

Mekanisk utforming og konstruksjon av batterikassen til Revolve NTNUs 2016 Formula SAE-bil

Kjetil Bru Loland

Produktutvikling og produksjon Innlevert: juni 2016 Hovedveileder: Nils Petter Vedvik, IPM

Norges teknisk-naturvitenskapelige universitet Institutt for produktutvikling og materialer

MASTERKONTRAKT

- uttak av masteroppgave

1. Studentens personalia

Etternavn, fornavn	Fødselsdato
Loland, Kjetil Bru	23. feb 1990
E-post	Telefon
Iolandkb@gmail.com	91562271

2. Studieopplysninger

Fakultet Fakultet for ingeniørvitenskap og teknologi		
Institutt Institutt for produktutvikling og materialer		
Studieprogram Produktutvikling og produksjon	Studieretning Produktutvikling, beregning og bearbeiding	

3. Masteroppgave

Oppstartsdato 15. jan 2016	Innleveringsfrist 10. jun 2016
Oppgavens (foreløpige) tittel Mekanisk utforming og konstruksjon av	batterikassen til Revolve NTNUs 2016 Formula SAE-bil
One was set a lock/Dura bills with a shuth set lock	

Oppgavetekst/Problembeskrivelse

Revolve NTNU er en uavhengig studentorganisasjon ved Norges teknisk-naturvitenskapelige universitet (NTNU). Teamet består av 50 medlemmer som jobber frivillig parallelt med fulltidsingeniørstudier. Medlemmene er fra over 10 ingeniørfelt samt alle årstrinn. Å utvikle og bygge en racerbil fra bunnen av i løpet av ett år er en utfordrende oppgave som krever en rekke ingeniørtekniske områder, ekstraordinært engasjement og hardt opptjente ressurser. Hvert år tar et nytt team av studenter på seg det komplekse og omfattende prosjektet for å utvikle seg fra studenter til fullt kapable ingeniører.

Batteriet er den tyngste og mest risikoutsatte komponenten av en elektrisk racerbil, og må derfor være godt beskyttet. Batterikassen skal være i samsvar med relevante og gjeldene regler for strukturelle krav og brannsikkerhet, i tillegg til å ha en så lav vekt som mulig. For å oppnå dette skal det ses på alternative materialer til stål og aluminium.

Oppgaven skal ha fokus på simulering av testpanel, støpning av testpanel, testing av testpanel, og sammenligning av resultatene mellom simulering og test.

Hovedveileder ved institutt Førsteamanuensis Nils Petter Vedvik	Medveileder(e) ved institutt
Merknader 1 uke ekstra p.g.a påske.	

4. Underskrift

2

Student: Jeg erklærer herved at jeg har satt meg inn i gjeldende bestemmelser for mastergradsstudiet og at jeg oppfyller kravene for adgang til å påbegynne oppgaven, herunder eventuelle praksiskrav.

Partene er gjort kjent med avtalens vilkår, samt kapitlene i studiehåndboken om generelle regler og aktuell studieplan for masterstudiet.

Troncheim 15/1 - 16Sted og dato

Betil Bru Loland

Student

Originalen lagres i NTNUs elektroniske arkiv. Kopi av avtalen sendes til instituttet og studenten.

Forord

Denne masteroppgaven tar for seg utviklingen av det mekaniske aspektet ved batteripakken til Revolve NTNUs 2016-racerbil. Oppgaven har blitt skrevet ved Institutt for Produktutvikling og Materialer i 10. semester 2016. Oppgaven bygger videre på prosjektoppgaven «Karbonfiberkompositt batterikasse for Revolve NTNUs 2016 Formula SAE-bil» skrevet i 9. semester 2015. Arbeidet med oppgaven er gjort i samarbeid med og gjennom den frivillige studentorganisasjonen Revolve NTNU gjennom 9. og 10. semester 2015/2016.

Oppgaven tar høyde for at leseren har grunnleggende innsikt om komposittmaterialer.

Erkjennelser

Jeg vil takke min veileder Nils Petter Vedvik for støtten og for å gi meg muligheten til å jobbe med dette prosjektet i masteroppgaven min. Jeg vil også rette en takk til Revolve NTNU med Roy Andreas Iversen og Eirik Johannes Larsen i spissen.

Personlig vil jeg takke min familie for all støtte opp igjennom årene og i tida som student. Spesielt vil jeg takke min forlovede Annebjørg for støtten, og for all tiden jeg har brukt på kontoret. Denne masteroppgaven dedikerer jeg til vår nyfødte sønn Edvin.

Kjetil Bru Loland, 24. juni 2016

Sammendrag

Masteroppgaven tar for seg utviklingen av batterikassen til Revolve NTNUs firehjulsdrevne helelektriske racerbil. Oppgaven inneholder en lett gjennomgang av det mekaniske designet av batteripakken, med blant annet plasseringen av de elektriske komponentene i batteripakken, batteripakkens plassering i bilen og dens innfestning til monocoquen. Videre følger en grundig gjennomgang av materialtestene av karbonfiberkomposittpanelene som er utført i forbindelse med prosjektet, samt analyse av disse og å vise ekvivalens opp mot regelverket Revolve NTNU følger. Dette er hovedtyngden av oppgaven.

Abstract

This master thesis is about the development of the battery casing to Revolve NTNU's fourwheel drive all-electric racecar. The thesis contains an overview of the mechanical design of the battery casing including the placement of the electrical components inside the battery casing, the battery casing's placement in the car and its attachments to the monocoque. Furthermore, following a thorough study of material tests of carbon fibre composite panels that are performed in connection with the project, as well as analysis of these and to show equivalency to the regulations Revolve NTNU follows. This is the main focus of the thesis.

Symbol- og ordforklaringsliste

Forkortelser

AIRs	Accumulator Isolation Relays
BMS	Battery Management System
SES	Structural Equivalency Spreadsheet
НСРСВ	High Current Printed Circuit Board

Innholdsfortegnelse

Oppgavetekst	. I	
Forord II		
Erkjennelser	II	
Sammendrag	V	
Abstract	V	
Symbol- og ordforklaringsliste	V	
Innholdsfortegnelse	/Ι	
FigurlisteVI	Π	
Tabelliste	II	
1 Innledning	1	
1.1 Min oppgave i Revolve NTNU	1	
1.2 Formålet for oppgaven	2	
2 Om organisasjonen og konkurransen	3	
2.1 Formula Student	3	
2.2 Revolve NTNU	5	
3 Mekanisk utforming av batterikassen	8	
3.1 Om	8	
3.2 Overordnet	9	
3.3 Modul	0	
3.4 Hovedrom1	2	
3.5 Forrom og topprom1	3	
3.6 Kjøling1	3	
3.7 Innfestning av batteripakken1	4	
3.8 Innfestning av komponenter i batteripakken1	5	
4 Materialet og materialtesting 1	6	
4.1 Testmetodene	6	
4.2 Informasjon om materialet	7	
4.3 Støpeprosess	9	
4.4 Produksjonsoppsett	9	
4.5 Testene	22	
4.5.1 AP01-AP05	24	

	4	I.5.2 AP06-AP09	30
	4	I.5.3 AP10-AP11	37
	4	4.5.4 AP12-AP14	41
	4	4.5.5 AB01	45
	4	4.5.6 AB02	48
	4	4.5.7 AP15-AP16	51
	4.6	Konklusjon om produksjonsmetode og testene	53
5	Pro	oduksjon av batterikassen	55
	5.1	Om kapittelet	55
	5.2	Produksjon	55
	5.3	Konklusjon om produksjon av batteripakken	59
6	Ko	onklusjon	62
7	Ve	edlegg	63
8	Ki	ilder	64

Figurliste

Figur 1	Honda sin formula 1 bil RA271 fra 1964
Figur 2	Poengfordeling under konkurransene
Figur 3	Revolve NTNUs tidligere biler
Figur 4	Battericelle av den typen Revolve NTNU bruker
Figur 5	Plassering av batteripakken i bil
Figur 6	Innholdet i en modul
Figur 7	Eksplosjonsvisning av en modulboks
Figur 8	Sammenstilling av en modul
Figur 9	Nærbilde av modulkobling
Figur 10	Batterikassen med indre vegger sett skrått ovenfra 12
Figur 11	Innholdet i batteripakken 12
Figur 12	Nærbilde av forrom og EM
Figur 13	Nærbilde av topprom
Figur 14	Innlufthull på lokket og på langsiden13
Figur 15	Vifter i bakkant av batteripakken
Figur 16	Frontbrakettene montert på batterikassen 14
Figur 17	Frontbrakettenes hann- og hunn-del 14
Figur 18	Snitt av en lokkbrakett 15
Figur 19	Viftebraketter montert i batterikassen
Figur 20	Moduler med avstandsstykker i rødt 15
Figur 21	3-punkts bøyetest
Figur 22	Teknisk tegning av penetrasjonstest
Figur 23	Testoppsett av penetrasjonstest
Figur 24	Relativ effekt av en sandwichkonstruksjon
Figur 25	Dulp innringet i rødt 19
Figur 26	Snitt av testpanel
Figur 27	Oppsett under vakuuminfusjon
Figur 28	Ovnen testpanelene herdet i
Figur 29	Vakuumpumpen og oppsamlingsbøtten
Figur 30	Illustrasjon over hvilken lasttopp som er gjeldende fra resultatene av penetrasjonstestene 22
Figur 31	Instron® 5982 med penetrasjonstest-oppsett av AP12
Figur 32	Instron® Bluehill med resultater av AP14

Figur 33	Støpningsoppsett av AP01-AP05	24
Figur 34	Tørre områder på underskallet av AP01-AP05	25
Figur 35	AP03, tørt område på nedre skall	26
Figur 36	Lastgraf, AP01	26
Figur 37	Lastgraf, AP02	26
Figur 38	Lastgraf, AP03	26
Figur 39	Lastgraf, AP04	27
Figur 40	Lastgraf, AP05	27
Figur 41	Perforert kjernemateriale	30
Figur 42	Vakuuminfusjon av AP06-AP09	30
Figur 43	Støpningsoppsett av AP06-AP09	30
Figur 44	AP06-AP09, ferdig støpt, øvre skall	31
Figur 45	AP06-AP09, ferdig støpt, nedre skall	31
Figur 46	Lastgraf, AP06	32
Figur 47	Lastgraf, AP07	32
Figur 48	Lastgraf, AP08	32
Figur 49	Lastgraf, AP09	32
Figur 50	AP06, nærbilde brudd	34
Figur 51	AP09, nærbilde brudd	34
Figur 52	Snitt av AP10 og AP11 sin lay-up	37
Figur 53	Testpanelene AP10-AP11 under vakuum	37
Figur 54	Delaminasjon av AP10	38
Figur 55	Lastgraf, AP10	38
Figur 56	Lastgraf, AP11	38
Figur 57	AP10, øvre skall	38
Figur 58	AP11, delaminasjon og brudd	39
Figur 59	AP11, delaminasjon av nedre skall	39
Figur 60	AP11, kjernematerialestøv på nedre skall	39
Figur 61	Vakuumbagging av AP12-AP14	41
Figur 62	Lastgraf, AP12	42
Figur 63	Lastgraf, AP13	42
Figur 64	Lastgraf, AP14	42
Figur 65	AP12, nedsøkk i området rundt dorens kontaktflate	43
Figur 66	AP13, nedsøkk i området rundt dorens kontaktflate	43

Figur 67	AP14, øvre skall	. 43
Figur 68	AB01 i ovn under vakuum	. 45
Figur 69	AB01 innspent til test	. 46
Figur 70	AB01 ved 25,4 mm forlengelse av lastapplikatoren	. 46
Figur 71	Lastgraf, AB01 ved 25,4 mm forlengelse av lastapplikator	. 46
Figur 72	AB01, brudd langsmed lastapplikatoren	. 47
Figur 73	Lastgraf, AB01 ved brudd	. 47
Figur 74	Produksjon av AB02 og AP15-AP16	. 49
Figur 75	Lastgraf, AB02	. 49
Figur 76	AB02 innspent ved brudd	. 50
Figur 77	AB02, nærbilde av brudd ved lastapplikator	. 50
Figur 78	AB02, nærbilde av brudd mellom lastapplikator og høyre opplagring	. 50
Figur 79	Lastgraf, AP15_1	. 51
Figur 80	Lastgraf, AP15_2	. 51
Figur 81	Lastgraf, AP16	. 51
Figur 82	AP16, innspent til test	. 52
Figur 83	Væting av fiberen i støpeformen	. 54
Figur 84	Batterikassens støpeform	. 55
Figur 85	Datron® M8	. 56
Figur 86	Batterikassens støpeform klar for støp	. 56
Figur 87	Ferdig herdet batterikasse etter å ha vært i ovnen	. 57
Figur 88	Innsiden av batterikassen	. 57
Figur 89	Utsiden av batteriboksen	. 57
Figur 90	De støpte komponentene batterikassen består av	. 58
Figur 91	Støpeform til hovedlokk og hovedromvegg	. 58
Figur 92	Støpeform til indre vegger og forromvegg	. 58
Figur 93	Støpeform til forromlokk	. 58
Figur 94	Støpeform til topprom	. 58
Figur 95	Ferdig montert batteripakke	. 59
Figur 96	Batteripakken sett ovenfra uten lokk	. 59
Figur 97	Batterikassen og dens moduler	. 60

Tabelliste

Tabell 1	Lay-up av AP01-AP05	24
Tabell 2	AP01-AP05: Forhold mellom høyeste lasttopp og antall lag fiber	27
Tabell 3	Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP01- AP05	28
Tabell 4	Anslag av antall lag fiber for å vise ekvivalens ved bruk av lasttoppen til AP01	29
Tabell 5	AP01-AP05: Vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	29
Tabell 6	Lay-up av AP06-AP09	30
Tabell 7	AP06-AP09, avstand mellom lasttoppene	32
Tabell 8	AP06-AP09, total masse epoksy	33
Tabell 9	AP06-AP09, Vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	33
Tabell 10	AP06-AP09: Forhold mellom høyeste lasttopp og antall lag fiber	34
Tabell 11	Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP06- AP09	35
Tabell 12	AP09, 1. og 2. lasttopp	35
Tabell 13	Lay-up av AP10-AP11	37
Tabell 14	AP10-AP11, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	40
Tabell 15	AP10-AP11: Forhold mellom høyeste lasttopp og antall lag fiber	40
Tabell 16	Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP10- AP11	40
Tabell 17	Lay-up av AP12-AP14	41
Tabell 18	AP12-AP14, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	42
Tabell 19	AP12-AP14, forhold mellom 1. lasttopp og antall lag fiber	44
Tabell 20	Resultater utregnet i SES med verdier fra hhv. AP12, AP13 og AP14	44
Tabell 21	Lay-up av AB01	45
Tabell 22	AB01, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	45
Tabell 23	Resultater utregnet i SES med verdier fra AB01 ved brudd	47
Tabell 24	AB01, forhold mellom y _{max} og antall lag fiber	48
Tabell 25	Anslåtte verdier for sikkerhetsfaktor for 3 pkt. bøyeprøve	48
Tabell 26	Lay-up av AB02	49
Tabell 27	Resultater utregnet i SES med verdier fra AB02 ved brudd	50

Tabell 28	AB02, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	50
Tabell 29	Lay-up av AP15-AP16	51
Tabell 30	AP15-AP16, Vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)	51
Tabell 31	Resultater utregnet i SES med verdier fra hhv. AP15_1, AP15_2 og AP16	52
Tabell 32	Gjennomsnittlige verdier av ett lag støpt fiber basert på AP12-AP16 og AB01-AB02	54
Tabell 33	Lay-up av batterikassen	57

1 Innledning

1.1 Min oppgave i Revolve NTNU

Min oppgave i Revolve NTNU har vært å utvikle, konstruere og bygge batteripakken til årets helelektriske racerbil. Dette innebærer å:

- plassere og gruppere battericellene på en god og hensiktsmessig måte
- plassere de elektriske komponentene og kretskortene som hører med battericellene
- samkjøre batteripakkens fysiske størrelse i samarbeid med CADansvarlig for å komme frem til den beste løsningen mot monocoquen og bilens øvrige komponenter
- utvikle en monteringsløsning av batteripakken i bilen, i tillegg til en metode for å ta batteripakken inn og ut
- komme frem til materialalternativer til stål og aluminium. Dette gjøres ved å utføre materialtester for å komme frem til den materialoppbygningen av komposittmaterialer som er lettest mulig og samtidig i samsvar med gjeldende regelverk
- bygge batterikassen og produsere dens komponenter

Det har vært utallige designiterasjoner for å komme frem til det ferdige resultatet jeg presenterer i denne oppgaven.

I Revolve NTNU får man vært med på hele produksjonslinjen utviklingsog til racerbilen og dens komponenter fra start til slutt. Man starter med blanke ark, og itererer og jobber seg frem til det som tilslutt blir det endelige designet. Det å være med i et slikt prosjekt gjør at man forstår arbeidsmengden og dedikasjonen som ligger bak det å gjennomføre utviklingen og produksjonen av en racerbilprototype. Når vi i tillegg skal konkurrere med vår egenbygde racerbil blir sirkelen lukket, og organisasjonen starter arbeidet mot neste års bil basert på erfaringene man har blitt rikere på i løpet av året som har gått.

1.2 Formålet for oppgaven

Som organisasjon ønsker Revolve NTNU å fortsette å utvide grensene for hva som er mulig for en studentorganisasjon å få til, og det har da blitt avgjort at for 2016-sesongen skal vi utvikle Norges første egenbyggede firehjulsdrevne elektriske racerbil. Dette er et stort steg opp fra de fire foregående bilene til organisasjonen hva angår teknologisk utvikling og muligheter. Hvert hjul vil bli drevet av sin separate motor, noe som muliggjør asynkron momentoverføring til hvert hjul. Dette åpner opp for muligheten til å ha aktiv regulering av momentet til hvert av hjulene, som potensielt optimaliserer dekkgrepet og i akselerasjonen alle situasjoner. Designmessig av monocoquen står man da friere til å gjøre endringer i forhold til hva man kunne på 2015-bilen Vilje. På de foregående bilene var motoren plassert innenbords i monocoquen, noe som satte sine begrensninger hva angikk designfrihet i området rundt motoren. 2016-bilen sine fire motorer vil være plassert i hvert av hjulenes nav, og vil da frigjøre stor plass i monocoquen. Vi har da muligheten til å gjøre monocoquen kortere, i tillegg til å revurdere hvor batteriet er plassert og hvordan det tas ut av bilen. Denne oppgaven vil ta for seg den mekaniske utformingen av batteripakken, og bygger videre på prosjektoppgaven «Karbonfiberkompositt

batterikasse for Revolve NTNUs 2016 Formula SAE-bil».

