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Abstract8

Communities with different phenotypic variation among species can have

identical species abundance distributions, although their temporal dynam-

ics may be very different. By using stochastic species abundance models,

both the lognormal and beta prime abundance distributions can be obtained

with either homogeneous or heterogeneous dynamics among species. Assum-

ing that anthropogenic activity disturb the communities such that species’

carrying capacities are decreasing deterministically, the structure of the com-

munities are studied using simulations. In order to construct homogeneous

communities with reasonable variation in abundance, the parameter values

describing the dynamics of the species can be unrealistic in terms of long

return times to equilibrium. Species in heterogeneous communities can have

stronger density regulation, while maintaining the same variation in abun-

dance, by assuming heterogeneity in one of the dynamical parameters. The

heterogeneity generates variation in carrying capacity among species, while

reducing the temporal stochasticity. If carrying capacity decreases, changes

in community structure occur at a much slower rate for the homogeneous
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compared to the heterogeneous communities. Even over short time peri-

ods, the difference in response to deterministic changes in carrying capacity

between homogeneous and heterogeneous community models can be sub-

stantial, making the heterogeneous model a recommended starting point for

community analysis.

Keywords: community dynamics, lognormal species abundance model,9

beta prime species abundance distribution, Beverton-Holt density10

regulation, time dependent parameters, environmental stochasticity11

1. Introduction12

In community ecology, biologists try to understand how species persists13

in concert with each other over time, in space or both. The initial studies14

of species communities were concerned with fitting probability distributions15

to abundances (counts) of butterflies (Fisher et al. 1943). Several differ-16

ent distributions have been applied to describe the composition of species17

communities in a wide variety of taxa, possibly where the data have been18

transformed to a log scale. The probability distributions fitted to abundance19

data are known as species abundance distributions in community ecology20

and can be used to compare the structure of communities at different spatio-21

temporal locations and assess the durability of communities based on the22

number of common and rare species present (McGill, 2011). Additionally,23

numerous indices have been constructed to describe the diversity and simi-24

larity of communities (Gotelli, 2011; Maurer, 2011). How communities may25

develop over time is a particularly important issue in conservation biology26

(Buckland et al., 2005; Magurran et al., 2010; McGill, 2011).27
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While species abundance distributions can be fitted to data and com-28

pared at different points in time, the distributions themselves give no im-29

portant information about how the community will develop in the future. It30

is, however, possible to describe a community of species assuming that each31

single species can be characterized by a dynamic population model and still32

obtain well-known abundance distributions. The population model used to33

describe single species dynamics contains the information needed to simulate34

each species’ temporal fluctuations and can accordingly be used to study how35

the whole community progresses over time. Single species dynamics are de-36

termined by different biological attributes, for instance growth rate, carrying37

capacity and environmental stochasticity. Using single species dynamics to38

obtain species abundance distributions were introduced by Engen and Lande39

(1996a,b) and some of the main results are reiterated in the Methods section,40

but the focus in this article is on temporal dynamics of communities.41

When characterizing communities using single species dynamics, a com-42

mon simplifying assumption is that all the species have the same vital rates,43

i.e. the same growth rate and carrying capacity. However, it has been shown44

that dynamics of species can vary considerably among species within the same45

taxa (Engen et al., 2011). Such variation in dynamics among species will be46

described as heterogeneity in different vital rates in this article, while ho-47

mogeneous communities have no variation in vital rates among species. The48

main topic of this article is to analyse how variation among species influence49

the structure of communities over time. Our comparison of communities50

is restricted to constructing species abundance distributions with different51

magnitudes of heterogeneity, starting with a homogeneous community, but52
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identical abundance distributions.53

Communities are often studied under the assumption that the environ-54

ment of the different species are constant, meaning that vital rates and the55

magnitude of the variation in annual fluctuations are constant over the whole56

time frame considered. Anthropogenic activities, however, such as habitat57

destruction, over-exploitation, introduced species and pollution, are currently58

causing the sixth major mass extinction of species (Lande et al., 2003) and59

will generate changes in species community composition, structure and di-60

versity (Kneitel and Pages, 2010). For instance, a reduction or fragmentation61

of habitat can reduce the carrying capacity of the species present in a com-62

munity. Despite recent attempts by the international community to stop63

the reduction of biological diversity, the majority of indices measuring bio-64

diversity show declining trends, while anthropogenic pressure on ecosystems65

have increased (Butchart et al., 2010). This study will emphasize on how66

anthropogenic activities can change species communities, by analyzing how67

communities with different degrees of heterogeneity in the dynamics will vary68

in their response to permanent changes in the environment, using simulations.69

This article has the following structure: first, the main theory of Engen70

and Lande (1996a,b) on stochastic species abundance models and hetero-71

geneous communities are described. Second, the simulation procedure used72

to study the temporal dynamics of the communities is explained, and the73

different community indices applied are presented. The first case study of74

community dynamics considered show species with a Gompertz type of den-75

sity regulation. Communities with the same abundance distribution when76

observed at a single point of time, but with completely different temporal77
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dynamics, are compared, both when the carrying capacities of the species’78

