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Preface

This report is submitted in partial fulfilment of the requirements for the award of an MSc degree

in the study programme: Reliability, Availability, Maintainability and Safety (RAMS). The thesis

was carried out during the Spring semester of 2016. It is particularly focused on using condition

monitoring as a maintenance activity to the benefit of predictive maintenance and prognosis

within the Industrial Internet of Things (IIoT).

I was inspired to pursue this project topic in the course of my work as a Research Assistant

at the NTNU’s department of Production and Quality Engineering (IPK) during the Summer of

2015. The theme of the study was proposed by my supervisor, Associate Professor Per Schjøl-

berg. The thesis was carried out in partnership with Karsten Moholt AS with active support

from Mr. Tommy Glesnes, the Chief Technical Officer of the company and my co-supervisor.

The head of department, Professor Jørn Vatn, also played a key role in this research.

The readers of this report should have some basic knowledge in maintenance engineering

principles, fundamental physics and stochastic processes. Two peer-reviewed papers form part

of this report. As a whole, the report represents my main research achievements during my MSc

study. The theories and models developed in the report/papers were based on other existing

theories and models. You should pay attention to the common aphorism often attributed to

the famous statistician, George Box, who was quoted to have clarified his claims by saying, "All

models are wrong, some are useful."

Trondheim, 29-Jul-2016

Douglas Okafor Chukwuekwe
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Summary

As organisations strive to reach their production targets there are assets that are critical to their

operations. The reliability and availability of these critical assets directly impact the profit mar-

gins of the organisations and by implication their continued existence. Within an organisation’s

maintenance function, predictive maintenance techniques such as condition monitoring and

prognosis have today gained an increased attention because they are important to balance the

dilemma between maintenance costs and technical acceptability. The level of competence and

success recorded with the vibration based condition monitoring techniques means that they

have found useful applications within varied industries from aerospace to manufacturing as

well as the oil and gas industry in recent times.

However, as the transition is made away from traditional manufacturing and standalone

systems, a major concern expressed within the industry is that the current approach presented

within Industry 4.0 (the Industrial Internet of Things (IIoT)) for implementing predictive main-

tenance places too much emphasis on low level data monitoring to a degree that compromises

the level of competence already achieved within the industrial application of vibration based

condition monitoring, and there is so far no proven method to overcome the challenge.

The ultimate goal of any condition monitoring system is to gain capability to predict the fu-

ture of the equipment monitored. Such a goal would be hard to reach by simply monitoring low

level data such as temperature and pressure as currently suggested in the literature related to

Industry 4.0 although there are still not many publications available in this area. The Industrial

Internet of Things is a new and evolving paradigm, therefore research and implementation are

still in their formative stages. Previous publications are quick to highlight the strategic impor-

tance of big data but fail to demonstrate how it can be organised and analysed for the purpose

of predictive maintenance and for completing the maintenance decision loop. From the per-

spective of maintenance, the obvious weakness in the present big data exists in the fact that

they are collected mainly for operational reasons and only serve maintenance purposes often

“accidentally” or as an afterthought at the best.

In this thesis, investigations have been carried out and the results reported can bridge some

of the existing gaps. Using vibration monitoring of rotating equipment as a case study, it was
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demonstrated that the next generation of condition monitoring can integrate well into the In-

dustrial Internet beyond low level data monitoring which is currently the case. It was shown

that the application of a systematically selected stochastic process to low level data provides the

required scaling up of vibration data to produce a more realistic and more practicable solution

compared with any existing technique for the implementation of predictive maintenance within

the Industry 4.0 environment. Machine generated real data and an industry grade software were

deplored to obtain results which are not only compatible with the proposed Industry 4.0 refer-

ence architecture but also show a higher level of service when utilising the proposed condition

monitoring technique. Using modern sensors and instrumentation techniques, vibration data

is collected in a structured manner for the main purpose of predictive maintenance. The col-

lected data is dimensioned and treated in a form compatible with Industry 4.0 requirement for

single value data while retaining the original properties of vibration data. It was proposed to

capture multiple snapshots of vibration patterns to which a single average value is assigned to

the frequency spikes for every successive and corresponding time horizon. These values are ag-

gregated over time and a regression is run adopting the technique of the autoregressive moving

average (ARMA) to predict future failures. This is essentially a machine learning model that fol-

lows the propagation of an existing degradation over time and then estimates a future time when

the degradation is beyond a predefined threshold. This gives room for planning and arranging

for logistics in advance to minimise or totally avoid downtime.

Hence this new approach is expected to radically redefine the use of vibration based condi-

tion monitoring techniques within the Industrial Internet of Things without any loss of fidelity

in its application to predictive maintenance and thereby ensuring safe cost reduction and the

optimal utilisation of asset value. It is expected that the proposed solutions are refined further

through collaborative efforts of researchers and the end-users in the industry.
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Recommendations

The concept of end-of-life or remaining useful life prediction is not an easy technique. The

challenges listed in this section are not exhaustive but they help to highlight the difficulties en-

countered in predictive maintenance applications. Integrating this into the new and evolving

paradigm referred to as Industry 4.0 or more generally the Industrial Internet of Things (IIoT)

can be very challenging as well. This thesis is valuable for future research, the following recom-

mendations are hereby made for further investigation:

• The aspect dealing with lifetime modelling faced the challenge of incomplete observation,

a term generally referred to as censoring and data truncation. It is necessary to investigate

better ways to handle this problem that would lead to a more robust lifetime model.

• In order to derive full benefits from the vibration based condition monitoring of rotating

equipment, the vibration signature should be analysed for its descriptive accuracy, diag-

nostic powers and prognostic capabilities. Diagnosis was not adequately covered in this

study. Researching different imaging techniques and computer vision systems would en-

hance the results when integrated into the machine learning algorithm for the IIoT.

• The quality of data used affects the final results, it is important to research more advanced

and more compatible signal processing and instrumentation techniques.

• Integration of predictive maintenance capabilities from an early design phase in future

products and in future production lines. Industry 4.0 implementation pays attention to

both products and production equipment because the product of one company could be

the production equipment of another company.

• By design, robustness and resilience of products and production assets must address is-

sues of cyber security, activities of criminal hackers and unethical competitors. Advanced

encryption techniques should be investigated and comprehensive risk assessment must

be carried out to establish the links between individual risks and the possible consequences.

• Further research is required to address the needs of standardisation, interoperability, open

systems applications, and adaptability.
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Structure of the Report

This master thesis has two main parts:

• Main report: this is the main part of the report. It covers the background, the problem

description and thesis objectives. It includes the research methodology, the main results,

discussion, recommendations and summary.

• Papers/articles: This part includes two peer-reviewed papers written and presented at in-

ternational conferences. This is in fulfilment of one of the thesis’ sub-objectives to present

at least one paper at a reputable International conference. The articles are undergoing

further review for publication in scientific/technological journals. These articles docu-

ment my main research achievements during the MSc programme. They are related to

the theme of this thesis and the specialisation project completed earlier during the Au-

tumn semester of 2015.
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Chapter 1

Introduction

Maintenance is one of the most elusive subjects in the modern business enterprises. Whereas

the concept has evolved over the decades, there are still many grey areas with some business

executives still viewing the maintenance function with the suspicion of being a necessary evil.

As we approach the 4th industrial revolution, the situation becomes more challenging with the

promise of interconnecting many machines in an interdependent system of networks. This the-

sis focuses on the novel aspect of predictive maintenance within such collaborative networks.

This chapter lays out the background to the tasks answered in this report, specifies the project’s

problem description and its objectives. The limitations of the report are presented, the ap-

proach is described and the structure of the main report is outlined.

1.1 Background

Competition between businesses is driving both cost and innovation. Companies want to do

business at minimal costs and thus often adopt innovative technologies as a part of the strat-

egy to reach their long term goal. As maintenance is a major cost element in any organisation’s

balance sheet, any solution with the possibility to reduce maintenance costs is often actively

pursued. One of such maintenance strategies is predictive maintenance. The EN-13306 (2010)

defines predictive maintenance as "condition based maintenance carried out following a forecast

derived from repeated analysis or known characteristics and evaluation of the significant param-

eters of the degradation of the item." Several researchers have investigated condition monitoring

1
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as a key maintenance activity necessary for the implementation of predictive maintenance on

production assets. What is common between these researchers is their utilisation of the optimi-

sation model to achieve their objective functions, Rausand and Vatn (2008), Wang (2008), Schef-

fer and Girdhar (2004). The gap between existing optimisation models’ theories and practice will

increase as systems become more complex within the Industrial Internet of Things (IIoT). So far,

there is no proven technique to bridge this gap.

This thesis uses condition monitoring of rotating machinery (by means of the vibration tech-

nique) as a case study. As discussed in Lu et al. (2009) and Márquez et al. (2012), the vibration

based condition monitoring has a proven track record in wind turbines as well as other rotating

equipment applications. However, at the dawn of Industry 4.0 Kagermann et al. (2013), Evans

and Annunziata (2012), a major concern expressed by my industry partner in this thesis is that

there is a high chance of loss of fidelity in the representation of vibration data. The reason is that

under current Industry 4.0 propositions, focus is on monitoring low level data such as tempera-

ture, pressure, flow rate, vibration root mean square (RMS) values, and so on. On the contrary,

the success of the vibration based condition monitoring is derived from its capability to handle

a multiple dimension of data from time waveforms, frequency spectra and phasors. The vibra-

tion signature is analysed not just as a science but also as an art and the outcome is used for

maintenance decision support. With an improved data representation technique and the appli-

cation of smart machine learning algorithms within the sphere of the IIoT, the science aspect of

the data analysis can be overcome but the art part is intractable because it is based on human

experience, intuition and subjective reasoning. Rotating machine prognostics is discussed in a

greater detail in chapter 4 and in chapter 6 it was argued that an efficient integration of vibra-

tion data with the IIoT is an irreducible minimum for smart maintenance, chapter 5 provides

the cost benefits for implementing predictive maintenance.

1.2 Objectives

The main objective of this master thesis is to present how predictive maintenance can be used

for prognosis by relying on the vibration based condition monitoring of rotating machinery

while recording data in an Industry 4.0 compliant manner. The peer-reviewed conference pa-
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pers presented in the course of this thesis and master programme are integrated into the objec-

tive of the study. The main objective is achieved by performing the following tasks which form

part of the thesis sub-objectives:

1. Identify and clarify the main maintenance philosophies applied to production assets, state

the key underlying assumptions and the pros and cons associated with each.

2. Discuss the fundamental basis of the science for vibration analysis and present some gen-

eral lifetime models.

3. Study how the vibration technique is used for rotating machinery condition monitoring

and present how this can be used for diagnosis and prognosis – causes of failure and re-

maining useful life (RUL) prediction.

4. Provide a case study to justify the utilisation of condition monitoring on critical assets as

a means to reduce costs safely.

5. Identify and present possible approaches and the benefits of integrating vibration data

with the IIoT to achieve smart maintenance.

1.3 Limitations

This master thesis is time limited to twenty weeks based on the applicable rules at the university.

The main audiences are college students, professors and members of the industry with some

backgrounds in maintenance engineering theories and practice, rotating machinery, vibration

analysis, data sciences and stochastic processes.

The IIoT is a new and evolving paradigm, literature in the area was scarce and hard to find.

Only a limited amount of vibration data was available as a conscious effort was made to use

actual measurements from real assets. Where the amount of available information was deemed

insufficient or out of step with the desired format, certain assumptions and honest estimates

were made and documented. Signal processing, programming and advanced instrumenta-

tion/automation techniques are beyond the scope of this report.
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1.4 Approach

A review of relevant literature was carried out in order to reach the thesis sub-objectives. This

approach was combined with theoretical research and case study to achieve the main objec-

tive. I worked with an industry partner, Karsten Moholt AS, to collect and analyse real vibra-

tion data and ran simulations using the Omnitrend software licenced to the company as well

as the Minitab package licenced to the NTNU. Simulation results illustrated the validity of my

argument and are expected to enhance readers’ understanding. I visited the partner company

to make personal observations and to interview experts. I followed the insights and informed

recommendations made by my supervisor and co-supervisor while carrying out those tasks ini-

tially thought to be beyond my competence and availed myself of every learning opportunity

provided throughout the process of completing this thesis.

1.5 Structure of the Main Report

The rest of the main report is organised as follows:

• Chapter 2 provides an overview of maintenance philosophies and clarifies related termi-

nologies;

• chapter 3 covers the fundamentals of vibration analysis and introduces some illustrative

lifetime models;

• in chapter 4, the vibration based condition monitoring methodology is described in de-

tail and the autoregressive moving average (ARMA) technique is used to support machine

learning capability for a rotating equipment prognosis;

• chapter 5 presents a case study using real data to highlight the importance of predictive

maintenance as a safe cost cutting mechanism;

• chapter 6 discusses the necessary approaches and the requirements to interface vibration

data and the IIoT, that is to provide the basis for smart maintenance application within

Industry 4.0;
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• and chapter 7 presents a discussion of the main results and concludes the report with

some insights.



Chapter 2

A Review of Maintenance Philosophies:

Ancient and Modern

The maintenance terminology standards (EN-13306 (2010)) defines maintenance as “the com-

bination of all technical, administrative and managerial actions during the life cycle of an item

intended to retain it in, or restore it to, a state in which it can perform the required function”.

Maintenance management on the other hand determines the maintenance objectives, strate-

gies and responsibilities, execution of consciously selected action plans to meet the overall or-

ganisational and maintenance objectives. It was equally shown in Wilson (2002) that effective

maintenance means carrying out tasks at the right time with both speed and skill. When dis-

cussing maintenance theory it is necessary to clarify the terminology, structure and objectives

of different maintenance philosophies. In a broad sense, three maintenance practises, namely

corrective maintenance, preventive maintenance, and predictive maintenance are discussed in

this chapter. The three broad categories of maintenance philosophises presented were further

linked with other maintenance concepts such as condition based maintenance (CBM), reliabil-

ity centred maintenance (RCM), reactive, proactive and precision maintenance. Figure 2.1 pro-

vides an overview. The average percentages of the different maintenance types shown, based

on data available from industry, indicates that more than 55 percent of all maintenance related

activities fall within corrective maintenance and that means that more than half of the times,

maintenance activities happen as a surprise to maintenance managers with its natural conse-

quence of suboptimal value realisation on physical assets. A well structured predictive mainte-

6



CHAPTER 2. A REVIEW OF MAINTENANCE PHILOSOPHIES: ANCIENT AND MODERN 7

Figure 2.1: Maintenance Overview (Adapted from the maintenance terminology standard, EN-
13306 (2010))

nance system is important to avoid unplanned stops or mitigate the consequences of sudden

failures. Increasing the percentage of CBM driven maintenance activities from its current 12

percent level (as per industry survey) will have a direct positive impact on the safety and prof-

itability factors of maintainable assets.

2.1 Corrective Maintenance

The philosophy here is "fix it when it breaks." Other terms used to refer to corrective mainte-

nance are run-to-failure (RTF), breakdown maintenance, hysterical or reactive maintenance,

and so on Wilson (2013), Zaal and Newton (2011), Mobley (2002). It is not wrong just because

it is reactive maintenance; there are a few instances where corrective maintenance might be vi-

able, what is important is to have a due consideration to the maintenance and organisational

goals. In other words, define your objectives. Pay attention to the asset criticality. Answer the

question, "how does the failure of a machine affect my production?" And other related ques-

tions, "how does a sudden loss of an essential function affect the organisation’s overarching

objectives?" "What are the important safety or cost considerations to drive maintenance pol-

icy?" "How does a breach affect the maintenance department’s reputation or the organisation’s

profitability?"
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Rather than carefully anticipating and planning in advance for events, reactive maintenance

is a fire brigade approach. Generally speaking, running a production asset primarily based on

reactive or corrective maintenance mode is not the right way to do business today. This is be-

cause a production facility run in this way always finds itself merely reacting to situations and

trying to catch up with stakeholders’ expectations. It is important to take advantage of technol-

ogy and more sophisticated maintenance processes to achieve better results.

2.2 Preventive Maintenance

In order to prevent a maintainable asset from failing, reduce the probability of loss of function

or attain a reasonable level of dependability it requires the performance of certain maintenance

tasks, given that the item is used within its intended design. Other terms commonly used to refer

to preventive maintenance (PM) includes scheduled or predetermined maintenance, historical,

calender or cycle based maintenance, inter alia. The maintenance tasks performed before an

asset enters a failed state is referred to as preventive maintenance Rausand and Høyland (2004),

Scheffer and Girdhar (2004). The guiding theory of the PM philosophy is to "fix it before it fails."

The underlying assumption thus is that every machine will suffer certain amounts of degrada-

tion as it ages in operation and will eventually fail with time and/or use.

Predetermined maintenance is a preventive maintenance activity carried out on hard time

basis by assigning lifetime distributions to components based on assumptions or experiments.

Typically, the facts of these assumptions are observations carried out on another related com-

ponent. The current maintenance activity is "called out" based on that historically documented

information but without any recourse to the actual performance of the item, it does not mat-

ter whether the item is presently functioning or is in a failed state, it has to be discarded, ser-

viced or overhauled so long as the predetermined interval has been attained. Predetermined

maintenance is not proven to be founded on sophisticated technology or procedure. It is of-

ten criticised for being a wasteful maintenance philosophy. It has become less popular over the

last decades. The rising popularity of smart sensors and advanced instrumentation techniques

mean that the advantages of condition based maintenance have become more obvious. An-

other disadvantage of PM as proven by Okoh and Haugen (2013) is that maintenance activities
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Figure 2.2: The bath tub curve for machine wear (wear rate indicates failure rate)

can lead to failure due to human error or infant mortality, for example. The region marked as

"burn in" in Figure 2.2 represents the infant mortality events. That is why it is important to per-

form maintenance only as required, that is, based on actual condition of the equipment under

consideration and not just historical deductions.