Revolve NTNU bruker i utstrakt grad høyteknologiske materialer, noe som også gjelder for batteripakken. Hovedmomentet i mitt arbeid i Revolve NTNU og i denne masteroppgaven omhandler materialprøving og analyse av karbonfibersandwichmaterialer. Materialprøvingen av komposittmaterialene gjøres for å komme frem til de letteste panelene som kreves for å vise ekvivalens til stålplatene angitt i FSAE-regelverket.

Målet med oppgaven er med andre ord å komme frem til den letteste batterikassen det er mulig å få til ved hjelp av materialtesting.

I oppgaveteksten står det beskrevet at oppgaven blant annet skal ha fokus på datasimulering av testpanel og sammenligning av resultatene mellom simulering og test. Jeg har endret fokus i løpet av oppgaven, og har i samråd med veileder valgt å flytte oppgavens fokus vekk fra simulering og heller rette det mot kompetanseoverføring til års neste ansvarsperson for batterikassen ved å blant annet lage test- og produksjonsoppskrifter.

2 Om organisasjonen og konkurransen

2.1 Formula Student

Formula SAE er verdens største ingeniørkonkurranse for studenter organisert av SAE International, der hvert lag skal utvikle og bygge en énseters racerbil med åpen cockpit og åpne hjul av formula type. Bilen, kunnskapen og erfaringen fra prosjektet brukes deretter i konkurransen mot andre studenter. Lag fra høgskoler og universiteter verden rundt er med på disse konkurransene, og det arrangeres konkurranser i blant annet England, Tyskland, Østerrike, USA etc.

Konkurransen inneholder følgende statiske og dynamiske delkonkurranser:

Bedriftspresentasjon

Denne delen av konkurransen er strukturert som en presentasjon for potensielle investorer hvor man har 10 minutter til å overbevise dem om å investere i bedriftsidéen din, der kriteriet er at man skal produsere 1000 enheter av bilen hvert år.

Kostnad

Hver minste del av bilen må være dokumentert i et kostnadsdokument som spesifiserer metode og kostnad av produksjon og montering av bilens deler. Delkonkurransen er en kontroll av riktigheten til denne kostnadsrapporten med oppfølgingsspørsmål med fokus på kunnskap produksjon om og bærekraftighet.

Figur 1 Honda sin formula 1 bil RA271 fra 1964

Design

Dette er en 40 minutters lang presentasjon hvor man forklarer teorien og tankene bak utformingen og utviklingen av bilen for et dommerpanel bestående av ingeniører i verdensklasse. Å vinne denne delkonkurransen er høyt aktet, og er nesten like prestisjefylt som å vinne hele konkurransen sammenlagt, da det viser at laget er overlegne på det ingeniørmessige planet.

Akselerasjon

Et 75 meter langt dragrace hvor man viser bilens akselerasjonsegenskaper.

«Skidpad»

Bilen skal i denne delen av konkurransen kjøre en full sirkel mot høyre og deretter direkte over i en full sirkel mot venstre. Gjennomsnittstiden av de to sirklene blir brukt til å beskrive bilens stabilitet gjennom svinger.

«Autocross»

Et énrunders løp på en bane med mange krappe svinger som er den mest teknisk utfordrende dynamiske delkonkurransen. Det er her sjåførens ferdigheter blir satt på prøve, og som har stor innvirkning på resultatet. Dette er også den mest prestisjefylte dynamiske konkurransen da man lett kan sammenligne hver bil sin maksimale ytelse og tempo gjennom løypa.

«Endurance»

Et 22 km langt løp på 20 runder med et pit stop og sjåførbytte etter 11 km. Denne delen er ment for å teste bilens pålitelighet, energibruk og lagets løpsstrategi. Dette er delkonkurransen mange lag frykter da alle bilene som deltar i konkurransen er høyt upålitelige prototyper, og som et resultat er det få lag som klarer å fullføre. I tillegg er det i denne delkonkurransen man kan sanke flest poeng, noe som gjør det umulig å få en høy sammenlagt plassering uten å fullføre løpet.

Effektivitet

Man får poeng i effektivitet basert på energien bilen har brukt under de 22 km gjennom «endurance». Poenggivningen er basert på en kombinasjon av løpstempoet og energiforbruket. I tillegg er det en omfattende teknisk kontroll av hver bil for å forsikre seg om at alt er i henhold til konkurransens regler. Regelverket består hovedsakelig av forskrifter som sikrer sjåføren ved et eventuelt krasj, og er det eneste studentene må følge under utformingen og utviklingen av racerbilen deres. Resultatet er en mengde forskjellige og kreative designløsninger i jakten på høyere ytelse.

Under konkurransene er det mulig å få en total poengsum på 1000 poeng. Poengene er spredd ujevnt utover de åtte delkonkurransene, som man kan se av Figur 2. Den ujevne fordelingen viser viktigheten av hver delkonkurranse, og indikerer at bilens viktigste parametere er kombinasjonen av ytelse og pålitelighet. Ingen lag har hittil vært stand til å få en perfekt 1000-poenger.

Figur 2 Poengfordeling under konkurransene

2.2 Revolve NTNU

Revolve NTNU er en uavhengig studentorganisasjon ved Norges teknisknaturvitenskapelige universitet. Organisasjonen ble etablert i 2010, og har siden 2012 produsert en ny formula student racerbil hvert år. Revolve NTNU ble startet av ingeniørstudenter som ville ha en relevant praktisk tilnærming til studiene, og svaret ble da å utvikle og bygge sin egen høyteknologiske racerbil. Målet med organisasjonen er å sette teori ut i praksis og å være med på å utdanne bedre ingeniører for fremtiden.

KA Borealis R (2012)

Den første bilen utviklet av Revolve NTNU, KA Borealis R, tok en sammenlagt 19. plass og ble tildelt prisen for beste nykommer på Silverstone i England (FSUK) i 2012. Bilen har rørramme, karbonfiberkarosseri og en Suzuki GSX-R 600-motor.

Figur 3 Revolve NTNUs tidligere biler

KA Aquilo R (2013)

2013-bilen beholdt det samme grunnleggende designet til KA Borealis R, men introduserte en rekke nye systemer, løsninger og forbedringer. Innovasjonene på bilen inkluderer en full aerodynamisk pakke i form av vinger foran og bak for å øke marktrykket, adaptive dempere, kontinuerlig variabelt luftinntak og et CANbus elektronisk system. KA Aquilo R fikk en 11. plass på Silverstone (FSUK) denne sesongen.

KOG Arctos R (2014)

For 2014-sesongen utviklet, produserte og konkurrerte Revolve NTNU med Norges første egenbyggede racerbil, og tok en sterk 8. plass under konkurransen på Silverstone. Bilen har en helelektrisk drivlinje og karbonfibersandwich monocoque, noe som resulterte i en vektnedgang på 65 kg i forhold til sin forgjenger KA Aquilo R. Den aero-dynamiske pakken generer 140 kg mark-trykk ved 80 km/t. Den egenutviklede batteripakken leverer 7,6 kWh energi, og veier kun 46 kg. KOG Arctos R var et tydelig steg mot en mer avansert, raffinert og lettere bil som var kapabel til å levere imponerende kjøreegenskaper. 4. plassen i delkonkurransen «autocross» på Hockenheimring i Tyskland (FSG) vitner om bilens ytelse.

Vilje (2015)

Vilje er Revolve NTNUs andre helelektriske racerbil, og er en redesign av forrige bil selv om den bygger på mange av de samme prinsippene og type løsninger. Laget klarte å senke bilens vekt med ytterligere 10 kg, noe som gjorde bilen til en av konkurransens letteste. Vilje sitt forbedrede design tok en 3. plass under delkonkurransen «design» på Silverstone og en imponerende 4. plass sammenlagt på Red Bull Ring i Østerrike (FSA).

Et nytt lag rekrutteres hvert år med prosjektoppstart i august. Åtte måneders intenst arbeid med utvikling og produksjon resulterer i en splitter ny bil i mai året etter. Laget består av omkring 50 medlemmer fra over 10 forskjellige ingeniørretninger som spenner fra produktutvikling og produksjon, til kybernetikk, til industriell økonomi og ledelse. Prosjektet har betydelige likhetstrekk med et mellomstort høyteknologisk selskap, samt en toppidrettsutøvers mentalitet. Revolve NTNU sin uredde «bare gjør det»tenkemåte har gjort at organisasjonen har gått fra å være en nykomling til å bli et av verdens beste lag på bare fire sesonger. Revolve NTNU tilbyr studentene et virkelig inspirerende og innovativt miljø hvor de er i stand til å utvikle sine praktiske og teoretiske egenskaper.

3 Mekanisk utforming av batterikassen

3.1 Om

Batteriet er den tyngste og farligste komponenten i en elektrisk racerbil, og må være godt beskyttet. Det kreves at batterikassen følger regelverket satt av Formula SAE International for å sikre at batterikassen lever opp til den sikkerheten en slik komponent krever. Dersom kravene ikke er innfridd får man ikke lov til å konkurrere under sommerens FSAEkonkurranser. For å vise at batterikassen opprettholder den strukturelle integriteten som kreves, skal hvert lag fylle ut regnearket **«**Structural Equivalency Spreadsheet» som omhandler hele bilen og komponenters konstruksjon dens og materialbruk.

Batteriet til bilen vil ha en maksimal spenning på 600 V og en kapasitet på 7,5 kWh. Hensikten med batterikassen er å innkapsling fungere som en av battericellene og de øvrige elektriske komponentene og beskytte dem i et eventuelt krasj, samt beskytte sjåføren fra farene en stor og tung batteripakke kan hovedmomenter utgjøre. Det er to batteripakken skal utføre; det ene er at selve batterikassen tåler akselerasjoner og retardasjoner lik 40g i positiv og negativ Xog Y- retning (fram/bak, høyre/venstre), samt 20g i positiv og negativ Z-retning

(opp/ned). Det andre er at materialet batteripakken er bygd av, skal være flammehemmende i henhold til standardtest UL94 V-0, FAR25 eller liknende. UL94 V-0 sier blant annet at materialet skal slukke av seg selv etter 10 sekunder. Dette er to meget viktige krav som må tilfredsstilles for å beskytte sjåføren.

Regelverket er strengt hva angår materialspesifikasjoner, hvor poenget er å lage en konstruksjon som ikke vil feile strukturelt ved en krasj eller ved at battericellene skulle antenne. Så mye energi samlet i form av battericeller utgjør en stor fare dersom de ikke behandles rett, og kan føre til uventede situasjoner.

Figur 4 Battericelle av den typen Revolve NTNU bruker

3.2 Overordnet

Regel EV3.4.1 sier at alle batteripakker må ligge innenfor «the Majore Structure of the Frame». Denne definisjonen står beskrevet i regel T3.3, og beskriver hvilke deler av bilens struktur som regnes som bilens ramme. EV3.4.4 sier at alle batteripakker må være beskyttet mot side- og bakkollisjon av en struktur ekvivalent og i samsvar med regel T3.4. EV3.4.4 sier i tillegg at batterikassen ikke kan være en del av bilens ramme eller monocoque. Dette vil da si at batterikassen må være en egen enhet som kan tas ut av bilen som en lukket Sammen bedyrer disse konstruksjon. reglene at batteripakken må ha en omkringliggende beskyttelsesstruktur som sørger for at den ikke skal være utsatt ved en eventuell kollisjon, med andre ord bilens ramme.

Batteripakken er den største enkeltmassen i bilen sett bort ifra sjåføren. Det er derfor svært viktig å plassere denne store massen på den mest gunstige plassen i bilen i forhold til hvor det totale massesenteret er plassert. Bilens totale massesenter har stor innvirkning på hjulopphenget og bilens kjøreegenskaper.

Batteripakken er plassert bak sjåføren, noe som gir en vektbalanse på omkring 53 % over bakhjulene. De to foregående elektriske bilene Revolve NTNU har bygget har hatt bakhjulstrekk med motor, girkasse og differensial innenbords i monocoquen. Batteripakken ble derfor tatt ut gjennom cockpitåpningen tidligere. På grunn av årets motorplassering kan batteripakken bli tatt ut bakfra, noe som er svært gunstig både tidsmessig og ergonomisk.

Figur 5 Plassering av batteripakken i bil

3.3 Modul

Batteriet består av 288 battericeller delt opp i 12 moduler inneholdende 24 battericeller hver. Hver modul er igjen delt opp i to halvmoduler med 12 battericeller hver. Én av halvmodulene har både en HCPCB («High Current Printed Circuit Board») og BMS-slave («Battery Monitoring System Slave»), mens den andre halvmodulen kun har HCPCB og er koblet til BMS-slaven ved en kabel da to halvmoduler fungerer som en enhet opp mot batteriovervåkningssystemet. Figur 6 viser en moduls halvmoduler, hvor BMS-slaven er på toppen av den venstre halvmodulen. BMSsystemet vi bruker er et modulært system med ett hovedkort og 12 slavekort, hvor hvert slavekort overvåker 24 battericeller. Battericellenes konfigurasjon i én halvmodul er 2 i par og 6 i serie, halvmodulene står i serie, og modulene står i serie. Modulenes innkapsling er en boks bygd av glassfibermaterialet FR4. FR4 er elektrisk isolerende og flammehemmende ifølge standard UL94-V0, og oppfyller med det kravene i reglene EV3.3.4 og EV3.4.11. FR4 er det samme materialet som brukes i kretskort innen elektronikk. Modulene er dermed elektrisk isolert fra hverandre, med unntak koblingen mellom av dem. Modulboksene består av 16 stk FR4-emner (se Figur 7) som er limt sammen med det UL94 V-0-godkjente limet Araldite® 2033.

Figur 6 Innholdet i en modul

Figur 7 Eksplosjonsvisning av en modulboks

Figur 8 Sammenstilling av en modul

Modulkoblingene som er på hver kant av halvmodulene generer en trykkraft som overføres ned i battericellepolene når en skal koble dem sammen (se Figur 4). For å koble dem sammen må man komprimere ei fjær og sette i en splint som fungerer som positiv låsing av modulkoblingen, se Figur 9. For å unngå at denne kraften går rett ned i polene til battericellene, er det seks tverrstag som er gjennomgående i Disse tverrstagene går modulboksen. mellom battericellene og HCPCBen og tar opp trykkreftene HCPCBen blir utsatt for.

Figur 9 Nærbilde av modulkobling

3.4 Hovedrom

EV3.4.3 sier at materialet batterikassen lages av må være flammehemmende ifølge teststandard UL94 V-0, FAR25 eller liknende. Dette er for å sikre mekanisk integritet dersom en brann eller veldig høye temperaturer skulle bryte ut slik at sjåføren har mulighet til å stoppe bilen og komme seg ut før en slik situasjon skulle eskalere. Batterikassens materiale er karbonfiber med sandwichkonstruksjon. Hovedrommet i batteri-pakken er delt opp i 3 seksjoner (Figur 10) inneholdende 4 moduler hver (Figur 11). Grunnen til denne oppdeling er for å forhindre at det er for mye vekt i ett rom. EV3.4.6e sier at det kun er lov til å ha maksimum 15 kg i hver seksjon. Vekten av en modul er estimert til å være 3,5 kg, noe som gjør at vi ender opp med 14 kg i hver EV3.4.6c av seksjonene. sier at skilleveggene må være minst 75 % av høyden til perimeterveggene. På hver side av modulene er det klaring for å la kjøleluft gå forbi. Battericellene utvikler varme, og batteripakkens sikkerhetssystem vil kutte strømmen dersom temperaturen inne i batteripakken overstiger 60 °C. Det er derfor essensielt at batteripakken har et godt kjølesystem slik at vi ikke må avbryte en dynamisk konkurranse på grunn av for høy temperatur i batteripakken.

Figur 10 Batterikassen med indre vegger sett skrått ovenfra

Figur 11 Innholdet i batteripakken

3.5 Forrom og topprom

De elektriske komponentene foruten modulene og deres tilhørende kretskort er plassert i egne avlukker i front av batterikassen og på toppen av batterikassens lokk. EV3.3.5 sier at AIRsene og hovedsikringen må være adskilt med en elektrisk og flammehemmende barriere godkjent ifølge UL94 V-0, FAR25 eller liknende. Disse komponentene er plassert i forrommet, og dette kravet oppfylles da materialet som skiller hovedrommet og forrommet har de etterspurte egenskapene. Topprommet inneholder kretskort som blant annet BMS-hovedkortet og kontakter som kobler batteripakken sammen med

Figur 12 Nærbilde av forrom og EM

resten av bilens nettverk. HV-kabelen fra batteri-pakken til omformeren som leverer strømmen til bilens fire motorer, går ut fra forrommet. Forrommet er smalt og plassert i den ene siden, mens EM er plassert på motsatt side i en egen boks. EV4.9.1 sier at et kalibrert EM må bli installert på konkurransen. EM brukes til å kalkulere effektivitetspoengsummen ved å måle den totale mengden energi som går ut fra batteripakken. Det er mulig å montere EM under konkurransene selv når batteripakken er montert i bilen ved at setet og brannveggen tas ut.

Figur 13 Nærbilde av topprom

3.6 Kjøling

Kjøling er essensielt for opprettholde sikkerheten til batteripakken. Som nevnt i delkapittel 3.4 vil batteriets sikkerhetssystem kutte strømmen dersom temperaturen inne i batteripakken overstiger 60 °C. For å holde temperaturen nede er to vifter plassert i bakkant av

Figur 14 Innlufthull på lokket og på langsiden

batteripakken som suger luft gjennom batteripakken og ut av monocoquen. Av Figur 15 ser man plasseringen av viftene samt hullene for luft inn. Det er tre innlufthull plassert i lokket og et innlufthull på hver langside av batterikassen (Figur 14). Viftene er gjennomgående i monocoquens bakvegg, som vil være montert direkte på batterikassen.