are either constant or when the carrying capacities are gradually declining.79

In the second case study we first consider species following a homogeneous80

Beverton-Holt model of density regulation, meaning that all the species in81

the community have the same vital rates. This Beverton-Holt dynamics are82

compared to heterogeneous communities with logistic type of density regu-83

lation, i.e. the vital rates vary between species in the community. Here also,84

the different communities show different temporal dynamics, but maintain85

the same instantaneous abundance distribution. Finally, the effect of a de-86

clining trend in carrying capacity is studied for the second case. Considerable87

differences between simulated homogeneous and heterogeneous communities88

are illustrated, emphasizing the importance of allowing for variation in the89

vital rates between species in a community.90

2. Methods91

2.1. General theory92

The stochastic species abundance models introduced by Engen and Lande93

(1996a,b) obtained the lognormal and gamma distribution, respectively, by94

modelling the individual species’ dynamics using multivariate diffusion pro-95

cesses. The models assume that the temporal variation in population abun-96

dance in a community is caused by environmental fluctuations in the growth97

rate of each individual species independently. The dynamical approach by98

Engen and Lande (1996a) generated abundances following an inhomoge-99

neous Poisson process with rate λ(x), where x is the abundance, meaning100

that the number of species with abundances in some region Ω is Poisson101
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distributed with mean
∫
Ω
λ(x)dx at any time. The species abundance dis-102

tribution is then the Poisson rate scaled as a proper distribution, that is,103

f(x) = λ(x)/
∫
λ(u)du, where the integration runs over all possible abun-104

dances. Such dynamical abundance models provide means to study the com-105

munity dynamics over time, whereas the abundance distributions only pro-106

vide snapshots of the community compositions at specified time points. Note107

that the abundance x could be measured on a different scale, e.g. the log108

scale for a Gompertz model, without invalidating the theory described here.109

Using the diffusion approximation for the single species dynamics with110

infinitesimal mean µ(x; θ) and variance ν(x; θ), Engen and Lande (1996a)111

derived a general expression for the Poisson rate of species abundances112

λ(x; θ) =
2β

ν(x; θ)
e2

∫ x
a µ(u;θ)/ν(u;θ)du, (1)

where a is the extinction barrier and β the speciation rate. However, spe-113

ciations are not included in the following analysis which deals with time114

intervals so small that speciations are unlikely. An advantage of the ap-115

proach of Engen and Lande (1996a) is that it, in a simple way, allows for116

heterogeneity among species. Species entering the community are described117

by a set of parameters θ ∈ Θ, corresponding to abundance model λ(x; θ),118

thereby introducing heterogeneity by assuming that θ vary among species. If119

θ at speciation or colonization can be considered a realization of a stochastic120

variable with distribution π(θ), then the abundance model is given by the121

inhomogeneous Poisson rate (Engen and Lande, 1996a)122

λ(x) =

∫
θ∈Θ

λ(x; θ)π(θ)dθ. (2)

This result shows the possibility of obtaining the same abundance model λ(x)123
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from different combinations of its components λ(x; θ) and π(θ). An obser-124

vation of a community at a given time will only give information about the125

rate λ(x) and the corresponding species abundance distribution while con-126

taining no information about its components λ(x; θ) and π(θ). Knowledge127

of species heterogeneity is likely to be crucial when it comes to permanent128

environmental changes and management of ecosystems. Fluctuations in pop-129

ulation abundance is assumed to be caused by environmental stochasticity,130

described by environmental variance in the infinitesimal variance of the diffu-131

sion process. Demographic stochasticity is only relevant in small populations132

and will not be considered in the following analysis. Although demographic133

variance increases the probability of extinction at small abundances, it will134

not change the general results presented here. Note also that the dynamics135

of the species within a community is assumed to be independent.136

The non-uniqueness in temporal characteristics of abundance models with137

the same abundance distribution is the starting point of this analysis. Het-138

erogeneity can be defined by considering variability among species in dif-139

ferent parameters describing the population dynamics. If one parameter140

vary among species, one or more of the other population parameters have141

to be adjusted in order to obtain the same abundance distribution as in the142

homogeneous case. For example, when log abundances are described by a143

Gompertz type of density regulation, heterogeneity can be modelled with the144

stochastic growth rate s being normally distributed with expectation s0 and145

variance τ 2. Equal abundance distributions can be obtained by adjusting the146

strength of density dependence as a function of τ 2, γ = g(τ 2). The strength147

of density dependence is defined as −Kr′(K) (May, 1981) where r(N) is148
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the deterministic (density-dependent) growth rate and K is the carrying ca-149

pacity, i.e. the population size where the growth rate is zero and ′ is the150

derivative (see also text box). These communities with different values of τ 2151

and γ will have the same log abundance distribution when observed at a sin-152

gle point in time, but the single species’ dynamics over time will be different.153