2.3 Predictive Maintenance

Predictive maintenance is predicated upon the philosophy: "if it is not broken, don’t fix it." Ro-

tating machines typically show signs of impending failure before the occurrence of an eventual

breakdown if appropriate actions are not taken timely. For example, there could be an increase

in temperature or cracks in the hot sections, rise in vibration level, or change in vibration spec-

tral patterns and time waveforms. There might be a drop in performance, an increased noise

level, increased rotor stiffness, or changes in motor currents and voltages amongst several other

signs. There are many techniques in use today that can provide early signs of these degradation

modes Chukwuekwe et al. (2016). The spectrometric oil analysis programme (SOAP) can detect

the erosion of metal surfaces in aircraft engines by analysing the lubricant. Improper lubrica-

tion, rotating members’ imbalance and excessive play are common causes of component wear

in machines especially among mating members or metals in contact. Vibration analysis which

is discussed in detail in this report (see chapters 3, 4 and 6) can provide early warning indica-

tions and help detect these failure mechanisms before they reach an alarming level. Predictive

maintenance is the systematic application of these condition based early warnings to the main-

tenance of the production assets under consideration. A system that provides an early sign of

failure helps to mitigate surprises. Maintenance activities and repair works are planned in ways
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Figure 2.3: The P-F Curve (The Figure depicts the three maintenance philosophies described in
the report. PM is a naive maintenance activity carried out at some conservative and arbitrary
point "2" where the machine condition still has a high survival probability. The PdM/CBM is
implemented to prevent the machine from reaching point "F" unexpectedly. After point "F," a
functional failure has occurred and corrective maintenance is initiated to restore the lost func-
tion. Note that point "1" is not necessarily related to the age of the machine.)

that consider not only maintenance needs but also production schedules. Ideally, there will be

a higher machine availability, increased profit, lower cost of holding inventories of spare parts

and a drastically lower maintenance costs. Predictive maintenance is more than just condition

monitoring. It involves changes in maintenance philosophy orientations and management pro-

cedures to allow maintenance activities to be triggered by real maintenance needs rather than

carrying out maintenance based on what time it is on the manager’s clock or calender. Figure

2.3 provides an additional insight into the three major maintenance philosophies with respect

to the P-F interval.
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2.4 Condition Based Maintenance (CBM)

The EN-13306 (2010) defines condition monitoring as any activity or set of activities, performed

either manually or automatically, intended to measure at predetermined intervals the character-

istics and parameters of the actual state of an item. One of the main application areas of the CM

technique is in condition based maintenance (CBM). CBM is a preventive maintenance which

includes a combination of condition monitoring and/or inspection and/or testing, analysis and

the required maintenance actions. These activities maybe scheduled, on request or on a contin-

uous basis. The principal objective of the CBM technique is that the condition of the asset is the

driver for its maintenance Zaal and Newton (2011). In order for condition monitoring and by

extension condition based maintenance to be implementable, the following are necessary and

sufficient preconditions to be met:

1. There must be a possibility to detect reduced failure resistance related to any identified

failure mode

2. There must be a possibility to unambiguously define potential failure conditions that are

detectable by systematic and explicit task(s)

3. The system is not prone to shock failures instead there is a reasonably consistent age in-

terval or lapse of time between the potential failure and actual or functional failure. This

is related to the concept of fault latency Simeu-Abazi and Bouredji (2006).

Rausand and Vatn (2008), Vatn (2007) and Mobley (2002) present a more detailed discussion on

the concept of CBM.

It is necessary to highlight that condition monitoring only tells us the functional status of the

machine and helps us to be able to plan in advance to respond to any maintenance demands, it

does not help in any way to enhance the reliability of the machine or delay its failure (except if

additional measures were taken). In other words, it helps to anticipate and meet maintenance

needs before equipment breakdown. This is proactive maintenance, a term which also defines

other strategies such as precision maintenance, root cause failure analysis and reliability cen-

tred maintenance. The term "proactive" is instructive because in that sphere, rather than just

reacting to the impulse of a sudden failure, a conscious effort is made not only to predict and re-
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spond to the possibility of a failure but also to address its root cause for the purpose of learning

and to forestall future events. It is great to be able to use the CBM to identify failures before they

occur but it is even more beneficial to dig into the roots of the failure causes and use that knowl-

edge to improve the reliability of the machine. That leads to a new paragraph and a discussion

on reliability centred maintenance.

2.5 Reliability Centred Maintenance (RCM)

Reliability Centred Maintenance (RCM) is a method for maintenance planning developed in the

sixties within the aviation industry and later adapted to other industries and military depart-

ments Rausand and Vatn (2008). The logic of an RCM analysis as a maintenance management

method is to use the failure mode/failure cause in the Failure Modes, Effects and Criticality Anal-

ysis (FMECA) to establish ways by which the appropriate maintenance actions can be used to

overcome failures or degradation tendencies in an asset.

As pinpointed by Vatn (2007), the main objectives of RCM analysis are:

• Identification of effective maintenance tasks;

• Evaluation of the identified tasks by performing some cost–benefit analysis, and

• Preparation of a plan for carrying out the identified maintenance tasks at optimal inter-

vals.

Figure 2.4 shows a typical application of RCM analysis in maintenance task assignment leading

to a scheduled function test (SFT) Vatn (2007).

The basic assumption of the RCM analysis is that every machine has a limited useful life

and will eventually degrade to a failed state (P-F curve, ref. Figure 2.3). The absolute validity

of these assumptions has been challenged by Mobley (2002) who argues that if a physical asset

was properly designed; installed, operated and maintained the right way, that asset can have

a perpetual availability and an endless life except for a few random failures or external factors

such as an operator error.

The RCM analysis is not a quantitative method Vatn (2007) and thus cannot be used to de-

termine an optimum maintenance interval. Professors Rausand and Vatn identified 12 steps
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Does a failure 
alerting measurable 

indicator exist?

Is aging parameter 
α>1?  

No
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monitoring feasible?
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Scheduled 
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Figure 2.4: Maintenance Task Assignment/Decision Logic Vatn (2007)
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for carrying out the RCM analysis some of which are: identification and selection of systems,

Functional Failure Analysis (FFA), selection of critical item(s) or maintenance significant items

(MSI), collection and analysis of data, FMECA, selection of maintenance actions, maintenance

interval determination, and in-service data collection and updating Rausand and Vatn (2008).

The reliability centred maintenance is in many respects a classical example of proactive mainte-

nance tool. It incorporates, at some stages, certain aspects of root cause analysis and the failure

modes and effects analysis, for example.

2.6 Failure Modes, Effects and Criticality Analysis (FMECA)

Predictive maintenance requires condition monitoring on the components and systems that

make up a production plant. It is however both costly and unrealistic to monitor every sin-

gle piece of item in complex production plants. The FMECA provides a technique to select the

components or systems with the highest importance while prioritising for the predictive main-

tenance applications. FMECA is a semi quantitative (often, bottom-up) analysis used to assess

what effects the failure of particular components will have on the functioning of the whole sys-

tem as designed Rausand (2014), Rausand and Vatn (2008). The FMECA is often adapted as a

part of RCM activities and has proven use in functional failure identification and maintenance

significant item (MSI) categorisation. The FMECA is a good first step for reliability engineers

to estimate system structures and parameters such as mean time to repair (MTTR), mean time

to failure (MTTF), mean time between repair (MTBR), failure rate or force of mortality (FOM),

among others. It is used to identify components or systems with significant importance to be

placed under condition monitoring or to draw up preventive maintenance strategy.

Experience with the application and use of the FMECA technique has proven that the use

of the so-called TOP event (a term associated with fault tree analysis (FTA) as a basis for the

analysis can significantly simplify the analysis and make the workload less cumbersome. The

TOP event may be defined, for example, as safety, system availability, environmental hazard,

punctuality, production loss or an accident. By considering an applicable TOP event in a conse-

quence analysis, the FMECA finds useful application in the barrier model for safety as shown in

the Swiss cheese model by Reason and Reason (1997) to balance production and protection.
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Several published standards and procedures provide useful guidance and a more detailed in-

formation on how to conduct the FMEA/FMECA MIL-STD-1629A (1980), MIL-STD-2155 (1985),

IEC-60812 (1985), BS-5760-5 (1996), and SAE-ARP-5580 (2001).

The current chapter provides a review of some relevant maintenance concepts and philoso-

phies. The discussion is by no means exhaustive but a motivation was provided as a basis for

understanding the applications presented in later chapters. It is also intended in parts to an-

swer the question, "why is maintenance important?" and "why is it necessary to consider pro-

duction concerns while scheduling maintenance?" The latter question form part of the issues

addressed with predictive maintenance. Other challenges that could be overcome by following

effective maintenance philosophies were also highlighted. The key objectives include reliability

growth and improvement, energy and resource efficiency, maintenance costs reduction, im-

proved product quality, optimised asset value and increased profitability.



Chapter 3

Fundamentals of Vibration Analysis and the

Lifetime Models

Whilst there is an increased focus on big data, it has been noted that most organisations do

not have a proven system for running data analytics and getting the best out of the prevalent big

data. The reason is often that the industry has not done enough to integrate stochastic processes

into their maintenance decision models. This chapter introduces the fundamentals of vibration

analysis and proposes how the data generated can be treated with existing statistical methods.

A few practical interpretations are provided to illustrate the discussion.

3.1 Fundamentals of Vibration Analysis

Production facilities are replete with rotating and reciprocating machines. For that reason, vi-

bration based condition monitoring is arguably the most popular technique in the industry to-

day. It is used to give an indication of system malfunction by measuring vibration signals Wang

(2008). The two important quantities often measured are frequency and magnitude of vibration.

The displacement, velocity (often the preferred choice) and acceleration parameters are related

to one another and are representations of magnitude Mobley (2002). Vibrations are measured

in time domain and then converted to the frequency domain by means of frequency analysers

for example the mathematical algorithm known as Fast Fourier Transform (FFT) analysers.

If we consider vibration as our monitored quantity to be periodic and about an equilibrium

16



CHAPTER 3. FUNDAMENTALS OF VIBRATION ANALYSIS AND THE LIFETIME MODELS 17

position then we can make a prediction based on the laws of physics. If T is the period of vibra-

tion, V(t) its velocity measured at time, t then the root mean square (RMS) value of this velocity

is proportional to the vibration energy given as:

Vrms =
√

1

T

∫ T

0
V (t )2 d t (3.1)

it follows that the average value is given as:

Vavg = 1

T

∫ T

0
V (t )d t (3.2)

and the fundamental frequency,

f = 1

T

By following the Laws of Physics, we define the crest factor as

Fc =
Vpeak

Vrms

and the form factor as

Ft = Vrms

Vavg

If we assume that the vibration function V(t) under investigation is sinusoidal, then

V(t) = V · sin(wt) (3.3)

which returns the following values:

Vpeak = V

Vavg = 2V

π
= 0.636V

Vrms = Vp
2
= 0.707V

Fc =
p

2 = 1.414

Ft = 1.11
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Table 3.1: Conversion Table for Harmonics Vibration
From To Peak to Peak Peak RMS Mean
Peak to Peak Value 1.00 0.5 0.35 0.32
Peak Value 2.00 1.0 0.71 0.64
RMS Value 2.83 1.41 1.00 0.90
Mean Value 3.14 1.57 1.11 1.00

Table 3.1 (from Rao (1996)) provides a basis for converting peak-to-peak value to RMS value and

vice versa. In modern vibration analysis systems, the RMS value is obtained automatically with

the help of a special software but the discussion has been included here to provide a motivation

to understand the physics behind the RMS value conversion. At Karsten Moholt AS, the software

currently in use for vibration analysis is the "Omnitrend" developed by the German company,

Prüftechnik.

3.1.1 The Root Mean Square (RMS) Value

The mathematical definition of RMS as shown in earlier equations is the peak value divided by

the square root of 2, assuming a sinusoidal waveform. It is a measure of the average amount of

energy contained in the vibration waveform. It is assumed that readers have basic understand-

ing about simple harmonic motion, but as the RMS value is important for describing vibration

data, this paragraph is dedicated to clarify the RMS terminology with respect to vibration anal-

ysis. The vibration data can be presented in a way that simply sums it up as a single number

called "overall RMS or overall level." The procedure to organise and trend the aggregation of

these single number overall values over a period of time can provide an indication of fault or

deviation Kuemmlee et al. (2013), Lim et al. (2010). By comparing these trended overall RMS

values to a predefined alarm level it is possible to get an early indication of impending failure.

What is common in practice is to capture and trend velocity readings. These readings are then

referenced against some alarm charts (for example in ISO 10816-3 and ISO 7919-1). The idea

is that when a mechanical fault is present in any component of the rotating machinery, the

level of vibration will trend following an upward pattern. The alarm level is therefore selected

to correspond to some upward value prior to what is predefined as a functional failure. When

the mechanical fault leads to an amount of degradation that trends up to this predefined alarm
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Figure 3.1: Time Waveforms, Frequency Spectrum and the Fast Fourier Transform
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level, it creates the necessary awareness not only to use the machine with greater caution going

forward but also to trigger the necessary planning process in order to carry out maintenance

at a time conducive to the production demand of the plant. However, the approach to trend

the RMS amplitude is rather unsophisticated and based on the experience at Karsten Moholt

AS, it does not always produce the correct results. There were instances where faults could not

be detected with the trended RMS values although the system was confirmed to have faults by

other means. There were also examples of trended values showing signs of faults whereas there

was none. The reason is that there are other factors that could cause mechanical faults not to

manifest in the overall trend and the contrary is also true that some factors could cause the over-

all trend to increase which are totally unrelated to any mechanical faults. In order to make the

measurements to be more robust, it is necessary to consider the frequency spectrum in addition

to the time waveforms. The Fast Fourier Transform provides a technique to convert from time

to frequency domain and vice versa (ref. Figure 3.1).

3.1.2 The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is an important terminology in the discussion of rotating ma-

chinery vibration signal processing and the analysis of the resulting data. The upper part of

Figure 3.1 shows a complex time waveform displayed on the red board. That sort of complex

vibration signal often comes from multiple sources in a rotating machine: the prime mover or

rotor, bearings, pulleys, gears, fan blades, and so on. These different components vibrate at

different frequencies and amplitudes to create the complex waveform. In order to make use of

the vibration signal for any practical purpose, there has to be a way, for example, to separate

the vibration signal coming from the bearing from the one coming from the gear, and so on.

That means we cannot directly analyse the time waveform and associate faults to any particular

component. That challenge is overcome with the vibration spectrum and spectral analysis. The

process for converting the time waveform into the frequency spectrum is called the Fast Fourier

Transform (FFT). The left hand side of the upper part of Figure 3.1 shows the frequency peaks

from the the three sinusoidal waveforms that made up the complex time waveform on the right

hand side. The FFT technique was used to separate the complex waveform which are then dis-

played on the blue board according to their individual frequencies. The lower part of the figure
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shows a transformation from time domain (time versus amplitude) to the frequency domain

(frequency versus amplitude) using the FFT. McInerny and Dai (2003), Fessler and Sutton (2003)

are among a rich encyclopedia of materials written on signal processing and the role of the FFT

in signal analysis.

In the context of Industry 4.0, what has been proposed in this report (see chapters 4 and 6) is

to use the frequency peaks from the FFT spectral analysis as a basis for determining the extent

of tolerable degradations and the setting of the alarm limits. Because these are single values,

they are automatically compatible with the current proposals within Industry 4.0 for the use of

single, discrete numbers. The sidebands and harmonics from the spectral analysis will also be

modelled as single values and the data can be organised and treated together in a structured

way using already well studied lifetime models and stochastic processes.

3.2 Lifetime Models

This section highlights the importance of data in machine health monitoring including activi-

ties related to prognosis or predictive maintenance Lindqvist (2006). The purpose is not to write

an in-dept report on stochastic processes (such topics have been rigorously treated in the math-

ematical/statistical body of knowledge), instead a motivation is provided for understanding the

basis for the lifetime distributions of maintainable assets. The concept of lifetime modelling is

used to study how machine failures and the representative data are distributed over a time pe-

riod. This essentially entails that data is first of all collected and further that a statistical model

is fitted on the data or estimated for it. The emphasis is on the failure and maintenance data for

repairable components such as ball bearings or systems such as rotating machinery. Depend-

ing on one of two approaches, we have either the parametric or the non-parametric families of

lifetime distributions. Both are covered in many standard statistics textbooks. At the end of the

chapter, the Minitab statistical software is used to test a standard data set from ball bearings. By

observing and plotting the ball bearings failure data, four different lifetime distribution models

were separately assumed. The results were compared with each other to help identify which

models fit the data best. It was easy to see by inspection that the data set is best described by

the lognormal distribution but in more complex cases a test is required. The Anderson-Darling’s
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goodness-of-fit is included in Minitab but can also be computed manually and may satisfy the

requirement for such a test. The lower the Anderson-Darling goodness-of-fit value the better

the assumed model fit the analysed data. The general focus is on the analysis of machine data

for maintenance decision purposes not the statistical inferences. Equations and relationships

between functions are stated in this report without any further proof.

3.2.1 Parametric Families of Lifetime Distribution

The lifetime, T of a machine component or system is a positive and continuously distributed

random variable that can be modelled by its probability density function (pdf), cumulative dis-

tribution function (cdf), reliability or survival function, R(t) and the hazard function, z(t) often

referred to as failure rate or the force of mortality (FOM). The parametric models make the as-

sumption that the lifetime distribution of a machine data-set is characterised with a known pa-

rameter within some specific distributions such as the exponential, Weibull, Gumbel, normal,

lognormal, logistics, log-logistics distributions among others.

For a lifetime, T the mean time to failure (MTTF) equals the expected lifetime E(T), thus:

MT T F=E(T )=
∫ ∞

0
t f (t )d t =

∫ ∞

0
R(t )d t (3.4)

If we further make the assumption that T is exponentially distributed, then its probability den-

sity function, pdf is given as:

f(t) =λe−λt

Which results in the computation

MT T F=
1

λ

The above equations hold true for the exponential lifetime distributions. λ is the failure rate.

The practical implication of the MTTF being the reciprocal of the failure rate in an exponen-

tially distributed lifetime is that the failure of such components is constant and does not depend

on time. This is the so-called "memoryless" property of the exponential distribution. Another

reason why the exponential distribution is popular with system reliability engineers is that it

is easy to analyse, for example in the Markov chains and Markov processes. It is often used to
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describe the times to failure of components that experience wear out after some expected time

in service. Common examples are high grade integrated circuits and capacitors used in special

applications such as space missions. If the criticality of components known to have exponen-

tial lifetime distributions permits, the most efficient maintenance policy would be to run such

components till they fail and then a repair or replacement is carried out. There is a debate in

the maintenance engineering community as to what state the system is restored after the failure

event. Some are pessimistic and say that it is restored to the state it was immediately before it

failed; whereas some are optimistic and argue that the system was renewed, in other words, it

was restored to an as good as new condition. Maybe the true state after the so-called renewal

process is somewhere between what the pessimists and the optimists postulate but so far there

is neither a methodology nor a literature to point out where this compromise position might be.

The Weibull distribution is also another type of lifetime distribution that is studied very often

by reliability and maintenance engineers. Unlike the exponential distribution, it is modelled

with at least two parameters. The lifetime T of any component can be modelled as coming

from a Weibull distribution with a shape parameter α and a scale parameter β (both α and β

are greater than zero). It is shown in Rausand and Høyland (2004) that for a Weibull distributed

lifetime, its survival function

R(t) = e−(λt )α

And the expected lifetime is computed as

E(T )=
∫ ∞

0
R(t )d t =

∫ ∞

0
e−(λt )α d t (3.5)

The theory of extreme values provides an understanding that enables the Weibull distribution to

be used to model the minimum of a certain class of distribution if the data-set represent a large

number of independent positive variables. The extreme value could be the failure of the weakest

link in a chain with each chain exposed to an independent failure mode such as stress or fatigue.