3.7 Innfestning av batteripakken

EV3.4.8 sier at en batteripakke som veier over 40 kg må ha minimum 10 stk M8 8.8bolter. Estimert totalvekt av batteripakken er 45 kg, og ifølge reglene må vi da feste batteripakken til monocoquen med 10 stk M8-bolter. Bakveggen til monocoquen er limt til batterikassen, og bakveggen er festet til monocoquen med seks M8-skruer. I fremkant er batteripakken festet med selvsentrerende braketter som består av en hann-del og en hunn-del. Hann-delen er montert på batterikassen mens hunn-delen er montert på gulvet inne i monocoquen, og hver av brakettene er festet med to M8bolter. Dette gir et totalt antall bolter som overfører kreftene lik 10 stk. EV3.4.9 sier at braketter som brukes for å feste batteripakken til bilen må enten være 1,6 mm tykke stålbraketter eller 4,0 mm tykke aluminiumsbraketter. Frontbrakettene er frest ut av 7075-T6-aluminium og har 4 mm godstykkelse.

Figur 15 Vifter i bakkant av batteripakken

Figur 16 Frontbrakettene montert på batterikassen

Figur 17 Frontbrakettenes hann- og hunn-del

3.8 Innfestning av komponenter i batteripakken

Brakettene holder lokket som til hovedkassen er 3D-printet i verktøystål. En mutter er limt inne i braketten, og med gjennomgående hull i lokket er det enkelt å skru det fast til batterikassen. For å være i samsvar med reglene må brakettene holde en last lik 20g av innholdet i batteripakken. Med en estimert modulvekt lik 3,5 kg, blir den totale lasten lik 8 240,4 N. Brakettenes totale limareal er 2 064 mm², limets kapasitet (Araldite® 2033) er 19,29 MPa, som da gir en sikkerhetsfaktor, LSS, lik 4,83.

Viftene er montert på viftebraketter som er limt i batterikassen, hvor viftene skrus fast med M4-skruer. De er lagd i 5056 aluminium og er vannskjært. Da det er tre innvendige rom i batterikassen og kun to vifter, må viftene være plassert over de indre skilleveggene i batterikassen slik man ser av Figur 19.

Modulene er adskilt fra hverandre med avstandsstykker. Avstandsstykkene sørger for å la kjølelufta passere samtidig som de oppfyller reglenes krav om styrke.

Ellers er lim mye brukt for å feste komponenter som f. eks. topprom og kontaktfester til batterikassen.

Figur 18 Snitt av en lokkbrakett

Figur 19 Viftebraketter montert i batterikassen

Figur 20 Moduler med avstandsstykker i rødt

4 Materialet og materialtesting

4.1 Testmetodene

Regel EV3.4.6 sier at batterikassen må være lagd stålplater eller av enten aluminiumsplater. Videre i punkt a. står det at gulvet må være lagd av enten 1,25 mm tykk stålplate eller 3,2 mm tykk aluminiumsplate, og punkt b., c. og d. sier at alle vertikale vegger samt lokk må være lagd av enten 0,9 mm tykk stålplate eller 2,3 mm tykk aluminiumsplate. Disse konstruksjonsretningslinjene er tiltenkt å generere en struktur som tåler akselerasjoner og retardasjoner lik 40g i positiv og negativ X- og Y- retning (fram/bak, høyre/venstre), samt 20g i positiv og negativ Z-retning (opp/ned). Siste delpunkt under regel EV3.4.6, j., sier at alternative materialer er lov å anvende så lenge ekvivalens vises ved bruk av regel T3.31. Regel T3.31 viser igjen videre til T3.27 regel «Monocoque General Requirements». Resultatene fra testingen av ekvivalens må deretter dokumenteres i SES (Structural Equivalency Spreadsheet). SES er et regneark hvor alt av beregninger om materialer og braketter skal fylles inn og tas med på Formula SAE-konkurransene som en del av den tekniske dokumentasjonen av bilen. For at Revolve NTNU i det hele tatt skal få lov til å konkurrere må SESen være godkjent av dommerne i god tid før konkurransene starter. Den stålkvaliteten testene må vise ekvivalens til ifølge regel T3.27, er stålkvalitet SAE/AISI 1010. Videre må det fylles inn i SESen materialtype, vekt av fiber, type resin, fiberorientering, antall lag, kjernemateriale samt lay-up av materialet. I tillegg må SESen inneholde bilder og testdata fra 3punkts bøyetest og penetrasjonstest i henhold til regel T3.30. Resultatene fra laminattestene vil deretter bli brukt som for utgangspunkt styrkeog stivhetskalkuleringene. Panelet som skal testes ved 3-punkts bøyetest skal måle 500 mm * 275 mm, og lastapplikatoren skal ha en radius på 50 mm. Panelet som skal testes ved penetrasjonstest skal måle 100 mm * 100 mm, hvor testens fastholdning skal støtte hele testpanelet unntatt et Ø32 mm hull plassert koaksialt med penetrasjonslastapplikatoren med dimensjon Ø25 mm.

Figur 21 3-punkts bøyetest

Materialet til fjorårets batterikasse var karbonfiberduken TenCate 8020-FR, en prepreg-fiber med flammeresistent epoksy. Deres lay-up besto av 14 lag fiber i vegger og lokk, og 16 lag fiber i gulvet. Under materialtestene deres viste det seg at det var penetrasjonstesten som var dimensjonerende for at materialet skulle vise ekvivalens til stålplatene. På bakgrunn av tidligere prøveresultater, samt at penetrasjonstestpanelenes fysiske størrelse muliggjør at man kan lage flere testpaneler med forskjellig lay-up under samme støpeprosess, er dette den mest gunstige materialtesten å starte med. Jeg har gått for sandwichkonstruksjon en av årets batterikassemateriale, hvor målet er å få til lettere. men fortsatt like sterk. en batterikasse.

4.2 Informasjon om materialet

Karbonfiberduken jeg har brukt heter HexForce® 43200 DA 1250, og er et produkt fra komposittprodusenten Hexcel. Det er et 2/2 twill, med en nominell vekt på 200 g/m². Retningen på vevet er 0°/90°. Fiberen brukt i dette vevet heter HTA 40 E13 3K. Dette er en kontinuerlig karbonfiber fra produsenten TohoTenax med 3 000 filamenter. Tykkelsen på karbonfiberduken er 0,20 mm.

Figur 22 Teknisk tegning av penetrasjonstest

Figur 23 Testoppsett av penetrasjonstest

I og med at reglene krever at materialet batterikassen er lagd av må være flammeresistent, må epoksysystemet også ha disse egenskapene. Epoksy med slike egenskaper er kostbare og ikke standard lagervare, og har ofte kort holdbarhet. I arbeidet mitt har jeg brukt to forskjellige epoksysystemer. Disse epoksysystemene heter EPOCAST® 50-A1 Resin/Hardener 946 og EPOCAST® 50-A1 Resin/Hardener 9816, og er produkter fra produsenten

Huntsman Advanced Materials. Dette er to forskjellige utgaver det av samme epoksysystemet, hvor forskjellen mellom dem er hvor lang geletid/arbeidstid man har før epoksyen blir for tyktflytende til å kunne fordeles utover fiberen. De mekaniske egenskapene til de to utgavene er tilnærmet like. Systemenes flammehemmende egenskaper er testet og godkjent etter teststandarden FAR25.853A, en standard tilsvarende UL94 V-0. Dette er epoksysystemer beregnet for flyindustrien, og fyller i tillegg kravene til Boeings kvalifikasjon BMS 8-201. For å oppnå full styrke skal epoksysystemene herde enten ved 25 °C i fem dager eller ved 77-93 °C i to timer.

For å oppnå en høyere stivhet og samtidig spare vekt og fiber, benyttes sandwichkonstruksjon av materialet. Kjernematerialet bruker heter jeg ROHACELL® 71 IG-F, og er produsert av Evonik. Dette er et polymethacrylimide (PMI) skummateriale med lukkede celler. På grunn av liten plass i monocoquen, ble batterikassens materialtykkelse satt til å være 6 mm. Materialets tykkelse ble estimert tidlig i arbeidet med utformingen av batterikassen, lang tid før testresultatene forelå. Derfor ble det lagt inn en sikkerhetsmargin i batterikassens design for framtidige endringer av materialets tykkelse slik at det ikke skulle bli problemer dersom det viste seg at det endelige materialet ble tykkere enn først estimert. Denne tykkelsen medregner en kjernematerialtykkelse på 5 mm.

	Solid Metal Sheet	Sandwich Construction	Thicker Sandwich
		2 t	4t
Relative Stiffness	100	700 7 times more rigid	3700 37 times more rigid!
Relative Strength	100	350 3.5 times as strong	925 9.25 times as strong!
Relative Weight	100	103 3% increase in weight	106 6% increase in weight

4.3 Støpeprosess

For å få et godt støp er det viktig med en god støpeprosess. Det er mange potensielle feilkilder som kan virke inn, som f. eks. lite erfaring med komposittproduksjon, dårlig eller manglende produksjonsutstyr og fasiliteter, mangelfull ryddighet og renhet produksjonsområdet, unøyaktig av blanding av resin og herder etc. Det er viktig bakgrunnskunnskap generelt om med kompositter og materialene man arbeider med for å kunne legge opp produksjonen de rammene og betingelsene etter materialene bedyrer.

For å utnytte potensialet til en sandwichkonstruksjon til det fulle, må heften mellom kjernen og skallene være sterk nok til å motstå skjær- og strekkspenningene som oppstår mellom kjernen og skallene. God

4.4 Produksjonsoppsett

Testpanelene blir støpt med overmål i forhold til hva det aktuelle testpanelet skal være ifølge reglene. Når panelene er ferdig herdet blir de kuttet til eksakt størrelse. Dette er for å forsikre seg om at kantene ikke har feil eller mangler som f. eks. skjev klipping av kantene på karbonfiberen, løse fibertråder eller liknende. Testpanelene skal ha åpne kanter, og en test som har lukkede kanter ved laminering/støp blir underkjent. Skarpe kanter er ikke noe vakuumbagen er glad i, så for å forhindre hull i vakuumheft oppnås med lite støv og skitt mellom kjernen og skallene, slik at limflaten blir så stor som mulig.

Testpanelene er todimensjonale flater, med andre ord noe av det enkleste man kan støpe. Materialene jeg hadde å arbeide med var tørrfiber, epoksy og skumkjerne, og vurderte vakuuminfusjon som den beste produksjonsmetoden. For at testpanelene og testresultatene skal være gjeldende må materialoppbygning samme og produksjonsmetode på benyttes det endelige støpet som på testpanelene. Produksjonsmetoden må derfor vurderes nøye for å kunne avgjøre om det er mulig å støpe hele batterikassen med denne metoden.

Figur 25 Dulp innringet i rødt

bagen under støp legges det fiber på utsiden av kjernen som lamineres til det nedre skallet. Det er viktig å ha nok vakuumbag slik at det blir jevnt fordelt press på hele konstruksjonen som støpes. For liten eller for stram vakuumbag fører til lommer der epoksy samler seg. Denne effekten kalles «bridging», og er noe vi helst vil unngå. En slik lomme gjør at fiberen ikke blir presset godt nok sammen, og det blir et svakt punkt som raskt kan delaminere under belastning. En god vakuumbag er godt gjennomtenkt ved å tilføre «dulper» for å gjøre vakuumbagen tredimensjonal. En dulp er en bit bagteip som gjør at det blir en forhøyning i områder der konstruksjonen som støpes har tredimensjonal geometri, se Figur 25.

Figur 26 viser tverrsnittet av et testpanel. Her ser vi hvordan nedre skall, kjernematerialet og øvre skall henger sammen. Kjernematerialemnet er mindre arealmessig enn karbonfiberlagene for å få en mykere kant mot vakuumbagen.

Figur 27 Oppsett under vakuuminfusjon

Figur 27 viser oppsettet under produksjon testpaneler med vakuuminfusjon. av Epoksyen fordeles ut av innløpsporten gjennom et spiralfordelingsløp, og trekkes deretter gjennom karbonfiberduken. Oppå karbonfiberen ligger det et lag «peel ply» som har til hensikt å kunne dras av den ferdig støpte delen og for å bidra til en god og jevn overflate. Oppå «peel ply» ligger et lag med «flow mesh» hvor epoksyen flyter lett. Epoksyen vil da bli sugd raskt gjennom «flow mesh» og på veien bli trukket ned gjennom «peel ply» og karbonfiberen. Området før vakuumporten fungerer bremsende på gjennomtrekningen av epoksy, slik at epoksyen skal fordele seg over hele området med «flow mesh» og ned i fiberduken, før den fortsetter sin ferd mot vakuumporten.

Informasjon om epoksysystemene som er brukt:

EPOCAST® 50-A1 Resin/Hardener 946 har et blandingsforhold mellom resin og herder på 100 deler vekt resin og 15 deler vekt herder. Dette epoksysystemet har en herdetid på 20 minutter.

EPOCAST® 50-A1 Resin/Hardener 9816 har et blandingsforhold mellom resin og herder på 100 deler vekt resin og 14 deler vekt herder. Dette epoksysystemet har en herdetid på 65 minutter.

Figur 28 Ovnen testpanelene herdet i

Testpanelene herdet under vakuum i ovn, ved -1,0 bar. Ifølge databladene var epoksyen fullherdet ved temperaturer mellom 77-93 °C i to timer, og jeg herdet panelene på 90 °C i to timer. I tillegg stilte jeg inn ovnen til å ha en temperaturøkning på 90 °C i løpet av 1 time inntil den nådde innstilt verdi.

Figur 29 Vakuumpumpen og oppsamlingsbøtten

4.5 Testene

Alle testpanelene er støpt med den samme karbonfiberduken, og alle lagene med fiber har samme orientering; 0°. Derfor er det kun listet opp antall lag fiber i tabellene i underkapitlene.

Prøvene er navngitt APXX og ABXX, hvor XX er prøvens nummer. AP står for «Accumulator Penetration» og betegner penetrasjonsprøvene, og AB står for «Accumulator Bending» og betegner 3punkts bøyeprøvene.

Ved penetrasjonstesting av et panel med sandwichkonstruksjon får man to lasttopper på grafen over hvor store laster panelet klarer å motstå. Disse to lasttoppene viser henholdsvis når doren penetrerer det øvre og det nedre skallet. Som vist av Figur 30 er det den første toppen som brukes til å vise sterkt panelet er nok under at ekvivalensutregningen i SESen. Noe kraftnedgang er akseptert før toppunktet, men store nedganger som vist i Figur 30 er ikke akseptert. Som regel vil den andre lasttoppen være høyere enn den første, og man streber derfor etter å lage et panel hvor begge lasttoppene er tilnærmet like høye; da har man vist at man utnytter potensialet i panelet.

Figur 30 Illustrasjon over hvilken lasttopp som er gjeldende fra resultatene av penetrasjonstestene
Maskinen jeg har brukt til å utføre materialtestene med, heter Instron® 5982. Dette er et testsystem som utfører strekk- og kompresjonstesting av materialer, og som utfører skjærtester, også fleksibilitetsstyrketester, avrivningsstyrketester (peel), sykliske tester, og bøyetester. Maskinen har en lastcelle på 100 kN, og resultatene i leverer sanntid til datamaskinen og programvaren Instron® Bluehill. I programvaren stiller man inn parameterne testen skal bruke, og genererer resultatene til Excelfiler, lastgraf, samt video av materialtesten.

Ved penetrasjonstestene hadde doren en hastighet på 12,7 mm/min, og innstilt stoppverdi på 12,7 mm forlengelse.

Ved 3-punkts bøyetestene hadde lastapplikatoren en hastighet på 12,7 mm/min, og en innstilt stopp-verdi på 25,4 mm.

Figur 31 Instron® 5982 med penetrasjonstestoppsett av AP12

Figur 32 Instron® Bluehill med resultater av AP14

4.5.1 AP01-AP05

Første parti med penetrasjonstestpaneler ble støpt med vakuuminfusjon. Fem paneler med forskjellige lay-up ble lagt i dette partiet.

Epoksysystemet brukt til disse testpanelene er EPOCAST® 50-A1 Resin/Hardener 946.

	Lay-up
AP01	[3 lag / 5 mm kjerne/ 3 lag]
AP02	[4 lag / 5 mm kjerne/ 4 lag]
AP03	[5 lag / 5 mm kjerne/ 5 lag]
AP04	[6 lag / 5 mm kjerne/ 6 lag]
AP05	[7 lag / 5 mm kjerne/ 7 lag]
т	abell 1 Lay-up av AP01-AP05

Figur 33 Støpningsoppsett av AP01-AP05

Penetrasjonstestene AP01-AP05 var ikke av god produksjonskvalitet. Jo lenger unna epoksyinnløpet testpanelet var plassert, jo mindre epoksy var mettet i fiberen. Disse testpanelene var ubrukelige i SESsammenheng, men gav meg en god pekepinn på feilkilder under produksjonen. Min tidligere erfaring med komposittproduksjon var svært begrenset før jeg ble med i Revolve NTNU. Fra tidligere av hadde jeg kun overvært støpeprosessen av et glassfiberpanel med vakuuminfusjon. Derfor ble arbeidet med de første testpanelene preget av prøving og feiling.

Figur 34 Tørre områder på underskallet av AP01-AP05

Figur 34 viser undersiden av testpanelene, og plassering av panelene er den samme som i Figur 33. Som man kan se av Figur 34 er AP01 det testpanelet med best metning av epoksy. Metningen avtar gradvis jo nærmere vakuumporten panelet er plassert. Mulige feilkilder til dette fenomenet kan være:

- Feil i blandingsforholdet mellom resin og herder som kan gjøre at epoksyen herder for raskt
- For lite vakuum slik at epoksyen blir trukket gjennom for sakte
- Tynne slanger som gjør at ikke nok epoksy kommer tidsnok frem til tørrfiberen
- At epoksysystemet har for kort geletid/arbeidstid

Selv om testpanelene AP01-AP05 var mislykkede produksjonsmessig, testet jeg dem for erfaringens skyld. AP01, AP02 og AP05 har standard lastgraf for sandwichkonstruksjoner hvor det tydelig er to lasttopper, og hvor lasttopp nummer to er betydelig høyere enn lasttopp nummer en. Det som var spesielt med disse testpanelene var at etter at doren hadde penetrert det øvre skallet, komprimerte den kjernen og tok med seg de tørre fiberne i det nedre skallet. Det nedre skallet var kun mettet med epoksy langs ytterkantene av panelet, og disse fungerte som en innfestning av karbon-fibertrådene. Effekten av de tørre fibrene liknet på effekten aramidfibre har i en skuddsikker vest hvor fibrene blir dratt med prosjektilet uten å brytes.