Hence, these communities are likely to respond differently to environmental154

changes.155

Species entering the heterogeneous community with population parame-156

ters sampled from π(θ) will go extinct at different rates depending on their157

value of θ. Some values may be unfavourable, leading to short time to ex-158

tinction of the species, while others may generate longer lifetimes. Species159

with favourable population parameters will therefore be more frequent in160

the community than given by their distribution at speciation. At a given161

time, extinctions will generate a distribution of parameters among species162

in the stationary community π∗(θ) ̸= π(θ). Engen (2007a) called π∗(θ) the163

sampling distribution of population parameters. The difference between the164

distributions π(θ) at invasion and π∗(θ) generated by extinctions can be sub-165

stantial. In this analysis, all population parameters are generated from the166

sampling distribution π∗(θ).167

Two different classes of species abundance distributions will be considered168

here: the lognormal and the beta prime distribution, also known as beta169

distribution of the second kind (Kempton, 1975). Heterogeneous dynamic170

models that have the same species abundance distribution are constructed in171

each case, and the communities’ response to different environmental changes172

is investigated by simulations, recording the following different metrics: The173
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total number of individuals, N , measures the abundance. The number of174

species, S, is a measure of richness. The Shannon diversity, DShannon =175

−
∑

pi ln pi, where pi = Ni/
∑

Ni, indicate whether there are a few species176

that make up a large part of the total abundance (small value) or if the177

species constitute a more uniform proportion of the total abundance (high178

DShannon). The modified Shannon diversity, proposed by Buckland et al.179

(2005), DMod−Shannon = −
∑

qi ln qi, where qi = Ni/
∑

Nj and Nj is the180

abundance of species j at the first time point. The number of species that181

are above 10% of their initial abundance, SQ, is used as a measure of quasi-182

extinctions in the community, and Sobs is the number of species above a183

global threshold that for example could represent the observable species in184

the community, e.g. 10% of the species’ mean abundance, EN/ES.185

The simulations are implemented in the following manner: first, each186

species in the community is given a set of parameter values, sampled from187

π∗(θ). In the case of a homogeneous community, all the species have the188

same set of values. Second, the initial abundance of the species is sampled189

from their stationary distribution, which is different among the species of190

heterogeneous communities. Third, the species are simulated forward in time191

using their separate parameters values. When applying temporal changes to192

the parameters, the different community characteristics are computed for193

each time step. The R-code used to generate the data and figures are found194

in the supplementary materials.195
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Strength of density dependence:

The deterministic version of logistic growth rate, can be written as r(N) =

r0−δN where r0 is the growth rate and δ is a density dependence parameter.

The carrying capacity K is the population size where r(K) = 0, which is

K = r0/δ. The strength of density dependence is defined as −Kr′(K),

which for the logistic model is −K(−δ) = (r0/δ)δ = r0 (May, 1981).

196

197

198

199

200

201

For the deterministic Gompertz model r(N) = r1 − γ lnN where r1 is the

deterministic growth rate at population size one, the log carrying capacity

is lnK = r1/γ and following the definition above, the strength of density

dependence is γ.

202

203

204

205

Other parameters:206

s : stochastic growth rate, s = r1 − σ2
e/2

π(s) : distribution of s at speciation, which is normal with mean s0

and variance τ 2

σ2
e : environmental variance

η : mean of the lognormal abundance distribution

ρ2 : variance of the lognormal abundance distribution

c : average number of offspring in the Beverton-Holt model if there

is no density dependence

b : density dependence parameter in the Beverton-Holt model

p, q : shape parameters of the beta prime distribution where e.g. the

mean is p/(q − 1)

π(δ) : distribution of δ at speciation, which is gamma with shape k

and scale 1/α

207
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2.2. Gompertz type of density regulation208

For a homogeneous community, where the individual species’ dynamics209

is described by a Gompertz type of density regulation, the log abundances210

x can be approximated by a linear diffusion process with mean µ(x; s, γ) =211

s − γx, meaning that the density regulation is linear on the log scale, and212

variance ν(x; σ2
e) = σ2

e . The Poisson rate is found using Equation (1) with213

θ = (s, γ, σ2
e),214

λ(x; θ) =
2β

σ2
e

es
2/(γσ2

e)e−(1/2)(x−s/γ)2/σ2
e/(2γ). (3)