It could also be the failure of a system which is comprised of a large number of components in

series assuming that the failure mechanisms in the individual components are approximately

independent. Above all, the greatest attraction of the Weibull distribution to engineers and sys-

tem analysts is empirical. The Weibull distribution has been used to successfully model failure
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data with either an increasing or decreasing failure rate. The Weibull regreesion model (Attardi

et al. (2005)) also has the so-called proportional hazard property and it is the only log-location-

scale-survival-regression model known to have this property. That means that the hazard rate

is a product of two factors: one factor is a function of time but not of a certain covariate vec-

tor and the second factor is a function of a certain covariate vector but not of time. This is an

important analytical technique when considering the concept of relative or competing risks. In

the analysis of the failure of a rotating equipment, it may be necessary to answer the question of

a particular component’s failure resulting from the factors of fatigue or corrosion among other

failure mechanisms.

The lognormal distribution (Pascual and Montepiedra (2005), Peng and Tseng (2009)) is the

last of the survey of common distribution models discussed in this section to provide the moti-

vation for using parametric models in data analysis. The lognormal distribution is widely con-

sidered to be an appropriate model for the times to failure when the failures result from degra-

dation processes in a multiplicative combination with some random rates. This model has been

used widely to describe the time to fracture resulting from fatigue crack propagation in metals.

It is an important model to consider while carrying out vibration analysis of rotating equipment

in the context of this report.

3.2.2 Non-Parametric Families of Lifetime Distribution

The non-parametric model is used when nothing is known about the distribution of the studied

lifetimes or when the available knowledge is not sufficient to assume any lifetime model. How-

ever, it is often useful in practice for analysts to compare the results from the parametric and

non-parametric models of the same data-set. The aim of the non-parametric technique is to

estimate some of the functions earlier discussed under the parametric models: the probability

density function (pdf), cumulative distribution function (cdf), reliability or survival function,

R(t) and the hazard function, z(t). Two methods (the Kaplan-Meier Estimator and the Nelson-

Aalen Estimator) used widely in the non-parametric technique for data analysis are presented

below. Lindqvist and Doksum (2003) and Lindqvist and Langseth (2005) provide additional ma-

terials to aid the understanding of the basis for these estimation methods and other related

topics.
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Figure 3.2: Ball Bearings

The Kaplan-Meier Estimator

Assume that the lifetimes T1, T2, T3, . . . , Tn have a common survival function R(t) and are inde-

pendent and identically distributed. Consider also that the property of independent censoring

was satisfied. By definition, the property of independent censoring is said to be satisfied in a

censoring scheme, "if, at any time t, the components at risk are representative for the distribution

of T, that is, their probability of failing in a small interval of time (t, t+h) is equal to the failure

rate z(t) multiplied by the small interval h as h tends to zero" Borgan (2005). If T1< T2< T3< . . . <

Tn are the ordered time observations where at least one failure was recorded, and ni , di are the

numbers at risk and the numbers that failed respectively at Ti then, in general, the Kaplan-Meier

estimator is computed as:

ˆR(t ) = ∏
Ti≤t

ni −di

ni
(3.6)

The function R̂(t) thus estimated by the Kaplan-Meier (KM) technique is known as the empirical

survival function which practically is equivalent to the reliability or survival function discussed

earlier in the parametric models. The KM method can be used to estimate the MTTF of compo-

nents such as bearings (Figure 3.2).
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The Nelson-Aalen Estimator

The Nelson-Aalen technique is used as an estimator for the cumulative hazard function, ˆZN A

and it is defined as

ˆZN A = ∑
Ti≤t

di

ni
(3.7)

In Meeker and Escobar (2014), it is shown that the Nelson-Aalen estimator (or simply, the Nelson

estimator), ˆZN A is asymptotically equivalent to the Kaplan-Meier estimator, R̂(t). The Nelson-

Aalen estimator is not included in the 2015 version of the Minitab statistical software (Minitab

version 17.2.1) used to demonstrate the discussed concepts in the next section but it does in-

clude the so-called "hazard-plot," which in fact is not a correct approximation to the cumulative

hazard function estimated by Nelson-Aalen.

The ideas discussed in the preceding paragraphs are further illustrated through a case study

using publicly available standard data from ball bearing observations. The main focus of this

report is not on the statistical inferences instead the objective is to find a valid ground upon

which to base the maintenance decision process. Discussions on hypothesis testing, confidence

intervals, censoring, standard deviation and variance are well covered in statistical textbooks

hitherto referenced in this report.

3.2.3 Case Study: Analysing the Ball Bearings Failure Data

The purpose of this section is to illustrate the topics discussed in the two immediately preceding

sections with the use of a case study. The analysis is carried out using the Minitab statistical soft-

ware. The numbers used are from a standard data-set generated from ball bearings in the case

where 23 units were monitored for how many million revolutions were made before a fatigue

failure was recorded. The data is tabulated and presented on Table 3.2.

One common task is to plot the hazard rate and test the model. The test shows whether or

not there was an increasing failure rate (IFR) or a decreasing failure rate (DFR). By observation, if

the curve of the hazard rate function is convex it means the failure rate is increasing and when it

is concave it means the failure rate is decreasing. In this case study, however, the aim is to show

that the assumed model in a parametric analysis will influence the the results obtained. Since

these results feed into the maintenance decision loop it is always a careful consideration to es-
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Table 3.2: Millions of Revolution to Fatigue Failure for 23 Units of Ball Bearings
Unit # Revolutions Unit # Revolutions
1 17.88 13 68.64
2 28.92 14 68.64
3 33.00 15 68.88
4 41.52 16 84.12
5 42.12 17 93.12
6 45.60 18 98.64
7 48.40 19 105.12
8 51.84 20 105.84
9 51.96 21 127.92
10 54.12 22 128.04
11 55.56 23 173.40
12 67.80

timate accuracy. Figure 3.3 shows the four scenarios where the data was treated based on the

Wiebull, normal, lognormal and exponential models assumptions. It provides a table of MTTF

as well as percentiles. The Anderson-Darling’s measure of goodness-of-fit shows that the log-

normal model has the smallest value which means it is the best fit for the data. The implication

is that the MTTF of 72.7 months estimated by the lognormal model should be trusted more than

the MTTF of 72.2 months estimated by the exponential model and so on.

The analysis was conducted based on the 95% confidence interval (CI) but Minitab has the

option to change this if the analyst has another preferred choice. In other instances, it is the case

that the analysed data was derived from an experiment. In such cases it might be required to

make total time on test (TTT) plots or the accelerated life tests analysis. The homogeneous and

non homogeneous Poisson processes are also important stochastic techniques used for data

analysis. Within the big data paradigm, maintenance practice for the future stands to benefit

from rigorous data analysis for a more efficient maintenance function.

The challenge to industry is how to structure and organise the data in a form that it can

be analysed to provide useful inputs for maintenance decision support. In the case of vibra-

tion data, Industry 4.0 provides another level of challenge, the data has to be processed and

presented in formats that are compatible with the Industrial Internet of Things (IIoT) systems.

Some aspects of that challenge was studied in this report and a proposal was made for tackling

the challenge in chapters 4 and 6.
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Minitab Output for the Ball Bearings Failure Distribution Plot:  

 
Goodness-of-Fit 

 

              Anderson-Darling 

Distribution             (adj) 

Weibull                  0,895 

Lognormal                0,741 

Exponential              3,381 

Normal                   1,181 

 

Table of Percentiles 

                                   Standard    95% Normal CI 

Distribution  Percent  Percentile     Error     Lower    Upper 

Weibull             1     9,17577   3,57505   4,27561  19,6919 

Lognormal           1     18,8546   3,94833   12,5074  28,4228 

Exponential         1    0,725844  0,151349  0,482342  1,09227 

Normal              1    -13,0792   14,7184  -41,9267  15,7684 

 

Weibull             5     19,9265   5,46188   11,6444  34,0994 

Lognormal           5     26,9043   4,48907   19,3997  37,3119 

Exponential         5     3,70445  0,772430   2,46170  5,57457 

Normal              5     11,9091   11,7274  -11,0761  34,8944 

 

Weibull            10     28,0651   6,31510   18,0564  43,6215 

Lognormal          10     32,5187   4,77371   24,3881  43,3599 

Exponential        10     7,60923   1,58663   5,05653  11,4506 

Normal             10     25,2303   10,3178   5,00776  45,4529 

 

Weibull            50     68,7730   8,03885   54,6917  86,4798 

Lognormal          50     63,4583   6,90294   51,2738  78,5383 

Exponential        50     50,0597   10,4382   33,2660  75,3314 

Normal             50     72,2209   7,64558   57,2358  87,2059 

 

Table of MTTF 

                       Standard    95% Normal CI 

Distribution     Mean     Error    Lower    Upper 

Weibull       72,5154    7,5939  59,0596   89,037 

Lognormal     72,7087    8,4302  57,9288   91,260 

Exponential   72,2209   15,0591  47,9927  108,680 

Normal        72,2209    7,6456  57,2358   87,206 

 

  

Ball Bearings Failure Data Plots: 

 

Note that decimal 

points are shown 

with commas. 

C2 is the ball 

bearings revolution 

in millions 

Figure 3.3: Minitab Output for the Ball Bearings Failure Distribution ID Plot (The Figure shows
that the lifetime distribution model assumed for an analysis will influence the results. The MTTF
estimates for example gave slightly different values across the distribution models.)



Chapter 4

Rotating Machines Prognostics: The Science

& Art of Vibration Technique

Vibration is characterised with frequency (measured in Hertz, CPM or RPM) and amplitude

(measured either as peak, peak-to-peak or RMS values). The vibration energy can be described

in terms of either the displacement (measured in micrometres), velocity (measured in millime-

tres per second) or acceleration (measured in metres per square second) caused by its transmis-

sion. A vibration signal can be related to another vibration or reference signal in terms of phase.

There are several international standards dedicated to best practises in vibration analysis. They

are mostly focused on the area of using vibration analysis for the purpose of operational mon-

itoring and acceptance testing of rotating equipment or reciprocating machines. They often

generally cover diagnosis but there is so far neither an existing standard nor is there available

any proven technique to use vibration analysis to implement system prognosis. This is impor-

tant because gaining an early awareness about an impending failure provides the opportunity

to mitigate surprises and plan maintenance based on a schedule to optimise production time

and reduce downtime. This chapter proposes a technique that provides a basis for using vibra-

tion analysis to carry out system prognosis within the framework of a predictive maintenance

policy. The result can be treated with the stochastic processes and lifetime models introduced

earlier in chapter 3 but as shown later in chapter 6 it is equally compatible with Industry 4.0 pro-

posals and reference architecture. The discussion begins with an introduction to two important

standards to aid a better understanding of the topic.

29
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4.1 Mechanical Vibration and the ISO 10816 and ISO 7919

4.1.1 ISO 10816 (Parts 1 and 3)

The ISO 10816 is one of the key international standards that set out the procedures and con-

ditions for measurement and evaluation of vibration data. The ISO 10816 specifically focuses

on measurements made on non-rotating/nonreciprocating parts of the machine. It stipulates

two evaluation criteria. These are the magnitude of vibration and the change of vibration. The

vibration signal captured from a machine is specified to be broadband in the sense that the

frequency spectrum of the equipment under consideration is reasonably covered. The appro-

priate frequency range for any given type of machine will depend on its configuration and the

experience with its vibratory behaviour.

The overarching objective of any vibration analysis system is to determine the vibration

severity of a machine and the trend of the vibration over time, increasing or decreasing. In

order to meet this objective, measurements are made at carefully selected measurement points

and often in two or three different directions which are mutually perpendicular (ref. Figure 4.1).

This results in a set of vibration data representing vibration magnitude. By definition, vibration

severity is the maximum broadband magnitude value measured under agreed machine support

and operating conditions ISO10816-3 (2009). In many machines a single vibration severity value

is enough to characterise the vibration level however in other cases it will be insufficient and

a more accurate representation will depend on a number of severity values from several loca-

tions. The vibration severity at each bearing housing or pedestal is compared with the four

predetermined evaluation zones (Zones A, B, C and D) stipulated by the ISO 10816-1 and ISO

10816-3 standards to give the indication of normalcy, alarm or trip ISO10816-1 (1995). More in-

formation and chats are provided in the appendices to this report. The measuring positions are

marked and subsequent measurements are taken from the same positions with the same trans-

ducer orientations and similar operating conditions, otherwise it may produce an erroneous

result when trended over time. When these conditions are met, significant changes from the

established normal vibration readings must be investigated further to avoid reaching a position

which could be dangerous to the continued operation of the machine. It is however important to

note that in some cases some deviations cannot be detected unless the frequency components
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Item 1: Measuring points for small electrical machines 

 

 

Item 2: Measuring points for housing-type bearings 

 

Item 3: Measuring points for pedestal bearings 

Figure 4.1: Points for Measuring Vibration
ISO10816-1 (1995)
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of the vibration signal is analysed. A case study at the end of this chapter shows the benefits of

such analysis.

4.1.2 ISO 7919 (Parts 1 to 5)

The ISO 7919 standards cover the so-called "shaft vibration" and are formerly entitled: "Mechan-

ical Vibration of non-reciprocating machines - Measurements on rotating shafts and evaluation

criteria." Thus, the ISO 7919 standards compliment the ISO 10816 standards though with the

key difference that the ISO 7919 address measurement of vibration on rotating parts whereas

the ISO 10816 address measurement of vibration on non-rotating/nonreciprocating parts. Ma-

chines with flexible rotor arrangements are typical of scenarios where vibration measurements

are preferably made on the rotating parts in order to obtain a better result. Shaft vibration mea-

surements are also the preferred choice when the casings are relatively more stiff or heavier

compared to the machine’s rotor mass. Measuring shaft vibration directly on the rotating parts

helps to determine: changes in the behaviour of vibration, disproportionate kinetic loading, and

radial clearance monitoring ISO7919-1 (1996). Issues of kinetic loading and radial clearances are

not within the scope of this report; the technicalities of the ISO 7919 is not investigated further.

4.2 Frequency Peaks as Discrete Values

There are several rigorous mathematical theories which have been developed and applied in

the field of vibration analysis. Such theories, some of which are grounded in classical physics

or calculus, have been proven in other credible sources and would not be repeated here. How-

ever, vibration analysis is not all about mathematics and the sciences, it generally also engages

the human creative and imaginative energy. Such creative, imaginative skills are elements of

the arts which the vibration analysts must include in their analytical tool boxes. I earlier men-

tioned that frequency is measured either in hertz (which by definition means cycles per sec-

ond) or in CPM/RPM. The third unit of frequency is "Orders," an important measure that aids a

more imaginative and more useful interpretation of the relationship between the rotating mem-

bers’ turning speeds/frequencies, forcing frequencies/excitation energies and their frequency

responses in the spectrum. Figure 4.2 shows a rotating machine and the frequency spectrum
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Figure 4.2: Spectral Patterns for Parallel/Angular Misalignment of a Shaft Rotating at the Shaft
Rate Frequency "1X".
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patterns (peaks shown in "orders"). A trained vibration analyst can distinguish between a par-

allel or angular misalignment of the shaft by observing the patterns.

The fundamental question is what is order? Imagine sitting a set of twins (a girl and a boy)

on a four-arm merry-go-round rotating on a shaft at a certain frequency. Imagine that the initial

orientation of the four arms align with the cardinal points (north, south, east, and west). Imag-

ine that the boy and the girl sit on the north and south arms facing each other. Each of the twins

will pass in front of an observer standing at a fixed position nearby once each time the merry-

go-round makes one full revolution irrespective of its frequency. In terms of order, the girl or

the boy considered separately passes at one times the shaft rate; and considered together they

pass at two times the shaft rate, conventionally abbreviated "1X" and "2X" respectively. It does

not matter if the actual turning speed of the merry-go-round was 50 Hz, 1000 Hz or changing.

Knowing the frequency of occurrence of an event relative to the turning speed is very useful in

vibration analysis. Units of orders provide a clue to the source of peaks in the frequency spec-

trum. From the merry-go-round example cited above, a peak present at 2 orders (that is, 2X) can

be easily related to the "twins" pass frequency and thereby helping to eliminate other sources

as possible causes of the fault. The example can be expanded to include an electric motor, a

pump or compressor and so on. In an induction motor where the rotor was wound with 38 bars,

a peak present at "38X" could relate to a trouble with one of the bars; it does not matter if it is

used with a variable-frequency drive (VFD) or fixed-speed systems, the absolute frequency in

hertz or CPM is not of any practical interest. Therefore, it is valuable to relate every peak in the

spectrum to the motor shaft rate ("1X") and also to relate one peak to the other. Another benefit

of measuring frequency unit in "orders" is that it makes it easier to compute forcing frequencies.

In general, forcing frequencies (also known as defect or fault frequencies) is computed by mul-

tiplying the number of components by the shaft rate. Refer to Figure 4.3, the blade pass rate is

equal to the number of blades times the shaft rate of the shaft the blades are mounted on (that is,

7 X 3,300 = 23,100 RPM or 7 X 55 = 385 CPS, as in the current example). The lengths of the respec-

tive peaks are single discrete values which represent the magnitude or severity of vibration. If,

for example, something goes wrong with the blades but not with the shaft and coil such that the

vibration energy from the blades should increase, the magnitude of the frequency peak at 385

Hz increases in response. If the vibration energy increases even further, peak equally increases
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Figure 4.3: Forcing Frequencies and Frequency Peaks in Spectrum (The Figure shows three sim-
ple sinusoidal waveforms from the shaft, blades and coils combining into a complex overall
vibration signal. When the FFT is applied to the complex vibration signal, the frequencies are
separated into their respective peaks, note: 55 Hz for the shaft (corresponding to "1X"), 220 Hz
for the Coils (corresponding to "4X") and 385 Hz for the blades (corresponding to "7X."))



CHAPTER 4. ROTATING MACHINES PROGNOSTICS: THE SCIENCE & ART OF VIBRATION TECHNIQUE36

in response. The study conducted in thesis shows that there is a possibility to use this frequency

response feature for prognosis by applying some stochastic techniques. The remaining part of

the current chapter is dedicated to discussing how to follow this pattern over time and predict

when in the future the peak from the blades becomes dangerous to the continued operation of

the machine.

4.3 The Autoregressive Moving Average (ARMA) Models

ARMA is a popular time series analysis tool for forecasting because it provides a reasonably more

accurate result than the cumulative and naive models and is simple to implement. The major

drawback often encountered in the use of the ARMA model is its requirement for a large amount

of historic data in order to be able to produce an accurate result. Abrahart and See (2000) and

Khashei et al. (2009) among others proffer a combination of the "moving averages" with the

artificial neural networks (ANN) and fuzzy logic as a possible solution. This report does not focus

on that integration instead it advocates the correct use of prevalent "big data" to overcome the

hurdle of historic data. It can be decided how many periods should be included in the model.

For example, a 2 period moving average (MA) or 14 period MA could be the preferred choice.

The main driver for how many periods to include is the length of time for which the history

is relevant. Adapting this model for the purpose of prognosis on a maintainable system, any

record of history held prior to an overhaul is not relevant in the next round of prognosis after

the overhaul though the data may be useful for benchmarking or comparison in the future. The

general form of an M-Period ARMA model is shown in equation 4.1.