Figur 35 AP03, tørt område på nedre skall

Figur 35 er et bilde tatt av undersiden (nedre skall) av AP03. Den røde firkanten viser grensen hvor fiberen er mettet av

Figur 36 Lastgraf, AP01

Figur 38 Lastgraf, AP03

epoksy, hvor innsiden av firkanten er et tørt område. Den grønne sirkelen viser hvor doren har presset seg på fra motstående side, og man kan se slitasje på de tørre fibrene på utsiden av den grønne ringen. Denne slitasjen på fibrene kommer fra da doren presset seg gjennom panelet og videre ned gjennom motholds-platen som testpanelet lå på.

Resultatene fra disse prøvene spriker når man ser på forholdet mellom høyeste lasttopp og totalt antall lag med fiber. Dette forholdet i seg selv kan ikke brukes teoretisk, men det er en peilepinne på hva lay-upen bør være på neste parti med testpaneler. Ved å gå ut fra høyeste lasttopp på hver av penetrasjonsprøvene blir det gjennomsnittlige forholdet mellom lasttopp og antall lag fiber slik:

Figur 40 Lastgraf, AP05

	Høyeste lasttopp [N]	$\frac{\text{Høyeste lasttopp}}{\text{tot. ant. lag}} \qquad \begin{bmatrix} N \\ \text{lag} \end{bmatrix}$	
AP01	11 136,91	1 856,2	
AP02	10 110,95	1 263,9	
AP03	8 368,23	836,8	
AP04	10 420,07	868,3	
AP05	19 044,45	1 360,3	
Gjennomsnitt		1 237,1	

Tabell 2 AP01-AP05: Forhold mellom høyeste lasttopp og antall lag fiber

Ved å bruke gjennomsnittsverdien for høyeste lasttopp delt på totalt antall lag fiber (øvre + nedre skall), gjennomsnitts-verdien for tykkelsen av ett lag fiber og at panelet skal være symmetrisk, kan jeg gjøre et raskt overslag på hvor mange lag fiber som trengs for at penetrasjonstesten skal vise ekvivalens. Utregningene blir gjort direkte i SES-regnearket ved å fylle inn gjeldende verdier, se Vedlegg 5 for utregningsformler og oppsett. Da gulvpanelet skal vise ekvivalens til en 1,25 mm tykk stålplate, og indre vegger, ytre vegger og lokk skal vise ekvivalens til en 0,9 mm tykk stålplate, har man muligheten til å ha 2 forskjellige layup i det endelige produktet. Sikkerhetsfaktoren FoS_{shear} må være 1,00 eller høyere for å vise ekvivalens.

	Antall lag fiber			
	Øvre skall	Nedre skall	Last per lag [N]	FoS _{shear}
Gulv	2	2	1 237,1	0,92
Gulv	3	3	1 237,1	1,15
Lokk/vegger	2	2	1 237,1	0,96
Lokk/vegger	3	3	1 237,1	1,28

Tabell 3 Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP01-AP05

Tabell 3 viser et overslag på at det trengs 5 lag fiber på hver side av kjernematerialet i gulvpanelet og 4 lag fiber på hver side av kjernematerialet i lokk- og veggpanelene når jeg går ut ifra gjennomsnittsverdiene av prøveresultatene til AP01-AP05. AP01 var det testpanelet av produksjonsmessig best kvalitet, m.a.o. færrest og minst tørt område på nedre skall. Jeg antar derfor at resultatene fra denne prøven er mer korrekte enn gjennomsnittet av AP01-AP05. Ved å bruke verdien for AP01 sin høyeste lasttopp delt på totalt antall lag fiber (øvre + nedre skall), gjennomsnittsverdien for tykkelsen av ett lag fiber og at panelet skal være symmetrisk, får jeg et annet, og mest sannsynlig, mer realistisk overslag av antall lag fiber som trengs.

Antall lag fiber				
	Øvre skall	Nedre skall	Last per lag [N] FoS	FoS _{shear}
Gulv	2	2	1 856,2	0,69
Gulv	3	3	1 856,2	1,04
Lokk/vegger	2	2	1 856,2	0,96
Lokk/vegger	3	3	1 856,2	1,44

 Tabell 4
 Anslag av antall lag fiber for å vise ekvivalens ved bruk av lasttoppen til AP01

Resultatene i Tabell 3 gir et vektoverslag av batterikassen på 3 312.81 gram. Vektberegningen tar utgangspunkt i AP01 sin utregnet vekt per areal støpt fiber for ett lag fiber. Resultatene i Tabell 4 gir derimot et vektoverslag av batterikassen på 2 429,15 gram. Ved å legge til ett lag fiber på øvre og nedre skall over hele batterikassen, økes vekten med 698,3 gram. Dette er en stor vektøkning, og det er dette som er grunnen til at vi kjører tester med flere forskjellige lay-up av testpanelene. Vi ønsker å perfeksjonere panelene våre så mye tid og penger lar oss gjøre, slik at vi kan lage det beste produktet vi har mulighet til å gjøre. Ved vakuuminfusjon har man begrenset kontroll over hvor mye epoksy fiberen blir mettet med. Dette er en viktig parameter da kompositter med mye epoksy blir tunge. I en racerbil skal alle delene veie så lite det lar seg gjøre, og da kan man ikke ha en unødvendig høy vektprosent epoksy i støpet. Grunnet den lave metningen av epoksy i de nedre skallene i testpanelene,

	Vektfraksjon fiber [%]
AP01	51,1
AP02	60,3
AP03	66,5
AP04	70,6
AP05	76,2

Tabell 5 AP01-AP05: Vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)

er vektprosenten fiber i prøvene meget høye. Som man kan se ut av Tabell 5, er det en klar sammenheng mellom plassering av testpanelene (se Figur 33) under støpet og vektprosenten fiber. Forbedringsforslag til neste parti med testpaneler:

- Bor hull i kjernematerialet slik at epoksyen lettere vil trekke til senter av det nedre skallet
- Vær nøyere med blandingen av resin og herder slik at epoksyen ikke herder raskere enn det den skal

4.5.2 AP06-AP09

Andre parti med penetrasjonstestpaneler ble støpt med vakuuminfusjon. Fire paneler med forskjellige lay-up ble laget i dette partiet. For å få til en bedre metning av epoksy i underskallet, boret jeg hull i kjernematerialet. Målet med denne lette perforeringen av kjerne-materialet var å gi epoksyen muligheten til å trekke gjennom det øvre skallet og ned i det nedre gjennom kjerne-materialet. Resin og herder ble nøye oppmålt for å forsikre meg om at dette ikke skulle være en feilkilde.

Figur 41 Perforert kjernemateriale

Figur 42 Vakuuminfusjon av AP06-AP09

Epoksysystemet brukt til disse testpanelene er EPOCAST® 50-A1 Resin/Hardener 946.

	Lay-up
AP06	[4 lag / 5 mm kjerne/ 4 lag]
AP07	[5 lag / 5 mm kjerne/ 5 lag]
AP08	[6 lag / 5 mm kjerne/ 6 lag]
AP09	[7 lag / 5 mm kjerne/ 7 lag]
Т	abell 6 Lay-up av AP06-AP09

Figur 43 Støpningsoppsett av AP06-AP09

Penetrasjonstestpanelene AP06-AP09 var av betydelig bedre produksjons-kvalitet enn AP01-AP05, men de var likevel ikke gode nok til å kunne brukes i SES-sammenheng. Øvre skall var av meget god kvalitet, mens det nedre skallet hadde tørre områder.

Figur 44 AP06-AP09, ferdig støpt, øvre skall

Figur 45 AP06-AP09, ferdig støpt, nedre skall

Perforeringen av kjernematerialet gav en stor forbedring av de tørre områdene på nedre skall i forhold til AP01-AP05. Av Figur 45 ser man hvordan epoksyen har trukket ned gjennom perforeringen i kjernematerialet og hjulpet på metningen av det nedre skallet. Penetrasjonstestene AP06-AP09 hadde liknende testkarakteristikk som AP01-AP05, selv om AP06-AP09 var av bedre produksjonskvalitet. Alle fire prøvene har to karakteristiske lasttopper, men AP09 er den eneste av prøvene hvor differansen mellom første og andre lasttopp er relativt liten. Lasttoppene kommer også relativt nærme hverandre i forhold til dorens vandring.

	Δ Dor, forlengelse [mm]
AP06	2,093
AP07	1,840
AP08	1,845
AP09	0,690

 Tabell 7
 AP06-AP09, avstand mellom lasttoppene

Det er flere mulige årsaker til at resultatene ble som de ble. Alle panelene ble lagt på samme linje (se Figur 42 og Figur 43), så epoksyen skulle i teorien ha nådd alle testpanelene noenlunde samtidig og deretter fordelt seg ned gjennom karbonfiberlagene. Ved å si at alle testpanelene har tilgang til samme mengde epoksy for deretter å selv fordele denne mengden epoksy innad blant sine egne lag med karbonfiber, er det forståelig at metningen ble lavere ved en økning av antall lag fiber. Dette er en mulig årsak, men forholdene lå allikevel til rette for at testpanelene skulle kunne ta til seg den mengden epoksy de selv

Figur 46 Lastgraf, AP06

Figur 47 Lastgraf, AP07

Figur 49 Lastgraf, AP09

trengte for å bli mettet. Det lå «flow mesh» over alle fire panelene, som også var i kontakt med spiralen ved epoksyinnløpet (se Figur 42), i tillegg til at det var lagt inn et bremseområde før vakuumporten (se Figur 27). Oppsettet skal med andre ord ikke være problemet. En mulig årsak er at epoksysystemet har for kort arbeidstid slik at epoksyen ikke rekker å bli trukket gjennom karbon-fiberen før den blir for tyktflytende.

	Total masse epoksy [g]
AP06	16,1
AP07	16,9
AP08	19,1
AP09	17,6

Tabell 8 AP06-AP09, total masse epoksy

Dersom man antar at alle panelene kun har tilgang til den samme mengden epoksy, skal de ferdigstøpte panelene ha omtrent samme faktiske masse epoksy. Som man ser av Tabell 8 er det lite som skiller mellom panelene i epoksyvekt. Denne teorien kan være riktig dersom man kun baserer avgjørelsen på disse tallene.

Å basere avgjørelsen kun på denne hypotesen blir for snevert. Hvor viskøs epoksyen er har mye å si på hvor raskt den trekker gjennom fiberen samt hvor lett den metter fiberen. For å få et full-godt bilde av situasjonen, burde man gjort det samme støpet med

a. en epoksy med samme arbeidstid, men med lavere viskositet,

og

b. en epoksy med samme viskositet, men med lengre arbeidstid,

samt å gjøre de samme forsøkene med forskjellige typer karbonfiberduker.

På grunn av at jeg hadde begrenset med tid og penger til å gå til anskaffelse av andre typer og varianter epoksysystemer og tørrfiber, ender denne problem-stillingen kun med synsing. På grunn av at epoksysystemet har en oppgitt arbeidstid på 20 minutter, trekker jeg den slutningen at det er tidsaspektet som er avgjørende for de dårlige støpene.

	Vektfraksjon fiber [%]
AP06	51,8
AP07	54,4
AP08	57,3
AP09	62,5

 Tabell 9
 AP06-AP09, Vektfraksjon fiber

 per lag ferdig støpt fiber (ikke
 medregnet kjernematerialet)

Vektfraksjon fiber i prøvene er fortsatt noe kunstig høye på grunn av de tørre områdene på nedre skall, men tallene i Tabell 9 gir et mer korrekt bilde av hvordan verdiene i gode støp kommer til å være. Man kan se av såret etter doren på øvre skall at bruddet/penetreringen har oppført seg forskjellige på prøvene. Bruddkanten på AP06 er brå hvor materialet er nærmest kuttet gjennom. Dette er et noenlunde pent kutt.

Figur 50 AP06, nærbilde brudd

Bruddkanten på AP07 og AP08 blir gradvis mindre pent kuttet, til vi kommer til AP09. AP09 fremtrer som at det er mindre epoksy i skallet. Av Figur 51 ser man karbonfibertrådene har blitt trukket med doren under penetrasjonstesten. Dette tyder på at doren har komprimert øvre skall og dyttet det med seg ned gjennom kjernen. Ved analyse av lastgrafen til AP09 (se Figur 49) og nærbildet av bruddet ved inngangssåret (se Figur 51), trekker jeg den slutningen at en høyere vektfraksjon fiber enn vektfraksjon epoksy, gjør at panelene klarer å motstå høyere laster. Dette er en antagelse jeg ønsker å prøve ut i de neste partiene med testpaneler.

Figur 51 AP09, nærbilde brudd

	Høyeste lasttopp [N]	Høyeste lasttopp tot. ant. lagN lag
AP06	17 985,65	2 248,21
AP07	20 030,23	2 003,02
AP08	19 994,80	1 666,23
AP09	20 880,98	1 491,50
Gjennomsnitt		1 852,24

Tabell 10 AP06-AP09: Forhold mellom høyeste lasttopp og antall lag fiber

Ved å bruke tidligere brukte fremgangsmåte for estimering av antall lag fiber, ser man av Tabell 10 gjennomsnittsverdien som er brukt i følgende overslag:

Antall lag fiber				
	Øvre skall	Nedre skall	Last per lag [N]	FoS _{shear}
Gulv	2	2	1 852,24	0,69
Gulv	3	3	1 852,24	1,03
Lokk/vegger	2	2	1 852,24	0,96
Lokk/vegger	3	3	1 852,24	1,44

Tabell 11 Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP06-AP09

Gjennomsnittsverdien for AP06-AP09 er kun 4 N lavere enn verdien for AP01, som var den prøven i første parti med testpaneler som hadde best produksjons-kvalitet. Dette gir da samme anslag av antall lag fiber som trengs for å vise ekvivalens som i Tabell 4. Dersom vi kun ser på første lasttopp, den lasttoppen for som er gjeldene penetrasjonstesten i SESen, er resultatene fortsatt et stykke unna det som trengs. Resultatene fra AP09 er meget oppløftende i den form at lasttoppene er meget nærme hverandre, i tillegg til at differansen mellom lastene kun er 1 781,96 N, den laveste differansen på en penetrasjonsprøve til nå.

1. lasttopp [N]	19 099,02
1. lasttopp [mm]	8,526
2. lasttopp [N]	20 880,80
2. lasttopp [mm]	9,216

Tabell 12 AP09, 1. og 2. lasttopp

For å få bukt med at nedre skall har tørre partier, vil jeg i neste parti med testpaneler produksjonsprøve en annen fremgangsmåte. Når man lager et sandwichpanel med karbonfiber som er preimpregnert med epoksy (såkalt pre-preg), må produksjonen deles opp. Pre-preg kommer dypfryst med en viss levetid, og må tines før bruk. Det er da vanlig å dele opp produksjonen i flere steg. Jeg bruker momenter fra produksjon med pre-preg for å få bedre kvalitet på støpene, og fremgangsmåten jeg ønsker å prøve ut er som følger:

- 1) Støpe nedre skall ved vakuuminfusjon
- Legge limfilm for å lime kjernematerialet til nedre skall
- Støpe øvre skall ved vakuuminfusjon

Ekspanderende limfilm brukes for å få heft mellom skall og kjernemateriale, da kanskje aller helst ved bruk av Honeycombkjernemateriale. Selv om jeg bruker skumkjerne ønsker jeg å prøve ut limfilm for å se om produksjonskvaliteten og – resultatet blir bedre. Målet med å følge denne fremgangsmåten er å få en bedre og jevnere produksjonskvalitet på testpanelene, samt å gå rundt problemet med at epoksyen blir for tyktflytende før den har mettet fiberen.

4.5.3 AP10-AP11

Tredje parti med penetrasjonstest-paneler ble støpt med vakuuminfusjon. To paneler med forskjellige lay-up ble lagt i dette partiet. For fortsette å luke ut feilkildene til de mislykkede støpene ble disse to testpanelene støpt i flere steg. Nedre skall ble støpt for seg selv ved vakuuminfusjon, deretter limte jeg kjernen fast til nedre skall med limfilm. Limfilmen ble herdet under vakuum i ovn ved 90 °C, samme herdetemperatur som epoksyen.

Etter samtale og diskusjon med andre medlemmer av Revolve NTNU ang. de dårlige produksjonsresultatene av testpanelene, besluttet jeg å ikke bruke vakuuminfusjon på øvre skall. Istedenfor mettet jeg hvert lag fiber med epoksy før jeg la de på det endelige støpet. Epoksyen ble fordelt utover karbonfibervevet hvor jeg deretter brukte ei rulle for å presse epoksyen godt ned i fiberen. Fibervevet ble snudd, og jeg gjentok samme prosedyre. Ytre skall ble tilslutt lagt oppå de halvferdige testpanelene, og panelene ble deretter satt under vakuum og herdet i ovn. Denne produksjonsmetoden kalles «Vacuum Bagging (Wet Lay-up)», eller på godt norsk; våtstøp med vakuumbag.

Epoksysystemet brukt til disse testpanelene er EPOCAST® 50-A1 Resin/Hardener 946.

Figur 52 Snitt av AP10 og AP11 sin lay-up

Lay-up		
AP10	[2 lag / 5 mm kjerne/ 2 lag]	
AP11	[3 lag / 5 mm kjerne/ 3 lag]	
Т	abell 13 Lay-up av AP10-AP11	

Figur 53 Testpanelene AP10-AP11 under vakuum

AP10 og AP11 er de testpanelene med absolutt dårligst produksjonskvalitet. Som man kan se av lastgrafene (Figur 55 og Figur 56) har det foregått flere delaminasjoner under dorens vandring testpanelene. Hver gjennom topp i lastgrafene indikerer delaminasjoner, og da spesielt rundt høyeste lasttopp på begge prøvene. Her er det mange last-topper.

Figur 54 Delaminasjon av AP10

Figur 54 viser hvordan både øvre og nedre skall har delaminert fra kjerne-materialet. Dette er lite heldig, og noe man absolutt ikke ønsker ved sandwich-konstruksjon av materialet. En slik delaminasjon vil med andre ord si at materialet har mistet hele styrke- og stivhetseffekten kjernematerialet bidrar med. Øvre skall (se Figur 57) viser ingen tegn til brudd, men man ser omrisset av doren. Dette viser at produksjonsmetoden våtstøp med vakuumbag gir et godt resultat, men at heften mellom skallene og kjernen må undersøkes nærmere.