Since this Poisson rate is proportional to a Gaussian distribution, the log215

abundances are normally distributed with mean lnK = s/γ and variance216

σ2
e/(2γ), while the abundances have the corresponding lognormal distribu-217

tion. Engen and Lande (1996a) used this model to define a heterogeneous218

species abundance model with abundance distribution still being the lognor-219

mal. By assuming that the stochastic growth rates were normally distributed220

with mean s0 and variance τ 2 among species at invasion, the Poisson rate for221

log abundances becomes222

λ(x) =
2β

σ2
e

es
2
0/(ωσ

2
e)e−(x−η)2/(2ρ2), (4)

where ω = (γ − 2τ 2/σ2
e). The log abundance distribution is then normal223

with expectation η = s0/ω and variance ρ2 = σ2
e/(2ω). Following Engen224

(2007a), the distribution of s in the stationary community π∗(s) will be225

normal with expectation s0γ/ω and variance τ 2γ/ω. The variation in s can226

be interpreted as if the individual species’ log carrying capacities lnK were227

normally distributed among species with expectation E[lnK] = s0/ω and228
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variance Var[lnK] = τ 2/(γω), while the temporal variance in log abundances229

σ2
e/(2γ) are the same for all species. The variation in log carrying capacity230

Var[lnK] expresses the heterogeneity in the community.231

2.3. Lognormal abundance models with heterogeneity among species232

Equal abundance distributions for communities with different individual233

variation in s can be obtained by keeping the values of η and ρ2 fixed for234

different values of τ 2 in Equation (4). The simplest solution is to change235

the strength of density dependence choosing γ(τ 2) = γ0 + 2τ 2/σ2
e (Engen,236

2007b), where γ0 is the strength of density dependence for a homogeneous237

community. The linear function γ(τ 2) ensures that ω, η and ρ2, are the same238

for any degree of heterogeneity described by τ 2.239

Figure 1 illustrates one homogeneous community and two heterogeneous240

communities with the same lognormal species abundance distribution. The241

variation in log carrying capacity lnK = s/γ among species is caused by242

the heterogeneity in stochastic growth rate sampled from π∗(s). This varia-243

tion in lnK reduces the species specific environmental variation, or temporal244

variance of log abundance σ2
e/(2γ), because the strength of density depen-245

dence increases with the heterogeneity (Fig 1, first row). The ratio between246

variation in carrying capacity and species specific environmental variation,247

depends on the amount of variation in the stochastic growth rate. The hetero-248

geneity in the stochastic growth rate corresponds to a coefficient of variation249

in log carrying capacity among species, SD(lnK)/E(lnK), of 0.395 and 0.362250

for two communities, second and third column, respectively.251

The time series plot (Fig 1, second row) illustrate the difference in the252

individual species dynamics over time due to the heterogeneity in s, which is253
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compensated for by stronger density regulation and reduced species specific254

environmental noise. The community in the second column has γ = 0.2,255

equivalent to a mean return time to equilibrium of 1/γ = 5 time steps, and256

species specific environmental noise Var[x] = 0.1, resulting in small pertur-257

bations from the individual species’ carrying capacity. In the third column,258

with γ = 0.0275 and Var[x] = 0.727, the perturbations are larger and return259

time longer. However, the snapshot of the species abundance distribution at260

a give time show no distinct difference between the communities (Fig 1, third261

row). This demonstrates that a fitted abundance distribution, i.e. estimating262

the mean η and variance ρ2 of the log abundances, contains little information263

about the temporal dynamics of individual species and the community, even264

when all individuals are sampled.265

2.4. Lognormal abundance models and gradual change in carrying capacity266

Anthropogenic activities may disturb the environment of species in a267

community in such a way that the parameters describing the species’ dy-268

namics change over time. A simple example of such a permanent change269

of the environment is to assume that the species’ carrying capacity is re-270

duced by multiplicative factor each time step. The change in log carrying271

capacity, lnK = s/γ, is assumed to be caused by a linear change in s, i.e.272

s(t) = s0+ tγ ln(κ), so that lnK(t) = s0/γ+ t lnκ. The proportional change273

in carrying capacity is the same for all species, both in homogeneous and274

heterogeneous communities. A gradual change in carrying capacity could275

for instance represent a reduction in the available area of the community.276

A gradual decline in carrying capacity of 2% each time step for three com-277

munities is illustrated in Figure 2a. The initial parameter values for the278
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communities in Figure 2 are the same as those in Figure 1, i.e. the first is a279

homogeneous community (no variation in carrying capacity between species),280

while the communities in the second and third columns have a coefficient of281

variation in log carrying capacity of 0.395 and 0.362, respectively. For each282

of the three sets of parameter values, 200 communities are simulated and the283

metrics described in General theory are computed each time step in addition284

to the mean and 95% quartile range.285

Species richness S appears to change slowly the first 100 time steps as286

illustrated in Figure 2b, but the expected number of species going extinct in287

this time period is important, as illustrated in Figure 3. Five species are ex-288

pected to go extinct in the heterogeneous community with the strongest den-289

sity regulation in 50 time steps (Fig. 3), while the numbers are three and four290