ˆxt ,t+1 =
∑t

i=t+1−M xi

M
(4.1)

where

ˆxt ,t+1 = is the forecast for period t+1 (that is the future) from period t (today)

xi = the value of the measurement made at the earliest period of the M-period considered

M = number of relevant periods



CHAPTER 4. ROTATING MACHINES PROGNOSTICS: THE SCIENCE & ART OF VIBRATION TECHNIQUE37

There is no hard and fast way for choosing M. A large M is generally preferred when the goal

is to predict way into the future. Period as used here is not defined. It can be a month, a quarter

or a year. It is important to note that it is more practicable to predict a range of values rather than

just predicting a single value. That is, it is more realistic to predict that an equipment will fail 30

to 34 weeks from now rather than predicting that the equipment will fail on the evening of the

32nd week from today, and so on. The challenge is overcome by the introduction of "confidence

intervals" and the consideration of random fluctuations but that aspect was left out of this report

for a future investigation.

4.4 Case Study: Implementing System Prognosis with the Thruster

Gearbox Bearing Spectra

The ARMA model introduced in the previous section and the lifetime models discussed in chap-

ter 3 are validated in this section through a case study of measurements made on a roller ele-

ment bearing at one of Karsten Moholt customer’s machines. The velocity spectrum for a com-

ponent of the thruster system, that is one of the gearbox bearings was analysed. The waterfall

plot of the spectra from the bearing is shown in Figure 4.4. Each spectrum represents the fre-

quency response in a specific survey period shown against the date of the survey. The passing

and successive survey period spectra are superimposed for easier visualisation. The survey pe-

riods are assumed to be at six months interval. That is a logical deduction but it was not exactly

the case. It is important to assume an equal interval to proceed with the regression analysis. The

results of the regression analysis is shown on Figure 4.5. The numbers used for the regression

were obtained by taking the average of 5 peaks on a survey period: the maximum peak for the

period, two next lower peaks on the left and two next lower peaks on the right. The frequency

range of interest was from 250 Hz to 300 Hz (this frequency range is associated with the bearing

of interest). The vibration severity or peaks are measured in millimetres per second.

From the regression analysis, the model for predicting the next period’s expected vibration

severity was derived as 1.096117 + 0.795704 * Yt (where Yt is the vibration severity of the most

recent survey period.) The model predicted the vibration severity for period 9 as 4.96 millime-

tres per second. Having a systematic way to carry out such predictions has many benefits. In the
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Figure 4.4: Waterfall Plot of Spectra from Different Survey Periods (The Figure is a screen shot
from the Omnitrend software analytical tool used for this thesis courtesy of Karsten Moholt AS.
It shows the spectra from survey periods indicated by date. 5 peaks occurring between 250 Hz
and 300 Hz were averaged to smoothen the data’s variability)
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current case study, surveys were repeated at six months interval. At the end of each survey, it is

possible to predict what we expect the vibration severity to be six months from the most recent

survey campaign. Should the predicted vibration severity be significantly higher than the prede-

termined acceptable levels, the asset managers have the benefit of initiating the plan to carry out

maintenance long before the possible failure of the component. While working in partnership

with the industry for this research some experts within the field of vibration analysis were in-

terviewed, it was observed that maintenance engineering service providers may have reason to

permit the continued use of an equipment even when a trend that could lead to failure has been

observed. The main reason for not carrying out maintenance as soon as the first sign of possible

failure is known was found to be predicated upon considerations for production interruption.

In such situations where it was necessary to escalate the maintenance requirements, the en-

gineering company was observed to have offered the equipment utilisation extension based on

"expert judgement and best guesses or honest estimates." The systematic approach proposed in

this report offers a more scientific and objective technique for reaching such decisions. Another

question that is necessary to address is what the appropriate survey interval should be. This is

a difficult question as it will generally involve commercial and contractual considerations. The

accessibility of the equipment and the cost to personnel or in extreme cases interruption to pro-

duction flow are among important factors to consider before the survey interval is selected. Due

to random events, it might sometimes be necessary to embark on vibration data collection at a

time that is off the agreed interval. In such cases, the asset managers have to document and

implement the schedules without distorting the planned survey periods. It might sound like

painstaking bookkeeping but that is where the CMMS comes into play.

Model Limitations

The model has the following limitations:

• Only a few data points (7 observations) were used to train the model.

• The recorded readings were made at different machine revolutions. It was only after July

3rd 2013 that measurements were made consistently at 680 RPM. Between December 12,

2011 and February 1st 2013 the RPM ranged from 583 to 710. This is contrary to the rec-
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Survey Period Y X 

2 2.29 0.65 

3 2.55 2.29 

4 2.34 2.55 

5 2.42 2.34 

6 2.84 2.42 

7 3.86 2.84 

8 4.86 3.86 

Model Prediction for:   9 4.96   

 

Prediction model based on regression analysis = Intercept + Coefficient of X * the last Y observation 

    = 1.096117 + 0.795704 * 4.86 = 4.96 mm/s vibration severity 

SUMMARY OUTPUT   

 

    

         

Regression Statistics        

Multiple R 0.776153        

R Square 0.602413        

Adjusted R 
Square 0.522896        

Standard Error 0.673223        

Observations 7        

         

ANOVA         

  df SS MS F 
Significance 

F    

Regression 1 3.4336 3.4336 7.575866 0.040194    

Residual 5 2.266143 0.453229      

Total 6 5.699743          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.096117 0.744827 1.471639 0.201092 -0.81852 3.010756 -0.81852 3.010756 

X 0.795704 0.289092 2.752429 0.040194 0.05257 1.538838 0.05257 1.538838 

         

         

         

RESIDUAL OUTPUT   PROBABILITY OUTPUT   

         

Observation Predicted Y Residuals  Percentile Y    

1 1.613324 0.676676  7.142857 2.29    

2 2.918279 -0.36828  21.42857 2.34    

3 3.125162 -0.78516  35.71429 2.42    

4 2.958064 -0.53806  50 2.55    

5 3.02172 -0.18172  64.28571 2.84    

6 3.355916 0.504084  78.57143 3.86    

7 4.167534 0.692466  92.85714 4.86    

 

Survey Period Y X 

1 0.65   

2 2.29 0.65 

3 2.55 2.29 

4 2.34 2.55 

5 2.42 2.34 

6 2.84 2.42 

7 3.86 2.84 

8 4.86 3.86 

0

2

4

6

0 2 4 6

Y

X

X Line Fit  Plot

Y

Predicted Y

Figure 4.5: First Order Linear Regression of Vibration Severity/Peaks (The Figure shows an insert
of the final tables used to implement first order linear regression on the vibration severity data.
The model for predicting next period vibration severity is derived and shown. The line fit plot
gives an indication of how the predicted and observed values match each other. The model is
valid as the p-value is less than 0.05.)
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ommendations made in ISO7919-1 (1996) and ISO10816-3 (2009) and certainly has an in-

fluence on the derived model.

• Frequency peaks were measured without linking them with their corresponding phase

angles. Treating frequency as a vector quantity rather than as a scalar produces better

results as shown in the standards referenced in the above bullet point.

• The interval between the survey periods were not equal. In some cases it was approxi-

mately six months but it was not generally the case.

• The regression analysis has been carried out using the data analysis function in Microsoft

Excel. It was sufficient to demonstrate the result but a commercial application would re-

quire a more advanced software perhaps application tailored computing.

In order to overcome the aforementioned limitations, the pursuit of predictive maintenance

and prognostic techniques need be a rigorously implemented policy. Lots of data are now be-

ing generated within industrial applications and with the continued improvements in sensor

technology, data mining will witness an upward trend. It is necessary to look into the generated

data, structure and analyse it to help in maintenance decision support as well as other value

added services. Data scientists will play an increasingly important role in the future of mainte-

nance practice. Analysing a sufficient amount of data from the same or similar machines with

some statistical techniques such as the lifetime models introduced in chapter 3 will improve

asset reliability and availability. The application of the Nelson-Aalen estimator and the Kaplan-

Meier estimator techniques introduced also in chapter 3 to the relevant data sets can aid better

understanding of components’ failure trajectories and a more accurate estimation of the ma-

chine’s MTTF for example. The big data is important but the systematic analysis of the big data

provides the value adding perspective that would help organisations to realise their overarching

business functions to maximise stakeholders’ value.



Chapter 5

A Business Case Study for PdM: The Karsten

Moholt Experience

This chapter answers one of the report’s sub-objectives. It seeks to justify why predictive main-

tenance (PdM) regime provides better incentives for businesses compared to plants running in

predominantly corrective and/or preventive maintenance modes. The sub-objective is reached

by means of cost assumptions on a thruster assembly based on Karsten Moholt’s experience.

The numbers and costs used were derived from actual engineering specifications and current

market index.

Whereas this report is primarily focused on vibration analysis (VA) and the vibration based

condition monitoring (VBCM), the current chapter has a broader coverage of the predictive

maintenance philosophy. In practice, a PdM regime embraces more than one form of condition

monitoring (CM). For example, the typical defects that can be detected by means of a VA are gear

wear or broken tooth and bearing defects. Seal wear or leakages are better detected through oil

analysis techniques or by means of other sensor technologies. Table 5.1 provides a more com-

prehensive picture of some machine components and the suitable CM techniques for detecting

faults. A physical plant is often comprised of different components from tens of components to

thousands of components depending on the complexity and scale of operation. Maintenance

in such circumstances entail mixing and matching of different maintenance philosophies. At

the scale of hundreds or thousands of components, the computerised maintenance manage-

ment systems (CMMS) are usually almost inevitable. The CMMS is important to organise tasks,
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Table 5.1: Machines and the Suitable CM Technologies for Defects Identification (adapted from
the Mobius Institutes’ Category I Vibration Training Course Book)

Technology
Vib Lube Wear MCA IR US Vis

Generator YES YES YES NO YES YES YES
Turbine YES YES YES NO YES YES YES
Pump YES YES YES YES YES YES YES
Elec. motor YES YES YES YES YES YES YES
Diesel eng. YES YES YES YES YES YES YES
Fan YES YES YES YES YES YES YES
Gearbox YES YES YES NO YES YES YES
Cranes YES YES YES YES YES YES YES
Elec. Circ. NO NO NO YES YES YES YES
Transformer NO YES NO YES YES YES YES

track and document maintenance in structured manner to minimise maintenance costs while

optimising up-time for production in accordance with established objective functions.

Using The Predictive Maintenance Regime to Minimise Maintenance Costs –

A Case Study of Thruster Assemblies

The following assumptions were made based on the OEM’s (manufacturer’s) recommendations

and the operator’s field experience:

• Background: one of Karsten Moholt’s customers, The NTNU Good Diggers (not their real

name) is a drilling company based on the Norwegian continental shelf portion of the

North Sea. The company has adopted a PdM policy for the thruster assemblies on their

drillships and semi-submersibles. The company deploys 8 thruster assemblies per rig

across a total of 22 rigs.

• The MTBR for a thruster is 5 years

• The cost to overhaul one thruster assembly is 1,060,000 USD (a thruster assembly is as

good as new after an overhaul)

• An overhaul is due every 5 years as per calender based preventive maintenance (PM).
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• Estimated PM per year (covering the costs for routine inspections, filter change, fluid

change/top up among other PM tasks = 25,000 USD

• The dry dock cost per rig (that is 8 thrusters) is 400,000 USD per day

• Docking mean downtime is estimated to be 20 days

For the PM policy:

• The cost to overhaul one thruster = 1,060,000 USD every 5 years (or 212,000 USD per year)

PM tasks = 125,000 USD every 5 years (25,000 USD per year)

• For one rig (total of 8 thrusters), dry dock cost per day for 20 days MDT = 400,000 X 20 =

8,000,000 USD per rig every 5 years or 1,000,000 USD per thruster every 5 years (that is

1,600,000 USD per rig per year or 200,000 per thruster per year)

• In 5 years, the estimated total maintenance cost per thruster = Cost of PM + cost of over-

haul + cost of dry dock for the period = 125,000 + 1,060,000 + 1,000,000 = 2,185,000 USD

per thruster every 5 years (or 437,000 USD per thruster per year)

• This gives 2,185,000 X 8 = 17,480,000 USD per rig every 5 years (or 3,496,000 USD per rig

per year)

• and 17,480,000 X 22 = 384,560,000 USD in 5 years (or 76,912,000 USD per year) for the

entire platform operated by the NTNU Good Diggers but only with respect to the mainte-

nance of thrusters.

For the PdM policy:

With the implementation of a predictive maintenance policy, it is practicable to extend the

MTBR by a factor of 1.2 from 5 years to 1.2 X 5 = 6 years. That gives the following computa-

tions:

• The one year total average maintenance cost of each thruster = Cost PM + cost of overhaul

+ cost of dry dock (yearly average each) = 25,000 + (1,060,000/6) + (1,000,000/6) = 25,000 +

176,667 + 166,667 = 368,334 USD per thruster per year.
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Figure 5.1: A Thruster’s Pinion Bearing and Rollers show extensive damage: a confirmation of
an earlier vibration analysis carried out by Karsten Moholt predicting the damage
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Alternatively, rather than extending by a factor of 1.2 as earlier proposed, it was argued that

a sufficient evidence exists to support extending the MTBR by a factor of 1.5, that is from 5 years

to 1.5 X 5 = 7.5 years. In that case, the following computations will apply:

• The one year total average maintenance cost of each thruster = Cost PM + cost of over-

haul + cost of dry dock (yearly average each) = 25,000 + (1,060,000/7.5) + (1,000,000/7.5) =

25,000 + 141,333 + 133,333 = 299,666 USD per thruster per year.

The NTNU Good Digger’s maintenance budget for a total asset of 22 rigs (focusing only on the

thrusters – 8 per rig) the three cost scenarios outlined above compares as follows:

1. The calender driven PM policy (5 years interval) = 437,000 X 8 X 22 = 76,912,000 USD total

per year

2. PdM 6 years policy = 368,334 X 8 X 22 = 64,826,784 USD total per year

3. PdM 7.5 years policy = 299,666 X 8 X 22 = 52,741,216 USD total per year

4. Compared to the ordinary calender PM, the PdM programme with a 6 years renewal pol-

icy offers cost savings of 12,085,216 USD per year and the alternative 7.5 years renewal

policy offers cost savings of 24,170,784 USD per year to the operators from the thruster

maintenance budget alone.

During the actual investigation by Karsten Moholt, it was found that only 9 thrusters showed

signs of deviation after 5 years and required maintenance. However, because PdM is still an

ongoing investigation within the oil and gas sector, the calendar PM was followed and all the

thrusters were overhauled as per the operator’s maintenance programme recognised by the Nor-

wegian regulatory authorities. Figure 5.1 shows one of the thrusters that was found to have

a damaged bearing. Modifying the assumptions made in this case study will produce slightly

different cost savings but under any reasonable set of assumptions, the savings will always be

substantial. In contrast, the total cost of acquiring a world class CM technology is likely to be

a fraction of a million USD. The conclusion is that predictive maintenance is an economically

beneficial policy for every production asset. It is recommended that every asset manager should

investigate the use of PdM to increase asset availability and boost productivity.



Chapter 6

Smart Maintenance: Interfacing Vibration

Data with the IIoT

There is a paradigm shift away from traditional manufacturing and standalone systems towards

more integrated and smart factory concepts known as Industry 4.0 or advanced manufacturing.

However, a major concern expressed within the industry is that the current approach presented

within Industry 4.0 (that is, the Industrial Internet of Things (IIoT) Evans and Annunziata (2012)

for implementing predictive maintenance places too much emphasis on low level data moni-

toring to a degree that compromises the level of competence already achieved within the indus-

trial application of vibration based condition monitoring, and there is so far no proven method

to overcome the challenge. Advanced signal processing techniques have been rigorously de-

rived elsewhere and there is no doubt that the requirements for the digitisation of analogue

signals have been met in other applications. The knowledge gap formulated as one of the sub-

objectives and addressed in this report is the articulation of a method that provides the possibil-

ity to apply vibration analysis solutions to predictive maintenance services within the Industry

4.0 frameworks. The reference architectures proposed within Industry 4.0 advocate the use of

single values for measured parameters. When applied to vibration based condition monitoring,

it is important that the single value digital data interfaced with the Industry 4.0 smart mainte-

nance loops does not lead to results which are considerably less accurate than today’s level of

competence in vibration analysis. The method proposed in this report is to use the "peaks" from

spectral analysis as a representation of this single values. Future developments should ensure
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that each peak is associated with its phase angle and the vector is resolved to obtain the resul-

tant peak which is the actual value used for the analysis or results computation when fed into

an algorithm. The result is a system that makes use of a single value data and also provides an

accurate representation of the vibration energy produced by the rotating machinery. The Com-

puterised Maintenance Management System (CMMS) forms an important foundational basis

for the success of the proposed solution. For the purpose of clarification of terminologies, ma-

chine learning and machine-to-machine (M2M) communication are discussed. The enabling

technologies that are driving the progress towards Industry 4.0 are defined and finally the con-

cept of smart maintenance is presented in the context of these evolving paradigms.

6.1 Computerised Maintenance Management System (CMMS)

CMMS underscores the importance of computer tools in the execution of asset integrity sys-

tems and maintenance functions. It offers platforms for information storage and retrieval, data

analysis and synthesis, as well as events coordination. There are many useful applications of the

CMMS in the industry today but it is still believed to be greatly under utilised and limited well

below its capability. In current industry applications, the CMMS is often used as equipment in-

formation storage tool and to hold data necessary for PM decisions and maintenance planning.

Gabbar et al. (2003), for example, propose a more extended use, a system of an automated RCM

which aims to integrate the RCM process with the CMMS. In an Industry 4.0 environment, the

current sub-optimal use of the CMMS will be extended in two important ways. First, it’s design

will make it possible to integrate actual equipment and maintenance key performance indica-

tors (KPIs) directly into the decision loop for an effective coordination between maintenance

and operational activities. Currently, interfaces are achieved with maintenance planning per-

sonnel in plants where such systems exist otherwise lack of proper coordination will gradually

develop into an undesirable event. Direct link between actual performance measurements and

the CMMS will boost confidence in the results obtained from an analysis and help to achieve

a more realistic physical systems approximation. It will have a direct positive impact on safety

and asset availability as well as lower operating and support costs. The second area is the in-

corporation of an artificial neural network (ANN) based on the cloud system and other KETs
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Figure 6.1: A Screen Shot of a CAMP System Input Window

discussed below in the subsequent paragraphs.

