
Automating tasks in the design loop for
mechanism design

Anders K Kristiansen
Eivind Kristoffersen

Master of Science in Engineering and ICT

Supervisor: Bjørn Haugen, IPM
Co-supervisor: Ole Ivar Sivertsen, IPM

Department of Engineering Design and Materials

Submission date: June 2016

Norwegian University of Science and Technology

i

ii

Preface

This Master’s Thesis, written within the field of Knowledge-Based Engineering, is the

culmination of a Master of Science degree in Engineering and ICT. The work was carried

out during the spring of 2016 for the Department of Engineering Design and Materials,

Norwegian University of Science and Technology (NTNU) in Trondheim.

The thesis is a continuation of our project dissertation, conducted during the autumn

of 2015. The project dissertation included a literary study of a pilot application created

by Rasmus Korvald Skaare.

We would like to thank Ole Ivar Sivertsen and Bjørn Haugen for their continuous sup-

port and guidance throughout our work with this thesis. Our sincere thanks also goes to

Technosoft Inc. and Jorgen Dahl for providing the AML software and technical support.

Trondheim, 10-06-2016 Eivind Kristoffersen

Anders Kristiansen

iii

iv

Abstract

This thesis studies how Knowledge-Based Engineering (KBE) concepts can be used to

(i) automate tasks in the mechanism design process, and (ii) support and enable the

use of design optimization.

The pilot implementation of a KBE system has been reviewed and further developed in

the Adaptive Modeling Language, and is hereby referred to as the mechanism system.

Domain knowledge in the areas of mechanisms, Finite Element Analysis and design

optimization, is captured, modeled and used for automation in the mechanism de-

sign process. Through simple user input a parametrized model including links, joints,

springs, dampers, loads, and subsequent multi-point constraints, is created. The model

is used to establish an interface with AML and the analysis software FEDEM. The inter-

face provides the basis for including structural analyses in a fully automated design

optimization.

The mechanism system enables a wide range of mechanisms to be automatically mod-

eled, pre-processed and analysed, thereby demonstrating how routine design work in

the mechanism design process, can be reduced.

v

vi

Sammendrag

Denne avhandlingen studerer hvordan Knowledge-Based Engineering kan bli brukt for

å (i) automatisere oppgaver i en designprosess av mekanismer, og (ii) støtte og tilrette-

legge bruk av designoptimalisering.

Pilotimplementasjonen av et mekanismesystem er blitt gjennomgått og videre utviklet

i programmeringsspråket Adaptive Modeling Language. Domenekunnskap innenfor

mekanismer, elementmetoden og designoptimalisering er formalisert, modellert og brukt

til automatisering i designprosessen. Fra enkel inndata blir det laget en parametris-

ert modell med lenker, ledd, fjærer, dempere, laster, og påfølgende flerpunktsbegren-

sninger. Modellen brukes til å etablere et grensesnitt mellom AML og analyseprogram-

varen FEDEM. Grensesnittet legger grunnlaget for å inkludere strukturelle analyser i en

helautomatisert designoptimalisering.

Systemet tillater automatisk modellering, preprosessering og analysering av et stort ut-

valg av mekanismer. Dette viser hvordan rutinemessig arbeid i designprosessen for

mekanismer kan bli redusert.

vii

viii

Contents

Preface . iii

Abstract . v

Sammendrag . vii

List of Figures . xiii

List of Named Equations . xvi

Nomenclature . xvii

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 2

1.3 Structure . 2

2 Theory 5

2.1 The Design Process . 5

2.2 Knowledge-Based Engineering . 7

2.3 Mechanisms . 9

2.3.1 Links . 9

2.3.2 Joints . 10

2.3.3 Degrees of Freedom of Planar Mechanisms 13

2.3.4 Transformation and Rotations . 15

2.3.5 Kinematic Modeling . 17

2.4 Finite Element Analysis . 20

2.4.1 Meshing . 20

2.4.2 Element Dimensions . 21

2.4.3 Boundary Conditions in Structural Mechanisms 25

ix

2.5 Control Systems . 27

2.6 Design Optimization . 28

2.6.1 Design Problem Formulation . 28

2.6.2 Unconstrained Methods . 31

2.6.3 Constrained Methods . 32

2.6.4 Multi-Objective Optimization Methods 33

2.6.5 Structural Optimization . 34

2.6.6 Final Notes . 35

2.7 Software Development . 36

2.7.1 Object-Oriented Development . 36

2.7.2 Scrum . 37

3 Methodology 39

3.1 Runtime Environment . 39

3.2 Development Infrastructure . 39

3.3 Adaptive Modeling Language . 40

3.3.1 Framework . 40

3.3.2 Editor . 40

3.3.3 Source Code Management . 41

3.3.4 AML Modeling Forms . 41

3.3.5 AMOpt . 42

3.4 FEDEM . 43

3.5 Modeling of the Mechanism System . 45

4 The Mechanism System 47

4.1 Application Input . 47

4.1.1 Node Positions . 48

4.1.2 Constraints . 48

4.1.3 Link Shapes . 49

4.1.4 Springs and Dampers . 51

4.1.5 Loads . 51

4.1.6 Design Optimization . 52

x

4.1.7 Mechanism Library . 52

4.2 Initial Frame Placement . 52

4.3 Links . 53

4.4 Joints . 55

4.5 Springs and Dampers . 56

4.6 Loads . 57

4.7 Mechanism Assembly . 57

4.8 Meshing . 57

4.8.1 Boundary Conditions . 59

4.9 Analysis . 59

4.10 Results . 60

4.11 Discussion . 73

5 Design Optimization 77

5.1 AMOpt . 78

5.2 The Iteration Process . 78

5.3 Problem Formulation . 79

5.3.1 The Implementation . 81

5.4 Results . 83

5.5 Discussion . 88

6 Implementation Details 91

6.1 General Development Methodology . 91

6.2 System Architecture . 92

6.2.1 Collections . 92

6.2.2 Data Models . 94

6.2.3 Joints . 94

6.2.4 Links . 95

6.2.5 Loads, Springs and Dampers . 96

6.2.6 Meshing and Analysis . 97

6.2.7 Design Optimization . 98

6.3 Results and Discussion . 100

xi

7 Final Discussion 103

8 Conclusions 107

9 Further Work 109

References 111

A Installation Details A-1

B Class Diagrams B-1

C Graphical User Interface C-1

D Example Model File D-1

E Work Log E-1

F Source Code F-1

F.1 System.def . F-2

F.2 Data-models.aml . F-2

F.3 Springs-dampers.aml . F-6

F.4 Loads.aml .F-13

F.5 Cross-sections.aml .F-17

F.6 Optimizations.aml .F-25

F.7 Constraints.aml .F-38

F.8 Constraint-types.aml .F-45

F.9 Meshing.aml .F-57

F.10 Analysis.aml .F-59

F.11 Link-member-geometry.aml .F-63

F.12 Link-surface-geometry.aml .F-75

F.13 Links.aml .F-78

F.14 Collections.aml .F-86

F.15 Geometry-export.aml .F-102

G Risk Assessment G-1

xii

List of Figures

2.1 The design process . 5

2.2 Achievable design time . 8

2.3 Binary, ternary and quaternary links . 10

2.4 The six lower pairs . 11

2.5 Redundant links . 14

2.6 Four-bar mechanism . 15

2.7 Coordinate transformation . 15

2.8 Arbitrary configuration of links Li ,L j ,Lk . 18

2.9 Example frame placement and SU parameters 20

2.10 Example models and different mesh representations 21

2.11 Link with hybrid mesh . 22

2.12 Element aspect ratios . 22

2.13 Example element . 23

2.14 Typical high stress areas . 25

2.15 RBE2 and RBE3 . 27

2.16 Open-loop and closed-loop system . 27

2.17 Constraint areas . 31

2.18 An object-oriented system consists of many well-encapsulated objects,

interacting with one another by sending messages 37

2.19 The scrum process . 38

3.1 The AML framework . 41

3.2 Class diagram extensions . 46

4.1 Frame placements for the male and female elements of a revolute joint . 53

xiii

4.2 Smooth NURBS curve (illustrated with red dots) generated automatically

from joint-directions . 54

4.3 Ternary and Quaternary links . 55

4.4 Kinematic model fixes . 61

4.5 Old joint definition . 62

4.6 Knuckle and double revolute joints . 62

4.7 Joint fillets . 63

4.8 Free joint RBE2 Example . 64

4.9 Thickened link surface . 64

4.10 Spring and Damper Example . 65

4.11 Force and Torque Example . 65

4.12 Mesh configurations . 66

4.13 Refined tetrahedron mesh . 66

4.14 Double wishbone suspension represented in the mechanism system and

FEDEM . 67

4.15 Four-bar analysis . 67

4.16 Object tree in FEDEM . 68

4.17 Double wishbone translational deformation 69

4.18 RBE2 nodes . 69

4.19 Load and spring/damper connection . 70

4.20 14-bar steering linkage . 71

4.21 Log grabber . 72

4.22 Slider crank . 72

5.1 I-beam cross section . 80

5.2 AMOpt loop . 82

5.3 Initial vs. Optimal Design . 83

5.4 Initial vs. Optimal Design . 86

5.5 Area Evaluation Plot . 87

5.6 Constraint Function Plot . 87

6.1 Class-object diagram of the initial collections 93

xiv

6.2 Class-object diagram of the initial collections 94

6.3 General joint models class-object diagram 95

6.4 Joint types class-object diagram . 95

6.5 Link structure class-object diagram . 96

6.6 Loads, springs and dampers class-object diagram 97

6.7 Meshing and analysis class-object diagram 98

6.8 Optimization models class-object diagram 99

6.9 System model tree . 101

C.1 Mechanism selection and export GUI . C-1

C.2 Coordinate system frame GUI . C-2

C.3 Joint GUI . C-2

C.4 GUI controlling all links . C-3

C.5 Link geometry and member GUI . C-3

C.6 Overall links GUI . C-3

C.7 Dampers and loads . C-4

C.8 Overall links GUI . C-4

C.9 Link material properties . C-5

C.10 Design optimization GUIs . C-5

xv

List of Named Equations

2.3 The Kutzbach Criterion . 14

2.7 The Direction Cosine . 16

2.8 Coordinate Transformation . 16

2.9 Frame Definition . 17

2.10 The Homogeneous Displacements Matrix 18

2.11 Spatial Deformation . 19

2.12 Decomposition of Joint-link Displacement 19

2.13 Screw Displacement of Joint-link Pair . 19

2.14 Master Stiffness Equation . 21

2.15 Element translation function . 23

2.16 Translational error . 23

2.17 Translational error ratio . 23

2.18 Element size reduction example . 24

2.19 Translational error . 24

2.20 Objective function . 28

2.21 Inequality and equality constraints . 29

2.22 Design space . 29

2.23 Constraint normalization . 29

2.24 Inequality and equality constraints with response vector 30

5.3 Case Problem Formulation . 80

5.4 Final Constraint Function . 81

xvi

Nomenclature

Symbols

F frame, local coordinate system

F set of forces

g (x) inequality constraints

h element length

h(x) equality constraints

J sorted set of joints of mechanism M

K stiffness matrix

Kt stress concentration factor

L sorted set of links of mechanism M

λ direction cosine

M homogeneous matrix of rotation and displacement

M a mechanism defined as the tuple M= (L,J)

O big O

p location vector of a frame F

R rotation matrix

r(x, t) response vector

$ skrew

σ(x) stress constraints

∆σ stress error estimate

T transformation matrix

xvii

u set of unit deformations

∆v error estimate

x, y, z axes-vectors of a frame F

Acronyms

AI Artificial Intelligence

AML Adaptive Modeling Language

CAD Computer Aided Design

CMS Component Mode Synthesis

DOF Degree of Freedom

DOT Design Optimization Tools

FBS Frame Based System

FEDEM Finite Element Dynamics in Elastic Mechanisms

FEA Finite Element Analysis

GA Genetic Algorithms

GUI Graphical User Interface

KBE Knowledge Based Engineering

LISP List Processing

MMA Method of Moving Asymptotes

MOOM Multi-objective Optimization Methods

MPC Multi Point Constrain

NURBS Non-uniform Rational Basis Spline

OOA Object-Oriented Analysis

xviii

OOD Object-Oriented Development

OOP Object-Oriented Programming

OMG Object Management Group

PDE Partial Differential Equations

RBE Rigid Body Element

SCF Stress Concentration Factor

SLP Sequential Linear Programming

SPC Single Point Constraints

SU Sheth-Uicker

SQP Sequential Quadratic Programming

SUMT Sequential Unconstrained Minimization Techniques

UML Unified Modeling Language

xix

Definitions

The majority of the following definitions are retrieved from the sources used in the the-

ory. However, since most of the definitions are rather long, we have chosen not to use

quotation marks in this section, even for direct quotes.

Abstraction

Abstraction is, when used in the context of object-oriented programming, a technique

used to manage the complexity of a system by hiding all but the relative data of an

object. Thus it relates both encapsulation and data hiding [29]

Class

A class is a template that defines an entity ’type’ with properties and subobjects. It is

meant to be instantiated into an object, and can be instantiated an indefinite number

of times. Methods are also defined for a class and considered part of the character of

the class even though they are not defined within the class. A class can be thought of

as a recipe for creating instances. For example the same cake recipe may be used many

times, and each time, a different cake instance is created [47].

Constraint

In the context of design optimization, a constraint defines a requirement on the design

and performance which the system must satisfy. It is often denoted as a function of a

set of design variables, x , where the constraint function is g (x).

Control system

A control system is a device or process that regulates the behavior of another device

or system with regard to a particular condition [4]. Control systems can be found in a

traffic light, water boiler, spacecraft, CNC machine etc.

Degrees of Freedom

The degrees of freedom is defined as the number of independent movements a rigid

body, or mechanism, has. A degree if freedom can either be translational or rotational.

Demand-Driven Calculation

Demand-driven calculation means that properties and subobjects are not created until

xx

the first time they are needed/demanded. If a property is not referred to (demanded) it

will not calculate its value. The first time a property is demanded the value is calculated

and that value is retained by the property. Subsequent demanding of the same property

will not cause re-calculation because the first calculation is retained, unless the value

of that property has been smashed. A property value is smashed when other properties

or objects that it depends on are changed or smashed [47].

Dependency

A property is said to depend on another property if its formula (or any method/function

called from the formula) references that other property. When a dependency is estab-

lished, the property value smashes anytime the property it depends on changes value,

formula or smashes [47].

Dependency Backtracking

Dependency backtracking is the mechanism that causes properties to recalculate their

retained values (from their formula) when other properties that were used to calculate

the value change. That is if volume is calculated by multiplying height by width by

depth and the height, width, or depth change, the volume property value will become

unbound. The value will not be calculated until it is needed again because of demand

driven calculations [47].

Design Variable

A design variable is a numerical input that refers to a concrete parameter of a system,

and is the only variable allowed to change during the design optimization.

Design Optimization

Design optimization is the act of finding the best performance of a system under given

constraints.

Dynamic Simulation

Dynamic simulation refers to the calculations of motion in a mechanical system on the

computer where both constraint forces and the forces necessary to drive the system are

taken into account [38].

xxi

Expanding

Expanding an AML object is the action of demanding all its subobjects, and can also

include expanding the subobjects too. When an instance of a class is created, if this

class contains defined subobjects, the subobject instances are not created until refer-

enced/demanded [47].

Finite Element Analysis

Finite Element Analysis (FEA) is a numerical method for approximating solutions to

boundary value problems for partial differential equations.

Inheritance

Inheritance is a mechanism for class (code) reuse. Through inheritance a class will have

the same properties, subobjects, and methods as the class (superclass) that is being

inherited from. The tree structure created by class inheritance is referred to as the class

hierarchy [47].

Instance

An instance is an object that is created using the class definition. All instances of the

same class have the same properties although the values of the properties may be dif-

ferent depending on the operations that have been performed on the instances. For

example each time a cake is baked makes an instance of the cake recipe which could

be thought of as a class. Throughout the manual, the expression ’instance of Class-A’

means an instance of Class-A or of any other class that directly or indirectly inherit from

Class-A [47].

Joint

A joint is a connection between two adjacent links. The primary kinematic function of

a joint is to constrain the relative motion allowed between the connected links.

Kinematics

Kinematics refers to the calculations of motion in a system with no reference to forces

and torques in the system or the input necessary to achieve the motion [38].

xxii

Link

A link is a body with the primary function of fixing geometric relationships between its

joint elements.

Machine

A machine is a device which transforms energy in some available form and utilises it to

do some particular type of work [32].

Mechanism

A mechanism is a device which transforms motion to a desirable pattern. It is an as-

sembly of links where at least two of the links have relative motion. The links may be

connected to each other by joints that constrain their relative motion [38].

Meshing

Meshing is the process of dividing a geometric model into a finite number of elements.

Method

A method is an operation or function that is defined specifically for a class. A method

name may have definitions for many classes that must perform the same operation but

in different ways. For example suppose the method volume is defined for each of the

classes box, cylinder, and sphere. By calling the volume method with an instance of

one of those classes the correct code will be executed automatically and the volume of

the instance returned. Inheriting from a class that has methods defined for it will also

inherit the methods [47].

Mobility

The mobility of a mechanism is the number of degrees of freedom it possesses. An

equivalent definition of mobility is the minimum number of independent parameters

required to specify the location of every link within a mechanism [37].

Model

A model is defined as a more or less simplified representation of the engineering aspects

of a system. The model must represent the properties of the aspects of a system that you

would like to study, as accurately as possible [38].

xxiii

Modularity

The modularity of a system is a term used in context of object-oriented programming. It

is used to determine how easily a system’s modules (or components) may be separated

and modified.

Object

An object is a term that is used to refer to an instance of a class and all of the meth-

ods of that class and its superclasses. It may be considered to be a ’packet’ of software

characterized by a set of operations (methods), a set of variables (properties) to store

the results of operations, and a set of objects (subobjects) that define the structure. In

fact an object-oriented system does not have objects, but instead classes and instances.

Defining an object is really defining a class and making an object is really creating an

instance [47].

Objective Function

In design optimization, an objective function is a measure of the performance of a sys-

tem, based on the design variables.

Semantic Web

The Semantic Web is an extension of the current World Wide Web in which informa-

tion is given well-defined meaning, better enabling computers and people to work in

cooperation [10].

Simulation

Simulation is the imitation of certain properties of a system in a mathematical compu-

tational model [38].

Spaghetti Code

Spaghetti code refers to poorly constructed, disorganized, and unstructured source code

[22].

xxiv

Subclass

Subclass is a term that refers to any class that inherits from a given class. Subclasses are

thought of as down the class hierarchy. For example the class baseball is a subclass of a

class sphere [47].

Superclass

Superclass is a term that refers to any class that is inherited by a given class. A Super-

class of a class C is a class that can be found by tracing up the class hierarchy of C. For

example the class sphere is a superclass of the class baseball [47].

xxv

xxvi

Chapter 1

Introduction

1.1 Background

Most of the early architectural wonders of the world were designed by individuals with

only a small team of assistants. The great Papal Basilica of St. Peter in the Vatican was

designed primarily by Michelangelo, Bramate, Maderno and Bernini. When Joe Sut-

ter designed the Boeing 747, he started with a few hundred engineers in his team, but

ended with around 4,500. With time, the number of individuals involved in the de-

sign process has grown, reflecting both the sheer complexity of the products and the

design process itself. Complex products and systems today impose intricate cross-

connections between the parts and their abstractions in the underlying mathematical

models.

Faced with an increasingly competitive and demanding marketplace, companies are

forced to decrease production time and costs, while enhancing the quality of their prod-

ucts. Two technologies which can help cope with this situation are Knowledge-Based

Engineering (KBE), and design optimization. KBE allows for automation in routine en-

gineering work (such as calculations, geometry generation and documentation), by ac-

quiring, storing and reusing domain knowledge. This frees up time to explore a larger

solution space, thus enabling further enhancement and innovation of products. The

sheer complexity of products today makes finding an optimal design a challenging task.

1

1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

Experienced designers may be able to use their skills and intuition in order to obtain op-

timal designs for simple products. However, this becomes increasingly difficult or even

impossible for complex products. One approach is to use optimization methods to aid

the designer in finding the optimal design. By incorporating optimization methods in

the design process the designer may be relieved of complicated calculations. Also, by

identifying an explicit set of parameters in which the product can be changed and mea-

sured, the designer may increase his/her insight and knowledge.

The mechanism design domain could greatly benefit from integrating KBE and design

optimization. Mechanisms are, in general, very complex and difficult to analyze. In

many cases, they consist of a large number of individual components acting together

as a single entity. Thus, the governing kinematic equations of mechanisms are highly

non-linear, accentuating the need of numerical computations and optimization algo-

rithms. A KBE system with integrated optimization methods for mechanism design,

could not only decrease the overall time-to-market of mechanisms, but also aid design-

ers in finding better designs to more complex systems.

1.2 Research Questions

The following research questions has been developed in accordance with the supervi-

sor.

RQ1 How can a KBE system automate tasks in the mechanism design process?

RQ2 How can a KBE system support and enable the use of design optimization?

1.3 Structure

The remaining part of the thesis is organized as follows.

Chapter 2 describes the underlying theory for the thesis. The main sections here are

mechanisms and design optimization, in virtue of the assignment. Different design op-

timizations techniques are studied and further discussed in Chapter 5. In addition, a

2

CHAPTER 1. INTRODUCTION 1.3. STRUCTURE

general overview of the design process, KBE, FEA, control systems and software devel-

opment, is presented.

Chapter 3 presents the tools and methods used for the work with the thesis. Only a

brief explanation of the development infrastructure is given (alluded by supervisor),

and further discussed in Chapter 6.

Chapter 4 describes the functionality and main synthesis of the mechanism system.

Related results and findings are also presented and discussed.

Chapter 5 shows how the mechanism system enables automatic execution of analyses

and how this can be integrated as a part of a design optimization loop.

Chapter 6 presents the general development methodology used and takes an object-

oriented view of the system architecture. Class-object diagrams are presented both for

visualization and documentation purposes.

Chapter 7 discuss the results and findings from Chapters 4 to 6 in light of the research

questions presented in Section 1.2.

Chapter 8 draws conclusions from Chapter 7.

Chapter 9 reviews areas for further work.

All the features in point 3 of the master assignment have been studied, implemented

and tested, with the exception of higher pair joints and tools for extended detailing, in

accordance with supervisor. In addition, a video demo has been made to demonstrate

the functionality of the mechanism system. The video can be found on https://vimeo.

com/170026181, and the reader is encouraged to view it, as a supplement to this thesis.

Also, pictures describing the system’s Graphical User Interface (GUI), can be found in

Appendix C.

3

https://vimeo.com/170026181
https://vimeo.com/170026181

4

Chapter 2

Theory

2.1 The Design Process

Design engineers are faced with demands of obtaining optimal designs of complex me-

chanical and structural systems whilst keeping the time-to-market of the products as

small as possible. The design process can be a complex process as it includes all activ-

ities necessary to transform a set of design specifications into a final design, which can

be manufactured and sold. During this process, a given design is analyzed and modi-

fied in order to meet a set of requirements. It is an iterative process as it often requires

several rounds of modifications and analysis before the final design is reached.

Figure 2.1: The design process

The design process can be divided into four major steps: design specification, concep-

tual design, preliminary design and detailed design [49]. The model shown in Figure 2.1

is based on Arora’s [1] system evolution model, with some minor modifications intro-

duced by Trier [49]. As the design might fail to satisfy the design specifications, the

designer may have to go back and do modifications across all of the four steps. This is

illustrated with feedback loops in the model. Since most designs require a numerous

5

2.1. THE DESIGN PROCESS CHAPTER 2. THEORY

amount of modifications, it is essential for the designer that these feedback loops take

as little time as possible.

The first step of the design process is the design specification. This is where the oper-

ation tasks, requirements and performance of the system are formulated. From these

specifications the designer formulate the design problem at hand. The second step is

to create the conceptual design. For mechanisms, this may involve defining the config-

uration, or topology, as well as functional and structural properties. The third step is to

take the design model from the conceptual design and transform them into a prelimi-

nary design. The final step is to specify the detailed design. For mechanisms, this may

involve extended production detailing.

A classical approach for the design process involves using design tools for mechanism

modeling and then separating analysis tools for meshing, calculations, pre- and post-

processing. If modifications are needed, the designer have to go back to the design

tool to modify the design before further analyses can be run. This process of switching

between different applications and tools can be very tedious. One of the aims of us-

ing KBE tools is to facilitate the connection between the design process and numerical

analyses. The connection can be made by integrating the design and analysis tools in

a joint platform, or a single model [8]. By keeping a parametrized model throughout

the design process, the designer is able to create a real link between the geometry of a

mechanism and the simulation. Since all of the different steps in the process refer to

the same computer model, the designer avoids the time-consuming tasks of rebuilding

the design model between the steps.

6

CHAPTER 2. THEORY 2.2. KNOWLEDGE-BASED ENGINEERING

2.2 Knowledge-Based Engineering

Many definitions can be found of KBE. These typically reflect the different views from

various stakeholders. KBE for a company manager can be seen as something entirely

different than for a KBE developer. In order to grasp the concept of KBE, one have to

look at its fundamentals. KBE is the merging of artificial intelligence (AI), computer

aided design (CAD) and object-oriented programming (OOP). KBE merges these disci-

plines into one common platform. G. La Rocca has the following extended definition

[33]:

“Knowledge-Based Engineering (KBE) is a technology based on the use of dedicated soft-

ware tools called KBE systems, which are able to capture and systematically reuse prod-

uct and process engineering knowledge, with the final goal of reducing time and costs of

product development by means of the following:

• Automation of repetitive and non-creative design tasks

• Support of multidisciplinary design optimization in all the phases of The Design

Process”

AI, CAD and OOP are widely represented in scientific literature. This is not the case

with KBE. To date, there are only a few scientific books to be found on the topic. This

is mainly due to the fact that KBE for many years has been in the exclusive domain of

a few competitive industries, such as aerospace and automotive. KBE has not yet en-

tered into the mainstream of academic research, thus limiting the amount of available

information.

There is also a limited amount of information regarding KBE success stories. Even

though the KBE principles make big promises to both reduce product development

time and costs, few good metrics can be found to estimate these advantages [34]. Nev-

ertheless, the potential advantages of KBE goes beyond the reduction of time and costs.

Seen from the engineer’s perspective, KBE helps to automate routine tasks such as cal-

culations, geometry generation and documentation, thus making the feedback loops

faster, as illustrated in Figure 2.1. This frees up time which can be used to further en-

hance and innovate the product. When up to 80% of design time is spent on routine

7

2.2. KNOWLEDGE-BASED ENGINEERING CHAPTER 2. THEORY

task, as illustrated in Figure 2.2, the potential for reuse is huge. From a company’s per-

spective, KBE proves to be a promising solution as a knowledge portfolio as well. The

ability to capture, store and reuse the company’s intellectual property can prove crucial

in order for the company to remain competitive within a growing international market-

place [9].

Figure 2.2: Achievable design time

Advantages aside, KBE holds several challenges that need to be met. In Verhagen’s jour-

nal entry [50], three key challenges are identified: (i) The need for improved method-

ological support. The lack of exchange standards and excessive ad hoc character of

KBE development makes this one of the most important challenges. (ii) Difficulty with

transparency and traceability of knowledge. As there is a clear tendency towards de-

velopment of ’black-box’ applications in KBE, more attention needs to be paid to the

semantics of knowledge sharing, in order to establish a clearer ’knowledge connec-

tion’. With an improved knowledge connection, one can achieve greater interoperabil-

ity between heterogeneous systems and KBE tools. (iii) The necessity for a quantitative

framework to assess the viability and success of KBE development. To date, there is no

framework or method available to determine whether a design task, product or process

is suitable for KBE development.

8

CHAPTER 2. THEORY 2.3. MECHANISMS

2.3 Mechanisms

Most of the theory in this section is adopted from the textbooks by Khurmi [23], Singh

[37], Thornton and Marion [48], Sivertsen [38] and Finger [17].

A mechanism, or multibody system, is defined as a device which transforms motion to a

desirable pattern [38]. Mechanisms usually take part in a larger mechanical system, for

instance a steering mechanism of a car. In order to transform a given input motion to

a desirable output motion, mechanisms consist of links interconnected by joints which

constrain their relative motion. When two links are in contact with each other, they are

said to form a pair. Furthermore, if the relative motion between the links are success-

fully constrained, e.g. in a particular direction, the links form a kinematic pair. When

two or more kinematic pairs are coupled together in such a way that the last links is in-

terconnected to the first link to transmit definite motion, it is called a kinematic chain.

When one of the links in a kinematic chain is fixed, the chain is known as a mechanism.

If the mechanism is required to transmit power or to do work, it is known as a machine

[23].

Mechanisms are generally divided into the following three categories: planar, spherical

and spatial mechanisms. In planar mechanisms all moving points lie in parallel planes.

In spherical mechanisms all moving points moves in such a way that their trajectories

lie in concentric spheres. In spatial mechanisms there is no restrictions as to which

planes relative motion can occur.

2.3.1 Links

Each moving part in a mechanism is known as a kinematic link (or simply, link). A link,

in itself, may consist of several parts, however these are rigidly fastened together and

thus can not move relative to one another. The individual parts that makes up a link are

called members. A link, also known as a body, do not necessarily need to be rigid in order

to transmit motion, but it must be resistant. A resistant link in this context means a link

which is capable of transmitting the required force with negligible deformation. This

leaves us with rigid, flexible and fluid links. A rigid link is a link which does not undergo

9

2.3. MECHANISMS CHAPTER 2. THEORY

any deformation while transmitting motion, e.g. a connection rod. Flexible links on

the other hand are allowed to partly deform. However, the deformation occurs in a way

that does not affect the motion being transmitted, like chains and wires. Lastly, fluid

links are links which are formed by confining fluid in a receptacle in order to transmit

motion through the fluid with pressure and compression, as seen in hydraulic presses.

The number of joints incident on a link (how many links to which it is connected) de-

termines its degree. A link which connects two other links is known as a binary link. In

Figure 2.3a the links 1, 2, 3 and 4 are all binary links as each link has two joints. Analo-

gously, if a link is connected to three or four links it is known as a ternary or quaternary

link [2]. Figure 2.3c shows a linkage of both binary, ternary and quaternary links where

the latter is connected to links 2, 4, 6 and 8.

(a) (b) (c)

Figure 2.3: Binary, ternary and quaternary links

2.3.2 Joints

The kinematic pairs, hereby refereed to as joints, can be classified according to the type

of contact between the links. When two links of a pair have surface contact as relative

motion takes place, meaning one of the surfaces slides over the other, the pair formed is

known as a lower pair. If the two links have a line or point contact when relative motion

takes place, the pair is known as a higher pair. The lower and higher pairs can be further

categorized with respect to their degrees of freedom (DOFs). The DOFs of a joint, or

object in general, is defined as the number of independent relative motions [37], thus

a joint can have six DOFs. As a joint constraints the relative motion between two links

it is not a separate physical entity by itself, but the interface composed of the contact

10

CHAPTER 2. THEORY 2.3. MECHANISMS

surfaces of the two links [39]. The two contact surfaces, when considered separately,

are each referred to as a joint element. From the nature of the joint geometries it is

apparent to refer to one the elements in a pair as male, or solid, and the other as female,

or hollow. In each element there is placed a coordinate system. The relative motion

permitted between the elements are assigned parameters referred to as joint variables.

(a) Revolute joint (b) Prismatic joint (c) Cylindrical joint

(d) Helical joint (e) Ball joint (f) Planar joint

Figure 2.4: The six lower pairs [36]

The mechanisms presented in this thesis makes only use of lower pair joints, thus these

will be the main focus of discussion. The six lower pairs, seen in Figure 2.4, are de-

scribed with their joint axis as being the axis of rotation, translation or spindle, denoted

as the z-axis.

A revolute joint constrains the relative motion of a pair to a single axis of rotation, al-

lowing only for independent rotational motion around the joint axis. The revolute joint

has only one DOF with the joint variable being the relative rotation (∆θ) between the

links.

11

2.3. MECHANISMS CHAPTER 2. THEORY

A prismatic joint constraints the relative motion of a pair to a single axis of translation,

allowing only for independent translational motion along the joint axis. The prismatic

joint has only one DOF with the joint variable being the relative translation (∆s) be-

tween the links.

A cylindrical joint is equivalent to the revolute joint in series with the prismatic joint

as it constraints the relative motion to a coaxial joint axis, allowing both independent

rotation and translation. The cylindrical joint has two DOFs with both ∆θ and ∆s as

joint variables.

A helical joint is equivalent to the cylindrical joint as it allows both rotation and trans-

lation along the joint axis. However, since the links are constrained to screw motion, as

a results of the threads, the helical joint has only one DOF and either ∆θ or ∆s may be

used as the joint variable.

A ball joint, also known as a spherical joint, is equivalent to a series of three revolute

joints intersecting at a central point. This allows for free rotation around all the axis. The

spherical joint has three DOFs and the three angles ∆θ, ∆θ’ and ∆θ” as joint variables.

A planar joint constrains two planar surfaces together allowing them to freely translate

and rotate whilst remaining in contact with each-other. The planar joint has two trans-

lational DOFs and one rotational DOF about the joint axis normal. Hence, the three

joint variables can be chosen as ∆s, ∆s’ and ∆θ.

In addition to these six lower pairs, we have taken advantage of defining a free joint. A

free joint is initially defined to have six unconstrained DOFs, resulting in full freedom

of motion between the links. The purpose of this joint is to facilitate introduction of

constraints, prescribed motions and spring/damper properties [14]. All six DOFs are

potential joint variables allowing for both no relative motion (resulting in a rigid joint)

as well as relative translation and/or rotation.

The geometry of joints should be designed in order to minimize the stress concentra-

tion present under load. As a general rule, forces should be transmitted throughout the

12

CHAPTER 2. THEORY 2.3. MECHANISMS

mechanism as smoothly as possible. The transmission path of the force can be con-

sidered as a force flow. Thus, sharp transitions in the direction of the flow should be re-

moved by smooth and rounded contours [53]. A typical sharp transition can be seen be-

tween the joint and member geometries. By blending these geometries together (with

a fillet), one can obtain a smoother path for the force to flow. Additionally, the joints

have to be properly dimensioned in order to withstand the required stresses. One way

of determining the dimensions of a joint is by looking at the stress concentration factor

(SCF). A look through typical joint dimensions calls for the ratio D/d to be between 1.2

and 1.5, where D is the member width and d is the bore diameter [7]. The scale-factor,

r /d , for fillets typically range between 0.02 and 0.06, where r represents the fillet radius.

2.3.3 Degrees of Freedom of Planar Mechanisms

When designing mechanisms one of the most important concerns is the number of

DOFs, hereby referred to as the mobility, of a mechanism. The mobility can also be de-

fined as the minimum number of independent parameters required to specify the lo-

cation of every link in a mechanism [37]. In order to determine the mobility of a planar

mechanism one can apply the Kutzbach criterion. The Kutzbach criterion determines

the mobility directly from the number of links and the number and types of joints which

it includes given as [37]:

D = 3(n −1)−2p −h (2.1)

where

D := DOFs

n := total number of links in a mechanism where one i fixed

n −1 := number of movable links

p := number of lower pair joints (has one DOF)

h := number of higher pair joints (has two DOFs)

When two links are connected via a revolute joint, two DOFs are lost. Hence for p num-

ber of joints the DOFs lost are 2p. Therefore, when a mechanism consists of different

13

2.3. MECHANISMS CHAPTER 2. THEORY

types of links the total number of lower pairs are:

p = (1/2)[2n2 +3n3 +4n4 + ...] (2.2)

where

n2 := number of binary links

n3 := number of ternary links, and so forth

Figure 2.5: Redundant links

Before the correct number of DOFs of a mechanism can be determined, one may have

to consider the presence of redundant links. If a link can be moved without introducing

new or unexpected motion to the mechanism the link is said to have a redundant DOF

(Dr) [37]. As seen in Figure 2.5, link 2 and 3 are parallel and since they produce no extra

constraint they can be considered redundant. By removing one of them the motion

remains the same.

Therefore, Equation 2.1 can be modified to:

D = 3(n −nr −1)−2(p −pr)−h −Dr (2.3)

A four-bar mechanism, as shown in Figure 2.6, consists of four binary links, each with

two revolute joints. The dotted line illustrates the ’ground link’. As the mechanism has

no higher pair joints, the mobility of the system is 1 (1 DOF).

14

CHAPTER 2. THEORY 2.3. MECHANISMS

Figure 2.6: Four-bar mechanism

2.3.4 Transformation and Rotations

When describing the position of an object in space it is imperative to know what coor-

dinate system the position is relative to. In mechanism modeling there might be many

different coordinate systems present, e.g. one at the system, or assembly, level and one

for each substructure. The relations between the systems can be described by coordi-

nate transformations. The principle of coordinate transformation will be demonstrated

by transforming a point P from one coordinate system to another (two-dimensional):

Figure 2.7: The position of a point P can be represented in two coordinate systems

Consider the point P with the coordinates (v1, v2), as seen in Figure 2.7, in a given co-

ordinate system. Next consider another coordinate system that can be obtained by ro-

tating the original coordinate system by a degree of θ. The new coordinates of point

P will then be given as (v ′
1, v ′

2). By geometric inspection we can see that v ′
1 becomes

15

2.3. MECHANISMS CHAPTER 2. THEORY

the sum of the projecting of v1 and v2 onto the v ′
1-axis (the line Op1 and p1p2 +p2p3).

Analogously, the coordinate v ′
2 is the projection of v1 and v2 onto the v ′

2-axis (the line

Op4 −p4p5). Furthermore, since p4p5 is equal to Op6 we get the following:

v ′ =
v ′

1

v ′
2

=
 v1cos(θ)+ v2si n(θ)

−v1si n(θ)+ v2cos(θ)

 =
v1cos(θ)+ v2si n(π2 −θ)

v1cos(π2 +θ)+ v2cos(θ)

 (2.4)

By denoting (v ′
i , v j) as the angle between the v ′

1-axis and the v1-axis, and the v ′
2-axis

and the v2-axis, we can define the set λi j ≡ cos(v ′
i , v j) which gives:

λ=
λ11 λ12

λ21 λ22

=
cos(v ′

1, v1) cos(v ′
1, v2)

cos(v ′
2, v1) cos(v ′

2, v2)

=
 cos(θ) si n(θ)

−si n(θ) cos(θ)

 (2.5)

Then the Equation 2.4 becomes:

v ′ =
v ′

1

v ′
2

=
v1cos(v ′

1, v1)+ v2cos(v ′
1, v2)

v1cos(v ′
2, v1)+ v2cos(v ′

2, v2)

=
λ11v1 +λ12v2

λ21v1 +λ22v2

 (2.6)

Or, for three dimensions:

v ′ =


v ′

1

v ′
2

v ′
3

=


λ11v1 +λ12v2 +λ13v3

λ21v1 +λ22v2 +λ23v3

λ31v1 +λ32v2 +λ33v3

 (2.7)

Thus, in general, the transformation in summation notation is:

v ′
i =

3∑
j=1

λi j v j , i = 1,2,3 (2.8)

λi j is known as the direction cosine of the v ′
i -axis relative to the v j -axis. When expressed

in matrix notation, λ, it is called a transformation or rotation matrix. In further notion

the transformation and rotation matrix is denoted as T and R .

16

CHAPTER 2. THEORY 2.3. MECHANISMS

2.3.5 Kinematic Modeling

The kinematic modeling convention used by Skaare, in the pilot implementation, is

based on the Sheth-Uicker (SU) convention. As kinematic modeling has not been the

main focus of our study we present only the main parameters and theory behind the SU

convention. In order to illustrate the modeling of a mechanism we have adopted some

examples from Bongardt’s journal entry [6]. The problem of kinematic modeling can be

defined as following:

Given an arbitrary, physical mechanism, create a specification which gives both the phys-

ical copy and software model of the mechanism the same kinematic properties. This must

be done without knowing the original mechanism and should be human-readable, com-

pact and reflect both the topology and geometry of the mechanism.

As of yet, the problem of kinematic modeling has not been solved [6]. A lot of the chal-

lenges boils down the specification and displacements of coordinate systems, hereby

referred to as frames. Frames are invariable of time and do not move. The SU conven-

tion defines an augmented two-frame method which separates the displacements in

links and joints, for then to decompose them into three axial screw displacements. This

is done by having four frames at each joint, thus for a link-joint pair there is exactly two

frames (one ’ordinary’ and one ’augmented’). In matrix notation, a frame is defined as:

F =
x y z p

0 0 0 1

 (2.9)

The z-axis is the major axis of F as it indicates the dominant direction. When F is at-

tached to a joint, the z-axis coincides with the joint direction. The x-axis is the minor

axis of F as it indicates the secondary direction and coincides with the link direction.

The y-axis is the redundant axis of F , thus follows from y = z ×x. Lastly, p indicates the

location of F and can be determined by p = x ∩ y ∩ z.

A mechanism M is defined as the tuple M= (L,J), where L and J denotes the sets of

links and joints: L = [L1,L2, ...,Ln] and J = [Ji1, j1 , Ji2, j2 , ..., Jim , jm]. For a given ’posture’

17

2.3. MECHANISMS CHAPTER 2. THEORY

or frame specification the mechanism is given as M= (L,J ,F). Links are enumerated

with simple indices, whilst joints, together with their axes, are enumerated with double

indices. This is done in order to reflect the topology of the mechanism. Frames are

enumerated with triple indices to also reflect the links ’shared’ between frames.

Having four frames per joint might seem redundant at first, however the two extra aug-

mented, or transformed, frames ensures correct spatial displacement of the joints. As

the joint center between two joints rarely coincide (due to geometry of the joints) one

have to correct for an arbitrary displacement between the two elements of a joint. To

exemplify, consider the chain of links illustrated in Figure 2.8. This configuration gives

the frames F(i j)i ,F(i j) j ,F(i j k̂),F(j k) j ,F(î j k) and F(j k)k
1. Then, for frames attached to link

L j we define:

FD j := F(i j) j FC j := F(i j k̂) FA j := F(j k) j FB j := F(î j k)

Where FC j and FB j are the augmented frames.

Figure 2.8: Arbitrary configuration of links Li ,L j ,Lk

Rotations and displacements are represented with a homogeneous matrix M . It incor-

porates linear rotation, via the rotation matrix R , and linear translation, via the transla-

tion vector t . This gives the following matrix:

M =
R t

0 1

 (2.10)

1The ’hat’ symbol is read as ’not’ and denotes e.g. that frame F(i j k̂) belongs to the link tuple (Li ,L j). Thus,

it is the closest frame to the tuple which does not lie on the link containing the index k.

18

CHAPTER 2. THEORY 2.3. MECHANISMS

Then for spatial displacements (rigid body transformation) between the two frames F D

and F A we get:

M(D,A) = (F D)−1 ·F A (2.11)

Consider an arbitrary joint-link displacement Di j k that maps from F(i j) j to F(j k) j . When

decomposing it into joint the displacement Di j and the link displacement D∗
i j k

2, we

get:

Di j k = Di j ◦D∗
i j k (2.12)

Further, when decomposing the link displacement into screw displacement for the three

twists ($c̃i j k ,$b̃i j k
,$ãi j k) 3, the displacement can be written as:

D∗
i j k = $c̃i j k ◦$b̃i j k

◦$ãi j k (2.13)

Each of the screws, as illustrated in Figure 2.9, is made up of two parameters giving a

total of six major parameters ((γ,c), (β,b), (α, a)), described in Table 2.1.

Table 2.1: Geometric meaning of the six parameters of the SU convention [6]

Screw Axis Parameter Geometric description Alignment

$c z i j k̂ γ Constant angular distance of xD j andxC j Around zD j

c Constant linear distance of xD j and xC j Along zD j

$b z i ĵ k β Constant angular distance of xC j and xB j Around zC j

b Constant linear distance of xC j and xB j Along zC j

$a z î j k α Constant angular distance of xB j and x A j Around zB j

a Constant linear distance of xB j and x A j Along zB j

2The ’star’ symbol indicates a dual space
3The ’tilde’ symbol indicates a dual entity.

19

2.4. FINITE ELEMENT ANALYSIS CHAPTER 2. THEORY

Figure 2.9: Example frame placement and SU parameters

2.4 Finite Element Analysis

In the context of structural mechanical analyses and simulations involving deforma-

tions and internal stresses, modeling problems can become quite complex. The prob-

lem might be defined in such a way that finding exact solutions cannot be done using

the governing partial differential equations (PDE). Finite Element Analysis (FEA) is a

numerical method for approximating solutions for these kind of problems, among oth-

ers. FEA involves breaking the modeling domain down in a finite number of elements

(meshing), to represent model behavior by approximating solutions for each element.

