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Abstract

Cross-sectional parameters for complex cross-sections are very difficult to calculate by analytical

means. Dynamic calculations of aircraft and wind turbines often make use of beam elements for the

wings and turbine blades, and are dependent on correct cross-sectional parameters. As a solution to

this we have continued the development of an analysis software for complex beam cross-sections,

based on the finite element method. Both wind turbine blades and aircraft wings are often made

of composite materials with a layered structure. Cross-sections consisting of such materials lend

themselves very well to meshes with quadrilateral elements. By implementing support for four- and

nine-node quadrilateral elements, as well as developing a unified analysis for torsion and shear, we

have greatly increased the composite functionality of the software. A recurring problem with com-

plex geometry is that the analysis can be computationally expensive. By supporting thin-walled

approximations to cross-sections we have significantly reduced the computational effort needed,

while still retaining sufficient accuracy. The work has been extensively tested, and is shown to pro-

vide highly accurate results when compared to both known solutions and similar programs.
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Sammendrag

Det er vanskelig å beregne tverrsnittsdata for komplekse tverrsnitt analytisk. Dynamiske bereg-

ninger av fly og vind turbiner bruker ofte bjelkemodeller for vingene og turbinbladene, hvor re-

sultatene er avhengig av korrekte tverrsnittsdata. For å løse denne problemstillingen har vi fort-

satt utviklingen av et analyseprogram for komplekse tverrsnitt, basert på elementmetoden. Både

flyvinger og turbinblader lages ofte av kompositt materialer med en lagvis struktur. Kvadrilaterale

elementer passer bedre enn triangulære element til å beskrive tverrsnitt bestående av slike struk-

turer. Ved å implementere fire- og ni-noders kvadrilaterale elementer, i tillegg til å utvikle en samlet

analyse for påsatt torsjon og skjærlast, har vi gjort store fremsteg mot en analyse av kompositt ma-

terialer. Et gjennomgående problem for tverrsnitt med vanskelige geometrier er at analysene blir

store beregningsmessig. Som en konsekvens av dette har vi implementert støtte for en tynnveg-

get tilnærming av tverrsnitt. Dette medfører mye raskere beregninger, samtidig som at tilstrekkelig

presisjon for resultatene er opprettholdt. Programvaren har blitt testet grundig mot både kjente

løsninger og lignende programmer. Resultatene har gjennomgående vært meget presise.
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Preface

This master thesis is a continuation of the work done by Kristian Strømstad for his master thesis

during the spring of 2014. It was written for the Department of Engineering Design and Materials

(IPM) at the Norwegian University of Science and Technology (NTNU). The reader should be familiar

with the basic concepts of Finite Element Analysis (FEA), matrix theory, and have experience with

object-oriented programming (OOP).

Trondheim, June 9th, 2016

Samson C. Svendsen Simen V. Aakhus
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Chapter 1

Introduction

1.1 Background

Cross-sectional parameters for complex cross-sections are very hard to calculate by analytical means.

Dynamic calculations of aircraft and wind turbines often make use of beam elements for the wings

and turbine blades, and are dependent on correct cross-sectional parameters. For this reason, the

Department of Engineering Design and Materials (IPM) started the work on a software solving this

problem with the use of finite element analysis (FEA). Bjørn Haugen, associate professor at IPM,

initiated the development of the software now named Complex Cross-Section Calculator (CCSC). It

was further developed by Kristian Strømstad during his master thesis 1 (spring 2014). At the end of

his thesis the software had all the functionality needed to calculate basic cross-sectional parameters

such as area, second moments of area, and angle of principal axis. Additionally the software was

able to correctly compute axial stresses due to applied normal force and pure bending. An analysis

of stress distributions due to applied torsional moment using three-node triangular elements was

also implemented, but it was producing incorrect numerical values.

During our project thesis (fall 2015) we extended the functionality to include a stress analysis due

to shear loading. Additionally we implemented support for analysis using six-node triangular ele-

ments. These elements are quadratic and consequently CCSC can obtain linear variation of stress

1



over the element, which provides more accurate analysis. By the end of the project we concluded

that the quadratic element implementation was correct, while the shear analysis was producing in-

correct numerical values.

1.2 Objectives

The main objectives of this master thesis are to

1. Develop support for analysis of thin-walled cross-sections, using two- and three-node line

elements

2. Develop four- and nine-node quadrilateral element functionality for massive cross-sections

3. Implement support for composite materials for the existing elements

4. Evaluate and restructure existing code

In addition to the main goals we also had to correct both the torsion and shear analysis, as well as

implement calculations for parameters such as the torsion constant, shear center, and shear defor-

mation factors. As a long term goal CCSC should fully support composite materials. An extensive

HTML documentation was also written, to further facilitate future development of the application.

1.3 Approach

Much of the theory for massive analysis is based on Kolbein Bell’s An engineering approach to Fi-

nite Element Analysis of linear structural mechanics problems 2. This includes element formulation

and numerical integration. The approach used for the thin-wall analysis is based on the theory

presented in the CrossX documentation3, and CCSC is in many ways developed to be a spiritually

successor to CrossX, written in modern C++ and with added functionality for composites.

All code for this project was written in C++ using Microsoft Visual Studio 2015. For matrix operations

and equation solving we used the linear algebra template library Eigen4. GitHub 5 was used for

2



version control and as a collaborative tool. To create the mesh files for the analyses we have used

the open source software Gmsh 2.11 6. For visualization of our results we used the visualizing tool

ParaView 7, and the VTK file format 8. All documentation for CCSC was generated by Doxygen9

1.4 Structure of the report

The rest of the report is organized as follows. Chapter 2 describes in detail how the finite element

method (FEM) is used for analysis of beams subjected to torsion and shear loading. This includes

descriptions of element types, numerical integration, stress calculations, and a detailed introduc-

tion to composite analysis. Chapter 3 elaborates on analysis of thin-walled cross-sections of a can-

tilever subjected to torsion, shear, normal force, and bimoment loading. In Chapters 4 and 5 we

explain the implementation of the theory. This includes descriptions of class structures and infor-

mation flow, numerical integration, stress analysis, and visualization of results. In Chapter 6 we

validate the implementation by comparing results to well-known solutions, as well as results re-

trieved from CrossX. We also investigate the running time for both massive and thin-wall analysis.

In Chapter 7 we summarize our thesis, discuss our findings, and make suggestions for future work.

3
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Chapter 2

Theory - Massive Cross-Sections

This chapter presents the theory behind the implementation of massive cross-section analysis. This

includes a deeper look into the finite element method, triangular and quadrilateral elements, nu-

merical integration, and calculation of stress distributions due to bending moments, torsion, and

shear loading. Towards the end we present an introduction to analysis of composite materials,

which unifies torsion and shear loading.

Figure 2.1: Example of a massive cross-section with coordinate system and applied section forces
in the area center (C) and shear center (S)
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2.1 The finite element method

The finite element method is a powerful technique used to solve structural problems with the use of

numerical approximations to physical problems. The development of FEM has been closely related

to the advancement of the digital computer. Moore’s law, postulating that the number of transistors

on a circuit doubles every 18 months, has been valid for the latter half of the 20th century, decreasing

the cost of computational power immensely. As a consequence, today’s computer programs are able

to solve equations with several millions of unknowns, making FEM an effective tool suitable for most

branches of engineering.

The general idea behind FEM is to divide a system with complex behaviour into a set of subsystems

which can be analyzed more easily. A sub-system consists of elements, and each element has a set

of nodes. The elements connect to each other through these nodes. For every node several loads

and corresponding displacements are defined, which are directly related to the node’s degrees of

freedoms (dofs). The loads and displacements are represented by the vectors S and v respectively.

For an element with n nodes and n dofs (out-of plane displacements), the relation between S and v

is described through the element stiffness matrix ke with n rows and n columns.

ST =
[

S1 S2 · · · Sn

]

v T =
[

v1 v2 · · · vn

]
Establishing the stiffness matrix is a large part of solving any problem using FEM, and results in the

following key equation

S = ke v (2.1)

However, there is no simple way of establishing this relation. By assuming the displacement field of

an element to be described as a function of the nodal displacements, we allow the displacements

to be described at any point in the element. Eq. (2.2) states this relationship. The shape- (or inter-

polation) functions N are specific to each element type, and is further explained in Section 2.4.2. It

is important to recognise that this assumption makes FEM an approximate solution. The correct
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displacement field cannot be assumed even for simple cross-section analysis.

u

v

= u = N v (2.2)

We introduce B as the strain-displacement matrix and define the strains as

ε = ∆u = ∆N v = B v (2.3)

2.2 Principle of virtual displacements

The principle of virtual displacements (PVD) is the basis for the displacement-based finite element

solution with respect to the warping function Ψ(x, y). We refer to Bell 2 for a precise interpretation

of this principle:

If a system of real external and internal forces (stresses) that are in static equilibrium

are subjected to any set of virtual, but kinematically compatible, displacements and

deformations, then the virtual work performed by the real external forces over the vir-

tual displacements is equal to the virtual work performed by the real internal forces

(stresses) over the virtual deformations (strains).

By subjecting an element to a set of virtual displacements ṽ , and choosing the virtual displacements

inside an element ũ according to Eq. (2.2) we get

ũ = N ṽ (2.4)

with the corresponding virtual strains

ε̃ = B ṽ (2.5)

PVD states that the virtual work done over the virtual displacements by the real external forces, is

equal to the virtual work done over the virtual strains by the real internal forces. In other words

W̃e = W̃i . For an arbitrary element this equation can be written as
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ṽ T S +
∫

Ve

ũT F dV +
∫

ST

ũTφdS =
∫

Ve

ε̃TσdV (2.6)

Virtual denotes that the displacements are not real displacements of the body. Rather, the virtual

displacements are independent of the actual displacements, and is used as a thought experiment to

establish the equilibrium equation in (2.6). For linear elastic, isotropic materials, G (often referred

to as C ) is simply a diagonal matrix with the shear modulus G on the diagonal. By substituting ũ, ε̃,

G and σ in the above equation and rearranging we get

ṽ T S = ṽ T
∫

Ve

B T G(B v +ε0)dV − ṽ T
∫

Ve

N T F dV − ṽ T
∫

ST

N TφdS (2.7)

Since this equation must be valid for any virtual displacement ṽ we end up with

S =
∫

Ve

B T GBdV v +
∫

Ve

B T Gε0dV −
∫

Ve

N T F dV −
∫

ST

N TφdS = ke v +S0
e (2.8)

where the element stiffness matrix is

ke =
∫

Ve

B T GBdV (2.9)

and the consistent load vector is

S0
e = S0

ε0
+S0

F +S0
φ (2.10)

with the following contributions due to initial strain, volume forces and surface forces respectively

S0
ε0
=

∫
Ve

B T Gε0dV (2.11a)

S0
F =−

∫
Ve

N T F dV (2.11b)

S0
φ =−

∫
ST

N TφdS (2.11c)
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2.3 Element types

CCSC offers support for meshes with four different element types; three- and six-node triangular

elements (T3 and T6) and four- and nine-node quadrilateral elements (Q4 and Q9). The four ele-

ment types are illustrated in Fig. 2.2. T3 and Q4 elements only have nodes in their corners, and as

a consequence their shape functions are linear and bilinear respectively. The T6 and Q9 elements

have additional nodes on the mid-point of each edge (Q9 also has a node in the middle of the ele-

ment), giving them quadratic and biquadratic shape functions respectively. All shape functions will

be defined over the next few sections.

Figure 2.2: T3, T6, Q4, and Q9 elements respectively

2.4 Triangular elements

As previously mentioned, CCSC offers support for two triangular element types (T3 and T6). The T3

element only has a linear displacement field, which makes the strain field constant. Because of this,

the T3 element is often referred to as the constant strain triangle (CST). The T6 element on the other

hand, has a quadratic displacement field, which gives a linear strain field across the element. Hence

it is often called the linear strain triangle (LST). The linear strain elements should in general provide

more accurate results, particularly for coarse meshes, as their solutions converge faster. This will be

examined further in Section 6.1.2.

It is important to mention that the triangular elements have been implemented with straight edges.

Therefore there is no need for mapping, nor the Jacobian matrix, unlike the isoparametric quadri-

laterals. Still, we consider the workload needed to implement support for curved-side T6 elements

to be small.
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2.4.1 Interpolation using area coordinates

For the implementation of triangular elements in CCSC we make use of area coordinates, which is

a normalized (dimensionless) system. This has clear advantages over using the global coordinate

system on an element level. Area coordinates are defined by splitting a triangle into three smaller

triangles as illustrated in Fig. 2.3. The area coordinates are given as

ζi = Ai

A
=

1

2
zi Li

1

2
Hi Li

= zi

Hi
i = 1,2,3 (2.12)

Figure 2.3: Area coordinates (ζ1,ζ2,ζ3) for a plane triangle, from Bell 2 p. 144

From this we interpret ζi to be the normalized distance from edge i to an arbitrary point P within

the triangle. The three area coordinates are constrained by each other as

ζ1 +ζ2 +ζ3 = 1 (2.13)

The relationship between the Cartesian reference system and area coordinates are given by the fol-

lowing equations

x = ζ1x1 +ζ2x2 +ζ3x3 (2.14a)

y = ζ1 y1 +ζ2 y2 +ζ3 y3 (2.14b)
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The area coordinates can be expressed by Cartesian coordinates using xi j = xi −x j and yi j = yi − y j ,

and numbering the corners 1,2, and 3 counter clockwise (with A being the area of the element)


ζ1

ζ2

ζ3

= 1

2A


y23 x32 (x2 y3 −x3 y2)

y31 x13 (x3 y1 −x1 y3)

y12 x21 (x1 y2 −x2 y1)




x

y

1

 (2.15)

Referring to Eq. (2.3), we establish the strain-displacement matrix as

B = ∆N =


∂N

∂x
∂N

∂y

 (2.16)

By differentiating Eq. (2.15) we establish the following relationships

∂ζi

∂x
= y j k

2A

∂ζi

∂y
= xk j

2A
(2.17)

which in turn help us determine the terms in B as

B =


∂N

∂x

∂N

∂y

 = 1

2A

y23 y31 y12

x32 x13 x21




∂N

∂ζ1

∂N

∂ζ2

∂N

∂ζ3


(2.18)

2.4.2 Three-node triangular element

The T3 element is the simplest of the four element types, and it was the only element implemented

in CCSC when we started working on the software. We will now look to determine its shape functions

by making use of the "0-lines" method described in Appendix A.3. Fig. 2.4 illustrates this method

used on a T3 element.
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Figure 2.4: Construction of shape functions for T3 element by the "0-lines" method

We look at node number 1, in an attempt to establish its shape function:

1. Assume the shape function N1 = c1 L23, as it is zero at every node except 1

2. =⇒ N1 = c1 ζ1

3. Fulfill unity requirement: N1(ζ1 = 1,ζ2 = 0,ζ3 = 0) = c1 ·1 = 1 =⇒ c1 = 1

4. =⇒ N1 = ζ1

The procedure is identical for the two other nodes. We conclude that for the three-node triangular

element, the shape functions are simply the area coordinates themselves as given in Eq. (2.19).

N =
[
ζ1 ζ2 ζ3

]
(2.19)

Fig. 2.5 illustrates these three shape funtions.

Figure 2.5: Linear shape functions N1, N2, and N3 for the three-node triangular element, from Bell 2

p. 174
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Eq. (2.18) established the strain-displacement matrix for triangular elements. Inserting the shape

functions derived above we get

B =


∂N

∂x

∂N

∂y

= 1

2A

y23 y31 y12

x32 x13 x21

 (2.20)

We observe that B is constant over the element, with no dependence on ζ, making it a CST.

2.4.3 Six-node triangular element

The six-node triangular element has both corner nodes and mid-point nodes along the edges. As

a consequence the derivation of its shape functions (and their derivatives) are more complex com-

pared to its T3 counterpart. Again we will apply the "0-lines" method to obtain the shape functions.

Fig. 2.6 illustrates this method used on a T6 element.

Figure 2.6: Construction of shape functions for T6 element by the "0-lines" method

We look at node number 1:

1. Assume the shape function N1 = c1 L23 L46, as it is zero at every node except 1

2. =⇒ N1 = c1 ζ1 (ζ1 −0.5)

3. Fulfill unity requirement: N1(ζ1 = 1, ζ2 = 0, ζ3 = 0) = c1 ·1 ·0.5 = 1 =⇒ c1 = 2

4. =⇒ N1 = 2 ζ1 (ζ1 −0.5) =⇒ N1 = ζ1(2ζ1 −1)

13



The procedure is identical for the two other corner nodes. We now look at edge node number 4:

1. Assume the shape function N4 = c4 L13 L23, as it is zero at every node except 4

2. =⇒ N4 = c4 ζ1 ζ2

3. Fulfill unity requirement: N4(ζ1 = 0.5, ζ2 = 0.5, ζ3 = 0) = c4 ·0.5 ·0.5 = 1 =⇒ c4 = 4

4. =⇒ N4 = 4 ζ1 ζ2

The procedure is identical for the two other mid-point nodes. Both N1 and N4 are illustrated in

Fig. 2.7. By finishing the procedures for the remaining four nodes we arrive at the following shape

functions for the T6 element

N =
[
ζ1(2ζ1 −1) ζ2(2ζ2 −1) ζ3(2ζ3 −1) 4ζ1ζ2 4ζ2ζ3 4ζ1ζ3

]
(2.21)

Figure 2.7: Quadratic shape functions N1 and N4 for the six-node triangular element, from Bell 2 p.
176

To determine the partial derivatives of N (i.e. N ,x and N ,y ) we make use of Eq. (2.18) to establish the

strain-displacement matrix in Eq. (2.22). We observe that B varies linearly with respect to ζ over the

element, which makes it an LST.

B =


∂N

∂x

∂N

∂y

= 1

2A

y23 y31 y12

x32 x13 x21




(2ζ1 −1) 0 0 4ζ2 0 4ζ3

0 (2ζ2 −1) 0 4ζ1 4ζ3 0

0 0 (2ζ3 −1) 0 4ζ2 4ζ1

 (2.22)
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2.5 Quadrilateral elements

CCSC offers support for two quadrilateral elements. The Q4 element has a bilinear displacement

field, making the strain field non-constant. The Q9 element on the other hand, has a quadratic

displacement field, giving a fully linear strain field.

2.5.1 Natural coordinates interpolation

For the implementation of quadrilateral elements, we make use of the natural coordinate system. By

normalizing curvilinear coordinates to the simplest possible geometry, it is much easier to perform

mathematical operations. This is done by establishing relations between the physical coordinates

(x, y) and the corresponding natural coordinates (ξ,η) in the normalized system. With this in mind,

we can express the shape functions and their derivatives in terms of natural coordinates. The result-

ing element properties can then be transformed back to the physical coordinates. Fig. 2.8 illustrates

the transformation back and forth between physical and natural coordinates.