Figur 55 Lastgraf, AP10

Figur 56 Lastgraf, AP11

Figur 57 AP10, øvre skall

AP11 derimot ble penetrert av doren. Som man ser av Figur 58 delaminerte både øvre og nedre skall, i tillegg til at øvre skall fikk et brudd fra dorens omriss til panelets kant.

Figur 58 AP11, delaminasjon og brudd

AP10 delaminerte i hjørnene av prøven, mens nedre skall av AP11 delaminerte totalt. Dette er den siden av kjernematerialet hvor limfilmen er påført.

Figur 59 AP11, delaminasjon av nedre skall

Som man ser av Figur 59 er det en liten flik av kjernematerialet som sitter fast i nedre skall, mens resten er heftet til øvre skall. Dette kan tyde på at heften var noe bedre mellom øvre skall og kjerne-materialet, med andre ord den siden som ble lagt med våtstøp og vakuumbag (uten limfilm). I tillegg ser man at det henger fast en del støv fra kjernematerialet på nedre skall. Dette tyder på at støv i kjernen var en medvirkende faktor som bidro til delaminasjonen.

Figur 60 AP11, kjernematerialestøv på nedre skall

Vektfraksjonen fiber i prøvene er meget bra, og i henhold til tidligere erfaring fra de øvrige penetrasjonstestene. Forholdet mellom høyeste lasttopp og antall lag fiber er overraskende bra, til tross for stor delaminasjon.

Vektfraksjon fiber [%]			
AP10	55,0		
AP11	58,0		

Tabell 14 AP10-AP11, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)

	Høyeste lasttopp [N]	$\frac{\text{Høyeste lasttopp}}{\text{tot. ant. lag}} \begin{bmatrix} N \\ lag \end{bmatrix}$
AP10	7 297,85	1 824,46
AP11	11 964,48	1 994,08
Gjennomsnitt		1 909,72

Tabell 15 AP10-AP11: Forhold mellom høyeste lasttopp og antall lag fiber

Ved å bruke gjennomsnittet i Tabell 15 får jeg fortsatt det samme anslaget med antall lag fiber som trengs for å vise ekvivalens i SESen. Dog er det fortsatt den høyeste lasttoppen jeg har brukt i overslagene, den lasttoppen som ikke kan brukes i SESsammenheng. Det kreves fortsatt en god innsats under produksjonen av testpanelene for å luke ut de siste feilkildene slik at jeg skal få prøver som er gode nok til å kunne brukes. Dersom jeg bruker samme produksjonsmetode som med øvre skall på AP10 og AP11, samt å rengjøre kjernematerialet godt før støp, ser jeg det som meget mulig å få til testpaneler som kan brukes i SES-sammenheng ved neste parti paneler.

	Antall l	ag fiber		
	Øvre skall	Nedre skall	Last per lag [N]	FoS _{shear}
Gulv	2	2	1 909,72	0,71
Gulv	3	3	1 909,72	1,07
Lokk/vegger	2	2	1 909,72	0,99
Lokk/vegger	3	3	1 909,72	1,48

Tabell 16 Anslag av antall lag fiber for å vise ekvivalens ved bruk av gjennomsnittet av AP10-AP11

4.5.4 AP12-AP14

Selv om AP10 og AP11 delaminerte mot kjernen, var siste steg av produksjonsmetoden en suksess. Metoden med å mette fiberen med epoksy før man la den på det endelige støpet ga veldig gode produksjonsresultater. Fjerde parti med penetrasjonstestpaneler ble støpt med denne metoden, hvor begge skallene samt kjernematerialet ble lagt i samme produksjonssteget. Kjernematerialet ble rengjort mye bedre enn ved tidligere støp for å få vekk overflatekorn og støv som hadde samlet seg i porene. Limfilmen ble droppet, og eneste bidraget til heft mellom kjernen og skallene er epoksyen.

Epoksysystemet brukt til disse testpanelene er EPOCAST® 50-A1 Resin/Hardener 946.

	Lay-up	
AP12	[2 lag / 5 mm kjerne/ 2 lag]	
AP13	[3 lag / 5 mm kjerne/ 3 lag]	
AP14	[4 lag / 5 mm kjerne/ 4 lag]	
Taboll 17 Law-up av AB12-AB14		

Figur 61 Vakuumbagging av AP12-AP14

Penetrasjonstestene AP12-AP14 var av meget god produksjonskvalitet. Testresultatene gir det samme bildet, spesielt AP13 og AP14, hvor prøvenes 1. lasttopp er høyere enn deres 2. lasttopp. Det var ikke tegn til delaminasjon på noen test-panelene utenfor dorens kontaktområde, noe som forteller at problemet med heft mellom kjernemateriale og skall er løst.

	Vektfraksjon fiber [%]
AP12	57,8
AP13	61,0
AP14	61,0

 Tabell 18
 AP12-AP14, vektfraksjon fiber

 per lag ferdig støpt fiber (ikke
 medregnet kjernematerialet)

Selv om heften mellom skallene og kjernematerialet var upåklagelig, og at det kun er epoksy som bidrar til heft mellom dem, er vektfraksjonen fiber i det ferdige støpet er høy. Av Tabell 18 ser man at fibervektfraksjonen i AP13 og AP14, de to prøvene hvor 1. lasttopp er høyere enn 2. lasttopp, er på 61 %. Denne høye verdien er kun tidligere nådd blant penetrasjonsprøvene som hadde store tørre partier. AP12-AP14 viser at jeg nærmer meg det optimale vektforholdet mellom fiber og epoksy basert på heft og testresultater.

Figur 62 Lastgraf, AP12

Figur 63 Lastgraf, AP13

Figur 64 Lastgraf, AP14

Hypotesen jeg fremmet i delkapittel 4.5.2 om at en høyere vektfraksjon fiber enn vektfraksjon epoksy gjør at panelene klarer å motstå høyere laster, ser ut til å ha noe med seg. Det skal understrekes at produksjonsprosessen har endret seg fra vakuuminfusjon til våtstøp med vakuumbagging, samt at det å rengjøre kjernematerialet godt før støp har bidratt meget positivt til heft mellom skallene og kjernen. Disse to momentene har etter all sannsynlighet mye å si for test-resultatene, men jeg fortsetter å fremme hypotesen om at en høyere vektfraksjon fiber er positivt for lastene prøven kan motstå. Av Figur 65 ser man at øvre skall på AP12 har et nedsøkk i området rundt der hvor doren har penetrert skallet. Doren har da komprimert kjerne-materialet i dette området, og trukket øvre skall med seg i sin ferd mot nedre skall. Dette ser man også at har skjedd på AP13 sitt øvre skall (Figur 66), men her i mindre grad. Dette er på grunn av et økt antall lag fiber i skallene som da gir et stivere og sterkere øvre skall. På AP14 (Figur 67) kan man nesten ikke se en plastisk deformasjon i form av nedsøkk i området rundt dorens kontaktflate. Dette nedsøkket var av elastisk karakter, og gikk tilbake til tilnærmet opprinnelig form etter at doren hadde penetrert øvre skall.

Figur 65 AP12, nedsøkk i området rundt dorens kontaktflate

Figur 66 AP13, nedsøkk i området rundt dorens kontaktflate

Figur 67 AP14, øvre skall

Nå som produksjonsresultatene er så gode som de er, er det ikke noe poeng i å bruke den høyeste lasttoppen fra lastgrafene lenger. Produksjons-kvaliteten som nå er nådd er god nok til å kunne brukes i SESsammenheng, og jeg bruker fra nå av de faktiske resultatene ved utregning i SES. Forholdet mellom 1. lasttopp og totalt antall lag fiber, utregnet i Tabell 19, er kun interessant for å se om dette forholdet avviker mye fra tidligere anslåtte verdier hvor høyeste lasttopp var brukt. Man ser at tidligere overslag var et meget godt utgangspunkt å starte fra, da gjennomsnittsverdiene avviker lite fra gjennomsnittet i Tabell 19.

	1. lasttopp [N]	$\frac{1.\ \text{lasttopp}}{\text{tot. ant. lag}} \begin{bmatrix} \text{N} \\ \text{lag} \end{bmatrix}$
AP12	6 325,38	1 581,34
AP13	11 280,74	1 880,12
AP14	15 825,62	1 978,20
Gjennomsnitt		1 813,22

 Tabell 19
 AP12-AP14, forhold mellom 1. lasttopp og antall lag fiber

Sikkerhetsfaktoren utregnet i SES gir at batterikassen minimum kan ha 3 lag fiber på hver side av kjernematerialet, se Tabell 20.

Dette er i tråd med tidligere overslag, og en estimert vekt av batterikassen er da 2 429,15 gram.

	Antall lag fiber		Tubboloo	1 lasttopp	
	Øvre skall	Nedre skall	skall [mm]	I. lasttopp [N]	FoS _{shear}
Gulv	2	2	0,450	6 325,38	0,59
Gulv	3	3	0,675	11 280,74	1,05
Gulv	4	4	0,900	15 825,62	1,47
Lokk/vegger	2	2	0,450	6 325,38	0,82
Lokk/vegger	3	3	0,675	11 280,74	1,46
Lokk/vegger	4	4	0,900	15 825,62	2,04

Tabell 20 Resultater utregnet i SES med verdier fra hhv. AP12, AP13 og AP14

4.5.5 AB01

AP13 er godkjent ifølge SESen, og jeg går dermed videre til å teste ut samme materialoppbygging ved 3-punkts bøyeprøve. Produksjonsmetoden vil være den samme som jeg brukte på AP12-AP14, våtstøp med vakuumbagging.

Epoksysystemet brukt til dette testpanelet er EPOCAST® 50-A1 Resin/Hardener 946.

Under produksjonen begynte jeg å innse at det å støpe hele batterikassen med dette epoksysystemet ville bli vanskelig. Det ferdige testpanelet måler 500 mm * 275 mm, og jeg støpte dette panelet med overmål. Panelet jeg støpte målte 550 mm * 325 mm. Epoksysystemet med herderen 946 har en geletid/arbeidstid på 20 minutter, og det tok omtrent 20 minutter å støpe dette testpanelet. Det vil med andre ord si at epoksyen vil bli for tyktflytende til å kunne brukes lenge før jeg har blitt ferdig med å legge hele batterikassen. Jeg ble derfor nødt til å finne et alternativ til epoksysystemet EPOCAST® 50-A1 Resin/Hardener 946.

Figur 68 AB01 i ovn under vakuum

Vektfraksjon fiber [%]			
AB01	50,9		
Tabell 22 AB01, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)			

Testpanelet AB01 fortsatte den gode produksjonskvaliteten. Parameterne til lastapplikatoren under materialtesten var ikke forberedt på et så elastisk panel som 3punkts bøyeprøvene til batteri-kassen var. I tida før jeg testet batterikassens paneler, var panelene til monocoquen blitt testet ved penetrasjonsprøving og 3-punkts bøyeprøving. Ved bøyeprøvene hadde panelene gått til brudd før last-applikatoren nådde sin innstilte stopp-verdi. Lastapplikatoren stoppet ved 25,4 mm forlengelse, men ved AB01 var dette før panelet gikk til brudd. Det ble derfor behov for å teste AB01 to ganger, andre gang med en høvere innstilt stopp-verdi av lastapplikatoren. Det er lite heldig å måtte teste det samme panelet to ganger. Ved den første testen kan man ha påført panelet brudd mellom fiberlagene eller sprekker i epoksyen, momenter som kan føre til lavere resultater ved test nummer to. Ut ifra resultatene ved AB01 sin andre bøyeprøve, ser det ikke ut til at dette har bidratt til lavere resultater. Ved å sammenligne Figur 71 og Figur 73 ser man at ved 25,4 mm forlengelse er lasten tilnærmet lik, og jeg kan trygt si at AB01 sin andre bøyeprøve er representativ for panelets materialkonstruksjon.

Figur 69 AB01 innspent til test

Figur 70 AB01 ved 25,4 mm forlengelse av lastapplikatoren

Figur 71 Lastgraf, AB01 ved 25,4 mm forlengelse av lastapplikator

Ved analyse av AB01 for å finne ut hvordan panelet gikk til brudd, fant jeg at det var øvre skall som var det dimensjonerende momentet for at AB01 gikk til brudd. Bruddet er lokalisert der hvor lastapplikatorens var i kontakt med panelet. Jeg hadde ikke forventet å finne et slikt markert og rett brudd.

Figur 72 AB01, brudd langsmed lastapplikatoren

En mulig forklaring på bruddets type kan være at panelet ble testet to ganger, og at lastapplikatoren ikke ble plassert på det eksakt samme stedet på testpanelet. Det kan i tillegg være svakheter i øvre skall etter AB01 sin første bøyetest, selv om man ikke ser spor av det på lastgrafen.

Figur 73 Lastgraf, AB01 ved brudd

	Antall lag fiber		Tylzkolco			
	Øvre skall	Nedre skall	skall [mm]	y _{max} [N]	FoStension	FoSbending
Gulv	3	3	0,675	2 418,13	0,85	38,22
Lokk/vegger	3	3	0,675	2 418,13	1,19	102,46

Tabell 23 Resultater utregnet i SES med verdier fra AB01 ved brudd

Som man ser av Tabell 23 har denne materialkonstruksjonen en sikkerhetsfaktor for nedbøyning og spenninger over 1,0 for panelene som skal være på lokk og vegger. Derimot er det kun sikkerhetsfaktoren for nedbøyning som er større enn 1,0 hva angår panelet for gulvet i batterikassen. Det vil med andre ord si at jeg må lage et sterkere panel og gjennomføre nye materialtester.

4.5.6 AB02

Da vi hadde veldig begrenset med epoksy, penger og tid, måtte neste testpanel bli godkjent i SES. SESen skulle snart leveres inn til konkurransene, og dersom den ikke var fullstendig kunne vi få trekk i poeng under sommerens konkurranser. Som nevnt 4.5.5 delkapittel trengte jeg i et med lengre arbeidstid. epoksysystem Løsningen ble da å bestille en annen utgave av det samme epoksysystemet med 65 minutters arbeidstid i forhold til tidligere brukte system med 20 minutters arbeidstid. Epoksysystemet brukt til dette testpanelet er EPOCAST® 50-A1 Resin/Hardener 9816, og dette bestilte jeg fra en leverandør i England som hadde dette på lager. Prisen for flammehemmende epoksysystemer er høy, og mengden jeg bestilte inn var beregnet til kun å lage noen få testpaneler samt hele batterikassen. Jeg seifet derfor ved å lage et testpanel som mest sannsynlig var sterkere enn hva som var nødvendig. Ved å bruke resultatene fra AB01 og forholdet mellom y_{max} og antall lag fiber kom jeg frem til et overslag på nødvendig antall lag fiber, og brukte verdiene fra overslagene til å regne ut sikkerhetsfaktorene i SES.

	\mathbf{y}_{\max} [N]	$\frac{\mathbf{y}_{\max}}{\mathbf{tot. ant. lag}} \begin{bmatrix} \mathbf{N}_{lag} \end{bmatrix}$	
AB01	2 418,13	403,02	

l abell 24	AB01, forhold mello	om y _{max} og antall lag fiber

	Antall lag fiber			(
	Øvre skall	Nedre skall	Tykkelse, skall [mm]	N/ lag	Anslått y _{max} [N]	FoStension	FoSbending
Gulv	4	4	0,900	390,00	3120,00	1,09	32,52
Gulv	5	5	1,125	390,00	3900,00	1,34	29,17

Tabell 25 Anslåtte verdier for sikkerhetsfaktor for 3 pkt. bøyeprøve

AB01 hadde et forhold mellom y_{max} og totalt antall lag fiber lik 403,02 N per lag fiber, se Tabell 24. Lay-upen jeg vil bruke i AB02 vil fortsatt være symmetrisk om kjernematerialet, men jeg bruker en forholdsverdi som er noe lavere enn hva som er utregnet i Tabell 24 for å ha en liten sikkerhetsmargin. Ved beregningen i SES bruker jeg samme gradient som AB01 ved utregning av skallenes elastisitetsmodulus. I tillegg vil det komme et bidrag til sikkerhetsfaktorene fra regnearket «Rig compliance» under «EV3.4.6j Alt Matl -3pt Bending» i SESen. «Rig compliance» gir et uttrykk for testriggens stivhet, og kan øke gradienten ved utregning av skallenes elastisitetsmodulus. Da vi er presset på epoksy, tid og penger seifer jeg testpanelets lay-up. Ut ifra Tabell 25 skal det være mulig å ha en lay-up med fire lag fiber i hvert av skallene, men på grunn av at FoStension kun er på 1,09 for denne lay-upen, velger jeg å gå for fem lag fiber i hvert av skallene.

Da jeg ikke har en godkjent penetrasjonsprøve med fem lag fiber i hvert av skallene, må denne også lages. Dette løses ved å lage et forlenget 3-punkts bøyetestpanel, hvor jeg da får to penetrasjonstestpaneler.

	Lay-up
AB02	[5 lag / 5 mm kjerne/ 5 lag]
	Tabell 26 Lav-up av AB02

Figur 74 Produksjon av AB02 og AP15-AP16

Av 0 ser man at begge sikkerhetsfaktorene er større enn 1,0, og lay-upen for AB02 er dermed godkjent. Anslaget i Tabell 25 var meget bra, og av resultatene for AB02 ser jeg at det etter all sannsynlighet ville ha gått med 4 lag fiber i hvert av skallene. Denne kunnskapen vil bli videreført til neste års batterikasseansvarlige slik at han/hun vil ha mye data å starte året med. Nå gjenstår det kun å kjøre penetrasjons-testene for å vise at de også er godkjente.

Figur 75 Lastgraf, AB02

	Antall l	ag fiber	Tykkelse, skall [mm]	y _{max} [N]	FoStension	FoSbending
	Øvre skall	Nedre skall				
Gulv	5	5	1,125	3 953,97	1,36	48,49

Tabell 27 Resultater utregnet i SES med verdier fra AB02 ved brudd

	Vektfraksjon fiber [%]
AB02	58,3
Taball	28 AB02 voktfraksion fibor por la

Tabell 28 AB02, vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet)

AB02 sin bruddtype var helt annerledes enn bruddet til AB01. Mens AB01 sitt øvre skall knakk under der hvor lastapplikatoren var i kontakt med panelet, var det kjernematerialet i AB02 som gikk til brudd. Dette viser at jeg har nådd kapasiteten til hva kjerne-materialet klarer å motstå, og at heften mellom kjernen og skallene var mindre dimensjonerende for styrken til panelet enn hva kjernematerialet var.