Commercially available CMMS based on current applications include but are not limited to

Systems Applications and Products (SAP), Computerised Aircraft Maintenance Programs (CAMP),

emaint, Maintenance Connection, Aircraft Maintenance & Engineering System (AMOS) although

the abbreviation is retained for historical reasons as it originally stood for Airline Maintenance &

Operational Systems. I have worked with the CAMP system where I was responsible for manag-

ing heavy maintenance projects on the fleet of a commercial passenger airline. The CAMP sys-

tem just like many other CMMS have different suits that allow subscribers to pay for what they

need based on their budget and the unique requirements of their operation. In my former com-

pany we used the maintenance tracking or maintenance management suit for PM purposes, the

Inventory Management System (IMS) for spare parts and related materials needs, and the en-

gine health monitoring suit for Engine Condition Trend Monitoring (ECTM). More information

on the CAMP system is available on the company’s website: http://www.campsystems.com. A

screen shot of a CAMP window is shown in Figure 6.1.

http://www.campsystems.com
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6.2 Machine Learning and M2M Communication

The current best practice within maintenance is to record faults or failures and the actions taken

to rectify the snags on some dedicated log books. The CMMS introduced in the previous section

can provide an additional capability of presenting these records in an electronic and searchable

form. In addition, some sectors are well organised in their approach, for example, the aviation

industry uses the Airlines Transport Association ATA chapters (see ATA (2001)) which helps air-

craft engineers to group events in accordance with predefined systems. But it is basically an

open reporting and documentation process that does not provide communication back to the

equipment to close the loop and thereby leading to a missed opportunity for learning. It sounds

valid to argue that every maintenance event provides a learning opportunity not only to better

understand the machines in question but also for the organisation to continuously improve its

maintenance concept in general. In the paper 1 of the part 2 of this report, it is proposed that

some representative information from the event output should be fed back into the machine to

facilitate this learning process. Possible outcomes of feeding back output signals to the process

system include better knowledge about the machine and production process, automatic con-

trol of output quality based on some preset values, and a capability to predict possible future

outcomes by comparing current state with historical characteristics of the process or system

and system structure. In effect, the process is trained with its own sensor data and feedback

information to identify patterns and provide a tool for system prognosis by following the trend

of data over a period of time.

6.3 The Industry 4.0 and its Key Enabling Technologies (KETs)

Industry 4.0 is a strategic initiative that aims to radically combine manufacturing, automation

and ICT into a vertical network within one entity, network two or more of such entities in a hori-

zontal chain to create organisational end-to-end transparency (seamless value adding chain) for

production. This section presents some of the key enabling technologies and the appurtenant

evolving paradigms.
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Figure 6.2: Collaborative Interactions within the Smart Factory (from Kagermann et al. (2013))

Internet of Things (IoT)

The traditional Internet today provides “connection” for over one billion people through plat-

forms such as Facebook, Twitter and Google Hangout. However, the era of advanced and cheap

sensors coupled with the successful derivation of the Internet Protocol IPv6 in 2012 means that

there are now enough IP addresses to assign to every device (sensor, actuator or any object)

configured in a way as to be networked directly with the Internet Kagermann et al. (2013). The

Internet of Things refers to a pervasive, perhaps ubiquitous, network society in which a lot of

objects are “connected” Yan et al. (2008). The concept of the smart factory to have a large net-

work of small, decentralised intelligent embedded devices is driven by the IoT paradigm (see

Figure 6.2).

The Cyber-Physical Systems (CPS)

The cyber-physical systems (CPS) are integrations of computation and physical processes Lee

et al. (2008). Today, several systems are embedded with autonomous chips which are wirelessly

networked with one another and also able to access the Internet thereby providing a tight and

definite link between the cyberspace and the physical world. Such seamless interactions de-

fine the notion of cyber-physical systems (CPS). The benefits of CPS are obvious. Imagine that

you have a smart device built into your mobile phone that continuously monitors/records your
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blood pressure and is capable of not only being able to alert you in the event that measure-

ments are not normal but is also able to schedule an appoint for you with a doctor or even call

an ambulance in the event of an emergency; imagine also that this device is intelligent enough

(maybe big data driven) to know that the sudden rise in your blood pressure was because you

were being attacked by some bandits and also calls in the police; imagine as well that this device

detects that you have not had enough sleep and resets your alarm clock two hours ahead and

cancels your earliest appointments for the day. These are all realistic examples. Thus, systems

or system of systems in a CPS scenario are able to communicate and control one another in

a collaborative manner. The CPS has the novel advantage of being able to offer early warnings,

mitigate surprises and is therefore well suited to predictive maintenance applications within the

environments of the industrial Internet.

Big Data

Big data has been the going concern of many companies since the advent of the social media but

the eventual implementation of Industry 4.0 will inadvertently lead to an actual data explosion

resulting from machine generated big data. In that context, big data may be liken to cassava root

or yucca which until it has been processed remains useless or even harmful no matter how suc-

culent it appears to the owner. Big data analytics will become an important field with business

opportunities in the future. Big data will be at the core of the predictive maintenance concept

and the development of prognostic systems within the Industry 4.0 environment but it has to

be processed and analysed. There is no doubt that advanced analytics can greatly enhance the

decision-making quality as managers become armed with more data and are better informed.

Big data is generated from small data obtained from sensors embedded into products such as

subsea valves or automobile wheels to measure some desired physical quantities like tempera-

ture or flow-rate which are in turn analysed to support decision-making including maintenance

decisions. A Boeing 737 NextGen airplane for example will generate about 240 terabytes of data

during a one hour flight between two airports. These sensor data if properly analysed can pro-

vide good insight into the state of health of the airplane, its exposure to risk or its level of perfor-

mance and thereby help the airline operator to prioritise maintenance decisions in a proactive

manner (Manyika et al. (2011)).
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Cloud Computing (CC)

Industry 4.0 will leverage on existing technologies such as cloud computing which actually is a

cluster of services Bai et al. (2012). In relation to services, the discussion will be expanded further

in the next paragraph dealing with the Internet of Services. The definition of cloud computing is

rather cloudy perhaps because it is an evolving paradigm. However, the definition provided by

the National Institute of Standards and Technology (NIST) is though not perfect but it is good

enough for today’s use. Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (for example,

networks, servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management effort or service provider interaction Mell and Grance (2011).

It identified the three main components of this cloud model to have the following compositions:

• Five essential characteristics (On-demand self-service, Broad network access, Resource

pooling, Rapid elasticity, Measured service);

• Three service models (Software as a Service (SaaS), Platform as a Service (PaaS), Infras-

tructure as a Service (IaaS)); and

• Four deployment models (Private cloud, Community cloud, Public cloud, and Hybrid

cloud).

Internet of Services (IoS)

The Internet of data evolved into the Internet of information which has now largely developed

into the Internet of Services (IoS). Web service interface and the service-oriented architecture

(SOA) are the key drivers of the concept of loosely coupling services used either for technologi-

cal or business purposes Schroth and Janner (2007). The application services available on these

platforms will connect people, objects and systems and further possess specific features such as

adaptability, support for collaborative use and diverse mobile end devices, process deployment

along the lines of the App stores model, and should provide safety, security and reliability guar-

antee Kagermann et al. (2013). This can be illustrated using a human-system or system-system

interaction. For example, if a group of tourists decide to travel from point A to point B, there are
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several Apps they can leverage to make good choices. These Apps will combine services from

several companies (airlines, hotels, taxis) and provide comparisons. It will show which airlines

are cheaper or have shorter layovers or travel durations. You will know what type of aircraft will

be used on your route; you can select your seat in the cabin and order a meal in advance. The

Apps can also provide weather information and help the tourists decide on indoor or outdoor

activities at their destination during their visit. If point A and point B are in different countries

the Apps may also provide information on entry Visa requirements for the tourists. The concept

of IoS revolves around the basic idea that systems should be able to locate useful resources on-

line and utilise them for their application or benefit. For example, the oil company, Total, will be

able to execute maintenance actions (or gain some maintenance decision support) in their new

Martin Linge Field in Norway based on cloud based data service partly populated from their

older Ofon Field in River Niger’s delta area of Nigeria.

Smart Factory

The paradigm shift referred to as smart factories are the “end products” of the practical appli-

cation of the continuing advances made in the areas of cyber-physical systems and modern ICT

tools. It will constitute a key feature of Industry 4.0 Kagermann et al. (2013). Based on Mark

Weiser’s vision of ubiquitous computing Lucke et al. (2008) and Zuehlke (2010), it is convenient

to identify the main components of the smart factory as calm-systems (or hardware) and the

context-aware applications (software) using networking logic and advanced computing to cre-

ate a virtual duplicate of physical systems. The use of sensor data from physical processes to

continually update the virtual representations in real-time means that the systems are robust,

resistant to disturbances and may include self-healing processes that enable it to recover from

failures and thereby showing the attribute of resilience. The applicable data is processed in

cyberspace through some smart algorithms in such a format as to calculate and synchronise

information about the equipment’s performance, risks and health conditions in real-time Lee

(2015). The smart factory is a vision for the factory of the future where both the manufactured

products and the engineered production lines form part of an intelligent system that can talk

to or control each other by means of machine-to-machine (M2M) communication or other in-

telligent algorithms. Consciously designed, easily replaceable modules deployed on a wireless
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network will enhance production processes and increase efficiency. In addition to achieving

shorter product life cycles and more product variants, the smart factory environment offers im-

proved performance, quality and system availability.

6.4 Smart Maintenance in the Context of Industry 4.0

The purpose of this section is to show how the aforementioned paradigm shifts can integrate

into the concept of smart maintenance and to discuss the compatibility of the single values pro-

posed in chapter 4 within this smart environment. The proposed smart maintenance concept

(see Figure 6.3) is a system where maintenance personnel (or the production assets) no matter

their location are tightly integrated into the rest of the maintenance function in particular and

the entire business function in general. The onsite maintenance personnel are equipped with

cutting-edge tools, including augmented reality and other innovative technologies. Remote ser-

vice engineers and system analysts provide the needed interface between the maintenance back

office, CMMS and the onsite engineers. This is important because the onsite engineer may have

only a limited access to the cloud based services via mobile devices which are considerably more

restrictive than the full compliments of computers available to the remote service engineers and

other base station support staff. The production asset, onsite and remote based engineers and

the operation people are all interconnected via cloud based services such as the IoT/IoS and the

big data among others. There is a seamless transparency and valuable coordination between

maintenance and operation. At the level of the machine, not only are the production assets able

to locate and use services from the cloud automatically they are equipped with advanced sen-

sor technologies to transform into and function as cyber-physical systems. The machines have

machine-to-machine communication, machine learning and radio frequency identification ca-

pabilities. The machines are able to communicate internally, autonomously as well as provide

a feedback interface to the remote human elements in the loop. Such end-to-end transparency

ensures that every operational or maintenance activity is synchronised in the manner that the

overarching business objective function is optimised to gain higher production throughputs.

The rotating machinery form an integral part of most production assets. Pumps, compres-

sors, electrical motors and generators, separators, and gas turbines are common examples of
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Figure 6.3: The Smart Maintenance Concept
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rotating machinery used in industries. The use of vibration analysis for purposes of condition

monitoring and diagnostics has been very successful within standalone systems in conventional

applications. However, the concept of smart maintenance based on Industry 4.0 requires an ex-

tensive use of data. The challenge is to present the data in a format that is compatible with the

design philosophies and the reference architecture for the Industrial Internet of Things (IIoT).

This report has provided an initial proposal for tackling the stated challenge. It further shows a

technique that makes use of structured data to implement systems prognosis based on the fre-

quency spectrum of vibration data. The procedure outlined for implementing predictive main-

tenance was simple but a limited amount of data was used. That limitation makes it difficult

to argue that the results obtained would be valid in all circumstances. The next phase of im-

provement must utilise a more extensive data coverage that would help determine the degree

of accuracy of the results of the prognosis. In addition to expanding the data coverage, there is

a need to calculate and provide the confidence intervals associated with every prediction. The

gradual progression from condition monitoring to condition based maintenance and predictive

maintenance up to prescriptive maintenance is both worthy and realisable within the sphere of

smart maintenance. In order for the idea to reach a proven technology and a regulatory level

of service there has to be a consciously targeted effort by all sectors to improve the techniques

for measuring parameters and running the analysis. A further refinement of the ideas proposed

in this report to a point of filing for a patent is recommended along with the inclusion of those

partner companies who are willing to set up pilot services to validate the proposed ideas.



Chapter 7

Discussion and Conclusion

7.1 Discussion

Condition monitoring is intended to measure the current status of an operational item but it

does not automatically imply that a predictive maintenance policy is in place. There has to be

a system that receives the parameter values measured by the condition monitoring technique

and utilise these values as an input to the predictive maintenance strategy. A condition moni-

toring programme is an irreducible minimum for the predictive maintenance strategy to hold

but a successful predictive maintenance concept is a consciously applied policy. The evolv-

ing paradigms of the Industrial Internet of Things (IIoT) gives credence to the prediction of the

4th industrial revolution which was first identified in Germany as Industry 4.0. The disruptive

nature of an industrial revolution means that there will be a shift in the general ways of do-

ing things and there has been discussions in the maintenance engineering communities as per

the impacts of these shifts in practice. The relevance of this report and the results obtained

from the investigations are grounded in the reach to provide some basic proposals on how to

structure and analyse vibration data for the purpose of predictive maintenance and systems

prognosis. It is expected to be a means to bridge the state-of-the-art in maintenance and the

future maintenance practice which is smart by its perspective and data driven by application. It

was established that the frequency spectrum correctly captures the vibration energy in the ro-

tating machinery when subjected to vibration analysis. The use of frequency peaks in spectral

analysis for trending provided better results than conventional trended overall values. Spectral
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analysis provides a means to separate a complex vibration time waveform into its component

frequency spectra which in turn offer the benefit to identify and isolate specific frequencies re-

sulting from each and every component in a complex rotating machine. This was traditionally

used for troubleshooting and diagnosis. The investigations conducted for this thesis revealed

that these frequency peaks can also be used to predict the future behavioural patterns of the ro-

tating machinery and estimate its future vibration severity based on ordinary linear regression.

The case study used was based on data downloaded from the database of the industry part-

ner to this thesis project. The particular data-set used for the case study came from a roller

bearing which formed part of a thruster assembly on a drill ship. The relevant data used for

the regression analysis had a span of eight periods. The interval between two successive peri-

ods was approximately six months. When a first order linear regression analysis was conducted

based on the data from the eight periods (that is only 8 observations), a prediction model was

established. From the regression analysis, the model for predicting the next period’s expected

vibration severity was derived as 1.096117 + 0.795704 * Yt (where Yt is the vibration severity of

the most recent survey period.) The model predicted the vibration severity for period 9 as 4.96

millimetres per second. If this mathematical model is validated to hold true in similar operat-

ing conditions it becomes easy to write an algorithm that is capable of implementing system

prognosis. The derived model has the limitation that it was based only on 8 observations which

is grossly insufficient. The framework nonetheless provides a basis for further investigations as

more data become available. With only a few data points, it was only reasonable to run a linear

regression. However, in another report Chudnovsky et al. (2008) suggested that the quadratic

model offered better results than linear ones. This report lacked sufficient data to either con-

firm or refute the claim that quadratic models are better than linear models. The strength of this

investigation is that it has provided a proposal which can be easily adapted to create models

which can be used for predictive maintenance and prognosis as the sensor technology contin-

ues to revolutionise condition monitoring whilst also driving both the big data and big data

analytics for the smart maintenance applications.
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7.2 Conclusions

The acceptance of two peer-reviewed papers based on this study for presentation at two in-

ternational conferences is a proof of the report’s originality, solidity and informativity. The de-

rived mathematical model for predicting the future vibration severity was based on single values

which are compliant with the proposed Industry 4.0 reference architecture. The vibration data

stored, processed and analysed in the compliant format helps to populate the big data which in

turn is used for the data driven smart maintenance with a great descriptive accuracy, predictive

powers and prescriptive capabilities. Through the use of case studies, the sub-objectives of the

thesis were met. Condition monitoring was shown to be a safe cost cutting mechanism. The

possible approaches that can be used to integrate vibration analysis with the Industrial Internet

of Things were outlined in the context of smart maintenance.



Appendix A

Acronyms

3DP Three Dimensional Printing

5S Sort, Straighten, Shine, Standardise and Sustain

AMOS Aircraft Maintenance and Engineering System

ANN Artificial Neural Network

ARMA Autoregressive Moving Average

ATA Airline Transport Association

BBN Bayesian Belief Network

CAD Computer Aided Design

CAMP Computerised Aircraft Maintenance Program

CBM Condition Based Maintenance

CC Cloud Computing

CCT Continuous on-Condition Task

CI Confidence Interval

CMMS Computerised Maintenance Management System
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CPM Cycles per minute

CPS Cycles per second

CPS Cyber-Physical Systems

DDPdM Data Driven Predictive Maintenance

DoD Department of Defense

DOM Design-Out-Maintenance

ECTM Engine Condition Trend Monitoring

EFFRA The European Factories of the Future Research Association

EUC Equipment Under Consideration

FFA Functional Failure Analysis

FFT Fast Fourier Transform

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects and Criticality Analysis

FoF Factories of the Future

FOM Force of Mortality

FRACAS Failure Reporting, Analysis, and Corrective Action System

GTE Gas Turbine Engine

IaaS Infrastructure as a Service

ICT Information & Communications Technology

IMS Inventory Management System

IoS Internet of Services



APPENDIX A. ACRONYMS 63

IoT Internet of Things

IP Internet Protocol

IR infra red

ISO International Standards Organisation

KET Key Enabling Technology

KPI Key Performance Indicator

LCC Life Cycle Cost

LCP Life Cycle Profit

M2M machine-to-machine

MCA Motor Circuit Analysis

MiRA The Mixed Reality Application

MSI Maintenance Significant Item

MTBR Mean Time Between Repair

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NIST National Institute of Standards and Technology

NTNU Norges Teknisk-Naturvitenskapelige Universitet (Norwegian University of Science & Tech-

nology)

OEE Overall Equipment Effectiveness

OEM Original Equipment Manufacturer

PaaS Platform as a Service
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PDCA Plan-Do-Check-Adjust

PdM Predictive Maintenance

PM Preventive Maintenance

PPP Public Private Partnership

R & D Research & Development

R & I Research & Innovation

RAC Reliability Analysis Center

RAMS Reliability, Availability, Maintainability and Safety

RCM Reliability Centred Maintenance

rms root mean square

RPM revolutions per minute

RTF Run to Failure

SAP Systems Applications and Products

SCT Scheduled on-Condition Task

SFT Scheduled Function Test

SOA Service-oriented architecture

SOH Scheduled Overhaul

SRP Scheduled Replacement

TPM Total Productive Maintenance

TQM Total Quality Management

TSN Time Since New
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US ultra sound

VFD Variable-Frequency Drive



Appendix B

Figures from the ISO 10816-1:1995(E) and

Karsten Moholt

B.1 General form of vibration velocity acceptance criteria

B.2 Comparison of vector change and change in magnitude for

a discrete frequency component

B.3 Vibration analysis flow chart
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Figure B.1: General form of vibration velocity acceptance criteria