for the homogeneous and the other heterogeneous community, respectively.291

Generally, the heterogeneous communities loose species at a much higher rate292

than the homogeneous community. On average, 25% of the species are extinct293

in 150 and 300 time steps for the heterogeneous and homogeneous communi-294

ties, respectively (Fig. 2b). The number of species above 10% of their initial295

abundance SQ declines faster for the communities with the largest species’296

specific environmental variation (the homogeneous community in particular)297

the first 100 time steps. However, after 100 time steps, SQ drops rapidly for298

the heterogeneous communities, which is reasonable since the species have a299

shorter return time to equilibrium, fluctuating closely around the decreasing300

carrying capacity. The carrying capacity is reduced by almost 90% after 100301

time steps. The number of species above a fixed observable threshold SObs302

is roughly 75% of S initially, when the threshold is set at 40 individuals,303
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i.e. species with less than 40 individuals are considered unobservable. SObs304

declines faster within the initial 100 time steps, than the other two species305

metrics. One third of the observable species are expected to be unobserv-306

able after 75 time steps in the heterogeneous community with the strongest307

density regulation (Fig 3).308

The total abundance N changes more dramatically by the decreasing309

carrying capacity, than the richness indices (Fig 2c). In particular, the310

heterogeneous communities have halved their total abundance by roughly311

40 and 70 time steps, while the homogeneous community decreases much312

slower in addition to having a very large variation. The average value of313

the Shannon diversity DShannon is fairly constant during the first 200 time314

steps, but can vary considerably among simulations. The Shannon diversity315

starts to decline after roughly 25% of the species are extinct and the total316

abundance is between 2 − 5% of its initial value. The modified Shannon317

diversity DMod−Shannon starts to decline immediately as carrying capacity318

decreases, and the shape of the curves resembles the total abundance closely.319

The considerable reduction in N is captured by DMod−Shannon since the rel-320

ative abundances for this index is with respect to the initial population size.321

However, as N has large variation among simulations, so does the modified322

Shannon index, especially for the homogeneous community.323

2.5. Beverton-Holt model and logistic density dependence324

Equal abundance distributions can be obtained using different kinds of325

population models. Now, consider the Beverton-Holt model with infinitesi-326

mal mean µ(n; b, c, sa) = n[c/(1 + bn) + sa − 1] and variance ν(n) = σ2
en

2,327

where n is the abundance on the arithmetic scale. The factor c/(1 + bn) is328
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the average number of individuals produced from one year to the next, while329

sa is the adult survival rate. Assuming species go extinct at n = 1, Equation330

(1) gives the abundance distribution for the Beverton-Holt model331

f(n) =
Γ(p+ q)

Γ(p)Γ(q)

bpnp−1

(1 + bn)p+q
, (5)

where p = 2(c + sa − σ2
e/2 − 1)/σ2

e and q = 2(1 + σ2
e/2 − sa)/σ

2
e . The332

distribution in (5) is a beta prime distribution, or beta distribution of the333

second kind (Stuart and Kendall, 1968), censored at n = 1, first proposed as334

a species abundance distribution by Kempton (1975).335

For species in a community with dynamics described by a logistic type336

of density dependence, where µ(n; r0, δ) = r0n − δn2 and ν(n;σ2
e) = σ2

en
2,337

the rate of the inhomogeneous Poisson process is proportional to a gamma338

distribution (Engen and Lande, 1996b)339

λ(n; β, δ, s, σ2
e) =

2β

σ2
e

e2δ/σ
2
en2s/σ2

e−1e−(2δ/σ2
e)n (6)

where s = r0 − σ2
e/2. Assuming the heterogeneity in the community can340

be described by the density dependence δ being gamma distributed with341

shape k and scale 1/α, the abundance distribution is equal to Equation (5)342

(Engen, 2007a), where p = 2s/σ2
e , q = k − 2s/σ2

e and b = 1/(ασ2
e/2 −343

1). Furthermore, the distribution of δ due to parameter sampling π∗(δ) is344

gamma distributed with shape q and scale bσ2
e/2. The variation in δ generates345

variation in both the carrying capacity, E[n] = s/δ, and the environmental346

fluctuations Var[n] = sσ2
e/(2δ

2) among species, compared to heterogeneity in347

the lognormal distribution where the heterogeneity only generated variation348

among species in the carrying capacity.349
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2.6. Beta prime abundance models with heterogeneity among species350

Equal beta prime distributions can be obtained by keeping the param-351

eters p, q and b fixed for different distributions of δ. For instance, given a352

