frameworks
	Unity
	Xenko
	Microsoft XNA
	MonoGame
	FNA
	CocosSharp

	Summary

	Serious Games
	Common Types of Serious Games
	Edutainment
	Games for Health
	Simulation

	Examples
	The Oregon Trail
	The Incredible Machine (TIM)
	America’s Army
	X-Plane
	Wii Fit

	Summary

	Designing an Engaging Game
	Intrinsic and Extrinsic Motivation
	Challenge
	Fantasy
	Curiosity
	Summary

	Related Work
	Evaluation of an Interactive Campaign using Motion Sensing Technology
	Learning Recycling From Playing a Kinect Game
	Summary

	III Own Contribution
	Microsoft Kinect
	Kinect v2 Sensor
	The Kinect for Windows SDK 2.0
	What is Included in the Kit
	Kinect Studio
	Visual Gesture Builder

	Body Tracking

	Framework
	Design goals
	Modifiability
	Reusability
	Usability

	Engines and Frameworks
	Microsoft Kinect
	MonoGame
	Empty Keys UI

	Architecture and Implementation
	Modules Overview
	Motion Control Module
	User Interface Module
	Game Logic Module
	Game Core Module

	Game
	Concept
	Background
	Platform
	Target Audience
	Gameplay

	Relation to the Original Concept
	Original Gameplay
	Changes from Original Concept

	Prototype
	Technical Issues

	Experiment
	Experiment Context
	Research Group
	Participants
	Location
	Experiment Procedure
	Questionnaire
	Interviews

	Questionnaire results
	Observation results

	Discussion
	Using a Motion Controlled Multiplayer Game for Education
	Important Factors for Designing a Game
	Technology

	IV Conclusion
	Summary
	Future Work

	V Appendices
	Questionnaire
	Questionnaire Results
	Class Diagrams
	Motion Controller Module
	User Interface Module
	Game Logic Module
	Game Core Module