A set of boundary conditions are applied to relate the elements to the environment and

to each other.

2.4.1 Meshing

Model behavior is represented by dividing the model into a finite number of elements,

thereby creating a mesh. Elements in the mesh are connected to each other through

nodes, common edges and common surfaces, depending on the mesh dimensions. Fig-

ure 2.10, shows different types of elements, with a varying number of nodes in each

element.

20

CHAPTER 2. THEORY 2.4. FINITE ELEMENT ANALYSIS

Figure 2.10: Example models and different mesh representations [27]

To calculate the element responses, e.g. average forces or stresses, the deformation of

each element must be known. These are calculated through a series of unit deforma-

tions, u, at each connecting node in the mesh. In short, this involves calculating an

element’s DOFs at a set of node points. When these equations, constituting the stiffness

matrix, K , are solved, the maximum stresses in the model can be calculated, given a set

of forces, F , and constraints, also known as boundary conditions. Equation 2.14 shows

this fundamental relation [16].

K u = F (2.14)

2.4.2 Element Dimensions

The mesh types in Figure 2.10 depicts some of the ways to partition a mesh. Choosing

the right type of elements, as well as their sizes, can be crucial in order to model a struc-

ture in the best way possible. There are several aspects to consider, some of them being

the element’s type, shape, and size.

The element type will either create structured or unstructured meshes. A structured

mesh will consist of quadliterals in surface meshes and hexahedrons in volume meshes,

while unstructured will consist of other polyhedron shapes, most commonly triangles

in surface meshes and tetrahedrons in volume meshes. For models with a complex

geometry, generating an unstructured mesh is usually much faster than generating a

21

2.4. FINITE ELEMENT ANALYSIS CHAPTER 2. THEORY

structured one [10]. However, performing calculations on a structured mesh is usually

faster. According to Felippa [16], structured meshes should always be preferred, and in

volume meshes, tetrahedrons should only be used if there are no other options. Since

the accuracy of mesh types might vary from a model to model, choosing which type to

use might be a delicate process, depending on the situation. One solution can be to

use a hybrid mesh, constituted of unstructured elements in areas with more complex

geometry, and structured in more uniform areas. Figure 2.11 shows an example of such

a hybrid mesh.

Figure 2.11: Link with hybrid mesh

The aspect ratio of the element shapes should also be considered when evaluating a

mesh. In general, elements where one or more of the side lengths are much longer than

any of the other, should be avoided. According to [16], if one of these ratios exceeds 3,

the element should be viewed with caution, and those exceeding 10 with alarm. Figure

2.12 illustrates preferred and non-preferred elements as a result of a bad aspect ratio.

Figure 2.12: Element aspect ratios

Determining the element sizes proves to be an impossible task due to the character of

FEA [20]. However, since FEA is an approximation to the real solution, it is possible

to compare error estimates for different sizes. Take the element in Figure 2.13 as an

22

CHAPTER 2. THEORY 2.4. FINITE ELEMENT ANALYSIS

example. If we want to determine how much the relative approximation error decreases

with the element size, we can start by looking at the element’s translational function

at its origin, which can be described by the Taylor series in Equation 2.15, where the

element’s origin is illustrated by the subscript 0.

Figure 2.13: Example element

v1(x, y) = v1,0+(
δv1

δx
)0x+(

δv1

δy
)0 y +(

δ2v1

δx2)0
x2

2!
+2(

δ2v1

δxδy
)0

x y

2!
+(

δ2v1

δy2)0
y2

2!
+ . . . (2.15)

It can be shown that an interpolation polynomial of degree p, will give an error estimate,

∆v1, in the order of

∆v1 =O(hp+1) (2.16)

where h is an element length, and O is the big O notation. A reduction of the element

size, from h1 to h2 yields the following equation:

∆v1,2

∆v1,1
= (

h2

h1
)p+1 (2.17)

The element shown in Figure 2.13 has three nodes and its interpolation polynomial is

linear (p = 1). Reducing this element’s size by a factor of 2, leads to Equation 2.18.

23

2.4. FINITE ELEMENT ANALYSIS CHAPTER 2. THEORY

∆v1,2

∆v1,1
= (

h2

h1
)2 = (

1

2
)2 = 1

4
(2.18)

Consequently, a halving of the element size in a three-noded triangle element, reduces

the relative translational error by a factor of 4. Calculating the same function for an

element with a quadratic interpolation polynomial, for instance a six-noded triangle

element, will reduce the error by a factor of 8.

Since stresses can be obtained through strains, which are the derivatives of the transla-

tions, the stress reduction ratios will be one degree lower than the interpolation poly-

nomials for the translations. The stress error estimate will then be in the order of

∆σ=O(hp) (2.19)

In turn, this means that the relative stress error will converge to the real solution by

one degree slower than the translations, when reducing the element size. In theory, this

indicates that in areas where stress gradients are high, lowering the element sizes in the

mesh, will reduce errors. In general, high stress gradients can be found around sharp

corners, holes, cracks and in contact areas where load transfers are expected, illustrated

in Figure 2.14.

From Equation 2.16, it is apparent that the error will converge to zero in two ways. The

first way is by lowering the value of h, like the example in Equation 2.18. This is called

h-refinement. H-refinement can be further categorized in isotropic and anisotropic re-

finement. In isotropic refinement, the element is divided into multiple elements by

adding node points in both the x- and y-direction (for a surface mesh). In anisotropic

refinement, new nodes are only added in one of the directions. The second way is by

increasing the polynomial (increasing the number of nodes in the element), which is

called p-refinement. If there is a desire to keep the number of elements and nodes in

the mesh fixed, r-refinement can be applied. This involves resizing elements relative to

one another, so that elements in high stress areas are smaller, while the rest are larger.

Combinations of all three are also possible. Since the accuracy of a mesh cannot be

24

CHAPTER 2. THEORY 2.4. FINITE ELEMENT ANALYSIS

given before the problem is solved, a recursive process can be made for acquiring the

desired mesh accuracy [20]:

1. An initial mesh and basis functions are chosen.

2. The problem is discretized and solved, and local error estimates are made.

3. If error is small enough, stop.

4. Perform h-, r- and/or p-refinement. Go to step 2.

Figure 2.14: Typical high stress areas

2.4.3 Boundary Conditions in Structural Mechanisms

There are two types of boundary conditions, essential and natural [16]. Essential bound-

ary conditions are conditions that directly influence an element’s DOFs, while natural

boundary conditions will not. In the domain of structural mechanisms, natural bound-

ary conditions comprise the set of applied forces (the right-hand side of Equation 2.14).

The essential boundary conditions concern displacements, and can further be divided

into symmetry conditions, ignorable freedoms, ground constraints and connection con-

straints, where the two latter are the constraints of importance in this thesis. Ground

constraints are defined to restrain rigid body motion, and can be thought of as bear-

ings. Connection constraints, can be thought of as connection points between struc-

tures, which define how the structures’ DOFs relate to one another, creating a rigid body

25

2.4. FINITE ELEMENT ANALYSIS CHAPTER 2. THEORY

element (RBE). RBEs can either be a single point constraint (SPC) or a multi point con-

straint (MPC). The difference between SPCs and MPCs is that SPCs enforce a prescribed

value for a single nodal displacement component, while MPCs enforce a prescribed

value for two or more nodal displacement components. The prescribed value in ques-

tion, is the relation between the DOFs of the two structures. A simple example can be a

joint connecting two structures (links). Depending on the type and nature of the joint,

it will relate the two links’ nodal displacements (DOFs) to each other, thereby creating

a rigid body. An SPC will only have one node dependent on the constraint imposed by

the joint, but an MPC will have two or more [25].

There are two types of MPCs of interest in this thesis, RBE Type 2 (RBE2) and RBE Type

3 (RBE3)4. To start with, the RBE2 will define a master-slave relationship between its

nodes [14], where the master node, also known as the independent node, will dictate

the relative movement of the slave nodes, also known as the dependent nodes. As illus-

trated in Figure 2.15, four slave nodes are dependent on one independent node. The

DOFs of the dependent nodes are solely dependent on the DOFs of the independent

node. The independent node will always have six DOFs, but the dependent nodes can

either have six DOFs, simulating a weld, or three DOFs, simulating a bolt. The depen-

dent nodes can not move relative to one another, thereby adding stiffness to the mesh

model, endorsing the rigid body motion.

RBE3 works a little differently. Despite its name, the RBE3 does not create a fully rigid

element, like the RBE2. The motion and DOFs at an RBE3 dependent node, is the

weighted average of a set of independent nodes, illustrated in Figure 2.15. This means

that a dependent node will have different responses for each of its independent nodes.

Likewise, a force applied to the dependent node, will be distributed among the inde-

pendent nodes, with a weighted factor. In that sense, the RBE3 can be thought of as a

force distributor in a free body [42]. Each weighting factor has to be defined when the

RBE3 connection is set up, either specified directly, or by an algorithm.

4RBE2 and RBE3 are NX Nastran names for these MPCs. IN FEDEM, they are called RGD and WAVGM,
respectively.

26

CHAPTER 2. THEORY 2.5. CONTROL SYSTEMS

Figure 2.15: RBE2 and RBE3

2.5 Control Systems

A control system is a device or process that regulates the behavior of another device or

process with regard to a particular condition [4]. Control systems are separated into

open- and closed-loop systems. In open-loop systems the output of the system has

no effect on the control action, as seen in Figure 2.16a. Open-loop systems are also

called calibrated or unmonitored systems as the output is neither measured or fed back

to the system for control. An example of an open-loop system is a washing machine.

The soaking, washing and rinsing operates solely on the measurement of time, not the

cleanliness of clothes. Closed-loop, or monitored, systems on the other hand, feeds

back portions of the output and reuse this information in coherence with the input, as

illustrated in Figure 2.16b. An example is a thermostatically controlled water heater,

where the temperature of the water is measured and kept above and or under a given

temperature.

(a) (b)

Figure 2.16: Open-loop and closed-loop system

27

2.6. DESIGN OPTIMIZATION CHAPTER 2. THEORY

2.6 Design Optimization

Section 2.1 describes how the designer can take a step back in the design process, if

the design fails to satisfy the design specifications, creating a feedback loop. The feed-

back, generally a response from an analysis, needs to be evaluated in order to deter-

mine which parameters to modify. Experienced designers may be able to know which

parameters to modify solely based on their skills and intuition, which can be a preferred

approach when it comes to designing simple systems. However, it becomes very diffi-

cult, or even impossible, for complex systems. An alternative approach is to include

design optimization methods. By incorporating optimization algorithms as a compu-

tational tool, the computer can give exact suggestions as of how to better the design.

These suggestions can both guide the designer to make better designs as well as reduce

the time-to-market since the designer will be relieved from repetitive, time-consuming

calculations.

In short, design optimization is the act of finding the best performance of a system un-

der given constraints. The formulation can be divided into three steps, the first being to

identify a set of variables that describe the system - design variables [11]. By altering the

numerical values of these variables, alternate designs of the system can be obtained.

The second step is to specify requirements on the design and performance which the

system must satisfy. All requirements imposed are called constraints. The final step is

to specify a criterion to judge whether a given design is better than another. This crite-

rion is called the objective function and is a performance index on which the system’s

performance can be measured.

2.6.1 Design Problem Formulation

To put it in mathematical terms, the design problem can be defined as finding exact val-

ues for a set of design variables, {x1, . . . , xn} = x , which minimize the objective function:

f (x) (2.20)

28

CHAPTER 2. THEORY 2.6. DESIGN OPTIMIZATION

that satisfy a set of inequality and equality constraints:

g j (x) ≤ 0 j = 1. . .m (2.21a)

h j (x) = 0 j = 1. . . p (2.21b)

and a set of move limits:

xu
i ≥ xi ≥ x l

i i = 1...n (2.22)

A collection of n independent design variables will create an n-dimensional space. The

subset of this space, constrained by the design variables’ upper and lower bounds (xu
i

and x l
i) and the inequality and equality constraints, forms what is commonly referred

to as the design space. Thus, the design space is the space containing all allowable con-

figurations of the design variables, according to the problem formulation.

It is conventional to normalize the constraints, to ensure equal order of magnitude.

This normalization helps avoiding numerical difficulties, by making each constraint lie

in the interval [0, 1]. For example, a stress constraint, σ(x), could have an upper limit of

σu . To make the constraint value fall within the given interval, the normalization would

become:

g (x) = σ(x)

σu −1 ≤ 0 (2.23)

which also is used in the optimization example in Chapter 5.

Design optimization of mechanisms often includes a response vector, s, acquired through

dynamical simulations. The response vector is usually a time history describing the

system’s responses at a given time, t , but does not have to be. Time histories typically

describe displacements, velocities or accelerations, and they are also functions of the

design variables, such that s = s(x , t). This response will impose further constraints on

the system, which in turn alters the constraint functions:

29

2.6. DESIGN OPTIMIZATION CHAPTER 2. THEORY

g j (x , s(x , t)) ≤ 0 j = 1. . .m (2.24a)

h j (x , s(x , t)) = 0 j = 1. . . p (2.24b)

Like mentioned, there are many different types of design variables. These types can be

categorized in the following categories [44]:

• Substructure: Design variables that affect the inherent properties of a system sub-

structure, i.e sizing variables, material properties and shape variables.

• System: Design variables that only affect input data for an assembled mecha-

nism. Can be further categorized into:

– Structural: Typically input parameters, like load parameters, coordinates of

attachment points (of springs, dampers or hinges), values or lumped nodal

masses, and initial velocity values.

– Control: External parameters for a general control element, like gain pa-

rameters, coefficients for comparator-, summer-, integrator- and derivator

elements, sample and delay time, and limits and slopes of piecewise contin-

uous elements.

Constraints can also be categorized, depending on the values of the design variables.

The design variable values that leaves the constraint function in an infeasible area, i.e.

g (x) > 0, means that the constraint is violated. If g (x) < 0, the constraint is passive,

and if g (x) = 0, then the constraint is said to be active (but still in the feasible area).

These categories are illustrated in Figure 2.17, where an objective function is subject to

a single constraint, and the line ’A’ is drawn at the value of design variable, x1.

Given the problem formulation, there are many different optimization methods that

can be utilized, where some might be more applicable than others. Some formulations

might for instance be unconstrained, some might need gradient information of the de-

sign variables to be effective, and some might include multiple objectives. However, all

methods described in this section have in common that they are numerical, i.e. they

are iterative processes applied to converge as best as possible to an optimal solution.

30

CHAPTER 2. THEORY 2.6. DESIGN OPTIMIZATION

Figure 2.17: Constraint areas

2.6.2 Unconstrained Methods

Unconstrained optimization methods are methods where there are no restrictions on

the design space except those imposed by the move limits of the design variables. As

such, they form the basis of other methods used in optimization systems. In general,

these are direct search methods, and can be categorized in relation to the differential

order used in the algorithm.

Starting with zeroth order algorithms, these methods have no requirements on the dif-

ferentiability of the objective function, and will only evaluate function values. Only

two zeroth-order algorithms are considered useful [19], the Nelder-Mead method, also

known as the sequential simplex method, and Powell’s conjugate direction method. Both

of these methods are part of the AMOpt library in Section 3.3.5, so they will be described

in short terms. The Nelder-Mead method involves searching an n-dimensional space

using a simplex, which is an n-dimensional object with n+1 vertices. The idea is to move

the point of the simplex where the objective function gain the highest value, through

the opposite face of the simplex, thereby making it lie in an area that has a lower value,

until it approximates a local minimum. Powell’s method is a method that utilizes con-

jugate directions to quadratically converge to a minimum. This is a search that moves

along a set of directions that is conjugate to the objective function. It requires at most

31

2.6. DESIGN OPTIMIZATION CHAPTER 2. THEORY

n iterations. Both of these methods will usually converge to a minimum, either local

or global, which means that the objective function must only have one minimum value

(unimodal) for these methods to be applicable. According to Press [31], Powell’s method

will almost surely propagate faster then the Nelder-Mead method.

First and second order algorithms are more frequently used. These utilizes gradients

and the function value in order to calculate the direction of which to move in the next

iteration step. An example of a first order method is the steepest descent method, and

some second order method examples are Newton’s method, quasi-Newton methods and

conjugate gradient methods. As these methods are not utilized in this thesis, they will

not be described further.

It is worth noting that according to Sobieszczanski-Sobieski [40], unconstrained di-

rect search methods have little relevance for standard optimization problems. How-

ever, constrained problem definitions can be transformed to the aforementioned un-

constrained ones, by augmenting the objective function. These methods are called Se-

quential Unconstrained Minimization Techniques (SUMT), and are often used to solve

nonlinear constrained optimization problems. Generally speaking, SUMT incorporates

constraint functions in the objective function by utilizing penalty functions. Penalty

functions are just a way to control the value of the objective function when the de-

sign variables move into previously constrained areas. These functions form a self-

correction, but if the constraint violation is too large, this process may not work, caus-

ing the next iteration to start too far away from a feasible design area. As claimed by

Specht [43], using SUMT for solving structural optimization problems, will not provide

any computational savings, compared to solving the problems directly.

2.6.3 Constrained Methods

Many of the unconstrained optimization methods mentioned can also be applied in

constrained optimization. In these cases, constraint methods are explicitly incorpo-

rated into the solution process. The optimization is now done by projecting the un-

constrained direction onto active constraints. Finding the optimum of the objective

function is no longer the same as finding its minimum value, but rather a point where

32

CHAPTER 2. THEORY 2.6. DESIGN OPTIMIZATION

it is impossible to move without violating a constraint or making the objective function

larger.

Constrained optimization algorithms have in common that the objective function can

be approximated by linear or quadratic functions, and the constraint functions either

are linear already, or can be approximated by linear methods. An important note is

that the approximations are calculated at the current iteration point, in sequence. Thus,

the case that approximates linear functions for both objective and constraint functions,

is called Sequential Linear Programming (SLP) [49]. SLP problems can be efficiently

solved, even without gradient methods, by for instance the Nelder-Mead method.

The case that approximates the objective function by a quadratic function, and the

constraint functions by linear functions, is called Sequential Quadratic Programming

(SQP). SQP methods have good local convergence properties, but will often require that

the search for an optimum starts at a feasible design point. Hence, they are the standard

of solving smooth nonlinear optimization problems. However, they can experience dif-

ficulties converging to a global optimum, if the problem involves many design variables

and constraints. An example SQP method is Newton’s method in combination with a

method that transforms the problem formulation into an equality constrained prob-

lem.

2.6.4 Multi-Objective Optimization Methods

In multidisciplinary design problems, there are often conflicting interests, like for in-

stance minimizing costs while maximizing performance, and so on. Optimization of

such methods might therefore seem incompatible with the methods previously de-

scribed, but in general there are two options. The first is to combine all objectives into

one function, where each objective might have a unique weight to distinguish it by.

Setting these weights accurately can be rather difficult, so the second option might be

preferable, which is to create a set of objective functions. Optimization methods with

such problem formulation are called Multi-Objective Optimiztion Methods (MOOM).

Possible implementations for MOOM is the family of Genetic Algorithms (GA).

33

2.6. DESIGN OPTIMIZATION CHAPTER 2. THEORY

Genetic Algorithms

GA are based on the theory of evolution, and are typically used to solve general opti-

mization problems. As such, they differ from the direct search methods because they

do not iteratively search from one design point to the next. Instead, they progress it-

eratively from a set of design points, called a population, to another [40]. Each pop-

ulation set forms a generation, and the idea is to improve the objective function from

generation to generation. This is done by evaluating the design points in each popula-

tion, through a fitness function. The two design points with the best fitness evaluation

will be chosen as ’parents’ for the next generation. The design points, or ’offspring’,

will be based on their parents by using a crossover operator. Then, each design point

have a predefined probability of mutation, where a mutator function alters its values.

The offspring that pass a feasibility evaluation are passed to the next generation, un-

til the population limit is reached. When either the maximum number of generations

is reached, or a stopping criterion is satisfied, the design point that best satisfies the

objective function is chosen.

The reason that GA are well suited for MOOM is that they are able of searching different

regions of the design space, simultaneously. This makes it possible to find a diversi-

fied set of solutions for problems that numerous local minima. In addition, a Multi-

Objective GA (MOGA), do not require the user to set weights for the objective functions.

2.6.5 Structural Optimization

In structural optimization problems, there is a desire to reduce the number of struc-

tural analyses and retrieve feasible designs at each iteration step. Convex approxima-

tion methods is a suitable answer to this desire.

Convex Approximation Methods

A function is convex if a straight line connecting two arbitrary points on the function

graph, lies nowhere below the graph [49]. Thus, they guarantee that any any mini-

mum point is a global minimum point. Also, an iteration leaving the objective function

smaller than in the previous iteration, makes it possible to stop the iteration process at

34

CHAPTER 2. THEORY 2.6. DESIGN OPTIMIZATION

any time, when a suitable design has been reached.

The general idea of convex approximation methods is to approximate the objective and

constraint functions as convex functions, and then apply an optimization method, for

instance an SQP method, for each step. Exactly how this is done lies a bit outside the

scope of this thesis and will not be explained further.

Sensitivity Analysis

Another feature to incorporate in a structural optimization process is sensitivity anal-

ysis. Section 2.6.1 described the use of a response vector, s(x , t). The results obtained

in this vector give little information of the design variables that will give the most posi-

tive feedback for the objective, when perturbed. However, this information can be ob-

tained through the gradients of the response, with respect to the design variables, and

is called sensitivity analysis. Mainly, it is used to guide the optimization process, but

given enough design variables, calculation of gradients can become quite time-costly,

and should be evaluated before applied.

2.6.6 Final Notes

When incorporating design optimization in a KBE environment, KBE becomes a sup-

porting technology that can bring together all aspects of the optimization process in

a software package [40]. Much of the KBE philosophy is to automate repetitive design

tasks, and the process of design optimization can in many cases be seen as highly repet-

itive. According to Etman [11], a successful optimization requires the designer to not

be completely left out of the optimization loop. Some amount of user-interaction is

required in order to control the process in the best possible way. A semi-automatic op-

timization process can therefore be considered optimal in many cases.

35

2.7. SOFTWARE DEVELOPMENT CHAPTER 2. THEORY

2.7 Software Development

Software development is the process in computer programming that results in a soft-

ware product. The software development methodologies used in this thesis is object-

oriented development and Scrum.

The software development process can be split into distinct stages with activities, de-

pending on where in the life cycle the software is. These stages typically reduce down

to the following: requirement specification, system analysis, system design, implemen-

tation, testing, deployment and maintenance. Our thesis address only the first four

stages, thus these will be the main focus of discussion.

2.7.1 Object-Oriented Development

Object-oriented development decomposes a system based upon the concept of an ob-

ject [5]. Object-oriented development is typically divided into three main activities:

analysis (OOA), design (OOD) and programming (OOP). OOA and OOD is the process

of analyzing, designing and separating a system into meaningful classes and relations.

OOP is the process of implementing this design as a set of objects.

Some key concepts of the object-oriented approach are: class, object, messages, en-

capsulation and inheritance. A class can be thought of as a template, or abstract data

type, as its purpose is to declare the actions (methods) and data fields (attributes) of

objects. Thus, an object is really just an instance of a class, characterized by its set of

methods and attributes. An object is self-contained and designed to be easily used and

understood. Attributes and methods are imposed with restrictions and encapsulated,

and the objects interact with each other through, what is generally called messages.

Encapsulation is the process of grouping related information and protect it from the

outside world [29]. Appropriately grouping and hiding implementation details of an

object reduces the overall system complexity. Inheritance allows one class to inherit

characteristics from another, thus models the ’is an extension of’ relationship.

36

CHAPTER 2. THEORY 2.7. SOFTWARE DEVELOPMENT

Figure 2.18: An object-oriented system consists of many well-encapsulated objects, in-
teracting with one another by sending messages

2.7.2 Scrum

Scrum is an iterative, agile framework which defines a holistic strategy where the devel-

opment team works as a unit to reach a common goal [45, 35]. It emphasizes commu-

nication, collaboration and team flexibility. Scrum accepts problems that can not easily

be understood and focuses instead the team’s ability on fast deliveries. This enables the

team to better adapt to changing requirements and technologies.

Scrum introduces the concepts of sprints to help guide the team’s workflow. A sprint

defines a period of time, typically about one to four weeks, where a development team

is set to carry out a given amount of work. Work is pulled from a product backlog, which

is made beforehand, and put into the sprint backlog, as seen in Figure 2.19. Daily scrum

meetings are encouraged in order to keep track of the team’s progress and to promote

collaboration. Another widely used concept, not only in Scrum but software develop-

ment in general, is pair programming. Pair programming is an agile software develop-

ment technique in which two programmers work together at different levels of abstrac-

tion. Typically there is one ’driver’, which writes the code, while the other reviews each

line that is written as the ’navigator’ [3].

37

2.7. SOFTWARE DEVELOPMENT CHAPTER 2. THEORY

Figure 2.19: The scrum process

38

Chapter 3

Methodology

3.1 Runtime Environment

Development was conducted on 64-bit computers running Microsoft Windows 10 Home.

The following software was used: AML, MSC Nastran, FEDEM and Notepad++. Four

AML modules was also used: AMSketcher, aml-analysis-module-pack-type-3-01-06,

aml-analysis-module-pack-type-3_ui and AMOpt. In addition, the mechanism system

requires a series of prerequisites in order to run. These are described in full under in-

stallation details, Appendix A.

3.2 Development Infrastructure

Software development between multiple developers and computers can make backup,

merging and sharing code challenging, especially since developers might work on dif-

ferent versions of the system. In order to enhance collaboration and ensure proper

storing of versions, both now and in the future, we set up a development infrastruc-

ture in GitHub. GitHub is a stand-alone version control system. It hosts a web-based

repository with distributed revision control and source code management [18]. This

enables multiple developers to work freely on different and/or common parts of the

system without having to worry about losing code.

Along with the repository, a private ’NTNU-IPM’ user was created to ensure that the

39

3.3. ADAPTIVE MODELING LANGUAGE CHAPTER 3. METHODOLOGY

proper administrator rights of the repository were retained by the IPM department. The

repository, containing all of the source code and mechanism library can be viewed by

visiting ’http://ntnu-ipm.github.io/KBE/’.

In addition, a backlog, containing the work that was needed to be done has been set up.

The setup is controlled using an online planning tool, called Pivotal Tracker [30]. Pivotal

Tracker lets users plan work ahead, by adding definable units of work, called stories, to

a project backlog. This planning tool is used in line with the Scrum methodology, and

served as a great tool for controlling the project process.

3.3 Adaptive Modeling Language

AML is a modeling language for concurrent engineering created by TechnoSoft Inc.

[47]. It is based on the List Processor (LISP) programming language with an underly-

ing object-oriented nature. AML enables multidisciplinary modeling and integration of

entire products and processes throughout the whole development cycle [46]. Compu-

tations in AML are done in a demand-driven fashion, by using automatic dependency

tracking between objects and properties, in order to trigger calculations only when they

are required.

3.3.1 Framework

The AML framework, as seen in Figure 3.1, consists of several modules, each with dif-

ferent functionality for different knowledge domains. This enables the developer to

’adapt’ AML to his/her specific needs. E.g. if there is no need for graphics or geometry,

then this module can be removed - allowing for just the kernel to be loaded. The AML

kernel provides the language constructs for defining classes, methods etc. [46].

3.3.2 Editor

AML includes and encourages the use of XEmacs, which is a graphical- and console-

based text editor [52]. However, due to structuring of the source and general efficiency

reasons, we decided to write and edit the code in Notepad++, and then compile the

40

http://ntnu-ipm.github.io/KBE/

CHAPTER 3. METHODOLOGY 3.3. ADAPTIVE MODELING LANGUAGE

code in the XEmacs console. Notepad++ is a text and source code editor which supports

a wide range of programming languages, and allows a high level of user customization

[26].

Figure 3.1: The AML framework

3.3.3 Source Code Management

In order for the source code to be easily loaded, compiled and reused, TechnoSoft rec-

ommends the use of systems. In AML, a system groups all of the source code files to-

gether so they can be treated as a single module, hence loaded, compiled and archived

as a single entity. When the system compiles, binaries for multiple platforms are also

created - allowing different platforms to operate within the same system version. In

order to compile and load the system, a logical-path has to be created. A logical-path

locates a resource in the file system by mapping variables to the path-reference of the

resource.

The system is defined in a system.def file. The logical-path of the system has to point

to the location of the system.def file. The system.def consists of the define-system con-

struct, which is the main mechanism for creating systems. This is where the name of

the system is defined along with the source code files that comprise the system.

3.3.4 AML Modeling Forms

The models and geometries created from the source code can be viewed and edited in

a modeling form. AML comes with a couple of options depending on the need of in-

teractively editing the geometry. The most standard form is the Main Modeling Form,

41

3.3. ADAPTIVE MODELING LANGUAGE CHAPTER 3. METHODOLOGY

where objects can be drawn and inspected, and custom made GUI frames are shown.

A more advanced form is the AMSketcher module, which bears more resemblance to

a CAD modeling form. In addition to the functionality from the Main Modeling Form,

AMSketcher provides menus for directly working with the models, where different ge-

ometries can be made from a set of primitive, or basic, geometries. For example, typical

operations like extrusion, sweeping and blending are possible. The new and altered ge-

ometries will then be added to the model as objects. All objects are shown in a Model

tree, and can be edited in the Inspect form. The Inspect form shows all object properties,

as well as the underlying formulas for the properties. These formulas can be edited in

run-time, thereby removing the need to recompile when testing small changes.

3.3.5 AMOpt

AMOpt is a module containing basic tools for design optimization and design studies.

It is integrated with AML, thus it can be used from the modeling interfaces. Its func-

tionality is mainly described through its library of optimization methods:

• Multi-Objective Genetic Algorithm

• Powell’s Method

• Nelder-Mead Simplex Method

• Design of Experiments

• Monte Carlo Simulation

The three first methods are described in Chapter 2.6, but the last two are not, as they

fall more under the probabilistic design studies category, than the design optimization

category.

According to TechnoSoft [46], two other optimization libraries can also be integrated,

Design Optimization Tools (DOT) and NPSOL. Both of these provide optimization meth-

ods not available in AMOpt, like for instance SLP and SQP methods [51, 41]. However,

these libraries are license-based, and have not been tested.

42

CHAPTER 3. METHODOLOGY 3.4. FEDEM

Through the AMOpt interface, optimization problems can be set up and solved through

any of the available methods. However, an optimization case needs to be programmed

manually, as objective functions, constraint functions and design variables often are

not simple properties of the mechanism model.

The methods will run an automatic, non-interruptible optimization before they con-

clude with an optimal design, given the problem formulation. No source code or doc-

umentation of the implementation of the AMOpt interface is provided, and therefore it

can be treated as a black-box application. Unfortunately, this means that the final op-

timized result can not be obtained programmatically, only visually, which is a problem

for the designer. However, workarounds are described in Chapter 5.

3.4 FEDEM

FEDEM is a general multi-purpose software package for analysis and virtual testing of

structural systems. The name FEDEM is an acronym for Finite Element Dynamics in

Elastic Mechanisms. FEDEM is based on: (i) a non-linear finite element (FE) formula-

tion, (ii) a master-slave joint formulation, and (iii) a component mode synthesis (CMS)

reduction [13].

Mechanisms in FEDEM are represented at two levels, the substructure level and the sys-

tem level. The substructure level represents the FE part, while the system level rep-

resents the mechanism, or multi-body system, part. The FE model of a substructure

contains a number of nodes. These nodes are divided into external and internal nodes,

with corresponding DOFs. The external nodes typically represent points of interest for

joints, springs, dampers, loads, sensors etc. During the model reduction of a substruc-

ture to a super element the external nodes are retained as super nodes. A super element

is simply a term used for a link when it is represented by a substructure with a reduced

number of DOFs. A system model is created at the system level by connecting joints,

springs, dampers etc. to the super nodes [14].

The master-slave joint formulation express the kinematic relations between links by

defining slave and master nodes. The joint type is then defined by how these nodes can

43

3.4. FEDEM CHAPTER 3. METHODOLOGY

move relative to one another. Joints can, in turn, be combined to form transmissions.

Dynamic analyses are, in general, more expensive than static analyses. However, the

CMS model reduction and the use of super elements reduce the cost of dynamic com-

putations. This is achieved by reducing the number of DOFs by assuming that the low-

frequency modes of vibration are the most important. The CMS reduction replaces the

internal DOFs with a smaller number of modal DOFs. These DOFs represent the pos-

sible vibration modes of the substructure, typically those with lowest eigenfrequency,

and are used as system DOFs in the system model. If no modes are included the reduc-

tion becomes a static condensation. The model reduction is done prior to the assembly

of the system model [14].

During a dynamic analysis, the super nodes might move due to rigid and elastic body

motion of the super elements. Deformation of super elements is calculated by looking

at the updated position, local coordinate system, of the super nodes. The responses

from the dynamic analysis can be divided into substructure responses and system re-

sponses. The responses are calculated by numerical integration (the Newmark integra-

tion algorithm) of the equations of motions [49].

Note that solver processes in FEDEM can either be executed directly from the appli-

cation GUI, or by creating batches from a command-line prompt [15]. The latter is

particularly beneficial when working on several versions of a model, or as a part of an

automatic analysis. Section 6.2.7 describes how this has been used.

44

CHAPTER 3. METHODOLOGY 3.5. MODELING OF THE MECHANISM SYSTEM

3.5 Modeling of the Mechanism System

Software engineering systems often become quite complex, for example due to large

and intricate code bases, and multiple connected environments. Thus, they are in-

herently difficult to comprehend, thus need to be documented, both descriptively and

visually. Unified Modeling Language (UML) is a convention created by the Object Man-

agement Group (OMG) [28], used for this exact purpose, as it is a standard for visualiz-

ing the design of a system. Through a combination of notations from object-oriented

design, object modeling techniques and object-oriented software engineering, it presents

a consistent methodology that is both visual and easy to use. UML is mostly used to de-

termine system requirements and details regarding system implementation.

One of the UML constructs is the class diagram. Class diagrams represent a static view

of the building blocks that make up an object-oriented system. A class diagram de-

picts the different relationships between classes and interfaces. Inheritance, composi-

tion, aggregation and usage are all given different syntax to indicate the behavior of and

messages between classes.

AML can be characterized as a frame based system (FBS), not to be confused with co-

ordinate systems (Section 2.3.5). According to La Rocca [34], a frame is “a collection of

slots to describe attributes and/or operations featured by a given object. Each slot may

contain a default value, a pointer to another frame, or a set of rules (including IF-THEN

rules) and procedures by which the slot value is obtained.” Generic frames are called

class frames and their instances are called object frames. Adopted from this frame def-

inition, we have introduced a custom convention where both objects and classes are

depicted in the same diagram. The reason for this is twofold: (i) subobjects in AML are

defined directly in the class definition, thereby amplifying the importance of the object

instance, and (ii) having both objects and classes in the same diagram has proven vital

in order to keep track of the flow of information in the mechanism system. The basis for

the extended convention can be seen in Figure 3.2, and will be used for documentation

in Chapter 6.

45

3.5. MODELING OF THE MECHANISM SYSTEM CHAPTER 3. METHODOLOGY

Figure 3.2: Class diagram extensions

To easily distinguish between classes and objects, this convention uses red characters

for classes and blue for objects. All the relations in Figure 3.2 are commonly used in

UML, with the exception of the ’Series-object’ relation. This indicates that the class at

the start of the arrow, creates the class that is pointed to, using the series-object class in

AML (described in Chapter 6).

46

Chapter 4

The Mechanism System

The pilot implementation of the mechanism system comprised a general system syn-

thesis for mechanism design. The system included fundamental link and joint defini-

tions, as well as a kinematic model for placement of frames. The system was able to

create and mesh generic mechanisms, consisting of different links, joints and surfaces

between straight members. Additionally, an initial standalone framework for RBEs were

commenced. However, the system was not stable and struggled with lacks in both the

kinematic model and the joint definition. In the kinematic model, certain joint orienta-

tions could cause the incident members to get undesirable twists and bends, as a result

of incorrect augmentation of sub-frames. Joints was defined to always have two inter-

connected, visible links. This yielded several errors and null geometries1 when a joint

was connected to a ’ground link’ and not an actual geometry. The only mesh available

was a triangular surface mesh with a constant mesh size.

This chapter address the main components and functionality of the mechanism sys-

tem, encompassing both improvements and additions.

4.1 Application Input

The mechanism system uses a total of six different input files. These files form the basis

of how a mechanism is represented in the system, and are as such, the most important

1The null geometry error occur when AML tries to draw impossible geometry.

47

4.1. APPLICATION INPUT CHAPTER 4. THE MECHANISM SYSTEM

tool a designer has for modeling a mechanism. The structure of the files have been it-

eratively improved in order to make them as human-readable and intuitive as possible.

Note that the files have two things in common: Firstly, the row values are tab separated,

meaning that each new value must be separated by one or more tabs; Secondly, the first

row in each file will be ignored, as it only contains headers. The files will be described

in the following subsections.

4.1.1 Node Positions

The mechanism system utilizes nodes for defining key positions in a mechanism. The

different nodes include: joint positions, connecting points for springs and dampers,

point of attack for a force or torque and design points for link geometries. These nodes

represent the external nodes of a mechanism (when not considering control points).

The input file is called coordinates.txt and contains information about the node names

and their respective coordinates. An example input file is shown in Table 4.1.

Table 4.1: Example coordinates input file

Index Name X-pos Y-pos Z-pos

0 "Revolute-joint" 0.0 0.0 0.0

1 "Ball-joint" 0.25 0.0 1.0

2 "Free-joint-1" 0.1 0.5 0.0

3 "Rigid-joint" 1.25 0.5 1.0

4 "Free-joint-2" 1.25 -0.5 1.0

5 "Control-point-1" 1.75 0.25 0.0

6 "Control-point-2" 1.3 0.5 0.0

7 "Spring-damper-connection" 0.5 0.0 -1.0

8 "Spring-damper-ground" 1.5 0.0 1.0

The reason for the explicit statement of indices is just to make the files more human-

readable, e.g. when referring to a node from other input files.

4.1.2 Constraints

The joints are defined in the input file called constraints.txt. The file specifies joint type,

which links the joint is incident on, the direction, i.e. the orientation of the joint and

the joint’s DOFs. An example input file is shown in Table 4.2.

48

CHAPTER 4. THE MECHANISM SYSTEM 4.1. APPLICATION INPUT

Table 4.2: Example constraints input file

Point Type Link-incidence Joint-direction Fixed-DOFs

0 "revolute" (nil 0) (-1 0 0)

1 "ball" (0 2) (0.1 0 1)

2 "free" (0 nil) (0 0 1)

3 "free" (1 0) (0 1 0) (1 2 3 4 5 6)

4 "free" (2 nil) (0 -1 0) (4 5 6)

To start with, the numbers in the ’Point’ column refer to the corresponding node in coor-

dinates.txt. The ’Type’ column indicates the joint type, annotated in quotation marks.

’Link-incidence’ defines the two links that the joint constrains. For example, on the

third line, (0 2) means that link 0 and link 2 are constrained by a ball joint. Furthermore,

it is also implied that the first element (0) is the solid, male, part of the joint, while the

second (2) is the hollow, female, part, as explained in Section 2.3.2. One of these values

can also be nil. In AML, nil is a placeholder for an empty set, so nil in this context simply

means that the given element should not exist. Taking the first input line as an exam-

ple, (nil 0) means that link 0 should have a female revolute element, located at point 0,

and not connected to any male element. In the mechanism system, a joint having a nil

element is a direct indication that it is supposed to be connected to ground. Ground

constraints are described in Section 2.4.3.

Free joints have no joint geometry and are initially defined to have six unconstrained

DOFs, as explained in Section 2.3.2. These DOFs are specified in the ’Fixed-DOFs’ col-

umn. For instance, (4 5 6) means that the joint is free to translate along the x, y and z

direction but cannot rotate about any axis. Analogously, (1 2 3) means that the joint is

free to rotate about its x, y and z axis but cannot translate in any direction.

Finally, notice that ’Fixed-DOFs’ is left blank for every other joint type than free. This is

because a joint’s DOFs is explicitly given by its type, except for free joints.

4.1.3 Link Shapes

The general appearance of the links are defined in shapes.txt. Example entries are listed

in Table 4.3.

49

4.1. APPLICATION INPUT CHAPTER 4. THE MECHANISM SYSTEM

Table 4.3: Example shapes input file

Name Link Member Cross-section Dimensions Points-list Weights-list

"Knuckle-m-0" 0 0 "rectangular" (0.1 0.05)

"Knuckle-m-1" 0 1 "nil"

"Knuckle-m-2" 0 2 "hexagonal" (0.1 0.05) (5 6) (0.4 1)

"Steering-link" 1 0 "i-beam" (0.6 0.1 0.2 0.1)

"Upper-wish" 2 0 "h-beam" (0.6 0.1 0.2 0.1)

Here, each link member has specified its type of cross section and its dimensions. The

dimensions are defined either as (height width) or (height-start width-start height-end

width-end). Height and width refers to the y and z direction, respectively, in the cross

section’s local coordinate system. The ’-start’ and ’-end’ postfixes defines the same val-

ues, only for the start and end cross sections of the link member.

The values under ’Points-list’ and ’Weights-list’ allows for the user to specify control, or

design, points for a member. The values listed in ’Points-list’ refer to the correspond-

ing nodes in coordinates.txt, and control the sweep of a member. The sweep follows a

NURBS curve from these nodes. The values under ’Weights-list’ specify the weighting

of each point. If the weight is equal to 1, the curve is simply a B-spline.

Note that each member of the links is specified in Table 4.3. This does not always have

to be the case, as the system provides automatic generation of link geometry. By intro-

ducing a ’default’ value instead of a link and/or a member number, the system can use

these values for all the corresponding geometries, as seen in Table 4.4. The first line in

this example means that all members on link 0 will have (0.2 0.1) as dimensions, while

the second line means that all members on all remaining links will have (0.1 0.05) as

dimensions.

Table 4.4: Example shapes input file with default

Name Link Member Cross-section Dimensions Points-list Weights-list

"Knuckle" 0 default "rectangular" (0.2 0.1)

"Other-links" default default "rectangular" (0.1 0.05)

50

CHAPTER 4. THE MECHANISM SYSTEM 4.1. APPLICATION INPUT

4.1.4 Springs and Dampers

A mechanism might include springs or dampers. These are defined in the spring-damper.txt

file. An example is illustrated in Table 4.5.

Table 4.5: Example spring-damper input file

Type Point-start Point-end Incident-links Stiffness/Damping

"Spring" 7 8 (2 1) 750000

"Damper" 7 8 (2 nil) 3000

As we can see, springs and dampers are treated relatively equal. So, to differentiate be-

tween the two, the type has to be specified in the ’Type’ column. To define the start and

end points of the springs and dampers, the nodes in coordinates.txt are again used as

references. The links that the spring or damper is connected to, also has to be defined,

in the ’Incident-links’ column. The reason for requiring the incident links is explained

in Section 4.5.

4.1.5 Loads

For analysis and simulation purposes, loads can also be applied to a mechanism. The

loads are defined in loads.txt, as seen in Table 4.6.

Table 4.6: Example loads input file

Type Point Direction Magnitude Loaded-link

Force 4 (0.0 0.0 1.0) 50 1

Torque 0 (0.0 0.0 1.0) scale30 0

There are two main types of loads that can be added, namely forces and torques. As

springs and dampers, these are also added to a node point as well as defined on a link,

to guide the system.

One can choose between two types of magnitudes, a constant and a scale. The constant

will instantly apply a force of the given magnitude, whilst the scale is a simple linear

function with the specified magnitude as the slope.

51

4.2. INITIAL FRAME PLACEMENT CHAPTER 4. THE MECHANISM SYSTEM

4.1.6 Design Optimization

In order to allow for automatic initiation of design optimization, a final optimization.txt

is used. An example file is shown in Table 4.7.

Table 4.7: Example optimizations input file

Optimization Type Affected links Init-values Constraints Max deformation

cross-section (0 1 2) (0.1 0.1) stress 0.038

’Optimization Type’ indicates what the design optimization should be optimized with

regard to. This example illustrates a minimization of cross sections. ’Affected links’

indicates that link 0, 1 and 2 will have their cross sections minimized at the same time.

’Init-values’ are the start width and height for the given cross sections. If needed, they

can be changed in the GUI at a later stage. ’Constraints’ refer to constraint functions,

(see Section 2.6), and in this case, it indicates that the stress should not exceed the yield

stress for the given link material. Finally, ’Max deformation’ is an optional parameter,

which represents a max deformational value (used in comparison with responses from

FEDEM). For further elaboration see Section 2.6.