Beverton-Holt model with a set of parameter values θ = (b, c, sa, σ
2
e) results353

in a beta prime distribution with values of p, q and b. A logistic model with354

heterogeneity in the density dependence δ, which is sampled from π∗(δ), can355

have the same abundance distribution if k = q+p, while for instance, a given356

σ2
e determines the other parameter values through α = 2(1 + 1/b)/σ2

e and357

s = pσ2
e/2. Figure 4 illustrates one homogeneous Beverton-Holt model and358

two heterogeneous logistic models, all with the same abundance distribution.359

In the homogeneous community, all species have the same carrying capacity360

(first row, first column), while the heterogeneous communities have the same361

distribution for carrying capacity, K = s/δ. The environmental variance is362

the same in the homogeneous and the first heterogeneous community (first363

row, first and second column), while the last community (third column) have364

only 10% of the same σ2
e . The difference in both E[n] and Var[n] due to het-365

erogeneity in δ, i.e. small δ gives larger mean and variance, is very noticeable366

from the individual species’ stationary distributions (first row, second and367

third column).368

Even with the same environmental variance, the difference in temporal369

fluctuations of individual species between communities is significant (second370

row). In the homogeneous community, species can fluctuate over the en-371

tire range of the abundance distribution (first column), while in the hetero-372

geneous community (second column), each individual population fluctuates373

rapidly within the range its own stationary distribution. In the second het-374
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erogeneous community (third column), the species fluctuate within similar375

stationary distributions as the first heterogeneous community, but the den-376

sity dependence is much weaker and the perturbations away from carrying377

capacity last longer. The abundance distribution at a fixed time point (third378

row) for all three examples are similar and do not reveal the difference in379

temporal dynamics between the communities.380

2.7. Beta prime abundance models and gradual change in carrying capacity381

A permanent change in the environment resulting in a gradual change in382

carrying capacity, i.e. (c + sa − 1 − σ2
e/2)/[b(1 − sa)] for the Beverton-Holt383

model and s/δ in the logistic model, can be modelled by replacing b with384

b(1/κ)t and δ with (s+σ2
e)/(K

′κt), respectively, where K ′ is the carrying ca-385

pacity in the deterministic model. If κ < 1, the density dependence increases386

and the carrying capacity decreases for all species in the community.387

Figure 5 illustrates the gradual decline in carrying capacity due to in-388

creasing density dependence, for three different communities (Fig 5a). These389

communities have the same initial parameter values as those introduced in390

Figure 4, with one homogeneous Beverton-Holt model (first column) and391

two heterogeneous logistic models with the same environmental variance as392

the Beverton-Holt model (second column) or 10% of the environmental vari-393

ance (third column). Some characteristics from the previous examples are394

also present here: species in the Beverton-Holt model have large fluctuations395

due to large environmental variance and weak density dependence, while the396

species of the heterogeneous communities trace their individual carrying ca-397

pacities. For all communities the species specific environmental variation398

decreases as a result of the increasing density dependence.399
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The number of species S only declines for the heterogeneous community400

with large environmental variance (Fig 5b and 6), while the number is con-401

stant for almost 200 time steps in the other two communities. Then there is402

a rapid decline in the number of species, where the entire community goes403

extinct within roughly 100 time steps. The number of species above 10%404

of their initial abundance (Fig 5b, second column) has a pattern similar to405

the one obtained for the lognormal abundance models. The homogeneous406

model declines first, due to large environmental fluctuations and weak den-407

sity dependence, while the heterogeneous communities declines faster when408

the carrying capacity has been reduced by 90%, which the species in the409

heterogeneous communities trace closely. The threshold for the observable410

species is in fact so low that all species are included initially, but looking411

closer at the first 100 time steps reveals considerable differences between the412

communities (Fig 6). The heterogeneous community with the highest envi-413

ronmental variance is expected to have the most unobservable species. On414

the other hand, the homogeneous community is expected to loose slightly415

more observable species the first 75 time steps than the heterogeneous com-416

munity with small environmental variance.417

The total abundance, N , again has the fastest response to the decreas-418

ing carrying capacity, the homogeneous community being the slowest due419

to a few species that overshoot due to weak density dependence and large420

environmental variance (Figure 5c). In roughly 50 time steps N has been421

halved, the heterogeneous community with large environmental variance de-422

clining the fastest. In contrast to the lognormal model, the Shannon di-423

versity, DShannon, is not equal for the three communities very long and the424
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homogeneous community declines faster than the heterogeneous community425

with small environmental variance, similar to the changes in S. The modi-426

fied Shannon diversity, DMod−Shannon, respond again faster than most of the427

other indices and heterogeneous models change most rapidly. Overall, there428

are smaller differences between the homogeneous and heterogeneous commu-429

nities in the examples of beta prime abundance distributions compared to430

the lognormal, but the patterns are similar for communities with the same431

environmental variance, i.e. the heterogeneous communities respond faster432

to changes.433

3. Discussion434

While some abundance models which assume homogeneity among species435

can fit the shape of observed abundance distributions and describe the dy-436

namics of certain communities, such as the neutral model for e.g. tropical437

trees (Hubbell, 2001), models with environmental noise, and in particular het-438