APPENDIX B. FIGURES FROM THE ISO 10816-1:1995(E) AND KARSTEN MOHOLT 68

Figure B.2: Comparison of vector change and change in magnitude for a discrete frequency
component
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Figure B.3: Vibration analysis flow chart
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Industry 4.0: What is it?
o Focus on the 

manufacturing 
sector

o Mass 
customization 
(extreme case = 
lot size 1)

o Smart systems 
plus high 
performance 
computing 
interfaced with 
humans or other 
intelligent agents



Reliable, Robust and Resilient Systems: Towards Development of a Predictive 
Maintenance Concept within the Industry 4.0 Environment

From Spinning Machines to the Industrial Internet of Things (IIoT)



Reliable, Robust and Resilient Systems: Towards Development of a Predictive 
Maintenance Concept within the Industry 4.0 Environment

o Big Data
• Aggregated small data e.g. from 

sensors
• Data analytics and data science
• Value added for smart/predictive 

maintenance 
o Cloud Computing

• A cluster of services with the 
following compositions:

 5 essential xtics (On-demand 
self-service, Broad network 
access, Resource pooling, Rapid 
elasticity, Measured service)

 3 service models (Software as a 
Service (SaaS), Platform as a 
Service (PaaS), Infrastructure as 
a Service (IaaS))

 4 deployment models (Private 
cloud, Community cloud, Public 
cloud, and Hybrid cloud)

o 3D Printing
• Meet need to generate design 

iterations
• Create cheap metal parts directly from 

a CAD file
• Concept modelling
• Rapid prototyping

Key Enabling Technologies:
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o Internet of Services (IoS)
• Internet of data → Internet of 

information → IoS
• Loosely coupled services often based 

on web service interface/service 
oriented architecture (SOA)

• Locate useful resources online and 
utilize them for specific applications 
(e.g., for predictive maintenance)

o Internet of Things (IoT)
• Pervasive network society connecting 

a lot of objects
• Each device has a unique IP address

o Cyber-Physical Systems (CPS)
• Integration of computation and 

physical processes
• Tight and definite link between the 

cyberspace and the physical worlds
• Provides systems ability to 

communicate and control one another 
in a collaborative manner

• Well suited to provide early warnings 
and useful for PdM applications

Key Enabling Technologies:
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Smart Things Everywhere, even Smart Maintenance:
o An era of cheap, smart sensors
o Ubiquitous computing
o Virtual duplicates of physical systems/processes
o Consciously designed, easily replaceable modules deployed over wireless 

networks
o Transition from embedded systems to cyber-physical systems
o Evolution from machines embedded with software to software “embedded” with 

machines
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Maintenance Concept within the Industry 4.0 Environment

The Maintenance Evolution in an Industrial Revolution:
Maintenance Philosophies:
o Corrective Maintenance → Run to failure
o Preventive Maintenance → Planned maintenance based on the assumption that 

every equipment will fail at some points!
o Predictive Maintenance → Based on condition monitoring and following some 

predefined rules and strategies
Future Maintenance:
o Data driven versus model based (a novel combination of both)
o Greatly influenced by value added data
o Diagnostics: Industry 3.0 machines featured BITEs but no system to add value 

to the measurements or the symptoms detected
o The future is closed loop, feedback system with a prediction capability
o Improved system knowledge, better work place safety, greater resource and 

energy efficiencies.
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A Conceptual Model for the Data Driven, Closed Loop, Feedback 
Predictive Maintenance System:
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Maintenance Concept within the Industry 4.0 Environment

Prognosis
o Pattern identification
o Trending
o Continuous monitoring, data mining 

and repeated analysis
o Accumulated system knowledge and 

intelligent analytics
o Possibility for more accurate EoL and 

RUL estimations 
o Feedback through a closed loop 

system 
o Cloud based service platforms for 

data storage and analysis
o Integration with augmented reality, 

artificial neural networks, or the 
hidden Markov Chain, etc

o Cross platform multi company data 

sharing
o Machine to machine and machine 

learning algorithms to reinforce 
systems characteristics

o Creation of new business models, 
sale of data for revenue



Reliable, Robust and Resilient Systems: Towards Development of a Predictive 
Maintenance Concept within the Industry 4.0 Environment

Key Benefits and some Challenges:
o Multi dimensional system characteristics improvements: reliability, 

robustness and resilience
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More Benefits:
o Dramatic reduction in the 

probability of a sudden loss of 
system function

o An “only as required” 
maintenance strategy results 
in better safety performance 
and higher equipment 
availability

o Improved productivity and 
profitability

Some Challenges:
o Many of the technologies used 

are not proven
o Who owns the generated 

data?
o Can we really ever bet on the 

security of the network?
o More research and more 

funds



Reliable, Robust and Resilient Systems: Towards Development of a Predictive 
Maintenance Concept within the Industry 4.0 Environment

Summary & Conclusions
o Presented an overview of Industry 4.0 and its 

key drivers
o Demonstrated how maintenance is expected 

to evolve within this shifting paradigm
o Proposed a basic structure for a data-driven 

predictive maintenance framework
o Argued for some benefits to credit the 

proposed framework and highlighted a few 
challenges.
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Abstract  
 

The world is at the threshold of yet another 

industrial revolution. It is the 4th industrial 

revolution presently being promoted as “Industry 

4.0” in Germany or “Advanced Manufacturing” in 

the USA. Both ideas are similar, in essence, they 

refer to smart systems and high performance 

computing interfaced with people. It was 

previously dismissed as science fiction at its best 

but there are now a few visible elements of 

Industry 4.0 in practice. However the concept is 

still in its formative stage and would take an 

extensive troubleshooting and fine-tuning to 

eventually come of age. The disruptive nature of 

an industrial revolution means that it will affect our 

general ways of life and means of livelihood. This 

paper reviews the major technological drivers 

(such as big data, cloud computing, cyber-

physical systems, Internet of Things and Internet 

of Services) leading up to Industry 4.0 and 

presents Smart Factory as its core beneficiary. 

The paradigm shift driven by cheap and powerful 

sensors/actuators, enhanced man-machine 

interaction and ubiquitous computing will result in 

a new approach to the maintenance of physical 

assets. The challenge with routine or time-based 

maintenance philosophies is that they have 

potential to drive the cost of maintenance steeply 

upwards. Predictive maintenance can cut 

maintenance down only to the level necessary. It 

is however not easy to determine this “necessary” 

level but in the proposed Industry 4.0 reference 

architecture it is important to factor in 

maintenance from the early design stages of 

equipment fabrication, assembly or integration so 

that systems can benefit from predictive analytics. 

Thus, the paper further presents a conceptual 

framework for the development of a predictive 

maintenance technique using big data mining and 

smart algorithms. The significance is that 

designers will gain some insights to reach the 

ultimate goal of reliable, robust and resilient 

systems offering equipment operators improved 

life cycle benefits. 

1. Introduction 

The constant evolution of science means that it 

continues to break new frontiers and reach new 

horizons. The current hype about Industry 4.0 

(Industrie 4.0 Working Group, 2013) has led to 

some doubts and generated several debates 

within the industry as well as the academia. It is 

noted that unlike its three predecessors (Figure 

1), Industry 4.0, commonly called the fourth 

industrial revolution, is different from previous 

industrial revolutions because it is orchestrated 

through a consciously pursued effort which in 

effect ‘forces’ its actual manifestation to speed up. 

The orchestration of Industry 4.0 has been a joint 

collaboration between government agencies, the 

industry, research and academic institutions. 

Germany and the USA are clearly in the lead to 

bring about this next evolution in technological 

applications though the Americans prefer the term 

“advanced manufacturing.” There are equally 

other terms in common use such as “Industrial 

Internet” (Evans & Annunziata, 2012) or intelligent 

factories but the basic ideas are in sync with 

Industry 4.0, in essence, embodying smart 

systems and high performance computing 

interfaced with people.  

 

Industry 4.0 is a strategic initiative that aims to 

radically combine manufacturing, automation and 

information & communications technology (ICT) 

into a vertical network within one entity, network 

two or more of such entities in a horizontal chain 

to create organisational transparency and 

seamless production. However novel, Industry 4.0 

is not meant to be a tsunami that would sweep 

away everything we already know overnight and 
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replace it with a brand new system instead it 

would be an incremental development that would 

survive through a period of transition based on 

two main approaches. First, design effort aimed at 

bridging the gap between Industry 3.0 practices 

and Industry 4.0 ideas by adapting, modifying and 

retrofitting that would take us initially to the 

midpoint Industry 3.5. Second, pursuing a fully 

innovative design concept based on the proposed 

Industry 4.0 reference architecture. Result from 

previous study by Industrie 4.0 Working Group, 

2013 identified standardisation, work organisation 

and product availability as the three major 

challenges facing the implementation of Industry 

4.0. Product availability is not only a function of 

operation and maintenance it also depends on the 

system’s characteristics such as its reliability, 

robustness and resilience. In the next phase of 

manufacturing evolution, the importance of these 

characteristics for equipment effectiveness will 

become more evident. Operators will place more 

emphasis on their desire that engineered systems 

should exhibit certain characteristic properties, 

e.g., that they seldom fail (reliability), be able to 

perform in the presence of noise and remain 

elastic under changing load (robustness); and 

autonomously recover from fault or failure 

situations (resilience). Through the application of 

big data mining techniques and smart algorithms 

following the iteration concept proposed in this 

paper, designers can achieve such system 

characteristics. In the current paper, predictive 

maintenance strategies are considered in the 

context of Industry 4.0, but the approaches 

advanced here will be influenced partly by current 

practices. In the general scope, asset integrity 

engineering and maintenance management 

encompass the development of a maintenance 

programme in line with production forecast, asset 

utilization and best practices; dealing with 

inventory management and logistic issues, 

developing action plans to close previous findings 

such as may have resulted from routine 

inspections, condition monitoring, etc. Today’s 

industrial environments aspire to optimize multiple 

objectives and apply the computerized 

maintenance management systems, CMMS, tools 

to their benefit. Successful implementations of the 

Intelligent Maintenance System (IMS), Failure 

Reporting, Analysis, and Corrective Action 

System (FRACAS), production planning 

automation and allied advanced maintenance 

tools historically depended on the use of the 

CMMS. The Industry 4.0 engineered environment 

will take the integration to a higher level and 

provide a common platform to combine disparate 

tools and create transparency across board. 

The objective of the paper is to propose concepts 

for predictive maintenance and prognosis within 

an industry 4.0 environment and review how the 

key drivers such as cloud computing, smart 

factory, Cyber-physical systems, Internet of 

Things, Internet of Services, Big Data, etc can 

influence and shape the maintenance 

management of the future. This is expected to 

improve product availability and guarantee asset 

integrity. The paper is structured as follows: 

Section 2 presents basic materials on the key 

drivers of Industry 4.0 and gives some 

backgrounds; Section 3 presents the new 

approach within Industry 4.0 referred to as the 

smart factories; Section 4 proposes a theoretical 

conceptual framework for implementing a data 

driven predictive maintenance system within 

Industry 4.0 environments; Section 5 states some 

credits for the proposed predictive maintenance 

structure and highlights key challenges and 

recommended actions to overcome current 

limitations; Section 6 concludes the paper with 

some insights. 

2. From Spinning Machines to 
Industry 4.0: The Trends and 
Drivers of an Industrial Evolution 

The first industrial revolution started in the late 

1700s (Figure 1, left hand side) following the 

introduction of the spinning machine, conveyor 

belt, and other machinery powered by water or 

steam used mainly in the textile factories of that 

era. It sounds valid to argue that the first industrial 

revolution addressed some of man’s physiological 

needs, increased food production through 

mechanized agriculture and clothing from the 

textile industries (Figure 1, right hand side). 

Subsequent industrial revolutions equally showed 

links with the Abraham Maslow’s hierarchy of 

needs (Thielke, et al 2011). The second industrial 

revolution which started at the dawn of the 20th 

century was characterised by the use of electrical 

machines for mass production and the division of 

labour. This offered humanity both safety and 

security. The third industrial revolution, sometimes 

referred to as the digital revolution, began at the 

early1970s with the increased automation of 

manufacturing processes using advanced 

electronics and ICT (information and 

communication technology) techniques which led 

to a better man-machine interface over process 

networks. Technologies however evolve in a 

continuous way. Today, the world has reached the 

threshold of yet another industrial revolution. 

Below we present a brief discussion on the key 

technological drivers leading to Industry 4.0. 



 
1.1 Big Data 

 

Big data has been the going concern of many 

companies since the advent of the social media 

but the eventual implementation of Industry 4.0 

will inadvertently lead to an actual data explosion 

resulting from machine generated big data. 

 

 

 
 

Figure 1: Drawing a parallel between industrial 
revolutions and man’s instincts for survival 
 

In that context, we will liken big data to cassava 

root or yucca which until it has been processed 

remains useless or even harmful no matter how 

succulent it appears to the owner. Big data 

analytics will become an important field with 

business opportunities in the future. Big data will 

be at the core of predictive maintenance concept 

development within the Industry 4.0 environment 

but it has to be processed and analysed. There is 

no doubt that advanced analytics can greatly 

enhance decision-making quality. Big data is 

generated from small data obtained from sensors 

embedded into products such as subsea valves or 

automobile wheels to measure some desired 

physical quantities like temperature or flow-rate 

which are in turn analysed to support decision-

making including maintenance decisions. A 

Boeing 737 NextGen airplane for example will 

generate about 240 terabytes of data during a one 

hour flight between two airports. These sensor 

data if properly analysed can provide good insight 

into the state of health of the airplane, its 

exposure to risk or its level of performance and 

help the airline operator to prioritise maintenance 

decisions in a proactive manner (Manyika, et al 

2011). 
 
1.2 Cloud Computing 
 

Industry 4.0 will leverage on existing technologies 

such as cloud computing which actually is a 

cluster of services (Bai, et al 2012). In relation to 

services, the discussion will be expanded further 

in the next paragraph dealing with the Internet of 

Services. The definition of cloud computing is 

rather cloudy perhaps because it is an evolving 

paradigm. However, the definition provided by the 

National Institute of Standards and Technology 

(NIST) is though not perfect but it is good enough 

for today’s use. Cloud computing is a model for 

enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable 

computing resources (e.g., networks, servers, 

storage, applications, and services) that can be 

rapidly provisioned and released with minimal 

management effort or service provider interaction 

(Mell & Grance, 2011). It identified the three main 

components of this cloud model to have the 

following compositions: 

 Five essential characteristics (On-demand 

self-service, Broad network access, 

Resource pooling, Rapid elasticity, 

Measured service); 

 Three service models (Software as a 

Service (SaaS), Platform as a Service 

(PaaS), Infrastructure as a Service 

(IaaS)); and 

 Four deployment models (Private cloud, 

Community cloud, Public cloud, and 

Hybrid cloud). 

 



1.3 Internet of Services (IoS) 

 

The Internet of data evolved into the Internet of 

information which has now largely developed into 

the Internet of Services (IoS). Web service 

interface and the service-oriented architecture 

(SOA) are the key drivers of the concept of 

loosely coupling services used either for 

technological or business purposes (Schroth & 

Janner, 2007). The application services available 

on these platforms will connect people, objects 

and systems and further possess specific features 

such as adaptability, support for collaborative use 

and diverse mobile end devices, process 

deployment along the lines of the App stores 

model, and should provide safety, security and 

reliability guarantee (Industrie 4.0 Working Group, 

2013). This can be illustrated using a human-

system or system-system interaction. For 

example, if a group of tourists decide to travel 

from point A to point B, there are several Apps 

they can leverage to make good choices. These 

Apps will combine services from several 

companies (airlines, hotels, taxis) and provide 

comparisons. It will show which airlines are 

cheaper or have shorter layovers or travel 

durations. They will know what type of aircraft will 

be used on their route; they can select their seats 

in the cabin and order their meals in advance. The 

Apps can also provide weather information and 

help the tourists decide on indoor or outdoor 

activities at their destination during their visit. If 

point A and point B are in different countries the 

Apps may also provide information on entry Visa 

requirements for the tourists. The concept of IoS 

revolves around the basic idea that systems 

should be able to locate useful resources online 

and utilise them for their application or benefit. For 

example, the oil company, Total, will be able to 

execute maintenance actions (or gain some 

maintenance decision support) in their new Martin 

Linge Field in Norway based on cloud based data 

service partly populated from their older Ofon 

Field in River Niger's delta area of Nigeria. 
 
1.4 Internet of Things (IoT) 

 

The traditional Internet today provides 

“connection” for over one billion people through 

platforms such as Facebook and Twitter. 

However, the era of advanced and cheap sensors 

coupled with the successful derivation of the 

Internet Protocol IPv6 in 2012 means that there 

are now enough IP addresses to assign to every 

device (sensor, actuator or any object) configured 

in a way as to be networked directly with the 

Internet (Industrie 4.0 Working Group, 2013). The 

Internet of Things refers to a pervasive, perhaps 

ubiquitous, network society in which a lot of 

objects are “connected” (Yan, et al 2008). IoT in 

essence may be viewed as a subset of the CPS 

i.e. the cyber-physical systems (discussed in the 

next paragraph) though both terms may be used 

interchangeably by different authors often 

influenced by the region in which they work or 

carry out research. The concept of the smart 

factory to have a large network of small, 

decentralised intelligent embedded devices is 

driven by the IoT paradigm. 

 
1.5 Cyber-Physical Systems (CPS) 

 

Cyber-Physical Systems (CPS) are integrations of 

computation and physical processes (Lee & 

Wang, 2008). Today, several systems are 

embedded with autonomous chips which are 

wirelessly networked with one another and also 

able to access the Internet thereby providing a 

tight and definite link between the cyberspace and 

the physical world. Such seamless interactions 

define the notion of cyber-physical systems 

(CPS). The benefits of CPS are obvious. Imagine 

that you have a smart device built into your mobile 

phone that continuously monitors and records 

your blood pressure and is capable of not only 

being able to alert you in the event that 

measurements are out of range with respect to 

some predefined references but is also able to 

schedule an appoint for you with a doctor or even 

calling an ambulance in the event of an 

emergency; imagine also that this device is 

intelligent enough (maybe big data driven) to 

know that the sudden rise in your blood pressure 

was because you were being attacked by some 

unruly youngsters and also calls in the police; 

imagine as well that this device detects that you 

have not had enough sleep and resets your alarm 

clock two hours ahead and cancels your earliest 

appointments for the day. These are all realistic 

examples. Thus, systems or system of systems in 

a CPS scenario are able to communicate and 

control one another in a collaborative manner. 

The CPS has the novel advantage of being able 

to offer early warnings, mitigate surprises and is 

therefore well suited to predictive maintenance 

applications within the environments of the 

Industrial Internet. 

 
1.6 The Three Dimensional Printing (3DP) 

Technology 

 

The 3DP is an important technology for the 

implementation of Industry 4.0. It is shown in 

(Bak, 2003) and (Dimitrov, et al 2006) that the 



original motivation for the 3DP was the need to 

generate design iterations or to create cheap 

metal parts directly from a Computer Aided 

Design (CAD) file. However, the state-of-the-art of 

the 3DP technology has clearly gone beyond a 

mere concept modelling or rapid prototyping tool 

into the realm of commercial manufacturing. 