Figure 2.8: Mapping from physical coordinates (x, y) to natural coordinates (ξ,η) and vice versa,
from Bell 2 p. 190

We will not establish a relationship between (ξ,η) and (x, y) in closed form, like we did for triangular

elements. This is not possible for general geometries. The position of the nodal points define the

geometric form of the element, thus it makes sense to express this geometry as an interpolation of

the nodal points. That is
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x (ξ,η) = ∑
i

Ni xi = N x (2.23a)

y (ξ,η) = ∑
i

Ni yi = N y (2.23b)

where N contains shape functions in the natural coordinate system (ξ,η), and x and y contains nodal

coordinates in the physical reference system (x, y). The transformation between gradients of the two

coordinate systems is given by the Jacobian matrix, which is defined as

J = ∂(x, y)

∂(ξ,η)
=


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 (2.24)

Using Eq. (2.23) we can extend the previous equation to

J =


∂N x

∂ξ

∂N y

∂ξ

∂N x

∂η

∂N y

∂η

 =
J11 J12

J21 J22

 (2.25)

The determinant of the Jacobian matrix is then defined as

J = |J | = det(J ) = J11 J22 − J12 J21 (2.26)

The inverse is given as

J−1 = 1

J

 J22 −J12

−J21 J11

 (2.27)

which is the transformation from (ξ,η) to (x, y). As with triangular elements, we must determine B .

By applying the chain rule we can easily establish its terms as

B =


∂N

∂x
∂N

∂y

=


∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y



∂N

∂ξ

∂N

∂η

= J−1


∂N

∂ξ

∂N

∂η

 (2.28)

We are now able to transform element gradients from the normalized system (ξ,η) back to the phys-

ical coordinate system (x, y). If the same shape functions are used to represent both the element
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geometry and the unknown field variable (in this case warping displacements), the element is de-

fined as isoparametric. This is the case for the two quadrilateral elements.

2.5.2 Four-node quadrilateral element

The Q4 element is the simplest of the two quadrilateral elements supported in CCSC, containing

only corner nodes. We make use of the now familiar "0-lines" method to establish the shape func-

tions. Fig. 2.9 illustrates the use of this method for a Q4 element.

Figure 2.9: Construction of shape functions for Q4 element by the "0-lines" method

We now look to node number 1:

1. Assume the shape function N1 = c1 L23 L43, as its function is zero at every node except 1

2. =⇒ N1 = c1 (ξ−1)(η−1)

3. Fulfill unity requirement: N1(ξ=−1, η=−1) = c1 · (−2)(−2) = 1 =⇒ c1 = 1
4

4. =⇒ N1 = 1
4 (1−ξ)(1−η)

The procedure is identical for the three other corner nodes, and their shape functions need no fur-

ther explanation. The four shape functions are given in Eq. (2.29).
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N T = 1

4



(1−ξ)(1−η)

(1+ξ)(1−η)

(1+ξ)(1+η)

(1−ξ)(1+η)

 (2.29)

Fig. 2.10 illustrates the bilinear shape functions of N , while Eq. (2.30) gives the partial derivatives

(N ,ξ and N ,η) of the four-node quadrilateral element.

Figure 2.10: Shape functions N1 through N4 for the four-node quadrilateral element, from Bell 2 p.
170

∂N T

∂ξ
= N ,Tξ =

1

4



(−1+η)

(1−η)

(1+η)

(−1−η)


∂N T

∂η
= N ,Tη =

1

4



(−1+ξ)

(−1−ξ)

(1+ξ)

(1−ξ)

 (2.30)

By using Eq. (2.28) we establish B as

B = 1

4
J−1

−(1−η) (1−η) (1+η) −(1+η)

−(1−ξ) −(1+ξ) (1+ξ) (1−ξ)

 (2.31)

We observe B to be non-constant unlike the linear triangular element. Additionally we observe N ,T
ξ

to be linearly dependent on η but independent of ξ. This means that γxz (and therefore τxz ) is inde-

pendent of ξ. Applying the same idea for N ,Tη concludes that γy z (and therefore τy z ) is independent

of η. This is investigated further in Sec. 6.3.4.
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2.5.3 Nine-node quadrilateral element

The Q9 element contains three different kinds of nodes: corner nodes, mid-point nodes along the

edges, and a node at the center of the element. Each of these three cases will be investigated indi-

vidually, using the "0-lines" method. Fig. 2.11 illustrates the method used on a Q9 element.

Figure 2.11: Construction of shape functions for Q9 element by the "0-lines" method

First, we look at corner node number 1:

1. Assume the shape function N1 = c1 L23 L43 L57 L86, as it is zero at every node except 1

2. =⇒ N1 = c1 ξη(ξ−1)(η−1)

3. Fulfill unity requirement: N1(ξ=−1, η=−1) = c1 · (−1)(−1)(−2)(−2) = 1 =⇒ c1 = 1
4 .

4. =⇒ N1 = 1
4ξη(ξ−1)η−1).

The procedure is identical for the three other corner nodes. Now, we investigate edge node number

5:

1. Assume the shape function N5 = c5 L14 L23 L43 L86, as it is zero at every node except 5

2. =⇒ N5 = c5 (ξ+1)(ξ−1)(η−1)η

3. Fulfill unity requirement: N5(ξ= 0, η=−1) = c5 · (1)(−1)(−2)(−1) = 1 =⇒ c5 =−1
2
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4. =⇒ N5 =−1
2η(η−1)(ξ2 −1)

The procedure is identical for the three other edge nodes. Finally, we investigate center node num-

ber 9:

1. Assume the shape function N9 = c9 L14 L23 L43 L12, as it is zero at every node except 9

2. =⇒ N9 = c9(ξ+1)(ξ−1)(η−1)(η+1)

3. Fulfill unity requirement: N9(ξ= 0, η= 0) = c9 · (1)(−1)(−1)(1) = 1 =⇒ c9 = 1

4. =⇒ N9 = (ξ2 −1)(η2 −1)

By finishing this procedure for the remaining six nodes we establish N for the Q9 element as given

in Eq. (2.32). Fig. 2.12 illustrates the examined shape functions (N1,N5, and N9), while Eq. (2.33)

gives the partial derivatives (N ,ξ and N ,η) of the nine-node quadrilateral element.

N T = 1

4



ξη(ξ−1)(η−1)

ξη(ξ+1)(η−1)

ξη(ξ+1)(η+1)

ξη(ξ−1)(η+1)

−2η(η−1)(ξ2 −1)

−2ξ(ξ+1)(η2 −1)

−2η(η+1)(ξ2 −1)

−2ξ(ξ−1)(η2 −1)

4(ξ2 −1)(η2 −1)



(2.32)

Figure 2.12: Biquadratic shape functions N1, N5, and N9 for the nine-node quadrilateral element,
from Bell 2 p. 170
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∂N T

∂ξ
= N ,Tξ = 1

4



η(η−1)(2ξ−1)

η(η−1)(2ξ+1)

η(η+1)(2ξ+1)

η(η+1)(2ξ−1)

−4ξη(η−1)

−2(η2 −1)(2ξ+1)

−4ξη(η+1)

−2(η2 −1)(2ξ−1)

8ξ(η2 −1)



∂N T

∂η
= N ,Tη =

1

4



ξ(ξ−1)(2η−1)

ξ(ξ+1)(2η−1)

ξ(ξ+1)(2η+1)

ξ(ξ+1)(2η+1)

−2(ξ2 −1)(2η−1)

−4ξη(ξ+1)

−2(ξ2 −1)(2η+1)

−4ξη(ξ−1)

8η(ξ2 −1)



(2.33)

We observe N ,T
ξ

to be quadratically dependent on η and linearly dependent on ξ, while N ,Tη is

quadratically dependent on ξ and linearly dependent on η. In other words the element has a lin-

ear strain-displacement field. By using Eq. (2.28) we establish B as

B = 1

4
J−1

N ,ξ

N ,η

 (2.34)

2.6 Numerical integration

In order to determine the element stiffness matrix ke and the load vector S0, we must evaluate inte-

grals on the form

It =
∫

A
f (x, y)d A =

∫
A

f (ζ1,ζ2,ζ3)d A (2.35)

for triangular elements, and

Iq =
∫

A
f (x, y)d A =

∫ 1

−1

∫ 1

−1
f (ξ,η)J (ξ,η)dξdη (2.36)

for quadrilateral elements. In many cases these integrals are very difficult, or even impossible,

to evaluate analytically. Therefore we make use of numerical integration in the form of Gaussian
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quadrature. Instead of evaluating the integral, Gaussian quadrature takes the sum of the function

value at a number of integration points, where each integration point has an assigned weight value.

The next two sections elaborate on this. The evaluation of the stiffness matrix is used as an example

as the integrand contains the highest polynomial order present in our massive analyses.

2.6.1 Triangular elements

For triangular elements the element stiffness matrix is of the form

ke =
∫

V
B T (ζ1,ζ2,ζ3) GB (ζ1,ζ2,ζ3)dV =

∫
A

t (ζ1,ζ2,ζ3) f (ζ1,ζ2,ζ3) d A (2.37)

which implies an integration over the element, with both B and t (thickness) varying with respect to

ζ. However, we define t to be equal to unity over the element. By using Gaussian quadrature for this

integral we get

I =
∫

A
f (ζ1,ζ2,ζ3) d A ≈ A

n∑
i=1

wi f (ζ1i ,ζ2i ,ζ3i ) (2.38)

If we were not using straight edge triangles, we would multiply the expression with the Jacobian

determinant rather than the area. We establish the stiffness matrix as

ke ≈ A
n∑

i=1
wi B T (ζ1i ,ζ2i ,ζ3i )GB (ζ1i ,ζ2i ,ζ3i ) (2.39)

With n integration points we are able to evaluate the exact value of an integral of order 2n-1. The

integrand for T3 elements is constant while the integrand for T6 elements contains the terms ζ2
1,

ζ2
2, and ζ2

3. With one integration point we can only evaluate 1st order polynomials. By using three

integration points we can evaluate the exact integral up to the 5th order. This exceeds the polyno-

mial degree for both T3 and T6 elements. CCSC therefore makes use of three integration points for

triangular elements. The ability to evaluate integrals exactly is called full integration 2. The three in-

tegration points are located at the mid-point of each element edge. An illustration of the integration

points and their assigned weights is given in Fig. 2.13.
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Figure 2.13: The three integration points used for triangular elements

2.6.2 Quadrilateral elements

For the quadrilateral element types, the element stiffness matrix is on the form

ke =
∫

V
B T (ξ,η) GB (ξ,η)dV =

∫
A

t (ξ,η) f (ξ,η) d A (2.40)

We define t to be equal to unity over the element. Using Gaussian quadrature for this integral gives

ke =
∫ 1

−1

∫ 1

−1
B T (ξ,η) GB (ξ,η)J (ξ,η)dξdη

≈
1∑

i=1

1∑
j=1

B T (ξi ,η j ) GB (ξi ,η j )J (ξi ,η j )wi j dξdη
(2.41)

For Q4 elements, the stiffness matrix B contains terms of ξ and η, leaving the integrand with terms of

ξ2 and η2. A 2x2 integration scheme evaluates integrals of up to 3rd order exactly, thus we achieve full

integration with this rule. Fig. 2.14 illustrates these integration points and their assigned weights.
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Figure 2.14: 2x2 Gaussian quadrature integration scheme. Evaluates integrals of up to order three
exactly

For Q9 elements, B contains the term ξ2η2. The highest order polynomial in the integrand is then

ξ4η4. The 2x2 integration scheme no longer provides full integration, and we have to use a 3x3

integration scheme instead. Fig. 2.15 illustrates the integration points and their weights for the 3x3

integration scheme.

Figure 2.15: 3x3 Gaussian quadrature integration scheme. Evaluates integrals of up to 5th order
exactly

For both Q4 and Q9 elements we achieve a higher integration than actually needed to obtain ex-

act results. This means that the thickness does not necessarily have to be constant over the cross-

section. The integrals would be evaluated exactly even with a bilinear variation of thickness.
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2.6.3 Reduced integration

As mentioned in the previous sections we have chosen a three-point Gaussian scheme for triangular

elements, and a 2x2 and 3x3 Gaussian quadrature scheme for Q4 and Q9 elements respectively. This

is enough to provide full integration, which can help prevent certain instabilities such as spurious

modes, kinematic modes, singular modes, hourglass modes, and/or zero energy modes 2. These

modes can often occur when utilizing reduced integration. Reduced integration is when the integra-

tion uses fewer integration points than what is needed in order to obtain exact results.

Although reduced integration gives a reduction in accuracy, for some cases it is recommended over

full integration. The main advantage of using reduced integration is a significantly reduced work-

load, especially for large, time-consuming analyses. Additionally, reduced integration leads to less

stiff elements, which may lead to a closer approximation to real world problems. In other words the

loss in accuracy is counteracted by a closer approximation to the real world 10. We have as of yet not

implemented options for reduced integration in CCSC, and it is left for future development.

2.7 The equilibrium equation

With the stiffness matrix ke and load vector S0
e established at the element level in Eqs. (2.9 and 2.10),

we sum them up into a global stiffness matrix K and a global load vector R as

K =
n∑

e=1
ke (2.42a)

R =±
n∑

e=1
S0

e (2.42b)

The sign of the element load vector is dependent on which analysis is performed. It is negative for

torsional loading and positive for shear loading. This is clarified in Sections 2.9 and 2.10. Now we

are able to solve the problem for the nodal displacements r using

K r = R (2.43)
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For the boundary conditions it is sufficient to constrain one arbitrary node i (Section 4.3 describes

the implementation). When the global displacements are found, we also have the element displace-

ments. They are stored in v , which contains the nodal values of the warping functionΨ(x, y) for an

element with n nodes.

v T =
[
Ψ1 Ψ2 · · · Ψn

]
(2.44)

Using the element displacements, the stresses due to torsional and shear loading can be found as

described in Sections 2.9 and 2.10.

2.8 Bending moment analysis

The calculations of axial stresses for a cross-section subjected to bending moment loading are only

dependent on the second moment of area (found in Appendix A.2). They are given as

σx = Mx

Ix
· y (2.45a)

σy =− My

Iy
· x (2.45b)

where x and y are the distances between the node and the area center.

2.9 Elastic torsion analysis

In Fig. 2.16 a prismatic beam with a massive cross-section and length L is illustrated. It is subjected

to a constant torsional moment Mz causing the cross-section to rotate φL at z = L. The following

derivation of torsion analysis is a brief summary of the theory explained in the documentation for

CrossX3, and it is based on an orientation of the cross-section about the principal axis.

The torsion analysis is based on the following assumptions:

• the material is linearly elastic, continuous, isotropic, and constant within the element. The

properties can, however, change from one element to the next
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• the cross-section is assumed to rotate as a rigid body about the shear center as described in

Eq. (2.46)

• warping w is proportional to the rate of twist θ, and independent of z.

Figure 2.16: Uniform torsion of a prismatic bar with an arbitrary massive cross-section

2.9.1 St. Venant torsion

Displacements due to St. Venant torsion 11 are given as

u =−θy z

v = θxz

w = θΨ(x, y)

(2.46)

where θ = dφ
d z is the rate of twist (or twist per length) and φ(z) is the angle of twist. Ψ(x, y) is the

(unknown) warping function and w is the warping displacement. It is straight-forward using Hooke’s

law and Eq. (2.46) to show that εx = εy = εz = γx y = 0 and

γxz = w,x +u,z =Ψ,x −θy = 1

G
τxz

γy z = w,y +u,z =Ψ,y −θx = 1

G
τy z

(2.47)

27



We now repeat the fundamental assumption thatΨ can be expressed in terms of nodal point values

at any point in the element. That is

Ψ= N v (2.48)

with N = [
N1 N2 ... Nn

]
as the interpolation functions for an element with n nodes. Eq. (2.47) can

then be written on matrix form as

ε=
γxz

γy z

=
Ψ,x

Ψ,y

+
−θy

θx

 (2.49)

The coordinates x and y can be expressed in terms of the element coordinates as

x = N x and y = N y (2.50)

For an element with a displacement vector v , strain-displacement matrix B , and initial strain vector

ε0, we can rewrite Eq. (2.49) as

ε= B v +ε0 (2.51)

where

v T =
[
Ψ1 Ψ2 · · · Ψn

]
(2.52a)

B =
N,x

N,y

 (2.52b)

ε0 =
 0 −θN

θN 0

x

y

 (2.52c)

Stresses are simply given as

τ=Gε=G
(
B v +ε0

)
(2.53)

The contributions to the nodal forces for a whole element are given as

S =
∫

Ae

B Tτd A =
∫

Ae

B T GBd Av +
∫

Ae

B T Gε0d A = ke v +S0
e (2.54)

In the previous equation we recognize both the stiffness matrix ke and the element load S0
e to be
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defined identical to what was established in Eqs. (2.9 and 2.11a). The warping displacement w is

proportional to the rate of twist θ at any point in the the cross-section (see Eq. (2.46)). For this

reason will use the following procedure to calculate the shear stresses due to torsion:

1. compute the nodal displacements v for θ equal to unity (with v as the only unknown in Eq.

(2.54))

2. compute θ based on the computed nodal displacements v and applied moment Mz

3. compute stresses according to the warping displacements w = θΨ(x, y)

The first step involves producing the global stiffness matrix K and load vector R and solve the equi-

librium equation of (2.43). This was described in Section 2.7 and is not repeated here. We only clarify

that Eq. (2.54) requires the global load vector for torsional analysis on the form

R =−
n∑

e=1
S0

e (2.55)

In order to determine θ (step two) we begin by expressing the torsional moment as

Mz =
∫

A

(
τy z x −τxz y

)
d A =

∫
A

[
y x

]−τxz

τy z

d A (2.56)

Referring to Eq. (2.52), the contribution to Mz from one element is

∆Mz = G

∫
A

xT

y T

 0 N T

N T 0

−−−N,x

N,y

θv +
 0 N

N 0

x

y

θ
 (2.57)

We introduce torsional stiffness G It for one element as

∆Mz = θ(∆G It ) (2.58)

which means the torsional stiffness increment is

∆G It = G

∫
A

xT

y T

 0 N T

N T 0

−−−N,x

N,y

v +
 0 N

N 0

x

y

 (2.59)
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G It = ∑
∆G It = Mz

θ
(2.60)

The analysis proceeds by computing the torsional stiffness G It . Knowing the applied load Mz we

can determine θ. Finally, according to step three, the shear stresses are computed for each element

by Eq. (2.61)

σ=
τxz

τy z

=G(Bθv +ε0) = θG

N,x

N,y

v +
 0 −N

N 0

x

y

 (2.61)

2.9.2 Shear center from torsion

We refer to Meek12 for the formulas for shear center due to torsion (CrossX 3 also provides a similar

analysis). The shear center is given as

xs =−

∫
A

E(x, y)yΨ(x, y)d A

E Ix
(2.62a)

ys =

∫
A

E(x, y)xΨ(x, y)d A

E Iy
(2.62b)

Using Eqs. (2.48 and 2.50) we can rewrite Eq. (2.62) to finite element terms:

xs =−
∑

Ee y T
∫

Ae
N T N d A v

E Ix
(2.63a)

ys =
∑

Ee xT
∫

Ae
N T N d A v

E Iy
(2.63b)

2.10 Elastic shear analysis

Determining the shear stress distribution, shear center, and the transverse deflection due to trans-

verse shear is not a straight-forward task for beams with complex cross-sections. The theory we

present follows Bell 3, which in turn is based on the work of Mason and Herrmann13. The main as-
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sumption for this theory is that the relationship between stress and stress resultants and between

curvature changes and stress resultants obtained for simple loading cases, approximately hold for

all loading systems.