erogeneous models, provide a more flexible framework for describing tempo-439

ral fluctuations in very different taxa. For communities consisting of species440

from the same taxon, heterogeneity among species have been demonstrated441

in e.g. butterflies, birds and aquatic insects and the estimated heterogeneity442

accounts for 60 − 80% of the variance in the lognormal species abundance443

distribution (Engen et al., 2002; Lande et al., 2003; Sæther et al., 2005; En-444

gen et al., 2011). The examples from the lognormal abundance distribution445

(Figure 1) show that in order to obtain an abundance distribution with a446

reasonable variance, the homogeneous model must either have a large en-447

vironmental variance or a weak density regulation. In order to make the448
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dynamics as comparable as possible, the environmental variance in the log-449

normal models (Figure 1 and 2) was the same for both the homogeneous and450

heterogeneous models. With equal environmental variance, the strength of451

density regulation for the homogeneous community had to be 0.005 in order452

to obtain a variance in log abundance of 4. The strength of density regulation453

of the homogeneous community corresponds to a mean return time to equi-454

librium of 200 time steps (e.g. years). Compared to the first heterogeneous455

community (Fig 1, second column), the same variance in log abundance was456

obtained with a strength of density dependence equal to 0.2 or a mean return457

time to equilibrium of 5 time steps. The difference in temporal dynamics be-458

tween the homogeneous and heterogeneous lognormal model is huge, but the459

abundance distribution cannot separate between the two. When analysing460

the consequence of a permanent change of the environment that reduces the461

carrying capacity of the species in the community, the time frame of the462

species’ responses could differ by hundreds of years (Figure 2), depending on463

the assumption of homogeneity or heterogeneity (Solbu et al., 2013).464

With available species community data collected over time, the amount465

of heterogeneity in the community can readily be estimated for the lognor-466

mal abundance model and has been shown to be the major component of467

the variance in the lognormal species abundance distribution (Engen et al.,468

2002, 2011). A good starting point for studying communities is therefore to469

assume that species are heterogeneous and infer from the estimated variation470

between species whether this effect is significant, instead of not considering471

heterogeneity at all.472

The time frames considered in the simulations of gradual change in carry-473
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ing capacity for the lognormal and beta prime abundance distribution (Figure474

2 and 5), suggest that it may take a long time before changes in species com-475

position are detected. However, the expected loss of species the first 100476

time steps (Figure 3 and 6) reveals considerable differences between the ho-477

mogeneous and heterogeneous community models even at these ’early’ stages.478

The loss of even a few species can be critical to a community. For instance,479

two species are extinct in the homogeneous lognormal distribution after 50480

time steps compared to five species in the heterogeneous community with481

strong density regulation (Fig. 3). After 100 time steps their expected losses482

are five and 15 species, respectively, while the expected number of unob-483

servable species is much larger. Although the boundary defined for species484

being observable is usually unknown, it can give an indication of how much485

the number of observed species could change, while the true species number486

serves as a lower bound. Applying species abundance models which pro-487

vide realistic rates of extinction is essential when studying consequences of488

anthropogenic activity, from a conservation biology point of view.489

The reduction in total abundance is an immediate response to the change490

in species’ carrying capacity, especially for communities with strong density491

dependence. While total abundance is an important factor for ecosystem492

services, such as pollen grain deposits (Winfree et al., 2015), it contains no493

information about change in community structure. The modified Shannon494

diversity is designed to change with both abundance and community struc-495

ture (Buckland et al., 2005). The rapid decline in DMod−Shannon is caused496

by the reduction in total abundance compared to the initial abundance. If497

the relative abundance of species is calculated within each year, as the Shan-498
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non diversity, little change in relative abundance is expected until a large499

proportion of the species are extinct. Recent estimation techniques for rela-500

tive abundance (Chao et al., 2015) could improve estimates of DMod−Shannon,501

making it a desirable metric to monitor community changes.502

Demographic variance is not included in the analysis, and while it would503

reduce the time to extinction, it would not change the main results regard-504

ing differences between homogeneous and heterogeneous communities. The505

dynamical species abundance models used here assume that the dynamics506

of each species is independent of other species, but variation in abundance507

due to interspecific interactions have been found to be small in communities508

of different taxa (Mutshinda et al., 2009). Changes in the community could509

have been described by stochastic variation common to all species, in ad-510

dition to the species specific environmental variation (Sæther et al., 2013).511

Long term data sets of communities are necessary to study changes, both512

by natural and anthropogenic causes (Magurran et al., 2010), as snapshots513

of species abundance distributions provide no information about the tempo-514

ral dynamics. Changes in community structure due to habitat changes have515

been found in long term data sets of bird communities, and their response516

to changes are diverse (Tingley and Beissinger, 2013). The current analysis517

show that community models assuming heterogeneity can explain the po-518

tential large variation in species abundances while maintaining reasonable519

individual dynamics. Heterogeneous models can also provide realistic re-520

sponses to changes on a temporal scale, comparable to the dramatic changes521

of species richness observed in modern history.522
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Figures607