4.1.7 Mechanism Library

All the mechanisms created is stored in individual folders under library, each with a

copy of the input files presented in Section 4.1. Each mechanism folder has subsequent

folders for versions. It is inside these version folders that the input files are stored. This

construction of the mechanism library allows users to switch between, and edit, differ-

ent mechanisms and versions without having to recompile the system.

4.2 Initial Frame Placement

Section 2.3.5 explains the main concepts behind the SU kinematic modeling conven-

tion. With the use of an augmented two-frame method the joint and link displace-

ments are decomposed into three axial screw displacements. The augmented two-

frame method states that every link-joint pair should have exactly two frames, note that

this refers to a single joint element (male or female). This is done in order to correct for

52

CHAPTER 4. THE MECHANISM SYSTEM 4.3. LINKS

potential spatial displacements between the joint centers. Figure 4.1 illustrates how the

’ordinary’ and ’augmented’ frames, denoted as main- and sub-frame respectively, are

placed for the two elements of a revolute joint. The sub- and main-frame of a link cor-

responds to FD j and FC j , or FA j and FB j (as seen in Figure 2.9) respectively, depending

on whether it is the start or the end of a link.

In the pilot implementation, certain joint orientations could cause the incident mem-

bers to get undesirable twists and bends. Twists occurred for instance for some mem-

bers between a revolute and ball joint. This was corrected by adding a condition for

linear independence between joint directions. Bends occurred for instance for mem-

bers between a free and revolute joint, due to their relative spatial displacement. This

was corrected by augmenting the sub-frame for a free-joint relative to interconnected

joints.

Figure 4.1: Frame placements for the male and female elements of a revolute joint

4.3 Links

Recall from the Section on Application Input, 4.1, that the start and end point of a link

member is defined, implicitly, by a joint’s link-incidence. This means that the position

of links is governed by the joints’ positions. As described in the Section 2.3.1, links can

be defined as binary, ternary or quaternary (or more) links. The degree of a link governs

the number of possible connections (members) that can be made. For a binary link,

53

4.3. LINKS CHAPTER 4. THE MECHANISM SYSTEM

there is only one member between the two joints. For a quaternary link, there is six

possible members. Thus, the number of members possible for a link is given by n
2 (n−1),

where n denotes the number of incident joints. By default, all possible members of a

link are drawn. However, if the cross section type is set to ’nil’ (as seen in 4.3), the

member is neglected.

Members of a link are generated by sweeping a given cross section from one joint to

another. The sweep follows a spline curve from one sub-frame to another, thus the

start and end points are given by FD j and FA j . The orientation of the frames follows

the directions specified in the SU convention: z-axis as the joint direction, x-axis as the

member-direction (direction towards the next joint) and y-axis as the redundant axis.

Splines are generated by interpolating control points to obtain a smooth continuous

function. The control points used for interpolation is either obtained from the input

files or automatically generated. This, combined with the ability to use default values

for joints and links, allows for a great degree of flexibility. Figure 4.2 illustrates a smooth

NURBS curve that has been automatically generated between two joints.

Figure 4.2: Smooth NURBS curve (illustrated with red dots) generated automatically
from joint-directions

The members are rigidly fastened and can not move relative to one another. This allows

a solid to be created in-between them, called a link surface. Examples of these surfaces

are shown in red in Figure 4.3. Each surface is constructed in the following way: First, a

sheet is made from three curves and then the surface is thickened to a size dependent

on the surrounding link members. In the case of quaternary links, there are actually

two (triangular) surfaces made, that are fused together to produce the total surface, as

seen in Figure 4.3b. The number of possible surfaces are given by n
6 (n−2)(n−1), where

54

CHAPTER 4. THE MECHANISM SYSTEM 4.4. JOINTS

n is the number of incident joints.

(a) (b)

Figure 4.3: Ternary and quaternary links with surface

4.4 Joints

As explained in Section 2.3.2, a joint consists of a male and female element. Each ele-

ment has a main- and sub-frame, oriented with respect to the SU convention. Since the

two main-frames of a joint coincides, this position is used as the joint center. The sub-

frames do not coincide since they are positioned according to the incident links. A joint

is defined as a connection between two links. In the pilot implementation both these

links had to be an actual link. When trying to define a joint to be connected to ground

(a necessity for analysis) this definition yielded several errors and required extensive

workarounds. By enabling a joint to be connected to ’nil’ links, as described in Sec-

tion 4.1.2, we managed to maintain the kinematic model whilst integrating grounded

constraints for analysis.

The geometry of the joints are designed in order to minimize the stress concentration

present under load. By blending sharp edges, a smoother path for the force to flow

is obtained. Blends, or rather fillets, are created in the intersection between a joint

element and incident members. The geometry of joints and fillets are dimensioned

with respect to the incident members. Typical ratios, as discussed in Section 2.3.2, calls

55

4.5. SPRINGS AND DAMPERS CHAPTER 4. THE MECHANISM SYSTEM

for the scale-factors D/d and r /d to be between 1.2 and 1.5, and 0.02 and 0.06. As a

trade-off between the weight and a minimized SCF, 1.2 and 0.02 is used as the initial

scale-factors.

More precise scale-factors could have been obtained by calculating the SCF with re-

gard to the nominal and max stresses present. However, since this calls for separate

formulas for each joint type as well ass the consideration of dimensional changes and

discontinuities, it is better fit to let the user adjust the scale-factors further.

The process of automatically determining which edges in the geometry that should

have a fillet is rather cumbersome. A custom procedure was developed which searches

for all intersecting edges between incident members and the ’joint geometry’ itself. If

any edges are found, the method will apply a fillet with the given scale factor of 0.02.

Note that some geometries might have incompatible edges with this initial scale-factor.

In these cases, choosing a smaller scale factor for the specific edges usually solves the

issue.

4.5 Springs and Dampers

In order to control dynamical responses in the mechanism, springs and dampers may

be added. Even though both springs and dampers can be nonlinear, only linear versions

are considered in the mechanism system. Thus, only basic parameters, such as the

spring and damping coefficients, have been implemented.

The input files (Section 4.1.4) determines which links the springs and dampers are con-

nected to. This could have been derived from the individual node positions, however,

we have chosen to make this information mandatory. The reason behind requiring the

incident links is twofold: (i) computational efficiency, and (ii) uniform definition of

how parts are connected to ground. When a spring or damper is connected to a part,

an external node is connected to an internal mesh node at the its position. Obviously,

the mechanism needs to be meshed before the internal node can be found, so spec-

ifying the connecting link(s) prohibits all links in the mechanism to be unnecessarily

56

CHAPTER 4. THE MECHANISM SYSTEM 4.6. LOADS

meshed, when retrieving the node. In addition, the coordinates of the user specified

external node connection is not guaranteed to exactly correspond to those of an inter-

nal node. Therefore, a search algorithm is used to find the closest internal node, which

then is used for the connection. This node can either be a regular mesh node or an

RBE2 independent node, if this is the closest one.

4.6 Loads

Applying external loads is a central part of any static or dynamic simulation. The mech-

anism system allows two types of loads to be added, namely forces and torques. These

loads are defined by a separate input file, as described in Section 4.1.5. Each load

type corresponds to an external node, thus they are point loads. As with springs and

dampers, loads must be defined on a link, for the same reasons explained Section 4.5.

4.7 Mechanism Assembly

Every joint element, link member and surface geometry is initially constructed as sep-

arate entities. At this stage they do not conform with the kinematic model since parts

that are supposed to be rigidly fastened together are not yet ’united’. To ensure correct

kinematic properties, the mechanism is assembled in the following way: First, each

member of a link is sewn together as they should not move relative to one another. Sec-

ond, for ternary and quaternary links a surface is also generated (this is optional and

can be removed by the user). Lastly, the joint geometry is sewn together with the link

geometry, since a joint is not considered a separate physical entity by itself (Section

2.3.2). The end result is one link consisting of joints, members and a surface.

4.8 Meshing

When the final geometry for the mechanism is ready, it needs to be meshed in order to

be prepared for analysis. An important aspect of meshing is setting the mesh size. In

AML this is done through a feature called attribute tagging, which mainly is used to set

a specific mesh size on an object in the system. It can also be used to ’tag’ an object, so

57

4.8. MESHING CHAPTER 4. THE MECHANISM SYSTEM

it can be queried to retrieve specific ’mesh parts’ from a larger geometry later. The spe-

cific mesh parts include nodes, edges, surfaces and solids. An example usage is to tag

all one-dimensional entities, so that all nodes in a given mesh object can be retrieved.

In the mechanism system, each separate part of a link is tagged with a mesh size. These

parts are members, joint elements, surfaces and blends, and they are applied unique

mesh sizes primarily to match their individual dimensions. For a member, the size is

set to a quarter of its shortest cross section dimension, for joints, it is an eighth, and for

surfaces the size is equal to the surface thickness. Blends are always located in typical

high-stress areas, so their relative mesh sizes are set to half the size of the joint’s size.

Due to these different mesh sizes, the transition between them can be rather poor if no

refinement methods are applied. Poor transitions typically involves elements with bad

aspect ratios, like described in Section 2.4.2. Luckily, the AML mesher provides methods

for h-refinement, where an isotropic refinement is utilized. This refinement gradually

reduces the size of the larger elements, so that they transition smoothly towards the

smaller elements. In addition, a curvature refinement, i.e. making a finer mesh where

there is curvature, is applied to all links. This means that, for example a link with a cir-

cular cross section, will get a smaller mesh size than it initially had, due to its curvature.

Each link geometry is meshed separately, initially with four-noded triangular surface

elements. The element type can be changed manually in the GUI later, but changing the

number of nodes for the elements is not possible. The triangular elements are three-

noded, and the quadliteral are four-noded. The reason for creating an initial surface

mesh is because the mesher requires an existing surface mesh in order to generate a

volume mesh. Furthermore, the volume mesher can only generate a tetrahedron mesh.

Therefore, it has to use a triangular mesh as a basis. However, it is possible to change

the surface element type to either a quadliteral or a hybrid mesh, but bo volume mesh

can be made from these types. All mesh elements and entities for a link are stored in a

mesh database, which can be stored and retrieved.

58

CHAPTER 4. THE MECHANISM SYSTEM 4.9. ANALYSIS

4.8.1 Boundary Conditions

In order to simulate boundary conditions between links, RBE2 connections are made

for each joint element. The node used for the independent node (see Section 2.4.3) will

always be located in the joint’s center (position of the main-frame). Since this node does

not exist in the mesh, it has to be explicitly created and added to the node list. Note that

the independent node for both the male and the female element will be located at the

same coordinates. The forces acting between the links will then be transferred through

the two independent nodes.

Unlike the independent node, the dependent nodes are not explicitly created. These

are retrieved from the mesh via the tagging feature. In general, for male elements, the

dependent nodes will lie on the surface, around the joint center. The nodes for the

female elements will in general lie on the inside of the element, also around the joint

center. All dependent nodes have 6 DOFs by default. This is because they should all

move equally, relative to the independent node, and not relative to each other.

An RBE2 are also created for all free joints. This is beneficial for three reasons: (i) The

RBE2 can be used as a connection for springs, dampers and loads, to distribute forces

over multiple nodes. (ii) A free joint can be fixed in one or more directions, thus it needs

an MPC to avoid singularities. For example defining a free joint to simulate bearings.

(iii) The RBE2 is placed at the end of the cross section a given member, and can be used

as a basis for other joint types, such as the cylindrical and prismatic joints. The current

implementation satisfies the minimum requirements to create both a cylindrical and

prismatic joint in FEDEM.

4.9 Analysis

AML comes with an analysis module that requires the integration of MSC Nastran. The

module is complemented by a single example for static analyses that is not working, nor

further documented. The only part working is writing Nastran Bulk Data Files, (.bdf),

which contains all FE nodes and elements. In the absence of a working AML analysis

module, as well as the need of dynamic analyses, FEDEM is used as the analysis module

59

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

instead. As there are no existing frameworks or interfaces to aid in the integration be-

tween AML classes and FEDEM models, a set of custom functions have been developed

to facilitate this integration, and finalize the pre-processing before analysis. In gen-

eral, the functions convert the internal structures in the mechanism system to a format

understood by FEDEM. Recall from Section 3.4 that mechanisms in FEDEM are repre-

sented on a substructure and system level. The substructures represent the actual FE

parts, which is what the .bdf files are used for. A single .bdf is created for each link in the

mechanism and assembled at the system level. The mesh written to .bdf consist of ei-

ther shell or solid elements, which is specified by the user in the GUI. The system level is

represented by a Fedem Mechanism Model (.fmm) file, containing a complete descrip-

tion of the mechanism. The .fmm file is automatically generated by the mechanism

system, and connects all the corresponding substructures, joints, springs, dampers and

loads. This is done by looping through every entity in the mechanism model, and writ-

ing the corresponding FEDEM definitions to .fmm. Transformation and rotation ma-

trices (presented in Section 2.3.4) are used to ensure that the kinematic model remains

intact, e.g. correct orientation of revolute joints. An example model file generated by

the system can be seen in Appendix D. In addition, generic functions for adding a con-

trol system are created. However, due to the number of input parameters possible, only

an example to control the crank of a four-bar mechanism can be used.

The automatic generation of the .fmm file enables analyses to be run without any need

of input or modification in FEDEM. This means that directly after the mechanism input

files are created, the mechanism can be automatically exported and analysed, replac-

ing the otherwise time-consuming process of manual pre-processing. The results from

analysis can then be used to alter the design in any way, before running further analy-

ses.

4.10 Results

The following results summarize our improvements and additions to the mechanism

system. All depicted geometries are created in the mechanism system and retrieved

from either the system itself or FEDEM. To visualize analyses in FEDEM, angular or

60

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

translational deformation are used for face contours.

Figure 4.4 illustrates issues resolved in the kinematic model by comparing the old and

new system for identical configurations. Certain joint orientations could cause the inci-

dent members to get undesirable twist and blends, and in some cases leaving the whole

member geometry undrawable from its connection line.

Figure 4.4: Fixed link twist and spatial joint displacement

Figure 4.5 shows unnecessary links and null geometries (with a black line for their con-

nection) in the old system as a result of an incomplete joint definition. The revised joint

definition allows joints to be connected to ’ground links’ with no geometry, avoiding

both subsequent unwanted links and null geometries.

61

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

Figure 4.5: Unnecessary links and null geometries in the old system

An additional joint type has also been implemented. As seen in Figure 4.6, the single

knuckle joint is a variation of the revolute joint where the point of rotation (joint center)

is not displaced to the side. Alternatively, one can use the revised joint definition to

introduce a double revolute joint. This is done by defining a joint, with its incident

links, twice in the input files. For instance, if two revolute joints are defined for the same

point and with the same link as the male element, but with different joint directions, the

system will generate two pins (one for each other incident link). This configuration is

used for the log grabber mechanism, Figure 4.21.

Figure 4.6: Single knuckle and double revolute joints

62

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

Figure 4.7 shows two examples of how several fillets are automatically applied to the

transition of a member and joint geometry, for a revolute joint and ball joint. This pro-

cess happens at the link assembly, and works for all types of cross sections and joints,

as long as the geometry does not contain too small edges, relative to the fillet radius.

Figure 4.7: Revolute and ball joint before and after fillet

For each free joint, RBE2 connections are made at the end of the member cross section.

The independent node is located at the center of the cross section, while the depen-

dent nodes are found by gathering all internal mesh nodes at the end cross sections,

illustrated in Figure 4.8. Free joints have also been extended to allow different fixed

DOFs. This enables, for instance, the user to make a rigid joint, create ’custom’ joints or

simulate a ball/revolute joint without creating the subsequent geometry.

63

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

Figure 4.8: I-beam and thin-walled tube with RBE2 connections at their ends

Figure 4.9 shows how a surface can be created between curved members of a link. The

surface is thickened and sewn together with the members and joints in the mechanism

assembly process, creating one single component.

Figure 4.9: Thickened surface of a lower wishbone

Figure 4.11 show how springs and dampers are represented in the system. Their end

points are specified in the input files, and will connect to the closest internal mesh node,

shown in green.

Loads are applied in the same way as springs and dampers. For the case in Figure 4.11,

both the force and torque will be attached to the independent RBE2 node of the female

revolute joint. This torque configuration is used for the crank in Figure 4.15a.

64

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

(a) Spring (b) Damper

Figure 4.10: Spring and damper for a double wishbone suspension

(a) Force (b) Torque

Figure 4.11: Force and torque on a simple I beam

Figure 4.12 depicts the different stages of the mesh refinement process. Initially, there

is no refinement, and the transition between the member and the joint is non-filleted

and contains elements with poor aspect ratios. Then, a fillet with subsequent small el-

ements is applied, however this yields even more elements with poor aspect ratios. Fi-

nally, a smooth transition is shown in Figure 4.12c and Figure 4.12d, both with isotropic

mesh refinement and curvature refinement applied. Smooth transitions and refine-

65

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

ment is also possible for volume mesh. Figure 4.13 shows a refined tetrahedron mesh.

(a) Triangular mesh without blend and refine-
ment

(b) Triangular mesh with refined blend

(c) Triangular mesh with transitional refine-
ment

(d) Hybrid mesh with transitional refinement

Figure 4.12: Different mesh configurations with isotropic curvature refinement

Figure 4.13: Refined tetrahedron mesh

Figure 4.14 shows how joints, loads, springs and dampers are automatically positioned

and attached to RBE2 elements in the corresponding substructures in FEDEM. The sub-

sequent model file can be seen in Appendix D.

66

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

Figure 4.14: Double wishbone suspension represented in the mechanism system (left)
and FEDEM (right)

Control systems can also be added from the mechanism system and automatically at-

tached to the correct substructures in FEDEM. Figure 4.15 shows the first positions of

a four-bar, ’straight line’, mechanism, subsequent control system and resulting path of

the coupler end.

(a) First few positions (b) Y vs X position of coupler end

(c) Simple control system to adjust the angular velocity of the crank

Figure 4.15: Four-bar mechanism with control system

67

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

Figure 4.16 shows the resulting object trees that is automatically generated in the export

between the mechanism system and FEDEM.

(a) Double wishbone suspension (Figure 4.14) (b) four-bar (Figure 4.15)

Figure 4.16: Resulting object tree in FEDEM

When running analyses in FEDEM, necessary design changes may come apparent, e.g.

singularities in the spring-damper connection of a lower wishbone (as seen in Figure

4.14). The revised joint definition can also be used to create custom spring-damper

connections, with subsequent RBEs. Figure 4.17 shows how an example of how this

can be done. Here, a female revolute joint is created by defining additional members

in the lower wishbone. This configuration is not fully automated yet and requires slight

post-editing of the model in FEDEM (removal of redundant joints and RBEs between

the members).

Figure 4.18 shows how the RBE2 connection for a ball joint is represented in the mech-

anism system, and then in FEDEM. The independent nodes are shown in red, and the

dependent nodes in green.

68

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

Figure 4.17: Double wishbone translational deformation

(a) RBE2 nodes for a female ball joint (b) RBE2 nodes for a male ball joint

(c) Connected ball joint with subsequent RBE2 web

Figure 4.18: RBE2 for a ball joint in the mechanism system and FEDEM

69

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

Similarly, loads, springs, and dampers are connected to independent nodes in the mech-

anism system and subsequent triads are created and connected in FEDEM. Figure 4.19

depicts how loads, springs and dampers are connected to the mechanism in the system

and FEDEM.

(a) Force displayed in the mechanism system (b) Force displayed in FEDEM

(c) Spring and damper connection
displayed in the mechanism system

(d) Spring and damper connection displayed
in FEDEM

Figure 4.19: Load, spring and damper connection in the mechanism system and FE-
DEM

70

CHAPTER 4. THE MECHANISM SYSTEM 4.10. RESULTS

Figure 4.20 and 4.21 shows two additional mechanisms that has been added to the

mechanism library, a steerig linkage and a log grabber. The steering mechanism is a

rather radical design, consisting of 14 links. The mechanism use a six-bar chain to guide

each wheel, resulting in a large translational shift. Note that both of these mechanisms

require simple modifications in FEDEM before analysis can be run.

Figure 4.20: 14-bar steering linkage

71

4.10. RESULTS CHAPTER 4. THE MECHANISM SYSTEM

Figure 4.21: Log grabber mechanism

The revised definition of free joints and subsequent RBEs supply the basics needed to

set up prismatic and cylindrical joints in FEDEM. This process is not yet automated,

however with simple modifications in FEDEM both of these joints can be applied, as

seen in Figure 4.22. Note that these would ideally have more than two masters (in future

implementation).

Figure 4.22: Cylindrical joint used for a slider crank mechanism

72

CHAPTER 4. THE MECHANISM SYSTEM 4.11. DISCUSSION

4.11 Discussion

The kinematic model and general link-joint synthesis in the pilot implementation has

proved to be a good basis to create generic mechanisms. The ’old’ system synthesis

has remained intact, with the exception of the underlying joint definition and some

frame augmentations in the kinematic model. The present kinematic model is stable

for simple mechanisms, but a few inconsistencies can still be found. For instance, if

no additional design points for a member is given, the SU parameters might not pro-

duce satisfactory NURBS, due to sharp angles between the member and incident joints.

However, this is easily resolved by defining extra control points for the NURBS.

The revised joint definition has enabled a more versatile modeling process of mecha-

nisms. By allowing the user to define the individual DOFs for a free joint, a wide variety

of geometric constraints can be obtained. Figure 4.22 shows how free joints, with their

RBE2s, can be used to create a slider-crank mechanism. Free joints can also used to

replace a ball or revolute joint, if their joint geometries are undesirable.

Links are created by assembling separate elements to form one body. This individual

construction of geometries allows both tags and geometric primitives to be queried af-

ter the actual link has been created, e.g. creating fillets for intersecting edges. Individual

mesh sizing enables the mesh to be refined in areas of high stress concentration. Both

blends and joints are initially defined with quite small mesh sizes. As an additional cur-

vature refinement is applied, elements in high-curvature areas (e.g. blends) become a

lot smaller than their ’tagged’ sizes. Recall from the theory on mesh sizes (Section 2.4.2)

that calculating the best possible mesh size is an impossible task, and will also depend

on the accuracy needed for the analysis results, while keeping the computational effi-

ciency as high as possible. If the elements become too small, the designer could easily

turn the refinement off or increase the size in the GUI.

Since the volume mesh use a surface mesh as an input parameter, it will receive the

same refinements applied to the surface mesh. As stated, the volume mesh consists

solely of four-noded tetrahedron elements, which generally are regarded as poor ele-

ments, due to their stiffnesses. As a result of insufficient documentation, it is not clear

73

4.11. DISCUSSION CHAPTER 4. THE MECHANISM SYSTEM

if other solid element types are available.

For all male and female joint elements, the RBE2 connection will choose all mesh nodes

on the connecting surface area as dependent nodes. Since there is no relative motion

between the dependent nodes, any stresses that would occur in the surface geometry,

are therefore neglected, due to the stiffness. This feature is often desirable, if the stresses

in the joints themselves are of no interest. Should they be of interest, a more realistic

connection can be modeled by only using the nodes closest to the independent node as

dependent nodes. An even better solution is to use an RBE3 connection, but this often

requires a user input, and is difficult to implement universally.

Sections 4.5 and 4.6 mentioned that the coordinates of the connection points for springs,

dampers and loads are not guaranteed to exactly correspond to those of an internal

mesh node, so they simply connect to the closest node, which might be an RBE2 in-

dependent node. Of course, this solution is not optimal, as the connection should be

on an MPC, to distribute the loads evenly. A possible solution is shown in Figure 4.17,

where an extra revolute joint and two members are created on the link. Since the system

automatically creates an RBE2 constraint in the joint, this can become the connection

for the spring. If this becomes too complicated, or the extra geometry is redundant,

the RBE2 can of course be created in FEDEM and applied as the spring connection. A

final solution is to have the system automatically create an RBE2 if the closest node is

an internal mesh node, but this feature is yet to be implemented.

With the existing load, spring and damper configuration, realistic results from analyses

are obtainable. However, in order to simulate a wider range of mechanisms, more com-

plex loads and spring/damper configurations should be included. The pre-processing

could for instance be extended to include non-linear stiffness and damping functions,

as well as time history input files.

The mechanism system has become a generic pre-processor, and due to the lack of

an integrated working analysis module, the pre-processing is tailored for FEDEM. Au-

tomatically creating .fmm files has been one of the more difficult tasks in the imple-

mentation, largely due to retrieving the correct node numbers, joint handling (trans-

formations), and configuring triad connections. The conversion from the AML object

74

CHAPTER 4. THE MECHANISM SYSTEM 4.11. DISCUSSION

format, to the FEDEM .fmm format requires an unambiguous definition of each part of

the system, and a correct parametrization of mechanism models. The parametrization

enables the user to make both topological and morphological changes, automatically

generate a mesh and run subsequent analyses. More specifically, the user can move de-

sign points without having to manually generate new geometry, and quickly generate

meshes while not having to make changes to the underlying FEA model. Accompanied,

these features define a mechanism that is immediately ready for analysis, allowing fast

analysis iterations, where the results can be used to guide the design right from the start.

Additionally, the embedded library with predefined ’basic’ mechanisms allows users to

modify and add mechanisms together to quickly solve new design problems. However,

no implementation of post-processing features, i.e. handling of the analysis results, is

conducted, with the exception of a single example used in design optimization (Chap-

ter 5). Post-processing functionality would make the system more well-rounded and be

able to facilitate a design process where less time is spent on routine design tasks, and

more time spent on innovative and creative tasks.

75

76

Chapter 5

Design Optimization

Chapter 4 described how the mechanism system established an interface with FEDEM,

by automatically converting the mechanism structure in AML to match the FEDEM

mechanism models. The resulting .fmm file made it possible to immediately run FE-

DEM analyses manually, for obtaining post-processing data. This chapter will show

how analyses can be ran automatically, and integrated as a part of a design optimiza-

tion.

Section 5.1 describes the ways AMOpt impacts the general design optimization, and

subsequent decisions. Section 5.2 will go through how the iteration process is affected

by using AMOpt, and how workarounds are facilitated. The workarounds dictate how

the problem formulation is constructed and implemented, and is described in Section

5.3. Based on these sections, we will go through a specific design optimization case in

Section 5.4, in order to illustrate what the system is capable of. Finally, Section 5.5 will

evaluate the results from the case, and discuss advantages and disadvantages of the way

design optimization is implemented.

77

5.1. AMOPT CHAPTER 5. DESIGN OPTIMIZATION

5.1 AMOpt

Recall from Section 3.3.5 that all AMOpt methods run an automatic, non-interruptible

process before concluding with an optimal design. The design variables, objective func-

tions and constraint functions have to be programmed as properties in the system model,

before they can be assigned to their roles in AMOpt. This means that they have to return

real numbers, or AMOpt will fail. There is also no direct way of incorporating response

vectors in the formulation. In addition, MOGA is the only method in AMOpt where a

constraint function can be added. A structural optimization without a constraint func-

tion is highly unrealistic, and can even be worthless, so MOGA has to be chosen, even

though it has some drawbacks.

5.2 The Iteration Process

Since the AMOpt methods controls the whole optimization process, it could seem like

there is no way to run FEDEM analyses between the iterations. However, the AMOpt im-

plementation is also done in AML, which can be ’exploited’. AMOpt is an iterative pro-

cess which first uses a subroutine for calculating the next set design variables, based on

the constraint function (if any), and then calculates the corresponding objective func-

tion. Since all of these parameters are controlled properties, they can be modified. As

stated, they have to return real numbers, but just as return values for the expressions,

which means that a number of operations can be executed in-between. One of these

operations can for instance mesh the current mechanism, or call a FEDEM batch com-

mand to calculate stresses or deformations. The return value of the function will then

have to wait until all operations are executed.

This workaround allows analyses to be included at each iteration. In other words, FE-

DEM can be integrated to perform an analysis each time a new set of design variables

are created. The only problem is that since MOGA has to be used, it does not make

sense to run an analysis at each iteration. Remember from Section 2.6.4 that a gen-

eral GA creates sequential populations, constituted by a number of design points that

slightly deviates from each other by a random mutation factor. Since an iteration means

78

CHAPTER 5. DESIGN OPTIMIZATION 5.3. PROBLEM FORMULATION

evaluating the next design point in the population, running an analysis on this design

means running an analysis on a slightly different, random, design point. This is clearly

a waste of computational effort, as many design points are guaranteed to be relatively

equal. A better approach is therefore applied, where a FEDEM analysis is ran at the

end of each generation, when all the design points have been evaluated. Each design

point, with corresponding values for the constraint and objective functions, are then

compared, and the design point yielding the lowest objective function value, while still

satisfying the constraint function, is sent to analysis. The result from the analysis is

stored, and can be used for a second constraint. For instance, the result might be a time

history of deformations, while the second constraint is a prescribed maximum defor-

mation. The final result of the optimization is the design point with the lowest objective

function value, that also satisfies this second constraint.

5.3 Problem Formulation

The thoughts presented in the previous sections define how design optimization is im-

plemented. For instance, since all properties have to be programmed, they must be

tailored for a specific type of design optimization. The optimization type implemented

is a cross sectional design optimization. In short, the goal is to minimize up to several

links’ cross section area, A, while the mechanism undergoes a bending moment, M .

The maximum stress of the links, σmax , must not exceed the yield stress for the given

link material, which is the first constraint function, g1. To include FEDEM analysis, we

also include a second constraint, g2, that relies on the analysis results. These results, s,

form a time history of the deformation of a given point in the mechanism. The largest

deformation in the time history, umax , should not be larger than a prescribed value, up ,

specified in the input files. The cross section type is also limited to I-beams in this pilot

implementation. The design variables are then chosen to be the flange width, x1, flange

thickness, x2, web height, x3, and web thickness, x4, shown in Figure 5.1. Note that sev-

eral links can be affected by the design variables, stated in the input files. In addition,

the two flanges will always have equal widths and thicknesses.

79

5.3. PROBLEM FORMULATION CHAPTER 5. DESIGN OPTIMIZATION

Figure 5.1: Design variables of an I-beam cross section

The problem formulation is as follows (based on the theory in Section 2.6): Given the

design variables, {x1, x2, x3, x4} = x :

minimize f (x) = A(x) = 2x1x2 +x3x4 (5.1)

subject to g1(x) =σmax (x)−σy ≤ 0 (5.2)

and g2(s) = umax (s)−up ≤ 0 (5.3)

where σmax (x) = M
ymax (x)

Iz (x)

The calculation of σmax derives from simple beam theory, where M is the moment ap-

plied at the crank, Iz is the second moment of area about the z-axis, and ymax is the dis-

tance from the cross section’s center of gravity to the point undergoing the most stress.

Since the center of gravity always will be located at the mid of the cross section, ymax is

the half of the total cross section height. Inserting expressions for Iz and ymax , as well

as normalizing the total expression yields the following function:

g1(x) = M
x2 + 1

2 x3

1
6 x1x3

2 + 1
2 x1x2(x3 +x2)2 + 1

12 x4x3
3

−σy

= 6M

σy

2x2 +x3

2x1x3
2 +6x1x2x2

3 +12x1x2
2 x3 +6x1x3

2 +x4x3
3

−1 ≤ 0 (5.4)

80

CHAPTER 5. DESIGN OPTIMIZATION 5.3. PROBLEM FORMULATION

5.3.1 The Implementation

Figure 5.2 shows in detail how x , f (x), g1(x), s and g2(s) are integrated in the iteration

process. To begin with, the design from the input files, x0, is meshed and sent to FE-

DEM for analysis. The results are stored, and compared against the rest of the analysis

results when the optimization process ends. Then, the AMOpt process kicks in, itera-

tively creating each design point in the initial population, and evaluating its objective

and constraint functions. When the generation ends, i.e. when all design points have

been evaluated, the best design point is meshed and analysed in FEDEM. The size of

each population, as well as the number of generations are taken as user input in the

AMOpt module. The process repeats itself until the result from the last generation is

received, when the best result simply is chosen by comparison.

81

5.3. PROBLEM FORMULATION CHAPTER 5. DESIGN OPTIMIZATION

F
igu

re
5.2:A

M
O

p
tlo

o
p

82

CHAPTER 5. DESIGN OPTIMIZATION 5.4. RESULTS

5.4 Results

The results of this pilot implementation are best illustrated through an example. The

example is as follows: We wish to minimize all cross sections of a four-bar, while it un-

dergoes a torque at the crank. This means that the design variables affect all the links

simultaneously. Of course, a four-bar mechanism is supposed to rotate, but in this ex-

ample, it is held in place, so that the simulation is static instead of dynamic. Dynamical

movement of the mechanism is prohibited by stating that the end of the coupler link

is a free joint, fixed in the global x- and z-axis, like Figure 5.3 shows. This example is

chosen to illustrate the following key points:

• A mechanism can be automatically meshed after changing substructural param-

eters.

• Integration with FEDEM is successfully implemented, and can be automated as

a part of a design optimization process.

• Design optimization works, and leads to a strictly better design than the prelimi-

nary, given the problem formulation.

Figure 5.3: Initial design relative to the optimized design

83

5.4. RESULTS CHAPTER 5. DESIGN OPTIMIZATION

The ’Init-values’ from the optimization input file refer to the flange width and web

height. Their thicknesses are automatically set by the system to be a tenth of their re-

spective lengths, but can be changed in the GUI before optimization start, and are listed

in Table 5.1. Note that all units in in meters, even though FEDEM is unitless. However,

units are implicitly applied by the mechanism system, when calculating the various pa-

rameters. In addition, the mechanism is meshed with a three-noded surface triangular

mesh, and have default mesh element sizes, as described in Section 4.8.

Table 5.1: Design variables with move limits

Flange Width (x1) Flange Thickness (x2) Web Height (x3) Web Thickness (x4)

Init value 0.1 0.02 0.1 0.02

Min value 0.05 0.005 0.05 0.005

Max value 0.2 0.03 0.2 0.03

A link material and the magnitude of the torque must be chosen. AML provides a ma-

terial catalog, where we choose steel for all links. The material properties1 necessary

for the analysis, are shown in Table 5.2. The torque magnitude is chosen to mimic an

engine running at 30 Nm. Also note that the prescribed maximum translation, up , is a

constraint for the point at the middle of the coupler link, at the revolute joint.

Table 5.2: Steel material properties and torque magnitude

E Modulus [GPa] Yield Strength [GPa] Torque [Nm] Max Translation [m]

199 0.448 30 0.038

Finally, the parameters needed for the MOGA are listed in Table 5.3. All values are cho-

sen through empirical testing, including the penalty parameters. These parameters

somehow form a penalty function to be applied constraint violations, but it is uncer-

tain how this functions looks like, as it is not documented in AMOpt.

Table 5.3: Design optimization values for the GA method

Population Size Number of Generations Penalty Weight Penalty Power

50 20 10 2

1Note that the E modulus is 199GPa. This is due a bug in AML that happens when writing to .bdf. Luckily,
199 GPa is an okay approximation for a steel E modulus, and does not need a workaround.

84

CHAPTER 5. DESIGN OPTIMIZATION 5.4. RESULTS

Given the values from Table 5.2, the general first constraint function can be reduced to:

g1(x) = 3

4600

2x2 +x3

2x1x3
2 +6x1x2x2

3 +12x1x2
2 x3 +6x1x3

2 +x4x3
3

−1 ≤ 0 (5.5)

Likewise, the second constraint function would be:

g2(s) = umax (s)−0.038 ≤ 0 (5.6)

The values listed in the previous tables and equations are all the values needed to begin

the optimization. However, running an analysis on the initial design parameters, x i ni t ,

is beneficial, for comparison with the final results. The values for the initial design for-

mulation functions are as follows:

f (x i ni t = {0.1,0.02,0.1,0.02}) = 0.006

g1(x i ni t = {0.1,0.02,0.1,0.02}) =−0.665 < 0 (5.7)

g2(si ni t) = 0.0389−0.038 = 0.009 > 0

As we can see, the analysis results, si ni t , makes the second constraint function, g2(si ni t),

violated. The initial design is therefore in an infeasible area.

The Final Optimization Result

After going through 20 generations of design points, the final result is shown in Table

5.4. The whole process took about 30 minutes, which means that it takes 1.5 minute

to mesh the mechanism, and get results from a FEDEM analysis. Figure 5.4 shows the

initial and the optimized cross sections, side by side.

Table 5.4: Final I-beam cross section values

Flange Flange Web Web
width thickness height thickness

0.052 0.005 0.173 0.005

To show that the design optimization result leads to a better design, given the formu-

lation, we can calculate the objective function and constraint functions for the design.

85

5.4. RESULTS CHAPTER 5. DESIGN OPTIMIZATION

These values are:

f (x f i nal = {0.052,0.005,0.173,0.005}) = 0.001385

g1(x f i nal = {0.052,0.005,0.173,0.005}) =−0.002186

g2(s f i nal) = 0.0322−0.038 =−0.0058

Obviously, this is a feasible design, since the values of both constraint functions are less

than zero. In addition we see that the cross section area is 0.001385 (m2), when the

initial had an area of 0.006, which is around 4.3 times bigger.

An interesting result is that AMOpt concludes with a different solution than what our

framework did, shown in Table 5.5. Of course, this is due to the extra translational con-

straint, g2(s), which is not a part of the AMOpt problem formulation.

Table 5.5: Final AMOpt I-beam cross section values

Flange Flange Web Web
width thickness height thickness

0.050 0.005 0.172 0.005

Figure 5.5 and 5.6 plots respectively f (x) and g1(x) against each design point, to show

how they vary along the iteration process, retrieved from AMOpt.

Figure 5.4: Initial design relative to the optimized design

86

CHAPTER 5. DESIGN OPTIMIZATION 5.4. RESULTS

Figure 5.5: Area at each design point plot

Figure 5.6: Constraint function at each design point plot

87

5.5. DISCUSSION CHAPTER 5. DESIGN OPTIMIZATION

5.5 Discussion

Design optimization of four bar mechanisms is often a process to make the four bar-

generate a line as straight as possible. However, it must still be able to withstand the

forces applied at its crank, which the optimization example in this chapter deals with.

The four-bar must tolerate the forces while still keeping its weight to a minimum, by re-

ducing the area of all cross sections. Lower weight means lower material costs, which,

of course, is highly sought-after for most companies. The straight line feature of the

four-bar is also the reason that the second constraint, g2(s), is formulated as it is. The

thought is that larger translations at the middle of the coupler link, will interfere more

with the way the four bar moves. Of course, larger cross sections will give a more stable

movement, but again, they will cost more, which means that a trade-off must occur.

g2(s) is an example of how to control this trade-off, although there was no calculation

for how the maximum allowed translational value, up , was found. This value is set ex-

perimentally, and it seems to be good enough to illustrate the example.

Nevertheless, the example shows that that the system returns a strictly better design,

given the problem formulation. The design is also well within the maximum transla-

tional bounds, which AMOpt’s final result was not. We also notice that all design vari-

ables are within their move limits, although x2 and x4 took their respective minimum

values, while x1 almost did. This makes it likely to believe that they would continue

to decrease if g2(s) was removed, and their lower bounds was lowered. This is mainly

due to the simplicity of the problem formulation, where σmax (x) is calculated without

any concern of the relative thicknesses of the design variables, or other types of forces

and stresses that will occur. Hence, without g2(s) and the move limits, the formulation

would probably make the cross section become longer and narrower as the iteration

process goes on. However, some of the design variables will be more influential than

the others, both in regards to lowering the objective function, but also the first con-

straint function. Obviously, a perturbation of x1 and x2 changes the objective function

more than the others, because they dictate the dimensions of both flanges. But how

they influence the g1(x) is not that obvious. Looking at g1(x) in Equation 5.5, x2 and x3

are the only variables of power 3, which makes them more influential to the function.

88

CHAPTER 5. DESIGN OPTIMIZATION 5.5. DISCUSSION

Deciding which variables to change more than others, through a sensitivity analysis, is

a feature that could be desirable for the design optimization. According to Specht [44],

these kind of substructural design variables also actually require a sensitivity analysis,

which backs up this desire further.

If the optimized design from Figure 5.4 is considered too narrow, restrictions could be

put on some of the move limits before running another optimization. Although, a bet-

ter solution would probably be to add extra constraint functions, specifying relations

between the design variables. For example, if we wanted the web height to always have

a value of less than fifteen times larger than the we thickness, we could impose a third

constraint saying that x3 −15x4 ≤ 0. But, since the point of this example was to show

that an automated optimization loop has been made, rather than getting the actual best

cross section, such constraints have not been made.

The plots from Figure 5.5 and Figure 5.6 illustrate why MOGA is not well suited for struc-

tural optimizations. First of all, it takes about 600 iterations before the area seems to

stabilize, so running analyses on each design point is just too time costly. Many of them

would also be redundant, as the design variables changes by random factors in a pop-

ulation, which yields a lot of semi-equal designs. Secondly, since MOGA is a SUMT

method, meaning that it incorporates the constraint functions in the objective func-

tion, many design points will be in an infeasible area. Figure 5.6 illustrates this issue,

where all points above the black line at g1(x) = 0 are violating the constraint. Therefore,

other solutions might be more desirable to utilize in the future.

A similar solution to the one implemented could be to alter which designs that are anal-

ysed in FEDEM. Since the way FEDEM is included now might seem a bit forced and

unnecessary, it would maybe make more sense to analyse the entire population of the

last generation, instead of the best design of each generation. In that case, we need to

compare g1(x) and g2(s). If g2(s) impose a ’stricter’ constraint than g1(x), then all of

the design points in the last generation might not satisfy the second constraint, which

leaves the whole optimization without a result. If the constraints are equally strict, or

g1(x) is stricter, then this solution can possibly be better, although the process might

take a while depending on the size of the population.

89

5.5. DISCUSSION CHAPTER 5. DESIGN OPTIMIZATION

If we move away from the existing AMOpt methods, DOT or NPSOL could be investi-

gated to map potential improved usages. Recall from Section 3.3.5 that these libraries

include SLP and SQP methods, which are gradient-based and regarded as better meth-

ods than non-gradient-based methods, like the Nelder-Mead and Powell’s method. If

they in addition have a framework for incorporating constraint functions in the prob-

lem formulation, there is no doubt that these methods should be favored over the ex-

isting AMOpt methods. For example, the SQP methods could be baked into a convex

approximation method, used to solve functionality optimizations, like the straight line

functionality of a four-bar. In that case, the design variables would be the coordinates

of the revolute joints, thereby moving away from a dimensional optimization process,

into a functional one. Using a convex approximation method requires the implementa-

tion of custom approximation algorithms and gradient methods, which would have to

be investigated further.

If DOT or NPSOL are not viable options and there still is a desire to utilize AMOpt, SUMT

could be implemented. Then, the existing problem formulation would be augmented

so that the objective function includes the constraints, and the Nelder-Mead or Powell

could be applied. A drawback is that this setup requires penalty functions to be cre-

ated, which are not configurable option in either of these methods in AMOpt, which

means that some workarounds have be created. For example, the infeasible designs

could simply just not be sent to analysis.

90

Chapter 6

Implementation Details

Like discussed in Section 2.7, an object-oriented development process includes ana-

lyzing, designing and separating a system into meaningful classes and relations, and

implementing the design as a set of objects. Based on this theory, we have derived a

general development methodology, described in Section 6.1. Section 6.2 System Archi-

tecture will go through the mechanism system architecture, by describing class struc-

tures and purposes, and how they relate to each other. They will be illustrated using

the modeling convention described in Section 3.5. Implementation details are also de-

scribed. Larger images of the class diagrams can be found in Appendix B.

6.1 General Development Methodology

When constructing a system from scratch, or nearly from scratch, it is important to

remember the object-oriented principles from Section 2.7. Not following the general

guidelines of the principles may lead to undesirable aspects, like unwanted system be-

havior and poor maintainability of the system. The latter case was especially a problem,

when we initially started working with the system. The problem became evident due

to the lack of encapsulation, by allowing objects to directly change the state of other

objects. Admittedly, there is no direct way of encapsulating object properties in AML,

meaning that object access modifiers can not be set. If an object property is queried,

it is always returned, which allows the object’s state to be altered by any other object.

91

6.2. SYSTEM ARCHITECTURE CHAPTER 6. IMPLEMENTATION DETAILS

Regardless, accessor methods can be used to ’simulate’ access modifiers. This is also

regarded a better practice, because a class should not need to know or maintain knowl-

edge of how another object is created, which the class does when altering the object’s

state directly. Rather, the class should only need to know the object’s interface, through

a set of get and set methods, along with a set of legal operation methods. Another ad-

vantage of working towards interfaces instead of modifying states directly, is that ob-

jects are more loosely coupled.