For shear analysis we will simply present the formulas needed for an implementation. The theory is

clearly presented in Bell 3, and we found it unnecessary to reproduce it here. The case we consider is

a prismatic cantilever with an arbitrary massive cross-section subjected to transverse shear loading,

as illustrated in Fig. 2.17. The x- and y-axes are assumed to be principal to simplify expressions.

We do not lose generality from doing this, because the orientation can always be determined from

complementary analysis.

Figure 2.17: Cross-section with applied shear forces in the shear center (S)

Mason and Herrmann made the following assumptions:

• the cross-section is assumed to be uniform over the entire length of the beam

• the z-axis coincides with the cross-section centroid

• the material is linearly elastic, continuous, and isotropic

• body forces are small compared to the stresses and can be neglected

• for the constant shear case we have σy =σz = τx y = τy x = 0

• the normal stress σz is distributed as in the case of pure bending and the end loads Vx and Vy

are applied in the shear center to eliminate torsion
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2.10.1 Computing the stresses

Axial stress is independent of the nodal displacements from warping and is simply computed as

σz = E(L − z)(Cx x + Cy y) (2.64)

for (L− z) = 1. For the calculation of shear stress we establish the element load vector as

S0 = S0
x +S0

y (2.65)

with components in x- and y-directions

S0
x = EeVx

E Iy

[∫
Ae

N T xd A+ νe

4(1+νe )

∫
Ae

(N ,Tx (x2 − y2)+2N ,Ty x y)d A

]
(2.66a)

S0
y =

EeVy

E Ix

[∫
Ae

N T yd A+ νe

4(1+νe )

∫
Ae

(N ,Ty (y2 −x2)+2N ,Tx x y)d A

]
(2.66b)

The nodal displacements of the cross-section can now be determined for the two load cases as de-

scribed in Section 2.7. For this case we will determine the nodal displacements due to the two shear

loads separately. This is done by establishing

Rx =
n∑

e=1
S0

x Ry =
n∑

e=1
S0

y (2.67)

and solving the equilibrium equation (2.43) for the two loads separately. Notice the positive sign

for the summation of element load vectors, which differs from the torsional analysis. The stiffness

matrix is the same as for torsional analysis and is defined by Eq. (2.11a). With the displacements

found, we compute the shear stresses as

τxz

τy z

=G (B v +ε0) (2.68)

where

ε0 =
−ν(1

2Cx (x2 − y2)+Cy x y
)

−ν(
Cx x y + 1

2Cy (y2 −x2)
)
 (2.69)
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and

Cx = Vx

E Iy
Cy =

Vy

E Ix
(2.70)

2.10.2 Shear deformation factors

After determining the element displacements v due to shear loading in both the x- and y-direction,

we can compute the shear deformation factor contributions κe
x and κe

y from each element as

κe
x = AG

Vx E Iy

(
Ee xT avx

)− νe

4(1+ν)

Ee Ae

E A

(E Iy −E Ix )

E Iy
(2.71a)

κe
y =

AG

Vy E Ix

(
Ee y T av y

)− νe

4(1+ν)

Ee Ae

E A

(E Ix −E Iy )

E Ix
(2.71b)

where

a =
∫

Ae

N T N d A (2.72)

Once the shear deformation factors are computed for each element, they are summed up to the

global shear deformation factors

κx =
n∑

e=1
κe

x κy =
n∑

e=1
κe

y (2.73)

2.11 Stress analysis for composite materials

We now present a general procedure for analysis by unifying torsion and shear loading. This is the

first step of developing functionality for composite materials. The theory is not complete, and will

need further work before CCSC can offer this functionality. We also recognize that many of the steps

are familiar to the derivation of the torsional analysis from Section 2.9, and it is therefore somewhat

shortened.
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2.11.1 Governing equations

The total potential energy of a system is given by

Π=U −W (2.74)

The strain energy U for the beam is given as

U = 1

2

∫
V
εT CεdV (2.75)

Strain is defined as

ε=


εz

γxz

γy z

 (2.76)

which can be expressed as

ε= Br +ε0 (2.77)

where the strain-displacement matrix and the warping displacements are defined as

B =


0

N ,x

N ,y

 r =


Ψ1

...

Ψn

 (2.78)

for a mesh with n nodes. The initial strain ε0 is dependent on which analysis is performed and for

torsional loading it was established in Eq. (2.52c) as

ε0,t =


0 0

0 −N

N 0


x

y

θ with θ = Mz

G It
(2.79)
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This expression includes the work from the external force Mz . For shear loading the initial strain is

ε0,s =


(L− z)(Cx x +Cy y)

−ν(1
2Cx (x2 − y2)+Cy x y

)
−ν(1

2Cy (y2 −x2)+Cx x y
)
 (2.80)

with the two constants Cx and Cy defined as

Cx = Vx

E Iy
Cy =

Vy

E Ix
(2.81)

We now apply Eq. (2.77) to the strain energy equation and get

U = 1

2

∫
V

(εT
0 + (Br )T )C (ε0 +Br )dV (2.82)

which in its fully extended form is written as

U = 1

2

∫
V

(
εT

0 Cε0 +εT
0 C Br + r T B T Cε0 + r T B T C Br

)
dV (2.83)

The potential energy associated with the applied forces in the case of shear loading is given as

W =Vx ·u|z=L +Vy · v |z=L (2.84)

which can be written on matrix form as

W =
[

Vx Vy

]u|z=L

v |z=L

 (2.85)

Mason and Herrmann 13 states the following solution for the equations of three-dimensional linear

elasticity theory for the cantilever problem:

u = ν(L− z)
[1

2
Cx (x2 − y2)+Cy x y

]
+ (1

2
Lz2 − 1

6
z3)Cx +a3z +a5 (2.86a)

v = ν(L− z)
[
Cx x y + 1

2
Cy (y2 −x2)

]
+ (1

2
Lz2 − 1

6
z3)Cy +a2z +a4 (2.86b)

w =− (Lz − 1

2
z2)(Cx x +Cy y)+Ψ(x, y)−a2 y −a3x (2.86c)
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where the constants a2 − a5 are defined by satisfying the averages of the displacement boundary

conditions at the fixed end of the beam. They are given as

a2 =
∫ ∫

EΨ(x, y)yd xd y

E Ix
(2.87a)

a3 =
∫ ∫

EΨ(x, y)xd xd y

E Iy
(2.87b)

a4 =− νL

2AE

(
E Ix −E Iy

)
Cy (2.87c)

a5 =− νL

2AE

(
E Iy −E Ix

)
Cx (2.87d)

with A as the area of the cross-section. We rewrite the potential from external forces as

W =
[

Vx Vy

] 1
3 L3Cx +La3 +a5

1
3 L3Cy +La2 +a4

 (2.88)

Eqs. (2.87a and 2.87b) can be rewritten as (by multiplying with Vx and Vy respectively)

Vx a3 =Cx

∫ ∫
EΨ(x, y)xd xd y (2.89a)

Vy a2 =Cy

∫ ∫
EΨ(x, y)yd xd y (2.89b)

Now we rewrite the potential from external forces in Eq. (2.88) as

W =
[
Cx Cy

](L
∫

A
E(N r )xd A

L
∫

A
E(N r )yd A

+
S4

S5

)
(2.90)

where the constants S4 and S5 are defined as

S4 =
(1

3
Vx L3 +a5E Iy

)
S5 =

(1

3
Vy L3 +a4E Ix

)
(2.91)

Eq. (2.90) can be rewritten as

W = Lc T (∫
A

d N r d A+ s
)

(2.92)
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where

c =
Cx

Cy

 d = E

x

y

 s =
S4

S5


Now we can rewrite the total potential energy of the system as

Π=U −W = 1

2

∫
V

(
εT

0 Cε0 +εT
0 C Br + r T B T Cε0 + r T B T C Br

)
dV −Lc T (∫

A
d N r d A+ s

)
(2.93)

Principle of minimum potential energy states that

δΠ= δΠ

δr
δr = 1

2

∫
V

(
εT

0 C Bδr +δr T B T Cε0 +δr T B T C Br + r T B T C Bδr
)

dV

−Lc T
∫

A
d Nδr d A = 0

(2.94)

δΠ=
∫

V

(
δr T B T Cε0 +δr T B T C Br

)
dV −Lδr T

∫
A

N T d T d A ·c = 0 (2.95)

=⇒ ���δr T
∫

V
B T C BdV r =−���δr T

∫
V

B T Cε0dV +���δr T L
∫

A
N T d T d A ·c (2.96)

B , C , c , and d are independent of z. ε0 is not however, and we take the mean ans rewrite the previous

equation as

=⇒ �L
∫

A
B T C Br d A =�L

∫
A

N T d T d A ·c −�L
∫

A
B T C ε0 d A (2.97)

which we recognize as the equilibrium equation,

K r = R (2.98)

with the global stiffness matrix (which was defined identically in Section 2.9.1), load vector, and

mean initial strain from both torsion and shear loading defined as

K =
∫

A
B T C Bd A and R =

∫
A

N T d T d A ·c −
∫

A
B T C ε0 d A (2.99)
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ε0 = ε0s +ε0t =


1
2 L(Cx x +Cy y)

−ν(1
2Cx (x2 − y2)+Cy x y

)−N yθ

−ν(1
2Cy (y2 −x2)+Cx x y

)+N xθ

 (2.100)

2.11.2 Element formulation

The nodal displacement v of an element is related through the global displacements by the following

kinematic relationship

v = Ae r (2.101)

We now rewrite Eq. (2.96) with regards to elements

δr T
∫

A
B T C Br d A =

n∑
e=1

δr T AT
e

∫
Ae

B T
e Ce Be d A Ae r (2.102)

From this we can define the global and element stiffness matrices (respectively) as

K =
n∑

e=1
AT

e ke Ae (2.103a)

ke =
∫

Ae

B T
e Ce Be d A (2.103b)

Using the same approach for loading gives the global and element load vectors (respectively)

R =
n∑

e=1
AT

e S0
e (2.104a)

S0
e =

∫
Ae

(
d T

e c −B T
e Ce ε0,e

)
d A (2.104b)

The global equilibrium equation is then solved as described in Section 2.7. Finally, stresses for each

element are computed as

τe =Ce
(
Be v +ε0,e

)
(2.105)
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where the constitutive matrix for an element is given by

Ce =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.106)

For linear elastic isotropic materials the constitutive matrix is simplified to

Ce =


Ee 0 0

0 Ge 0

0 0 Ge

 (2.107)

with the Young’s modulus and shear modulus related through

Ge = Ee

2(1+ν)
(2.108)

2.11.3 Composite materials

A composite material is comprised of two or more materials. When combined, the composite will

get significantly different properties than the individual components. Composite materials are de-

veloped because they are stronger and lighter compared to traditional materials. One of the most

widely used composites is the fiber-reinforced crossplied laminate. An example with three plies is

illustrated in Fig. 2.18. The fibers of each ply have different orientations, hence the material proper-

ties differ in each direction for the plies.
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Figure 2.18: Arbitrary laminate with three plies, each having their own fiber orientation

The constitutive matrix defined in Eq. (2.107) only holds for isotropic materials. The reason for

this is that the stresses are more strongly coupled for anisotropic materials. In Fig. 2.19 an axial

tensile force (N ) is applied to a material with fibers oriented in a different direction. This material

will not only deform in the direction of the force (w) (unlike an isotropic material). The fibers in the

material forces a deformation in the transverse direction as well (u). Similarly, a shear force would

lead to both a transverse and an axial deformation. This means that the normal force is coupled to

the shear strains, and the shear force is coupled to the normal strain. Consequently the components

C12 and C13 of the constitutive matrix can no longer be assumed to be zero.

Figure 2.19: Coupling between axial and transverse displacements for composite material subjected
to tensile loading
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Fig. 2.20 illustrates another composite design with a continuous spiral surface along the length of

the rod. When torsion (Mz ) is applied to the cross-section, an axial deformation (w) will occur in

addition to the regular rotation of the cross-section (φ). Similarly, the cross-section will get a rotation

in addition to the regular axial deformation when a tensile force (N ) is applied.

Figure 2.20: Rod with spiral surface subjected to axial force and torsion

The consequence of the two deformation patterns just observed is that the axial force N must be

included in the expression for the potential of the external forces in Eq. (2.84). In addition, the

potential of the torsion moment should be included in the same expression, rather than directly in

the expression for initial strain due to torsion in Eq. (2.79). It is now clear that the final expression for

element loading and stress calculations at the end of Section 2.11.1 are not complete. However, we

consider it a good starting point for a continued development for analysis of composite materials.

We leave it to another thesis to complete the theory, which also includes determining the coefficients

of the constitutive matrix.

2.12 Stress recovery

Because the stresses are derived from the nodal displacements, they are often referred to as derived

quantities, while the displacements are the primary quantities. In general the accuracy of primary

quantities are greater than the accuracy of the derived quantities. Because of this, stress recovery

techniques (with a very low overhead of computational effort) are often used in order to improve

the accuracy of the nodal stresses. In CCSC we have made use of two approaches for the calculation

of the stresses:
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1. evaluate stresses directly at the nodes

2. evaluate stresses at the integration points and then extrapolating the stress values to the

nodes

For triangular elements the difference between the two approaches is insignificant, and approach

number one is used. For quadrilateral elements however, approach number two is used. The reason

for this is that the stress values found inside these elements are often more accurate than the val-

ues found on the edges. Thus we can increase the accuracy of our solution by computing the stress

values for each Gauss point, and extrapolating the values to the corner nodes using bilinear extrapo-

lation. The stress recovery method used in CCSC is based on the approach described in Introduction

to Finite Element Methods by Felippa 14.

Figure 2.21: Quadrilateral element and inner Gauss element

As seen in Fig. 2.21 each element has four corners n1,n2,n3, and n4. The element also contains

a sub-element defined by its Gauss points, called the Gauss element. The Gauss element has the

corner nodes n′
1n′

2,n′
3, and n′

4. If we want to extrapolate the stress of n′
1 to the corner n1, we simply

replace ξ and η by −p3, and insert it into the shape function (the extrapolation values for ξ and η

can be seen in Table 2.1 below). This gives us

E1 =
[

1+ 1
2

p
3 −1

2 1− 1
2

p
3 −1

2

]
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Table 2.1: Natural coordinates used for extrapolating stress values

Node nr. ξ η ξ′′′ η′′′

1 -1 -1 -
p

3 -
p

3
2 +1 -1 +

p
3 -

p
3

3 +1 +1 +
p

3 +
p

3
4 -1 +1 -

p
3 +

p
3

Repeating the procedure for the three other nodes, gives us the following extrapolation matrix

E =



1+ 1
2

p
3 −1

2 1− 1
2

p
3 −1

2

−1
2 1+ 1

2

p
3 −1

2 1− 1
2

p
3

1− 1
2

p
3 −1

2 1+ 1
2

p
3 −1

2

−1
2 1− 1

2

p
3 −1

2 1+ 1
2

p
3

 (2.109)

Once E is found we can simply extrapolate the values to the element corner nodes by

τ= Eτ′ (2.110)

2.13 Mesh convergence

In FEA a model is discretized into a set of finite elements. The number of elements in the mesh

greatly affects the accuracy of the solution. In most cases increasing the number of elements makes

the solution converge towards an exact value. In cases with high stress concentrations (singulari-

ties), however, the stresses will not converge as the mesh is refined. In fact the stresses in the singu-

larity will keep approaching infinity.

A stress concentration occurs when the stress gradient in a small localized area is large. This typically

happens when rapid changes in geometry are present. The sudden change in geometry disrupts the

stresses from flowing smoothly through the structure. Fig. 2.22 shows an example of this. Other

causes for singularities involve point loads being applied, as well as changes in material proper-

ties 15. Even though stress singularities pollute the results in its vicinity, results further away can still

be accurate. This is a consequence of the St.Venant’s principal, which states that "local stresses in

43



one region of a structure do not affect the stresses elsewhere."16 In general it is the task of the ana-

lyst to identify these singularities, and judge whether or not they are of importance for the analysis.

Ways to avoid singularities includes smoothing sharp edges using fillets.

Figure 2.22: Examples of singularities in analysis using CCSC
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Chapter 3

Theory - Thin-Walled Cross-Sections

This chapter presents the theory for analysis of thin-walled cross-sections. The main goal is to find

cross-sectional parameters and stress distributions over thin-walled cross-sections due to applied

section forces. By simplifying the model as a thin-walled structure, huge time-savings can be had,

while still retaining sufficient accuracy. The chapter is mainly a reprised version of the theory pre-

sented in the CrossX documentation by Bell et al. 3, which in turn is based on the work of Holthe 17.

Figure 3.1: Example of a thin-walled cross-section with applied section forces in the area center (C)
and shear center (S)
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3.1 Applied loads

Fig. 3.1 shows how the different loads are applied to a thin-walled cross-section oriented to coincide

with the principal axis. The moments (Mx and My ), as well as the normal force N is applied in the

area center (C). The shear forces (Vx and Vy ) and total torsional moment (Mz ) are applied in the

shear center (S). The total torsional moment is given as

Mz = Tst v +Twr p (3.1)

where Tst v is the St. Venant torsion and Twr p is the warping torsion. In addition to the illustrated

loads, the bimoment (Bi ) is applied at the fixed end of the beam.

3.2 Assumptions

For the thin-walled cross-sections the following assumptions are made

• the beam is straight with a constant cross-section over its length

• all deformations in the local plane of the cross-section is neglected

• bending deformations obey Navier’s hypothesis 18 (plane sections remain plane)

• the span to depth ratio should be ten at the very least

• local transverse moments and shear forces are not included in our analysis

• open line elements do not include shear stresses from torsional loading

In addition the cross-section is assumed to be made up of a series of straight line segments. It should

also be noted that it is the user’s responsibility to create a valid mesh, as there is no mesh generation

for thin-walled cross-sections offered by CCSC. This subject is explained in detail in Section 5.6.
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3.3 Basic equations and cross-sectional parameters

The relationship between stresses, section forces, and moments are given as

N =
∫

A
σz d A , Mx =

∫
A
σz yd A , My =−

∫
A
σz xd A , Bi =−

∫
A
σz ωd A (3.2)

where Bi is the bimoment (often referred to as warping moment), and ω is the sectorial area (see

Section 3.4). The cross-sectional stiffnesses are simply found using

E A =
∫

A
E d A , E Ix =

∫
A

E y2d A , E Iy =
∫

A
E x2d A , E Iω =

∫
A

Eω2d A (3.3)

The cross-sectional parameters are then found by dividing the stiffnesses by the Young’s modulus of

the base material. The St. Venant stiffness (G It ) is defined in Section 3.5.

3.4 Cross-section geometry conventions

Figure 3.2: Geometric conventions used for thin-walled cross-sections
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Conventions used in CCSC can be seen in Fig. 3.2. Each cross-section is discretized as a number of

straight line segments (elements) made up of two nodes. Each element has a unique id, a constant

thickness tk , and a local coordinate system s. This coordinate system is directed from node i to

node j , and ranges from ±∆lk

2
(with zero at the mid point). Elements are interconnected through

the nodes, and each node has its own unique id.