There is an existing technology for making carbide 

parts which are used in diesel engines and aircraft 

parts manufacturing because of their high thermal 

and electrical conductivity. However, it is also 

worthy to comment that 3DP is far from proven 

technology. Further research to fine-tune the 3DP 

technology is currently being pursued but so also 

are research effort geared towards the maturity of 

the aforementioned Internet 4.0 enabling 

technologies highlighted and discussed in this 

section. 

 

There is therefore a need to make a conscious 

effort to integrate Industry 4.0 compliant 

technologies in ways that would engender 

synergy leading to the creation of new and novel 

Industrial Internet services. Cloud computing and 

big data analytics, for example, are key enablers 

for the data driven predictive maintenance within 

Industry 4.0. Consequently, research and 

development (R & D) efforts in companies that 

understand the significance of these shifting 

paradigms are helping to drive innovation and 

create services such as machine-to-machine 

(M2M) sensor-based data for status monitoring 

and system prognosis. Combining the results of a 

data analysis with the system structure and online 

condition monitoring, the technique can be used 

as a basis to reduce inspection/maintenance 

required to sustain the reliability of critical 

systems. The ultimate end product of integrating 

these technologies and novel services is the 

evolutionary emergence of today’s manufacturing 

floors into the smart factories of the future. 

 

3. Smart Factories: A New Approach 
within Industry 4.0 

 

The paradigm shift referred to as smart factories 

are the “end products” of the practical application 

of the continuing advances made in the areas of 

cyber-physical systems and modern ICT tools. It 

will constitute a key feature of Industry 4.0. Based 

on Mark Weiser’s vision of ubiquitous computing 

(Lucke, et al 2008, and Zuehlke, 2010) it is 

convenient to identify the main components of the 

smart factory as calm-systems (or hardware) and 

the context-aware applications (software) using 

networking logic and advanced computing to 

create a virtual duplicate of physical systems. The 

use of sensor data from physical processes to 

continually update the virtual representations in 

real-time means that the systems are robust, 

resistant to disturbances and may include self-

healing processes that enable it to recover from 

failures and thereby showing the attribute of 

resilience. The applicable data is processed in 

cyberspace through some smart algorithms in 

such a format as to calculate and synchronise 

information about the equipment’s performance, 

risks and health conditions in real-time (Lee, 

2015). Smart factory is a vision for the factory of 

the future where both the manufactured products 

and the engineered production lines form part of 

an intelligent system that can talk to or control 

each other by means of machine-to-machine 

(M2M) communication or other intelligent 

algorithms. Consciously designed, easily 

replaceable modules deployed on a wireless 

network will enhance production processes and 

increase efficiency. In addition to achieving 

shorter product life cycles and more product 

variants, the smart factory environment offers 

improved performance, quality and availability. 

 

Factories of the future (FoF) will be an 

environment populated with a large amounts of 

small intelligent devices interconnected and 

interacting in a collaborative way to create an 

overall smart system as opposed to the present 

but fast fading practice of concentrating a huge 

computing power inside a single frame of a 

computer system. Colombo & Karnouskos, 2009 

argue that the approach whereby intelligence is 

shared amongst a large number of loosely 

coupled and decentralised intelligent devices 

makes it easier for a system to be both adaptable 

and reconfigurable to meet several demands of 

business which at the time of the system's design 

may not have been conceived. This unique 

feature means that the factories of the future are 

in tune with today's market trend where 

consumers are becoming the focus of the 

businesses and in doing so are driving the 

products design (Souza, et al 2006). The 

increased use of advanced technology in 

manufacturing means that products are made in a 

resource efficient manner and within a much 

shorter time from conception to the market. 

According to the report of the European Factories 

of the Future Research Association, 2013: "The 

purpose of manufacturing is to create value while 

the factory may be defined as the place where 

society concentrates its repetitive value creation 

process." The FoF envisions that a sustainable 



way of creating value through manufacturing 

should encompass high performance production, 

a zero-defect tolerance with a high degree of both 

energy and resource efficiencies. To that extent, 

the FoF public private partnership (PPP) project 

has its specific objectives channelled towards 

research and innovation (R & I). The R & I efforts 

will harmonise different advances in the 

technological field for the benefit of advanced 

manufacturing. This includes the use of 

exoskeletons to safely interact and assist humans 

from the factory floor to the warehouse. The FoF 

cannot afford to underestimate the benefits of 

mechatronic systems and advanced robotics in 

manufacturing. The airframe manufacturer, Airbus 

has demonstrated the use of a robotics 

application named MiRA which is an acronym for 

the Mixed Reality Application (Álvaro, et al 2016). 

MiRA has now been deployed in commercial use 

on the company's A380 and A350 XWB aircraft 

types’ production lines currently to help with 

inspections on secondary structural brackets. 

Such brackets are used in the aircraft to hold 

systems (e.g. hydraulic or oxygen systems) and 

the piping systems securely together. The A380 

fuselage for example has up to eighty thousand 

(80,000) of such brackets with the unique demand 

that each must be checked/inspected before 

every aircraft’s entry into service (the law of 

sampling does not apply). MiRA has reduced the 

inspection time for these brackets from 3 weeks to 

3 days, providing savings in labour costs but at 

the same time helping with a quicker detection of 

missing brackets, as well as wrongly positioned or 

damaged ones. 

 

Research into the use of humanoid robotics is an 

ongoing investigation but MiRA and similar 

applications are obvious demonstrations of 

benefits that can accrue from integrating robots as 

team members in manufacturing generally or 

maintenance in a narrower sense. Robots can lift 

heavy tools and equipment and help its human 

counterparts to work in a more effective manner, it 

can access difficult to access areas for example 

hot sections of industrial boilers or some 

designated "hell holes" in some small aircraft. By 

taking away boring routines from humans and 

lowering labour costs at the same time, this 

application synchronises with the specific 

objectives of the FoF to lead in researches to 

reverse the deindustrialisation of Europe, create 

social impact and promote entrepreneurship. 

However, whereas the manufacturing innovations 

as advocated in the FoF Roadmap 2020 has a 

primarily regional target its actual relevance has 

by all means and measures a global impact. 

4. A Theoretical Conceptual 
Framework for Predictive 
Maintenance within Industry 4.0 

When describing the theoretical concept of 

predictive maintenance it is important to clarify the 

terminology, behaviour and structure of predictive 

maintenance. According to the European 

Standard EN 13306, predictive maintenance is 

defined as (CEN, 2010): “Condition based 

maintenance carried out following a forecast 

derived from repeated analysis or known 

characteristics and evaluation of the significant 

parameters of the degradation of the item.” In that 

sense, a predictive maintenance concept can be 

realized by combining the dual objectives of fault 

diagnosis and prognosis of a system’s future 

behavioural patterns. Whereas diagnosis deals 

with fault detection including its location and the 

possible causes of such deviations from 

predefined thresholds, fault prognosis follows the 

trajectory of the fault over time and estimates the 

end of life (EOL) or remaining useful life (RUL) of 

the component or system under consideration. In 

the current paper therefore, we use predictive 

maintenance in the sense that it also includes 

system prognosis. Prognostic techniques are 

broadly categorized into data-driven (when 

available data is used) or model-based (when 

system structure is the basis) (Marjanović, et al 

2011). Although our proposed approach is a novel 

combination of both categories, we do not go into 

a detailed discussion of the various prognostic 

techniques, however we point out that in order to 

be able to make any logical prediction it must be 

possible to spot some patterns and to verify that 

these patterns are reasonably consistent both 

horizontally (from equipment to equipment on a 

sizeable fleet of similar machines) and vertically 

(from time to time and/or place to place). It might 

be challenging to define what a sizeable fleet 

means but to use a number, 40 or more would be 

reasonable. A fleet as used here refers to a 

collection of items of same or corresponding part 

numbers distinguished by their respective serial 

numbers. These equipment or subassemblies 

may have been made by the same or different 

manufacturers for the same or different owners or 

operators. The important point is that each of the 

equipment generates data into a common 

database. Therefore, the predictive maintenance 

concept will rely heavily on the utilised algorithm’s 

ability to establish patterns from the processed 

sensor data in real-time. This pattern is then 

compared with stored patterns generated both 

from laboratory or model based data and historic 

data based on previous actual field experience. 



Cloud based service platforms will be essential 

both for data storage and analysis. The result will 

give an indication of the equipment performance 

and proactively pinpoint maintenance needs 

where necessary. In (Lee, et al 2014) it is argued 

that embedded intelligence in industrial 

applications means that systems become more 

adaptive and increasingly compliant with 

technologies that can be used to predict an 

equipment’s future, rank its performance, 

measure its health condition or degradation and 

autonomously or semi autonomously boost the 

equipment effectiveness. Applied within 

maintenance, the aim will be to identify critical 

issues through systematic diagnostics and data 

analytics. The maintenance manager will be able 

to act responsibly, knowledgeably and quickly in 

the events of any in-service faults or failures. 

Such early warning systems will be helpful in 

reducing down times, improving maintenance 

scheduling and spare parts provisioning. Rather 

than being a mere unorganised symptom data 

which is the state-of-the-art today, the data driven 

closed loop predictive maintenance system shown 

in  Figure 2 is based on the idea that the 

generated data can be recorded, stored, 

structured and analysed for the purpose of fault 

identification and system prognosis. 

 

The closed loop predictive maintenance concept 

developed involves different systems. The closed 

loop ensures that all the different systems function 

as a whole. It is further assumed that, in the long 

run, the aim of achieving a self-regulating system 

is met. The feedback system incorporates both 

leading indicators (e.g. mean time to failure 

(MTTF) and forward looking feedback signals) 

and lagging indicators (e.g. degradation indication 

feedback signal). The system structure can be 

derived partly from a Failure Mode, Effects and 

Criticality (FMECA) procedure with the block also 

providing a possibility for integrating an automatic 

Reliability Centred Maintenance (RCM) or CMMS. 

 

Each part of the feedback loop has the capability 

to record and store its own history in a queryable 

database. An error or deviation signal is 

generated during evaluation by comparing 

feedback signal to the input signal and 

degradation model. By way of illustration, we 

consider our smart machine to be some sort of a 

"smart room" with an infant sleeping in it; if the 

deviation signal is "temperature too low" the 

compensator could be a heater which then comes 

on to warm up the room. This is based on the 

concepts of CPS and IoT described earlier. The 

controlled variable in this example is therefore the 

room temperature. The adjusted room 

temperature as a result of the compensation 

action is fed back for further evaluation to either 

continue to keep the heater running or to shut it 

down pending when it receives another demand 

to operate. This is an iterative process that 

ensures that resources and energy are utilised 

efficiently, with minimised costs, improved 

workplace safety and increased equipment 

availability. In the course of the iteration, what the 

predictive analytics tool on the return leg of the 

feedback loop does is to take into account, for 

example, how long it took the room temperature to 

normalise after the initial demand or how often the 

demands come; it then probes the big data to find 

 
 

Figure 2: Model Feedback Predictive Maintenance 
and System Prognosis Loop 



 

out what is "normal" based on previous 

experience (pattern recognition), pass it through 

the intelligent algorithm which then gives an 

indication of system performance level or an 

indication of a degraded state and raise a flag to 

call for a maintenance action if necessary. The 

closed loop maintenance concept is therefore an 

on-demand, data-driven maintenance technique 

that ensures that maintenance is carried out only 

as required and based on actual field data. This 

novel system will build upon advances made in 

the area of machine learning and machine-to-

machine interaction. The current practice within 

maintenance is to record faults or failures and the 

actions taken to rectify these snags on some 

dedicated log books. The CMMS, Computerized 

Maintenance Management System, can provide 

an additional capability of presenting these 

records in an electronic and searchable form. In 

addition, some sectors are well organised in their 

approach, for example the aviation industry uses 

the Airlines Transport Association ATA chapters 

which helps aircraft engineers to group events in 

accordance with predefined systems. But these 

are all open systems that do not provide 

communication back to the equipment to close the 

loop. We hope that every maintenance event 

provides a learning opportunity not only for the 

machines in question but also for the organisation 

in general. Therefore, we propose that some 

representative information from the process 

output should be fed back into the machine to 

facilitate this learning or modify the machine’s 

software or other attributes in some ways. The 

representative output may be the final product 

quality or other measurable parameters such as 

voltage regularity and temperature for example 

which are digitized and fed back through the 

machine in either qualitative or quantitative format 

depending on the system configuration, 

complexity and need. 

 

5. Towards Asset Maintenance Needs 
of the Future: Expectations and 
Results 

Industry 4.0 will revolutionise manufacturing and 

increase productivity. It will lead to the creation of 

new business models and present a basis for new 

and novel services. A typical example of such 

services which are already beginning to emerge in 

the industry is the application of distributed cloud 

systems in asset maintenance. The current paper 

assesses the effect of the integration of some 

Industry 4.0 key enabling technologies, intelligent 

devices, pervasive computing and of course 

classical physics, as a result, a closed loop data 

driven predictive maintenance system is 

developed. The major contribution of this 

feedback system is that the loop is closed at the 

machine-to-machine level rather than just at an 

organisational level which is today's industry 

state-of-the-art. The data driven closed loop 

predictive maintenance system developed can be 

credited with some important results which we 

have summarised as follows: 

 An increased automation in maintenance 

will benefit from machine generated data 

as in Industry 4.0 most machines have 

extensive capabilities for self-diagnosis 

but most times the results of such 

diagnosis are used as mere 

representations of symptoms and do not 

help in any way for predicting or giving an 

indication of future failures. The reason 

being that, in such open loop systems, the 

effect of a diagnosis that has revealed a 

fault state is that the snag is simply 

cleared and forgotten. In contrast, the 

closed loop feedback loop for predictive 

maintenance developed here, remembers 

each fault or failure event and uses it in 

the future not only for the same machine 

but also for all similar machines linked to 

its network via the distributed cloud 

globally or through a small company's 

intranet locally, depending on its 

functional configuration. The developed 

predictive maintenance feedback loop 

integrates well into the framework of the 

European Union's Factories of the Future 

projects and proposals briefly highlighted 

in section 3. 

 Maintenance task execution often 

introduces some consequential hazards 

through human error or wrong operational 

or organisational procedures. Developing 

a system such as the feedback predictive 

maintenance system that helps to reduce 

maintenance needs has an instant effect 

on improving the safety performance not 

only of the production equipment but also 

that of the workplace as well. 

 The systems developed in this project 

leverage on Industry 4.0 key enabling 

technologies such as the distributed cloud 

system, big data mining and analysis, 

Internet of Things, Cyber-Physical 

Systems, three dimensional printing 

technology, and other innovative 

technologies and intelligent devices to 

deliver solutions which are not only more 



efficient and effective but also have 

positive cost benefits. For example, the 

cost benefit to a Nigerian oil and gas 

company which has an operational base 

in Norway will be enormous based on 

travel and logistic costs alone if an 

Industry 4.0 cloud based asset 

maintenance system is implemented 

across the value chain of the company 

and thereby limiting the need to travel. 

 

As companies continue to focus on novel and 

efficient ways of doing business, there will be an 

ever increasing appetite for novel technologies 

such as the data driven closed loop predictive 

maintenance system proposed in this paper. The 

proposed maintenance structure can only 

succeed if it is undertaken as a multi-disciplinary 

project, collaborative effort is required in disparate 

fields from robotics engineering to computer 

science all the way down to sociology and 

psychology. The system hinges on several 

innovations most of which are far from being 

proven technologies. Further research is therefore 

required in the following areas: 

 Integration effort to harmonise 

mechatronic systems and computer 

programming to suit the Industry 4.0 

production factory 

 There should be a clearly defined road-

map for the implementation of Industry 

4.0 that meets the needs of different 

industry sectors. This can be achieved 

through publicly available published 

guidelines and standards 

 Development of industry-grade software 

and smart algorithms that would meet 

demands of Industry 4.0 companies 

 Address the needs of standardisation, 

interoperability, open systems 

applications, and adaptability 

 Adapting today's production floor to suit 

the smart factory specifications is an 

urgent research challenge that must be 

tackled 

 Integration of predictive maintenance 

capabilities from an early design phase in 

future products and in future production 

lines. Industry 4.0 implementation pays 

attention to both products and production 

equipment because the product of one 

company could be the production 

equipment of another company. 

 By design, robustness and resilience of 

products and production assets must 

address issues of cyber security, activities 

of criminal hackers and unethical 

competitors. Advanced encryption 

techniques should be investigated and 

comprehensive risk assessment must be 

carried out to establish the links between 

individual risks and the possible 

consequences. 

 

6. Conclusions 

The basic structures proposed in this paper set 

out general frameworks for a data driven closed 

loop feedback predictive maintenance system for 

implementation within an Industry 4.0 

environment. It is sufficient to conclude based on 

the results expected from the developed system 

that its integration with the system structures and 

degradation models of the aggregating 

components or assemblies has the potential to 

reduce maintenance frequency on critical assets 

or increase the interval of offline inspections, 

increase safety around production equipment in 

the workplace, increase asset availability and 

boost both productivity and profitability. The 

ultimate end products will be reliable, robust and 

resilient systems that offer asset operators the 

best life cycle benefits. 
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Abstract      Vibration based condition monitoring (VBCM) is a well-established 

technique for the application of predictive maintenance to the rotating machinery. 

The use of this technique for the purpose of machine diagnosis is well researched 

but there is so far no proven technique for using the same vibration data for systems 

prognosis. This paper proposes an approach that uses a linear regression technique 

to derive a mathematical model which is in turn used to predict the future vibration 

severity of a rotating machine. The frequency peaks of the velocity spectra were 

used in a real plant case study where the VBCM was applied to the roller element 

bearing component of a drillship’s thruster system. The results obtained were dra-

matically better than when the overall root-mean-square values of the time wave-

form were trended over the same period. 

 

Key words Big data, Condition monitoring, IIoT, Industry 4.0, Predictive Mainte-
nance, Prognosis. 

1.0 Introduction 

As organizations strive to reach their production targets there are assets that are 

critical to their operations. The reliability and availability of these critical assets 

directly impact the profit margins of the organizations and by implication their 

continued existence. Within an organization’s maintenance function, predictive 

maintenance techniques such as condition monitoring and prognosis have today 

gained an increased attention because they are important to balance the dilemma 

between maintenance costs and technical acceptability. The level of competence and 

success recorded with the vibration based condition monitoring techniques means 
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that they have found useful applications within varied industries from aerospace to 

manufacturing as well as the oil and gas industry in recent times.  

However, as the transition is made away from traditional manufacturing and 

standalone systems, a major concern expressed within the industry is that the current 

approach presented within Industry 4.0 (the Industrial Internet of Things (IIoT)) [7] 

for implementing predictive maintenance places too much emphasis on low level 

data monitoring to a degree that compromises the level of competence already 

achieved within the industrial application of vibration based condition monitoring 

and there is so far no proven method to overcome the challenge.  