The system has been further developed with these thoughts in mind, while we contin-

uously have been attempting to make it more loosely coupled. Note that the existing

classes and relations by themselves, have been changed a little, but not as much as the

tight coupling between them. The class diagrams in the following sections are created

both for our own sake, as well as to make it less confusing for others to be introduced to

the system. Additionally, if others are to continue working on the mechanism system,

the GitHub repository is easily accessible, and contains the commit history, which is a

documentation of the work process itself. All source code can either be viewed in the

GitHub repository or in Appendix F.

6.2 System Architecture

6.2.1 Collections

All input parameters to the system are read from files, stored in a mechanism library,

like portrayed in Section 4.1. For each file, there is a corresponding collection-class that

is responsible for reading it and storing the data. Each line in a file generally represents

an object, which is instantiated by a collection-class, through the use of the built-in

AML functionality, series-object. Objects created as series-objects are added as subob-

jects for the object that created them. As such, the creator object can be viewed as an

object constructor.

The main-mechanism-class is the main, or root class of the system, that the user should

instantiate. Instantiation can be accomplished in one of the modeling forms, or through

92

CHAPTER 6. IMPLEMENTATION DETAILS 6.2. SYSTEM ARCHITECTURE

the function (create-model ’class-name) in the AML console. All of the initial collection

classes relate to the main-mechanism-class, either as properties or subobjects. For ex-

ample, the point-collection reads all the coordinates from coordinates.txt, and instanti-

ates a set of point-data-models, like shown in Figure 6.1. The other collection classes

works analogously, except from folder-collection. This class instantiates a folder-info-

model for each file existing under the library folder. For each folder-info-model, there is

created a series of mechanism-version-info objects, representing a specific version of a

mechanism. Originally, this class was thought to contain information about the differ-

ent mechanism parameters during an optimization process, representing a history of

the iteration process. However, now it represents more of a mechanism specification,

while the folder-info-model represents a general mechanism type.

The main-mechanism-class is also a series-object itself. It will instantiate optimization

objects based on the input data. Note that it is possible to have multiple optimization

objects, if different kinds of optimizations is desirable.

Figure 6.1: Class-object diagram of the initial collections

93

6.2. SYSTEM ARCHITECTURE CHAPTER 6. IMPLEMENTATION DETAILS

6.2.2 Data Models

AML encourages to use classes that contain domain specific knowledge, as superclasses

for other classes. The domain specific knowledge is then inherited into subclasses,

which can be mixed with their own knowledge. Three examples used in the mechanism

system are shown in Figure 6.2. Classes inheriting from for instance frame-data-model

will not only inherit its orientation and coordinate system properties, but also the defi-

nitions of how its GUI should look like.

Figure 6.2: Class-object diagram of the initial collections

6.2.3 Joints

Joints are modeled in a fashion based on its two distinct elements, the female and the

male. Since the concatenation of these form the entire joint, they are modeled as sub-

objects for a master-joint-model holding the two. The master-joint-model functions as

both a model holding the two joint elements, as well as a model containing shared joint

meta data, like the common joint dimensions. Figure 6.3 shows this relation. It also

shows how both joint elements are of the type joint-element-model.

94

CHAPTER 6. IMPLEMENTATION DETAILS 6.2. SYSTEM ARCHITECTURE

Figure 6.3: Class-object diagram of the general joint models

Figure 6.4 shows the different joint implementations of the master-joint-model and

joint-element-model.

Figure 6.4: Class-object diagram of the joint types

6.2.4 Links

As explained in Section 4.7, joint geometry and link geometry are created separately,

before assembled. The class that holds all information about the link geometry, i.e. the

95

6.2. SYSTEM ARCHITECTURE CHAPTER 6. IMPLEMENTATION DETAILS

link’s members and surfaces, is called link-geometry-class. The member and surface ge-

ometries are represented by the set of member-solid-models and surface-model created

as series-objects by their respective collection superclasses. link-geometry-class is also

the class that assembles the members, surfaces and joints, and it can also appy fillets,

through the use of a blend-object. As we can see from Figure 6.5, member-solid-model

has three subobjects, the start and end cross sections, and a connection-model, which

is a NURBS curve. It is also worth mentioning that one surface-model is created from

three connection-models.

The class that is instantiated as a series-object by link-collection in Figure 6.1 is the link-

model-class. This class controls the total link geometry, and passes it to the meshing and

analysis classes.

Figure 6.5: Class-object diagram of the link structure

6.2.5 Loads, Springs and Dampers

All data for a specific load is represented in a load-model. This is the class instantiated

by load-collection in Figure 6.1. Equally, spring-damper-collection instantiates both the

spring-model and the damper-model.

96

CHAPTER 6. IMPLEMENTATION DETAILS 6.2. SYSTEM ARCHITECTURE

All three models share the same class as subobjects, the mesh-query-nodes-with-label-

class. In essence, this is just a query object, containing the load’s, spring’s or damper’s

connection node. As explained in Section 4.5, this node is obtained from an existing

mesh. The way it is obtained is by searching through the corresponding link mesh, via a

method implemented in mesh-query-nodes-from-interface-class, which the connecting

node object inherits from.

The visual representation for loads, springs and dampers are implemented as ’geometry-

classes’ and are inherited into the models, respectively, in order to separate functional-

ity.

Figure 6.6: Class-object diagram of loads, springs and dampers

6.2.6 Meshing and Analysis

Surface meshing in the system is executed by a paver-mesh-class. This class takes an ar-

bitrary geometry and generates a triangle, quadliteral or hybrid mesh, depending on the

input parameters. It is this class that controls the mesh refinement, described in Section

4.8, and it will also apply mesh sizes specified mesh sizes for any tagged objects. These

tagged objects are joint-element-model, member-solid-model, surface-model and the

blend-object, found in previous class diagrams. Finally, the paver-mesh-class requires

an instance of a mesh-database-class, which is both used for storing and querying. This

database object can be saved to file, so that it can be retrieved later. The tet-mesh-class

takes a surface mesh as argument and creates a tetrahedron mesh, using the surface

97

6.2. SYSTEM ARCHITECTURE CHAPTER 6. IMPLEMENTATION DETAILS

elements. The solid mesh it generates, will have the same element edge lengths as the

surface mesh.

The analysis-link-model-class is mainly used for pre-processing. For instance, all sur-

face and volume mesh nodes elements are gathered and applied material properties. In

addition, all RBE2 nodes are gathered from the joints. By themselves, these nodes are

just a collection with no formal meaning. This meaning is provided to them by adding

them as properties in the analysis-rigid-body-element-type-1-class 1.

The rest of the analysis-link-model-class subobjects are instances of predefined AML

classes. The nastran-interface is there to collect these objects and serves as an interface

to NX Nastran and exporting the mesh and its properties to .bdf files.

Figure 6.7: Class-object diagram of the meshing and analysis models

6.2.7 Design Optimization

Any type of a design optimization model is represented by a general-optimization-class.

Specific optimization types will all inherit from this class, to ensure a good object-

oriented design and reusability of code. As it stands, it is only possible to perform a

structural optimization of cross sections. This is modeled in cross-section-optimization-

model. It uses instances of design-variable-classes and a constraint-class and an objec-

1The name analysis-rigid-body-element-type-1-class is correct, even though it actually is an RBE2 class.

98

CHAPTER 6. IMPLEMENTATION DETAILS 6.2. SYSTEM ARCHITECTURE

tive function property to model the formulation. Data from the optimization input file

is stored in these instances.

The iterative optimization process is carried out by the AMOpt module, which is de-

signed for a user to set up an optimization case interactively. It works by assigning prop-

erties from the object tree as design variables, objective functions and constraint func-

tions. Manually setting every variable with upper and lower bounds, is a rather time

consuming process, so an an easier and semi-automatic process has been developed.

As shown in Figure 6.8, the optimization model uses a set of AMOpt classes. When set-

ting up a case interactively, these classes are created by AMOpt. Now, they are explicitly

instantiated, through a custom made GUI, where upper and lower bounds for the de-

sign variables can be set. Not only is this setup more user friendly, as it saves time, but it

also ensures a correct and controlled use of the model, since it connects the actual cross

section parameters to refer to the design variables. This feature implies that a change

in the design variables, also changes the cross section parameters, due to dependency

backtracking.

Figure 6.8: Class-object diagram of the optimization models

Section 5.2 mentioned running FEDEM analyses through batches. This feature is im-

plemented in the cross-section-optimization-model, and is a twofold process. First, the

model file is reduced and solved, using the command:

fedem -f ’model-file-path’ -solve dynamics

99

6.3. RESULTS AND DISCUSSION CHAPTER 6. IMPLEMENTATION DETAILS

Then, the appropriate results are retrieved using:

fedem_graphexp -curvePlotFile ’results-file-path’ -curvePlotType 5

-modelfile ’model-file-path’

This creates a file located at ’results-file-path’, which contains a time history of defor-

mations at a given node position. The file is subsequently read to locate and store the

largest deformation in the analysis.

6.3 Results and Discussion

Evaluating the way a system is implemented is a difficult task, due to the lack of specific

metrics for measuring the implementation. However, after following the methodology

from Section 6.1, we can identify some differences between the old and new version of

the system. First of all, some data flow was quite confusing, as there was a lot of un-

necessary data going back and forth when it did not need to. An example is the way

the joint size was determined, by sending data back and forth between master-joint-

model and joint-element-model (Figure 6.3). Without going into details, this process is

now simplified, and hopefully less confusing. Secondly, some unneeded classes and

constructs are removed. An example in this case is that both master-joint-model and

joint-element-model inherited from an overlying general-joint-model-class. Defining

both the components and the assembly to be of the same type, does not make sense in

this case, so it was duly removed, thereby freeing up a layer of abstraction, and uncom-

plicating the architecture.

Another aspect from the development methodology is the use of accessor methods. In

the old state of the system, if a variable name was changed, or a class was modified, a

set of objects directly depending on the variable would also have to be updated, which

is a poor design for maintainability. New features of the system have now been imple-

mented to avoid this kind of dependence. It is a small and simple measure, but with

the access interfaces defined, the code is expectantly better for reuse and maintenance.

However, the system has become quite large and complex, so there is still some work to

be done in this area.

100

CHAPTER 6. IMPLEMENTATION DETAILS 6.3. RESULTS AND DISCUSSION

The class diagrams have proved to be great tools in the process of both learning and de-

bugging the system. They provide a visual representation that are not easily obtainable

when only viewing the source code itself, or by viewing the model tree in the modeling

forms, described in Section 3.3.4. The model tree created when choosing a four bar with

circular cross section is shown in Figure 6.9 (different objects are expanded in the two

figures). We believe that using the inspect form in combination with the class diagrams,

is probably the fastest way to gain a good understanding of the system, by visualizing

how the system is built up. The only drawback of the inspect form is that it does not

show class methods. This is an unfortunate factor that might lead to more methods

being implemented as properties, which can facilitate a poorer architecture.

Figure 6.9: System model tree

Finally, the development infrastructure using a GitHub repository has proven a vital

tool for collaboration and simultaneous editing of source code. The commit history

and preceding work log are found in Appendix E.

101

102

Chapter 7

Final Discussion

The discussions of Chapters 4, 5 and 6 went into detail about the respective chapter’s

content. This discussion will address a more general view, drawing lines between the

chapters, in the context of the research questions.

RQ1 How can a KBE system automate tasks in the mechanism design process?

As described in Section 2.2 a goal for KBE applications is automating repetitive and

non-creative design tasks, by means of capturing, storing and reusing domain knowl-

edge. The mechanism system has been developed with these principles in mind. A

parametrized model is used to maintain the connection between entities and their un-

derlying abstractions. This enables knowledge to be captured, abstracted and subse-

quently used throughout different stages of the design process. A large variety of mech-

anisms can be stored in a central library, enabling the designer to reuse the knowledge

obtained from previous design tasks.

Generally, the pre-processing is the most time-consuming process of undertaking an

analysis. This thesis demonstrates how simple user input can be used to fully automate

pre-processing, eliminating the need for repetitive user interactions. Designer interac-

tion is still possible through a GUI, resulting in a high degree of flexibility. The thesis

103

CHAPTER 7. FINAL DISCUSSION

also shows the staging of a common platform for mechanism design, by transforming

the internal AML model to a FEDEM model file. This integration was facilitated by the

parametrized model, in combination with the object-oriented structure of AML. Encap-

sulation of entities such as links and joints, containing their own domain knowledge,

ensures the modularity necessary for handling the integration.

The mechanism system provides the initial framework for a complete KBE system for

mechanism design. A designer can either create new mechanisms from scratch or edit

the topology and geometry of predefined mechanisms in the library. In either case,

both the input files and the GUI provides the tools needed to best solve the design task

at hand. Considering a large number of designs at an early stage in the design process,

is highly desirable. The mechanism system enables automatic modeling and subse-

quent pre-processing of mechanisms, allowing analyses to be run right away and even

integrated in feasibility studies of preliminary designs.

RQ2 How can a KBE system support and enable the use of design optimization?

Like discussed in Section 2.1, one of the aims of using KBE tools is to facilitate the con-

nection between the design process and numerical analyses. Chapter 5 shows how

this connection is integrated in the mechanism system, using AMOpt algorithms to

drive the process. The design optimization has been greatly supported by the already

parametrized mechanism model. Any number of link cross section parameters can

point to overlying design variables. As a result of dependency backtracking in AML,

all cross sections will change in accordance with the design variables, subsequently up-

dating the mechanism model.

As shown in Chapter 5, the mechanism system provides the means to run a fully au-

tomated design optimization process. However, complete automation is in most cases

not beneficial. As stated in Section 2.6.6, a successful optimization requires the designer

to not be completely left out of the optimization loop. The designer should be able to

guide the iteration process and evaluate intermediate results, thereby controlling the

104

CHAPTER 7. FINAL DISCUSSION

progress. In the current state of the system, only the problem formulation is controlled,

leaving the whole iteration process to the computer. However, by running short design

optimizations, the designer is able to iteratively guide the design, using results from

previous optimizations.

Integrating design optimization in the design process is no straightforward task. It re-

quires a great degree of abstraction, both in the system and from the designer, who has

to formulate the actual optimization problem. Even though design optimization can be

beneficial in many design tasks, it might prove too extensive for most design processes.

However, a possibility could be to create a library consisting of predefined problem for-

mulations to assist the designer. In association with a mechanism library, this could

help explore a larger design space, create smarter solutions and increase innovation.

105

106

Chapter 8

Conclusions

This thesis demonstrates how tasks in the design process can be automated, using prin-

ciples of Knowledge-Based Engineering.

The mechanism system has been reviewed and further developed. The underlying

kinematic model and joint definition have been altered to achieve a more stable mecha-

nism representation. In addition, generic loads, springs and dampers, created through

simple user input, have enabled a more versatile and thorough modeling of mecha-

nisms. With the introduction of fillets, link geometries have become smoother and

more realistic. Arguably, they have also improved the quality of finite element meshes,

by allowing custom mesh refinements to be set at typical high stress areas. The mesh

quality has been further improved by curvature and transitional refinements. An inter-

face with AML and FEDEM has been implemented with an automated pre-processing

of the mechanism model, reducing the need of repetitive user interactions.

A generic design optimization of I-beam cross sections is integrated with the use of the

design optimization module, AMOpt. As an example, the cross sections of a four-bar

mechanism have been optimized, leading to strictly better results, given the problem

formulation. The example demonstrates how the mechanism model can be used in a

fully automated design process, including structural analyses in FEDEM.

The mechanism system has been restructured in compliance with object-oriented de-

sign principles, achieving a higher degree of modularity and maintainability. A set of

107

CHAPTER 8. CONCLUSIONS

class diagrams have been created, both to illustrate the system architecture and lower

the threshold for further development.

108

Chapter 9

Further Work

This chapter suggests areas for further study and development.

Even though the input files for the system has been made more human readable, they

rely on .txt files, which might be too basic. A possible solution is converting to a com-

monly used file structure, like XML, which both seems more professional and would

probably make the files even more readable. However, this is not critical for the system

itself.

A more critical task for the system is to implement more joint types. For example,

parametrized models of cylindrical and prismatic joint types could be made based on

the suggestions in section 4.8.1. Parametrization of higher joint types should also be

looked into.

A feature to connect loads, springs and dampers to an MPC, if the closest mesh node is

internal, should be implemented.

A broader variety of FE mesh types could be looked into, both to vary the number of

nodes in an element, and to create other volume mesh elements than just the tetrahe-

dron type.

FEDEM does not necessarily need to be the analysis module for the mechanism sys-

tem, as built-in AML classes can be used to directly retrieve results from an integrated

109

CHAPTER 9. FURTHER WORK

NX Nastran module. We have not made this work, and it is uncertain if the module

supports dynamical multi-body simulations, but it is worth looking into. If the use of

FEDEM continues, a broader set of pre-processing procedures (constructing the .fmm

file) should be implemented. Some examples include creating a generic control sys-

tem (based on user input), non-linear springs and dampers, load types depending on

mathematical functions, and the possibility for adding masses.

Regardless of the analysis module utilized, a post-processing framework should be de-

veloped, where the analysis results could be evaluated against a set of pre-defined cri-

teria. This framework could also be integrated in the design optimization loop.

As of now, mechanisms are not ready for production. Determining and implementing

features for extended detailing should be done.

Based on the suggestions from Section 5.5, other ways to use AMOpt, as well as inte-

grating the external libraries DOT and NPSOL, could be looked into. If the design op-

timization is further implemented, the design variable models, should be made more

generic. Now, they are sizing variables, and they should be able to be system variables,

or other types of substructural variables, for the design optimization framework to be

as complete as possible. A complete framework would also include more optimization

cases, not just a cross section optimization, and it should allow the designer to be more

involved in the iteration process.

110

References

[1] Arora, J.S. (1989). Introduction to Optimum Design. McGraw-Hill, New York.

[2] Bansal, R.K., Brar, J.S. (2004), Theory of Machnines Laxmi Publications LTD, New

Delhi.

[3] Beck, K. (2000). Extreme Programming Explained: Embrace Change, Addison-

Wesley.

[4] Bhattacharya, S. K. (2008). Control Systems Engineering. Pearson Education, New

Delhi.

[5] Booch, G. (1986). Object-Oriented Development. In: IEE Transactions on Software

Engineering, Vol SE-12, pp 211-221.

[6] Bongardt, B. (2013). Sheth-Uicker Convention Revisited Robotics Innovation Center,

Bremen, pp 2-3.

[7] Budynas, R.G., Nisbett, J.K. (2011). Shigley’s Mechanical Engineering Design.

McGraw-Hill, New York.

[8] Chapman, C.B., Pinfold, M. (1999). Design engineering – a need to rethink the so-

lution using knowledge based engineering. In: Knowledge-Based Systems 12, pp

257–267.

[9] Chapman, C.B., Preston, S., Pinfold, M., Smith, G. (2007). Utilising enterprise knowl-

edge with knowledge-based engineering. In: Int. J. Computer Applications in Technol-

ogy 28, pp 2-3.

111

REFERENCES REFERENCES

[10] Darmofal D., 16.100 Aerodynamics, Fall 2005. (Massachusetts Institute of

Technology: MIT OpenCourseWare). Retrieved May 3. 2016, from: http://ocw.

mit.edu/courses/aeronautics-and-astronautics/16-100-aerodynamics-fall-2005/

lecture-notes/16100lectre48_cj.pdf.

[11] Etman, L.F.P. (1997). Optimization of Multibody Systems using Approximation Con-

cepts. Doctoral Dissertation Eindhoven University of Technology, Eindhoven.

[12] Etman, L.F.P, Van Campen, D.H, Schoofs, A.J.G. (1998). Design Optimization of

Multibody Systems by Sequential Approximation. In: Multibody System Dynamics 2,

pp 393-415.

[13] Fedem Technology AS (2016). FEDEM. Retrieved May 13, 2016, from: http://www.

fedem.com/software/.

[14] Fedem Technology AS (2012). Fedem Theory Guide, Release 7.0

[15] Fedem Technology AS (2013). Fedem User’s Guide, Release 7.0.3

[16] Felippa, C.A. (2004). Introductions to Finite Element Methods. University of Col-

orado, Boulder, Colorado,

[17] Finger, S., Behrens, S. Introduction to Mechanisms. Retrieved April 28, 2016, from:

https://www.cs.cmu.edu/~rapidproto/mechanisms

[18] GitHub, Inc. GitHub. Website: https://github.com/.

[19] Haftka, R. T., Gürdal, Z. (1992). Elements of Structural Optimization. KLUWER

ACADEMIC PUBLISHERS, Dordrecht.

[20] Heckbert, P. S. (1993). Introduction to Finite Element Methods. Global Illumination

Course, Carnegie Mellon University.

[21] Hughes, J. (2015). Pair Programming. Retrieved December 2. 2015, from: http://

cs.brown.edu/courses/csci0170/content/docs/pair-programming.pdf

[22] Hutcheson, M.L, (2003). Software Testing Fundamentals, Methods and Metrics. Wi-

ley Publishing, Inc., Indianapolis.

112

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-100-aerodynamics-fall-2005/lecture-notes/16100lectre48_cj.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-100-aerodynamics-fall-2005/lecture-notes/16100lectre48_cj.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-100-aerodynamics-fall-2005/lecture-notes/16100lectre48_cj.pdf
http://www.fedem.com/software/
http://www.fedem.com/software/
https://www.cs.cmu.edu/~rapidproto/mechanisms
https://github.com/
http://cs.brown.edu/courses/csci0170/content/docs/pair-programming.pdf
http://cs.brown.edu/courses/csci0170/content/docs/pair-programming.pdf

[23] Khurmi, R.S., Gupta, J.K. (2005). Theory of Machines. Eurasia Publishing House.

[24] Kristoffersen, E., Kristiansen, A. (2015). Knowledge Based Engineering in mecha-

nism design, automating the design loop. Project dissertation, Norwegian University

of Science and Technology, Trondheim.

[25] MSC Software. RBEs and MPCs in MSC.Nastran. Retrieved May 2. 2016, from:

https://cdm.ing.unimo.it/files/progettazione_assistita/corso_2011_2012/2012_05_

16_mer/RBEs.ppt

[26] Don Ho. Notepad++. Retrieved June 7. 2016, from: https://notepad-plus-plus.org/

[27] NTNU, Department of Marine Technology. The Finite Element Method - The-

ory. Retrieved April 29. 2016, from: http://illustrations.marin.ntnu.no/structures/

analysis/FEM/theory/index.html

[28] Object Management Group Inc. Unified Modeling Language (UML) Resource Page.

Retrieved December 1. 2015, from: http://www.uml.org/

[29] Olagunju, A.O, Akpan, B. (2015). The Benefits of Objet-oriented Methodology for

Software Development. In: International Journal of Information and Computer Sci-

ence, Vol 4, pp 39-46

[30] Pivotal Labs. Pivotal Tracker. Retrieved December 3. 2015, from:

https://www.pivotaltracker.com/help/faq#whatispivotaltracker

[31] Press, W.H., Teukolsky, S.A., Vetterling W. T., Flannery B. P. (1992). Numerical

Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge University

Press, Cambridge, pp 408-416.

[32] Ravi, V. (2011). Theory of Machines (Kinematics). PHI Learing, New Delhi.

[33] Rocca, G.L. (2001). Knowledge based Engineering techniques to support aircraft de-

sign and optimization. Doctoral dissertation, Faculty of Aerospace Engineering, TU

Delft, Delft.

[34] La Rocca, G. (2012). Knowledge based engineering: Between AI and CAD. Review of a

language based technology to support engineering design. In: Advanced Engineering

Informatics 26, pp 159-179.

113

https://cdm.ing.unimo.it/files/progettazione_assistita/corso_2011_2012/2012_05_16_mer/RBEs.ppt
https://cdm.ing.unimo.it/files/progettazione_assistita/corso_2011_2012/2012_05_16_mer/RBEs.ppt
https://notepad-plus-plus.org/
http://illustrations.marin.ntnu.no/structures/analysis/FEM/theory/index.html
http://illustrations.marin.ntnu.no/structures/analysis/FEM/theory/index.html
http://www.uml.org/
https://www.pivotaltracker.com/help/faq#whatispivotaltracker

[35] Scrum Methodology. Retrieved December 2. 2015, from: http://

scrummethodology.com

[36] Sheth, P. (1972). A Digital Computer Based Simulation Procedure for Multiple De-

gree of Freedom Mechanical. University of Microfilms, Michigan.

[37] Singh, S. (2011). Theory of Machines. Pearson, India.

[38] Sivertsen, O.I. (2001). Virtual testing of mechanical systems, theories and tech-

niques. Swets & Zeitlinger B.V., Lisse.

[39] Skaare, R.K. (2015). Mechanism parametrization, modeling and FE-meshing. Mas-

ter’s thesis, Norwegian University of Science and Technology, Trondheim.

[40] Sobieszczanski-Sobieski, J., Morris, A., van Tooren, M. (2015). Multidisciplinary

Design Optimization supported by Knowledge Based Engineering. John Wiley & Sons,

Ltd., New Jersey.

[41] Stanford Business Software Inc. NPSOL. Retrieved May 11. 2016, from: http://

www.sbsi-sol-optimize.com/asp/sol_npsol5.0description.htm

[42] Stress Ebook LLC. RBE2 Vs RBE3. Retrieved May 2. 2016, from: http://www.

stressebook.com/rbe2-vs-rbe3/

[43] Specht, B. (1992). Optimization Theory and Software Requirement Document. ES-

PIRIT 5524 MDS Technical Report, Dornier.

[44] Specht, B. (1992). Sensitivity Theory and Software Requirement Document. ESPIRIT

5524 MDS Technical Report, Dornier.

[45] Takeuchi, H., Ikujiro, N. (1986). The New New Product Development Game. In: Har-

vard Business Review 64, no. 1.

[46] Technosoft Inc. Adaptive Modeling Language. Retrieved May 11. 2016, from: http:

//www.technosoft.com

[47] TechnoSoft Inc. (2010). AML Reference Manual 5.0B5.

[48] Thornton, S.T., Marion, J.B, Classical Dynamics of Particles and Systems (Fifth Edi-

tion) (2003), Brooks Cole

114

http://scrummethodology.com
http://scrummethodology.com
http://www.sbsi-sol-optimize.com/asp/sol_npsol5.0description.htm
http://www.sbsi-sol-optimize.com/asp/sol_npsol5.0description.htm
http://www.stressebook.com/rbe2-vs-rbe3/
http://www.stressebook.com/rbe2-vs-rbe3/
http://www.technosoft.com
http://www.technosoft.com

[49] Trier, S.D. (2001). Design Optimization of Flexible Multibody Systems. Doctoral dis-

sertation, Norwegian University of Science and Technology, Trondheim.

[50] Verhagen, W.J.C., Bermell-Garcia, P., van Dijk, R.E.C., Curran, R. (2012). A critical

review of Knowledge-Based Engineering: An identification of reseach challenges. In:

Advanced Engineering informatics 26, pp 5-15

[51] Vanderplaats Research & Development, Inc. Design Optimization Tools. Re-

trieved May 11. 2016, from: http://www.vrand.com/sites/default/files/pub/DOT%

20Brochure.pdf

[52] Xemacs community. What is XEmacs?. Retrieved December 1. 2015, from: http:

//www.xemacs.org/

[53] Young, W.C., Budynas, R.G. (2002). Roark’s Formulas for Stress and Strain. McGraw-

Hill, New York.

115

http://www.vrand.com/sites/default/files/pub/DOT%20Brochure.pdf
http://www.vrand.com/sites/default/files/pub/DOT%20Brochure.pdf
http://www.xemacs.org/
http://www.xemacs.org/

Appendix A

Installation Details

The following instructions is valid for the Windows operating system only. In order to

run the mechanism system the following software has to be installed: AML, MSC Nas-

tran (included in Siemens PLM Software NX) and FEDEM. In addition, four AML mod-

ules is also required: aml-analysis-module-pack-type-3, aml-analysis-module-pack-

type-3_ui, amsketcher-module and AMOpt.

The files ’logical.pth’ and ’aml-init.tsi’ is found in the folder where AML is installed, e.g.

’C:/Program Files/Technosoft/AML/AML6.31_x64’.

• Add a path in ’logical.pth’ pointing to the location of the mechanism system, e.g.

’:mechanism-system "C:/Users/User/mechanism-system/"’. This is required in

order to compile the mechanism system.

• If the paths from ’:tmp’ and ’:temp’ in ’logical.pth’ does not exist on the computer,

change the paths or create the subsequent folder.

• Add a path in ’logical.pth’ pointing to the location of ’nastran.exe’, e.g. ’:nastran-

path "C:/Program Files/Siemens/NX 10.0/NXNASTRAN/bin/"’. This is required

in order to export to .bdf files.

• Add a path in ’logical.pth’ pointing to where nastran files should be saved, e.g.

:nastran-data "C:/Users/User/mechanism-system/nastran-data/"’. This is required

in order to export to .bdf files.

A-1

APPENDIX A. INSTALLATION DETAILS

• Load the modules. The modules are added in ’aml-init.tsi’, e.g. ’(load-module

"aml-analysis-module-pack-type-3" :path "C:/Program Files/Technosoft/AML

/AML6.31_x64/modules/")’. This is required in order to run AMSketcher, opti-

mization, and perform meshing and analysis.

• For automatic compilation of the system on startup of AML, add ’compile-system

:mechanism-system’ in ’aml-init.tsi’. This is optional.

• When running design optimization one might have to start Emacs in adminis-

trator mode. This is situational due to different user setting for running batch

commands.

A-2

Appendix B

Class Diagrams

This appendix contains large images of each class diagram presented in Chapter 6.

B-1

APPENDIX B. CLASS DIAGRAMS

F
igu

re
B

.1:C
lass-o

b
jectd

iagram
o

fth
e

in
itialco

llectio
n

s

B-2

APPENDIX B. CLASS DIAGRAMS

F
ig

u
re

B
.2

:C
la

ss
-o

b
je

ct
d

ia
gr

am
o

ft
h

e
in

it
ia

lc
o

lle
ct

io
n

s

B-3

APPENDIX B. CLASS DIAGRAMS

F
igu

re
B

.3:C
lass-o

b
jectd

iagram
o

fth
e

gen
eraljo

in
tm

o
d

els

B-4

APPENDIX B. CLASS DIAGRAMS

F
ig

u
re

B
.4

:C
la

ss
-o

b
je

ct
d

ia
gr

am
o

ft
h

e
jo

in
tt

yp
es

B-5

APPENDIX B. CLASS DIAGRAMS

F
igu

re
B

.5:C
lass-o

b
jectd

iagram
o

fth
e

lin
k

stru
ctu

re

B-6

APPENDIX B. CLASS DIAGRAMS

F
ig

u
re

B
.6

:C
la

ss
-o

b
je

ct
d

ia
gr

am
o

fl
o

ad
s,

sp
ri

n
gs

an
d

d
am

p
er

s

B-7

APPENDIX B. CLASS DIAGRAMS

F
igu

re
B

.7:C
lass-o

b
jectd

iagram
o

fth
e

m
esh

in
g

an
d

an
alysis

m
o

d
els

B-8

APPENDIX B. CLASS DIAGRAMS

F
ig

u
re

B
.8

:C
la

ss
-o

b
je

ct
d

ia
gr

am
o

ft
h

e
o

p
ti

m
iz

at
io

n
m

o
d

el
s

B-9

Appendix C

Graphical User Interface

This Appendix will shortly describe each individual GUI frame (not to be confused with

coordinate frames) for the most important objects of the model tree. A demo of the GUI

functionality can be found on: https://vimeo.com/170026181.

Figure C.1: Mechanism selection and export GUI

C-1

https://vimeo.com/170026181

APPENDIX C. GRAPHICAL USER INTERFACE

Figure C.1 shows the top level frame. At this frame, the different mechanisms and their

versions, can be selected. Switching between mechanisms will update the model tree.

The frame also contains drawing and exporting functions.

Figure C.2 shows the properties editable for a coordinate system frame, like main-frames,

sub-frames, start- and end-frames.

Figure C.2: Coordinate system frame GUI

Joint models have two GUI frames. One of them contains common sizing variables for

both joint elements (both elements must have the same sizes to match), seen in Figure

C.3a. Each joint element also has a GUI frame, letting the user draw and visualize the

joint geometry, and all RBE2 nodes. In addition, the elements element mesh size can

be changed.

(a) (b)

Figure C.3: Joint GUI

The general appearance for all links (shape and size) can be changed at the top level

object of all links, shown in Figure C.4.

C-2

APPENDIX C. GRAPHICAL USER INTERFACE

Figure C.4: GUI controlling all links

Specific shape, geometry size and mesh size can be set at the GUI frame for a member

(Figure C.5b). Similarly, the shape of all members on a link can be set a the link GUI

frame (Figure C.5a). In addition, the mesh size for the blend can be changed here.

(a) (b)

Figure C.5: Link geometry and member GUI

Figure C.6 shows how to include a link surface through the ’display’ check-box, and how

to set its element mesh size.

Figure C.6: Overall links GUI

The springs and dampers GUI contains buttons for drawing their ’geometries’ and mesh

connection nodes. Figure C.7a only shows the damper GUI frame, but the spring frame

C-3

APPENDIX C. GRAPHICAL USER INTERFACE

is identical, as they inherit from the same superclass. The spring and damper coeffi-

cients can also be edited, to avoid having to change it in the input file. Load metadata

can also be edited, seen in Figure C.7b.

(a) (b)

Figure C.7: Dampers and loads

The AML mesher generating surface meshes, comes with its own GUI frame, shown

in Figure C.8. In this frame, the mesh type (structured, unstructured and hybrid) and

refinement values can be set. The mechanism system initiates these refinement values,

so changing them should be done carefully.

Figure C.8: Overall links GUI

The material for a link can be set at the analysis GUI frame. Once the material is picked,

C-4

APPENDIX C. GRAPHICAL USER INTERFACE

all material properties can also be edited.

Figure C.9: Link material properties

Figure C.10a shows where the initial values and move limits for the design variables in

a design optimization are set. These values are used to automatically instantiate the

correct objects for the AMOpt model. The interface for the problem formulation in

AMOpt is shown in Figure C.10b.

(a) (b)

Figure C.10: Design optimization GUIs

C-5

Appendix D

Example Model File

The following Fedem Model File is automatically generated from the mechanism sys-

tem and represents a double wishbone suspension with parts (points to .bdf files), joints,

springs, dampers, and loads.

FEDEMMODELFILE {R7.0.4 ASCII}

GLOBAL_VIEW_SETTINGS

{

ID = 1;

SYMBOL_SCALE = 0.1;

SYMBOL_LINE_WIDTH = 1;

BACKGROUND_COLOR = 0.098039 0.305882 0.458823;

CAMERA_FOCAL_DIST = 0.707107;

CAMERA_HEIGHT = 1.41421;

CAMERA_ORIENTATION =

1.00000000 0.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000 0.00000000

0.00000000 0.00000000 1.00000000 0.70710678;

}

MECHANISM

{

ID = 1;

BASE_ID = 1;

GRAVITY = 0 0 -9.81;

POSITION_TOLERANCE = 0.0001;

}

REF_PLANE

{

ID = 1;

BASE_ID = 2;

HEIGHT = 0.1;

WIDTH = 0.1;

COLOR = 1 1 1;

TRANSPARENCY = 0.65;

}

LINK

{

BASE_ID = 3;

COORDINATE_SYSTEM =

1.00000000 0.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000 0.00000000

0.00000000 0.00000000 1.00000000 0.00000000;

ID = 1;

LINE_COLOR = 1 1 1;

MASS_PROP_DAMP = 0;

ORIGINAL_FE_FILE = "C:\mechanism-system-path\

double-wishbone-suspension\link-0000.bdf";

POLYS_ON_POINTS_OFF = true;

STIF_PROP_DAMP = 0;

USE_MASS_CALCULATION = true;

}

TRIAD

{

BASE_ID = 4;

ID = 1;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 1;

D-1

APPENDIX D. EXAMPLE MODEL FILE

FE_NODE_NO = 10017;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 5;

ID = 2;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.25

0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 1;

FE_NODE_NO = 10018;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 6;

ID = 4;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.25

0.0 1.0 0.0 0.0

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 1;

FE_NODE_NO = 10019;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 7;

ID = 6;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.55

0.0 0.0 1.0 0.1;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 1;

FE_NODE_NO = 10020;

NDOFS = 6;

}

LINK

{

BASE_ID = 8;

COORDINATE_SYSTEM =

1.00000000 0.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000 0.00000000

0.00000000 0.00000000 1.00000000 0.00000000;

ID = 2;

LINE_COLOR = 1 1 1;

MASS_PROP_DAMP = 0;

ORIGINAL_FE_FILE = "C:\mechanism-system-path\

double-wishbone-suspension\link-0001.bdf";

POLYS_ON_POINTS_OFF = true;

STIF_PROP_DAMP = 0;

USE_MASS_CALCULATION = true;

}

TRIAD

{

BASE_ID = 9;

ID = 3;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.25

0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 2;

FE_NODE_NO = 3156;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 10;

ID = 7;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.25

0.0 1.0 0.0 0.5

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 2;

FE_NODE_NO = 3157;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 11;

ID = 8;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.25

0.0 1.0 0.0 -0.5

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 2;

FE_NODE_NO = 3158;

NDOFS = 6;

}

LINK

{

BASE_ID = 12;

COORDINATE_SYSTEM =

1.00000000 0.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000 0.00000000

0.00000000 0.00000000 1.00000000 0.00000000;

ID = 3;

LINE_COLOR = 1 1 1;

MASS_PROP_DAMP = 0;

ORIGINAL_FE_FILE = "C:\mechanism-system-path\

double-wishbone-suspension\link-0001.bdf";

POLYS_ON_POINTS_OFF = true;

STIF_PROP_DAMP = 0;

USE_MASS_CALCULATION = true;

D-2

APPENDIX D. EXAMPLE MODEL FILE

}

TRIAD

{

BASE_ID = 13;

ID = 5;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.25

0.0 1.0 0.0 0.0

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 3;

FE_NODE_NO = 10817;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 14;

ID = 9;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 0.5

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 3;

FE_NODE_NO = 10818;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 15;

ID = 10;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 -1.0

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 3;

FE_NODE_NO = 10819;

NDOFS = 6;

}

REV_JOINT

{

BASE_ID = 16;

COORDINATE_SYSTEM =

6.123233995736766E-17 0.0 -1.0 0.0

0.0 1.0 0.0 0.0

1.0 0.0 6.123233995736766E-17 0.0;

HAS_Z_TRANS_DOF = false;

ID = 1;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 11;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 1;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

Z_ROT_STATUS = FREE;

Z_TRANS_STATUS = FREE;

}

TRIAD

{

BASE_ID = 17;

ID = 11;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

BALL_JOINT

{

BASE_ID = 18;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0;

FRICTION_DOF = 3;

ID = 2;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 3;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 2;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

X_ROT_STATUS = FREE;

Y_ROT_STATUS = FREE;

Z_ROT_STATUS = FREE;

}

BALL_JOINT

{

BASE_ID = 19;

COORDINATE_SYSTEM =

-1.0 0.0 0.0 0.0

0.0 -1.0 0.0 0.0

0.0 0.0 -1.0 0.0;

FRICTION_DOF = 3;

ID = 3;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 5;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 4;

D-3

APPENDIX D. EXAMPLE MODEL FILE

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

X_ROT_STATUS = FREE;

Y_ROT_STATUS = FREE;

Z_ROT_STATUS = FREE;

}

BALL_JOINT

{

BASE_ID = 20;

COORDINATE_SYSTEM =

0.981327572779731 0.0 0.0 0.0

0.0 0.9805806756909202 0.0384615384615384 0.0

0.0 -0.0384615384615384 0.9805806756909202 0.0;

FRICTION_DOF = 3;

ID = 4;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 12;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 6;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

X_ROT_STATUS = FREE;

Y_ROT_STATUS = FREE;

Z_ROT_STATUS = FREE;

}

TRIAD

{

BASE_ID = 21;

ID = 12;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.55

0.0 0.0 1.0 0.1;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

REV_JOINT

{

BASE_ID = 22;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 6.123233995736766E-17 1.0 0.0

0.0 -1.0 6.123233995736766E-17 0.0;

HAS_Z_TRANS_DOF = false;

ID = 5;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 13;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 7;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

Z_ROT_STATUS = FREE;

Z_TRANS_STATUS = FREE;

}

TRIAD

{

BASE_ID = 23;

ID = 13;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.25

0.0 1.0 0.0 0.5

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

REV_JOINT

{

BASE_ID = 24;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 6.123233995736766E-17 -1.0 0.0

0.0 1.0 6.123233995736766E-17 0.0;

HAS_Z_TRANS_DOF = false;

ID = 6;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 14;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 8;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

Z_ROT_STATUS = FREE;

Z_TRANS_STATUS = FREE;

}

TRIAD

{

BASE_ID = 25;

ID = 14;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.25

0.0 1.0 0.0 -0.5

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

REV_JOINT

{

BASE_ID = 26;

COORDINATE_SYSTEM =

D-4

APPENDIX D. EXAMPLE MODEL FILE

1.0 0.0 0.0 0.0

0.0 6.123233995736766E-17 1.0 0.0

0.0 -1.0 6.123233995736766E-17 0.0;

HAS_Z_TRANS_DOF = false;

ID = 7;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 15;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 9;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

Z_ROT_STATUS = FREE;

Z_TRANS_STATUS = FREE;

}

TRIAD

{

BASE_ID = 27;

ID = 15;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 0.5

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

REV_JOINT

{

BASE_ID = 28;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.0

0.0 6.123233995736766E-17 -1.0 0.0

0.0 1.0 6.123233995736766E-17 0.0;

HAS_Z_TRANS_DOF = false;

ID = 8;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

MASTER_TRIAD = 16;

MOVE_MASTER_TRIAD_ALONG = false;

MOVE_SLAVE_TRIAD_ALONG = false;

ROT_FORMULATION = FOLLOWER_AXIS;

ROT_SEQUENCE = ZYX;

ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 10;

TRAN_SPRING_CPL = NONE;

VAR_QUADRANTS = 0 0 0;

Z_ROT_STATUS = FREE;

Z_TRANS_STATUS = FREE;

}

TRIAD

{

BASE_ID = 29;

ID = 16;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 -1.0

0.0 0.0 1.0 -1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 30;

ID = 17;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.3697581332482862

0.0 1.0 0.0 0.0005969073302643464

0.0 0.0 1.0 -1.007591654794891;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 3;

FE_NODE_NO = 2101;

NDOFS = 6;

}

TRIAD

{

BASE_ID = 31;

ID = 18;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

AXIAL_SPRING

{

BASE_ID = 32;

ID = 1;

INIT_LENGTH = 0;

INIT_STIFFNESS = nil;

TRIAD_CONNECTIONS = 18 17;

USE_INIT_DEFLECTION = true;

}

TRIAD

{

BASE_ID = 33;

ID = 19;

COORDINATE_SYSTEM =

1.0 0.0 0.0 0.3697581332482862

0.0 1.0 0.0 0.0005969073302643464

0.0 0.0 1.0 -1.007591654794891;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = 3;

FE_NODE_NO = 2101;

NDOFS = 6;

}

D-5

APPENDIX D. EXAMPLE MODEL FILE

TRIAD

{

BASE_ID = 34;

ID = 20;

COORDINATE_SYSTEM =

1.0 0.0 0.0 1.5

0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0;

LOCAL_DIRECTIONS = GLOBAL;

LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;

OWNER_LINK = -1;

FE_NODE_NO = -1;

NDOFS = 6;

}

AXIAL_DAMPER

{

BASE_ID = 35;

ID = 2;

INIT_DAMPING = nil;

TRIAD_CONNECTIONS = 20 19;

}

LOAD

{

BASE_ID = 36;

ID = 1;

ENGINE = 1 FcENGINE;

INIT_LOAD = 0;

OWNER_TRIAD = 1;

LOAD_TYPE = 1;

SCALE_LOAD = 1;

FROM_OBJECT = -1 FcLINK;

FROM_POINT = 0 0 0;

TO_OBJECT = -1 FcLINK;

TO_POINT = 0.0 0.0 1.0;

}

ENGINE

{

BASE_ID = 37;

ID = 1;

MATH_FUNC = 1 FcfSCALE;

SENSOR = 1 FcTIME_SENSOR;

}

FUNC_SCALE

{

BASE_ID = 38;

FUNC_USE = GENERAL;

ID = 1;

SCALE = 30;

}

END {FEDEMMODELFILE}

D-6

Appendix E

Work Log

A work log was kept throughout the work with this thesis, both to document the devel-

opment process and enforce that the schedule was followed. Additionally, the commit

history from GitHub to illustrate the work done. The commits can be seen by visiting

’http://ntnu-ipm.github.io/KBE/’.

Figure E.1: GitHub commit history

Date Hours Main tasks

18-01-16 10 Meeting with Sivertsen, downloaded FEDEM and created work log doc.