A cell is defined as a cycle not containing any other cycles. The cross-section depicted in Fig. 3.2

has four of them, C1, C2, C3, and C4. The cross-section uses a global reference system (x ′, y ′, z ′),

where z ′ is parallel to the beam length. The material weighted area center (C) and the principal

angle (α) are found in a straight forward manner. It should be noted that dividing a straight line into

several elements will not give any advantages, and will only result in an increase in computational

effort. For the remaining computations the nodal coordinates are transformed to coincide with the

principal axis.

3.5 Shear flow in cells

If the cross-section has at least one cell, the torsional stiffness due to St. Venant torsion is found

by solving a system of linear equations where the unknowns p are modified shear flows around the

cells. This makes the number of unknowns equal to the number of cells. For CCSC we define shear

flow to be positive if it is counterclockwise. The equations are written as

B p = a (3.4)

where a is a vector containing the cell areas, and B is a coefficient matrix. The diagonal of B is given

as

Br r =
nr r∑
k=1

∆lk

Gk tk
(3.5)

where nr r is the number of elements in cell r. The off-diagonals of B are obtained by

Br s = Bsr =
nr s∑
k=1

− ∆lk

Gk tk
(3.6)
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where nr s is the number of elements that are common to both cells r and s. If no common elements

exist between cells r and s, the corresponding coefficient is zero ( Br s = 0). Once the modified shear

flows are found, the total St. Venant stiffness can be expressed as

G It = 4pT a+ 1

3

n f∑
k=1

Gk tk
3∆lk (3.7)

where n f is the number of open elements (elements not part of a cell). To find the torsion constant

(It ), the St. Venant stiffness is simply divided by the shear modulus of the base material.

Three different cases may occur when determining the resulting modified shear flow in an element:

• the element is part of two cells

• the element is part of one cell

• the element is an open element

In case one, where the element is part of two cells (r and s), we can express the resulting modified

shear flow as

q̃k = ηk (pr −ps) (3.8)

In case two, where the element is only part of one cell (r), the shear flow is given as

q̃k = ηk pr (3.9)

where ηk is a factor that can be ±1. If the flow pr has the same direction as the line element, then

ηk is +1 (and -1 otherwise). For the first case (element is part of two cells), the factor ensures that

the the shear flows in the cell wall cancel each other out. In case three (open elements) the modified

shear flow is equal to zero. The real shear flow of an element can now be expressed as

qk,st v = 2q̃k

G It
Tst v (3.10)

The shear stress is then found by dividing the shear flow by the thickness of the element, as follows

τst v = qk,st v

tk
(3.11)
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For open line elements, the shear stress varies linearly over the thickness, and the maximum value

(which is always at the edges of the element) is obtained by

τmax = Gk tk

G It
Tst v (3.12)

These stresses are not included in the resulting shear stress nor the effective stress.

3.6 Theω - diagram

Figure 3.3: ωc - diagram for an arbitrary line element

Once the resulting shear flows are found, we can determine the ωc - diagram of the cross-section.

This diagram is referred to the area center C of the cross-section. Fig. 3.3 illustrates an arbitrary

element with nodal coordinates referred to the principal axis (origin in area center C), and where rc

is the distance from the origin to the element. The differential of ωc is expressed as

dωc =
(
rc − 2q̃

Gk tk

)
d s (3.13)

From this we can show that the slope of ωc from node i to j is given by

∆ωc =ωc j −ωci = (xi y j −x j yi )− 2q̃∆l

Gk tk
(3.14)
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Around each cell the sum of∆ωc is zero. This means that we can determine theωc - diagram through

the following three steps:

• start at an arbitrary node i and assign it a value of zero

• use Eq. (3.14) to find the ωc - value of i’s neighboring nodes

• repeat the process until all nodes have been assigned their ωc - values

Once the ωc - diagram has been determined, the ω - diagram (referred to the shear center S) can be

found by using the following equation

ω=ωc − (xs y − ys x)+C (3.15)

where the shear center S (xs , ys), and shear constant C is found by

xs =

∫
A

Eωc yd A

E Ix
(3.16)

ys =−

∫
A

Eωc xd A

E Iy
(3.17)

C =−

∫
A

Eωc d A

E A
(3.18)

3.7 Axial stress distribution

Having determined the cross-sectional stiffnesses as well as the ω - diagram, the axial stress distri-

bution over the cross-section is simply computed as

σz = Ek

(
N

E A
+ Mx

E Ix
y − My

E Iy
x − Bi

E Iω
ω

)
(3.19)

where Ek is the Young’s modulus of line element k.
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3.8 Shear stress distribution

The shear stress distribution over the cross-section is found as the sum of the contribution from

pure St. Venant torsion (using Eq. (3.11)) and a change in axial stress. We will now only consider

the latter contribution. It is found by solving a system of equations where the unknowns are the

mid-point shear flows of each line element, as illustrated in Fig. 3.4.

Figure 3.4: Shear flow distribution for line element k

At any arbitrary point along the element, the shear flow is given as

q(s) = q0 +∆q(s) (3.20)

The increment in shear stress over a distanceΔs is given as

∆τ= Ek

tk

(
N

′

E A
∆A+ M

′
x

E Ix
∆Sx −

M
′
y

E Iy
∆Sy − Bi

′

E Iω
∆Sω

)
+ 1

tk

∫
∆s

pz d s (3.21)

where

∆A =
∫
∆s

d s ∆Sx =
∫
∆s

yd s ∆Sy =
∫
∆s

xd s ∆Sω =
∫
∆s
ωd s (3.22)

and pz is an external loading in the beam direction (along the z-axis). Apostrophes indicate differ-
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entiation with respect to z. Using Eq. (3.21) the increment in shear flow can be expressed as

∆q(s) = Ek tk

(
N ′

E A
s + M ′

x

E Ix

∫ s

0
yd s −

M ′
y

E Iy

∫ s

0
xd s − Bi ′

E Iω

∫ s

0
ωd s

)
(3.23)

In matrix notation this is simplified to

q(s) = q0 + Ek tk

(
c T

0 s + ∆c T
( s2

2∆lk

))
D f ′ (3.24)

where

c T
o =

[
1 y0 x0 ω0

]
(3.25a)

∆c T =
[

0 ∆y ∆x ∆ω

]
(3.25b)

f T =
[

N Mx My Bi
]

(3.25c)

f ′T =
[

N ′ Vy Vx Twr p

]
(3.25d)

D =



1

E A
0 0 0

0
1

E Ix
0 0

0 0
1

E Iy
0

0 0 0
1

E Iω


(3.25e)

There are two conditions that restricts Eq. (3.24). First, for each point in the cross-section there

must be an equilibrium in the z-direction. Secondly, there must be no resulting displacement in the

z-direction around each cell of the cross-section.
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3.8.1 Equilibrium condition

For a given point i the first condition can be stated as

∑
ni

ηk qk (α) = pzi where α=−ηk
∆lk

2
(3.26)

Where ni is the number of line elements containing point i. The factor ηk is used to account for the

direction of line element k. It is +1 if the direction of the line element is away from the point, and -1

if the direction is towards the point. We now assume an external distributed load pzi to be applied

in the z-direction at point i. Combining Eqs. (3.24 and 3.26) we establish

∑
ni

ηk q0,k +
∑
ni

ηk Ek tk

(
C T

0,k

(
−ηk

∆lk

2

)
+∆C T

((−ηk
∆lk

2

)2

2∆lk

))
D f ′′′ = pzi (3.27)

which is easily simplified to

∑
ni

ηk q0,k = pzi + ∑
ni

Ek tk

(
C T

0,k

(∆lk

2

)
−∆C T

(ηk∆lk

8

))
D f ′′′ (3.28)

The assumed line load pzi may be expressed as a fraction of the axial load differentiated

pzi = −gzi N ′ (3.29)

with an equilibrium requirement over all mp points in the cross-section

mp∑
i=1

gzi = 1 (3.30)

When expressing the equilibrium equations for all mp points in matrix form, we get

A1q0 = −gz N ′ +
[

g 1
1 g 2

1 g 3
1 g 4

1

]
f ′ =G1 f ′ (3.31)

where A1 is a coefficient matrix with the corresponding ηk values.
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3.8.2 No out-of-plane displacement condition

The condition of no resulting displacement in the z-direction can be expressed as

∑
nr

ηk

Gk tk

∫
∆lk

q(s)d s = 0 (3.32)

where nr is the number of elements in cell r . In this case, the factor ηk is +1 if the direction of the

line element coincides with a positive counter-clockwise direction around cell r , otherwise ηk is -1.

Combining Eqs. (3.24 and 3.32) yields

∑
nr

ηk
∆lk

Gk tk

(
q0k +Ek tk∆C T

k

(∆lk

24

)
D f ′

)
= 0 (3.33)

The C0 term from Eq. (3.24) vanishes as the integral is taken over the length of the element. The

previous equation then simplifies to

∑
nr

ηk
∆lk

Gk tk
q0k =−

( ∑
nr

ηk ∆C T
k

Ek

Gk

(∆lk )2

24

)
D f ′ (3.34)

The equations meeting the no out-of-plane displacement condition for all mc cells may be summa-

rized in matrix form as

A2q0 =
[

g 1
2 g 2

2 g 3
2 g 4

2

]
f ′ = G2 f ′ (3.35)

where A2 is a coefficient matrix with the corresponding ηk values.

3.8.3 Shear stress system of equations

By combining Eq. (3.31) and Eq. (3.35) we end up with the total system of equations that the shear

stresses (originating from the change in axial stress) must satisfy

A1

A2

q0 =
g 1

1 −gz g 2
1 g 3

1 g 4
1

g 1
2 g 2

2 g 3
2 g 4

2

 f ′ =
G1

G2

 f ′ (3.36)

The number of unknowns is equal to the number of line elements ml . The number of equations is
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equal to the number of nodes mp and the number of cells mc combined. Generally, this system is

overdetermined. This means that we have one more equation than unknowns, because mp +mc =
ml+1. Solving this system yields the shear flow at the mid point of every line element due to changes

in the axial stress.

3.8.4 Resulting shear stress distribution

Having determined q0, Eq. (3.20) gives us the parabolic shear flow function for all elements due

to changes in axial stress. If we assume that the stresses are uniformly distributed over the element

thickness, we can obtain them through dividing by said thickness. For non-open elements, the shear

stress distribution is found by adding the shear stress from pure St. Venant torsion defined by Eq.

(3.11).

τcel l = q(s) + qk,st v

tk
(3.37)

For open elements however, the resulting shear stress does not include the stresses due to pure St.

Venant torsion obtained by Eq. (3.12). Instead they are simply given as

τopen = q(s)

tk
(3.38)

3.9 Shear deformation factors

From elementary beam theory (Euler-Bernoulli) we have that for pure bending about the principal

x-axis
d 2v̄

d z2 = − Mx

E Ix
(3.39)

where v̄ is the transverse displacement of the beam axis. Timoshenko modified this expression to

also include a contribution from shear deformation, based on a mean shear deformation γm
y z that

corresponds to a mean shear stress τm
y z

τm
y z = Vy

As y
= κy

Vy

A
=⇒ As y = A

κy
(3.40)
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γm
y z =

τm
y z

G
= Vy

As y
= κy

AG
Vy (3.41)

Where κy is the shear deformation factor and As y is the shear area. When the shear force Vy is

applied, the contribution to v̄ becomes

d v̄ = γm
y z d z = κy

AG
Vy d z =⇒ d v̄

d z
= κy

AG
Vy (3.42)

The modified expression for curvature is now

d 2v̄

d z2 = − Mx

E Ix
+ κy

AG

dVy

d z
(3.43)

The exact same procedure for the other in-plane principal axis yields

d 2ū

d z2 = My

E Iy
+ κx

AG

dVx

d z
(3.44)

The shear deformation factors in principal x- and y-directions for applied shear force are then given

as

κx = (AG)
∑
k

((∆xk

∆Lk

)2 · tk

Gk

∫
sk

(
τ2|Vx=1

)
d s

)
(3.45a)

κy = (AG)
∑
k

((∆yk

∆Lk

)2 · tk

Gk

∫
sk

(
τ2|Vy=1

)
d s

)
(3.45b)

3.10 Numerical integration

Through this chapter we have presented numerous integrals that need to be evaluated over the line

element. For these integrals we have again used Gaussian quadrature. With two integration points

along the length of the line element, we can evaluate 3rd order polynomials exactly. This scheme

is used for most integrations as it produces exact results. The integrand when determining the the

shear deformation factor, however, is of 4th order, and a three point scheme is used for this calcu-

lation. The 2 point integration scheme for line elements is illustrated in Fig. 3.5. Each integration

point has the assigned weight value of unity.

57



Figure 3.5: Gaussian quadrature for line elements integrating 3rd order polynomials exactly
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Chapter 4

Implementation - Massive Cross-Sections

This chapter takes a closer look at the implementation details for analysis of massive cross-sections.

We begin the chapter by discussing the class structure and informational flow of CCSC. Next we

present how numerical integration is performed for both triangular and quadrilateral elements, fol-

lowed by an in-depth description of the implementation of torsion, shear, and composite analysis.

Lastly, we present the equation solving, visualization, and mesh creation. To further supplement this

chapter we have written an extensive documentation containing all functions and their underlying

theory. This is available as a part of the program package under the Documentation folder.

4.1 Classes

The massive cross-sectional implementation of CCSC currently consists of 14 classes: Solver, Mesh,

MeshSTL, MSHParser, Element, ResultWriter, Material, Node, including the six sub classes Trian-

gularElement, QuadrilateralElement, T3Element, T6Element, Q4Element, and Q9Element. Fig.

4.1 illustrates how these classes are related. MeshSTL is left out of the illustration, as it is only used

for validation of results and bares no real analytical significance.
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Figure 4.1: UML class diagram showing the relationship between classes for massive implementa-
tion

Solver

Solver acts as the entry point for CCSC. It reads input passed to it by the user through the program

arguments. A complete list of the available arguments that can be passed to CCSC is given below.

• -f nameOfMeshFile decides which mesh file to analyze. If the mesh file lies within a sub-

folder, the folder is passed as a part of the file name: (-f nameOfFolder/nameOfMeshFile)

• -material youngsModulusValue poissonRatio defines an isotropic material and sets it as

the base material for the cross-section. In the current massive implementation, all elements

are automatically assigned the same material properties as the base material. For a thin-

walled mesh, however, individual material properties can be hard-coded for each element

through the .msh file. Both the Young’s modulus and the Poisson’s ratio parameters are manda-

tory when using the command
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• -massive sets the program to analyze massive cross-sections (this is true by default)

• -thin extraLineSegments sets the program to analyze thin-walled cross-sections (defaults to

massive). The extraLineSegments parameter is optional to include. It selects the number of

elements used in order to approximate the quadratic stress distributions in VTK (it defaults to

100, and can be set as low as 7)

• -help prints out a full list of commands for CCSC

The main responsibilities of Solver is to instantiate a Mesh object (or LineMesh, depending on the

user input). The object then calculates the cross-sectional parameters and stress distributions, be-

fore the results are written to file by the ResultWriter (or LineResultWriter).

Mesh

Mesh is responsible for performing the massive cross-sectional analysis. It represents the mesh by

storing a set of vectors for the nodes and elements. These vectors are passed as pointers to the

MSHParser where the individual nodes and elements from the mesh file are added. Once the mesh

file is parsed, Mesh can start the analysis. The total area, centroid, stiffnesses, axial stresses, and

second area of moments are all computed by iterating over all the elements and summing up the in-

dividual element contributions. Once this is done the cross-section is transformed to coincide with

the principal axis for the rest of the computations. This is done through the transformCoordinates()

function.

The cross-section in CCSC is often rotated the opposite way of CrossX. This is because the principal

angle is forced to lie between −45° and 45°, as presented in Algorithm 1. CrossX on the other hand,

follows the more standard procedure of forcing the angle to lie between −90° and 90°. The conven-

tion used in CCSC was introduced by Strømstad during his master thesis, and was never changed as

it bares no real significance (other than making it harder to compare results with CrossX).
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Algorithm 1 Algorithm for calculating angle of principal axis

double angle = atan
( Ix−Imax

Ix y

) · 180
π

anglePrincipalAxis = 0
if (angle < 45 and angle > -45) then

anglePrincipalAxis = angle
else if (angle > 45) then

anglePrincipalAxis = angle - 90
else if (angle < -45) then

anglePrincipalAxis = angle + 90
end if

After the cross-section is transformed, Mesh computes the axial stress distribution (σz ) due to bend-

ing moments (using Eq. (2.45)). This is followed by the torsion and shear analyses respectively. The

shear stress distributions (τx z and τy z ) due to torsional loading Mz (using Eqs. (2.61 and 2.63)), as

well as the shear center, are found through the solveTorsion() function. The shear stress analyses

due to Vx and Vy are performed by solveShearX() and solveShearY() respectively (using Eqs. (2.68

and 2.71)). This includes the determination of the shear deformation factors. Once all the stress

distributions are found, the effective stress following the von Mises criterion can be calculated. The

results are all stored in their respective matrices within the class.

MSHParser

The main responsibility of MSHParser is to parse the .msh file received from the Mesh. The con-

structor of MSHParser takes a file name as well as pointers to element and node vectors as argu-

ments. First the parser attempts to open the .msh file with the given file name. If the file is not found

(or is wrongly formatted) an exception is thrown. If the file is found the class proceeds to parse the

file and fill up the node and element vectors according to the .msh file. A massive mesh can contain

triangular elements, quadrilateral elements, or both combined.

The second integer in each element entry of the .msh file defines what element type is instantiated.

The integers with their corresponding element types are defined as follows (using Gmsh standard)

• the integer 2 represents T3 elements

• the integer 3 represents Q4 elements
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• the integer 9 represents T6 elements

• the integer 10 represents Q9 elements

Appendix C.1 gives the specifics of the .msh file format, while Section 4.8 explains how the user can

produce mesh files for massive cross-sections.

Element

Element is an abstract class that contains functions common to all elements used in the massive

analysis. It specifies which functions need to be implemented in its sub-classes by defining them as

pure virtual functions. By making Element abstract we achieve polymorphism, which means that

we can treat T3, T6, Q4, and Q9 elements as if they were the same. This simplifies the code a a lot,

making it easy to both implement new element types, and to make changes in existing ones. All

the variables needed in order to calculate the element contributions to the global cross-sectional

parameters and stress distributions are stored inside Element. This includes the material, area, and

element nodes among others.