 

The ultimate goal of any condition monitoring system is to gain the capability to 

predict the future of the equipment monitored [2]. Such a goal would be hard to 

reach by simply monitoring low level data such as temperature and pressure as 

currently suggested in the literatures related to Industry 4.0 although there are still 

not many publications available in this area. The IIoT is a new and evolving 

paradigm, therefore research and implementation are still in their formative stages. 

Previous publications are quick to highlight the strategic importance of big data but 

fail to demonstrate how it can be organized and analyzed for the purpose of 

predictive maintenance and for completing the maintenance decision loop. From the 

perspective of maintenance, the obvious weakness in the present big data exists in 

the fact that they are collected mainly for operational reasons and only serves 

maintenance purposes often “accidentally” or as an afterthought at the best. 

 

In this paper, investigations have been carried out and the results reported can bridge 

some of the existing gaps. Using vibration monitoring of rotating equipment as a 

case study, it was demonstrated that the next generation of condition monitoring can 

integrate well into the Industrial Internet beyond low level data monitoring which 

is currently the case. It was shown that the application of a systematically selected 

stochastic process to low level data provides the required scaling up of vibration 

data to produce a more realistic and more practicable solution compared with any 

existing technique for the implementation of predictive maintenance within the 

Industry 4.0 environment. Machine generated real data and an industry grade 

software were deplored to obtain results which are not only compatible with the 

proposed Industry 4.0 reference architecture but also show a higher level of service 

when utilizing the proposed condition monitoring technique. Using modern sensors 

and instrumentation techniques, vibration data is collected in a structured manner 

for the main purpose of predictive maintenance. The collected data is dimensioned 

and treated in a form compatible with Industry 4.0 requirement for single value data 

while retaining the original properties of vibration data. It was proposed to capture 

multiple snapshots of vibration patterns to which a single average value is assigned 

to the frequency spikes for every successive and corresponding time horizon. These 
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values are aggregated over time and a regression is run adopting the technique of 

the autoregressive moving average (ARMA) to predict future failures. This is 

essentially a machine learning model that follows the propagation of an existing 

degradation over time and then estimates a future time when the degradation is 

beyond a predefined threshold. This gives room for planning and arranging for 

logistics in advance to minimize or totally avoid downtime. 

 

Hence this new approach is expected to radically redefine the use of vibration based 

condition monitoring techniques within the Industrial Internet of Things without 

any loss of fidelity in its application to predictive maintenance and thereby ensuring 

safe cost reduction and the optimal utilization of asset value. It is expected that the 

proposed solutions are refined further through collaborative efforts of researchers 

and the end-users in the industry to reach a regulatory level of acceptability. 

2.0 Rotating Machines Prognostics: The Science & Art of 

Vibration Technique 

Vibration is characterized with frequency (measured in Hertz, CPM or RPM) and 

amplitude (measured either as peak, peak-to-peak or RMS values). The vibration 

energy can be described in terms of either the displacement (measured in microme-

ters), velocity (measured in millimeters per second) or acceleration (measured in 

meters per square second) caused by its transmission. A vibration signal can be re-

lated to another vibration or reference signal in terms of phase. There are several 

international standards dedicated to best practices in vibration analysis. They are 

mostly focused on the area of using vibration analysis for the purpose of operational 

monitoring and acceptance testing of rotating equipment or reciprocating machines. 

They often generally cover diagnosis but there is so far neither an existing standard 

nor is there available any proven technique to use vibration analysis to implement 

system prognosis. This is important because gaining an early awareness about an 

impending failure provides the opportunity to mitigate surprises and plan mainte-

nance based on a schedule to optimize production time and reduce downtime. This 

section proposes a technique that provides a basis for using vibration analysis to 

carry out system prognosis within the framework of a predictive maintenance pol-

icy. The discussion begins with an introduction to ISO 10816-1 standard to aid a 

better understanding of the topic. 
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2.1 Mechanical Vibration and the ISO 10816 

The ISO 10816 is one of the key international standards that set out the procedures 

and conditions for measurement and evaluation of vibration data. The ISO 10816 

specifically focuses on measurements made on non-rotating/nonreciprocating parts 

of the machine. It stipulates two evaluation criteria. These are the magnitude of vi-

bration and the change of vibration. The vibration signal captured from a machine 

is specified to be broadband in the sense that the frequency spectrum of the equip-

ment under consideration is reasonably covered. The appropriate frequency range 

for any given type of machine will depend on its configuration and the previous 

experience gained with its vibratory behavior.

 
Figure 2.1: ISO 10816 – General form of vibration velocity acceptance criteria 

 

The overarching objective of any vibration analysis system is to determine the vi-

bration severity of a machine and the trend of the vibration over time, increasing or 

decreasing. In order to meet this objective, measurements are made at carefully se-

lected measurement points and often in two or three different directions which are 

mutually perpendicular to each other. This results in a set of vibration data repre-

senting vibration magnitude. By definition, vibration severity is the “maximum 

broadband magnitude value measured under agreed machine support and operating 

conditions” (ISO 10816-1). In many machines a single vibration severity value is 

enough to characterize the vibration level however in other cases it will be insuffi-

cient and a more accurate representation will depend on a number of severity values 

from several locations. The vibration severity at each bearing housing or pedestal is 

compared with the four predetermined evaluation zones (Zones A, B, C and D) stip-

ulated by the ISO 10816-1 and ISO 10816-3 standards to give the indication of nor-

malcy, alarm or trip (ref. Figure 2.1). The measuring positions are marked and sub-

sequent measurements are taken from the same positions with the same transducer 

orientations and similar operating conditions, otherwise it may produce an errone-

ous result when trended over time. When these conditions are met, significant 
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changes from the established normal vibration readings must be investigated further 

to avoid reaching a position which could be dangerous to the continued operation 

of the machine. It is however important to note that in some cases some deviations 

cannot be detected unless the frequency components of the vibration signal is ana-

lyzed. This is further illustrated with the use of a case study in the following section. 

2.2 Case Study: Implementing System Prognosis with the Thruster 

Gearbox Bearing Velocity Spectra 

The vibration data used in this case study were obtained from measurements made 

on a roller element bearing at one of Company A’s machines. The velocity spectrum 

for a component of the thruster system, that is one of the gearbox bearings was 

analyzed. The survey periods are assumed to be at six months interval. That is a 

logical deduction but it was not exactly the case. It is important to assume an equal 

interval to proceed with the regression analysis. The results of the regression anal-

ysis is shown on Figure 2.2. The numbers used for the regression were obtained by 

taking the average of 5 peaks on a survey period: the maximum peak for the period, 

two next lower peaks on the left and two next lower peaks on the right. The fre-

quency range of interest was from 250 Hz to 300 Hz (this frequency range is asso-

ciated with the bearing of interest). The vibration severity or peaks are measured in 

millimeters per second. 

 

 

 
Figure 2.2: First Order Linear Regression of Vibration Severity/Peaks 
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From the regression analysis, the model for predicting the next period's expected 

vibration severity was derived as 1.096117 + 0.795704 Yt (where Yt is the vibration 

severity of the most recent survey period.) The model predicted the vibration sever-

ity for period 9 to be 4.96 millimeters per second. Having a systematic way to carry 

out such predictions has many benefits. In the current case study, surveys were re-

peated at six months interval. At the end of each survey, it is possible to predict what 

we expect the vibration severity to be six months from the most recent survey cam-

paign. Should the predicted vibration severity be significantly higher than the pre-

determined acceptable levels, the asset managers have the benefit of initiating the 

plan to carry out maintenance long before the possible failure of the component. 

While working in partnership with the industry for this paper it was observed that 

maintenance engineering service providers may have reason to authorize the con-

tinued use of an equipment even when a trend that could lead to failure has been 

observed. The main reason for not carrying out maintenance as soon as the first sign 

of possible failure is known was found to be predicated upon considerations for 

production interruption. In such situations where it was necessary to escalate the 

maintenance requirements, the engineering company was observed to have offered 

the equipment utilization extension based on "expert judgement and best guesses or 

honest estimates." The systematic approach proposed in this paper offers a more 

scientific and objective technique for reaching such decisions. Another question that 

is necessary to address is what the appropriate survey interval should be. This is a 

difficult question as it will generally involve commercial and contractual consider-

ations. The accessibility of the equipment or its known reliability performance and 

the cost to personnel or in extreme cases interruption to production flow are among 

important factors to consider before the survey interval is selected. Due to random 

events, it might sometimes be necessary to embark on vibration data collection at a 

time that is off the agreed interval. In such cases, the asset managers have to docu-

ment and implement the additional survey campaigns without distorting the planned 

survey periods. 

2.2.1 The model has the following limitations: 

 Only a few data points (7 observations) were used to train the model. 

 The recorded readings were made at different machine revolutions. It 

was only after July 3rd 2013 that measurements were made consistently 

at 680 RPM. Between December 12, 2011 and February 01, 2013 the 

range of RPM where vibration readings were taken varied from 583 to 

710. This is contrary to the recommendations made in [4], [5], [6] and 

certainly has an influence on the derived model. 

 Frequency peaks were measured without linking them with their corre-

sponding phase angles. Treating frequency as a vector quantity rather 

than as a scalar produces better results as shown in the standards refer-

enced in the above bullet point. 
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 The interval between the survey periods were not equal. In some cases 

it was approximately six months but it was not generally true.  

 The regression analysis has been carried out using the data analysis 

function in Microsoft Excel. It was sufficient to demonstrate the result 

but a commercial application would require a more advanced software 

perhaps application tailored computing. 

 

In order to overcome the aforementioned limitations, the pursuit of predictive 

maintenance and prognostic techniques need be a rigorously implemented policy. 

Lots of data are now being generated within industrial applications [3], [7] and with 

the continued improvements in sensor technology, data mining will witness an up-

ward trend [8], [9]. It is necessary to look into the generated data, structure and 

analyze it to help in maintenance decision support as well as other value added ser-

vices. Data scientists will play an increasingly important role in the future of mainte-

nance practice. Analyzing a sufficient amount of data from the same or similar ma-

chines with some statistical techniques such as the lifetime models which have been 

rigorously treated in standard statistical literatures will improve asset reliability and 

availability. The application of the Nelson-Aalen estimator and the Kaplan-Meier 

estimator techniques, for example, to the relevant data sets can aid better under-

standing of components' failure trajectories and a more accurate estimation of the 

machine's mean time to failure (MTTF) or other important system structures and 

parameters. The big data is important but the systematic analysis of the big data 

provides the value adding perspective that would help organizations to realize their 

overarching business functions to maximize stakeholders' value.  

 

3.0 Smart Maintenance: The Discussion Continues 

Condition monitoring is intended to measure the current status of an operational 

item but it does not automatically imply that a predictive maintenance policy is in 

place [2]. There has to be a system that receives the parameter values measured by 

the condition monitoring technique and utilise these values as an input to the 

predictive maintenance strategy. A condition monitoring programme is an 

irreducible minimum for the predictive maintenance strategy to hold but a 

successful predictive maintenance concept is a consciously applied policy. The 

evolving paradigms of the Industrial Internet of Things (IIoT) gives credence to the 

prediction of the 4th industrial revolution which was first identified in Germany as 

Industry 4.0. The disruptive nature of an industrial revolution means that there will 

be a shift in the general ways of doing things and there has been discussions in the 

maintenance engineering communities as per the impacts of these shifts in practice. 

The relevance of this paper and the results obtained from the investigations are 

grounded in the reach to provide some basic proposals on how to structure and 

analyse vibration data for the purpose of predictive maintenance and systems 

prognosis. It is expected to be a means to bridge the state-of-the-art in maintenance 
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and the future maintenance practice which is smart by its perspective and data 

driven by application. It was established that the frequency spectrum correctly 

captures the vibration energy in the rotating machinery when subjected to vibration 

analysis. The use of frequency peaks in spectral analysis for trending provided better 

results than conventional trended overall values. Spectral analysis provides a means 

to separate a complex vibration time waveform into its component frequency 

spectra which in turn offer the benefit to identify and isolate specific frequencies 

resulting from each and every component in a complex rotating machine. This was 

traditionally used for troubleshooting and diagnosis. The investigations conducted 

for this paper revealed that these frequency peaks can also be used to predict the 

future behavioural patterns of the rotating machinery and estimate its future 

vibration severity based on ordinary linear regression. 

 

The particular data-set used for the case study came from a roller bearing which 

formed part of a thruster assembly on a drill ship. The relevant data used for the 

regression analysis had a span of eight periods. The interval between two successive 

periods was approximately six months. When a first order linear regression analysis 

was conducted based on the data from the eight periods (that is only 8 observations), 

a prediction model was established. From the regression analysis, the model for 

predicting the next period's expected vibration severity was derived as 1.096117 + 

0.795704 Yt (where Yt is the vibration severity of the most recent survey period.) 

The model predicted the vibration severity for period 9 as 4.96 millimetres per 

second. If this mathematical model is validated to hold true in similar operating 

conditions it becomes easy to write an algorithm that is capable of implementing 

system prognosis. The derived model has the limitation that it was based only on 8 

observations which is grossly insufficient. The framework nonetheless provides a 

basis for further investigations as more data become available. With only a few data 

points, it was only reasonable to run a linear regression. However, in another report 

[1] it was suggested that the quadratic model offered better results than linear ones. 

This report lacked sufficient data to either confirm or refute the claim that quadratic 

models are better than linear models. The strength of this investigation is that it has 

provided a proposal which can be easily adapted to create models which can be used 

for predictive maintenance and prognosis as the sensor technology continues to 

revolutionise condition monitoring whilst also driving both the big data and big data 

analytics for the smart maintenance applications. 

 

The rotating machinery form an integral part of most production assets. Pumps, 

compressors, electrical motors and generators, separators, and gas turbines are 

common examples of rotating machinery used in industries. The use of vibration 

analysis for purposes of condition monitoring and diagnostics has been very 

successful within standalone systems in conventional applications. However, the 

concept of smart maintenance based on Industry 4.0 requires an extensive use of 

data [7]. The challenge is to present the data in a format that is compatible with the 

design philosophies and the reference architecture for the Industrial Internet of 

Things (IIoT) [3]. This report has provided an initial proposal for tackling the stated 

challenge. It further shows a technique that makes use of structured data to 
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implement systems prognosis based on the frequency spectrum of vibration data. 

The procedure outlined for implementing predictive maintenance was simple but a 

limited amount of data was used. That limitation makes it difficult to argue that the 

results obtained would be valid in all circumstances. The next phase of improvement 

must utilise a more extensive data coverage that would help determine the degree 

of accuracy of the results of the prognosis. In addition to expanding the data 

coverage, there is a need to calculate and provide the confidence intervals associated 

with every prediction. The gradual progression from condition monitoring to 

condition based maintenance and predictive maintenance up to prescriptive 

maintenance is both worthy and realisable within the sphere of smart maintenance. 

In order for the idea to reach a proven technology and a regulatory level of service 

there has to be a consciously targeted effort by all sectors to improve the techniques 

for measuring parameters and running the analysis. A further refinement of the ideas 

proposed in this paper to a point of commercial viability is recommended along with 

the inclusion of those partner companies who are willing to set up pilot services to 

validate the proposed ideas. 
 

       

4.0 Conclusion 

The derived mathematical model for predicting the future vibration severity was 

based on single values which are compliant with the proposed Industry 4.0 reference 

architecture. The vibration data stored, processed and analyzed in the compliant 

format helps to populate the big data which in turn is used for the data driven smart 

maintenance which has a great descriptive accuracy, predictive powers and 

prescriptive capabilities. Condition monitoring was shown to be a safe cost cutting 

mechanism to the benefit of operators and asset managers because it provides a 

mechanism to avoid or mitigate surprises. Having an advance awareness about the 

degraded state of a production asset offers the valuable advantage of synchronizing 

maintenance needs and operational demands. 

 

 

 



10  

References  

[1] Chudnovsky, B.H., Livshitz, A. and Chudnovsky, B.A., 2008, October. Thermal model of elec-

trical contacts based on experimental data. In 2008 Proceedings of the 54th IEEE Holm Con-

ference on Electrical Contacts (pp. 205-211). IEEE. 

[2] Chukwuekwe, D.O., Schjølberg, P., Rødseth H. and Stuber A., 2016. Reliable, Robust and 

Resilient Systems: Towards Development of a Predictive Maintenance Concept within the In-

dustry 4.0 Environment. EFNMS Euro Maintenance Conference 2016, May 30 – June 2. Ath-

ens, Greece. 

[3] Evans, P.C. and Annunziata, M., 2012. Industrial internet: Pushing the boundaries of minds 

and machines. General Electric. November, 26. 

[4] ISO 10816-1: Mechanical vibration—Evaluation of machine vibration by measurements on 

non-rotating parts—Part 1: General guidelines. ISO Switzerland, 1995. 

[5] ISO 10816-3: Mechanical vibration—Evaluation of machine vibration by measurements on 

non-rotating parts—Part 3: Industrial machines with nominal power above 15 kW and nominal 

speeds between 120 r/min and 15,000 r/min when measured in situ. ISO Switzerland, 2009. 

[6] ISO 7919-1: Mechanical Vibration of non-reciprocating machines - Measurements on rotating 

shafts and evaluation criteria—Part 1: General guidelines. ISO Switzerland, 1996. 

[7] Industrie 4.0 Working Group, 2013. Recommendations for implementing the strategic initiative 

INDUSTRIE 4.0. Final report, April. 

[8] Lee, J., Kao, H.A. and Yang, S., 2014. Service innovation and smart analytics for industry 4.0 

and big data environment. Procedia CIRP, 16, pp.3-8. 

[9] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A.H., 2011. 

Big data: The next frontier for innovation, competition, and productivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

Authors’ Biography 
 

 

 

Douglas O. Chukwuekwe 

 

Engr. Douglas O. Chukwuekwe is an aircraft 

and project engineer with over ten years of 

experience. He worked as a Teaching and 

Research Assistant at the Norwegian 

University of Science & Technology, 

Trondheim while taking the MSc in Reliability, 

Availability, Maintainability and Safety 

(RAMS) Engineering, a programme from 

which he recently graduated. He is a motivated 

and budding researcher with interests in novel 

condition monitoring techniques, predictive 

maintenance and reliability by design. He was 

a speaker at the European Federation of 

National Maintenance Societies’ (EFNMS) 

24th Biennial Euro Maintenance Conference, 

2016 in Athens, Greece. 

 

Tommy Glesnes  

 
Engr. Tommy Glesnes is the Chief Technical 

Officer (CTO) of Karsten Moholt AS, a leading 

technology provider with specialties in electro-

mechanical machinery, motors and generators. 

An approved vibration training instructor and a 

Category III vibration analyst with over 25 

years of practice, he is certified by the EFNMS 

as a European Expert in Maintenance 

Management. 

 

 

 
Per Schjølberg 

 
Dr Per Schjølberg is an Associate Professor 

and the former Head of the Production and 

Quality Engineering Department at the 

Norwegian University of Science and 

Technology, NTNU-Trondheim. He sits on the 

Board of several organisations. 

 
 



 

 



 

 

 

 

 

 

 

 

 

 