19-01-16 14 Troubleshooting errors with meshing and file export.

20-01-16 10 Troubleshooting errors with meshing and file export.

21-01-16 12 Troubleshooting errors with meshing and file export.

24-01-16 12 Troubleshooting errors with meshing and file export.

25-01-16 12 Meeting with Sivertsen regarding errors with meshing and file export, trou-

bleshooting, FEDEM.

26-01-16 12 Working with a solution for reading and using design variables file in AML. FEDEM

tutorials

27-01-16 10 Working with a solution for reading and using design variables file in AML. FEDEM

tutorials

E-1

http://ntnu-ipm.github.io/KBE/

APPENDIX E. WORK LOG

Date Hours Main tasks

28-01-16 14 Exploring design optimization in FEDEM, and creating a folder structure for mech-

anism versions in AML

29-01-16 10 Exploring design optimization in FEDEM, creating management of design vari-

ables in AML

30-01-16 8 Exploring design optimization in FEDEM, creating management of design vari-

ables in AML

01-02-16 16 Parametrization and integration of design variables in AML, researched different

design optimization tools

02-02-16 16 Parametrization and integration of design variables in AML, researched design op-

timization in MATLAB

03-02-16 16 Meeting with Sivertsen, parametrization and integration of design variables in

AML, researched design optimization in MATLAB

04-02-16 8 Parametrization and integration of design variables in AML

05-02-16 12 Parametrization and integration of design variables in AML

08-02-16 18 Troubleshooting solid mesh generation in AML, AMOpt testing

09-02-16 16 Parametrization and integration of design variables in AML

10-02-16 17 Meeting with Sivertsen, troubleshooting solid mesh AML, design optimization in

MATLAB

11-02-16 15 Troubleshooting solid mesh AML, design optimization in MATLAB + researched

design optimization

12-02-16 15 Troubleshooting solid mesh AML, design optimization in MATLAB + researched

design optimization

15-02-16 16 Generating solid mesh in AML, design optimization in MATLAB, scripting to FE-

DEM.

16-02-16 18 Methods for controlling the solid mesh in AML

17-02-16 15 Meeting with Sivertsen, exploring the usage of AMOpt, design optimization in

MATLAB

18-02-16 16 Exploring the usage of AMOpt, design optimization in MATLAB

19-02-16 15 Meeting with Trier and Sivertsen, exploring the usage of AMOpt, design optimiza-

tion in MATLAB

22-02-16 15 Exploring the usage of AMOpt, integrating FEDEM and AML

23-02-16 15 Exploring the usage of AMOpt, integrating FEDEM and AML

24-02-16 16 Meeting with Sivertsen, .bdf export and integrating FEDEM and AML

25-02-16 16 Meeting with Haugen and Sivertsen, RBE2/3 and integrating FEDEM and AML

26-02-16 18 RBE2 and integrating FEDEM and AML

29-02-16 16 RBE2 and integrating FEDEM and AML

01-03-16 18 RBE2 and integrating FEDEM and AML

02-03-16 16 Meeting with Sivertsen, RBE2 and integrating FEDEM and AML

03-03-16 16 RBE2 and integrating FEDEM and AML

E-2

APPENDIX E. WORK LOG

Date Hours Main tasks

04-03-16 18 Integrating FEDEM and AML

07-03-16 16 Integrating FEDEM and AML

08-03-16 18 Integrating FEDEM and AML

09-03-16 16 Meeting with Sivertsen, Integrating FEDEM and AML. Creating load case for four

bar from AML to FEDEM

10-03-16 14 Created rotation matrices for joints, investigating open constraint type issues

11-03-16 14 Integrating load-cases and control systems between AML and FEDEM

14-03-16 16 Integrating load-cases and control systems between AML and FEDEM

15-03-16 17 Modeling load cases and springs/dampers

16-03-16 17 Meeting with Sivertsen, modeling load cases and springs/dampers

17-03-16 16 Meeting with Sivertsen and Haugen, making the system more loosely coupled.

Making input data more readable

28-03-16 12 Making the system more loosely coupled

29-03-16 14 Making the system more loosely coupled. Commenting code

30-03-16 10 Fixed cross-sections and link-twist, making the system more loosely coupled.

Commenting code

31-03-16 18 Removing workaround links. Fixed generic link twist

01-04-16 22 Removed workaround links. Library updates

02-04-16 12 Fixed surface between members of a link

03-04-16 14 Loads, analysis in FEDEM - control system setup

04-04-16 18 Loads, analysis in FEDEM, RBE for free/fixed constraints and line cross-sections

05-04-16 18 Meeting with Sivertsen, loads, analysis in FEDEM, RBE for free/fixed constraints

and line cross-sections

06-04-16 20 Writing spring/damper properties to FEDEM, creating spring/damper geometry

07-04-16 22 Writing spring/damper and load properties to FEDEM, creating spring/damper

geometry

08-04-16 13 Created the geometry for a log grabber mechanism

09-04-16 13 Created the geometry for a 14-bar steering linkage, fixed drawing issue of member

10-04-16 17 Finished the log grabber and completed the initial setup of the steering mecha-

nism

11-04-16 17 Preparing geometries for optimization, preparing analysis results in FEDEM for

optimization

12-04-16 16 Meeting with Sivertsen, Log grabber in FEDEM. Creating AML models for opti-

mization parametrization

13-04-16 17 Creating AML models for optimization parametrization

14-04-16 16 Creating AML models for optimization parametrization. Setting up special load

case

15-04-16 16 Creating AML models for optimization parametrization. Setting up special load

case

E-3

APPENDIX E. WORK LOG

Date Hours Main tasks

18-04-16 23 Setting up special optimization case, setting up steering mechanism

19-04-16 20 Meeting with Sivertsen, setting up special optimization case, simulating steering

mechanism

20-04-16 22 Setting up special optimization case, finished simulation of steering mechanism

21-04-16 22 Setting up special optimization case, slider-crank mechanism

22-04-16 17 Setting up special optimization case, slider-crank mechanism

25-04-16 17 Report writing

26-04-16 18 Meeting with Sivertsen, Report writing

27-04-16 18 Report writing

28-04-16 20 Report writing

29-04-16 17 Report writing

02-05-16 17 Report writing

03-05-16 20 Report writing

04-05-16 20 Meeting with Sivertsen, Report writing

05-05-16 20 Report writing

06-05-16 18 Report writing

07-05-16 18 Report writing

08-05-16 17 Report writing

09-05-16 17 Report writing

10-05-16 17 Report writing

11-05-16 18 Meeting with Sivertsen, Report writing

12-05-16 22 Report writing

13-05-16 20 Report writing

14-05-16 19 Report writing

15-05-16 19 Report writing

16-05-16 21 Report writing

18-05-16 20 Report writing

19-05-16 20 Implemented fillet, mesh refinement

20-05-16 24 Implemented fillet, mesh refinement

21-05-16 16 Report writing

22-05-16 17 Report writing

23-05-16 19 Report writing

24-05-16 21 Report writing

25-05-16 21 Report writing

26-05-16 21 Report writing

27-05-16 20 Report writing

28-05-16 20 Report writing

29-05-16 19 Report writing

E-4

APPENDIX E. WORK LOG

Date Hours Main tasks

30-05-16 20 Report writing

31-05-16 19 Meeting with Sivertsen, Report writing

01-06-16 20 Report writing

02-06-16 19 Report writing

03-06-16 19 Report writing

04-06-16 19 Report writing

05-06-16 17 Report writing

06-06-16 16 Report writing

07-06-16 18 Report writing

08-06-16 21 Meeting with Sivertsen, report writing

09-06-16 17 Report writing

E-5

Appendix F

Source Code

This appendix contains the source code for the entire mechanism system. The code

added in this appendix has been specifically formatted in order to take up as little space

as possible, thus it as human-readable as in the delivered zip file.

The source code includes the following files (in subsequent compile order):

• System.def

• Data-models.aml

• Springs-dampers.aml

• Loads.aml

• Cross-sections.aml

• Optimizations.aml

• Constraints.aml

• Constraint-types.aml

• Meshing.aml

• Analysis.aml

• Link-member-geometry.aml

F-1

F.1. SYSTEM.DEF APPENDIX F. SOURCE CODE

• Link-surface-geometry.aml

• Links.aml

• Collections.aml

• Geometry-export.aml

F.1 System.def

;==

; System : :mechanism−system

; Purpose : AML Mechanism Model

;

;

; Authors : Anders Kristiansen, Eivind Kristoffersen, Rasmus Korvald Skaare

;==

(in−package :AML)

(defvar #MECHANISM−LIBRARY# "")

(setf #MECHANISM−LIBRARY# (logical−path :mechanism−system "library"))

(define−system :mechanism−system

:files ’(

"data−models.aml"

"springs−dampers.aml"

"loads.aml"

"cross−sections.aml"

"optimizations.aml"

"constraints.aml"

"constraint−types.aml"

"meshing.aml"

"analysis.aml"

"link−member−geometry.aml"

"link−surface−geometry.aml"

"links.aml"

"collections.aml"

"geometry−export.aml"))

F.2 Data-models.aml

F-2

APPENDIX F. SOURCE CODE F.2. DATA-MODELS.AML

;==============================

; Class: point−data−model

; Used for define position properties

;==============================

(define−class point−data−model

:inherit−from (point−object create−event)

:properties (

(coordinates :class ’editable−data−property−class

label "Coordinates"

)

coord−ref (nth 1 ^coordinates)

label nil

id nil

line−width 4

color ’green

property−objects−list (list

(list (the superior coordinates self)

’(apply−formula? t))

)))

(define−method get−coordinates point−data−model ()

!coordinates)

;============================

; END point−data−model definitions

;============================

;===============================

; Class: vector−data−model

; Used for defining a direction vector

;===============================

(define−class vector−data−model

:inherit−from (vector−class)

:properties (

point−ref (default ^point−default)

(point−default :class ’point−data−model

coordinates ’(0 0 0)

)

(direction :class ’editable−data−property−class

label "Direction"

formula (default)

)

length 0.2

F-3

F.2. DATA-MODELS.AML APPENDIX F. SOURCE CODE

base−point (the coordinates (:from (the superior point−ref)))

property−objects−list (list

(list (the coordinates self (:from (the superior point−ref)))

’(apply−formula? t))

(list (the superior direction self)

’(apply−formula? t))

)))

;=============================

; END vector−data−model definitions

;=============================

;==

; Class: frame−data−model

; Used for creating a frame, i.e. a coordinate system

;==

(define−class frame−data−model

:inherit−from (coordinate−system−class)

:properties (

; ;traverse to superior reference

point−ref (default (the point−default (:from ^z−vector−ref)))

z−vector−ref (default ^z−vector−default)

(z−vector−default :class ’vector−data−model

direction ’(0 0 1)

)

x−vector−ref (default ^x−vector−default)

(x−vector−default :class ’vector−data−model

direction ’(1 0 0)

)

vector−k (the direction (:from ^z−vector−ref))

vector−i (the direction (:from ^x−vector−ref))

origin (the coordinates (:from ^point−ref))

vector−j (cross−product ^vector−k ^vector−i)

length 0.1

property−objects−list (list

"Coordinates:"

(list (the coordinates self (:from ^point−ref))

’(apply−formula? t))

"Z Axis:"

(list (the direction self (:from ^z−vector−ref))

’(apply−formula? t))

"X Axis:"

F-4

APPENDIX F. SOURCE CODE F.2. DATA-MODELS.AML

(list (the direction self (:from ^x−vector−ref))

’(apply−formula? t))

)

)

)

(define−method get−coordinates frame−data−model ()

!origin)

;==================================

; Should only be called on a spline−frame

;==================================

(define−method get−direction−along−member frame−data−model ()

!vector−i)

;============================

; END frame−data−model definitions

;============================

;==

; Class: sub−point−data−model

; Used for placing a constraint’s sub−frame. Explicit values are set on instantiation

;==

(define−class sub−point−data−model

:inherit−from (point−data−model)

:properties (

reference−object ^main−frame

coordinates ’(0 0 0)

)

)

;===============================

; END sub−point−data−model definitions

;===============================

;===

; Class: sub−frame−data−model

; Explicit sub−frame class

; When a sub−point−ref is specified in a joint element,

; its sub−frame will be placed accordingly

;===

(define−class sub−frame−data−model

:inherit−from (frame−data−model)

:properties (

(point−ref :class ’point−data−model

coordinates (convert−coords ^sub−point−ref (the coordinates (:from ^sub−point−ref)))

F-5

F.3. SPRINGS-DAMPERS.AML APPENDIX F. SOURCE CODE

)

)

)

;===============================

; END sub−frame−data−model definitions

;===============================

F.3 Springs-dampers.aml

;==

; Class: general−spring−damper−class

; Superclass for spring−model−class and damper−model−class

; Contains information about spring/damper start and end points,

; as well as which link(s) they are connected to.

; Has any link mesh nodes that the link/damper is connected to, as subobjects

;==

(define−class general−spring−damper−class

:inherit−from (series−object)

:properties (

; ; ’ nil ’ properties are set on instantiation

label nil

start−point−data−model nil

end−point−data−model nil

incident−links nil

stiffness−damping nil

type nil

start−point (get−coordinates ^start−point−data−model)

end−point (get−coordinates ^end−point−data−model)

; ; If the spring/damper is supposed to be connected to the ground and not to the mechanism,

; ;a separate node has to be created instead of finding the closest node in the mesh

quantity (length ^incident−links)

class−expression ’mesh−query−nodes−with−label−class

init−form ’(

label (format nil "closest−mesh−node−~d" (1+ ^index))

owner−link (nth ^index ^incident−links)

mesh−database−object (get−mesh−database (nth ^index ^incident−links))

interface−object (if (= 0 ^index)

^start−point−data−model

^end−point−data−model)

F-6

APPENDIX F. SOURCE CODE F.3. SPRINGS-DAMPERS.AML

subset−mesh−query−object−list (append

(get−link−mesh−node−query−objects−list

(get−mesh−model−object

(nth ^index ^incident−links)))

(get−rbe2−independent−node−list

(get−mesh−model−object

(nth ^index ^incident−links))))

tolerance 1.0e3

quantity 1

color ’green

line−width 5

)))

(define−method get−stiffness−damping general−spring−damper−class ()

!stiffness−damping)

(define−method get−end−point general−spring−damper−class ()

!end−point)

(define−method get−type general−spring−damper−class ()

!type)

;=====================

; END main−mechanism−class

;=====================

;==

; Class: spring−geometry−class

; Creates the visual representation for a spring in the mechanism system

;==

(define−class spring−geometry−class

:inherit−from (union−object)

:properties (

start−point (default ’(0 0 0))

end−point (default ’(1 1 1))

spring−direction (subtract−points ^end−point ^start−point)

spring−length (points−distance ^start−mid−point ^end−mid−point)

spring−radius (/ (points−distance ^start−point ^end−point) 10)

start−mid−point (add−points ^start−point (multiply−vector−by−scalar ^spring−direction 0.25))

end−mid−point (add−points ^start−point (multiply−vector−by−scalar ^spring−direction 0.75))

x1−direction (normalize (arbitrary−normal−to−vector ^spring−direction))

x2−direction (compute−plane−normal ^start−point ^end−point

(add−points ^start−mid−point ^x1−direction))

object−list (list ^coil ^start−line ^end−line ^start−spring ^end−spring)

(coil :class ’curve−from−points−class

F-7

F.3. SPRINGS-DAMPERS.AML APPENDIX F. SOURCE CODE

reference−coordinate−system ^spring−coordinate−system

points−coordinates−list (helical−curve ^^spring−radius ^^spring−length 6 :n 100))

(spring−coordinate−system :class ’coordinate−system−class

origin ^^start−mid−point

vector−i ^^x1−direction

vector−j ^^x2−direction

vector−k ^^spring−direction)

(start−line :class ’line−object

point1 ^^start−point

point2 ^^start−mid−point)

(end−line :class ’line−object

point1 ^^end−mid−point

point2 ^^end−point)

(start−spring :class ’line−object

point1 ^^start−mid−point

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar ^^x1−direction

^^spring−radius))

)

(end−spring :class ’line−object

point1 ^^end−mid−point

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar ^^x1−direction

^^spring−radius)))

color ’purple))

;======================

; END spring−geometry−class

;======================

;==

; Class: damper−geometry−class

; Creates the visual representation for a damper in the mechanism system

;==

(define−class damper−geometry−class

:inherit−from (union−object)

:properties (

start−point (default ’(0 0 0))

end−point (default ’(1 1 1))

damper−direction (subtract−points ^end−point ^start−point)

damper−width (/ (points−distance ^start−point ^end−point) 12)

x1−direction (arbitrary−normal−to−vector ^damper−direction)

x1−negative−direction (multiply−vector−by−scalar ^x1−direction −1)

x2−direction (compute−plane−normal ^start−point ^end−point

F-8

APPENDIX F. SOURCE CODE F.3. SPRINGS-DAMPERS.AML

(add−points ^start−mid−point (multiply−vector−by−scalar ^x1−direction ^damper−width)))

x2−negative−direction (multiply−vector−by−scalar ^x2−direction −1)

cross−point (add−points ^start−point (multiply−vector−by−scalar ^damper−direction 0.4))

start−mid−point (add−points ^start−point (multiply−vector−by−scalar ^damper−direction 0.25))

end−mid−point (add−points ^start−point (multiply−vector−by−scalar ^damper−direction 0.75))

object−list (list ^start−mid−line ^end−mid−line ^lower−cross−line1 ^upper−cross−line1

^lower−cross−line2 ^upper−cross−line2 ^lower−box−line1 ^lower−box−line2

^lower−box−line3 ^lower−box−line4 ^upper−box−line1 ^upper−box−line2

^upper−box−line3 ^upper−box−line4 ^upper−cross−box−line1

^upper−cross−box−line2

^upper−cross−box−line3 ^upper−cross−box−line4 ^box−line1 ^box−line2

^box−line3 ^box−line4)

(start−mid−line :class ’line−object

point1 ^^start−point

point2 ^^start−mid−point)

(end−mid−line :class ’line−object

point1 ^^cross−point

point2 ^^end−point)

(lower−cross−line1 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(lower−cross−line2 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

(upper−cross−line1 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

(upper−cross−line2 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(lower−box−line1 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

F-9

F.3. SPRINGS-DAMPERS.AML APPENDIX F. SOURCE CODE

^^x1−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width)))

(lower−box−line2 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(lower−box−line3 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

(lower−box−line4 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width))

point2 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width)))

(upper−box−line1 :class ’line−object

point1 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width)))

(upper−box−line2 :class ’line−object

point1 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(upper−box−line3 :class ’line−object

point1 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

(upper−box−line4 :class ’line−object

point1 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width)))

(upper−cross−box−line1 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

F-10

APPENDIX F. SOURCE CODE F.3. SPRINGS-DAMPERS.AML

^^x1−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width)))

(upper−cross−box−line2 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(upper−cross−box−line3 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

(upper−cross−box−line4 :class ’line−object

point1 (add−points ^^cross−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width))

point2 (add−points ^^cross−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width)))

(box−line1 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−direction ^^damper−width)))

(box−line2 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−direction ^^damper−width)))

(box−line3 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x1−negative−direction ^^damper−width)))

(box−line4 :class ’line−object

point1 (add−points ^^start−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width))

point2 (add−points ^^end−mid−point (multiply−vector−by−scalar

^^x2−negative−direction ^^damper−width)))

color ’red))

(defun get−mid−point (p1 p2)

F-11

F.3. SPRINGS-DAMPERS.AML APPENDIX F. SOURCE CODE

(list (/ (+ (nth 0 p1) (nth 0 p2)) 2) (/ (+ (nth 1 p1) (nth 1 p2)) 2) (/ (+ (nth 2 p1) (nth 2 p2)) 2)))

;======================

; END damper−geometry−class

;======================

;==

; Class: damper−model

; Specifies the damper implementation of a general−spring−damper−class

;==

(define−class damper−model

:inherit−from (general−spring−damper−class damper−geometry−class)

:properties (

type ’damper

damping (get−stiffness−damping !superior)))

(define−method get−damping damper−model ()

!damping)

;====================

; END damper−model

;====================

;==

; Class: spring−model

; Specifies the spring implementation of a general−spring−damper−class

;==

(define−class spring−model

:inherit−from (general−spring−damper−class spring−geometry−class)

:properties (

type ’spring

stiffness (get−stiffness−damping !superior)))

(define−method get−stiffness spring−model ()

! stiffness)

;====================

; END spring−model

;====================

;===

; Class: mesh−query−nodes−with−label−class

; Is a mesh−query−nodes−from−interface−class,

; but with additional information about which link mesh it is connected to

;===

(define−class mesh−query−nodes−with−label−class

:inherit−from (mesh−query−nodes−from−interface−class)

:properties (

F-12

APPENDIX F. SOURCE CODE F.4. LOADS.AML

label nil

owner−link nil))

(define−method get−owner−link mesh−query−nodes−with−label−class ()

!owner−link)

;==

; Returns the position this node has in the link mesh nodes query list

;==

(define−method get−node−position mesh−query−nodes−with−label−class ()

(first !mesh−entities−list))

;================================

; END mesh−query−nodes−with−label−class

;================================

F.4 Loads.aml

;===========================

; Class: load−geometry−class

; Creates the geometry for a load

;===========================

(define−class load−geometry−class

:inherit−from (union−object)

:properties (

load−point nil

mechanism−size nil

type nil

direction nil

; ;This defines the line length, controlled by the size of the mechanism

end−point (subtract−points ^load−point (multiply−vector−by−scalar

(normalize ^direction)(/ ^mechanism−size 6)))

total−vector (subtract−points ^end−point ^load−point)

translation (/ ^mechanism−size 40)

random−direction−normal (normalize (arbitrary−normal−to−vector ^direction))

negative−random (multiply−vector−by−scalar ^random−direction−normal −1)

arrow−vector1 (add−points

(add−points ^load−point (multiply−vector−by−scalar

^total−vector 0.2)) ; ; Small portion of the total line

(multiply−vector−by−scalar ^random−direction−normal

(/ ^mechanism−size 70)) ;; How far the arrow points

) ; ; move from the line

F-13

F.4. LOADS.AML APPENDIX F. SOURCE CODE

arrow−vector2 (add−points

(add−points ^load−point (multiply−vector−by−scalar

^total−vector 0.2)) ; ; This is the small portion

; ; of the total line

(multiply−vector−by−scalar ^negative−random

(/ ^mechanism−size 70))

)

object−list (case ^type

(’ force (list ^line ^arrow1 ^arrow2))

(’ torque (list ^line ^arrow1 ^arrow2 ^arrow3 ^arrow4))

)

(line :class ’line−object

point1 ^^load−point

point2 ^^end−point

)

(arrow1 :class ’line−object

point1 ^^load−point

point2 ^^arrow−vector1

)

(arrow2 :class ’line−object

point1 ^^load−point

point2 ^^arrow−vector2

)

(arrow3 :class ’line−object

point1 ^^load−point

point2 ^^arrow−vector1

orientation (list (translate

(multiply−vector−by−scalar ^total−vector 0.1)

))

)

(arrow4 :class ’line−object

point1 ^^load−point

point2 ^^arrow−vector2

orientation (list (translate

(multiply−vector−by−scalar ^total−vector 0.1)

))

)

color (case ^type

(’ force ’orange)

(’ torque ’red)

F-14

APPENDIX F. SOURCE CODE F.4. LOADS.AML

)

orientation (list (translate

(multiply−vector−by−scalar (normalize ^direction)

(* −1 ^translation))))

line−width 1

))

;====================

; END load−geometry−class

;====================

;===================

; Class: load−model

; Holds load parameters

;===================

(define−class load−model

:inherit−from (load−geometry−class)

:properties (

loaded−link (default nil) ; ;link−model−class

mechanism−size (default nil) ; ;Greatest distance within the mechanism

load−point−object (default nil) ; ;point−data−model

mesh−model−object (get−mesh−model−object ^loaded−link)

(type :class ’option−property−class

mode ’radio

options−list (list ’force ’torque)

formula (default ’torque)

label "Load type"

)

(load−point :class ’editable−data−property−class

formula (get−coordinates ^load−point−object)

label "Load point"

)

(direction :class ’editable−data−property−class

formula (default ’(0 0 1))

label "Load direction vector"

)

(magnitude :class ’var−unit−data−property−class

current−load (case ^^type

(’ force ’N)

(’ torque (progn (add−unit ’Nm 1.0 ’(N m)) ’Nm))

)

value−in (default ^magnitude)

F-15

F.4. LOADS.AML APPENDIX F. SOURCE CODE

unit−in ^current−load

unit ^current−load

label "Magntitude"

)

(scale−load :class ’var−unit−data−property−class

current−load (case ^^type

(’ force ’N)

(’ torque (progn (add−unit ’Nm 1.0 ’(N m)) ’Nm))

)

value−in (default ^scale−load)

unit−in ^current−load

unit ^current−load

label "Scaling load"

)

property−objects−list (list

(list (the superior type self)

’(automatic−apply? t))

(list (the superior load−point self)

’(automatic−apply? t))

(if ^magnitude

(list (the superior magnitude self)

’(automatic−apply? t))

(list (the superior scale−load self)

’(automatic−apply? t))

)

(list (the superior direction self)

’(automatic−apply? t))))

:subobjects (

(loaded−node :class ’mesh−query−nodes−with−label−class

label "loaded−node"

owner−link ^^loaded−link

mesh−database−object (get−mesh−database ^^loaded−link)

interface−object ^^load−point−object

subset−mesh−query−object−list (append (get−link−mesh−node−query−objects−list

^^mesh−model−object)

(get−rbe2−independent−node−list

^^mesh−model−object))

tolerance 1.0e3

quantity 1

color ’green

F-16

APPENDIX F. SOURCE CODE F.5. CROSS-SECTIONS.AML

line−width 5

)

))

(define−method get−load−point load−model ()

! load−point)

(define−method get−load−type load−model ()

!type)

(define−method get−loaded−link load−model ()

! loaded−link)

(define−method get−magnitude load−model ()

(the magnitude value−in))

(define−method get−scale−load load−model ()

(the scale−load value−in))

(define−method get−direction load−model ()

!direction)

(define−method get−loaded−node load−model ()

! loaded−node)

(define−method get−load−ID load−model ()

(1+ !index))

;=======================

; END load−model definitions

;=======================

F.5 Cross-sections.aml

;===================================

; Class: cross−section−model

; Superclass used for querying class−names

;===================================

(define−class cross−section−model

:inherit−from(tagging−object position−object)

:properties (

optimization−object (default nil)

type (default nil)

area (get−area !superior ^type)

max−element−size 0.004

tag−dimensions ’(1 2)

tag−attributes (list ^max−element−size .1

0 0.1 0 20.0 1.0e−5)

F-17

F.5. CROSS-SECTIONS.AML APPENDIX F. SOURCE CODE

)

)

(define−method get−width cross−section−model ()

!width)

(define−method get−height cross−section−model ()

!height)

(define−method get−area cross−section−model (type)

(case type

(’ circular (* pi (/ (expt !diameter 2) 4)))

(’ circular−tube (* pi 0.25 (− (expt !outer−diameter 2) (expt !inner−diameter 2))))

(’ rectangular (* !width !height))

(’ rectangular−tube (− (* !width !height) (* ! inner−width !inner−height)))

(’ line nil)

(’ i−beam (+ (* !width !flange−thickness 2) (* !height !web−thickness)))

(’ h−beam (+ (* !height !flange−thickness 2) (* !width !web−thickness)))

(’ hexagonal (* 2 (sqrt 3) !R))))

;====================

; END cross−section−model

;====================

;====================

; Class: circular−section

;====================

(define−class circular−section

:inherit−from (imprint−class cross−section−model)

:properties (

type ’circular

target−object ^disc

tool−object−list (list ^p1)

diameter (average ^width ^height)

(disc :class ’disc−object

diameter ^^diameter

)

(p1 :class ’point−object

coordinates (list (/ ^diameter 2) 0 0)

)))

(define−method get−width circular−section ()

!diameter

)

(define−method get−height circular−section ()

!diameter

F-18

APPENDIX F. SOURCE CODE F.5. CROSS-SECTIONS.AML

)

;==================

; END circular−section

;==================

;=========================

; Class: circular−tube−section

;=========================

(define−class circular−tube−section

:inherit−from (imprint−class cross−section−model)

:properties (

type ’circular−tube

target−object ^diff−object

tool−object−list (list ^p1 ^p2)

outer−diameter (average ^width ^height)

thickness (* 0.2 ^outer−diameter)

inner−diameter (− ^outer−diameter ^thickness)

(p1 :class ’point−object

coordinates (list (/ ^outer−diameter 2) 0 0)

)

(p2 :class ’point−object

coordinates (list (/ (− ^outer−diameter ^thickness) 2) 0 0)

)

(diff−object :class ’difference−object

object−list (list ^outer−circular ^inner−circular)

simplify? t

)

(outer−circular :class ’circular−section

diameter ^outer−diameter

)

(inner−circular :class ’circular−section

diameter ^^inner−diameter

)))

(define−method get−width circular−tube−section ()

!outer−diameter

)

(define−method get−height circular−tube−section ()

!outer−diameter

)

;======================

; END circular−tube−section

F-19

F.5. CROSS-SECTIONS.AML APPENDIX F. SOURCE CODE

;======================

;=======================

; Class: rectangular−section

;=======================

(define−class rectangular−section

:inherit−from (imprint−class cross−section−model)

:properties (

type ’rectangular

width (default 0.04)

height (default 0.01)

target−object ^sheet

tool−object−list (list ^p1)

(p1 :class ’point−object

coordinates (list (/ ^width 2) 0 0)

)

(sheet :class ’sheet−object

width ^^width

height ^^height

)))

(define−method get−width rectangular−section ()

!width

)

(define−method get−height rectangular−section ()

!height

)

;====================

; END rectangular−section

;====================

;===========================

; Class: rectangular−tube−section

;===========================

(define−class rectangular−tube−section

:inherit−from (cross−section−model difference−object)

:properties (

type ’rectangular−tube

width (default 0.04)

height (default 0.01)

inner−width (− ^^width ^thickness)

inner−height (− ^^height ^thickness)

object−list (list ^outer−rectangle ^inner−rectangle)

F-20

APPENDIX F. SOURCE CODE F.5. CROSS-SECTIONS.AML

thickness (* 0.2 (average ^width ^height))

simplify? t

(outer−rectangle :class ’sheet−object

width ^^width

height ^^height

)

(inner−rectangle :class ’sheet−object

width ^^inner−width

height ^^inner−height

)))

(define−method get−width rectangular−tube−section ()

!width

)

(define−method get−height rectangular−tube−section ()

!height

)

;=========================

; END rectangular−tube−section

;=========================

;===========================

; Class: line−section definitions

;===========================

(define−class line−section

:inherit−from (line−object cross−section−model)

:properties (

type ’line

height (default 0.04)

point1 (list 0 (− (/ ^height 2)) 0)

point2 (list 0 (/ ^height 2) 0)

)

)

(define−method get−width line−section ()

!height

)

(define−method get−height line−section ()

0

)

;=========================

; END line−section definitions

;=========================

F-21

F.5. CROSS-SECTIONS.AML APPENDIX F. SOURCE CODE

;===================

; Class: H−beam−section

;===================

(define−class H−beam−section

:inherit−from (union−object cross−section−model)

:properties (

type ’h−beam

width (if ^optimization−object

(get−width ^optimization−object)

(default 0.04)

)

height (if ^optimization−object

(get−height ^optimization−object)

(default 0.04)

)

flange−thickness (if ^optimization−object

(get−flange ^optimization−object)

(* 0.1 ^height)

)

web−thickness (if ^optimization−object

(get−web ^optimization−object)

(* 0.1 ^width)

)

object−list (list ^top−flange ^web ^bottom−flange)

simplify? t

(top−flange :class ’sheet−object

width ^^width

height ^^flange−thickness

orientation (list

(translate (list 0 (half ^^height) 0))

)

)

(web :class ’sheet−object

width ^^web−thickness

height ^^height

)

(bottom−flange :class ’sheet−object

width ^^width

height ^^flange−thickness

orientation (list

F-22

APPENDIX F. SOURCE CODE F.5. CROSS-SECTIONS.AML

(translate (list 0 (− (half ^^height)) 0))

))))

(define−method get−width H−beam−section ()

!height)

(define−method get−height H−beam−section ()

(+ !width !flange−thickness))

;==========================

; END H−beam−section definitions

;==========================

;===================

; Class: I−beam−section

;===================

(define−class I−beam−section

:inherit−from (union−object cross−section−model)

:properties (

type ’I−beam

width (if ^optimization−object

(get−width ^optimization−object)

(default 0.04)

)

height (if ^optimization−object

(get−height ^optimization−object)

(default 0.04)

)

flange−thickness (if ^optimization−object

(get−flange ^optimization−object)

(* 0.1 ^width)

)

web−thickness (if ^optimization−object

(get−web ^optimization−object)

(* 0.1 ^height)

)

second−moment−of−area (calculate−second−moment−of−area−about−z−axis !superior)

object−list (list ^left−flange ^web ^right−flange)

simplify? t

(right−flange :class ’sheet−object

width ^^flange−thickness

height ^^width

orientation (list

(translate (list (half (+ ^^height ^^flange−thickness)) 0 0))

F-23

F.5. CROSS-SECTIONS.AML APPENDIX F. SOURCE CODE

)

)

(web :class ’sheet−object

width ^^height

height ^^web−thickness

)

(left−flange :class ’sheet−object

width ^^flange−thickness

height ^^width

orientation (list

(translate (list (− (half (+ ^^height ^^flange−thickness))) 0 0))

))))

(define−method get−width I−beam−section ()

(+ !flange−thickness !height))

(define−method get−height I−beam−section ()

!width)

(define−method calculate−second−moment−of−area−about−z−axis I−beam−section ()

(+

(+ (/ (* !width (expt !flange−thickness 3)) 6)

(* 0.5 !flange−thickness !width (expt !height 2))

(* (expt !flange−thickness 2) !width !height)

(* 0.5 (expt !flange−thickness 3) !width))

(/ (* !web−thickness (expt !height 3)) 12)))

(define−method get−second−moment−of−area−about−z−axis I−beam−section ()

!second−moment−of−area)

;==========================

; END I−beam−section definitions

;==========================

;=====================

; Class: hexagonal−section

;=====================

(define−class hexagonal−section

:inherit−from (imprint−class cross−section−model)

:properties (

type ’hexagonal

target−object ^poly

tool−object−list (list ^p1)

R (/ (average ^width ^height) 2)

(poly :class ’polygon−object

vertices (list

F-24

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

(list ^R 0 0)

(list (/ ^R 2) (− (/ (* ^R (sqrt 3)) 2)) 0)

(list (− (/ ^R 2)) (− (/ (* ^R (sqrt 3)) 2)) 0)

(list (− ^R) 0 0)

(list (− (/ ^R 2)) (/ (* ^R (sqrt 3)) 2) 0)

(list (/ ^R 2) (/ (* ^R (sqrt 3)) 2) 0)

)

dimension 2

)

(p1 :class ’point−object

coordinates (list 0 (/ (* ^R (sqrt 3)) 2) 0)

)))

(define−method get−width hexagonal−section ()

(* 2 !R)

)

(define−method get−height hexagonal−section ()

(* !R (sqrt 3))

)

;=============================

; END hexagonal−section definitions

;=============================

F.6 Optimizations.aml

;==

; Class: design−variable−class

; Holding the design variable value, as well as min and max values for it

;==

(define−class design−variable−class

:inherit−from (data−model−node−mixin)

:properties (

(dv−value :class ’editable−data−property−class

label (format nil "~:(~a~) initial value" (object−name ^superior))

)

(min−value :class ’editable−data−property−class

formula (default (* 0.5 ^dv−value))

label (format nil "~:(~a~) minimum value" (object−name ^superior))

)

(max−value :class ’editable−data−property−class

F-25

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

formula (default (* 2 ^dv−value))

label (format nil "~:(~a~) maximum value" (object−name ^superior))

)

))

(define−method get−dv−value design−variable−class ()

!dv−value)

(define−method get−min−value design−variable−class ()

!min−value)

(define−method get−max−value design−variable−class ()

!max−value)

;================================

; END design−variable−class definitions

;================================

;===

; Class: constraint−class

; Holds properties needed for a constraint. constraint−value is the

; actual constraint value to be evaluated. Limit is the right side value of

; the constraint equation. inequality−type is the relation between value and

;limit. For example, if value = −2, inequality−type = "<=" and limit = 0, means: −2 <= 0

; Penalty−weight−factor and penalty−power are penalty functions for the optimization,

; giving a penalty if the constraint inequality is not satisfied

;===

(define−class constraint−class

:inherit−from (object)

:properties (

type (default nil)

constraint−value (default nil)

limit (default 0)

inequality−type (default (nth 0 (list :lt :lt eq :gt :gteq :eq))) ; ;Default less than

penalty−weight−factor (default 10)

penalty−power (default 2)))

(define−method get−constraint−evaluation constraint−class (&optional constraint−value)

(let (

(val (if constraint−value constraint−value !constraint−value))

)

(case !inequality−type

(:lt (< val ! limit))

(:lt eq (<= val ! limit))

(:gt (> val ! limit))

(:gteq (>= val ! limit))

F-26

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

(:eq (= val ! limit)))))

;============================

; END constraint−class definitions

;============================

;==================================

; Class: general−optimization−model

; Superclass for all optimization classes

;==================================

(define−class general−optimization−model

:inherit−from (object)

:properties (

type (default nil)

affected−links (default nil)

init−values (default nil)

constraint−type (default nil)

max−allowed−deformation (default nil)

load−objects (default nil)

links (default nil) ; ;link−model−classes

current−path (default nil) ; ;Directory path to the current mechanism

main−mech−ref (default nil)

label (default nil)

materials−list (get−materials−list !superior)))

(define−method get−affected−links general−optimization−model ()

!affected−links)

(define−method get−loads−on−optimization−links general−optimization−model ()

(loop for load in !load−objects

if (position (get−loaded−link load) !links)

collect load))

(define−method get−materials−list general−optimization−model ()

(loop for link in !links

append (list link (get−material−type link))))

;====================================

; END general−optimization−model definitions

;====================================

;==

; Class: cross−section−optimization−model

; Class for dealing with the optimization of one or more cross sections in the mechanism.

; The class and its methods assume that all cross sections to be optimized are equal.

;

;==

F-27

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

(define−class cross−section−optimization−model

:inherit−from (general−optimization−model)

:properties (

type ’cross−section

cs−types (remove nil (get−cs−types !superior))

; ;Design variables

(width :class ’design−variable−class

dv−value (nth 0 ^^init−values)

)

(height :class ’design−variable−class

dv−value (nth 1 ^^init−values)

)

(flange−thickness :class ’design−variable−class

dv−value (default (* 0.1 (get−dv−value ^^width)))

)

(web−thickness :class ’design−variable−class

dv−value (default (* 0.1 (get−dv−value ^^height)))

)

; ;Constraint

(constraint−object :class ’constraint−class

type ^constraint−type

constraint−value (get−constraint−value ^superior)

)

; ;Objective function

area (handle−results−and−get−area !superior)

; ;FEDEM results

fedem−model−file (format nil "~a\\model.fmm" ^current−path)

results−file−path (format nil "~a\\deformation.asc" ^current−path)

; ;Used to call (get−area ...) on a cross−section−model

(dummy−cs :class ’I−beam−section

width (get−dv−value ^^width)

height (get−dv−value ^^height)

flange−thickness (get−dv−value ^^flange−thickness)

web−thickness (get−dv−value ^^web−thickness)

)

iteration−results−list nil ; ;Holds the results for each iteration

; ;Holds the best result from each generation,

; ;including the deformation value from the FEDEM simulation

best−result−from−each−gen−list nil

counter 0

F-28

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

first−run? t

generation−counter 0

final−result nil

parent−exploration−object (get−exploration−object !superior)

multiga−exploration−object (get−multiga−object ^parent−exploration−object)

; ;Can only set optimization values if the exploration−object exists

property−objects−list (if (not ^parent−exploration−object)

(list

’("Load AMOpt" (button1−parameters :load−amopt)

ui−work−area−action−button−class)

’("Add optmization exploration object"

(button1−parameters :add−exploration−object)

ui−work−area−action−button−class))

(list

(list (the superior width dv−value self)

’(automatic−apply? t))

(list (the superior width min−value self)

’(automatic−apply? t))

(list (the superior width max−value self)

’(automatic−apply? t))

""

(list (the superior height dv−value self)

’(automatic−apply? t))

(list (the superior height min−value self)

’(automatic−apply? t))

(list (the superior height max−value self)

’(automatic−apply? t))

""

(list (the superior flange−thickness dv−value self)

’(automatic−apply? t))

(list (the superior flange−thickness min−value self)

’(automatic−apply? t))

(list (the superior flange−thickness max−value self)

’(automatic−apply? t))

""

(list (the superior web−thickness dv−value self)

’(automatic−apply? t))

(list (the superior web−thickness min−value self)

’(automatic−apply? t))

(list (the superior web−thickness max−value self)

F-29

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

’(automatic−apply? t))

""

’("Set optimization variables"

(button1−parameters :init−optimization−variables)

ui−work−area−action−button−class)))))

;===

; Returns the largest deformation of the mechanism simulated in FEDEM.

; Will initiate a new simulation if it’s the first run or if it ’s the

; beginning of a new generation. For a new generation simulation, the best

; mechanism design from the previous generation will be simulated

;===

(define−method run−fedem−simulation cross−section−optimization−model ()

(delete−all−previous−fmm−files (the))

(reset−all−database−values !main−mech−ref)

(draw−sewn−with−tri−mesh !main−mech−ref)

(write−nastran−bdf−files !main−mech−ref)

(write−fmm−model−file !main−mech−ref :from−opt? t)

(run−program (format nil "fedem −f ~a −solve dynamics" !fedem−model−file))

(run−program (format nil "fedem_graphexp −curvePlotFile ~a −curvePlotType 5 −modelfile ~a"

!results−file−path !fedem−model−file))

(undraw !main−mech−ref)

(save−best−result−in−generation (the)))

;===

; Deletes the files FEDEM use for reduction of the different parts,

; as well as any simulation files. Requires that XEmacs runs in administrator mode,

; and that the fmm file is not open in FEDEM.

;===

(define−method delete−all−previous−fmm−files cross−section−optimization−model ()

(when (probe−file !results−file−path)

(delete−file !results−file−path))

(when (probe−file (format nil "~a\\model_RDB" !current−path))

(tsi :: leave−directory−empty (format nil "~a\\model_RDB" !current−path))

(delete−directory (format nil "~a\\model_RDB" !current−path)))

(when (probe−file (format nil "~a.bak" !fedem−model−file))

(delete−file (format nil "~a.bak" !fedem−model−file)))

(when (probe−file !fedem−model−file)

(delete−file !fedem−model−file)))

(define−method save−best−result−in−generation cross−section−optimization−model ()

(change−value !best−result−from−each−gen−list

(append !best−result−from−each−gen−list

F-30

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

(list (list (list ’area (get−area !dummy−cs ’I−beam)) (list ’width (get−dv−value !width))

(list ’height (get−dv−value !height)) (list ’flange (get−dv−value !flange−thickness))

(list ’web (get−dv−value !web−thickness)) (list ’constraint (get−constraint−value (the)))

(list ’deformation (get−largest−deformation (the))))))))

;==

; This method returns the cross section area, which is the objective function

; of the optimization. Before it returns the area, however, the current state of

; the optimization is saved. It assumes the use of the multi−objective genetic

; algorithm (multiga), and as such, at the end of each generation, will mesh the

; best results in that generation, and run a FEDEM simulation on it.

;==

(define−method handle−results−and−get−area cross−section−optimization−model ()

(when !first−run?

(reset−temporary−optimization−values (the))

(change−value !first−run? nil)

(run−fedem−simulation (the)))

(add−iteration−result (the))

(change−value !counter (1+ !counter))

; ;At the end of each generation

(when (= (the population−size (:from !multiga−exploration−object)) !counter)

(set−best−dv−values (the))

(run−fedem−simulation (the))

(change−value !counter 0)

(change−value !iteration−results−list nil)

(change−value !generation−counter (1+ !generation−counter))

(when (= !generation−counter

(the number−of−generations (:from !multiga−exploration−object))) ;;End of optimization

(set−and−draw−final−result (the))))

(get−area !dummy−cs ’I−beam))

(define−method get−constraint−value cross−section−optimization−model ()

(case (the constraint−object type)

(’ stress (get−stress−constraint−value (the)))

(’ strain (get−strain−constraint−value (the)))))

;==

; Normalized stress constraint for the max stress in the loaded links.