TriangularElement and QuadrilateralElement

These two classes contain all the functions that need different implementations for the triangular

and quadrilateral elements. This is done by implementing function bodies for the desired pure vir-

tual functions defined in Element. Some of the pure virtual functions however, are even more spe-

cific and they need to be deferred even further to the concrete sub-classes T3Element, T6Element,

Q4Element, and Q9Element. One of the main advantages of this solution (other than being able

to easily add new element types) is that functions can be optimized for each element type. One

example of this is the implementation of T3 elements. This element type has a constant strain-

displacement matrix B , which means it only needs to be computed once. It also means that cal-

culations involving B can be moved outside the integration loops. This can be achieved by having

separate function implementations between the T3 and T6 elements, thus saving computational

effort.
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For quadrilateral elements, computing the N , B , J (Jacobian matrix), and N 1 matrices for each

Gauss point (as part of the numerical integration) can be computationally heavy. This is certainly

the case for cross-sections containing many elements. To avoid having to recompute the same ma-

trices several times, we opted to store them the first time they are computed, and reuse them for

later computations. Each matrix has several sub-matrices, one for each Gauss point. These sub-

matrices are stored in two-dimensional vectors, in the same order that the Gauss points are iterated

through (illustrated in Fig. 4.2). The x and y values of the integration points (called xIntegration and

yIntegration in the code) are also stored in the same manner. Doing this reduced the running time

of our quadrilateral implementation by roughly 10-40 % depending on the element type and size of

the mesh (see Fig. B.1 in the Appendix). This is only done for quadrilateral elements because the

time savings for triangular elements were not as significant.

Figure 4.2: N , B , and J are stored in each quadrilateral element (N 1, xIntegration, and yIntegration
are left out for illustration purposes)

T3, T6, Q4, and Q9 elements

These four classes hold functions for all calculations that are dependent on the element type. This

includes getNMatrix() which calculates the shape functions N , getBMatrix() which calculates the

strain-displacement matrix B , as well as calculateStiffnessMatrix() which calculates the element

stiffness matrix ke .
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ResultWriter

The main responsibility of ResultWriter is to output the results that are stored in the mesh. By de-

fault the results are outputted in the .vtk file format (see Appendix C.3), but a custom format (similar

to the .stl file format) can also be outputted. This format does not make use of the nodal point aver-

aging technique, and it is mainly used for analyzing the performance of different element types. In

addition to the VTK output, CCSC writes all material properties, applied loads, cross-sectional pa-

rameters, and stiffnesses as a .txt file. An example of the .txt file is given in Fig. B.7 in the Appendix.

MeshSTL

MeshSTL is almost identical Mesh, with only a few key exceptions which relates to how the results

are stored. MeshSTL stores the result on an element basis, rather than a nodal basis (as is the case for

Mesh). This is done in order to facilitate a .stl like output, without nodal point averaging. This class

was purely implemented in order to analyze the effects of nodal point averaging and for comparing

linear and quadratic elements (which is demonstrated in Section 6.3.4).

Because it is purely made for validation purposes, we have not spent any time to seamlessly integrate

it into the rest of CCSC. As a consequence, in order to use this class the user has to make changes

in the source code manually. The boolean writeSTL in the ResultWriter constructor must be set to

true, and all references to Mesh must be changed to MeshSTL in both the header files and the .cpp

files of Solver and ResultWriter.

Material

Material is used to define an isotropic material, and acts as both a base material for the entire cross-

section, as well as unique materials for each individual element. Each element has a Young’s modu-

lus (E), a shear modulus (G), and a Poisson’s ratio (ν). The constructor takes E and ν, and calculates

G through the relationship

G = E

2(1+ν)
(4.1)

For the massive implementation all elements are initiated with the same material properties as the
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base material. This can, however, easily be modified in the future to allow for unique properties

for individual elements. For the thin-walled implementation the user can assign individual proper-

ties simply by changing the element type-tag and adding the desired properties to the element (see

Section 5.1). This was not done for massive cross-sections, as the number of elements is usually

much larger compared to thin-walled cross-sections. Finding a way to assign material properties

to a group of elements through the graphical user interface (GUI) could be an interesting aspect to

investigate at a future point in time.

Node

The node class stores an id integer, the x- and y-positions of each node, as well as the number of

elements that are connected to the node. For massive analysis the computed stresses are stored in

Mesh. For thin-wall analysis, Node stores stresses as well as the ω - value.

4.2 Numerical integration

CCSC performs all integrations using Gaussian quadrature (see Section 2.6 for a detailed descrip-

tion). Arrays containing the Gaussian points and corresponding weights for the different schemes

are stored in TriangularElement and QuadrilateralElement. Algorithm 2 presents pseudocode for

the Gaussian quadrature scheme used for triangular elements.

Algorithm 2 Algorithm for numerical integration of triangular elements

// f(zeta1, zeta2, zeta3) is the function to be integrated
double I = 0
for (all Gauss points i) do

I += weight[i]*f(zeta[0][i], zeta[1][i], zeta[2][i])
end for
I *= A

The integration for quadrilateral elements is quite similar, but it involves a double for-loop. This is

because the Gauss points are defined in two directions (ξ, η), rather than the single direction (ζ).

Additionally, the transformation from natural to physical coordinates requires the Jacobian deter-

minant for each integration point. Algorithm 3 presents pseudocode for Gaussian quadrature for
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quadrilateral elements. For most integrations a 2x2 scheme is used regardless of the element type.

A 3x3 scheme is only used when calculating the stiffness matrix for Q9 elements. This integration

contains fourth order terms in the integrand and can not be integrated to the exact value by a 2x2

scheme.

Algorithm 3 Algorithm for numerical integration of quadrilateral elements

// f(x,y) is the function that is be integrated
double I = 0
for (all Gauss points i in ξ direction) do

for (all Gauss points j in η direction) do
Matrix N = getNMatrix(xi[i][j], eta[i][j])
Matrix Jacobi = getJMatrix(xi[i][j], eta[i][j])
x = N*xCoordinates
y = N*yCoordinates
I += weight[i][j]*f(x,y)*Jacobi.determinant

end for
end for

4.3 Torsional analysis

To perform the torsional analysis, we first need to calculate the consistent torsion load vector. This

is done by iterating over all elements in Mesh and computing the individual element loads by calling

the function calculateElementLoadTorsion(). The loads are then added to their correct place in the

global load vector R . Next, the stiffness matrix K is computed. This is done in much the same

way as the load vector. The element stiffnesses are found by invoking the calculateStiffnessMatrix()

function for all elements, and are then added into to the corresponding place in the global stiffness

matrix. This procedure is illustrated in Fig. 4.3.
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Figure 4.3: Arbitrary insertion of element stiffness matrix ke from a T3 element (with node 1, 5, and
6) into a global stiffness matrix K

Once K and R are determined, we need to apply boundary conditions to the system of equations.

For our implementation we have not considered any symmetry, and one (arbitrary) node needs to

be constrained. The function constrainDOF() does this by zeroing out the last row and column in

the stiffness matrix, then setting the lower right entry of K and the last entry of R to one, leaving the

system on the following form (for a mesh with n +1 nodes)

Kr = R =⇒



K11 K12 · · · K1n 0

K21 K22 · · · K2n 0
...

...
. . .

...
...

Kn1 Kn2 · · · Knn 0

0 0 · · · 0 1





r1

r2

...

rn

rn+1


=



R1

R2

...

Rn

1



After the boundary condition is applied, the system is solved for the displacements r (equation solv-

ing is described in Section 4.6). With the global displacements computed, Mesh moves the corre-

sponding displacements down to the element level. Mesh then computes the torsional stiffness and

stress distributions by calling calculateDeltaGIt() and computeTauTorsion() for each element. For

triangular elements the stress values are computed directly at the nodes. For quadrilateral elements

on the other hand, the stresses are calculated at the integration points before being extrapolated to

the nodes. The extrapolation is done through the extrapolation matrix E initiated by the function
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setExtrapolationMatrix(). Next, the shear center due to torsion is calculated by calling calculateTor-

sionShearCenter().

Multiple elements can contain the same node. Because of this, the stress is calculated multiple times

for each node. The stress values might also differ slightly in numerical values, depending on the ele-

ment they are calculated from. To produce a smooth stress output we make use of nodal point aver-

aging, which sets the nodal stress value to an average of all the calculated values. The Mesh function

setSmoothNodalTau() implements this technique, thereby ensuring a continuous stress field (even

for T3 elements). The averaged shear stresses are then stored in the matrix tauTorsion.

4.4 Shear analysis

As for torsion analysis, Mesh iterates over all elements and computes the individual element loads.

For shear analysis this calculation is separated into two cases, one for each shear force (Vx and Vy ).

The respective element loads are computed by calling calculateElementLoadShearX() and calcula-

teElementLoadShearY() (using Eq. (2.66)). The rest of the procedure is very similar to that of the

torsion analysis. Again the element loads are summed up to the global load vector R . Since CCSC

currently does not offer support for symmetry, the boundary condition established in Section 4.3 is

valid for both torsion and shear analysis. Because of this we do not have to recompute the stiffness

matrix, and we can reuse K from the torsional analysis. The global system of equations (K r = R)

is solved twice for the displacement vectors r , one time for each load case. The displacements are

again moved to the element level, before the shear stresses are calculated by calling computeTauS-

hear() for all the elements (using Eq. (2.68)).

The stresses are smoothed out through setSmoothNodalTau() (as done in the torsion analysis) and

stored in the matrices tauShearX and tauShearY. At the end of the shear analysis Mesh determines

the shear deformation factors. This is done by making calls to calculateShearDeformationFactorX()

and calculateShearDeformationFactorY(), each of which loops through all elements and sums up

their respective contributions. Supporting symmetry can lead to substantial savings of computa-

tional effort, but was not a focus point of our thesis. If we want to take advantage of it in the future

the stiffness matrix would have to be computed four times, one time for the torsion analysis, one
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time for each of the shear load cases, and one time for composite analysis.

4.5 Analysis of composite materials

The implementation of composite materials unifies torsion and shear loading into one analysis.

Again, Mesh is responsible for executing the analysis. It iterates over all elements and uses the func-

tion calculateElementLoadComposite() to calculate the element load vectors (using Eq. (2.104b)).

The contribution to the initial strain due to torsion is dependent on the rate of twist θ, which was

computed during regular torsion analysis. Rather than recomputing it, we simply reuse the stored

value.

The analysis proceeds by establishing the global load vector R . The pre-established global stiffness

matrix K can be reused. We solve the equilibrium equation (K r = R) which determines the nodal

displacements. After moving the global displacements to the element level, Mesh makes a call to

computeTauComposite() for the calculation of the stresses based on Eq. (2.105). The stresses are

calculated at the integration points, before they are extrapolated out to the nodes (for quadrilateral

elements). The results are then smoothed, before being stored in the matrix tauComposite. Unlike

for the torsion and shear analyses, the axial stress σz is computed as a part of this analysis (in addi-

tion to the shear stresses τx z and τy z ). The axial stress is stored in the first column, while the shear

stresses are stored in the second and third column.

4.6 Eigen

In order to solve the equilibrium equation described in Section 2.7, CCSC uses an open source linear

algebra template library for C++ called Eigen. This library is used for matrix operations throughout

the application, as well as for equation solving. For the analysis of massive cross-sections we have

chosen to use Eigen’s SimplicalLDLT solver, which performs an LDLT (Cholesky) decomposition in

order to solve the equations. The solver was chosen based on the testing performed by Kristian

Strømstad during his master thesis 1. FEM has the advantage that it produces a positive definite and

sparse stiffness matrix, which makes this solver ideal for our case as they are both requirements for
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the SimplicalLDLT solver. The equation solving is done as follows.

SimplicialLDLT <SparseMatrix <double>> LDLT(K) ;

r = LDLT. solve (R) ;

We have sometimes encountered stiffness matrices that are not positive definite. When this is the

case, the system of equations is solved using Eigen’s ColPivHouseholderQR solver. Having a non-

positive definite stiffness matrix indicates that something is wrong, and the results obtained should

be interpreted with great caution. This has been an issue since the original version of CCSC (devel-

oped by Strømstad), and unfortunately we have not had the time to investigate the issue further.

As the mesh size gets bigger, so does the memory usage of Eigen’s solver. Before inserting non-zero

elements into a SparseMatrix we need to reserve enough memory for a certain number of elements

in order to prevent unnecessary memory reallocations. Consequently the maximum mesh size of

CCSC depends on the memory of the users computer. Currently CCSC reserves space for a fixed 1%

of the matrix elements. This means that the system theoretically needs a minimum free space of

memor y = n ×n ×8×0.01

10242 MB (4.2)

where n is number of nodes, 8 is number of bytes for a double, and 1024 is the number of bytes

in a kilobyte. As the mesh is further and further refined, the stiffness matrix becomes increasingly

sparse. Because of this we could implement a dynamically sized allocation. However, for all intents

and purposes the current solution should be able to run most meshes on any modern computer.

Therefore we chose not to spend any time implementing this option.

4.7 ParaView visualization

The results can be visualized in any program supporting the VTK file format. For our project we

used the open source program ParaView. To make validation of the massive cross-sections easier, we

wrote a python script for ParaView that visualizes the principal axis (located in area center) and the
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shear center. The script is named DisplayCoordinateSystem and is found under the Scripts folder. By

adding this to a ParaView macro, the original axes and shear center can be viewed by simply pressing

a button. It is only used as a crude way of validating the shear center, therefore we did not put a lot

of effort in to making the visualization more visually appealing.

4.8 Meshing cross-sections using Gmsh

CCSC currently only supports mesh files that are of the type .msh, which is generated by Gmsh 2.11.

Gmsh is an open source finite element mesh generator distributed under the GNU General Public

License (GPL). We used it to generate meshes with both three- and six-node triangular elements,

as well as four- and nine-node quadrilateral elements. There is currently no implementation for

meshing in CCSC, and the user is responsible for creating valid mesh files. When creating a mesh for

CCSC, it is important to ensure that the nodes are arranged in a counter-clockwise fashion for each

element. Failing to do so may result in inverted parameters and stress distributions.
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Chapter 5

Implementation - Thin-Walled

Cross-Sections

In this chapter we take a closer look at how the theory of thin-walled cross-sections presented in

Chapter 3 is implemented in CCSC. This includes descriptions of the class structure, informational

flow, numerical integration, equation solving, and stress analyses from applied forces. As with the

massive implementation, this chapter is supplemented by an extensive documentation containing

all functions and their underlying theory. This is available as a part of the program package, under

the Documentation folder.

5.1 Classes

The thin-walled implementation of CCSC consists of 8 classes: LineMesh, CycleDetection, LineEle-

ment, LineParser, LineResultWriter, Material, Solver, and Node. The latter three classes are the

same as used in the massive implementation described in Section 4.1, and will not be described any

further. Thin-walled cross-sections differ a lot from massive cross-sections, both in terms of theory,

and in terms of implementation. As a consequence we decided to separate the two implementa-

tions by creating entirely new classes, rather than using any inheritance. The relationship between
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classes for the thin-walled implementation can be seen in Fig. 5.1.

Figure 5.1: UML class diagram showing the relationship between classes for thin-walled implemen-
tation

CycleDetection

In order to perform analysis on a thin-walled cross-section, we need an algorithm to detect all cells

(i.e. cycles not containing other cycles). The first step to detect these cells is to find all existing cycles

in the cross-section. To solve this problem we used a recursive depth-first search algorithm (DFS).

When a DFS loops back on an already visited node (and the length of the path taken is more than

two) it is called a back edge. If a back edge is found, we know that the path taken is a cycle. By

performing DFS from all the nodes in the cross-section sequentially, we can ensure that all cycles

are detected. Our implementation of the DFS is a modified version of the one presented in Axel

Kempers post on Stack Overflow 19. The algorithm has been validated through extensive testing on

multiple cross-sections. The following is a rough pseudocode of the algorithm:
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Algorithm 4 Algorithm to find all cycles

/* cycles is an empty vector of cycles and findNewCycles(path) is called from all nodes
sequentially, where path is (originally) a vector ontaining only the start node id æ*/
function FINDNEWCYCLES(vector<int> path)

startNode = path[0];
for (all edges in cross-section) do

nextNode = neighbor node of startNode
if (nextNode not visited ) then

add nextNode to path
findNewCycles(path)

else if (path > 2 and nextNode is last node in path) then
// Cycle is detected
if ( cycles does not already contain path or the inverse of path) then

add path to cycle
end if

end if
end for

end function

For the analyses we are only interested in the cells, and consequently we need to remove all super-

cycles (i.e a cycle containing other cycles), from the list of cycles. In Fig. 5.2 a simple thin-walled

cross-section is illustrated, with its two cells colored in blue, and the super-cycle colored in red.

Algorithm 5 shows how we detect and remove all super-cycles.

Figure 5.2: Simple thin-walled mesh, containing two cells (blue coloring) and one super-cycle (red
coloring). Direction of the elements are included
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Algorithm 5 Algorithm to remove super-cycles

Maintain a two dimensional vector of the cycles and their edges and call it cycles
while (there exists an unchecked cycle in cycles) do

vector<Edge> current = edges of first unchecked cycle in cycles
vector<Edge> other = edges of all cycles other than current
if (all edges in current exist in other ) then

//current is super-cycle
remove current from cycles

end if
end while

In order to solve the system of equations (B p = a), we need to calculate the area of each cell. To

simplify this calculation, we flip all elements of the cycle in question so that they are facing the same

direction (either clockwise or counter-clockwise). Now the area below each element is either added

or subtracted based on the x-direction of the element. This is all done inside the calculateCellArea()

function. It should be noted that the area of a cell will be negative if the elements in a cycle are

oriented counter-clockwise. Fig. 5.3 illustrates the area calculation procedure.

The same function ensures a positive (counter-clockwise) orientation of each cell. If, however, an

element is part of two cycles it is impossible for it to have a positive direction for both cells. In

these cases the element is given a positive direction according to the last cell for which the area is

calculated. The pseudocode for the function is given in Algorithm 6.

Figure 5.3: Algorithm to calculate the area of an irregular polygon
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Algorithm 6 Algorithm to calculate area and ensuring counter-clockwise direction for a cell
(done sequentially for all cells)

Maintain a two dimensional vector containing all cycles and their respective edges cycles
Maintain a one dimensional vector of doubles containing the areas of the cells and call it
areas
for (every cycle c in cycles) do

Create a one dimensional vector containing the edges of a single cycle and call it cycle
cycle = cycles[c]
assure uniform direction of all edges in cycle
double area = 0
for (every edge in cycle) do

double x1 = xCoordinate of first node
double y1 = yCoordinate of first node
double x2 = xCoordinate of second node
double y2 = yCoordinate of second node
area += (y1+y2)

2 · (x2 −x1)
end for
if (area > 0) then

//Direction of cell is clockwise
reverse cycle and flip all elements in cycle

else
//Direction of cell is counter-clockwise, and area has a negative value
area *= -1

end if
push area to areas

end for

LineMesh

LineMesh is the class where the thin-walled stress analysis takes place. It represents the entire cross-

section by storing all the elements and nodes as vectors. These vectors are then passed as pointers

to the LineParser, where they are filled up according to the mesh given by the user. By initializing

a CycleDetection object and passing the vector of elements to it, the cells and their corresponding

areas are found. The analysis can now start. First the basic cross-sectional stiffnesses are deter-

mined through the calculateMeshProperties() function. This includes the computation of bending

stiffnesses and the angle of principal axis. For the rest of the calculations the cross-section is trans-

formed to coincide with the principal axis. This is done inside the function transformCoordinates().
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The modified shear flows of each element can now be determined by solving the system of equations

defined in Eq. (3.4). The area vector a has already been determined, and the coefficient matrix B is

constructed by calling the function constructBMatrix(). The algorithm for constructing B is shown

in Algorithm 7.