Figure 1. Heterogeneity in the stochastic growth rate. First row: The608

species’ stationary distribution (solid lines) and the distribution of log carry-609

ing capacities (dashed lines). The first column is a homogeneous Gompertz610

model with parameters s = 0.025 and γ = 0.005. The second column is a611

heterogeneous Gompertz model where s, after parameter sampling, is nor-612

mally distributed with mean 1 and variance 0.156 and γ = 0.2. In the third613

column s has mean 0.137 and variance 0.00247 and γ = 0.0275. For all com-614

munities σ2
e = 0.04. Five single species’ stationary distributions are selected,615

although for the homogeneous community these are all equal. Second row:616

All the species’ fluctuations over time. The total number of species in each617

community is 200. Third row: The log abundance at the time point indi-618

cated by the vertical red lines for the three communities in addition to the619

theoretical distribution, which is normal with expectation η = 10 and vari-620

ance ρ2 = 5. The dots indicate the highlighted species from the time series621

plot and distributions in the first row.622

Figure 2. Permanent change in environment of lognormal abundance dis-623

tributions.624

(a) The species’ fluctuations over time for a each community. The initial625

parameter values for the three different communities are the same as those626

described in Figure 1. The carrying capacity for each species is reduced by627

a multiplicative factor κ = 0.98.628

(b) The lines are mean values from 200 simulated communities, where solid629

lines are the homogeneous Gompertz model, and dashed and dotted lines630

are heterogeneous Gompertz models with γ = 0.2 and 0.0275, respectively.631
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The shaded area around the lines is the 95% quartile range of the simu-632

lated communities. The indices are: total number of species (S), number of633

species above 10% of their initial abundance (SQ), number of species above634

an observable threshold (SObs).635

(c) Same as in (b), but indices are total abundance (N), Shannon diversity636

(DShannon) and the modified Shannon diversity (DMod−Shannon).637

Figure 3. The solid lines are the homogeneous models, while the dashed638

and dotted lines are heterogeneous models as described in Figure 2. Left:639

Expected number of species extinct within the first 100 time steps for the640

lognormal abundance distributions when the carrying capacity is reduced by641

2% each time step. Right: Expected number of unobserved species.642

Figure 4. Heterogeneity in the density regulation. First row: The species’643

stationary distributions (solid lines) and the distribution of carrying capaci-644

ties (dashed lines). The first column is a homogeneous Beverton-Holt model645

with parameter values as = 0.95, b = 0.1, c = 1, and σ2
e = 0.04. The second646

column is a heterogeneous logistic model where δ is gamma distributed with647

shape q = 3.5 and scale 1/(α − 2/σ2
e) = 0.002, so that E[δ] = 0.007, while648

the other parameters are s = 0.93 and σ2
e = 0.04. In the third column δ has649

scale 0.0002, so that E[δ] = 0.0007, while the other parameters are s = 0.093650

and σ2
e = 0.004. Five species’ stationary distributions are selected, although651

for the homogeneous community these are all equal. Second row: The652

species’ fluctuations over time. The total number of species in each com-653

munity is 200. Third row: The abundance at the time point indicated by654

the vertical red line for the three communities in addition to the theoretical655
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distribution, which is beta prime with expectation E[n] = 186 and variance656

Var[n] = 23064. The dots indicate the highlighted species from the time657

series plot and distributions in the first row.658

Figure 5. Permanent change in environment of beta prime abundance659

distributions.660

(a) The species’ fluctuations over time for each community. The initial661

parameter values for the three communities are the same as those described in662

Figure 4. The carrying capacity for each species is reduced by a multiplicative663

factor κ = 0.98.664

(b) The lines are mean values from 200 simulated communities, where solid665

lines are the homogeneous Beverton-Holt model, and dashed and dotted lines666

are heterogeneous logistic models with E[δ] = 0.007 and 0.0007, respectively.667

The shaded area around the lines are the 95% quartile range of the simu-668

lated communities. The indices are: total number of species (S), number of669

species above 10% of their initial abundance (SQ), number of species above670

an observable threshold (SObs).671

(c) Same as in (b), but indices are total abundance (N), Shannon diversity672

(DShannon) and the modified Shannon diversity (DMod−Shannon).673

Figure 6. The solid lines are the homogeneous models, while the dashed674

and dotted lines are heterogeneous models as described in Figure 5. Left:675

Expected number of species extinct within the first 100 time steps for the676

beta prime abundance distributions when the carrying capacity is reduced677

by 2% each time step. Right: Expected number of unobserved species.678
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