Figur 76 AB02 innspent ved brudd

Figur 77 AB02, nærbilde av brudd ved lastapplikator

Figur 78 AB02, nærbilde av brudd mellom lastapplikator og høyre opplagring

4.5.7 AP15-AP16

Da det var plass til to penetrasjonstestpaneler ved produksjonen av AB02, består AP15 og AP16 av den samme lay-upen som AB02. For at penetrasjons-prøvene skal bli godkjent, må de motstå en kraft på minst 10 750,14 N, utregnet ved bruk av formlene i SESen og lay-upen angitt i Tabell 29.

	Lay-up
AP15	[5 lag / 5 mm kjerne/ 5 lag]
AP16	[5 lag / 5 mm kjerne/ 5 lag]

Ved testing av AP15 gikk ikke panelet til brudd ved innstilt stopp-verdi på 12,7 mm. AP15 ble derfor testet to ganger for å se hvordan prøven utartet seg, og navngitt hhv. 1 og 2. AP15_1 hadde en 1. lasttopp på 14 074,61 N, og et påfølgende dropp på 2 426,55 N. Da lastgrafen fortsatte å stige helt frem til doren nådde sin stopp-verdi, testet jeg samme panelet en gang til, men da med en høyere stopp-verdi. AP15 2 hadde en 1. lasttopp på 15 252,02 N, 1 177,41 N høyere enn AP15_1, og et påfølgende dropp på 1 377,39 N. Lastgrafen fortsatte å stige helt til prøven gikk til brudd ved 23 820,99 N, men på grunn av størrelsen på droppet etter første lasttopp kan jeg ikke bruke ymax i henhold til Figur 30.

Figur 80 Lastgraf, AP15_2

Figur 81 Lastgraf, AP16

Vektfraksjon fiber [%]					
AP15	57,9				
AP16	58,9				

Tabell 30 AP15-AP16, Vektfraksjon fiber per lag ferdig støpt fiber (ikke medregnet kjernematerialet) AP16 derimot hadde en lastgraf som steg frem til 1. lasttopp, som også var høyeste lasttopp under penetrasjonstesten. Jeg bruker derfor resultatene fra denne penetrasjonstesten, og jeg har dermed paneler til gulv, lokk og vegger som har sikkerhetsfaktorer større enn 1,0. Jeg kan nå gå i gang med å støpe batterikassen.

Figur 82 AP16, innspent til test

Antall lag fiber			Tubboloo	1 lasttopp	
	Øvre skall	Nedre skall	skall [mm]	I. lasttopp [N]	FoS _{shear}
Gulv (AP15_1)	5	5	1,125	14 074,61	1,31
Gulv (AP15_2)	5	5	1,125	15 252,02	1,42
Gulv (AP16)	5	5	1,125	19 714,50	1,83

 Tabell 31
 Resultater utregnet i SES med verdier fra hhv. AP15_1, AP15_2 og AP16

4.6 Konklusjon om produksjonsmetode og testene

Originalt var det planlagt å støpe batterikassen ved vakuuminfusjon, men jeg fant raskt ut at dette ikke var veien å gå. Grunnen er at epoksysystemet fins i to varianter med to forskjellige herdere; en med 20 minutters geletid/arbeidstid, og en annen med 65 minutters geletid/arbeidstid. Resinen er den samme, og de oppgitte mekaniske egenskapene i databladene er Vi omtrentlig like. hadde bestilt epoksysystemet med den hurtigherdende herderen, og måtte derfor bestille opp epoksysystemet med den tregere herderen. På grunn av at dette epoksysystemet er beregnet for flyindustrien, var det ikke hyllevare hos vår leverandør. Det endte tilslutt bestilte opp med at jeg epoksysystemet fra England.

I og med at den første epoksyen hadde en arbeidstid på 20 minutter, stoppet gjennomtrekningen av epoksy gjennom fiberen opp før den nådde vakuumporten på motstående side under vakuuminfusjon. Dette gjorde at epoksyen ikke trakk gjennom hele det nedre skallet, og førte til mislykkede støp. Disse mislykkede støpene ble testet med varierende, men overraskende gode, resultater å vise til. Jeg fant da ut at doren i penetrasjonstesten komprimerte kjernen gjennom det øvre skallet og trakk det med seg nedover i prøven, til det nådde det nedre skallet med tørr fiber som også ble trukket med nedover. Disse penetrasjonsprøvene viste sammenliknende karakteristikk som man finner i for eksempel skuddsikre vester med aramid/kevlar hvor det ikke ble brudd på fiberen, og hvor de tørre fibrene bidro til motstanden mot penetrasjon. Jeg kom da frem til at det var ønskelig med en høyere vektfraksjon fiber enn vektfraksjon epoksy i testpanelene.

Vakuuminfusjon ble dermed skrinlagt og andre alternativer ble vurdert. Jeg endte opp med å væte fiberen på forhånd hvor jeg la tørrfiberen på arbeidsbordet. bredde epoksyen jevnt utover, og deretter brukte et rør/rulle til å presse epoksyen godt ned i fiberen slik at undersiden også ble gjennomtrukket. Den vætede fiberen ble deretter lagt på støpeformen. Metoden fungerte veldig bra, og sammen med epoksysystemet med 65 minutters arbeidstid ble støpene av veldig god kvalitet.

Gjennomsnittlige verdier utregnet av de testpanelene med god produksjonskvalitet, AP12-AP16 og AB01-AB02, følger i Tabell 32.

Gjennomsnittlige verdier av ett lag støpt fiber basert på AP12-AP16 og AB01-AB02				
Vektfraksjon fiber [%]	Tykkelse [mm]	Massetetthet $\begin{bmatrix} \mathbf{g} \\ \mathbf{cm}^3 \end{bmatrix}$		
58,0	0,227	1,526		

Tabell 32 Gjennomsnittlige verdier av ett lag støpt fiber basert på AP12-AP16 og AB01-AB02

For å forbedre kontrollen av mengde epoksy i skallene, vil det være bedre å væte fiberen i skallene direkte i støpeformen, se Figur 83. Da har man med seg all epoksyen man blander sammen til støpet, og det vil da ikke være noe som ligger igjen på arbeidsbordet hvor man vætet fiberen. Man vil da ha de eksakte tallene til sammenligning mellom støpene og til beregning av mengden epoksy man skal blande i forhold til vektfraksjon fiber i det ferdige støpet.

Det kan være vanskelig med denne produksjonsmetoden ved store tredimensjonale former, da tyngdekraften vil virke inn på hvor epoksyen ferdes. Ved tyktflytende epoksy vil denne problemstillingen være av mindre relevans.

Figur 83 Væting av fiberen i støpeformen

5 Produksjon av batterikassen

5.1 Om kapittelet

Dette kapittelet omtaler produksjonen av batterikassen og vil i tillegg fungere som overføringsskriv til neste års ansvarsperson for det mekaniske aspektet ved batteripakken. Jeg vil stegvis gå gjennom hvordan jeg lagde batterikassen og samtidig

5.2 Produksjon

Batterikassen skal støpes ved våtstøp med vakuumbagging, og jeg har med det begrenset hvordan produksjonen av batterikassen kan foregå. Batterikassen består av gulv, ytre vegger og indre vegger. Det vil være produksjonsmessig vanskelig å våtstøpe og vakuumbagge batterikassen med innvendige vegger, og jeg velger da å støpe gulv og ytre vegger som en enhet. Med denne grensebetingelsen er det to åpenbare muligheter for utformingen av støpeformen; enten innvendig støp eller utvendig støp. Hvilket av oppsettene man velger avhenger av hvilken side av støpet det er viktigst at har en fin overflate. Den siden av støpet som ligger mot støpeformen får en betydelig bedre overflate og utseende enn den siden som er ut mot vakuumbagen, såfremt man har gjort en god preparasjonsjobb støpeformen. med Batterikassens estetiske verdi er lite verdt utad da batteripakken er plassert inne i komme med kommentarer på hva som fungerte bra og hva som ikke fungerte bra. I kapittelets konklusjon vil jeg ta for meg produksjonsmetoden generelt og komme med tips til endringer av prosessen.

monocoquen. Viktigheten med at overflaten og toleransene er riktig på innsiden av batterikassen, der hvor modulene og komponentene skal monteres, er betydelig. Det kreves en stor jobb ved å tilpasse modulenes avstandsstykker, og denne jobben blir minst mulig med å ha en så eksakt innside i batterikassen som mulig. På bakgrunn av dette velger jeg å støpe batterikassen ved utvendig støp, m.a.o. at støpeformen er formet som innsiden av batterikassen.

Figur 84 Batterikassens støpeform

For at det skal være mulig å ta den ferdig støpte batterikassen av formen, må formen ha en slippvinkel. Hvis man konsentrert fokuserer på batterikassens utforming er slippvinkel noe som ikke er ønskelig da det innvendige tverrsnittet endrer seg ved funksjon av høyden på veggene. Dette er et kompromiss man må ta, da det er veldig ønskelig å kunne ta av den ferdig støpte batterikassen uten å ødelegge den. Med hensyn på å virke minimalt inn på utformingen er slippvinkelen på støpeformen 1 grad. Støpeformen lages i MDF, og av Figur 84 ser man at den består av 5 emner i tillegg til ei bunnplate. Dette er på grunn av at 3-aksefresen jeg brukte til å frese ut støpeformene hadde en maksimal skjærlengde på verktøyet lik 42 mm, og at MDF-platene var 40 mm tykke. MDF har Tg = 77-102 °C, og en maksimal brukstemperatur $T_{maks} = 120-140$ °C. CNC-fresen er av typen Datron® M8 (Figur 85), og er lokalisert i verkstedet ved Institutt for produktdesign. Freseprogrammene programmerte jeg i SolidWorks-integrerte SolidCam. Før støpeformen er klar til bruk må den gjennomgå mye bearbeiding. Emnene må

- limes sammen
- pusses og sparkles
- overflaten mettes med epoksy
- pusses og lakkes
- pusses og poleres i 3 steg
- behandles med middel som forsegler overflaten samt påføring av slippmiddel

Etter alle disse stegene ender man opp med resultatet presentert i Figur 86.

Figur 85 Datron® M8

Figur 86 Batterikassens støpeform klar for støp

Vi var fire personer som samarbeidet under produksjonen av batterikassen. To av oss vætet tørrfiberen på arbeidsbordet, mens de to andre la den vætede fiberen på støpeformen. Selv med en slik arbeidsfordeling brukte vi omkring en time på å væte og legge det indre skallet. Da vi la kjernematerialet oppå det uherdede indre skallet begynte vi å lure på om alt arbeidet kom til å være bortkastet. Det viste seg at det var omtrent null heft mellom den våte fiberen og kjernematerialet, og situasjonen ble ikke bedre av at det var like lite heft mot den våte fiberen vi la på utsiden av kjernematerialet. Dette hadde ikke vært et problem i det hele tatt under produksjonen av testpanelene, og viste at situasjonen ble totalt annerledes i det vi bevegde oss fra å støpe i to dimensjoner til å støpe i tre dimensjoner. Selv om situasjonen virket håpløs fortsatte vi arbeidet. Det ferdigherdete resultatet var over all forventning, og det var ikke spor av delaminasjon mot kjernematerialet i det hele tatt. Jeg antar den gode at vakuumbaggingen (Figur 87) var en stor bidragsyter til det ferdigherdede resultatet.

Batterikassens endelige lay-up er presentert i Tabell 33.

	Lay-up
Gulv	[5 lag / 5 mm kjerne/ 5 lag]
Lokk Vegger	[3 lag / 5 mm kjerne/ 3 lag]

Tabell 33 Lay-up av batterikassen

Av Figur 88 og Figur 89 ser man forskjellen på skallenes overflater i forhold til om de var mot støpeformen eller mot vakuumbagen.

Figur 87 Ferdig herdet batterikasse etter å ha vært i ovnen

Figur 88 Innsiden av batterikassen

Figur 89 Utsiden av batteriboksen

Lokkene og de indre veggene ble støpt for seg selv. En mulig produksjonsmåte av disse todimensjonale panelene kunne vært å støpe ei stor plate og deretter kutte ut lokkog veggprofilene. Dette ville resultert i åpne sidekanter på alle panelene. Det er derimot ønskelig å lukke inne kjernematerialet på grunn av den økte stivheten støpte paneler med lukkede kanter opplever samt å beskytte kjernematerialet mot fuktighet. Jeg gikk derfor i gang med å frese ut støpeformer til batterikassens gjenværende lokk og vegger (Figur 91, Figur 92, Figur 93 og Figur 94). Formene gikk deretter gjennom samme overflatebehandling som beskrevet om støpeformen til batteriboksen. De ferdigstøpte lokkene og veggene ble deretter kuttet til og slipt slik at de passet nedi batteriboksen. Veggene ble limt fast med det UL94 V-0-godkjente flammehemmende limet Araldite® 2033.

Figur 90 De støpte komponentene batterikassen består av

Figur 91 Støpeform til hovedlokk og hovedromvegg

Figur 92 Støpeform til indre vegger og forromvegg

Figur 93 Støpeform til forromlokk

Figur 94 Støpeform til topprom
5.3 Konklusjon om produksjon av batteripakken

Produksjonsmetoden med materialene som er beskrevet i denne oppgaven er en tungvint måte å støpe batterikassen på. Hvis det kun var en ting jeg skulle ha endret ved produksjonsprosessen og materialene, ville jeg ha brukt en karbonfibermatte som er pre-impregnert med epoksy (også kalt prepreg). Grunnen til at det ikke ble kjøpt inn pre-preg til batterikassen var for å spare penger. Pre-preg sparer den ansvarlige for masse arbeid, tid og frustrasjon. Pre-preg er mye enklere å håndtere og å legge, i tillegg til at man har god tid på seg. Det er mindre produksjonsmessige rom for og menneskelige feil, spesielt med at epoksyen er ferdigblandet og impregnert i fibermatten. Selv om det er dyrere i innkjøp enn tørrfiber og epoksy, kan man utnytte fiberduken bedre og det blir færre feilstøp. Man kan også vurdere andre støpemetoder som f. eks.

Jeg startet materialtestingen i starten av februar, noe som i teorien var i god tid før SESen skulle leveres til konkurransene. Da produksjonen av testpanelene utartet seg slik som beskrevet tidligere i denne oppgaven, gikk tida og det begynte å haste med å få på plass resultater fra prøvene. Jeg vil derfor anbefale neste års ansvarlige for batterikassen til å starte med materialtestingen så tidlig det lar seg gjøre.

Figur 95 Ferdig montert batteripakke

Figur 96 Batteripakken sett ovenfra uten lokk

Støpeformens utformingen kan løses på flere forskjellige måter. Jeg valgte en forholdsvis enkel løsning hvor støpeformen hadde 1 grad slippvinkel. For å unngå slippvinkel på støpeformen, må dens utforming planlegges nøye i tillegg til at det må være mulige å maskinere den. En støpeform bestående av flere deler med slippvinkel mellom støpeformdelene kan brukes for å få et ferdig støp med vinkelrette vegger. Da vil det ferdige støpet være så lik CAD og tekniske tegninger som det lar seg gjøre. Å ha en støpeform med flere deler er noe jeg ville ha vurdert dersom jeg skulle ha lagd formen på ny.

I masteroppgaven og i vedleggene er det mye data fra materialprøvene jeg har gjort, noe som gir et godt utgangspunkt for hvor man skal starte arbeidet med ei ny batterikasse. Utformingen av årets batterikasse er god, men kassens gulv kunne etter all sannsynlighet hatt ett lag mindre fiber på hver side av kjernematerialet. Her er det mulig å spare noe vekt. Dersom jeg skulle ha fortsatt med å utvikle neste års batteripakke ville jeg ha fortsatt å teste andre lay-uper av sandwichmaterialet og i tillegg sett på usymmetriske lay-uper. Kjernematerialet har stor innvirkning på de mekaniske egenskapene til komposittmaterialet, og dersom det er plass i monocoquen til ei batteripakke med

tykkere gulv og vegger ville jeg ha foretatt meg materialtester med forskjellige tykkelser av kjernematerialet. Tykkere kjerne øker stivheten betraktelig, og man kan da redusere mengde fiber.

Kjernematerialet i batteripakken er av Rohacell industrikvalitet. sin Dette materialet i seg selv oppfyller ikke kravene om flammebestandighet, men siden det er innkapslet i karbonfiber med disse egenskapene komposittmaterialet er godkjent ifølge reglene. Det fins mange andre typer kjernemateriale som aluminium og aramid, med forskjellige strukturer. Honeycomb er en mye brukt struktur, og burde vært testet som kjernemateriale i batteripakken. Disse kjernematerialene er i tillegg flammebestandige.

Figur 97 Batterikassen og dens moduler

Modulenes innfestning i batteripakken bør bli redesignet. Løsningen med å separere battericellene i modulbokser har vært brukt i samtlige av Revolve NTNUs elektriske racerbiler. Battericellene står direkte nede i modulboksene, som igjen står direkte nede på gulvet i batterikassen, som igjen står plassert rett på gulvet i monocoquen. Det er med andre ord lite vibrasjonsdemping av battericellene. Det er mye risting som foregår i en racerbil, og risting er noe battericellene er mindre glade. Jeg anbefaler derfor å utvikle et system som demper vibrasjonene, noe a la Sandvik Teeness sin løsning på vibrasjonsdempede verktøyholdere til blant annet dreiebenker.

Batterikassens kjølesystem bør også redesignes, og ha mer fokus på sjåførens sikkerhet. Dersom det skulle bryte ut brann i ei battericelle vil det ikke gå lange tiden før den antenner resten av battericellene. battericeller Brann i oppfører seg eksplosjonsartet, vil sende og ut stikkflammer. Det er med andre ord lite gunstig å ha hull i batterikassens lokk til kjøleluft (se Figur 95) da flammene fra en eksplosjonsartet brann søker etter raskeste vei ut, og vil her treffe brannveggen som er bak ryggen til sjåføren. Den minste designendringen som anbefales er å montere et flammeskjold som vil lede eventuelle stikkflammer en annen vei enn mot sjåføren. Vi utredet muligheten for flammeskjold tidligere i vår, men da var designet av bilen satt og det ville seg vanskelig å få montert flammeskjold på en god måte.