; g(x) = (sigma(x) / sigma_yield) − 1

;==

(define−method get−stress−constraint−value cross−section−optimization−model ()

(loop for load in (get−loads−on−optimization−links (the))

maximize (− (/ (calculate−max−stress−in−cross−section (the)

F-31

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

(case (get−load−type load)

(’ torque :torque)

(’ force :force)

)

(if (get−scale−load load)

(get−scale−load load)

(get−magnitude load)))

(get−yield−strength (get−material−type (get−loaded−link load)))) 1)

into max−stress

finally (return max−stress)))

;================

; To be implemented?

;================

(define−method get−strain−constraint−value cross−section−optimization−model()

nil)

;=========================

; sigma = (M_torque / I_z) * y_max

;=========================

(define−method calculate−max−stress−in−cross−section cross−section−optimization−model (&key

torque force)

(if torque

(* (/ torque ; ;M_torque

(get−second−moment−of−area−about−z−axis !dummy−cs)) ;;I_z

(+ (/ (get−height (the)) 2) (get−flange (the))) ; ;y_max

)))

(define−method set−best−dv−values cross−section−optimization−model ()

(let (

(best−result (get−best−result (the)))

)

(progn

(change−value (the width dv−value) (nth 1 (nth 1 best−result)))

(change−value (the height dv−value) (nth 1 (nth 2 best−result)))

(change−value (the flange−thickness dv−value) (nth 1 (nth 3 best−result)))

(change−value (the web−thickness dv−value) (nth 1 (nth 4 best−result))))))

;===

; Function that will continue calling itself until the results from FEDEM are ready

;===

(defun wait−for−fedem−results (results−file−path)

(unless (probe−file results−file−path)

(sleep 1)

F-32

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

(wait−for−fedem−results results−file−path)))

;===

; For each change in the design variables, this method is called, adding the current state

; to the iteration−results−list object

;===

(define−method add−iteration−result cross−section−optimization−model ()

(change−value !iteration−results−list

(append !iteration−results−list

(list (list (list ’area (get−area !dummy−cs ’I−beam)) (list ’width (get−dv−value !width))

(list ’height (get−dv−value !height)) (list ’flange (get−dv−value !flange−thickness))

(list ’web (get−dv−value !web−thickness)) (list ’constraint (get−constraint−value (the))))

))))

;===

; Method retrieving the best result from the iteration−results−list

; Disregarding all results where the constraint is not held

;===

(define−method get−best−result cross−section−optimization−model ()

(let (

(min−area 1.0e10)

(best−result nil)

)

(progn

(loop for result in !iteration−results−list do

(if (and (< (nth 1 (nth 0 result)) min−area)

(get−constraint−evaluation !constraint−object (nth 1 (nth 5 result))))

(progn

(setf min−area (nth 1 (nth 0 result)))

(setf best−result result))))

best−result ;;return value

)))

(define−method get−final−result cross−section−optimization−model ()

(let (

(min−area 1.0e10)

(final−result nil)

)

(progn

(loop for result in !best−result−from−each−gen−list do

(if !max−allowed−deformation

(when (and (< (nth 1 (nth 0 result)) min−area)

(< (nth 1 (nth 6 result)) !max−allowed−deformation))

F-33

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

(setf min−area (nth 1 (nth 0 result)))

(setf final−result result))

; ; If no max allowed deformation exists, it should not be evaluated.

(when (< (nth 1 (nth 0 result)) min−area)

(setf min−area (nth 1 (nth 0 result)))

(setf final−result result))))

final−result ; ;return value

)))

;===

; Reads the result from fedem and stores all deformation entries in a list

;===

(define−method read−results−from−file cross−section−optimization−model ()

(if (probe−file !results−file−path)

(with−open−file (file !results−file−path :direction :input)

(loop for line = (read−line file nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

if (and (numberp (nth 0 ls)) (numberp (nth 1 ls)))

append (list (nth 1 ls))))

(progn

(message (format nil "\"~a\" is not a valid file path." !results−file−path) :append? t)

nil ; ;Return value if the file does not exist

)))

;==

; Retrieves the largest deformation from the fedem results list

;==

(define−method get−largest−deformation cross−section−optimization−model ()

(loop for deformation in (read−results−from−file (the))

maximize deformation into max−deformation

finally (return max−deformation)))

(define−method set−and−draw−final−result cross−section−optimization−model ()

(change−value !first−run? t)

(change−value !final−result (get−final−result (the)))

(if !final−result

(progn

(change−value (the width dv−value) (nth 1 (nth 1 !final−result)))

(change−value (the height dv−value) (nth 1 (nth 2 !final−result)))

(change−value (the flange−thickness dv−value) (nth 1 (nth 3 !final−result)))

(change−value (the web−thickness dv−value) (nth 1 (nth 4 !final−result)))

(draw−sewn−wo−mesh !main−mech−ref)

F-34

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

(message−box "Final result!"

(format nil "Flange Width: ~d~%Web Height: ~d~%Flange Thickness: ~d~%Web Thickness:

~d~%Cross Section Area: ~d~%Max Deformation: ~d~%"

(the width dv−value) (the height dv−value) (the flange−thickness dv−value)

(the web−thickness dv−value) (nth 1 (nth 0 !final−result)) (nth 1 (nth 6 !final−result)))

:mode :ok :width 400 :height 300)

)

(progn

(change−value (the width dv−value) (nth 0 !init−values))

(change−value (the height dv−value) (nth 1 !init−values))

(change−value (the flange−thickness dv−value) (* 0.1 (nth 0 !init−values)))

(change−value (the web−thickness dv−value) (* 0.1 (nth 1 !init−values)))

(draw−sewn−wo−mesh !main−mech−ref)

(message−box "No result!"

(format nil "None of the tested cross sections fulfilled the criterias for max stress and~%

deformation. Change the init values and try again." :mode :ok :width 400 :height 300))

)))

(define−method reset−temporary−optimization−values cross−section−optimization−model ()

(change−value !generation−counter 0)

(change−value !iteration−results−list nil)

(change−value !best−result−from−each−gen−list nil))

;===

; Initializes the design variable values and the objective function value,

; from the values in the GUI

;===

(define−method init−optimization−variables cross−section−optimization−model ()

(add−object (the continuous−variables (:from !parent−exploration−object))

’height

’dcms−design−variable−continuous−class

:init−form ’(

design−property−object (the superior superior superior height dv−value (:eval? nil))

initial−value (the dv−value (:from ^^^height))

max−value (the max−value (:from ^^^height))

min−value (the min−value (:from ^^^height))

))

(add−object (the continuous−variables (:from !parent−exploration−object))

’width

’dcms−design−variable−continuous−class

:init−form ’(

design−property−object (the superior superior superior width dv−value (:eval? nil))

F-35

F.6. OPTIMIZATIONS.AML APPENDIX F. SOURCE CODE

initial−value (the dv−value (:from ^^^width))

max−value (the max−value (:from ^^^width))

min−value (the min−value (:from ^^^width))

))

(add−object (the continuous−variables (:from !parent−exploration−object))

’flange−thickness

’dcms−design−variable−continuous−class

:init−form ’(

design−property−object (the superior superior superior

flange−thickness dv−value (:eval? nil))

initial−value (the dv−value (:from ^^^flange−thickness))

max−value (the max−value (:from ^^^flange−thickness))

min−value (the min−value (:from ^^^flange−thickness))

))

(add−object (the continuous−variables (:from !parent−exploration−object))

’web−thickness

’dcms−design−variable−continuous−class

:init−form ’(

design−property−object (the superior superior superior

web−thickness dv−value (:eval? nil))

initial−value (the dv−value (:from ^^^web−thickness))

max−value (the max−value (:from ^^^web−thickness))

min−value (the min−value (:from ^^^web−thickness))

))

(add−object (the constraints (:from !parent−exploration−object))

’stress

’dcms−constraint−class

:init−form ’(

left−side−property−object (the superior superior superior constraint−object

constraint−value (:error nil :eval? nil))

constraint−inequality−type (the superior superior superior constraint−object

inequality−type)

penalty−power (the superior superior superior constraint−object

penalty−power)

penalty−weight−factor (the superior superior superior constraint−object

penalty−weight−factor)

right−side−value (the superior superior superior constraint−object limit)

))

(add−object (the objectives (:from !parent−exploration−object))

’area

F-36

APPENDIX F. SOURCE CODE F.6. OPTIMIZATIONS.AML

’dcms−objective−class

:init−form ’(

design−property−object (the superior superior superior area (:eval? nil))

minimize? t

)))

;===

; Left−click button actions for cross−section−optimization−model

;===

(define−method work−area−button1−action cross−section−optimization−model (params)

(case params

(:init−optimization−variables

(init−optimization−variables (the))

)

(: load−amopt

(load−module "amopt")

(amopt−global−set−configuration :main−form (get−data−model−main−form))

(display−amopt−toolbar−form)

)

(:add−exploration−object

(add−object (the)

’cross−section−optimization−manager−object

’dcms−exploration−object−manager−class)

)))

;===============

; Get methods below

;===============

(define−method get−width cross−section−optimization−model ()

(get−dv−value !width))

(define−method get−height cross−section−optimization−model ()

(get−dv−value !height))

(define−method get−flange cross−section−optimization−model ()

(get−dv−value !flange−thickness))

(define−method get−web cross−section−optimization−model ()

(get−dv−value !web−thickness))

(define−method get−cs−types cross−section−optimization−model ()

(loop for link in !affected−links

append (loop for shape in (get−shapes−on−link (nth link !links))

collect (get−cs−type shape)

)))

;===

F-37

F.7. CONSTRAINTS.AML APPENDIX F. SOURCE CODE

; Used for retrieving the exploration−object when an AMOPT model has been added

; to the main−mechanism−class

;===

(define−method get−exploration−object cross−section−optimization−model ()

(first (children (the) :class ’dcms−exploration−object−manager−class)))

;=================================

; Used for retrieving the multiga−object

;=================================

(define−method get−multiga−object dcms−exploration−object−manager−class ()

(first (children (the) :class ’dcms−exploration−multiga−optimization−class)))

;===

; END cross−section−optimization−model definitions

;===

F.7 Constraints.aml

;==

; Class: master−joint−model

; Used for holding male and female instantiations as subobjects

;==

(define−class master−joint−model

:inherit−from (series−object frame−data−model)

:properties (

link−incidence (default nil)

max−element−size (default 0.04)

min−element−size (default 0.01)

scale−factor (default 1.2) ; ;Scaling of the constraint dimensions

constraint−variable (default nil)

degrees−of−freedom (default nil) ;;Only applicable for free joints

incident−links (default nil) ; ;Ref to the link−model−class objects

constraint−type (default nil)

gender−list (remove nil (append (list (if (nth 0 ^link−incidence) "male" nil))

(list (if (nth 1 ^link−incidence) "female" nil))))

joint−elements (when (children (the superior)) (children (the superior)))

male−joint−element (loop for element in ^joint−elements

when (equal ’male (get−gender element)) do

(return element))

female−joint−element (loop for element in ^joint−elements

when (equal ’female (get−gender element)) do

F-38

APPENDIX F. SOURCE CODE F.7. CONSTRAINTS.AML

(return element))

point−ref (default nil)

direction (default nil)

(z−vector−ref :class ’vector−data−model

direction ^^direction

)

(x−vector−ref :class ’vector−data−model

direction (arbitrary−normal−to−vector ^^direction)

)

dimensions (calculate−dimensions (the superior))

(max−width :class ’editable−data−property−class

label "Joint width"

formula (nth 0 ^dimensions)

)

(max−height :class ’editable−data−property−class

label "Joint height"

formula (nth 1 ^dimensions)

)

quantity (length ^gender−list)

class−expression ’(read−from−string (concatenate !constraint−type "−"

(nth !index ^gender−list) "−element"))

init−form ’(

master−joint−object (the superior superior) ;;Reference to the master−joint−model

gender (read−from−string (nth !index ^gender−list))

incident−link (nth !index (remove nil ^incident−links))

label (concatenate (nth !index ^gender−list) "−joint−element")

)

; ;Only display properties for non−free constraints

property−objects−list (if (or (equal "free" ^constraint−type) (equal "fixed" ^constraint−type))

(list (format nil "This is a ~a constraint. No properties can be edited." ^constraint−type))

(list

’("Draw joint" (button1−parameters :draw−joint)

ui−work−area−action−button−class)

""

’("Undraw" (button1−parameters :undraw)

ui−work−area−action−button−class)

(the superior max−width self)

(the superior max−height self)

)))

)

F-39

F.7. CONSTRAINTS.AML APPENDIX F. SOURCE CODE

(define−method get−constraint−type master−joint−model ()

!constraint−type

(define−method get−incident−links master−joint−model ()

! incident−links

;==

; Calculates the dimensions by retrieving the biggest width and height

; from the incident members. Dimensions are scaled with the scale−factor

;==

(define−method calculate−dimensions master−joint−model ()

(let (

(max−w 0)

(max−h 0)

)

(loop for joint−elem in !joint−elements do

(loop for link in !incident−links do

(loop for member in (get−members (get−link−geometry link)) do

(let (

(dimensions (get−max−dimensions member joint−elem))

)

(progn

(if (> (nth 0 dimensions) max−w)

(setf max−w (nth 0 dimensions)))

(if (> (nth 1 dimensions) max−h)

(setf max−h (nth 1 dimensions)))

))))

finally (return (list (* max−w !scale−factor) (* max−h !scale−factor)))

))

(define−method get−female−element master−joint−model ()

! female−joint−element

(define−method get−male−element master−joint−model ()

!male−joint−element

(define−method get−joint−direction−vector master−joint−model ()

!direction

(define−method get−main−frame−coords master−joint−model (&optional params)

(if params

(nth params !origin)

!origin

)

(define−method get−direction master−joint−model ()

!direction

F-40

APPENDIX F. SOURCE CODE F.7. CONSTRAINTS.AML

(define−method get−degrees−of−freedom master−joint−model ()

!degrees−of−freedom

(define−method is−free−constraint master−joint−model ()

(equal "free" !constraint−type))

(define−method get−link−incidence master−joint−model ()

! link−incidence

(define−method get−constraint−incidence master−joint−model (link)

(let (

(pos (position link !incident−links)))

(when pos

(nth pos (children (the) :class ’joint−element−model))

)))

;===

; Left−click button methods for master−joint−model

;===

(define−method work−area−button1−action master−joint−model (params)

(case params

(:draw−joint

(when !female−joint−element

(draw !female−joint−element :draw−subobjects? nil))

(when !male−joint−element

(draw !male−joint−element :draw−subobjects? nil)))

(:undraw

(undraw self)))

;==============================

; END master−joint−model definitions

;==============================

;=======================================

; Class: joint−element−model

; Superclass for male and female joint elements

;=======================================

(define−class joint−element−model

:inherit−from (frame−data−model)

:properties (

label nil

; ;; union−list is the list used for a union with the incident link.

; ;; different−list is the list of objects that are to be subtracted from the final geometry.

; ;; See link−geometry−class in links.aml for the use

union−list nil

difference−list nil

F-41

F.7. CONSTRAINTS.AML APPENDIX F. SOURCE CODE

master−joint−object nil

incident−link nil ; ;link−model−class

constraint−type (get−constraint−type ^master−joint−object)

direction (get−direction ^master−joint−object)

(max−element−size :class ’editable−data−property−class

formula (when (and ^max−width ^max−height)

(/ (min ^max−width ^max−height) 8)

)

label "Mesh element size"

)

min−element−size (when (and ^max−width ^max−height)

(/ (min ^max−width ^max−height) 16)

)

display? t

gender nil

gender_int (case ^gender (’male 0) (’female 1))

link−incidence (nth ^gender_int (get−link−incidence ^master−joint−object))

link−mesh−model−object (get−mesh−model−object ^incident−link)

members−connected−to−joint−element (loop for member in (get−members

(get−link−geometry ^incident−link))

when (position !superior (get−joints−on−member

member))

collect member

)

(sub−point−ref :class ’sub−point−data−model

)

(rbe2−independent−node :class ’mesh−node−class

coordinates (get−rbe2−independent−node−coordinates ^superior)

mesh−object (get−surface−mesh (get−mesh−model−object ^^incident−link))

color ’red

line−width 3

)

property−objects−list (list

’("Draw joint element geometry" (button1−parameters :draw−joint)

ui−work−area−action−button−class)

""

’("Draw RBE2 nodes" (button1−parameters :draw−nodes)

ui−work−area−action−button−class)

""

’("Undraw" (button1−parameters :undraw)

F-42

APPENDIX F. SOURCE CODE F.7. CONSTRAINTS.AML

ui−work−area−action−button−class)

""

(list (the superior max−element−size self)

’(automatic−apply? t))))

:subobjects (

(main−frame :class ’frame−data−model

; Inherited frame properties used in main−frame and sub−frame

(x−vector−ref :class ’vector−data−model

direction (let (

(first−sweep (nth 0 ^members−connected−to−joint−element))

(x−dir (subtract−vectors

(the coordinates (:from (the point−ref (:from (nth 0

(get−joints−on−member first−sweep)

)))))

(the coordinates (:from (the point−ref (:from (nth 1

(get−joints−on−member first−sweep)

))))))

)

(x−dir−normal (cross−product ^^direction

(cross−product ^^direction x−dir)))

)

(if (equal 0 (vector−length x−dir−normal))

x−dir−normal

(arbitrary−normal−to−vector ^^direction)))))

; An element’s sub−frame is placed by specifying the sub−point−ref in the element’s properties

(sub−frame :class ’sub−frame−data−model))

(define−method get−constraint−type joint−element−model ()

!constraint−type

(define−method get−incident−link joint−element−model ()

! incident−link

(define−method get−gender joint−element−model ()

!gender

(define−method get−max−height joint−element−model ()

(when !max−height !max−height)

(define−method get−main−frame joint−element−model ()

!main−frame

(define−method get−sub−frame joint−element−model ()

!sub−frame

(define−method get−rbe2−independent−node joint−element−model ()

!rbe2−independent−node

F-43

F.7. CONSTRAINTS.AML APPENDIX F. SOURCE CODE

(define−method get−rbe2−dependent−nodes joint−element−model ()

!rbe2−dependent−nodes

(define−method is−free−constraint joint−element−model ()

(equal "free" !constraint−type))

(define−method get−joint−union−list joint−element−model ()

!union−list

(define−method get−joint−difference−list joint−element−model ()

!difference−list

(define−method get−main−frame−coords joint−element−model (&optional params)

(if params

(nth params (the main−frame origin))

(the main−frame origin))

(define−method get−sub−frame−coords joint−element−model (&optional params)

(if params

(nth params (the sub−frame origin))

(the sub−frame origin))

(define−method get−displayed−members−connected−to−joint−element joint−element−model ()

(loop for member in !members−connected−to−joint−element

if (is−displayed? member)

collect member)

(define−method get−rbe2−independent−node−coordinates joint−element−model ()

(if (or (equal "free" (get−constraint−type !master−joint−object))

(equal "fixed" (get−constraint−type !master−joint−object)))

(get−coordinates (get−sub−frame (the)))

(get−coordinates (get−main−frame (the))))

(define−method get−constraint−incidence joint−element−model (link−index)

(when (member link−index ^link−incidence) (the self)))

(define−method work−area−button1−action joint−element−model (params)

(case params

(:draw−joint

(draw self))

(:draw−nodes

(draw !rbe2−independent−node)

(draw !rbe2−dependent−nodes))

(:undraw

(undraw self)

(undraw !rbe2−independent−node)

(undraw !rbe2−dependent−nodes)))

;==============================

; END joint−element−model definitions

F-44

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

;==============================

F.8 Constraint-types.aml

;==

; Class: free−constraint−class

; An free constraint is a joint with no geometry

; Used for leaving the end of a link free

;==

(define−class free−constraint−class

:inherit−from (master−joint−model)

:properties ())

;================================

; END free−constraint−class definitions

;================================

;=====================================

; Class: free−male−element

; Female element of an free constraint type.

; As this element is free, it has no geometry

;=====================================

(define−class free−male−element

:inherit−from (joint−element−model)

:properties (

; ; Retrieve all nodes from the cross−section from the end/start of a link member

(rbe2−dependent−nodes :class ’mesh−query−nodes−from−interface−plane−class

mesh−database−object (get−mesh−database ^^link−mesh−model−object)

point−in−plane−coords (get−rbe2−independent−node−coordinates ^superior)

plane−normal−vector (get−direction−along−member

(get−spline−frame−at−joint−element (first

(get−displayed−members−connected−to−joint−element

^superior)) ^superior))

tolerance 1.0e−3 ;;Max allowable distance from plane to nodes

quantity nil ; ;Get all nodes in the plane

subset−mesh−query−object−list (get−link−surface−mesh−elements−query−objects−list

^^link−mesh−model−object)

color ’green

line−width 3)))

;=============================

; END free−male−element definitions

F-45

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

;=============================

;=====================================

; Class: free−female−element

; Female element of an free constraint type.

; As this element is free, it has no geometry

;=====================================

(define−class free−female−element

:inherit−from (joint−element−model)

:properties (

; ; A free female joint could initially be placed at the wrong place,

; ; depending on the topology of the mechanism. Its sub−frame should

; ; then be placed accordingly. The local z coordinate is translated,

; ; as that’s the direction from the main−frame to the sub−frame.

z−translation (get−translational−z−value (the superior))

(sub−point−ref :class ’sub−point−data−model

orientation (list

(translate (list 0 0 ^z−translation))))

; ; Retrieve all nodes from the cross−section from the end/start of a link member

(rbe2−dependent−nodes :class ’mesh−query−nodes−from−interface−plane−class

mesh−database−object (get−mesh−database ^^link−mesh−model−object)

point−in−plane−coords (get−rbe2−independent−node−coordinates ^superior)

plane−normal−vector (get−direction−along−member

(get−spline−frame−at−joint−element

(first

(get−displayed−members−connected−to−joint−element

^superior)) ^superior))

tolerance 1.0e−3 ;;Max allowable distance from plane to nodes

quantity nil ; ;Get all nodes in the plane

subset−mesh−query−object−list (get−link−surface−mesh−elements−query−objects−list

^^link−mesh−model−object)

color ’green

line−width 3)))

;===

; Method finding the translational value for an free/fixed female element

; Finds the member where the free joint is, then gets the other joint

; on that member and moves the free joint’s sub−frame to match the other’s

;===

(define−method get−translational−z−value joint−element−model ()

(let (

(displayed−member

F-46

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

(loop for member in !members−connected−to−joint−element

when (the display? (:from member)) do

(return member)))

)

(loop for joint in (get−joints−on−member displayed−member)

when (not (eq (the) joint)) do

(return (−(get−max−height joint))))))

;==============================

; END free−female−element definitions

;==============================

;=========================

; Class: rigid−constraint−class

;=========================

(define−class rigid−constraint−class

:inherit−from (master−joint−model)

:properties ())

;=================================

; END rigid−constraint−class definitions

;=================================

;===========================

; Class: helical−constraint−class

;===========================

(define−class helical−constraint−class

:inherit−from (master−joint−model)

:properties ())

;===================================

; END helical−constraint−class definitions

;===================================

;=============================

; Class: prismatic−constraint−class

;=============================

(define−class prismatic−constraint−class

:inherit−from (master−joint−model)

:properties ())

;====================================

; END prismatic−constraint−class definitions

;====================================

;=============================

; Class: cylindric−constraint−class

;=============================

F-47

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

(define−class cylindric−constraint−class

:inherit−from (master−joint−model)

:properties ())

;====================================

; END cylindric−constraint−class definitions

;====================================

;==========================

; Class: planar−constraint−class

;==========================

(define−class planar−constraint−class

:inherit−from (master−joint−model)

:properties ())

;==================================

; END planar−constraint−class definitions

;==================================

;==

; Class: revolute−constraint−class

; Holding revolute male and female elements on instantiation

;==

(define−class revolute−constraint−class

:inherit−from (master−joint−model)

:properties ())

;===================================

; END revolute−constraint−class definitions

;===================================

;==

; Class: revolute−male−element

; Defines geometry for the revolute male element

;==

(define−class revolute−male−element

:inherit−from (union−object joint−element−model)

:properties (

main−frame−object (get−main−frame (the superior))

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^imprinted−pin ^eye))

object−list (list ^imprinted−pin ^eye)

simplify? nil

mating−nodes−distance (/ ^^max−width 2)

; ;; Imprinted objects are objects that will receive surface nodes, used for meshing

(imprinted−pin :class ’(tagging−object geometry−with−split−periodic−faces−class)

F-48

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

source−object ^^pin

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5))

(pin :class ’cylinder−object

reference−object ^main−frame−object

height (* 2 ^^max−height ^^scale−factor)

diameter (/ ^^max−width 2)

orientation (list

(translate (list 0 0 (− (/ ^height 4))))

))

(eye :class ’(tagging−object cylinder−object)

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

reference−object ^sub−frame

height ^^max−height

diameter ^^max−width

)

(sub−point−ref :class ’sub−point−data−model

orientation (list

(translate (list 0 0 (/ (− ^^max−height) 1)))

))

(rbe2−dependent−nodes :class ’mesh−query−nodes−from−interface−class

mesh−database−object (get−mesh−database ^^link−mesh−model−object)

interface−object (the point−ref (:from ^^main−frame−object))

tolerance (sqrt (+ (expt (/ (the height (:from ^^pin)) 4) 2)

(expt (/ (the diameter (:from ^^pin)) 2) 2)))

quantity nil ; ;Collect all nodes within the tolerance

subset−mesh−query−object−list (get−link−surface−mesh−elements−query−objects−list

^^link−mesh−model−object)

color ’green

line−width 3)))

;================================

; END revolute−male−element definitions

;================================

;===

; Class: revolute−female−element

; Defines geometry for the revolute female element

;===

F-49

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

(define−class revolute−female−element

:inherit−from (difference−object joint−element−model)

:properties(

main−frame−object (get−main−frame (the superior))

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^fork)

)

difference−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^imprinted−pin−hole))

object−list (list ^fork ^imprinted−pin−hole)

(imprinted−pin−hole :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^pin−hole

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5))

(pin−hole :class ’cylinder−object

reference−object ^^main−frame−object

height ^^max−height

diameter (/ ^^max−width 2))

(fork :class ’(tagging−object cylinder−object)

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

reference−object ^sub−frame

height ^^max−height

diameter ^^max−width)

(sub−point−ref :class ’sub−point−data−model)

(rbe2−dependent−nodes :class ’mesh−nodes−query−class

tagged−object−list (list ^^imprinted−pin−hole)

mesh−object (get−surface−mesh (get−mesh−model−object

(get−incident−link ^superior)))

color ’green

line−width 3)))

;==================================

; END revolute−female−element definitions

;==================================

;==

; Class: ball−constraint−class

; Holding ball male and female elements on instantiation

;==

F-50

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

(define−class ball−constraint−class

:inherit−from (master−joint−model)

:properties ())

;================================

; END ball−constraint−class definitions

;================================

;====================================

; Class: ball−male−element

; Defines geometry for the ball male element

;====================================

(define−class ball−male−element

:inherit−from (tagging−object blend−class joint−element−model)

:properties (

main−frame−object (get−main−frame (the superior))

tag−dimensions ’(1 2 3)

tag−attributes (list (/ ^^max−element−size 4) ^^min−element−size

0 0.1 0 20.0 1.0e−5)

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list !superior))

(imprinted−stud :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^stud

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5))

(stud :class ’cylinder−object

reference−object ^sub−frame

height (vector−length (subtract−vectors (the origin (:from ^sub−frame))

(the origin (:from ^main−frame−object))))

diameter (/ (the diameter (:from ^ball)) 2)

orientation (list

(translate (list 0 0 (/ ^height 2)))))

(imprinted−ball :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^ball

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5))

(ball :class ’sphere−object

reference−object ^main−frame−object

diameter (* 3 (/ ^^max−width 4)))

(plate :class ’(tagging−object cylinder−object)

F-51

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

reference−object ^^sub−frame

diameter ^^max−width

height ^^max−height)

(sub−point−ref :class ’sub−point−data−model

orientation (list

(translate (list 0 0 (− 0 (/ ^^max−height 2) (* 1 (the diameter

(:from ^^ball))))))))

(rbe2−dependent−nodes :class ’mesh−nodes−query−class

tagged−object−list (list ^^imprinted−ball)

mesh−object (get−surface−mesh (get−mesh−model−object

(get−incident−link ^superior)))

color ’green

line−width 3)

; ;Properties used for blend−class:

(union−element :class ’union−object

object−list (list ^imprinted−stud ^imprinted−ball ^plate)

)

all−edges (vgl :: k−sub−geoms (the geom (:from ^union−element)) 1)

source−object ^union−element

edge−ids (loop for edge in ^all−edges

when (and (vgl::intersect−geom−p edge (the geom (:from ^plate)) edge)

(vgl :: intersect−geom−p edge (the geom (:from ^stud)) edge))

collect edge)

radii (list (/ ^max−width 5))))

;=============================

; END ball−male−element definitions

;=============================

;======================================

; Class: ball−female−element

; Defines geometry for the ball female element

;======================================

(define−class ball−female−element

:inherit−from (difference−object joint−element−model)

:properties (

joint−variable nil

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^imprinted−socket)

F-52

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

)

difference−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^imprinted−hole)

)

object−list (list ^imprinted−socket ^imprinted−hole)

(imprinted−hole :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^hole

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

)

(hole :class ’sphere−object

reference−object ^sub−frame

diameter (* 3 (/ ^^max−width 4)))

(imprinted−socket :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^socket

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

)

(socket :class ’intersection−object

object−list (list ^sphere ^cyl)

reference−object ^sub−frame)

(sphere :class ’sphere−object

diameter ^^max−width)

(cyl :class ’cylinder−object

height ^^max−height

diameter ^^max−width)

orientation (list

(rotate

(angle−between−2−vectors ^direction ^constraint−variable)

(cross−product ^direction ^constraint−variable)

:axis−point (the coordinates (:from ^point−ref))))

(rbe2−dependent−nodes :class ’mesh−nodes−query−class

tagged−object−list (list ^^imprinted−hole)

mesh−object (get−surface−mesh (get−mesh−model−object

(get−incident−link ^superior)))

color ’green

line−width 3

)))

F-53

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

;==============================

; END ball−female−element definitions

;==============================

;===

; Class: knuckle−constraint−class

; Holding knuckle male and female elements on instantiation

;===

(define−class knuckle−constraint−class

:inherit−from (master−joint−model)

:properties ())

;==

; END knuckle−constraint−class definitions

;==

;==

; Class: knuckle−female−element

; Defines geometry for the knuckle female element

;==

(define−class knuckle−female−element

:inherit−from (difference−object joint−element−model)

:properties (

main−frame−object (get−main−frame (the superior))

inner−radius (/ ^max−width (expt ^scale−factor 2))

outer−radius ^max−width

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list !superior))

difference−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^imprinted−pin−hole))

object−list (list ^eye ^imprinted−pin−hole)

(imprinted−pin−hole :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^pin−hole

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

)

(pin−hole :class ’cylinder−object

reference−object ^main−frame−object

height ^^max−height

diameter ^^inner−radius

)

(eye :class ’(tagging−object cylinder−object)

F-54

APPENDIX F. SOURCE CODE F.8. CONSTRAINT-TYPES.AML

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

0 0.1 0 20.0 1.0e−5)

reference−object ^sub−frame

height ^^max−height

diameter ^^outer−radius)

(sub−point−ref :class ’sub−point−data−model)

(rbe2−dependent−nodes :class ’mesh−nodes−query−class

tagged−object−list (list ^^imprinted−pin−hole)

mesh−object (get−surface−mesh (get−mesh−model−object

(get−incident−link ^superior)))

color ’green

line−width 3

)))

;======================================

; END knuckle−female−element definitions

;======================================

;=======================================

; Class: knuckle−male−element

; Defines geometry for the knuckle male element

;=======================================

(define−class knuckle−male−element

:inherit−from (union−object joint−element−model)

:properties (

main−frame−object (get−main−frame (the superior))

; ;; Helping variables

outer−radius (* ^max−width ^scale−factor)

inner−radius (* ^outer−radius 0.6)

; ;; Lists sent to link−geometry−class ======>

union−list (when (and (plusp ^max−width) (plusp ^max−height))

(list !superior))

difference−list (when (and (plusp ^max−width) (plusp ^max−height))

(list ^subtracted−box))

; ;; <======

object−list (list ^pin ^fork)

simplify? t

(imprinted−pin :class ’(tagging−object geometry−with−split−periodic−faces−class)

source−object ^^pin

tag−dimensions ’(1 2 3)

tag−attributes (list ^^max−element−size ^^min−element−size

F-55

F.8. CONSTRAINT-TYPES.AML APPENDIX F. SOURCE CODE

0 0.1 0 20.0 1.0e−5))

; ;; Objects used to create the male joint geometry ====>

(fork :class ’difference−object

object−list (list ^^box ^^subtracted−box ^^trim−object ^^sphere)

)

(subtracted−box :class ’box−object

reference−object ^main−frame−object

width (* ^^outer−radius 1.5)

height ^^outer−radius

depth ^^max−width

orientation (list

(translate (list (− (* 0.75 ^^outer−radius) ^^inner−radius) 0 0))))

(box :class ’box−object

reference−object ^main−frame−object

width (* ^^outer−radius 2)

height ^^outer−radius

depth (* ^^outer−radius 1.5)

orientation (list

(translate (list (− ^^outer−radius ^^inner−radius) 0 0))))

(pin :class ’cylinder−object

reference−object ^main−frame−object

diameter ^^inner−radius

height (* ^^outer−radius 2))

(trim−box :class ’box−object

reference−object ^main−frame−object

width ^^inner−radius

height ^^outer−radius

depth (* ^^outer−radius 1.5)

orientation (list

(translate (list (* ^^inner−radius −0.5) 0 0))))

(trim−cyl :class ’cylinder−object

reference−object ^main−frame−object

diameter ^^outer−radius

height (* ^^outer−radius 1.5))

(trim−object :class ’difference−object

object−list (list ^^trim−box ^^trim−cyl))

(difference−sphere :class ’sphere−object

reference−object ^main−frame−object

diameter (* ^^outer−radius 3))

(trim−sphere :class ’sphere−object

F-56

APPENDIX F. SOURCE CODE F.9. MESHING.AML

reference−object ^main−frame−object

diameter (* ^^outer−radius 4))

(sphere :class ’difference−object

object−list (list ^^trim−sphere ^^difference−sphere))

; ;; <======

; ;; Used as the difference−list in link−geometry−class ===>

(difference−box :class ’difference−object

object−list(list ^^subtracted−box ^^eye)

)

(eye :class ’(cylinder−object)

reference−object ^main−frame−object

height ^^max−height

diameter ^^outer−radius)

; ;; <=====

; ;; Defines where the sub−frame should be placed

(sub−point−ref :class ’sub−point−data−model

orientation

(list (translate (list (− (* ^^outer−radius 2) ^^inner−radius) 0 0))))

(rbe2−dependent−nodes :class ’mesh−nodes−query−class

tagged−object−list (list ^^imprinted−pin)

mesh−object (get−surface−mesh (get−mesh−model−object

(get−incident−link ^superior)))

color ’green

line−width 3

)))

;====================================

; END knuckle−male−element definitions

;====================================

F.9 Meshing.aml

;=========================

; Class: link−mesh−class

; Class responsible for meshing

;=========================

(define−class link−mesh−class

:inherit−from (object)

:properties (

link−model nil ; ;link−model−class

F-57

F.9. MESHING.AML APPENDIX F. SOURCE CODE

geometry−model−object nil ;;link−geometry−class

joint−elements nil ; ;joint−element−models

mesh−object (the (:from (the surface−tri−mesh)))

rbe2−independent−node−list (loop for element in ^joint−elements

collect (get−rbe2−independent−node element)

)

(node−set :class ’analysis−node−set−class

query−objects−list (append (if (get−export−surface ^link−model)

(list (the nodes−query (:from ^^mesh−object)))

(list (the nodes−query (:from ^^tet−mesh))))

^rbe2−independent−node−list

)

) ; ;Contains all the nodes used for the bdf file

)

:subobjects (

(mesh−database :class ’mesh−database−class

)

(surface−tri−mesh :class ’paver−mesh−class

object−to−mesh ^^geometry−model−object

mesh−database−object ^^mesh−database

element−shape :tri

surface−element−size−method (nth 2 ’(0 1 2))

curvature−refinement−method :isotropic−relative

)

(tet−mesh :class ’tet−mesh−class

mesh−database−object ^^mesh−database

object−to−mesh (first (get−link−surface−mesh−elements−query−objects−list

^superior)))

; ; Example subobjects for analysis in AML:−−−−−>

(fixed−nodes :class ’mesh−nodes−query−class

)

(loaded−nodes :class ’mesh−query−nodes−from−interface−class

)

; <−−−−−
))

(define−method get−surface−mesh link−mesh−class ()

!mesh−object)

(define−method get−mesh−database link−mesh−class ()

!mesh−database)

(define−method get−mesh−entities−list link−mesh−class ()

F-58

APPENDIX F. SOURCE CODE F.10. ANALYSIS.AML

(if (get−export−surface !link−model)

(the nodes−query mesh−entities−list (:from !mesh−object))

(the tet−mesh nodes−query mesh−entities−list)))

(define−method get−link−mesh−node−query−objects−list link−mesh−class ()

(list (the nodes−query (:from !mesh−object))))

(define−method get−link−surface−mesh−elements−query−objects−list link−mesh−class ()

(when (the surface−elements−query (:from !mesh−object :error nil :relation nil))

(list (the surface−elements−query (:from !mesh−object)))))

(define−method get−link−solid−mesh−elements−query−objects−list link−mesh−class ()

(when (the elements−query (:from !tet−mesh :error nil :relation nil))

(list (the elements−query (:from !tet−mesh))))

)

(define−method get−rbe2−constraints−list link−mesh−class ()

! joint−elements)

(define−method get−rbe2−independent−node−list link−mesh−class ()

!rbe2−independent−node−list)

(define−method get−all−node−objects−list link−mesh−class ()

(list !node−set))

(define−method get−node−position−in−query−list link−mesh−class (node−query−object)

(1+ (position node−query−object (the node−set query−objects−list))))

;===========================

; END link−mesh−class definitions

;===========================

F.10 Analysis.aml

;====================================

; Class: RBE2−collection

; Instantiates every RBE2 as a series−object

;====================================

(define−class RBE2−collection

:inherit−from (series−object)

:properties (

link−mesh−object nil ; ;link−mesh−class

constraints−list (get−rbe2−constraints−list ^link−mesh−object)

class−expression ’analysis−rigid−body−element−type−1−class

series−prefix ’rbe2

quantity (length ^constraints−list)

init−form ’(

F-59

F.10. ANALYSIS.AML APPENDIX F. SOURCE CODE

independent−node−query−object (get−rbe2−independent−node

(nth ^index ^constraints−list))

dependent−nodes−query−object (get−rbe2−dependent−nodes

(nth ^index ^constraints−list))

dependent−degrees−of−freedom−list ’(1 2 3 4 5 6)

; ; The node is added in the node−set manually

create−new−independent−node? nil

; ; Have to set the id manually, as default is 1 for each instance

id (+ 1 ^index)

)))

;===========================

; END RBE2−collection definitions

;===========================

;===

; Class: analysis−link−model−class

; Used for creating objects for writing to the nastran bdf file .

; Can also be used to set up a load case for use in an AML analysis

;===

(define−class analysis−link−model−class

:inherit−from (analysis−model−class)

:properties (

mesh−model−object nil ; ;This property is set as a link−mesh−class

link−model nil ; ;link−model−class

mesh−database−object (get−mesh−database ^mesh−model−object)

export−surface? (default t)

material−catalog−object ^material−catalog

materials−list (list (the material−name (:from ^material−selection)))

property−set−objects−list (progn

(change−aluminum−properties !material−catalog)

(change−steel−properties !material−catalog)

(if ^export−surface?

(list ^link−2D−material−properties)

(list ^link−3D−material−properties)

)

)

element−set−2d−objects−list (if ^export−surface?

(list ^link−analysis−surface−elements) nil)

element−set−3d−objects−list (if ^export−surface?

nil (list ^link−analysis−solid−elements))

mesh−object (get−surface−mesh ^mesh−model−object)

F-60

APPENDIX F. SOURCE CODE F.10. ANALYSIS.AML

node−set−objects−list (get−all−node−objects−list ^mesh−model−object)

rigid−body−element−objects−list (children ^rbe2−list

:class ’analysis−rigid−body−element−type−1−class)

(material−selection :class ’option−property−class

options−list (children ^^material−catalog)

labels−list (loop for material in (children ^^material−catalog)

collect (the material−name (:from material))

)

mode ’menu

formula (default (the material−catalog steel))

label "Select Material"

)

)

:subobjects (

(material−catalog :class ’material−catalog−class

)

(link−2D−material−properties :class ’analysis−property−set−2d−type−1−class

material−catalog−object ^^material−catalog

material−name (write−to−string (the material−name (:from ^material−selection)))

thickness (/ (get−smallest−mesh−size ^^link−model) 2.5)

)

(link−3D−material−properties :class ’analysis−property−set−3d−type−1−class

material−catalog−object ^^material−catalog

material−name (write−to−string (the material−name (:from ^material−selection)))

)

(link−analysis−surface−elements :class ’analysis−element−set−2d−type−1−class

query−objects−list (get−link−surface−mesh−elements−query−objects−list

^^mesh−model−object)

property−set−object ^^link−2D−material−properties

)

(link−analysis−solid−elements :class ’analysis−element−set−3d−type−1−class

query−objects−list (get−link−solid−mesh−elements−query−objects−list

^^mesh−model−object)

property−set−object ^^link−3D−material−properties

)

(rbe2−list :class ’RBE2−collection

link−mesh−object ^^mesh−model−object

)

; ; Example subobjects for analysis in AML:−−−−−>

(fixed−nodes−constraint :class ’analysis−constraint−displacement−class

F-61

F.10. ANALYSIS.AML APPENDIX F. SOURCE CODE

)

(nodal−load :class ’analysis−load−force−nodal−class

)

(load−case−1 :class ’analysis−load−case−class

)

; ; <−−−−−
(nastran−interface :class ’nastran−analysis−class

analysis−model−object ^superior

model−name (format nil "~a − ~a" (the folder (:from ^^mechanism−selection))

(the version−name (:from ^^version−selection)))

nastran−file−name (concatenate (write−to−string (object−name ^^superior)) ".bdf")

nastran−version (nth 2 ’(:nei−nastran :msc−nastran :nx−nastran))

; ; could write ’nastran−version :nx−nastran’ but this also shows the available versions

)))

(define−method get−material−type analysis−link−model−class ()

!material−selection)

(define−method get−yield−strength material−class ()

(if (nth 4 !material−properties)

(nth 1 (nth 4 !material−properties))

(progn

(change−steel−properties !superior)

(nth 1 (nth 4 !material−properties))

)))

;==

; Method for circumventing AML bug when writing to bdf.

; Manually overwriting all material−properties for steel,

; as well as adding the yield strength for Steel, API 5L X65.

;==

(define−method change−steel−properties material−catalog−class ()

(unless (nth 1 (nth 4 (the steel material−properties)))

(change−value (the steel material−properties)

(list (list ’elastic−modulus 9.9E7 (list ’N (list ’m −2)) "youngs modulus")

(list ’poissons−ratio 0.29 ’nil "")

(list ’mass−density 7.85 (list ’kg (list ’cm −3)) "")

(list ’shear−modulus 7.7E7 (list ’N (list ’m −2)) "")

(list ’yield−strength 4.48E5 (list ’N (list ’m −2)) "")

))))

;==

; Method for circumventing AML bug when writing to bdf.