Algorithm 7 Algorithm to construct B-matrix

MatrixXd B
for (i in all cycles) do

for (j in all cycles) do
if (i == j) then

for (all elements in cycle) do
diagonalSum += length / (shearModulus * thickness)

end for
B(i,j) = diagonalSum

else
for (all common elements of cycle[i] and cycle[j]) do

offDiagonalSum -= length / (shearModulus * thickness)
end for
B(i,j) = offDiagonalSum

end if
end for

end for

The system of equations is now solved for the shear flow p . Once determined, the ω - diagram can

be established. This is done through the function calculateOmega(), which is described in detail

in Section 5.3. When the ω - diagram is determined, the axial stresses may be computed by calcu-

lateAxialStress(). Next, the shear stresses are found by invoking calculateTau() (further described in

Section 5.4). All results are stored in LineMesh for later use by LineResultWriter.

LineElement

This class represents the line segments of the cross-section. All parameters needed for the thin-

walled analyses are stored here. This includes material properties, nodes, area, shear center, and

shear flow values. In order for LineMesh to calculate the global stiffnesses and parameters, the

individual element contributions are computed and added up to their global values.
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LineResultWriter

This class is responsible for outputting results of the thin-walled analysis. If the desired output is

linear, writeLinearMeshTopology() is called. In these cases the graph of each element is visualized

as two triangular VTK polygons. If the graph has an intersection point along the element, the two

polygons each have a corner node in the intersection point (as illustrated in Fig. 5.4). In the cases

with no intersection points the two triangles are simply stacked on top of each other (as seen in Fig.

5.5). For further description of how these polygons are defined in the VTK file format, see Appendix

C.4.

Figure 5.4: Linear diagram with an intersection point along the element. The two triangular poly-
gons are colored based on the corresponding function value

Figure 5.5: Linear diagram in CCSC without an intersection point along the element. The two trian-
gular polygons are colored based on the corresponding function value

For quadratic functions the output is more comprehensive. In order to approximate the graphs,

each element is divided into sets of equally large line segments. Each of these extra segments are

treated in the same way as an element with linear variation, which means that the graph along the
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segment is approximated using two triangular polygons. The number of line segments is defined by

the user (with a minimum of seven), and the more segments are used the better the approximation

will be. An example of this method can be seen in Fig. 5.6. The quadratic output is created inside

the function writeQuadraticMeshTopology(). For details on how the polygons are defined in the VTK

format, see Appendix C.4

Figure 5.6: Quadratic diagram in CCSC made from numerous triangular polygons. Each polygon is
colored based on the corresponding function value

The direction of each element is needed in order to interpret the results of our calculations. There-

fore a Glyph arrow showing the element direction is drawn. These arrows are only visible after ap-

plying both a glyph filter and modifying several parameters inside of ParaView. For the convenience

of the user, we have included a python script named DisplayArrows, which does this automatically.

The user only has to add the script as a ParaView macro, and run the macro (all scripts are found

under the Scripts folder of CCSC).

Because of the way polygons work in ParaView, we have not found a way of including all the distri-

butions within one .vtk file. Therefore LineResultWriter creates a new sub-folder inside the Results

folder, which is filled up with multiple result files (one for each diagram). In addition to the visualiza-

tions made in ParaView, LineResultWriter outputs a .txt file made by the createTextFile() function.

This file contains the material properties, applied loads, and cross-sectional parameters. It is neatly

organized, and makes it very simple to find the desired parameters. One example of such a file is

given in Fig. B.8 in the Appendix.
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LineParser

LineParser parses the thin-walled mesh file given as an input argument by the user. A thin-walled

mesh only contains two-node segments (line elements) with an assigned thickness and an isotropic

material. These properties are specific for each element, and can either be set to default values or

user defined values. The parser differentiates between the two cases by the element type-tag found

in the individual element records in the .msh file. This tag can be set as one of the following

• tag set as 1 - the element instantiated is given the default property values. The material prop-

erties are set to match the base material, while the thickness is set to 5mm

• tag set as 4 - the element instantiated is given unique property values

If the element in the .msh file is given the tag 4, the Young’s modulus (E), Poisson’s ratio (ν), and the

element thickness (t ) have to be added to the end of the record (in that order). If the element is given

the tag 1 (as is standard in Gmsh for two-node elements), the record is left as is. By failing to obey

these rules, the analysis will fail. Fig. C.2 in Appendix C shows the format of the .msh file.

Solver, Material and Node

These classes are common to both massive and thin-wall analysis, and are described in Section 4.1.

5.2 Numerical integration

For thin-walled analysis we make use of both two- and three point uni-directional integration schemes

presented in Section 3.10. Algorithm 8 presents the simple procedure of numerical integration for

line elements.

Algorithm 8 Algorithm for numerical integration of line elements

// f(zeta) is a function to be integrated over the area
double I = 0
for (all Gaussian points i) do

I += weight[i]*f(zeta[i]) * (area /2)
end for
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5.3 Axial stress analysis

The axial stress distribution is dependent on the basic cross-sectional parameters computed in

LineMesh. After they are determined, the ωc - diagram is computed for each element as described

in Algorithm 9.

Algorithm 9 Algorithm to create ωc - diagram

Sort the vector of elements in a depth-first manner (DFS), call it elements
The ωc - value of the first node of elements is set to zero
for (all elements e in elements) do

if (second node of e not visited) then
secondNode.omega_c = firstNode.omega_c + delta_omega_c // (see Eq.(3.14))
secondNode.visited = true

end if
end for
// This will assign ωc - values for all nodes

The axial analysis continues with three steps. First, the shear center is calculated by calling the

function calculateShearCenter() (based on Eqs. (3.16 and 3.17)). Secondly, the ωc - diagram is trans-

formed around the shear center to produce the ω - diagram. The function calculateOmega() per-

forms this operation using Eq. (3.15). Finally, the axial stresses are computed by computeAxial-

Stress() (which uses Eq. (3.19). The axial stress values have a linear variation over the element, and

is therefore outputted by LineResultWriter using writeLinearMeshTopology().

5.4 Shear stress analysis

In order to compute the shear stress distribution over the cross-section, we must determine the

shear flow distribution of each element. We find the shear flow at the mid-point of each element

using Eq. (3.36). For this we need to develop the coefficient matrices A1 and A2 as well as the

matrices G1 and G2. This is done in LineMesh by calling calculateA1Matrix(), calculateA2Matrix(),

calculateG1Matrix(), and calculateG2Matrix() respectively. The mid-point shear flows can now be

determined by invoking calculateQ0() for all the load cases. Once q0 is found, the shear flow is fully

defined along the element through Eq. (3.24). It should be noted that the axial force is assumed to
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be constant over the cross-section, and consequently N
′

is zero.

The stresses at the nodes are now found by calculateNodalTau(), which is called one time for each

loading case. Since the shear stresses have a quadratic variation along the element, computing only

the nodal values is not sufficient. To approximate the quadratic distribution we have given each

line element a set of extra points with equal spacing (through the function addElementPoints()).

The stress values for each of these points are then found by passing its local element position (s)

to the calculateQs() function. The nodal stress values are then stored inside Node, while the extra

stress values are stored inside LineElement. Intersection points are also found by calling the find-

ElementIntersections() function. Fig. 5.7 illustrates how the shear stress values are stored in CCSC.

Lastly, the shear stress purely due to St. Venant torsion is determined through calculateTauSTV().

During our validation of the thin-walled analysis we found that all shear stress values were inverted

compared to CrossX. Because of this, we have forced the load vector ( f ) inside initializeMatrices()

to have a negative sign. By doing this, the values match with CrossX. A detailed validation of the

thin-wall analysis is given in Section 6.4. After finishing the shear analysis, LineMesh computes

the shear deformation factors by making calls to the functions calculateKappaX() and calculateKap-

paY(). Their implementation is based on Eq. (3.45).

Figure 5.7: Relationship between results and output for an arbitrary line element with seven line
segments (100 is set as default). Nodal shear stress values are stored in Node, while extra points and
their shear stress values are stored in LineElement
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5.5 Eigen

In the implementation of thin-walled cross-sections we decided to use Eigen’s HouseholderQR to

solve Eqs. (3.4 and 3.36). This solver uses a QR decomposition, and was chosen for robustness.

Unlike SimplicalLDLT used for massive cross-sections, this solver has no requirements for the coef-

ficient matrix (such as sparseness or positive definiteness). The solving is done as follows

HouseholderQR<MatrixXd> solver (B) ;

p = solver . solve ( a ) ;

5.6 Meshing cross-sections using Gmsh

For thin-walled analysis the meshes can be created using Gmsh. The meshes generated this way will

only contain regular two-node line elements with default property values (see Section 5.1). If the

user wants to define line elements with specific material properties, he/she must change the mesh

file manually according to specifications of the .msh file format (see Appendix C.1). The element

type-tag must be changed to 4, and Young’s modulus, Poisson’s ratio, and element thickness must be

added to the end of the desired element record. If the element type tag is 4 (specific line element)

and the three last properties are not defined, the analysis will fail. This is also the case if the element

type-tag is set to 1 (regular line element), and the three element properties are added to the end of

the record. The two element types can, however, be used interchangeably within the same mesh.

As there is no meshing of thin-walled cross-sections inside of CCSC it is the users responsibility to

create valid mesh files.
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Chapter 6

Validation and Results

This chapter presents a validation of CCSC. We compare the outputted results with well-known so-

lutions, as well as results retrieved from CrossX. This includes comparisons of cross-sectional pa-

rameters and stress distributions from massive as well as thin-walled analysi. The different element

types supported by CCSC are tested, both for their accuracy and for their rate of convergence. Lastly,

we investigate the running times of the application for numerous refinement levels.

6.1 Units and output

The cross-sections should be modeled in millimeters [mm] as the applied forces are given in newton

[N ]. This means that the stresses are computed in MPa, and all the cross-sectional parameters are

given in terms of N and mm. The default applied loads have been chosen to match with CrossX:

• N = Vx = Vy = 103 N

• Mx = My = Mz = Tst v = Twr p = 106 N mm

• Bimoment = 109 N mm2
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6.1.1 Stress component output for massive cross-sections

• Effective stress (von Mises)

• σz due to N ,Vx ,Vy , Mx and My

• σz resultant

• τxz and τy z due to Vx ,Vy and Mz

• τy z and τy z resultant

• τ resultant

• σz , τxz , and τy z from composite analysis

6.1.2 Stress component output for thin-walled cross-sections

• Effective stress (von Mises)

• ω

• σz due to N , Mx , My and B

• σz resultant

• τ due to Vx ,Vy ,Tst v and Twr p

• τ resultant

6.2 Validation of fundamental parameters

We have performed numerous analyses for different load cases in order to validate the results out-

putted by CCSC. The results for known (standard steel cross-sections) and unknown load cases

(complex cross-sections) are considered, and both regular results as well as results from composite

analysis are examined. The fundamental parameters area, second moments of area and the torsion
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constant have all been validated for CCSC. The torsion constant is especially important, as it is de-

rived from the shape functions, the Jacobian, and the strain-displacement matrix, which makes it a

very good indication for the validity of our solution.

First we analyzed the well-known steel beam profile IPE300. We designed a mesh using T6 elements

(massive cross-section) and a mesh using line elements (thin-walled cross-section). Correspond-

ing meshes were made in CrossX for comparison, and were matched on the number of nodes (as

closely as we could manage). For the massive cross-sections we approximated the corner fillets with

four straight line segments. In addition to CrossX, we also compared the results to the exact solu-

tions listed in "Stålkonstruksjoner - profiler og formler"20. The massive meshes had 749 and 777

nodes for CCSC and CrossX respectively, whereas the thin-walled meshes were identical. Table 6.1

summarizes this analysis.

Table 6.1: Cross-sectional parameters of IPE300 (values gathered from CrossX and "Stålkonstruk-
sjoner - profiler og formler"20)

IPE300 Massive Thin-wall
Parameters CCSC CrossX CCSC CrossX Exact value

A · 10−3 [mm2] 5.38574 5.3857 5.26403 5.264 5.38
Ix · 10−6 [mm4] 83.6411 83.641 81.4907 81.521 83.6
I y · 10−6 [mm4] 6.03843 6.0384 6.01875 6.0274 6.04
It · 10−6 [mm4] 0.198414 0.19877 0.157019 0.15702 0.202

κx 1.56981 1.56989 1.96786 1.96223 N/A
κy 2.56851 2.56854 2.57862 2.57668 N/A

Next we computed the same parameters for RHS 100× 50× 4, which is another well-known steel

beam profile. For the massive cross-section the outer boundary of the corners were approximated

using four line segments, while the inner boundaries were made up of two segments. This cross-

section is of interest because it contains a cell, which is an important feature for the thin-wall analy-

sis (as explained in Chapter 3). For the massive meshes we used 303 nodes and 440 nodes for CCSC

and CrossX respectively. Again, the thin-walled meshes were identical. Table 6.2 summarizes the

analysis for the RHS cross-section.
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Table 6.2: Cross-sectional parameters of RHS 100×50×4 (values gathered from CrossX and "Stålkon-
struksjoner - profiler og formler")

RHS Massive Thin-wall
Parameters CCSC CrossX CCSC CrossX Exact value

A ·10−3 [mm2] 1.13034 1.1303 1.10492 1.1049 1.13
Ix ·10−6 [mm4] 1.42183 1.4218 1.36372 1.3642 1.42
I y ·10−6 [mm4] 0.467666 0.46767 0.453604 0.45461 0.467
It ·10−6 [mm4] 1.15854 1.1543 1.12016 1.1202 1.13

κx 3.91455 3.94419 2.92165 2.90876 N/A
κy 1.51973 1.52334 1.48398 1.48296 N/A

It is clear from the two analyses that the results outputted by CCSC are very close to that of CrossX.

This is what we expected, as our implementation is based on the same theory. Both programs cal-

culate area and second moments of area exact to three digits for massive cross-sections. CCSC com-

putes a torsional constant that differs from the exact solution by 1.78% for IPE300 and 2.53% for

RHS. This is only slightly more than CrossX (1.60% for IPE300 and 2.15% for RHS).

For the thin-wall analysis the calculated results are further away from the exact solution. This is

mainly because there is no mechanism to model the fillets of the cross-sections. Therefore the area

(and the two second moments of area) is calculated to be smaller than reality. For the calculation

of the torsion constant of IPE300, the thin-wall analysis is further away from the exact value than

the massive analysis. The opposite is the case for the RHS cross-section, which is most likely inci-

dental. We also recognize that the computation of κx seems to differ more (0.44%) between the two

programs, than κy (0.06%). Fig. 6.1 illustrates the two meshes used for massive analysis in CCSC.

Figure 6.1: Mesh of the IPE300 and RHS 100×50×4 cross-sections used for massive analysis in CCSC
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6.3 Validation of massive cross-sections

Further validation of the massive cross-section implementation in CCSC is needed. In this section

we take a closer look at stress distributions, composite analysis, element performance, and mesh

convergence, in an effort to further validate the results.

6.3.1 Stress distributions for massive cross-sections

To further validate our results, we compared the stress distributions for massive cross-sections ob-

tained from CCSC to those of CrossX. We considered a rectangular cross-section with dimensions

200×100 mm2, which was chosen due to its rather simple cross-section, providing intuitive stress

distributions. Both CCSC and CrossX were meshed identically with T6 elements and 2145 nodes.

The first thing we considered was shear stress due to applied shear loads. There are four general

shear load cases, all of which seem to comply with CrossX (both in terms of stress distributions as

well as numerical values). Figs. 6.2 and 6.3 show comparisons for two of these cases. Fig. 6.2 depicts

the same distribution and virtually identical extreme values (a difference of only 0.09%) between

the two programs. The case shown in Fig. 6.3 shows a reversed stress distribution. This is due to the

cross-sections being rotated differently (as was discussed in Section 4.1). The numerical values are

further off for this case, but CCSC is still within a 0.45% margin of CrossX.

Figure 6.2: Comparing τy z due to Vy (vertical shear force). CrossX on the left, CCSC on the right
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Figure 6.3: Comparing τxz due to Vy (vertical shear force). CrossX on the left, CCSC on the right

For the case of applied torsion, there are two distinct solutions. Both cases compute virtually iden-

tical stress distributions and numerical values between CCSC and CrossX. The case of τy z due to

applied torsion Mz is shown in Fig. 6.4. For this case CrossX outputs an extreme value of 1.620 MPa,

compared to the 1.617 MPa of CCSC, which is only a difference of 0.19%.

Figure 6.4: Comparing τy z due to torsion Mz . CrossX on the left, CCSC on the right

As expected, both the stress distribution as well as the numerical values are pretty close for the ef-

fective stress, as illustrated by Fig. 6.5. In fact the numerical extreme values from CrossX and CCSC

are identical to each other. Again we observe that the distributions are reversed compared to each

other. As mentioned previously this is because the cross-sections are rotated in opposite directions

of each other (CrossX is rotated 90° while CCSC is rotated 0°).

Figure 6.5: Comparing effective (von Mises) stress. CrossX on the left, CCSC on the right
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In addition to the rectangle, we have compared a vast array of other cross-sections, all of which

seem to comply with CrossX for both the stress distributions and parameters (the different cross-

sections analyzed are given in Appendix D.2). This includes the calculation of shear center from

torsion loading. It was mentioned in Section 2.13 that cross-sections with very large stress con-

centrations (singularities) can be produced. For these cases the discrepancies between the extreme

numerical values might differ more. A common case would be when sharp re-entrant edges are

introduced. A way to circumvent this problem is to provide fillets with a large radius.

6.3.2 Analysis of composite materials

It was stated in Section 2.11.3 that CCSC can not yet determine stress distributions for composite

materials. But the implementation is still of interest because it can solve for torsion and shear load-

ing in a unified analysis, rather than two separate analyses. For this reason the implementation will

be the basis for the continued development of composite cross-section analysis (hence the name

composite analysis) and therefore it needs validation.

If the constitutive matrix for isotropic materials defined in Eq. (2.107) is used for the composite

analysis, we can make comparisons to the results provided by the torsion and shear analysis as they

should be the same. We continue to use the rectangular cross-section from Section 6.3.1. We com-

pare τxz obtained from composite analysis to the τxz resultant from regular analysis (and likewise

for τy z ). The comparisons are presented in Table 6.3.

Table 6.3: Comparing shear stress resultants for regular and composite analysis. Values are in MPa

Stress resultants τxz,max τxz,mi n τy z,max τy z,mi n

Regular analysis 2.112 −1.956 1.724 −1.506
Composite analysis 2.112 −1.956 1.724 −1.506

The comparison indicates that the composite analyses is indeed solved correctly. We can not verify

thatσz is identical, as the resultingσz outputted by regular analysis includes axial force and applied

bending moments. However, comparing theσz distribution due to only shear loading gives identical

distributions. We therefore conclude that the composite analysis is correct for isotropic cases.
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6.3.3 Nodal point averaging

Each element calculates a stress value for every node that it contains. The different elements calcu-

lates different stress values for the same node. For linear elements such as T3 and Q4 elements, the

stress is not continuous between elements. Therefore, in order to obtain the most accurate results

possible, we make use of nodal point averaging. The stress value for any arbitrary node, is given as

the average of all nodal stress values computed by every adjacent element. This technique makes

the stress field derived from linear elements look much smoother than the field that is directly pro-

duced by the element. The nodal point averaging can also be modified by assigning different weights

for different elements, however, in our implementation we have simply assigned the same weight to

every element. For the cases of uniform material properties over the cross-section, this should work

well. To demonstrate the effect of nodal point averaging, we make use of MeshSTL (described in Sec-

tion 4.1) to output results in a file format similar to .stl (see Appendix C.5). This output file has no

averaging of nodal stress values. The differences between nodal averaging and no nodal averaging

for a mesh consisting of T3 elements are illustrated in Fig. 6.6.