En lukket batteripakke uten luftkjøling med en sikkerhetsventil vendt bakover er det sikreste alternativet. Battericellene må da kjøles på en annen måte, som f. eks. væskekjøling. Et slikt kjølesystem kan øke kjølesystemets vekt drastisk, noe som er 'feil' vei å gå da vi er ute etter å bygge den letteste bilen vi får til.

I tillegg til dette delkapittelet vil en stor del av kompetanseoverføringen være i form av Excel-regnearkene jeg har skrevet om materialtestene og overslagene som er gjort der. Mye av dette ligger som vedlegg til oppgaven.

6 Konklusjon

Batteripakken har gått hele veien fra konseptfase, gjennom utallige iterasjoner, videre gjennom materialprøver og er nå et ferdig produkt. Den har allerede vært testet under testkjøring med årets bil, Gnist. Det er litt spesielt å ha vært med på den ferden et år i Revolve NTNU er, og nå stå med det ferdige produktet i hendene. Bilen, og batteripakken, vil testes mye i løpet av sommeren før konkurransene. Det er først etter en del testtid vi finner ut om alt virker slik det skal, og om battericellene har nok kjøling.

Slik resultatet er nå kan jeg si meg godt fornøyd med batteripakken.

Kompetanseoverføringen til neste års batteripakkeansvarlige vil skje fortløpende når stillingen blir satt, hvor denne masteroppgaven vil være en viktig brikke blant dokumentasjonen som overleveres. Batteripakkens største forbedringspotensialer er sikkerheten mot eventuelle stikkflammer og innfestningen av modulene og battericellene, to aspekter ved batteripakken det er verdt å komme opp med gode løsninger for.

7 Vedlegg

- Vedlegg 1 Risikovurdering
- Vedlegg 2 Testpaneler; prøveresultater
- Vedlegg 3 Testpaneler; mål og vekt
- Vedlegg 4 Testpaneler; volumfraksjon
- Vedlegg 5 Utregninger i SES
- Vedlegg 6 EV3.4.6&7 Accumulator Container
- Vedlegg 7 EV3.4.6j Alt Matl 3pt Bending
- Vedlegg 8 EV3.4.6j Alt Matl Shear
- Vedlegg 9 EV3.4.6j Alt Matl Summary
- Vedlegg 10 EV3.4.8&9 Acc Attachments
- Vedlegg 11 T3.32.3 T3.33.4 Guidance

8 Kilder

- http://www.fsaeonline.com/content/2016_FSAE_Rules.pdf
 FSAE 2016 rules. Hentet 09.01.16
- 2. http://www.gurit.com/guide-to-composites.aspx "Guide to Composites", Gurit
- 3. http://www.hexcel.com/resources/technology-manuals "Honeycomb Sandwich Design Technology", "Prepreg Technology", "Honeycomb Attributes and Properties", *Hexcel*
- 4. http://www.revolve.no/about-us/ Hentet 06.03.16
- 5. https://www.fsaeonline.com Hentet 06.03.16
- 6. https://en.wikipedia.org/wiki/Formula_SAE Hentet 06.03.16
- 7. https://no.wikipedia.org/wiki/Revolve_NTNU Hentet 06.03.16
- 8. CES Edupack materialdatabase
- Callister, W. D. jr., Rethwisch, D. G. (2010). Materials Science and Engineering: An Introduction.

ID	7001	Status	Dato
Risikoområde	Risikovurdering: Helse, miljø og sikkerhet (HMS)	Opprettet	12.04.2016
Opprettet av	Kjetil Bru Loland	Vurdering startet	12.04.2016
Ansvarlig	Nils Petter Vedvik	Tiltak besluttet	12.04.2016
		Avsluttet	

Støping av testpaneler

Gyldig i perioden:

1/1/2016 - 7/31/2019

Sted:

3 - Gløshaugen / 307 - Verkstedteknisk / 1010 - 1. etasje / 104

Mål / hensikt

Støpe karbonfibertestpaneler til bruk i masteroppgaven.

Bakgrunn

Masteroppgave

Beskrivelse og avgrensninger

Forutsetninger, antakelser og forenklinger

[Ingen registreringer]

Vedlegg

[Ingen registreringer]

Referanser

[Ingen registreringer]

Norges teknisk-naturvitenskapelige universitet (NTNU)	Utskriftsdato:	Utskrift foretatt av:	Side:
Unntatt offentlighet jf. Offentlighetsloven § 14	12.04.2016	Kjetil Bru Loland	1/7

Oppsummering, resultat og endelig vurdering

I oppsummeringen presenteres en oversikt over farer og uønskede hendelser, samt resultat for det enkelte konsekvensområdet.

Farekilde:	Epoksy												
Uønsket hendelse:	Søle epoksy på hu	Søle epoksy på hud/tøy											
Konsekvensområde:	Helse Ytre miljø		Risiko før tiltak: 🥚 Risiko etter tiltak: 🔵 Risiko før tiltak: 🔵 Risiko etter tiltak: 🔵										
Risikoreduserende ti	iltak	Ansvarlig	Registrert	Frist	Status								
Personlig verneutstyr		Kjetil Bru Loland	12.04.2016	12.04.2016	Til behandling								
Vønsket hendelse:	Puste inn gasser f	ra epoksy											
Konsekvensområde:	Helse		Risiko før tilta	ık: 😑 Risiko e	etter tiltak: 🔵								
Risikoreduserende ti	iltak	Ansvarlig	Registrert	Frist	Status								
Personlig verneutstyr		Kjetil Bru Loland	12.04.2016	12.04.2016	Til behandling								

Endelig vurdering

Så lenge personene involvert bruker verneutstyr og følger retningslinjene, er det ikke noe problem å arbeide med karbonfiber og epoksy

Oversikt involverte enheter og personell

En risikovurdering kan gjelde for en, eller flere enheter i organisasjonen. Denne oversikten presenterer involverte enheter og personell for gjeldende risikovurdering.

Enhet /-er risikovurderingen omfatter

- Institutt for produktutvikling og materialer

Deltakere

Kjetil Bru Loland

Lesere

[Ingen registreringer]

Andre involverte/interessenter

[Ingen registreringer]

Følgende akseptkriterier er besluttet for risikoområdet Risikovurdering: Helse, miljø og sikkerhet (HMS):

Helse	Materielle verdier	Omdømme	Ytre miljø
			_

Oversikt over eksisterende, relevante tiltak som er hensyntatt i risikovurderingen

I tabellen under presenteres eksisterende tiltak som er hensyntatt ved vurdering av sannsynlighet og konsekvens for aktuelle uønskede hendelser.

Farekilde	Uønsket hendelse	Tiltak hensyntatt ved vurdering				
Epoksy	Søle epoksy på hud/tøy	Personlig verneutstyr				
	Søle epoksy på hud/tøy	Retningslinjer				
	Puste inn gasser fra epoksy	Personlig verneutstyr				
	Puste inn gasser fra epoksy	Avtrekkskap				
	Puste inn gasser fra epoksy	Retningslinjer				

Eksisterende og relevante tiltak med beskrivelse:

Personlig verneutstyr

Arbeidstøy Vernesko Hansker Briller Gassmaske

Avtrekkskap

Avtrekkskap ved blanding av epoksy Avtrekk i taket ved legging av fiber og epoksy

Retningslinjer

Følger gjeldende retningslinjer på laboratoriet

Risikoanalyse med vurdering av sannsynlighet og konsekvens

I denne delen av rapporten presenteres detaljer dokumentasjon av de farer, uønskede hendelser og årsaker som er vurdert. Innledningsvis oppsummeres farer med tilhørende uønskede hendelser som er tatt med i vurderingen.

Følgende farer og uønskede hendelser er vurdert i denne risikovurderingen:

- Epoksy
 - Søle epoksy på hud/tøy
 - Puste inn gasser fra epoksy

Oversikt over besluttede risikoreduserende tiltak med beskrivelse:

Personlig verneutstyr

Ved å bruke personlig verneutstyr unngår man farene med epoksy

Årsak: Uvøren omgang med epoksy

Beskrivelse:

Hvis man ikke passer på kan det fort skje at man søler epoksy på naken hud eller på arbeidstøyet

Samlet sannsynlighet vurdert for hendelsen: Sannsynlig (3)

Kommentar til vurdering av sannsynlighet:

Liten sannsynlighet dersom man følger gjeldene HMS-retningslinjer og bruker arbeidstøy og verneutstyr

Middels (2)

Vurdering av risiko for følgende konsekvensområde: Helse

Vurdert sannsynlighet	(felles for hendelsen):	Sannsynlig ((3)
vuluelt samisymighet	(Telles for Tierfueisen).	Sannsynny (ູ

Vurdert konsekvens:

Kommentar til vurdering av konsekvens:

Man kan utvikle eksem ved kontakt med epoksy

Epoksy/Puste inn gasser fra epoksy (uønsket hendelse)

Når man blander resin og herder utvikles det gasser

Årsak: Ugjennomtenkt blandingsprosess

Beskrivelse:

Dersom man ikke blander resin og herder inni avtrekksskap eller bruker gassmaske

Samlet sannsynlighet vurdert for hendelsen:

Ganske sannsynlig (4)

Kommentar til vurdering av sannsynlighet:

Hver gang man blander epoksy er det en mulighet for at man puster inn gassene fra epoksy. Derfor er det viktig å bruke gassmaske

Vurdering av risiko for følgende konsekvensområde: Helse

Vurdert konsekvens:

Kommentar til vurdering av konsekvens:

Man kan få skader ved lengre innånding av gassene fra epoksy

Middels (2)

- 1	1		
	-		
_	_	_	_

Oversikt over besluttede risikoreduserende tiltak:

Under presenteres en oversikt over risikoreduserende tiltak som skal bidra til å reduseres sannsynlighet og/eller konsekvens for uønskede hendelser.

• Personlig verneutstyr

Oversikt over besluttede risikoreduserende tiltak med beskrivelse:

Personlig verneutstyr

Ved å bruke personlig verneutstyr unngår man farene med epoksy

Tiltak besluttet av:	Kjetil Bru Loland
Ansvarlig for gjennomføring:	Kjetil Bru Loland
Frist for gjennomføring:	4/12/2016

Betil Bru Loland 13/4-16

2016-01-13 OUGROUDIT

Norges teknisk-naturvitenskapelige universitet (NTNU) Unntatt offentlighet jf. Offentlighetsloven § 14 Utskriftsdato:

12.04.2016

Utskrift foretatt av:

Kjetil Bru Loland

Side:

Vekt av prøve (g)	27,8	31,1	35,3	39,2	41,1	37,5	40,8	48,9	50,8	18,3	24,1	19,9	26,6	34,7	40,6	40,6	40,4	379,3	379,3	526,1
Kjerne, tørrvekt (g)	3,83	3,85	3,91	3,89	3,80	4,06	3,77	4,02	3,92	3,75	3,70	4,24	4,26	4,34	3,98	3,98	4,02	52,04	52,04	51,82
Areal av prøve (mm^2)	10201,31	10275,05	10437,31	10386,31	10145,80	10823,24	10064,18	10723,98	10457,02	10009,29	9854,53	11314,00	11360,46	11578,62	10601,91	10601,91	10711,12	138775,85	138775,85	138184,00
Tykkelse av prøve (mm)	6,50	6,84	7,28	7,71	7,70	6,82	7,20	7,63	7,94	5,92	6,45	5,85	6,33	6,72	7,34	7,34	7,32	6,42	6,42	7,38
Ytre skall (ant. lag)	3	4	ß	9	7	4	ß	9	7	2	c	2	c	4	5	ß	5	С	c	S
Kjerne	Rohacell IG-F 71, 5 mm																			
Indre skall (ant. lag)	3	4	ß	9	7	4	ß	9	7	2	Υ	2	Ω	4	ß	ß	ß	ო	Ω	IJ
	AP01	AP02	AP03	AP04	AP05	AP06	AP07	AP08	AP09	AP10	AP11	AP12	AP13	AP14	AP15_1	AP15_2	AP16	AB01_1	AB01_2	AB02

Vekt per lag støpt fiber (g)	Masse per areal støpt fiber (g/mm^2)	1 lag fiber, tørrvekt (g)	Vekt epoksy per lag (g)	Epoksy, total vekt (g)	Vektfraksjon (% fiber)
3,996	262000'0	2,040	1,955	11,7	0,511
3,406	0,000331	2,055	1,351	10,8	0,603
3,139	0,000301	2,087	1,051	10,5	0,665
2,942	0,000283	2,077	0,865	10,4	0,706
2,664	0,000263	2,029	0,635	8,9	0,762
4,180	0,000386	2,165	2,016	16,1	0,518
3,703	0,000368	2,013	1,690	16,9	0,544
3,740	0,000349	2,145	1,595	19,1	0,573
3,348	0,000320	2,091	1,257	17,6	0,625
3,637	0,000363	2,002	1,635	6,5	0,550
3,401	0,000345	1,971	1,430	8,6	0,580
3,914	0,000346	2,263	1,652	6,6	0,578
3,723	0,000328	2,272	1,451	8,7	0,610
3,795	0,000328	2,316	1,479	11,8	0,610
3,662	0,000345	2,120	1,542	15,4	0,579
3,662	0,000345	2,120	1,542	15,4	0,579
3,638	0,000340	2,142	1,496	15,0	0,589
54,543	0,000393	27,755	26,788	160,7	0,509
54,543	0,000393	27,755	26,788	160,7	0,509
47,428	0,000343	27,637	19,791	197,9	0,583

2. peak (N)	11136,909	10110,953	8106,314	9229,108	19044,453	17985,654	20030,229	19994,799	20880,979	7297,853	11964,480	7635,974	11078,454	15889,326	ı	23820,990	18937,564			
1. peak (mm)	6,177	6,345	6,811	7,510	8,272	6,812	6,747	7,277	8,526	5,499	6,303	6,134	11,171	7,721	7,447	4,504	7,700	25,40013	27,6819	26,91978
1. peak (N)	6322,589	6903,831	8368,228	10420,070	11313,081	9668,682	10798,025	12602,303	19099,020	5000,650	8421,118	6325,375	11280,740	15825,619	14074,614	15252,015	19714,498	2244,07959	2418,12915	3953,9729
Massetetthet av 1 lag støpt fiber (g/cm^3)	1,569	1,439	1,320	1,255	1,360	1,700	1,672	1,593	1,525	1,584	1,426	1,623	1,481	1,529	1,479	1,479	1,466	1,657	1,657	1,445
Volum av 1 lag støpt fiber (mm^3)	2546,077	2366,473	2377,096	2343,411	1958,501	2458,905	2214,119	2348,105	2195,974	2295,881	2385,618	2411,296	2513,502	2482,166	2475,545	2475,545	2482,302	32920,716	32920,716	32818,700
Tykkelse av 1 lag fiber (mm)	0,250	0,230	0,228	0,226	0,193	0,227	0,220	0,219	0,210	0,229	0,242	0,213	0,221	0,214	0,234	0,234	0,232	0,237	0,237	0,238

nm) 1. peak/tot. ant. lag	1054,265	862,979	836,823	868,339	808,077	1208,585	1079,803	1050,192	1364,216	1250,162	1403,520	1581,344	1880,123	1978,202	1407,461	1525,201	1971,450	374 013	403.022	205 207
Δforlengelse (n	3,614	2,588	2,583	1,781	2,482	2,093	1,840	1,845	0,690	5,323	2,016	1,699	0,788	0,770	I	2,967	0,775			
Δlast (N)	4811,320	3207,122	261,913	1190,962	7731,372	8316,973	9232,203	7392,496	1781,959	2297,203	3543,362	1310,599	202,286	63,707	I	8568,976	776,934			
2. peak (mm)	9,791	8,933	9,394	9,291	10,753	8,905	8,588	9,122	9,216	10,822	8,319	7,833	11,959	8,491	I	7,471	8,475			

Isnitt (mm)	c	4	0	1	C	2	C	ŝ	4	2	ß	2	6	2	4	2
Tykkelse, gjennom	6,50	6,84	7,28	7,71	7,70	6,82	7,20	7,63	26'2	5,92	6,45	5,85	6,33	6,72	7,34	7,32
Tykkelse 4 (mm)	6,40	6,75	7,19	7,82	7,71	6,81	7,24	7,70	8,00	5,97	6,54	5,90	6,30	6,77	7,40	7,32
Tykkelse 3 (mm)	6,40	6,83	7,44	7,73	7,80	6,78	7,18	7,53	7,98	5,88	6,37	5,90	6,33	6,71	7,33	7,35
Tykkelse 2 (mm)	6,53	6,77	7,36	7,61	7,43	6,86	7,25	7,55	7,87	5,90	6,40	5,82	6,37	6,66	7,33	7,27
Tykkelse 1 (mm)	6,66	7,02	7,12	7,67	7,87	6,82	7,13	7,73	7,91	5,92	6,50	5,79	6,31	6,72	7,28	7,33
Bredde, gjennomsnitt (mm)	101,17	100,67	102,37	101,08	102,77	104,23	98,83	103,57	101,96	100,26	99,22	105,41	105,61	107,14	104,09	103,19
Bredde 3 (mm)	101,49	101,06	102,48	100,80	101,89	103,41	97,69	105,39	100,41	100,35	90'66	105,36	105,51	106,62	104,13	102,22
Bredde 2 (mm)	101,01	100,00	101,32	100,28	102,93	104,23	99,54	103,56	102,35	100,17	99,38	105,66	105,41	107,39	104,02	103,00
Bredde 1 (mm)	101,01	100,95	103,30	102,16	103,49	105,06	99,25	101,75	103,12	100,25	99,22	105,20	105,90	107,40	104,13	104,34
Lengde, gjennomsnitt (mm)	100,83	102,07	101,96	102,75	98,72	103,84	101,84	103,55	102,56	99,84	99,32	107,34	107,57	108,07	101,85	103,80
Lengde 3 (mm)	101,20	101,32	101,29	103,82	97,30	104,00	102,89	103,42	100,78	100,40	99,22	108,51	107,79	108,19	101,96	104,12
Lengde 2 (mm)	100,86	102,05	102,63	102,58	98,92	103,01	101,56	103,50	102,50	99,62	99,74	106,79	107,54	108,13	101,71	103,79
Lengde 1 (mm)	100,44	102,83	101,96	101,86	99,95	104,50	101,06	103,72	104,40	99,49	00'66	106,71	107,39	107,90	101,88	103,50
Vekt (g)	27,8	31,1	35,3	39,2	41,1	37,5	40,8	48,9	50,8	18,3	24,1	19,9	26,6	34,7	40,6	40,4
Navn	AP01	AP02	AP03	AP04	AP05	AP06	AP07	AP08	AP09	AP10	AP11	AP12	AP13	AP14	AP15	AP16