; Manually overwriting all material−properties for aluminum,

F-62

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

; as well as adding the yield strength for Aluminum 6061−T6

;==

(define−method change−aluminum−properties material−catalog−class ()

(unless (nth 1 (nth 4 (the aluminum material−properties)))

(change−value (the aluminum material−properties)

(list (list ’elastic−modulus 6.89E7 (list ’N (list ’m −2)) "youngs modulus")

(list ’poissons−ratio 0.33 ’nil "")

(list ’mass−density 2.72 (list ’kg (list ’cm −3)) "")

(list ’shear−modulus 2.6E7 (list ’N (list ’m −2)) "")

(list ’yield−strength 2.76E5 (list ’N (list ’m −2)) "")

))))

(define−method property−classification−list analysis−link−model−class ()

(list

(list "Input Properties"

’(

material−selection

))))

;===================================

; END analysis−link−model−class definitions

;===================================

F.11 Link-member-geometry.aml

;==

; Class: connection−model

; Creates a NURBS curve between two endpoints, using Sheth−Uicker definitions

;==

(define−class connection−model

:inherit−from (nurb−curve−object)

:properties (

pij (convert−coords ^frame_D ’(0 0 0) :from :local :to :global)

wij (convert−vector ^frame_D ’(0 0 1) :from :local :to :global)

pjk (convert−coords ^frame_A ’(0 0 0) :from :local :to :global)

wjk (convert−vector ^frame_A ’(0 0 1) :from :local :to :global)

weight−points (append (the weight−list (:from ^shape−ref))

(make−sequence ’list (− (length (the point−list (:from ^shape−ref)))

(length (the weight−list (:from ^shape−ref)))) :initial−element 1)

)

start−point (the origin (:from ^frame_D))

F-63

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

end−point (the origin (:from ^frame_A))

middle−points (case ^line−config

(’ paralell (let (

(start−tangent (add−vectors ^start−point (multiply−vector−by−scalar

(normalize ^perpendicular−dir) (half ^param_b))))

(end−tangent (add−vectors ^end−point (multiply−vector−by−scalar

(normalize ^perpendicular−dir) (− (half ^param_b)))))

(start−weight (list 0.5))

(end−weight (list 0.5))

)

(if (roughly−same−point start−tangent end−tangent)

(list (append start−tangent start−weight))

(list (append start−tangent start−weight) (append end−tangent end−weight))

)

))

(’ intersecting (let (

(center (nth 0 ^inter_points))

(middle−point (add−vectors center (multiply−vector−by−scalar (normalize

(add−vectors (subtract−vectors ^start−point center)

(subtract−vectors ^end−point center))) ^param_a)))

(angle−start−middle (/ (angle−between−2−vectors

(subtract−vectors ^start−point center)

(subtract−vectors middle−point center)) 2))

(start−tangent (add−vectors center (multiply−vector−by−scalar

(normalize (add−vectors (subtract−vectors ^start−point center)

(subtract−vectors middle−point center)))

(/ ^param_a (cosd angle−start−middle)))))

(angle−middle−end (/ (angle−between−2−vectors

(subtract−vectors middle−point center)

(subtract−vectors ^end−point center)) 2))

(end−tangent (add−vectors center (multiply−vector−by−scalar

(normalize (add−vectors (subtract−vectors middle−point center)

(subtract−vectors ^end−point center)))

(/ ^param_a (cosd angle−middle−end)))))

(start−weight (list (sind (/ (angle−between−2−vectors

(subtract−vectors start−tangent ^start−point)

(subtract−vectors start−tangent middle−point)

) 2))))

(middle−weight (list 1))

(end−weight (list (sind (/ (angle−between−2−vectors

F-64

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

(subtract−vectors end−tangent middle−point)

(subtract−vectors end−tangent ^end−point)

) 2)))))

(list (append start−tangent start−weight) (append middle−point middle−weight)

(append end−tangent end−weight)))))

start−weight (list (append ^start−point (list 1)))

end−weight (list (append ^end−point (list 1)))

points (let (

(shape−points (loop for p−index in (the point−list (:from ^shape−ref))

for w in ^weight−points

collect (append (the coordinates (:from

(nth p−index ^point−ref−list))) (list w)))))

(if shape−points

(append ^start−weight shape−points ^end−weight)

(append ^start−weight ^middle−points ^end−weight)))

rational? t

homogeneous? t

;degree 2

line−config (line−pose (the superior))

inter_points (inter_section (the superior) ^line−config)

perpendicular−dir (perp−dir (the superior) ^line−config)

param_a (vector−length (subtract−vectors (the origin (:from ^frame_A))

(the origin (:from ^frame_B))))

param_b (vector−length (subtract−vectors (the origin (:from ^frame_B))

(the origin (:from ^frame_C))))

param_c (vector−length (subtract−vectors (the origin (:from ^frame_C))

(the origin (:from ^frame_D))))

)

:subobjects (

; ;cross section at start of spline

(spline−frame_start :class ’frame−data−model

point−ref ^point−ref_D

z−vector−ref ^z−vector−ref_D

(x−vector−ref :class ’vector−data−model

direction (subtract−vectors (nth 1 ^points) (nth 0 ^points))

))

; ;cross section at end of spline

(spline−frame_end :class ’frame−data−model

point−ref ^point−ref_A

z−vector−ref ^z−vector−ref_A

F-65

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

(x−vector−ref :class ’vector−data−model

direction (subtract−vectors (nth (1− (length ^points)) ^points)

(nth (− (length ^points) 2) ^points))))

; ;augumented frames from SU−convention

(frame_B :class ’frame−data−model

(point−ref :class ’point−data−model

coordinates (nth 0 ^^^inter_points)

)

(z−vector−ref :class ’vector−data−model

direction ^^wij

)

(x−vector−ref :class ’vector−data−model

direction ^^perpendicular−dir

))

(frame_C :class ’frame−data−model

(point−ref :class ’point−data−model

coordinates (nth 1 ^^^inter_points)

)

(z−vector−ref :class ’vector−data−model

direction ^^wjk

)

(x−vector−ref :class ’vector−data−model

direction ^^perpendicular−dir

))))

(define−method get−spline−frame_start connection−model ()

!spline−frame_start)

(define−method get−spline−frame_end connection−model ()

!spline−frame_end)

(define−method get−start−weight connection−model ()

!start−weight)

;===

; Finds the middle point between p1 and p2, given the direction d1

;===

(defun m−point (p1 d1 p2)

(add−vectors p1 (proj_v d1 (multiply−vector−by−scalar (subtract−vectors p2 p1) 0.5)))

)

;===========================

; Finds the closest point from p1

;===========================

(defun cl−point (p1 d1 p2 d2)

F-66

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

(let (

(n1x (cross−product d1 d2))

(n1d (dot−product n1x (cross−product p2 d2)))

(n2d (dot−product n1x (cross−product p1 d2)))

(d1s (dot−product n1x n1x))

(l1s (multiply−vector−by−scalar d1 (/ n1d d1s)))

(l2s (multiply−vector−by−scalar d1 (/ n2d d1s)))

)

(add−vectors p1 (subtract−vectors l1s l2s))))

;===

;Determine configuration of two lines in relation to eachother

;===

(define−method line−pose connection−model ()

(let (

(v0_1 (cross−product !pij !wij))

(v0_2 (cross−product !pij !wij))

(coplan (* 0.5 (+ (dot−product !wij v0_2) (dot−product v0_1 !wjk))))

(normal−mag (vector−length (cross−product !wij !wjk)))

(coincident (vector−length (cross−product (subtract−vectors !pjk !pij) !wij)))

)

(if (/= 0 coplan) ’skew (if (/= 0 normal−mag) ’intersecting (if (= 0 coincident) ’coincident ’paralell)))

)

)

;==

; Generalized closest points

; If lines Gij Gjk are intersecting or skew: closest point

; If lines Gij Gjk are coincident or parallel: mid−point

; Calculate intersection between lines

;==

(define−method inter_section connection−model (line−config)

(case line−config

(’ skew

)

(list (cl−point !pij !wij !pjk !wjk) (cl−point !pjk !wjk !pij !wij))

(’ intersecting

(list (cl−point !pij !wij !pjk !wjk) (cl−point !pjk !wjk !pij !wij))

)

(’ coincident

(list (m−point !pij !wij !pjk) (m−point !pjk !wjk !pij))

)

F-67

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

(’ paralell

(list (m−point !pij !wij !pjk) (m−point !pjk !wjk !pij))

)

)

)

;=====================================

; Returns generalized perpendicular direction

;=====================================

(define−method perp−dir connection−model (line−config)

(let (

(cross (cross−product !wij !wjk))

(ortho−comp (orthogonal−projection−complement !wij (subtract−vectors !pjk !pij)))

)

(case line−config

(’ skew cross)

(’ intersecting cross)

(’ coincident (read−from−string (pop−up−text−prompt

:nb−entries 1

:title "Please specify direction"

:prompt "Type in x−vector"

:init−text "(1 0 0)"

:x−offset (/ (nth 0 (get−screen−size)) 2)

:y−offset (/ (nth 1 (get−screen−size)) 2))))

(’ paralell ortho−comp)

)

)

)

;==

; Returns the orthogonal projection of a vector b onto some vector a, pi_a(b)

;==

(defun proj_v (a b)

(multiply−vector−by−scalar a (/ (dot−product b a) (dot−product a a)))

)

;===

; Returns the orthogonal projection of vector b into the orthogonal

; complement of vector a, tau_a(b)

;===

(defun orthogonal−projection−complement (a b)

(subtract−vectors b (proj_v a b))

)

F-68

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

;============================

; END connection−model definitions

;============================

;==

; Class: member−solid−model

; Creates the link cross−section sweep for a link member

;==

(define−class member−solid−model

:inherit−from (tagging−object general−sweep−class)

:properties(

mesh−size−factor (default 0.25) ;;25% of the member’s smallest dimension

(mesh−element−size :class ’editable−data−property−class

formula (calculate−mesh−size (the superior))

label "Mesh element size"

)

tag−dimensions ’(1 2 3)

tag−attributes (list ^mesh−element−size .1

0 0.1 0 20.0 1.0e−5)

(display? :class ’flag−property−class

formula (when (the cross−section−type (:from ^shape−ref)) t)

)

joints−on−member nil ;;List of the two joint elements on the member

frame_D (the sub−frame (:from (nth 0 ^joints−on−member)))

frame_A (the sub−frame (:from (nth 1 ^joints−on−member)))

point−ref_D (the point−ref (:from ^frame_D))

point−ref_A (the point−ref (:from ^frame_A))

; ; test for "link twist"

z−vector−ref_A (if (is−vectors−dependent (get−z−vector−ref_A ^frame_A)

(get−z−vector−ref_D ^frame_D) (get−x−vector−ref_D ^connection))

; ; test for opposite joint directions

(if (is−joint−directions−opposite

(get−z−vector−ref_A ^frame_A) (get−z−vector−ref_D ^frame_D)

(get−x−vector−ref_A ^connection) (get−x−vector−ref_D ^connection))

(the z−vector−ref (:from ^frame_D))

(the z−vector−ref (:from ^frame_A))

)

(the z−vector−ref (:from ^frame_D))

)

z−vector−ref_D (the z−vector−ref (:from ^frame_D))

; ;cross section dimension, width 0.04 / height 0.04

F-69

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

shape−ref nil

width (nth 0 (the solid−dimensions (:from ^shape−ref)))

height (if (< 1 (length (the solid−dimensions (:from ^shape−ref))))

(nth 1 (the solid−dimensions (:from ^shape−ref)))

(nth 0 (the solid−dimensions (:from ^shape−ref)))

)

width−end (if (< 2 (length (the solid−dimensions (:from ^shape−ref))))

(nth 2 (the solid−dimensions (:from ^shape−ref)))

(nth 0 (the solid−dimensions (:from ^shape−ref)))

)

height−end (if (< 3 (length (the solid−dimensions (:from ^shape−ref))))

(nth 3 (the solid−dimensions (:from ^shape−ref)))

(nth 1 (the solid−dimensions (:from ^shape−ref)))

)

; ;; Sweep parameters

profile−objects−list (list

^cross−section_D

^cross−section_A

)

path−points−coords−list (list

(the origin (:from ^frame_D))

(the origin (:from ^frame_A))

)

profile−match−points−coords−list (list

(vertex−of−object ^cross−section_D)

(vertex−of−object ^cross−section_A)

)

path−object ^connection

tangential−sweep? t

; ;; If two cross−sections, only nil works, with one cross−section t gives best mesh

simplify? nil

render ’shaded

; ;; cross−section selection

(cross−section−type :class ’option−property−class

label "Cross−section Type"

mode ’menu

formula (if (the cross−section−type (:from ^shape−ref))

(nth (position (write−to−string (the cross−section−type (:from ^shape−ref)))

! labels−list) !options−list)

(nth (position (write−to−string (the cross−section−type (:from

F-70

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

^default−shape)))

! labels−list) !options−list))

options−list (reverse (class−direct−defined−subclasses ’cross−section−model))

labels−list (loop for option in !options−list

collect (remove "−section" (write−to−string option))

)

)

optimization−object (default nil)

property−objects−list (list

(list (the superior cross−section−type self)

’(automatic−apply? t)

)

’("Set cross−section" (button1−parameters :set−c button3−parameters

:set−c)

ui−work−area−action−button−class)

(the superior width self)

(the superior height self)

(the superior width−end self)

(the superior height−end self)

(list (the superior display? self)

’(automatic−apply? t))

’("Draw..." (button1−parameters :draw button3−parameters :draw)

ui−work−area−action−button−class)

’("Undraw..." (button1−parameters :undraw button3−parameters

:undraw)

ui−work−area−action−button−class)

""

(list (the superior mesh−element−size self)

’(automatic−apply? t))

)

)

:subobjects (

(connection :class ’connection−model

)

(cross−section_D :class !cross−section−type

reference−object (the spline−frame_start (:from ^connection))

orientation (list

(rotate 90 :x−axis)

(rotate 90 :z−axis)

)

F-71

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

optimization−object ^^optimization−object

)

(cross−section_A :class !cross−section−type

width (if ^optimization−object

(get−width ^optimization−object)

^width−end)

height (if ^optimization−object

(get−height ^optimization−object)

^height−end)

reference−object (the spline−frame_end (:from ^connection))

orientation (list

(rotate 90 :x−axis)

(rotate 90 :z−axis)

)

optimization−object ^^optimization−object

)

)

)

(define−method get−z−vector−ref_A sub−frame−data−model ()

(the direction (:from !z−vector−ref)))

(define−method get−z−vector−ref_D sub−frame−data−model ()

(the direction (:from !z−vector−ref)))

(define−method get−x−vector−ref_D connection−model ()

(the direction (:from (the x−vector−ref (:from !spline−frame_start)))))

(define−method get−x−vector−ref_A connection−model ()

(the direction (:from (the x−vector−ref (:from !spline−frame_end)))))

(define−method get−cross−section_D member−solid−model ()

!cross−section_D)

(define−method get−connection member−solid−model ()

!connection)

(define−method is−displayed? member−solid−model ()

!display?)

(define−method get−joints−on−member member−solid−model ()

(when !joints−on−member

!joints−on−member))

;===

; Returns the smallest dimension of a member times a mesh scaling factor defined in

member−solid−model

;===

(define−method calculate−mesh−size member−solid−model ()

F-72

APPENDIX F. SOURCE CODE F.11. LINK-MEMBER-GEOMETRY.AML

(* (min !width !height !width−end !height−end) !mesh−size−factor))

;==

; Returns the members width and height for a given joint−element−model

;==

(define−method get−max−dimensions member−solid−model (joint−element)

(let (

(pos (position joint−element (get−joints−on−member (the))))

(width (if pos

(get−width (get−cross−section−at−joint−element (the) joint−element))

0)) ; ;A joint not on the member might be sent as input

; ;In that case, return 0

(height (if pos

(get−height (get−cross−section−at−joint−element (the) joint−element))

0))

)

(list width height)))

;==

; Returns the member cross−section at a joint element

;==

(define−method get−cross−section−at−joint−element member−solid−model (joint−element)

(if (= 0 (position joint−element (get−joints−on−member (the))))

!cross−section_D

!cross−section_A

))

(define−method get−spline−frame−at−joint−element member−solid−model (joint−element)

(if (= 0 (position joint−element (get−joints−on−member (the))))

(get−spline−frame_start !connection)

(get−spline−frame_end !connection)))

;===

; Left−click button methods for member−solid−model

;===

(define−method work−area−button1−action member−solid−model (params)

(case params

(:set−c

; (draw self :draw−subobjects? nil)

)

(:draw

(draw self :draw−subobjects? nil)

)

(:undraw

F-73

F.11. LINK-MEMBER-GEOMETRY.AML APPENDIX F. SOURCE CODE

(undraw self :subobjects? nil)

)

)

)

;==

; Right−click button methods for member−solid−model

;==

(define−method work−area−button3−action member−solid−model (params)

(case params

(:draw

(draw self :draw−subobjects? t)

)

(:undraw

(undraw self :subobjects? t)

)

)

)

;===

; Checks whether vector v1 is linear independent to,

; the plane defined by the vectors pv1 and pv2

;===

(defun is−vectors−dependent (v1 pv1 pv2)

(line−is−in−plane ’(0 0 0) v1 ’(0 0 0) (cross−product pv1 pv2)))

;===

; Checks whether the joint directions z1 and z2 is

; opposite when the x−vector (sweeping direction)

; is the same.

;===

(defun is−joint−directions−opposite (z1 z2 x1 x2)

(and (equal (nth 2 z1) (− (nth 2 z2)))

(equal (round−point (every−but−last x1) 3) (round−point (every−but−last x2) 3))))

;===================================

; Returns every element of list except last

;===================================

(defun every−but−last (list)

(loop for l on list

while (rest l)

collect (first l)))

;==============================

; END member−solid−model definitions

F-74

APPENDIX F. SOURCE CODE F.12. LINK-SURFACE-GEOMETRY.AML

;==============================

;===

; Class: members−on−link−collection

; Instantiates every member on a link as series−objects

;===

(define−class members−on−link−collection

:inherit−from (series−object)

:properties (

shapes−on−link (default nil)

quantity (length ^connection−between−2−constraints−combinations)

class−expression ’member−solid−model

series−prefix ’member

optimization−object (default nil)

init−form ’(

joints−on−member (nth ^index

^^connection−between−2−constraints−combinations)

shape−ref (nth ^index ^shapes−on−link)

optimization−object ^^optimization−object

)

)

)

;====================================

; END members−on−link−collection definitions

;====================================

F.12 Link-surface-geometry.aml

;===

; Class: surface−model

; Model creating a thickened surface from three connected curves

;===

(define−class surface−model

:inherit−from (tagging−object surface−thickened−class)

:properties (

members nil

(mesh−element−size :class ’editable−data−property−class

formula (default ^thickness)

label "Mesh element size"

)

F-75

F.12. LINK-SURFACE-GEOMETRY.AML APPENDIX F. SOURCE CODE

tag−dimensions ’(1 2 3)

tag−attributes (list ^mesh−element−size .1

0 0.1 0 20.0 1.0e−5)

(display? :class ’flag−property−class

formula (loop for i in ^edge−combination

when (or (not (the display? (:from (nth i ^members))))

(not (the geom (:from (get−connection (nth i ^members))))))

do (return nil)

finally (return t)))

edge−combination nil

; ; The source−object has to be nil when it can’t be displayed. Else there will be a null geom

source−object (if ^display? ^surface nil)

; ; Surface thickness 40% of smallest cross−section height

thickness (* 0.4 (loop for i in ^edge−combination

minimize (get−height (get−cross−section_D (nth i ^members)))

))

front−thickness (/ ^thickness 2)

back−thickness (/ ^thickness 2)

render ’shaded

(start−point :class ’point−object

coordinates (nth 0 (get−start−weight (get−connection (nth (nth 0 ^edge−combination)

^members)))))

property−objects−list (list

(list (the superior display? self)

’(automatic−apply? t))

(the superior mesh−element−size self)

))

:subobjects (

(surface :class ’surface−from−uv−curves−class

u−curves−objects−list (list ^start−point

(get−connection (nth (nth 2 ^edge−combination) ^members)))

v−curves−objects−list (list (get−connection (nth (nth 0 ^edge−combination) ^members))

(get−connection (nth (nth 1 ^edge−combination) ^members)))

)))

;=========================

; END surface−model definitions

;=========================

;===

; Class: surfaces−on−link−collection

; Instantiates every surface−model on a link as series−objects

F-76

APPENDIX F. SOURCE CODE F.12. LINK-SURFACE-GEOMETRY.AML

;===

(define−class surfaces−on−link−collection

:inherit−from (series−object)

:properties (

members−list nil

closed−loops−combinations (sweep−loop−combinations

(length ^constraints−incident−on−link−list))

visible−members−index (loop for mem in ^visible−members−ref−list

collect (the index (:from mem))

)

valid−surface−loops (intersection ^closed−loops−combinations

(list−3−subset−combinations ^visible−members−index))

quantity (length ^valid−surface−loops)

class−expression ’surface−model

series−prefix ’surface

init−form ’(

edge−combination (nth ^index ^valid−surface−loops)

members ^members−list

)))

(defun sweep−loop−combinations (n)

(let (

(c−loops (3−edge−loop−combinations n))

(sweep−con (connection−combinations n))

)

(loop for ci from 0 to (1− (length c−loops))

for list−com = (list−combinations (nth ci c−loops))

collect (loop for si from 0 to (1− (length list−com))

collect (position (nth si list−com) sweep−con)

))))

;==

; C(n,3) = 3! / (3! (n − 3)!

; Output: List unique combinations of three, given n numbers

;==

(defun 3−edge−loop−combinations (n)

(loop for i from 0 to (− n 3)

append (loop for j from (1+ i) to (− n 2)

append (loop for k from (1+ j) to (1− n)

collect (list i j k)

))))

(defun list−3−subset−combinations (p)

F-77

F.13. LINKS.AML APPENDIX F. SOURCE CODE

(let (

(l (if (typep p ’ list) p (if (typep p ’fixnum) (loop for i from 0 to (1− p) collect i) (list))))

(n (length l))

)

(loop for i from 0 to (− n 3)

append (loop for j from (1+ i) to (− n 2)

append (loop for k from (1+ j) to (1− n)

collect (list (nth i l) (nth j l) (nth k l))

)))))

;=====================================

; END surfaces−on−link−collection definitions

;=====================================

F.13 Links.aml

;===================================

; Class: shape−model

; Defines the shape properties of a member

;===================================

(define−class shape−model

:inherit−from (object)

:properties (

label nil

link−ref (default ’default)

sweep−index (default ’default)

cross−section−type (read−from−string (remove "−section" (write−to−string

(default ’circular−section))))

solid−dimensions ’(0.04 0.04)

point−list nil

weight−list nil

)

)

(define−method get−cs−type shape−model ()

!cross−section−type)

;========================

; END shape−model definitions

;========================

;==

; Class: link−geometry−class

F-78

APPENDIX F. SOURCE CODE F.13. LINKS.AML

; Generates a link’s total geometry, including joints

;==

(define−class link−geometry−class

:inherit−from (tagging−object geometry−with−split−periodic−faces−class)

:properties (

incident−constraints nil

;source−object ^difference−element ;; Used for

geometry−with−split−periodic−faces−class

source−object (if ^blend? ^blend−object ^difference−element)

max−element−size 0.02

default−shape (let(

(def (loop for shape in (children ^^^shapes :class ’shape−model)

when (and

(equal ’default (the sweep−index (:from shape)))

(equal ^link−index (the link−ref (:from shape)))

) do

(return shape))))

(if def def ^^default−shape)

)

constraint−connection−combination (connection−combinations (length

^incident−constraints))

surfaces−ref−list (children ^surfaces :class ’surface−model

:test ’(and !geom !display?))

members−ref−list (children ^sweeps :class ’member−solid−model)

visible−members−ref−list (children ^sweeps :class ’member−solid−model

:test ’! display?)

union−list (loop for constraint in ^incident−constraints

append (get−joint−union−list constraint)

)

difference−list (loop for constraint in ^incident−constraints

append (get−joint−difference−list constraint)

)

; ;; List of the final geometry

object−list (append

(list ^imprint−union−element)

^difference−list

)

(imprint−union−element :class ’(tagging−object

geometry−with−split−periodic−faces−class)

tag−dimensions ’(1 2 3)

F-79

F.13. LINKS.AML APPENDIX F. SOURCE CODE

tag−attributes (list ^max−element−size .01

0 0.1 0 20.0 1.0e−5)

source−object ^^union−element

)

; ;; Imprints the union−element with the point reference

(imprint−constraint−points :class ’(tagging−object imprint−class)

target−object ^^imprint−union−element

tool−object−list (loop for c in ^incident−constraints

collect (the point−ref (:from c))

)

)

; ;The final sewn geometry of members, surfaces and joints

(difference−element :class ’(tagging−object difference−object)

tag−dimensions ’(1 2 3)

tag−attributes (list ^max−element−size .01

0 0.1 0 20.0 1.0e−5)

object−list (append (list ^union−element) ^difference−list)

simplify? t

)

; ;Union of surfaces, members and joint geometry without difference objects

(union−element :class ’(tagging−object union−object)

tag−dimensions ’(1 2 3)

tag−attributes (list ^max−element−size .01

0 0.1 0 20.0 1.0e−5)

object−list (append (if ^surfaces−ref−list ^surfaces−ref−list nil)

^visible−members−ref−list

^^union−list)

simplify? t

)

render ’shaded

(blend? :class ’option−property−class

mode ’radio

options−list (list t nil)

labels−list (list "Yes" "No")

formula (default t)

label "Automatic blending?"

)

(blend−mesh−element−size :class ’editable−data−property−class

formula (default (/ (the max−element−size (:from (first ^incident−constraints))) 2))

label "Blend mesh element size"

F-80

APPENDIX F. SOURCE CODE F.13. LINKS.AML

)

(blend−object :class ’(tagging−object blend−class)

source−object ^^difference−element

edge−ids (get−intersecting−edges−list ^superior)

radii (loop for edge in ^edge−ids

append (list (/ (the max−width (:from (first ^^incident−constraints)))

5)))

tag−dimensions ’(1 2 3)

tag−attributes (list ^blend−mesh−element−size

0 0.1 0 20.0 1.0e−5)

)

; ; This list collects the members that can be drawn.

; ; If it is empty, this links will not be considered in the mesh or analysis

drawable−members−ref−list (loop for member in ^members−ref−list

if (the geom (:from member))

collect member

)

; ;; simplify? t removes common boundaries in the geometry

; ;; simplify? nil keeps them

simplify? nil

property−objects−list (list

"Link sewn with incident joint element"

(list (the superior cross−section−type self)

’(automatic−apply? t))

’("Set all cross−sections" (button1−parameters :set−c)

ui−work−area−action−button−class)

""

’("Draw" (button1−parameters :draw−sewn−geometry)

ui−work−area−action−button−class)

’("Draw with mesh" (button1−parameters :draw−with−mesh)

ui−work−area−action−button−class)

’("Undraw" (button1−parameters :undraw−sewn)

ui−work−area−action−button−class)

""

(list (the superior blend? self)

’(automatic−apply? t))

(list (the superior blend−mesh−element−size self)

’(automatic−apply? t))

; ’("Add/remove surface" (button1−parameters :set−surface)

;ui−work−area−action−button−class)

F-81

F.13. LINKS.AML APPENDIX F. SOURCE CODE

)

optimization−object nil)

:subobjects (

(surfaces :class ’surfaces−on−link−collection

members−list ^^members−ref−list

)

(sweeps :class ’members−on−link−collection

shapes−on−link (get−shapes−on−link (the superior superior))

optimization−object ^^optimization−object

)))

(define−method get−intersecting−edges−list link−geometry−class ()

(let* (

(difference−egde−list (vgl::k−sub−geoms (the geom (:from !difference−element)) 1))

(member−geom−list (loop for member in !visible−members−ref−list

append (list (copy−geom (the geom (:from member))))))

(members−diff−intersection (loop for geom in member−geom−list

append (list (vgl :: intersection−geoms (list (copy−geom (the geom

(:from !difference−element)))

geom)))))

(non−free−joints (remove nil (loop for joint in !incident−constraints

when (not (is−free−constraint joint)) collect joint)))

)

(remove nil (loop for edge in difference−egde−list

append (loop for member in members−diff−intersection

append (loop for joint in non−free−joints

collect (when (and (vgl::intersect−geom−p member edge)

(< (points−distance (get−sub−frame−coords joint) (geom−center edge))

(* (the max−width (:from joint)) 0.75)))

edge)))))))

(define−method get−shapes−on−link link−geometry−class ()

(let (

(shape−list (make−sequence ’list (length !constraint−connection−combination)

:initial−element !default−shape))

)

(loop for shape in (children ^^shapes :class ’shape−model)

when (and (equal !link−index (the link−ref (:from shape)))

(not (equal ’default (the sweep−index (:from shape))))) do

(replace shape−list (list shape) :start1 (the sweep−index (:from shape)))

finally (return shape−list))))

(define−method get−surface link−geometry−class (index)

F-82

APPENDIX F. SOURCE CODE F.13. LINKS.AML

(nth index !surfaces−ref−list))

(define−method has−line−cross−section link−geometry−class ()

(loop for shape in (get−shapes−on−link (the)) do

(if (equal ’line (the cross−section−type (:from shape)))

(return t))

finally (return nil)))

(define−method get−members link−geometry−class ()

!members−ref−list)

(define−method get−visible−members link−geometry−class ()

!visible−members−ref−list)

(define−method get−rbe2−dependent−nodes−list link−geometry−class ()

(loop for c in !incident−constraints

collect (get−rbe2−dependent−nodes c)))

;===

; Returns all possible connections with all incident joints

; Input: Number of incident joints

;===

(defun connection−combinations (n)

(loop for j from 0 to (− n 2)

append (loop for k from (1+ j) to (1− n)

collect (list j k))))

;===

; Left−click button methods for member−solid−model

;===

(define−method work−area−button1−action link−geometry−class (params)

(case params

(:set−c

(loop for m in (the members−ref−list (:from self)) do

(change−value (the cross−section−type self (:from m)) !cross−section−type)))

; ;; Sewn geometry refers to the union of a member and a joint

(:draw−sewn−geometry

(draw self :draw−subobjects? nil)

)

(:undraw−sewn

(undraw self :subobjects? t)

(undraw (the superior link−mesh−model)))

(:draw−with−mesh

(draw self :draw−subobjects? nil)

(with−error−handler (:show−system−error? t)

(draw (the superior link−mesh−model))

F-83

F.13. LINKS.AML APPENDIX F. SOURCE CODE

))

(:set−surface

(let (

(display−value? (the display? (:from (nth 0 (the surfaces−ref−list)))))

)

(if display−value?

(change−value (the display? (:from (get−surface (the) 0))) nil)

(change−value (the display? (:from (get−surface (the) 0))) t)

)))))

;==============================

; END link−geometry−class definitions

;==============================

;==

; Class: link−model−class

; Used to hold the link geometry, its mesh and the analysis as subobjects

;==

(define−class link−model−class

:inherit−from (object)

:properties (

; ; properties set from parent init−form

label nil

constraints−incident−on−link−list nil ; ; List of joint−element−models

connection−between−2−constraints−combinations

(list−combinations ^constraints−incident−on−link−list)

link−index nil

optimization−object (default nil)

has−line−cross−section? (has−line−cross−section ^link−geometry)

)

:subobjects (

(link−geometry :class ’link−geometry−class

incident−constraints ^^constraints−incident−on−link−list

optimization−object ^^optimization−object

)

(link−mesh−model :class ’link−mesh−class

geometry−model−object ^link−geometry

link−model ^superior

joint−elements ^^constraints−incident−on−link−list

)

(analysis :class ’analysis−link−model−class

mesh−model−object ^^link−mesh−model

F-84

APPENDIX F. SOURCE CODE F.13. LINKS.AML

link−model ^superior

)))

(defun get−blend−mesh−size (dimensions−list)

(loop for dim in dimensions−list do

minimize dim into min−size

finally (return (/ min−size 16))))

(define−method get−non−free−constraints−incident−on−link−list link−model−class ()

(when !constraints−incident−on−link−list

(loop for joint−element in !constraints−incident−on−link−list do

if (not (string−equal "free" (get−constraint−type joint−element)))

collect joint−element

)))

(define−method get−shapes−on−link link−model−class ()

(get−shapes−on−link !link−geometry))

(define−method get−smallest−mesh−size link−model−class ()

(loop for member in (get−visible−members !link−geometry) do

minimize (calculate−mesh−size member) into min−mesh

finally (return min−mesh)))

(define−method get−link−geometry link−model−class ()

! link−geometry)

(define−method get−joint−elements−on−link link−model−class ()

!constraints−incident−on−link−list)

(define−method are−all−members−displayed? link−model−class ()

(> (length (the visible−members−ref−list (:from !link−geometry))) 0))

(define−method get−mesh−model−object link−model−class ()

! link−mesh−model)

(define−method get−mesh−database link−model−class ()

(get−mesh−database !link−mesh−model))

(define−method get−material−type link−model−class ()

(get−material−type !analysis))

(define−method get−export−surface link−model−class ()

(the export−surface? (:from !analysis)))

;===

; Returns all possible connections with all incident joints

; Input: List of incident joints, OR the number of incident joints

;===

(defun list−combinations (p)

(let (

(l (if (typep p ’ list) p (if (typep p ’fixnum) (loop for i from 0 to (1− p) collect i) (list))))

(n (length l))

F-85

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

)

(loop for j from 0 to (− n 2)

append (loop for k from (1+ j) to (1− n)

collect (list (nth j l) (nth k l))))))

;============================

; END link−model−class definitions

;============================

F.14 Collections.aml

;===

; Class: collection−class

; Superclass for the different collection types, to let them have access to

; the same read−from−file method

;==

(define−class collection−class

:inherit−from (object)

:properties (

collection−type nil

))

;===

; Checks whether a specific file is accessible or not,

; if so then the corresponding read method is executed

;===

(define−method read−from−file collection−class ()

(let (

(file−name (write−to−string !collection−type))

(file−path (logical−path (the version−path (:from ^version−selection))

(concatenate file−name ".txt")))

(function−name (read−from−string (concatenate "read−" file−name "−from−file")))

)

(if (and

file−path

(stringp file−path)

(probe−file file−path))

(with−open−file (file file−path :direction :input)

(apply function−name (list file)))

(progn

(message (format nil "\"~a\" is not a valid file path." file−path) :append? t)

F-86

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

nil))))

;===========================

; END collecion−class definitions

;===========================

;==

; Class: constraint−class

; Executes the read−from−file method and creates the corresponding subobjects for the constraints

;==

(define−class constraint−collection

:inherit−from (series−object collection−class)

:properties (

links−list nil ; ;Set as link−model−class objects

collection−type ’constraints

constraint−list (cdr (read−from−file !superior))

quantity (length ^constraint−list)

series−prefix ’c

class−expression ’(read−from−string (concatenate

(nth 1 (nth !index !constraint−list)) "−constraint−class"))

; ;The "−constraint−classes" are master−joint−models

init−form ’(

point−ref (nth (nth 0 (nth !index ^constraint−list)) ^point−ref−list)

label (concatenate (nth 1 (nth !index ^constraint−list)) " "

(write−to−string (nth 2 (nth !index ^constraint−list))))

constraint−type (nth 1 (nth !index ^constraint−list))

link−incidence (nth 2 (nth !index ^constraint−list))

direction (normalize (nth 3 (nth !index ^constraint−list)))

degrees−of−freedom (nth 4 (nth !index ^constraint−list))

constraint−variable (nth 5 (nth !index ^constraint−list))

incident−links (let (

(link1 (if (first (nth 2

(nth !index ^constraint−list)))

(nth (first (nth 2

(nth !index ^constraint−list))) ^links−list)))

(link2 (if (second (nth 2

(nth !index ^constraint−list)))(nth (second (nth 2

(nth !index ^constraint−list))) ^links−list))))

(remove nil (list link1 link2))))

property−objects−list (list

’("Draw all joints" (button1−parameters :draw−joints)

ui−work−area−action−button−class)

F-87

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

’("Draw all RBE2 nodes" (button1−parameters :draw−rbe2)

ui−work−area−action−button−class)

""

’("Undraw all joints and nodes" (button1−parameters :undraw)

ui−work−area−action−button−class))))

(define−method get−constraints constraint−collection ()

(children (the) :class ’master−joint−model))

;==

; Reads each line of the constraints file and adds this to a list

;==

(defun read−constraints−from−file (stream)

(when stream

(loop for line = (read−line stream nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for c−data = (list

(nth 0 ls) (nth 1 ls) (nth 2 ls) (nth 3 ls) (nth 4 ls) (nth 5 ls)

)collect c−data)))

;==

; Left click button methods for constraint−collection

;==

(define−method work−area−button1−action constraint−collection (params)

(case params

(:draw−joints

(loop for constraint in (get−constraints (the)) do

(with−error−handler (:error−message (concatenate "Error drawing " (write−to−string

(object−name constraint))) :show−system−error? nil)

(draw constraint))))

(:draw−rbe2

(loop for constraint in (get−constraints (the)) do

(loop for joint−element in (children constraint) do

(with−error−handler (:error−message (concatenate "Error drawing " (write−to−string

(object−name constraint))) :show−system−error? t)

(draw (get−rbe2−dependent−nodes joint−element))

(draw (get−rbe2−independent−node joint−element))))))

(:undraw

(loop for constraint in (get−constraints (the)) do

(loop for joint−element in (children constraint) do

(undraw (get−rbe2−dependent−nodes joint−element))

(undraw (get−rbe2−independent−node joint−element))))

F-88

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

(undraw self))))

;================================

; END constraint−collection definitions

;================================

;==

; Class: point−collection

; Executes the read−from−file and creates the corresponding subobjects for the points

;==

(define−class point−collection

:inherit−from (series−object collection−class)

:properties (

collection−type ’coordinates

points−list (cdr (read−from−file !superior))

quantity (length ^points−list)

class−expression ’point−data−model

series−prefix ’p

init−form ’(

label (nth 0 (nth ^index ^points−list))

coordinates (list (nth 1 (nth ^index ^points−list))

(nth 2 (nth ^index ^points−list)) (nth 3 (nth ^index ^points−list)))

id ^index)))

(define−method get−points point−collection ()

(children (the) :class ’point−data−model))

;===

; Reads each line of the coordinats file and adds this to a list

;===

(defun read−coordinates−from−file (stream)

(when stream

(loop for line = (read−line stream nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for coord−line = (list

(read−from−string (nth 1 ls)) (nth 2 ls) (nth 3 ls) (nth 4 ls) (read−from−string (nth 5 ls))

(read−from−string (nth 6 ls)) (nth 7 ls))

collect coord−line)))

;============================

; END point−collection definitions

;============================

;==

; Class: shape−collection

F-89

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

; Executes the read−from−file method and creates the corresponding subobjects for the shapes

;==

(define−class shape−collection

:inherit−from (series−object collection−class)

:properties (

collection−type ’shapes

shapes−list (cdr (read−from−file !superior))

quantity (length ^shapes−list)

class−expression ’shape−model

series−prefix ’shape

init−form ’(

label (nth 0 (nth ^index ^shapes−list))

link−ref (nth 1 (nth ^index ^shapes−list))

sweep−index (nth 2 (nth ^index ^shapes−list))

cross−section−type (nth 3 (nth ^index ^shapes−list))

solid−dimensions (if (not (nth 4 (nth ^index ^shapes−list)))

(list 0 0)

(nth 4 (nth ^index ^shapes−list))

)

point−list (nth 5 (nth ^index ^shapes−list))

weight−list (nth 6 (nth ^index ^shapes−list)))))

(define−method get−input−shapes shape−collection ()

(children (the) :class ’shape−model))

;==

; Reads each line of the shapes file and adds this to a list

;==

(defun read−shapes−from−file (stream)

(when stream

(loop for line = (read−line stream nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for shape−data = (list

(read−from−string (nth 0 ls)) (nth 1 ls) (nth 2 ls) (read−from−string (nth 3 ls))

(nth 4 ls) (nth 5 ls) (nth 6 ls))

collect shape−data)))

;============================

; END shape−collection definitions

;============================

;===================================

; Class: link−collection

F-90

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

; Creates all the links in the object tree

;===================================

(define−class link−collection

:inherit−from (series−object)

:properties (

constraints−list nil ; ; List of all master−joint−models in the mechanism

input−shapes−list nil ;;List of all initial shape−models

(cross−section−type :class ’option−property−class

label "Cross−section Type"

mode ’menu

formula (nth 0 !options−list)

;Returns all classes that inherits from cross−section−model, i.e. all cross−sections

options−list (reverse (class−direct−defined−subclasses ’cross−section−model))

labels−list (loop for option in !options−list

collect (remove "−section" (write−to−string option))))

common−width 0.04

common−height 0.04

property−objects−list (list

(list (the superior cross−section−type self)

’(automatic−apply? t))

’("Set all cross−sections" (button1−parameters :set−c button3−parameters :unset)

ui−work−area−action−button−class)

(list (the superior common−width self)

’(automatic−apply? t))

(list (the superior common−height self)

’(automatic−apply? t))

’("Set all dimensions" (button1−parameters :set−d button3−parameters :unset)

ui−work−area−action−button−class)

""

’("Draw all link members" (button1−parameters :draw−without−mesh

button3−parameters :draw−without−mesh)

ui−work−area−action−button−class)

""

’("Undraw" (button1−parameters :undraw button3−parameters :unset)

ui−work−area−action−button−class)

)

; ;Returns a sorted list of all link numbers in the mechanism. I.e: (0 1 2 3 4)

link−list (sort (remove nil (copy−seq (remove−duplicates (append−list

(loop for constraint in ^constraints−list

collect (the link−incidence (:from constraint))))))) ’<)

F-91

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

(init−default−shape :class ’shape−model

)

default−shape (let(

(def (loop for shape in ^input−shapes−list

when (equal ’default (the link−ref (:from shape)))

do (return shape))))

(if def def ^init−default−shape))

shape−list (remove−duplicates (loop for kid in (the shapes−ref−list)

collect (list (the label (:from kid)) (the link−ref (:from kid)))))

opt−object (default nil)

quantity (length ^link−list)

class−expression ’link−model−class

series−prefix ’link

init−form ’(

link−index (nth ^index ^^link−list)

label (let (

(shape−name (loop for shape in ^shape−list

if (equal ^index (nth 1 shape))

do (return (nth 0 shape)))))

(if (equal shape−name nil)

(concatenate "Link−" (write−to−string !index))

(concatenate (write−to−string !index) " "

(write−to−string shape−name))))

constraints−incident−on−link−list (loop for constraint in ^constraints−list

for con = (get−constraint−incidence constraint

(the superior))

when con collect con)

optimization−object (if ^opt−object

(loop for link−index in (get−affected−links ^opt−object)

do

(if (= link−index ^index)

(return ^opt−object)))))))

(define−method get−links link−collection ()

(children (the) :class ’link−model−class))

;==

; Gets the link reference from a link−collection

;==

(define−method get−link−ref link−collection (link−index)

(nth (position link−index !link−list) ^link−ref−list)

)

F-92

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

(define−method get−all−surface−meshes−list link−collection ()

(loop for link in (get−links (the))

append (get−link−surface−mesh−elements−query−objects−list (get−mesh−model−object link))))

;===

; Button actions for drawing/undrawing links (with and without mesh),

; setting cross−section−type and setting dimensions

;===

(define−method work−area−button1−action link−collection (params)

(case params

(:set−c

(loop for l in ^link−ref−list do

(loop for s in (the members−ref−list (:from (the link−geometry (:from l)))) do

(change−value (the cross−section−type self (:from s)) !cross−section−type))))

(:set−d

(loop for l in ^link−ref−list

do (loop for s in (the members−ref−list (:from (the link−geometry (:from l))))

do (progn

(change−value (the width self (:from s)) !common−width)

(change−value (the height self (:from s)) !common−height)

(change−value (the width−end self (:from s)) !common−width)

(change−value (the height−end self (:from s)) !common−height)))))

(:draw−without−mesh

(loop for link in ^link−ref−list

do (loop for member in (the visible−members−ref−list (:from (the link−geometry (:from link))))

do (draw member :draw−subobjects? nil))))

(:undraw

(undraw self))))

;===========================

; END link−collection definitions

;===========================

;===========================

; Class: spring−damper−collection

;===========================

(define−class spring−damper−collection

:inherit−from (series−object collection−class)

:properties (

points−list nil

links−list nil

collection−type ’spring−damper

sd−list (cdr (read−from−file !superior)) ;;Called on the collection−class

F-93

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

quantity (length ^sd−list)

class−expression ’(read−from−string (format nil "~a−model"

(nth 0 (nth !index !sd−list))))

init−form ’(

label (format nil "~a" (nth 0 (nth ^index ^sd−list)))

start−point−data−model (nth (nth 1 (nth ^index ^sd−list)) ^points−list)

end−point−data−model (nth (nth 2 (nth ^index ^sd−list)) ^points−list)

ground−point (if (nth 3 (nth ^index ^sd−list))

(nth (nth 3 (nth ^index ^sd−list)) ^points−list)

nil)

incident−links (let (

(link1 (if (first (nth 3 (nth ^index ^sd−list)))

(nth (first (nth 3 (nth ^index ^sd−list)))

^links−list)))

(link2 (if (second (nth 3 (nth ^index ^sd−list)))

(nth (second (nth 3 (nth ^index ^sd−list)))

^links−list))))

(remove nil (list link1 link2)))

stiffness−damping (nth 4 (nth ^index ^sd−list)))))

(define−method get−springs spring−damper−collection ()

(children (the) :class ’spring−model))

(define−method get−dampers spring−damper−collection ()

(children (the) :class ’damper−model))