Figure 6.6: Comparing τxz for Fs,x applied in the horizontal direction, with nodal stress averaging
to the left and not (.stl file format) to the right. T3XLarge (128 elements) is used

6.3.4 Constant and linear strain elements

For elements with linear shape functions defining the displacement field, we expect a constant

strain field (and stress field as we only consider elastic deformation). Elements containing quadratic

shape functions on the other hand, should produce a linear strain field. The Q4 and Q9 elements

are special cases as they have bilinear and biquadratic shape functions which should produce non-

constant and bilinear strain fields respectively. When the results are outputted with nodal point
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averaging techniques it is hard to tell if the elements have a constant or linear variation in their

stresses. This is because ParaView produces continuous fields between the nodal values. If the out-

put format is changed to the aforementioned .stl file format, however, the behaviour of the elements

become more apparent. Figs. 6.7 and 6.8 compares .stl stress values from meshes consisting of the

four different element types. The shear analysis is used, as it produces a quadratic stress field over

the cross-section. We have deliberately chosen coarse meshes in order to observe the differences

between the linear, quadratic, bilinear, and biquadratic elements. Considering the coarseness of

the mesh, the numerical values should not be given too much consideration.

Figure 6.7: Comparing τxz for Fs,x applied in the horizontal direction, with T3 elements (T3Large)
to the left and T6 elements (T6Large) to the right. 32 elements were used for the analysis

Figure 6.8: Comparing τxz for Fs,x applied in the horizontal direction, with Q4 elements (Q4Large)
to the left and Q9 elements (Q9Large) to the right. 64 elements were used for the analysis

Fig. 6.7 shows that the stress field obtained from T3 elements is constant, while the T6 elements

produce a non-constant stress field. Fig. 6.8 illustrates a non-constant stress field for both Q4 and

Q9 elements. The stress field of the Q4 element however, only varies linearly with y (vertical direc-

tion) as described in Section 2.5.2. We observe that T6 and Q9 elements produce significantly more

accurate stress distributions, which ultimately means that they will have a faster rate of convergence
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compared to the T3 and Q4 elements. This will be investigated further in Section 6.3.6. When us-

ing nodal point averaging, the stress fields for the four elements will appear the same in ParaView,

however the numerical values will be different.

We will now compare the numerical values obtained from meshes with different element types. In

FEA the number of nodes generally dominates the workload for very large meshes (see Section 6.5).

Therefore we have matched the meshes on the number of nodes. Again we use the massive rectan-

gular mesh with dimensions 200×100 mm2. The torsion constant and the shear deformation factors

are compared, as they serve as an indication on the correctness of both the torsion and shear analy-

sis. We used a coarse mesh with 153 nodes, as well as a refined mesh with 2145 nodes. It should be

noted that CrossX uses T6 elements, and for the analysis we assume the CrossX results for the fine

mesh to be correct. The results are summarized in Tables 6.4 and 6.5.

Table 6.4: Cross-sectional parameters for massive rectangle of 200×100 mm2, using triangular ele-
ments. Number of nodes is indicated in parenthesis

Rectangle Coarse (153) Refined (2145)
Parameter T3 T6 CrossX T3 T6 CrossX

It ·10−6 [mm4] 46.4787 45.7928 45.793 45.7841 45.7367 45.737
κx 1.17352 1.17687 1.17629 1.17671 1.17692 1.17692
κy 1.16339 1.17621 1.17688 1.17606 1.17692 1.17692

Table 6.5: Cross-sectional parameters for massive rectangle of 200×100 mm2, using quadrilateral
elements. Number of nodes is indicated in parenthesis

Rectangle Coarse (153) Refined (2145)
Parameter Q4 Q9 CrossX Q4 Q9 CrossX

It ·10−6 [mm4] 46.0079 45.7536 45.793 45.7535 45.73764 45.737
κx 1.17348 1.17688 1.17629 1.17671 1.17692 1.17692
κy 1.16327 1.17623 1.17688 1.17606 1.17692 1.17692

First we compare the T6 and Q9 (quadratic) elements to the T3 and Q4 elements (linear). We observe

that the quadratic elements significantly outperforms the linear elements in terms of accuracy. This

difference is even more apparent for the coarse mesh. The results obtained from the coarse mesh

with quadratic elements are in fact as accurate as the results from the fine meshes with linear ele-

ments. This is an indication that for coarse meshes the quadratic elements are preferred.
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Next we compare the accuracy of the triangular elements to the accuracy of quadrilateral elements.

The Q4 elements produce a non-constant stress field, and are expected to outperform T3 elements.

The torsion constant derived from the coarse T3 mesh is off by 1.62% compared to the CrossX re-

sults from the fine mesh (assumed to be accurate). This result is a lot stiffer than for the coarse Q4

mesh, which is only off by 0.59 %. For the shear factors the differences between T3 elements and

Q4 elements are insignificant. When comparing T6 and Q9 elements from the coarse mesh to the

accurate CrossX values, we can observe a similar trend. The torsional constant of the Q9 element is

only off by 0.04 %, while the T6 elements are off by 0.12 %. Again the difference for the shear fac-

tor is insignificant. From this we conclude that the quadrilateral elements are preferred for simple

cross-sections where the geometry allows for undistorted elements. For complex meshes however,

the triangular elements will create a better approximation of the cross-section geometry.

For further validation of our results we seek an exact solution for the torsion constant. Eq. (6.1) 15 is

known to calculate the torsional constant for rectangular cross-sections with a very small margin of

error. For the rectangular cross-section we compute: It = 45.776 mm4, which is identical up to the

three first digits of CrossX from the fine mesh. This indicates that CrossX (and by extension CCSC)

is producing correct results.

It = ab3
(

16

3
−3.36

(b

a
− b4

12 ·a4

))
(6.1)

6.3.5 Combining element types

Often times it can be beneficial to combine different element types in a mesh. As shown previ-

ously, quadrilateral elements often perform well for simple geometries, but they are not very good

at physically approximating complex geometries. Combining element types can sometimes be the

solution. An example of this is shown in Fig. 6.9, where six-node triangular elements are used to

approximate the half circle, while nine-node quadrilateral elements are used to approximate the

square. For CCSC we have implemented compatibility for multiple element types in the same mesh.

In order to test the results when combining elements we compared the mesh seen in Fig. 6.9, with a

mesh consisting only of six-node triangular elements. Results of the analyses performed on the two

meshes is shown in Fig. 6.10. We observe that the distribution is the same for both cases, and the

maximum effective stress of the combined mesh is only off by 0.03% compared to the T6 mesh.
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Figure 6.9: A mixed mesh on the left and a regular T6 element mesh on the right

Figure 6.10: Effective stress. Mixed mesh on the left, T6 mesh on the right

6.3.6 Mesh convergence

We have mentioned the importance of convergence numerous times. To test for convergence we

used a square cross-section (100×100mm2) meshed with T3, T6, Q4, and Q9 elements. Several dif-

ferent refinement levels, ranging from minimal working examples to very fine meshes were used.

For this analysis we chose to compare meshes with the same number of elements. This will provide

an indication of the accuracy achieved with roughly the same computational effort (see Section 6.5).

We also compared the convergence of CCSC with that of CrossX. All the tests compare the maximum

effective von Mises stress in the cross-section, as this value is based on both torsion and shear anal-

ysis. Fig. 6.11 shows how the effective stress converges to a solution as the mesh is refined. We

observe that both CCSC and CrossX converge towards 12.10 MPa when using T6 elements. They

produce almost identical results, even for coarse meshes. The Q9 element also converges to the

same value, although a lot faster. Consequently, the Q9 element is by far the most accurate element

type for coarse meshes.
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Figure 6.11: Convergence of stress values for CCSC and CrossX when refining mesh using quadratic
elements

Fig. 6.12 depicts the same analysis, but now comparing meshes containing triangular elements (on

the left), and meshes containing quadrilateral elements (on the right). As expected we observe the

T6 mesh to converge much faster to the correct solution compared to the T3 mesh. The quadratic

element is again to be preferred over the linear counterpart for coarse meshes. The same tendencies

can be seen when comparing stress values for Q4 and Q9 elements. The improved accuracy and rate

of convergence for Q9 compared to Q4 elements is even more pronounced than what we saw in the

comparison of triangular elements.
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Figure 6.12: Convergence of stress values for CCSC and CrossX when refining mesh. Triangular
elements on the left, quadrilateral elements on the right
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6.4 Validation of thin-wall results

The implementation of thin-walled cross-section analysis needs further validation than simply con-

sidering the parameters from the two beam profiles previously discussed in Section 6.2. For this

purpose we designed a simplified thin-wall airfoil cross-section.

6.4.1 Airfoil analysis

The airfoil is illustrated in Fig. 6.13. Aluminum alloys are frequently used in aircraft construction,

and alloy 2024-T3 was therefore our choice of material. Its material properties are described in Table

F.1 found in the Appendix. We performed the same analyses in both CCSC and CrossX, using the

standard set of forces as defined in Section 6.1. CrossX calculates the angle of principal axis to be

89.63°, while CCSC calculates it to be −0.37° (this is discussed in Section 4.1). In order to compare

the results more easily, we forced CCSC to rotate 89.63°. Table 6.6 presents a comparison of cross-

sectional parameters, as calculated by the two programs.

Figure 6.13: Thin-walled cross-section of an airfoil
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Table 6.6: Cross-sectional parameters for airfoil, comparing CCSC to CrossX

Airfoil Thin-wall analysis
Parameters CCSC CrossX

A · 10−3 [mm2] 27.7413 27.741
Ix · 10−8 [mm4] 112.364 112.36
I y · 10−8 [mm4] 8.74393 8.7444
It · 10−8 [mm4] 28.5638 28.564
Iω · 10−14 [mm4] 1.23862 1.2386

xs [mm] 5.77183 5.8
ys [mm] 51.6396 51.6

κx 3.50461 3.54154
κy 1.50189 1.50189

Every parameter listed in the previous table (except for one) is calculated numerically identical up

to at least four digits (excluding the shear centers which only has one decimal point for CrossX).

The only exception is κx , with a difference of about 1.04%. We have analyzed numerous thin-walled

cross-sections (listed in Table D.4 in the Appendix), and none of them has had a discrepancy close

to this.

We also compared the stress distributions obtained from CCSC and CrossX. In Fig. 6.14 it is easily

observed that the shape of the ω - diagram is matching, and that the maximum values are virtually

identical. The minimum value is, however, harder to determine from the figure. This is because

the result bar used in CrossX is scaled so that it goes from ± the maximum absolute value, instead

of ranging from the maximum to the minimum value. For this reason we put together Table 6.7 in

order to better illustrate the maximum and minimum values of the analyses. From this table we can

see that the minimum values are in fact equal for this diagram.

Figure 6.14: ω - diagram for airfoil in CrossX (to the left) and CCSC (to the right)
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We compared the stress distributions for all the individual load cases, and all of them matched both

in terms of shape and distribution. When analyzing the shear stresses obtained from CCSC it is

important to keep the direction of each element in mind. The element direction can be viewed

in ParaView by using the python script DisplayArrows, found under the Scripts folder (described

further in Appendix D.1). If the shear stress is positive along an element, that indicates that the

shear flow has the same direction as the element. Negative shear stress values indicate that the

shear flow moves in the opposite direction of the element. In CrossX the direction of the shear flows

are directly indicated by arrows.

As a consequence the shear stress distributions obtained from CCSC might have some elements

where the numerical values have the opposite sign of CrossX. If the element direction of CCSC is

taken into consideration however, the results are in fact the same (even though they appear to be

opposite), as we are only looking for the direction and size of the flow. This can easily be observed

in Figs. B.4 and B.5 in the Appendix. This phenomenon only occurs when an element is part of two

cells, and is set to match a counter-clockwise direction for one of them (see Section 3.5). It should

also be noted that this is only related to the shear flow, and therefore only happens for shear stress

distributions.

The axial and shear stress resultants are compared in Figs. 6.15 and 6.16 respectively and they are

found to be identical. Again we can observe that the numerical values in the webs have opposite

values for CCSC and CrossX, and again the flow is found to be the same. Because of the difference in

numerical values, the maximum and minimum τ values in Table 6.7 might differ from each other.

Figure 6.15: Resulting axial stress (σz ) distribution for airfoil
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Figure 6.16: Resulting shear stress (τ) distribution for airfoil

Table 6.7: Comparing extreme values for ω - diagram and resulting axial and shear stress distri-
butions. For shear stress we expect the extreme values to differ significantly occasionally, due to
differences in element directions

Airfoil Max Min
Parameters CrossX CCSC CrossX CCSC
ω ·104 [mm2] 10.48 10.476 -9.610 -9.6102

σz (resulting) [N /mm2] 0.8974 0.8974 -1.045 -1.045
τ (resulting) ·10−1 [N /mm2] 5.291 5.238 -4.323 -1.991

6.4.2 In-depth analysis ofω - diagram

During our extensive validation of thin-walled analysis, we have discovered that for some cross-

sections the computed ω - diagram differs from what CrossX suggests. An example of such a cross-

section is a simple L-beam (100×100mm2). CCSC computes the entire diagram to be equal to zero,

while CrossX computes significant extreme values of ±0.0625mm2. Table 6.8 demonstrates how all

parameters are computed virtually identical except for the warping stiffness Iω. We also observe that

CrossX calculates slightly different values for the two shear deformation factors.
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Table 6.8: Cross-sectional parameter for L-beam (100×100mm2 and thickness equal to 1). Angle of
principal axis is −45° for CCSC and 45° for CrossX

L-beam Program
Parameter CCSC CrossX
It [mm4] 66.6667 66.6667
Iω [mm6] 0 1041.6
xs [mm] 0 0
ys [mm] -35.3553 -35.4

κx 1.2 1.19976
κy 1.2 1.19994

The consequences of the ω - values may seem insignificant, but in practice they are not. Using the

set of default forces (defined in Section 6.1) for the cross-section, the stresses originating from bimo-

ment and warping torsion actually dominates the axial stress field. Certainly a correct ω - diagram

is of importance. Table 6.9 presents the maximum axial and shear stresses for the L-beam.

Table 6.9: Maximum axial and shear stresses in L-beam subjected to different loading cases

Axial stress [N /mm2] CCSC CrossX Shear stress [N /mm2] CCSC CrossX
σz due to N 5 5 τ due to Tst v 15000 15000
σz due to Mx 424.3 212.1 τ due to Vx 10.61 10.47
σz due to My 212.1 424.2 τ due to Vy 10.61 10.61
σz due to B 0 6000 τ due to Twr p 0 300

ω - values are calculated according to Eq. (3.15). For most cross-sections the extreme ω - values are

significantly large. A selection of such cross-sections can be seen in Table 6.10 along with theirωmax

value.

Table 6.10: Table showing ωmax value from CCSC for a selection of thin-walled cross-sections

Mesh IPE300 RHS airfoil
ωmax [mm2] 1085.0 387.0 10480

For a few cases CrossX computes significantly lowerωmax values (approximately by an order of 105),

with the L-beam being one of them. It is only in these cases where CCSC computes zero ω over its

entirety. When CrossX outputs the shear center, it is rounded to one significant decimal point. We

believe that this might be the problem, however we have no way of knowing if these parameters are
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rounded of during the computations of CrossX, or if it is just rounded of for the output. In any case

we believe the output of CCSC to be correct, as simple hand calculations support our theory.

Figure 6.17: τ due to Vx and Vy for the simple L-beam. CrossX on top, and CCSC on the bottom

Fig. 6.17 shows a similar case. In this symmetric case we would expect that the same extreme values

between the two cases, however CrossX shows a slight difference between the two. This in turn

causes the slight difference in shear deformation factors seen in Table 6.8. This further confirms our

theory of some numerical inaccuracy in CrossX.

6.5 Running time of CCSC

To compare the running time of the massive implementation of CCSC, we used the same meshes as

in the convergence test in Section 6.3.6. They are matched on the number of elements, as this will

dominate the running time of CCSC for most use cases. For very large meshes the number of nodes

is the dominating factor, as the Cholesky decomposition algorithm has a complexity of O(n3). We

observe from Figs. 6.18 that analysis of meshes containing T6 and Q9 elements is somewhat slower

than T3 and Q4 for the same number of elements. This is to be expected as the computations done
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for the quadratic elements are more complex, also these elements have more nodes leading to a

larger system of equations. For smaller meshes the differences in running time is negligible.

As the number of elements in the mesh increases the differences become more pronounced. We

mentioned in Section 6.3.6 that the quadratic elements are more accurate for coarse meshes, when

compared to linear elements. The difference in accuracy decreases as the number of elements

increases. If the mesh is large enough to give the same accuracy between linear elements and

quadratic elements, the linear elements are preferred, as they require less computational effort. All

tests were done on a laptop with an Intel Core i7-4700MQ CPU with 2.40 GHz clock speed, and are

averaged from five separate runs. The results can be seen in Fig. 6.18.

Further analysis has shown that nearly half of the running time is spent on writing results to file. We

have not made made any attempts to improve this, and we leave it to new developers to investigate

improved file writing options.
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Figure 6.18: Running time of CCSC. Triangular elements on the left, quadrilateral elements on the
right

The thin-walled models are very simplistic, and as a consequence the running times of the analysis

is significantly faster than what is seen for massive cross-sections. For all practical purposes the

time spent on analyses is a non-issue for the user. For the airfoil cross-section analyzed in Section

6.4.1, we measured the overall running time to be 1288 ms. However only 152 ms was spent on the

analysis, 88% of the time was spent writing the results to file.
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Chapter 7

Summary and Recommendations for

Further Work

7.1 Summary and conclusions

For our master thesis we were tasked with further developing an analysis software for calculation of

parameters and stress distributions for complex beam cross-sections. Our work consisted of imple-

menting support for thin-walled cross-sections, adding four- and nine-node quadrilateral elements,

starting the development of composite materials, as well as evaluating and restructuring the exist-

ing code. Additionally, a lot of effort was put into correcting both the torsion and shear analyses and

implementing computations of additional parameters such as the torsion constant, shear center,

and shear deformation factors.

Through extensive testing we have demonstrated that our implementation of massive analysis com-

putes sufficiently accurate cross-sectional parameters and stress distributions for well-known cross-

sections. We have shown that the implementation of quadrilateral elements is working, and that it

produces more accurate results for simple cross-sections when compared to triangular elements.

The thin-walled implementation has also been analyzed thoroughly for numerous test cases, and

was shown to produce satisfying parameters and stress distributions for both simple and complex
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cross-sections.