Tykkelse, gjennomsnitt (mm)	6,42	7,38
Tykkelse 6 (mm)	6,55	7,54
Tykkelse 5 (mm)	6,56	7,45
Tykkelse 4 (mm)	6,26	7,33
Tykkelse 3 (mm)	6,20	7,29
Tykkelse 2 (mm)	6,47	7,34
Tykkelse 1 (mm)	6,50	7,30
Bredde, gjennomsnitt (mm)	277,24	276,00
Bredde 4 (mm)	275,15	277,00
Bredde 3 (mm)	279,00	276,50
Bredde 2 (mm)	277,30	276,00
Bredde 1 (mm)	277,50	274,50
Lengde, gjennomsnitt (mm)	500,57	500,67
Lengde 3 (mm)	501,20	498,50
Lengde 2 (mm)	501,00	502,50
Lengde 1 (mm)	499,50	501,00
Vekt (g)	379,3	526,1
Navn	AB01	AB02

AP12			
Vekt per lag Vekt, fiber Vekt, eneksy	3,914 g 2,263 g	Massetetthet, fibermatte Massetetthet, epoksy	1,00 g/cm^3 1,18 g/cm^3
Fibervektforhold	1,652 g 57,8 %	Volum, fiber Volum, epoksy	2,26 cm^3 1,40 cm^3
Epoksyvektforhold	42,2 %	Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,37 1,62
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	38,22 % 0,00 % 61,78 %
ΔP13			
Vekt per lag Vekt, fiber	3,723 g 2,272 g	Massetetthet, fibermatte Massetetthet, epoksy	1,00 g/cm^3 1,18 g/cm^3
Fibervektforhold	61,0 %	Volum, fiber Volum, epoksy	2,27 cm^3 1,23 cm^3
Epoksyvektforhold	39,0 %	Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,57 1,85
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	35,12 % 0,00 % 64,88 %
AD14			
Vekt per lag	3,795 g	Massetetthet, fibermatte	1,00 g/cm^3
Vekt, fiber Vekt, epoksy	2,316 g 1,479 g	Massetetthet, epoksy	1,18 g/cm^3
Fibervektforhold Epoksyvektforhold	61,0 % 39,0 %	Volum, epoksy	1,25 cm^3
		Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,57 1,85
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	35,12 % 0,00 % 64,88 %
AP15			
Vekt per lag Vekt, fiber Vekt, epoksy	3,662 g 2,120 g 1,542 g	Massetetthet, fibermatte Massetetthet, epoksy	1,00 g/cm^3 1,18 g/cm^3
Fibervektforhold Epoksvvektforhold	57,9 % 42.1 %	Volum, fiber Volum, epoksy	2,12 cm^3 1,31 cm^3
		Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,38 1,62
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	38,13 % 0,00 % 61,87 %
AP16			
Vekt per lag Vekt, fiber Vekt, epoksv	3,662 g 2,120 g 1.542 g	Massetetthet, fibermatte Massetetthet, epoksy	1,00 g/cm^3 1,18 g/cm^3
Fibervektforhold	57,9 %	Volum, fiber Volum, epoksy	2,12 cm^3 1,31 cm^3
εροκογνεκτιστησία	42,1 70	Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,38 1,62

		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	38,13 % 0,00 % 61,87 %
AB01			
Vekt per lag Vekt, fiber Vekt, epoksy	54,543 g 27,755 g 26,788 g	Massetetthet, fibermatte Massetetthet, epoksy	1,00 g/cm^3 1,18 g/cm^3
		Volum, fiber	27,76 cm^3
Fibervektforhold Epoksyvektforhold	50,9 % 49,1 %	Volum, epoksy	22,70 cm^3
		Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,04 1,22
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	44,99 % 0,00 % 55,01 %
AB02			
Vekt per lag Vekt, fiber Vekt, epoksy	47,428 g 27,637 g 19,791 g	Massetetthet, fibermatte Massetetthet, epoksy Volum, fiber	1,00 g/cm^3 1,18 g/cm^3 27.64 cm^3
Fibervektforhold Epoksyvektforhold	58,3 % 41,7 %	Volum, epoksy	16,77 cm^3
		Fiber/epoksy vektforhold Fiber/epoksy volumforhold	1,40 1,65
		Volumfraksjon, epoksy Volumfraksjon, void Volumfraksjon, fiber	37,77 % 0,00 % 62,23 %

Utregninger i «Structural Equivalency Spreadsheet»

Under følger utregningsformler som brukes i regneboken «Structural Equivalency Spreadsheet» med tilhørende nomenklatur. Utregningsformlene er ført under hver tilhørende overskrift til regnearkene.

Nomenclature

а	Gradient	N/mm_
$y_{\rm max, \ bending}$	Force at Panel Failure	[N]
${\cal Y}_{ m max,shear}$	Force at First Peak	[N]
l	Panel Support Span	[mm]
h	Panel Height	[mm]
b	Core Thickness	[mm]
t_1	Inner Skin Thickness	[mm]
<i>t</i> ₂	Outer Skin Thickness	[mm]
t _{steel}	Equivalent Steel Plate Thickness	[mm]
Ι	Second Moment of Area	$\left[mm^{4} \right]$
E	Skin Modulus of Elasticity	[GPa]
$\sigma_{_{ m UTS, composite}}$	UTS of Skins	[MPa]
$\sigma_{_{ m UTS,steel}}$	UTS of Steel	[MPa]
$\sigma_{ m shear,\ composite}$	Shear of Outer Skin	[MPa]
$\sigma_{_{ m shear, steel}}$	Shear of Steel	[MPa]

EV3.4.6j Alt Matl - 3pt Bending

(1.1)
$$\mathbf{I} = \frac{h^* \left(\left(b + t_1 + t_2 \right)^3 - \left(b^3 \right) \right)}{12}$$

(1.2)
$$\mathbf{E} = \frac{a^* l^3}{48^* \mathrm{I}} * 10^{-3}$$

(1.3)
$$\sigma_{\text{UTS}} = \frac{y_{\text{max, bending}} * l * \frac{1}{2} * (b + t_1 + t_2)}{4 * I}$$

EV3.4.6j Alt Matl - Shear

(1.4)
$$\sigma_{\text{Shear}} = \frac{y_{\text{max, shear}}}{\pi * 25 * t_1}$$

EV3.4.6j Alt Matl - Summary

(1.5)
$$A_{\text{composite}} = (t_1 + t_2)^* h$$

(1.6)
$$\sigma_{\text{UTS}[N]} = A^* \sigma_{\text{UTS}[Pa]}$$

Safety Factors

(1.7)
$$\operatorname{FoS}_{\operatorname{tension}} = \frac{\left(A^* \sigma_{\operatorname{UTS}[\operatorname{Pa}]}\right)_{\operatorname{composite}}}{\left(A^* \sigma_{\operatorname{UTS}[\operatorname{Pa}]}\right)_{\operatorname{steel}}} = \frac{\sigma_{\operatorname{UTS}[\operatorname{N}], \operatorname{composite}}}{\sigma_{\operatorname{UTS}[\operatorname{N}], \operatorname{steel}}}$$

(1.8)
$$\operatorname{FoS}_{\text{bending}} = \frac{\left(b + t_1 + t_2\right)^3 * E_{\text{composite}}}{\left(t_{\text{steel}}\right)^3 * E_{\text{steel}}}$$

(1.9)
$$\operatorname{FoS}_{\operatorname{shear}} = \frac{(t_1 + t_2)^* \sigma_{\operatorname{shear, composite}}}{t_{\operatorname{steel}}^* \sigma_{\operatorname{shear, steel}}}$$

Please use this sh	neet to prove your accumu	lator contain	ner design complies with Rule EV3.4.6/7
Floor Material		Other	
Thickness (mm)		7,25	Proof of Equivalency Required
Width (mm)		339	
External Vertical V	Vall Material	Other	
Thickness (mm)		6,35	Proof of Equivalency Required
Height (mm)		170,75	
Internal Vertical W	/all Material	Other	
Thickness (mm)		6,35	Proof of Equivalency Required
Height (mm)		130	
Cover Mat.		Other	
Thickness (mm)		6,35	Proof of Equivalency Required
Width (mm)	(1)	339	
Segment 1 Mass	(kg)	0-10	2 M6 fasteners required between vert. walls
Segment 2 Mass ((kg)	0-10	2 M6 fasteners required between vert. walls
Segment 3 Mass	(Kg)	0-10	2 M6 fasteners required between vert. walls
Segment 4 Mass	(Kg)	0-10	2 M6 fasteners required between vert. walls
Segment 5 Mass	(Kg)	0-10	2 M6 fasteners required between vert. walls
Enter annot	ated images/drawings bel	low showing	your design complies with all requirements of EV3.4.6
EV3.4.6 a)	thicknesses of steel or al	Iuminium.	naterial has been proved equivalent to the required
EV3.4.6 b)	Perimeter vertical wall th proved equivalent to the	ickness are (required thic	6,35 mm. Perimeter vertical wall material has been knesses of steel or aluminium.
EV3.4.6 c)	Internal vertical wall thick equivalent to the required 130,00 mm in height, and (130/170,75)*100 = 76,1	thess are 6,3 d thicknesse d the externa %	35 mm. Internal vertical wall material has been proved s of steel or aluminium. The internal walls are al perimeter walls are 170,75 mm in height.
EV3.4.6 d)	Cover and lid thickness a the required thicknesses	are 6,35 mm of steel or a	. Cover and lid material has been proved equivalent to luminium.
EV3.4.6 e)	The accumulator contain section contains four bat 3,3 kg * 4 = 13,2 kg	er are divide tery cell segi	ed into three sections by two internal vertical walls. Each ments, each weighing approximately 3,3 kg.
EV3.4.6 f)	We wish to glue the inter equivalency to the welde Ticket-ID: R-001426. The supplier of composite ma	nal vertical v d/fastened jo e glue equiva	valls to the casing. This is permitted if proven by bint, referring to the FAQ by Terje Mork of Revolve NTNU, alency test of Araldite 2033 has been conducted by our blue, with a cohesive fracture at 19,29 MPa
EV3.4.6 g)			gide, with a conesive fracture at 13,23 will a.
EV3.4.6 h)	No fasteners of this type	are utilized i	n the assembly.
EV3.4.6 i)	The lid are fastened with is glued to the accumular The lid have three fasten each segment, and one to The front cover/lid are fa Even though the lid have The front room/apartmen	bolts screwe tor lid bracke lers in front, to either side stened as if a horisontal ht have four p	ed through holes in the lid into brackets where a nut et. The brackets will be glued to the inside of the casing. one for each section, three on the back, one for e, as the side only borders to a single section. it was bordering a section, for good engineering practice. I part, an angular part, and a vertical part, we treat it as a lid. perimeter walls, allowing four fasteners to the casing.
EV3.4.6 j)	CFRP is used as an alter	rnative mate	rial. See appropriate SES-sections for proof of equivalency.

Enter proof of compliance with EV3.4.7 below

The battery cells are stacked inside battery cell segment containers. Each of these containers are secured in place in all three directions with 3D-printed spacers in PLA. PLA has a compressive strength of 66 N/mm². Longitudinally and sideways there are spacers between segments, and between segments and walls. The segments are placed directly on the floor inside the accumulator container (fixed in negative z-direction). In positive z-direction they are secured with 3D-printed spacers in PLA.

The segments will in an acceleration excert a force on the separators. Through contact area of separators in the direction of the acceleration, we have calculated the compression the separators are subject to.

Area side (equal left and right side): 14 * 10 mm² = 140 mm²

Fy = 40*(3,3 kg*2) = 2590 N Fz = 20*3,3 kg = 648 N

Compressive stresses induced in separators: sigma-x = 2590 N/120 mm^2= 21,6 N/mm^2 < 66 N/mm^2 (PLA) sigma-y = 2590 N/140 mm² = 18,5 N/mm² < 66 N/mm² (PLA) sigma-z = 648 N/408 mm² = 1,6 N/mm² < 66 N/mm² (PLA)

Load

FSAE[™] SES - EV3.4.6j SHEAR TEST RESULTS - FLOOR

FSAE[™] SES - EV3.4.6j SHEAR TEST RESULTS - EXT WALLS

FSAE[™] SES - EV3.4.6j SHEAR TEST RESULTS - INT WALLS

FSAE[™] SES - EV3.4.6j SHEAR TEST RESULTS - COVER

Alternative Material Proof of Equivalency

Material Property	Baseline Floor	Your Floor	Baseline Ext. Wall	Your Ext. Wall	Baseline Int. Wall	Your Ext Wall	Baseline Cover	Your Cover
Material type	Steel	Composite	Steel	Composite	Steel	Composite	Steel	Composite
Material name /grade	Steel	Your Floor	Steel	Your Ext. Walls	Steel	Your Int. Walls	Steel	Your Cover
Youngs Modulus, E	2,00E+11	5,14E+10	2,00E+11	5,94E+10	2,00E+11	5,90E+10	2,00E+11	5,94E+10
Yield strength, Pa	3,05E+08	2,76E+08	3,05E+08	2,89E+08	3,05E+08	2,89E+08	3,05E+08	2,89E+08
UTS, Pa	3,65E+08	2,76E+08	3,65E+08	2,89E+08	3,65E+08	2,89E+08	3,65E+08	2,89E+08
Yield strength, welded, Pa	1,80E+08	N/A	1,80E+08	N/A	1,80E+08	N/A	1,80E+08	N/A
UTS welded, Pa	3,00E+08	N/A	3,00E+08	N/A	3,00E+08	N/A	3,00E+08	N/A
UTS shear, Pa	2,19E+08	2,22E+08	2,19E+08	2,13E+08	2,19E+08	2,13E+08	2,19E+08	2,13E+08
Thickness of panel, mm	1,25	7,25	0'0	6,35	0,9	6,35	6'0	6,35
Thickness of inner skin, mm	N/A	1,125	N/A	0,675	N/A	0,675	N/N	0,675
Thickness of outer skin, mm	N/A	1,125	N/A	0,675	N/A	0,675	N/A	0,675
Panel height/width,mm	339	339	170,75	170,75	130	130	339	339
l, m^4	5,518E-11	7,23421E-09	1,037E-11	1,865E-09	7,898E-12	1,420E-09	2,059E-11	3,702E-09
E	1,10E+01	3,72E+02	2,07E+00	1,11E+02	1,58E+00	8,37E+01	4,12E+00	2,20E+02
Area, mm^2	423,75	762,75	153,675	230,5125	117	175,5	305,1	457,65
UTS, N	1,55E+05	2,11E+05	5,61E+04	6,66E+04	- 4,27E+04	5,07E+04	1,11E+05	1,32E+05

Safety Factors				
Tension	1,36	1,19	1,19	1,19
Bending	9867,18	104,36	103,58	104,36
Shear	1,83	1,46	1,46	1,46
	PASS	PASS	PASS	PASS

CAD Screenshots / Images proving all panel thicknesses and any additional proof must be appended below EV3.4.6 a) Floor thickness:

EV3.4.6. i) Lay-out of fasteners

Glue area, lid brakcet: 196 mm^2

The force needed to withstand: 12 segments * 3,3 kg * 9,81 * 20g = 7769,52 N

Lap shear strength of Araldite 2033: LSS, Araldite 2033 = 19,29 N/mm^2 The force 1 accumulator container lid bracket is able to withstand: (19,29 N/mm^2) / (196 mm^2) = 3780,84 N

There is 8 lid brackets. The total force they can withstand is: 8 pcs * 3780,84 N = 30246,72 N > 7769,52 N

Factor of safety: (30246,72 N) / (7769,52 N) = 3,89

Accumulator Attachments

Insert images of each attachment point & calculations proving the required properties:

Each of the following must be proved:

The attachment of any brackets to the container is as at least as strong as 20kN x the number of fasteners per bracket If brackets are bolted to the container, that there is sufficient shear area under the head of the bolts/washers so the perimeter shear strength is >=20kN x the number of fasteners per bracket For monocoques, that each attachment point has >=20kN x the number of fasteners per bracket in any direction (please see the Comp IAD attachment calcs for an example)

The rear facing pannel of the batterypack is glued to the back wall. This glued connection shows equivvalency for 6 x M8 bolts

Strength of adhesive

From the datasheet the glue has a bondingstrength of 40,5 Mpa

40 x 9,81 x 45kg / 44917,73 mm[^]2 = 0,39 N/mm[^]2

Total strength of bolts:

6 x (640x36,6) = 140544N

40544 / 44917,73 = 3,13 N/mm^A3

Safetyfactor = 12,94

The back wall of the monocoque is then bolted to the primay struckture by 6 x 8,8 M8 bolts. <u>These bolts are fastened with special made nuts which have an integrated backingplate.</u>

The special made nuts have been prooven to be strong enough to take the 20kN

The brackets in the front of the accumulator are "self centering", and stopps the battery from moving in every direction except -x The braket on the accumulator containor are bolted with two M8 8,8 bolts

The front brackets wil have backingplates

Backing plate material: 2.2 mm Carbon fiber plates Skin shear strength = 211 MPa (from MH brace attachment shear test) Skin UTS = 521 MPa (from accumulator casing 3-pt bending test) Please note that we do not intend to use the same prepreg as the accumulator casing for the backing plates, but we expect that the behavior will be the same or better in a 3-pt bending test since the shear test results are superior, indicating better ILSS properties of the resin matrix.

Normal force [N/mm] Shear force [N/mm]

2mm steel plate 2,2mm CF plate 730 1148,2 438

-> 2.2 mm CF plates are equivalent in normal force and shear force.

For in-plane strength calculations, it is assumed that there is compression in the laminate front of the backing plate and tension behind.

When entering peak loads please ensure they are in accordance with the image below:

Note: If the first peak is higher than the second then it can be used for the punch through strength requirement.