;===

; Reads each line of the spring−damper file and adds this to a list

;===

(defun read−spring−damper−from−file (stream)

(when stream

(loop for line = (read−line stream nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for data = (list (read−from−string (nth 0 ls)) (nth 1 ls) (nth 2 ls) (nth 3 ls))

collect data)))

;===================================

; END spring−damper−collection definitions

;===================================

;=======================================

; Class: load−collection

; Class to add loads as subobjects (load−model)

;=======================================

F-94

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

(define−class load−collection

:inherit−from (series−object collection−class)

:properties (

mech−size (default nil)

points−list (default nil)

links−list (default nil)

collection−type ’loads

loads−list (cdr (read−from−file !superior)) ;;Called on the collecion−class

quantity (length ^loads−list)

class−expression ’load−model

series−prefix ’load

init−form ’(

type (nth 0 (nth ^index ^loads−list))

load−point−object (nth (nth 1 (nth ^index ^loads−list)) ^points−list)

direction (nth 2 (nth ^index ^loads−list))

magnitude (if (numberp (nth 3 (nth ^index ^loads−list)))

(nth 3 (nth ^index ^loads−list))

nil)

scale−load (unless ^magnitude (read−from−string (remove "scale"

(format nil "~a" (nth 3 (nth ^index ^loads−list))))))

loaded−link (nth (nth 4 (nth ^index ^loads−list)) ^^links−list)

mechanism−size ^mech−size)))

(define−method get−loads load−collection ()

(children (the) :class ’load−model))

;===

; Reads each line of the loads file and adds this to a list

;===

(defun read−loads−from−file (stream)

(when stream

(loop for line = (read−line stream nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for data = (list (nth 0 ls) (nth 1 ls) (nth 2 ls) (nth 3 ls) (nth 4 ls))

collect data)))

;===========================

; END load−collection definitions

;===========================

;===

; Class: folder−collection

; Reads all subfolders of the library folder in the file system and

F-95

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

; creates a subobject for each folder as a series−object of the type folder−info−model

;===

(define−class folder−collection

:inherit−from (series−object)

:properties (

; ; Removing ../ and ./

; ; Returns a list of the contents in the library directory

library−subfolder−list (rest (rest (directory #mechanism−library#)))

quantity (length ^library−subfolder−list)

class−expression ’folder−info−model

series−prefix ’folder

init−form ’(

path (nth ^index ^^library−subfolder−list)

)))

;=============================

; END folder−collection definitions

;=============================

;==============================

; Class: folder−info−model

; Defines the data−model for folders

;==============================

(define−class folder−info−model

:inherit−from (series−object)

:properties (

path nil

folder (subseq (remove #MECHANISM−LIBRARY# ^path) 1)

label (replace (copy−seq ^folder) " " :start1 (position "−" ^folder :test ’string−equal))

class−name (let (

(name (read−from−string (concatenate ^folder "−class"))))

(when (find−class name)

name)

)

version−list (rest (rest (directory ^path)))

class−expression ’mechanism−version−info

series−prefix ’version

quantity (length ^version−list)

init−form ’(

version−path (nth ^index ^^version−list)

version−name (subseq (remove ^^path ^version−path) 1))))

;=============================

F-96

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

; END folder−info−model definitions

;=============================

;=========================

; Class: mechanism−version−info

;=========================

(define−class mechanism−version−info

:inherit−from (object)

:properties (

version−path nil

version−name nil

))

(define−method get−version−path mechanism−version−info ()

!version−path)

;=================================

; END mechanism−version−info definitions

;=================================

(defun get−new−dv−coords−from−line (fixed−point dv1 dv2 direction)

(if (= (nth 0 direction) 1)

(list

(+ (nth 0 dv1) (* (/ (− (nth 0 fixed−point) (nth 0 dv1)) (− (nth 1 fixed−point) (nth 1 dv1)))

(− (nth 1 dv2) (nth 1 dv1))))

(nth 1 dv2)

(nth 2 dv2))

(list

(nth 0 dv2)

(+ (nth 1 dv1) (* (/ (− (nth 1 fixed−point) (nth 1 dv1)) (− (nth 0 fixed−point) (nth 0 dv1)))

(− (nth 0 dv2) (nth 0 dv1))))

(nth 2 dv2))))

;==

; Class: main−mechanism−class

; Initiates the system by creating all the collections as subobjects

;==

(define−class main−mechanism−class

:inherit−from (series−object)

:properties (

point−ref−list (children ^points :class ’point−data−model)

constraints−ref−list (children ^constraints :class ’master−joint−model)

shapes−ref−list (children ^shapes :class ’shape−model)

link−ref−list (children ^links :class ’link−model−class)

final−link−ref−list (loop for link in ^link−ref−list

F-97

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

if (are−all−members−displayed? link)

collect link)

; ; mechanism−selection contains a list of folder−info−models to choose from

(mechanism−selection :class ’option−property−class

labels−list (loop for subfolder in (children ^folders :class ’folder−info−model)

when (the path (:from subfolder))

collect (the label (:from subfolder)))

options−list (children ^folders :class ’folder−info−model)

mode ’menu

formula (nth (position "four bar" !labels−list) !options−list)

label "Select Mechanism")

(version−selection :class ’option−property−class

options−list (children ^^mechanism−selection :class ’mechanism−version−info)

labels−list (loop for version in !options−list

collect (the version−name (:from version)))

mode ’menu

formula (nth 0 !options−list)

label "Select Version")

property−objects−list (list

(list (the superior mechanism−selection self)

’(automatic−apply? t))

(list (the superior version−selection self)

’(automatic−apply? t))

""

’("Draw mechanism" (button1−parameters :draw−sewn−wo−mesh)

ui−work−area−action−button−class)

""

’("Draw mechanism with 3D mesh"

(button1−parameters :draw−sewn−with−tet−mesh)

ui−work−area−action−button−class)

’("Draw mechanism with 2D mesh"

(button1−parameters :draw−sewn−with−tri−mesh)

ui−work−area−action−button−class)

""

’("Undraw" (button1−parameters :undraw button3−parameters :unset)

ui−work−area−action−button−class)

""

’("Create .bdf−files" (button1−parameters :create−bdf)

ui−work−area−action−button−class)

’("Create . stl−files " (button1−parameters :create−stl)

F-98

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

ui−work−area−action−button−class)

’("Export to FEDEM" (button1−parameters :export−fedem)

ui−work−area−action−button−class)

)

; ;Property storing folders from library

(folders :class ’folder−collection)

mechanism−type (the folder (:from ^mechanism−selection))

mechanism−version (format nil "~a−~a" ^mechanism−type (the version−name

(:from ^version−selection)))

(shapes :class ’shape−collection)

; ; Optimization defintions. If the optimization.txt file is empty, no optimization models

; ; will be added

opt−file−path (concatenate (get−version−path ^version−selection) "\\optimization.txt")

opt−list (cdr (read−opt−from−file !superior))

class−expression ’(read−from−string (format nil "~a−optimization−model"

(nth 0 (nth !index !opt−list))))

quantity (length ^opt−list)

init−form ’(

affected−links (nth 1 (nth ^index ^opt−list))

init−values (nth 2 (nth ^index ^opt−list))

constraint−type (nth 3 (nth ^index ^opt−list))

max−allowed−deformation (nth 4 (nth ^index ^opt−list))

load−objects (get−loads ^^loads)

links (get−links ^^links)

current−path (get−version−path ^^version−selection)

main−mech−ref (the superior superior)

label (format nil "~a−optimization"

(nth 0 (nth ^index ^opt−list)))))

:subobjects (

(constraints :class ’constraint−collection

links−list (get−links ^links))

(points :class ’point−collection)

(links :class ’link−collection

constraints−list (get−constraints ^constraints)

input−shapes−list (get−input−shapes ^shapes)

opt−object (get−opt−object (the superior superior)))

(spring−dampers :class ’spring−damper−collection

points−list (get−points ^^points)

links−list (get−links ^^links))

(loads :class ’load−collection

F-99

F.14. COLLECTIONS.AML APPENDIX F. SOURCE CODE

mech−size (calculate−mechanism−size ^superior)

points−list (get−points ^^points)

links−list (get−links ^^links))))

;==

; Reads optimization definitions from optimization.txt and stores the data in a list

;==

(define−method read−opt−from−file main−mechanism−class ()

(if (probe−file !opt−file−path)

(with−open−file (file !opt−file−path :direction :input)

(loop for line = (read−line file nil :eof)

until (equal line :eof)

for ls = (string−to−delimited−token−list line :delimiter #\tab :string−token? nil)

for data = (list (nth 0 ls) (nth 1 ls) (nth 2 ls) (nth 3 ls) (nth 4 ls))

collect data))

(progn

(message (format nil "\"~a\" is not a valid file path." !opt−file−path) :append? t)

nil ; ;Return value if the file does not exist)))

;==

; Returns a general−optimization−model, if there is any. Assumes max one optimization object

;==

(define−method get−opt−object main−mechanism−class ()

(first (children (the) :class ’general−optimization−model)))

;===

; Returns the greatest distance within the mechanism

;===

(define−method calculate−mechanism−size main−mechanism−class ()

(let (

(max−x 0)

(max−y 0)

(max−z 0))

(loop for point in (get−points !points) do

(progn

(if (> (abs (nth 0 (get−coordinates point))) max−x)

(setf max−x (abs (nth 0 (get−coordinates point))))

)

(if (> (abs (nth 1 (get−coordinates point))) max−y)

(setf max−y (abs (nth 1 (get−coordinates point))))

)

(if (> (abs (nth 2 (get−coordinates point))) max−z)

(setf max−z (abs (nth 2 (get−coordinates point))))))

F-100

APPENDIX F. SOURCE CODE F.14. COLLECTIONS.AML

finally (return (sqrt (+ (expt max−x 2) (expt max−y 2) (expt max−z 2)))))))

(define−method reset−all−database−values main−mechanism−class ()

(loop for link in (get−links !links) do

(smash−value (the db−id (:from (get−mesh−database link))))))

(define−method get−all−joint−elements main−mechanism−class ()

(remove nil

(loop for constraint in (get−constraints !constraints)

append (list (get−male−element constraint) (get−female−element constraint)))))

;===

; Assigns a unique ID (starting from 1) to each joint element in the mechanism

;===

(define−method get−joint−ID main−mechanism−class (joint−element)

(1+ (position joint−element (get−all−joint−elements (the)))))

(define−method get−constraint main−mechanism−class (constraint−number)

(nth constraint−number !constraints−ref−list))

(define−method get−mechanism−type main−mechanism−class ()

(the mechanism−selection label))

(define−method draw−sewn−wo−mesh main−mechanism−class ()

(loop for link in !final−link−ref−list do

(with−error−handler (:error−message (concatenate "Error drawing "

(write−to−string (object−name link))) :show−system−error? t)

(draw (the link−geometry (:from link)) :draw−subobjects? nil))) t)

(define−method draw−sewn−with−tet−mesh main−mechanism−class ()

(loop for link in !final−link−ref−list do

(with−error−handler (:error−message (concatenate "Error drawing "

(write−to−string (object−name link))) :show−system−error? t)

(draw (first (get−link−solid−mesh−elements−query−objects−list

(get−mesh−model−object link)))))))

(define−method draw−sewn−with−tri−mesh main−mechanism−class ()

(loop for link in !final−link−ref−list do

(with−error−handler (:error−message (concatenate "Error drawing "

(write−to−string (object−name link))) :show−system−error? t)

(draw (first (get−link−surface−mesh−elements−query−objects−list

(get−mesh−model−object link)))))))

;===

; Creates buttons to draw and export the mechanism

;===

(define−method work−area−button1−action main−mechanism−class (params)

(case params

(:draw−sewn−wo−mesh

F-101

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(draw−sewn−wo−mesh (the)))

(:draw−sewn−with−tet−mesh

(draw−sewn−with−tet−mesh (the)))

(:draw−sewn−with−tri−mesh

(draw−sewn−with−tri−mesh (the)))

(:undraw

(undraw self))

(:create−bdf

(if (equal "2D" (pop−up−message (format nil "Export to .bdf")

:width 200 :done−label "2D" :cancel−label "3D")); The pop−up−message returns the label

(loop for link in !final−link−ref−list do

(change−value (the analysis export−surface? (:from link)) t))

(loop for link in !final−link−ref−list do

(change−value (the analysis export−surface? (:from link)) nil)))

(write−nastran−bdf−files (the)))

(:create−stl

(write−stl−files (the) (get−version−path !version−selection)))

(:export−fedem

(write−nastran−bdf−files (the))

(write−fmm−model−file (the)))))

;===============================

; END main−mechanism−class definitions

;===============================

F.15 Geometry-export.aml

;===

; Writes each link to a nastran .bdf file , stored in :nastran−data

;===

(define−method write−nastran−bdf−files main−mechanism−class ()

(loop for link in !final−link−ref−list do

(write−nastran−bdf−file (the) link)))

;===========================

; Writes each link to a . stl file

;===========================

(define−method write−stl−files main−mechanism−class (path)

(let (

(corrected−path (concatenate (replace−all−in−string "/" "\\" path) "/Stl−files/"))

)

F-102

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(if (not (probe−file corrected−path))

(create−directory corrected−path)

)

(loop for link in !final−link−ref−list do

(write−stl−file (the link−geometry (:from link)) (concatenate corrected−path

(the label (:from link)) ". stl "))

)))

;=====================================

; Replaces all specified characters in string

;=====================================

(defun replace−all−in−string (new old string)

(if (equal string (replace−in−string new old string))

string

(replace−all−in−string new old (replace−in−string new old string))))

;===

; Writes one link to a nastran .bdf file , stored in :nastran−data

;===

(define−method write−nastran−bdf−file main−mechanism−class (link)

(the analysis nastran−interface run−nastran@ (:from link)))

;===

; Writes a fedem fmm file, stored in library\"mechanism−type"\"version"

;===

(define−method write−fmm−model−file main−mechanism−class (&key from−opt?)

(let (

(baseID 2)

(linkID 0)

(conID 0)

(triads−written 1)

(triad−fe−node−list nil)

)

(with−open−file (stream (logical−path (the version−path (:from !version−selection))

(concatenate "model" ".fmm"))

:direction :output

: if−exists :overwrite

)

(progn

(write−static−top−part−to−fmm stream)

(loop for link in !final−link−ref−list do

(setf baseID (1+ baseID))

(setf linkID (1+ linkID))

F-103

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(format stream "LINK~%")

(format stream "{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "COORDINATE_SYSTEM = ~%")

(format stream "1.00000000 0.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 1.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 0.00000000 1.00000000 0.00000000;~%")

(format stream "ID = ~d;~%" linkID)

(format stream "LINE_COLOR = 1 1 1;~%")

(format stream "MASS_PROP_DAMP = 0;~%")

(format stream "ORIGINAL_FE_FILE = ~a;~%" (concatenate "\""

(logical−path :nastran−data)

(the analysis nastran−interface model−name (:from link)) "\\"

(the analysis nastran−interface nastran−file−name (:from link)) "\"")

)

(format stream "POLYS_ON_POINTS_OFF = true;~%")

(format stream "STIF_PROP_DAMP = 0;~%")

(format stream "USE_MASS_CALCULATION = true;~%")

(format stream "}~3%")

(let (

(number−of−nodes (length (get−mesh−entities−list (get−mesh−model−object link))))

(counter 0)

)

; ; For each non−free joint element on a link, we need to write a triad connected to

; ; the joint element’s RBE2 FE node.

(loop for joint−element in (get−joint−elements−on−link link) do

(setf baseID (1+ baseID))

(setf counter (1+ counter))

(write−triad−to−fmm stream baseID (get−joint−ID (the) joint−element)

(get−rbe2−independent−node−coordinates joint−element)

linkID (+ number−of−nodes counter))

(setf triad−fe−node−list (append triad−fe−node−list (list (list

(get−joint−ID (the) joint−element) (+ number−of−nodes counter) linkID))))

(setf triads−written (1+ triads−written)))))

(loop for constraint in !constraints−ref−list do

(setf baseID (1+ baseID))

(setf conID (1+ conID))

(let* (

(male−element (get−male−element constraint))

(female−element (get−female−element constraint))

F-104

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

)

; ;Case 1: male element exists, female does not.

; ;Have to write a ground triad to connect to the male element

; ;Master triad is the ground, slave triad is the male element

(if (and male−element (not female−element))

(progn

(write−joint−type−to−fmm stream constraint baseID conID triads−written

(get−joint−ID (the) male−element))

(setf baseID (1+ baseID))

(write−triad−to−fmm stream baseID triads−written

(get−rbe2−independent−node−coordinates male−element) −1 −1) ;;In FEDEM,

;;−1 means that it’s fixed to the ground

(setf triads−written (1+ triads−written))

)

; ;Case 2: female element exists, male does not

; ;Have to write a ground triad to connect to the female element

; ;Master triad is the ground, slave triad is the female element

(if (and female−element (not male−element))

(progn

(write−joint−type−to−fmm stream constraint baseID conID triads−written

(get−joint−ID (the) female−element))

(setf baseID (1+ baseID))

(write−triad−to−fmm stream baseID triads−written

(get−rbe2−independent−node−coordinates female−element) −1 −1)

(setf triads−written (1+ triads−written))

)

; ;Case 3: both elements exists

; ;Master triad is the female element, slave triad is the male element (ofc)

; ;No extra ground triad has to be created

(write−joint−type−to−fmm stream constraint baseID conID

(get−joint−ID (the) female−element) (get−joint−ID (the) male−element))

))))

(loop for spring−damper in (children !spring−dampers) do

(let (

(counter 0)

(sd−triad−fe−node−list nil)

)

(progn

; ; Mesh−node is the node the spring/damper is connected to.

(loop for mesh−node in (children spring−damper) do

F-105

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(setf counter (1+ counter))

(let (

(owner−linkID (1+ (the index (:from (get−owner−link mesh−node)))))

(found−node? nil))

(progn

; ; Have to check if a triad for the given fe node has been written

; ; already. If it has, no extra triad is needed.

(loop for tuple in triad−fe−node−list do

(when (and (= (get−node−position mesh−node) (nth 1 tuple))

(= owner−linkID (nth 2 tuple)))

(setf sd−triad−fe−node−list (append sd−triad−fe−node−list

(list (nth 0 tuple))))

(setf found−node? t)))

(when (not found−node?)

(setf baseID (1+ baseID))

(write−triad−to−fmm stream baseID triads−written

(get−coordinates−for−node−id (get−mesh−database

(get−owner−link mesh−node)) (get−node−position mesh−node))

(1+ (the index (:from (get−owner−link mesh−node))))

(get−node−position mesh−node))

(setf triads−written (1+ triads−written))))))

(if (= 1 counter)

; ; Happens if spring/damper only has one subobject. This means that it is

; ; supposed to be connected to the ground. Have to create this ground triad

(progn

(setf baseID (1+ baseID))

(write−triad−to−fmm stream baseID triads−written

(get−end−point spring−damper) −1 −1)

(setf triads−written (1+ triads−written))))

(setf baseID (1+ baseID))

(let (

(connecting−triads (if (= 2 (length sd−triad−fe−node−list))

sd−triad−fe−node−list

(if (= 1 (length sd−triad−fe−node−list))

(list (− triads−written 1) (first sd−triad−fe−node−list))

(list (− triads−written 1) (− triads−written 2))))))

(case (get−type spring−damper)

(’ spring

(write−spring−properties−to−fmm stream baseID

(1+ (the index (:from spring−damper))) (get−stiffness

F-106

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

spring−damper)

(first connecting−triads) (second connecting−triads)))

(’ damper

(write−damper−properties−to−fmm stream baseID

(1+ (the index (:from spring−damper))) (get−damping

spring−damper)

(first connecting−triads) (second connecting−triads))))))))

; ; Loads

(loop for load in (get−loads !loads) do

(setf baseID (1+ baseID))

(let (

(loaded−node (get−loaded−node load))

(load−triad−fe−node nil)

)

(progn

(loop for tuple in triad−fe−node−list do

(if (and (= (get−node−position loaded−node) (nth 1 tuple))

(= (1+ (the index (:from (get−owner−link loaded−node))))

(nth 2 tuple)))

(setf load−triad−fe−node (nth 0 tuple))))

(if load−triad−fe−node

(write−loads−to−fmm stream baseID (get−load−ID load) load−triad−fe−node

(get−load−type load) (get−magnitude load) (get−scale−load load)

(get−direction load))

(progn

(write−triad−to−fmm stream baseID triads−written

(get−coordinates−for−node−id (get−mesh−database

(get−owner−link loaded−node)) (get−node−position loaded−node))

(1+ (the index (:from (get−owner−link loaded−node))))

(get−node−position loaded−node)

)

(setf triads−written (1+ triads−written))

(setf baseID (1+ baseID))

(write−loads−to−fmm stream baseID (get−load−ID load) (1− triads−written)

(get−load−type load) (get−magnitude load) (get−scale−load load)

(get−direction load))))))

(when (get−scale−load load)

(progn

(setf baseID (1+ baseID))

(write−engines−to−fmm stream baseID 1 "1 FcfSCALE" "1 FcTIME_SENSOR")

F-107

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(setf baseID (1+ baseID))

(write−function−to−fmm stream baseID 1 (get−scale−load load)))))

(if (equal "four−bar−i−beam" !mechanism−version)

(progn

(let (

(x−result "<\"SCALAR\",\"Physical time\">")

(x−oper "\"None\"")

(y−result "<\"Triad\",8,5,\"VEC3\",\"Deformational displacement\">")

(y−object "5 FcTRIAD")

(y−oper "\"Length\"")

(legend "\"Triad [5], Deformational displacement, Length vs Time\"")

)

(progn

(setf baseID (1+ baseID))

(write−curve−sets−to−fmm stream baseID 1 1 x−result x−oper y−result

y−object y−oper :legend legend)

))

(setf baseID (1+ baseID))

(write−graph−definitions−to−fmm stream baseID 1 "\"Deformation\"")

))

(format stream "END {FEDEMMODELFILE}")

(unless from−opt?

(message−box "Success!" (format nil "Writing to fmm successful!") :mode :ok)

)))))

;==

; Below are self−explanatory helping functions for writing to fmm

;==

(defun write−static−top−part−to−fmm (stream)

(progn

(format stream "FEDEMMODELFILE {R7.0.4 ASCII}~2%")

(format stream "GLOBAL_VIEW_SETTINGS~%{~%")

(format stream "ID = 1;~%")

(format stream "SYMBOL_SCALE = 0.1;~%")

(format stream "SYMBOL_LINE_WIDTH = 1;~%")

(format stream "BACKGROUND_COLOR = 0.098039 0.305882 0.458823;~%")

(format stream "CAMERA_FOCAL_DIST = 0.707107;~%")

(format stream "CAMERA_HEIGHT = 1.41421;~%")

(format stream "CAMERA_ORIENTATION =~%")

(format stream "1.00000000 0.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 1.00000000 0.00000000 0.00000000~%")

F-108

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(format stream "0.00000000 0.00000000 1.00000000 0.70710678;~%}~2%")

(format stream "MECHANISM~%{~%")

(format stream "ID = 1;~%")

(format stream "BASE_ID = 1;~%") ;;Manually setting "static" base ID

(format stream "GRAVITY = 0 0 −9.81;~%") ;;When gravity changes, let me know. Also update this

value.

(format stream "POSITION_TOLERANCE = 0.0001;~%}~2%")

(format stream "REF_PLANE~%{~%")

(format stream "ID = 1;~%")

(format stream "BASE_ID = 2;~%") ;;Manually setting "static" base ID

(format stream "HEIGHT = 0.1;~%")

(format stream "WIDTH = 0.1;~%")

(format stream "COLOR = 1 1 1;~%")

(format stream "TRANSPARENCY = 0.65;~%}~3%")))

(defun write−triad−to−fmm (stream baseID ID coords linkID node−number)

(format stream "TRIAD~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "COORDINATE_SYSTEM = ~%")

(format stream "1.0 0.0 0.0 ~d~%" (nth 0 coords))

(format stream "0.0 1.0 0.0 ~d~%" (nth 1 coords))

(format stream "0.0 0.0 1.0 ~d;~%" (nth 2 coords))

(format stream "LOCAL_DIRECTIONS = GLOBAL;~%")

(format stream "LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;~%")

(format stream "OWNER_LINK = ~d;~%" linkID)

(format stream "FE_NODE_NO = ~d;~%" node−number)

(format stream "NDOFS = 6;~%}~3%"))

(defun write−joint−type−to−fmm (stream constraint baseID conID masterID slaveID)

(if (equal "revolute" (get−constraint−type constraint))

(let (

(unit−vector (get−unit−vector constraint))

(rot−angle (get−rot−angle constraint))

(cos−rot−angle (cosd rot−angle))

(sin−rot−angle (sind rot−angle))

)

(progn

(format stream "~a~%{~%" "REV_JOINT")

(format stream "BASE_ID = ~d;~%" baseID)

; ;Calculating rotation matrix with respect to rotation angle and rotation axis

(format stream "COORDINATE_SYSTEM = ~%")

F-109

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(format stream "~d ~d ~d 0.0~%"

(+ cos−rot−angle (* (expt (nth 0 unit−vector) 2) (− 1 cos−rot−angle)))

(− (* (nth 0 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 2 unit−vector) sin−rot−angle))

(+ (* (nth 0 unit−vector) (nth 2 unit−vector) (− 1 cos−rot−angle))

(* (nth 1 unit−vector) sin−rot−angle)))

(format stream "~d ~d ~d 0.0~%"

(+ (* (nth 1 unit−vector) (nth 0 unit−vector) (− 1 cos−rot−angle))

(* (nth 2 unit−vector) sin−rot−angle))

(+ cos−rot−angle

(* (expt (nth 1 unit−vector) 2) (− 1 cos−rot−angle)))

(− (* (nth 1 unit−vector) (nth 2 unit−vector) (− 1 cos−rot−angle))

(* (nth 0 unit−vector) sin−rot−angle)))

(format stream "~d ~d ~d 0.0;~%"

(− (* (nth 2 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 1 unit−vector) sin−rot−angle))

(+ (* (nth 2 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 0 unit−vector) sin−rot−angle))

(+ cos−rot−angle (* (expt (nth 2 unit−vector) 2) (− 1 cos−rot−angle))))

(format stream "HAS_Z_TRANS_DOF = false;~%")

(format stream "ID = ~a;~%" conID)

(format stream "LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;~%")

(format stream "MASTER_TRIAD = ~d;~%" masterID)

(format stream "MOVE_MASTER_TRIAD_ALONG = false;~%")

(format stream "MOVE_SLAVE_TRIAD_ALONG = false;~%")

(format stream "ROT_FORMULATION = FOLLOWER_AXIS;~%")

(format stream "ROT_SEQUENCE = ZYX;~%")

(format stream "ROT_SPRING_CPL = NONE;~%")

(format stream "SLAVE_TRIAD = ~d;~%" slaveID)

(format stream "TRAN_SPRING_CPL = NONE;~%")

(format stream "VAR_QUADRANTS = 0 0 0;~%")

(format stream "Z_ROT_STATUS = FREE;~%")

(format stream "Z_TRANS_STATUS = FREE;~%}~3%")

)

)

(if (equal "ball" (get−constraint−type constraint))

(let (

(unit−vector (get−unit−vector constraint))

(rot−angle (get−rot−angle constraint))

(cos−rot−angle (cosd rot−angle))

F-110

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(sin−rot−angle (sind rot−angle))

)

(progn

(format stream "~a~%{~%" "BALL_JOINT")

(format stream "BASE_ID = ~d;~%" baseID)

; ;Calculating rotation matrix with respect to rotation angle and rotation axis

(format stream "COORDINATE_SYSTEM = ~%")

(format stream "~d ~d ~d 0.0~%"

(+ cos−rot−angle (* (expt (nth 0 unit−vector) 2) (− 1 cos−rot−angle)))

(− (* (nth 0 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 2 unit−vector) sin−rot−angle))

(+ (* (nth 0 unit−vector) (nth 2 unit−vector) (− 1 cos−rot−angle))

(* (nth 1 unit−vector) sin−rot−angle)))

(format stream "~d ~d ~d 0.0~%"

(+ (* (nth 1 unit−vector) (nth 0 unit−vector) (− 1 cos−rot−angle))

(* (nth 2 unit−vector) sin−rot−angle))

(+ cos−rot−angle

(* (expt (nth 1 unit−vector) 2) (− 1 cos−rot−angle)))

(− (* (nth 1 unit−vector) (nth 2 unit−vector) (− 1 cos−rot−angle))

(* (nth 0 unit−vector) sin−rot−angle)))

(format stream "~d ~d ~d 0.0;~%"

(− (* (nth 2 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 1 unit−vector) sin−rot−angle))

(+ (* (nth 2 unit−vector) (nth 1 unit−vector) (− 1 cos−rot−angle))

(* (nth 0 unit−vector) sin−rot−angle))

(+ cos−rot−angle (* (expt (nth 2 unit−vector) 2) (− 1 cos−rot−angle))))

(format stream "FRICTION_DOF = 3;~%")

(format stream "ID = ~d;~%" conID)

(format stream "LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;~%")

(format stream "MASTER_TRIAD = ~d;~%" masterID)

(format stream "MOVE_MASTER_TRIAD_ALONG = false;~%")

(format stream "MOVE_SLAVE_TRIAD_ALONG = false;~%")

(format stream "ROT_FORMULATION = FOLLOWER_AXIS;~%")

(format stream "ROT_SEQUENCE = ZYX;~%")

(format stream "ROT_SPRING_CPL = NONE;~%")

(format stream "SLAVE_TRIAD = ~d;~%" slaveID)

(format stream "TRAN_SPRING_CPL = NONE;~%")

(format stream "VAR_QUADRANTS = 0 0 0;~%")

(format stream "X_ROT_STATUS = FREE;~%")

(format stream "Y_ROT_STATUS = FREE;~%")

F-111

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(format stream "Z_ROT_STATUS = FREE;~%}~3%")

)

)

(if (equal "free" (get−constraint−type constraint))

(let* (

(dofs (get−degrees−of−freedom constraint))

(dof−list (list (if (position 1 dofs) "FIXED" "FREE")

(if (position 2 dofs) "FIXED" "FREE")

(if (position 3 dofs) "FIXED" "FREE")

(if (position 4 dofs) "FIXED" "FREE")

(if (position 5 dofs) "FIXED" "FREE")

(if (position 6 dofs) "FIXED" "FREE")))

)

(progn

(format stream "FREE_JOINT~%{~%")

(format stream "BASE_ID = ~a;~%" baseID)

(format stream "COORDINATE_SYSTEM = ~%")

(format stream "1.00000000 0.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 1.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 0.00000000 1.00000000 0.00000000;~%")

(format stream "FRICTION_DOF = 0;~%")

(format stream "ID = ~a;~%" conID)

(format stream "LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;~%")

(format stream "MASTER_TRIAD = ~d;~%" masterID)

(format stream "MOVE_MASTER_TRIAD_ALONG = false;~%")

(format stream "MOVE_SLAVE_TRIAD_ALONG = false;~%")

(format stream "ROT_FORMULATION = FOLLOWER_AXIS;~%")

(format stream "ROT_SEQUENCE = ZYX;~%")

(format stream "ROT_SPRING_CPL = NONE;~%")

(format stream "SLAVE_TRIAD = ~d;~%" slaveID)

(format stream "TRAN_SPRING_CPL = NONE;~%")

(format stream "X_TRANS_STATUS = ~d;~%" (nth 0 dof−list))

(format stream "Y_TRANS_STATUS = ~d;~%" (nth 1 dof−list))

(format stream "Z_TRANS_STATUS = ~d;~%" (nth 2 dof−list))

(format stream "X_ROT_STATUS = ~d;~%" (nth 3 dof−list))

(format stream "Y_ROT_STATUS = ~d;~%" (nth 4 dof−list))

(format stream "Z_ROT_STATUS = ~d;~%}~3%" (nth 5 dof−list))

))

(if (equal "fixed" (get−constraint−type constraint))

(progn

F-112

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(format stream "FREE_JOINT~%{~%")

(format stream "BASE_ID = ~a;~%" baseID)

(format stream "COORDINATE_SYSTEM = ~%")

(format stream "1.00000000 0.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 1.00000000 0.00000000 0.00000000~%")

(format stream "0.00000000 0.00000000 1.00000000 0.00000000;~%")

(format stream "FRICTION_DOF = 0;~%")

(format stream "ID = ~a;~%" conID)

(format stream "LOCATION3D_DATA = CART_X_Y_Z EUL_Z_Y_X;~%")

(format stream "MASTER_TRIAD = ~d;~%" masterID)

(format stream "MOVE_MASTER_TRIAD_ALONG = false;~%")

(format stream "MOVE_SLAVE_TRIAD_ALONG = false;~%")

(format stream "ROT_FORMULATION = FOLLOWER_AXIS;~%")

(format stream "ROT_SEQUENCE = ZYX;~%")

(format stream "ROT_SPRING_CPL = NONE;~%")

(format stream "SLAVE_TRIAD = ~d;~%" slaveID)

(format stream "TRAN_SPRING_CPL = NONE;~%")

(format stream "X_ROT_STATUS = FIXED;~%")

(format stream "Y_ROT_STATUS = FIXED;~%")

(format stream "X_TRANS_STATUS = FIXED;~%")

(format stream "Y_TRANS_STATUS = FIXED;~%")

(format stream "Z_TRANS_STATUS = FIXED;~%")

(format stream "Z_ROT_STATUS = FIXED;~%}~3%")

))))))

(defun write−spring−properties−to−fmm (stream baseID ID stiffness triad1 triad2)

(format stream "AXIAL_SPRING~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "INIT_LENGTH = 0;~%")

(format stream "INIT_STIFFNESS = ~d;~%" stiffness)

(format stream "TRIAD_CONNECTIONS = ~d ~d;~%" triad1 triad2)

(format stream "USE_INIT_DEFLECTION = true;~%}~2%"))

(defun write−damper−properties−to−fmm (stream baseID ID damping triad1 triad2)

(format stream "AXIAL_DAMPER~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "INIT_DAMPING = ~d;~%" damping)

(format stream "TRIAD_CONNECTIONS = ~d ~d;~%}~2%" triad1 triad2))

(defun write−analysis−properties−to−fmm (mechanism−type stream baseID loads−list))

(defun write−control−system−properties−to−fmm (stream baseID)

F-113

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

; ;EnginesX

(let (

(descr (list "\"Torque\"" "\"Reference\"" "\"Joint Velocity\""))

(sensor (list "3 FcSIMPLE_SENSOR" "1 FcSIMPLE_SENSOR" "2 FcSIMPLE_SENSOR"))

(math−func (list "1 FcfSCALE" "1 FcfLIM_RAMP" "1 FcfSCALE"))

(entity (list −1 −1 6))

(dof (list −1 −1 5)))

(loop for i from 0 to 2 do

(setf baseID (1+ baseID))

(write−engines−to−fmm stream baseID (1+ i) (nth i descr) (nth i sensor)

(nth i math−func) (nth i entity) (nth i dof))

))

; ;SensorsX

(let (

(descr (list "\"Time sensor\"" "\"\"" "\"Control output sensor\""))

(measured (list "1 FcTIME" "1 FcREV_JOINT" "1 FccOUTPUT"))

)

(loop for i from 0 to 2 do

(setf baseID (1+ baseID))

(write−sensors−to−fmm stream baseID (1+ i) (nth i descr) (nth i measured))

))

; ;Function definitionsX

(setf baseID (1+ baseID))

(format stream "FUNC_LIM_RAMP~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = 1;~%")

(format stream "AMPLITUDE_DISPLACEMENT = 0;~%")

(format stream "SLOPE_OF_RAMP = 12.5664;~%")

(format stream "DELAY_OF_RAMP = 0;~%")

(format stream "END_OF_RAMP = 0.5;~%}~3%")

; ;Control linesX

(let (

(ownerStart (list "1 FccINPUT" "2 FccINPUT" "1 FccCOMPARATOR" "1 FccAMPLIFIER"))

(ownerEnd (list "1 FccCOMPARATOR 1" "1 FccCOMPARATOR 2" "1 FccAMPLIFIER 1" "1

FccOUTPUT 1"))

(ful (list 2 1 2 2))

(controlNo (list 1 2 4 3))

)

(loop for i from 0 to 3 do

(setf baseID (1+ baseID))

F-114

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(write−control−lines−to−fmm stream baseID (1+ i)

(nth i ownerStart) (nth i ownerEnd) (nth i ful) (nth i controlNo))

))

; ;Control i/oX

(let (

(name (list "CONTROL_INPUT" "CONTROL_INPUT" "CONTROL_OUTPUT"

"CONTROL_AMPLIFIER"

"CONTROL_COMPARATOR"))

(IDs (list 1 2 1 1 1))

(engine (list "2 FcENGINE" "3 FcENGINE" "0 0" "0 0" "0 0"))

(position (list "−3.5 1 0" "−3.5 0 0" "2.5 0.5 0" "0.5 0.5 0" "−1.5 0.5 0"))

)

(loop for i from 0 to 4 do

(setf baseID (1+ baseID))

(write−control−io−to−fmm stream (nth i name) baseID (nth i IDs)

(nth i engine) (nth i position) (if (= i 3) 1))

)))

(defun write−engines−to−fmm (stream baseID ID math−func sensor)

(format stream "ENGINE~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "MATH_FUNC = ~a;~%" math−func)

(format stream "SENSOR = ~a;~%}~2%" sensor))

(defun write−function−to−fmm (stream baseID ID scale)

(format stream "FUNC_SCALE~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "FUNC_USE = GENERAL;~%")

(format stream "ID = ~d;~%" ID)

(format stream "SCALE = ~d;~%}~2%" scale))

(defun write−sensors−to−fmm (stream baseID ID descr measured)

(format stream "SENSOR~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "DESCR = ~a;~%" descr)

(format stream "MEASURED = ~a;~%}~2%" measured))

(defun write−loads−to−fmm (stream baseID ID owner−triad load−type magnitude scale−load direction)

(format stream "LOAD~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(if magnitude

F-115

F.15. GEOMETRY-EXPORT.AML APPENDIX F. SOURCE CODE

(format stream "INIT_LOAD = ~d;~%" magnitude)

(progn

(format stream "ENGINE = 1 FcENGINE;~%")

(format stream "INIT_LOAD = 0;~%")

))

(format stream "OWNER_TRIAD = ~d;~%" owner−triad)

(format stream "LOAD_TYPE = ~d;~%" (case load−type (’force 0) (’torque 1)))

(format stream "SCALE_LOAD = 1;~%")

(format stream "FROM_OBJECT = −1 FcLINK;~%")

(format stream "FROM_POINT = 0 0 0;~%")

(format stream "TO_OBJECT = −1 FcLINK;~%")

(format stream "TO_POINT = ~d ~d ~d;~%}~2%" (nth 0 direction) (nth 1 direction) (nth 2 direction)))

(defun write−control−lines−to−fmm (stream baseID controlID ownerStart ownerEnd ful controlNo)

(format stream "CONTROL_LINE~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" controlID)

(format stream "OWNER_START = ~a;~%" ownerStart)

(format stream "OWNER_END = ~a;~%" ownerEnd)

(format stream "FIRST_LINE_VERTICAL = 0;~%")

(format stream "FIRST_UNDEF_LINE = ~d;~%" ful)

(format stream "SEGMENT_LENGTHS = 0.25;~%")

(format stream "CONTROL_VAR_NO = ~d;~%}~2%" controlNo))

(defun write−control−io−to−fmm (stream name baseID ID engine position &optional (rate nil))

(format stream "~a~%{~%" name)

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "ID = ~d;~%" ID)

(format stream "ENGINE = ~a;~%" engine)

(format stream "POSITION = ~a;~%" position)

(format stream "LEFT_ORIENTATED = 0;~%")

(if rate

(format stream "RATE = ~a;~%" rate))

(format stream "}~3%"))

(defun write−graph−definitions−to−fmm (stream baseID ID descr)

(format stream "GRAPH~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "AUTO_SCALE = true;~%")

(format stream "BEAM_DIAGRAM = false;~%")

(format stream "DESCR = \"~a\";~%" descr)

(format stream "GRID_TYPE = 2;~%")

(format stream "ID = ~d;~%" ID)

F-116

APPENDIX F. SOURCE CODE F.15. GEOMETRY-EXPORT.AML

(format stream "SHOW_LEGEND = false;~%")

(format stream "TIME_RANGE = 0 1;~%")

(format stream "USE_TIME_RANGE = false;~%")

(format stream "X_AXIS_RANGE = 0 1;~%")

(format stream "Y_AXIS_RANGE = 0 0.001;~%}~2%"))

(defun write−curve−sets−to−fmm (stream baseID ID owner x−result x−oper y−result y−object y−oper

&key legend x−object)

(format stream "CURVE_SET~%{~%")

(format stream "BASE_ID = ~d;~%" baseID)

(format stream "EXPORT_AUTOMATICALLY = true;~%")

(format stream "FATIGUE_DOMAIN_START = 0;~%")

(format stream "FATIGUE_DOMAIN_STOP = 1;~%")

(format stream "FATIGUE_GATE_VALUE = 1;~%")

(format stream "FATIGUE_LIFE_UNIT = REPEATS;~%")

(format stream "FATIGUE_SN_CURVE = 0;~%")

(format stream "FATIGUE_SN_STD = 0;~%")

(format stream "FATIGUE_USING_ENTIRE_DOMAIN = true;~%")

(format stream "ID = ~d;~%" ID)

(format stream "INPUT_MODE = TEMPORAL_RESULT;~%")

(if legend

(format stream "LEGEND = ~a;~%" legend))

(format stream "OWNER_GRAPH = ~d;~%" owner)

(format stream "X_AXIS_RESULT = ~a;~%" x−result)

(format stream "X_AXIS_RESULT_OPER = ~a;~%" x−oper)

(if x−object

(format stream "X_AXIS_RESULT_OBJECT = ~a;~%" x−object))

(format stream "Y_AXIS_RESULT = ~a;~%" y−result)

(format stream "Y_AXIS_RESULT_OBJECT = ~a;~%" y−object)

(format stream "Y_AXIS_RESULT_OPER = ~a;~%}~2%" y−oper))

(defun get−rot−axis (constraint)

(cross−product ’(0 0 1) (get−joint−direction−vector constraint)))

(defun get−rot−angle (constraint)

(angle−between−2−vectors ’(0 0 1) (get−joint−direction−vector constraint)))

(defun get−unit−vector (constraint)

(loop for element in (get−rot−axis constraint)

collect (/ element (vector−length (get−joint−direction−vector constraint)))))

F-117

Appendix G

Risk Assessment

G-1

	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Named Equations
	Nomenclature
	Introduction
	Background
	Research Questions
	Structure

	Theory
	The Design Process
	Knowledge-Based Engineering
	Mechanisms
	Links
	Joints
	Degrees of Freedom of Planar Mechanisms
	Transformation and Rotations
	Kinematic Modeling

	Finite Element Analysis
	Meshing
	Element Dimensions
	Boundary Conditions in Structural Mechanisms

	Control Systems
	Design Optimization
	Design Problem Formulation
	Unconstrained Methods
	Constrained Methods
	Multi-Objective Optimization Methods
	Structural Optimization
	Final Notes

	Software Development
	Object-Oriented Development
	Scrum

	Methodology
	Runtime Environment
	Development Infrastructure
	Adaptive Modeling Language
	Framework
	Editor
	Source Code Management
	AML Modeling Forms
	AMOpt

	FEDEM
	Modeling of the Mechanism System

	The Mechanism System
	Application Input
	Node Positions
	Constraints
	Link Shapes
	Springs and Dampers
	Loads
	Design Optimization
	Mechanism Library

	Initial Frame Placement
	Links
	Joints
	Springs and Dampers
	Loads
	Mechanism Assembly
	Meshing
	Boundary Conditions

	Analysis
	Results
	Discussion

	Design Optimization
	AMOpt
	The Iteration Process
	Problem Formulation
	The Implementation

	Results
	Discussion

	Implementation Details
	General Development Methodology
	System Architecture
	Collections
	Data Models
	Joints
	Links
	Loads, Springs and Dampers
	Meshing and Analysis
	Design Optimization

	Results and Discussion

	Final Discussion
	Conclusions
	Further Work
	References
	Installation Details
	Class Diagrams
	Graphical User Interface
	Example Model File
	Work Log
	Source Code
	System.def
	Data-models.aml
	Springs-dampers.aml
	Loads.aml
	Cross-sections.aml
	Optimizations.aml
	Constraints.aml
	Constraint-types.aml
	Meshing.aml
	Analysis.aml
	Link-member-geometry.aml
	Link-surface-geometry.aml
	Links.aml
	Collections.aml
	Geometry-export.aml

	Risk Assessment