We spent more time than anticipated on implementing the thin-walled analysis, and as a conse-

quence we did not get as far with the composite functionality as we would have liked. We have,

however, developed a unified analysis for torsion and shear, which is an important first step towards

composite analysis. This unified analysis has been shown to provide identical results to the indi-

vidual torsion and shear analyses for the case of isotropic materials. Throughout the development

the software has been extensively restructured with composite functionality in mind. Along with a

comprehensive documentation, this should provide a solid foundation for future implementation

of composite materials.

7.2 Discussion

A simple square cross-section with numerous refinement levels was used to test the performance of

the four element types available for massive analysis. Through testing we found that the quadratic

elements outperformed the linear elements in terms of accuracy. This is expected as they have a lin-

ear strain field, which in turn gives a linear stress variation over the element. For very large meshes

it might be advisable to use linear elements instead. This is because the difference in accuracy goes

to zero as the mesh is refined. The difference in computational effort on the other hand, keeps in-

creasing because the number of nodes in the mesh becomes the dominating factor. We have also

demonstrated that the quadrilateral elements have a faster rate of convergence compared to trian-

gular elements. However, they are not as good at approximating complex geometry without causing

severe element deformations. Because of this, a good solution is sometimes to combine different

element types.

One of the properties of FEM is that it produces a positive definite stiffness matrix. However, for

some rare cases, CCSC computes it to be non-positive definite. We have not found the reason for

this, but it seems to only happen when circular features are present in the cross-section. Whenever

this happens the results should be considered with great caution, although from our experience

it does not seem to affect the results too much. CCSC is highly dependent on quality meshes in

order to provide accurate results, as is the case for most FEA programs. In order to help the mesh
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generation for more complex cross-sections the user should partition the cross-section into smaller

sub-regions with regular shapes. When creating mesh files for CCSC it is important to note that the

nodes are arranged in a counter-clockwise fashion for each element. Failing to do so may result in

parameters having opposite signs of the correct solution. It is the users responsibility to be able to

discern between good and bad meshes. In the same vein, the user is expected to critically analyze

results and make sure they are not polluted by singularities.

The analysis of thin-walled cross-sections is solved for element shear flows as the unknowns. This

differs from the massive analysis approach, where FEM is used to solve for nodal displacements as

unknowns. The main advantage of our thin-wall approach is that we achieve linear stress variation

with two-node elements. Because of this we did not need to implement the three-node line elements

in order to compute accurate stress distributions. The most apparent downside to this approach

is that there is currently no way to use line elements along side the triangular and quadrilateral

elements for massive cross-section analysis.

During initial testing of the thin-walled analysis we discovered that our shear stress distributions

due to axial stresses were inverted when compared to CrossX. To remedy this problem we ended up

forcing the load vector to be negative in order to obtain results that make physical sense. Further

validation revealed that CCSC and CrossX computes different ω - diagrams. In cases where CrossX

produces smallω - values CCSC computes zero across the entire diagram. This difference was shown

to be of great importance as the axial stresses calculated from warping proved to be the dominating

factor. We believe that this has its roots in some kind of small numerical round-off error in CrossX.

Hand calculations have further supported this theory.

It should be noted that we have not performed testing of cross-sections consisting of elements with

different material properties.

7.3 Recommendations for further work

Being such a big and comprehensive task, we had to prioritize our time to what we felt to be most

important for CCSC. Consequently there are still several aspects of CCSC that could be interesting

for future projects or master theses.
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7.3.1 Enhancing/adding new functionality

Using line elements for massive analysis - An interesting task would be to implement support for

massive analysis using line elements in combination with regular elements. Line elements obtain

stress variation in only one direction, which could potentially reduce the computational effort sig-

nificantly. The massive analysis solves for displacements as unknowns, and consequently line ele-

ments consisting of three nodes are needed in order to obtain linear stress variation.

Support for composite materials - In today’s industry composite materials have become very popu-

lar because of their high strength and light weight when compared to traditional materials. Because

of this, an implementation of composite analysis would be a huge addition to this software. Through

our proposed method of unifying torsion and shear analysis, we have made a solid foundation for

future development of composite functionality.

Individual assignment of material properties - An interesting task for future development of CCSC,

would be to find an efficient way to individually assign material properties to groupings of elements,

ideally directly through the user interface. This would enhance the user-friendliness of the applica-

tion, and is vital if composite functionality is added.

Supporting additional mesh formats - Adding support for additional mesh formats is something

that could be done to increase the versatility of the application. This would be easy to do, either

by creating an abstract MSHParser class, or having a class that translates other mesh formats to the

.msh file format.

Shear center from shear analysis - Currently CCSC only computes the shear center based on tor-

sional analysis. Finding the shear center from shear analysis will give slightly different results (unless

Poisson’s ratio is zero), and could therefore provide some additional analytical value.

7.3.2 Increase modifiability

Creating abstractions of classes - There are some parts of the code that could benefit from restruc-

turing classes into a hierarchy of abstract classes and sub-classes. Perhaps the most obvious cases

would be the parser and result writer classes. The massive and thin-walled implementations cur-

rently have separate parsers and writers which operate in pretty much the same manner. A lot of
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code could be reused by having a general abstract class and leaving specific implementations to the

sub-classes as needed. Another place where this could be done is with the Mesh and MeshSTL class.

Renaming axes - The common naming convention in most literature and standards is to use (y, z)

as the coordinate system for the cross-sectional plane. When we started working on CCSC, (x, y) was

used instead. As this is of no real importance to the results we have not prioritized changing this. It

would, however, be advantageous to adopt the naming convention, as this would make implemen-

tation of new theory less confusing for the programmer.

7.3.3 Optimization

Writing results to file - For thin-walled analysis it is not uncommon that 80-90% of the running time

is spent writing results to file. A solution to this could be to find a better way to write the result files in

batches, but we leave the implementation to future developers. This would also benefit the running

time of massive analysis significantly.

Reduced integration - As previously mentioned in Section 2.6.3, there is currently no support for

reduced integration in CCSC. By trading off some accuracy, reduced integration could significantly

lower the computational effort needed for cross-section analysis, especially for larger problems. For

some cases reduced integration is even recommended, as the loss of accuracy is counteracted by a

closer approximation to the real world.

Considering symmetry - The workload of the program could be significantly lowered by taking

symmetry into consideration. By applying different boundary conditions for the different symme-

try cases, the number of nodes and elements to consider would be significantly reduced, which

again would lower the computational effort needed. Although the global stiffness matrix needs to

be recomputed for every load case, applying symmetry could potentially save a lot of time for large

meshes.

Use of smart pointers - In its current state CCSC maintains vectors with pointers. Because C++

lacks garbage collection, having a lot of unhandled pointers could cause substantial memory leaks

in the program. This is especially true when analyzing well refined meshes, or if the program is

continuously running and not just executing the calculations once (as is the case in its current state).
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A better approach to avoiding these memory leaks would be to let the objects handle their own

lifespan. There are several ways to do this, the easiest would probably be to make use of smart

pointers 21.

Eigen - Although the running times of CCSC are, for the most part, more than adequate, there is still

room to make optimizations in the code. According to Eigen’s documentation, all small matrices (a

matrix with less than roughly 32 values) should have fixed sizes wherever possible 22. This will im-

prove the performance of matrix operations greatly, as Eigen no longer has to worry about dynamic

memory allocation and loop unrolling.
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Appendix A

Additional Theory

A.1 Bending stiffness

The bending stiffnesses are defined as

E Ix =
∫

A
E y2 d A (A.1a)

E Iy =
∫

A
E x2 d A (A.1b)

E Ix y =
∫

A
E x y d A (A.1c)

The element has a different center of area than the cross-section, and the Parallel axis theorem ad-

just for this. The new bending stiffness is adjusted with the stiffness multiplied with the distance d

between the axes.

E I e
x =

∫
Ae

y2Ee d Ae +b2Ee Ae (A.2a)

E I e
y =

∫
Ae

x2Ee d Ae +a2Ee Ae (A.2b)
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E I e
x y =

∫
Ae

x yEe d Ae +abEe Ae (A.2c)

For the cross-sections the total bending stiffness is simply the sum of the elementary bending stiff-

ness. With n elements this becomes

E Ix =
n∑

i=1
E Ixi (A.3a)

E Iy =
n∑

i=1
E Iyi (A.3b)

E Ix y =
n∑

i=1
E Ixi yi (A.3c)

A.2 Second moment of area

The second moments of area with respect to x and y is given in Eq. (A.4), together with the product

moment of area. They are defined as the bending stiffness divided by the Young’s modulus of the

base material (Eb).

Ix = E Ix

Eb
(A.4a)

Iy =
E Iy

Eb
(A.4b)

Ix y =
E Ix y

Eb
(A.4c)

The maximum second moment of area is given by

Imax = Ix + Iy

2
+

√√√√(
Ix − Iy

Ix y

)2

+ I 2
x y (A.5)

and the angle between the principal and global axis is given by

β= t an−1
(

Ix − Imax

Ix y

)
(A.6)
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A.3 Shape functions

For all four element types implemented in our program it is a necessity to establish the shape func-

tions. They are most easily established from the simple construction of "0-lines". From this method

any shape function can be expressed as

Ni = ci L1L2 · · · Ln (A.7)

L j = 0 and j = 1,2, · · · ,n (A.8)

L j is then the equation of a straight line, that has a expression of a linear function dependent on the

natural coordinates. ci is a constant that assures unity at node i, i.e. Ni = 1.

The shape function Ni are then established by following three steps:

• choose the lowest number of the equations L j needed to cover all nodes, except for node i,

forcing the shape function to be zero at these nodes.

• coefficient ci must be determined such that Ni = 1 at node i

• make sure that for every edge adjacent to node i, the number of nodes along the edge is of size

one larger than the polynomial order of the shape function covering the edge. This assures

continuity between two elements sharing this edge.

This method is used for establishing the shape functions for the four element types.
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Appendix B

Additional Results

B.1 Massive results

B.1.1 Convergence

Table B.1: Convergence analysis for von Mises stress using triangular elements (results in MPa)

Number of elements 2 8 32 128 512 2048
Stress (CCSC T3) 14.16 14.17 13.47 12.75 12.36 12.19
Stress (CCSC T6) 14.23 12.76 12.28 12.15 12.11 12.10
Stress(CrossX T6) 14.11 12.78 12.28 12.15 12.11 12.10

Table B.2: Convergence analysis for von Mises stress using quadrilateral elements (results in MPa)

Number of elements 4 16 64 256 1024
Stress (CCSC Q4) 14.16 13.33 12.68 12.33 12.18
Stress (CCSC Q9) 12.40 12.17 12.12 12.10 12.10
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B.2 Optimization
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Figure B.1: Improvements from storing and reusing N, B, and Jacobi matrices

B.3 Thin-wall results

Figure B.2: Axial stress (σz ) distribution due to shear load Mx
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Figure B.3: Axial stress (σz ) distribution due to bimoment B

Figure B.4: Shear stress (τ) distribution due to shear load Vx

Figure B.5: Shear stress (τ) distribution due to Twr p
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Table B.3: Comparing extreme values outputted by CCSC and CrossX

Airfoil CCSC CrossX
Parameters Min Max Min Max

σz due to shear load Mx ·10−2[N /mm2] 9.546 -9.419 9.546 -9.419
σz due to bimoment B ·10−1[N /mm2] 7.759 -8.458 7.759 -8.457
τ due to shear load Vx ·10−1[N /mm2] 1.081 -1.699 1.709 -1.121

τ due to Twr p ·10−1[N /mm2] 3.200 -2.291 3.158 -2.319

Figure B.6: Shear stress (τ) distribution due to Vx (into-plane). Arrow indicates positive direction for
line segment. If negative numerical value, flow is in the opposite direction. With this in mind we see
an example of incorrect shear flow to the left (shear flow meets at attacking point) and an example
of correct shear flow to the right (distributes away from attacking point)

121



Figure B.7: Output file (.txt) for massive analysis of Q9Refined.msh. In addition to base material and
applied forces, bending stiffnesses, torsion constant, shear center, and shear deformation factors
are outputted



Figure B.8: Output file (.txt) for thin-wall analysis of airfoil.msh. In addition to base material and
applied forves, bending stiffnesses, torsion and warping constant, shear center, and shear deforma-
tion factors are outputted



Appendix C

File formats

C.1 Massive .msh file format

$MeshFormat

version-number file-type data-size

$EndMeshFormat

$Nodes

number-of-nodes

node-number x-coord y-coord z-coord

...

$EndNodes

$Elements

number-of-elements

elm-number elm-type number-of-tags <tag> node-number-list

...

$EndElements
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C.2 Thin-wall .msh file format

For regular two-node line elements the format is as follows:

$MeshFormat

version-number file-type data-size

$EndMeshFormat

$Nodes

number-of-nodes

node-number x-coord y-coord z-coord

...

$EndNodes

$Elements

number-of-elements

elm-number elm-type number-of-tags <tag> node-number-list

...

$EndElements

In the case of defining a material specific two-node line element, the element record changes to the

following. Both element types may be used interchangeably, as long as the element type matches

the number of line entries.

elm-number elm-type number-of-tags <tag> node-number-list elm-E elm-nu element-

thickness
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C.3 .vtk file format

DATASET POLYDATA

POINTS n dataType

p0x p0y p0z

p1x p1y p1z

...

p(n-1)x p(n-1)y p(n-1)z

VERTICES n size

numPoints 0, i0, j0, k0, ...

numPoints 1, i1, j1, k1, ...

...

numPoints n-1, in-1, jn-1, kn-1, ...

LINES n size

numPoints 0, i0, j0, k0, ...

numPoints 1, i1, j1, k1, ...

...

numPoints n-1, in-1, jn-1, kn-1, ...

POLYGONS n size

numPoints 0, i0, j0, k0, ...

numPoints 1, i1, j1, k1, ...

...

numPoints n-1, in-1, jn-1, kn-1, ...

TRIANGLE_STRIPS n size

numPoints 0, i0, j0, k0, ...

numPoints 1, i1, j1, k1, ...

...

numPoints n-1, in-1, jn-1, kn-1, ...
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C.4 Drawing of polygons

Figure C.1: Illustrates how polygons are made up using nodes, for linear stress distributions

Figure C.2: Illustrates how polygons are made up using nodes, for quadratic stress distributions

127



C.5 .stl format

Outputting results in the ".stl" file format simply involves outputting results element wise. This is

obtained by going through all elements, and outputting the nodal stress values for each element.

However, we are not actually outputting the results in an .stl file format, we are still using the .vtk

file format in order to visualize results using ParaView. Hence it is important to output the nodes

element wise at the beginning of the file. This is done with a for-loop over the elements where the

nodes of each element is outputted. This way, the nodes will be matched with their respective stress

values. Algorithm 10 shows how stresses are stored to be outputted element wise, while Algorithm

11 shows how stresses are stored when outputted node wise.

Algorithm 10 Algorithm to store stress values element wise (".stl file format")

Maintain a Vector of stress values and call it stress
int numberOfCornerNodes = 0
if (triangular element) then

numberOfCornerNodes = 3
else if (quadrilateral element) then

numberOfCornerNodes = 4
end if
for (each element e) do

for (each node n) do
stress(numberOfCornerNodes*e + n, 0) = stressValue

end for
end for

Algorithm 11 Algorithm to store stress values node wise (regular .vtk file format)

Maintain a Vector of stress values and call it stress
for (each node n) do

stress(n, 0) = stressValue
end for
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Appendix D

Data Files

D.1 Scripts

The following two python scripts have been written for use in CCSC. They are both found under the

Script folder.

1. Display Arrows - Used for thin-wall analysis to visualize the direction of every line segment.

This is useful when interpreting results. Wherever numerical values are negative, the shear

flow is in the opposite direction of what is indicated (i.e. positive element direction). Change

color to "Solid Coloring - black" for best practice.

2. DisplayCoordinateSystem - Used for massive analysis to visualize original axis (indicated by

arrows) and shear center (indicated by square). If scaled improperly, use "Scale Factor" man-

ually to match size of cross-sections (set by default to 0.0005).
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D.2 Mesh files

Table D.1: Mesh files used for convergence and running time analysis of massive cross-sections.
Meshes listed are found under ExampleMesh/Massive/Convergence folder. Cross-section is a 100×
100 mm2 square

Filename # of nodes # of elements Filename # of nodes # of elements
T3Small 4 2 T6Small 9 2
T3Medium 9 8 T6Medium 25 8
T3Large 25 32 T6Large 81 32
T3XLarge 81 128 T6XLarge 289 128
T3Huge 289 512 T6Huge 1089 512
T3XHuge 1089 2048 T6XHuge 4225 2048
T3XXHuge 4225 8192 T6XXHuge 16641 8192

Filename # of nodes # of elements Filename # of nodes # of elements
Q4Small 9 4 Q9Small 25 4
Q4Medium 25 16 Q9Medium 81 16
Q4Large 81 64 Q9Large 289 64
Q4XLarge 289 256 Q9XLarge 1089 256
Q4Huge 1089 1024 Q9Huge 4225 1024
Q4XHuge 4225 4096 Q9XHuge 16641 4096

Table D.2: Mesh files used for comparison of linear and quadratic elements. Meshes listed are found
under ExampleMesh/Massive/Rectangle folder. Cross-section is a 200×100 mm2 rectangle

Filename # of nodes # of elements Filename # of nodes # of elements
T3Coarse 153 256 T6Coarse 153 64
T3Refined 2145 4096 T6Refined 2145 1024

Filename # of nodes # of elements Filename # of nodes # of elements
Q4Coarse 153 128 Q9Coarse 153 32
Q4Coarse 2145 2048 Q9Refined 2145 512
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Table D.3: Additional massive meshes used for analysis. Meshes listed are found under Exam-
pleMesh/Massive folder

Filename # of nodes # of elements
HalfCircleMixed 689 256

HalfCircleTriangular 1138 544
Hole 1104 512
Hook 697 320

IPE300 749 302
RHS 303 390
USP 4769 2304

Table D.4: Mesh files used for thin-wall analysis. Meshes listed are found under ExampleMesh/Thin-
wall

Filename # of line segments
LBeam 2

Rectangle 4
IPE300 5

TwoRectangles 7
ComplexCrossSection 14

RHS 20
Airfoil 26
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Appendix E

How to run CCSC

Run the Windows installer file CCSC.msi provided alongside this thesis. Once the installation is

complete run the command line as an administrator, and navigate to the location of the installed

files. Inside this folder the executable Solver.exe can be run as follows

Solver −f nameOfFile

All additional mesh files have to be placed inside the ExampleMesh folder. If the file is located in

additional sub-folders below ExampleMesh, the entire path to the file needs to be given as the argu-

ment

Solver −f subFolder1 / subFolder2 /nameOfFile

For an entire list of commands the help command can be run

Solver −help

The results are written to the Results folder, if not ensure that the command line is running as an

administrator. It should be noted that running CCSC requires the programming environment of

Visual Studio to be installed on the computer.
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Appendix F

Additional Information

F.1 Materials

Table F.1: Materials used in analysis

Young’s modulus [MPa] Poisson’s ratio Shear Modulus [MPa]
Steel 210 000 0.3 80769.2

Aluminium 2024-T323 73 100 0.3 28115.4
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F.2 Original class diagram

Figure F.1: UML class diagram showing the relationship between classes at the end of Strømstad’s
thesis
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