
Robotic welding of Tubes with Correction
from 3D Vision and Force Control

Simen Hagen Bredvold

Master of Science in Mechanical Engineering

Supervisor: Olav Egeland, IPK

Department of Production and Quality Engineering

Submission date: June 2016

Norwegian University of Science and Technology

i

Preface

This Master’s thesis is written as part of the five year Master program at the Department of

Production and Quality Engineering. It was conducted during the spring semester 2016 from

January to June. The Department of Production and Quality Engineering, with its Automation

Department, provided for both facilities and a Master’s supervisor, Olav Egeland.

After requests from the maritime industry, a pre-project concluded solutions to how one can

handle and weld tubes together. Faced with the problem of tubes having an unknown run-out

the tube handling was not possible to fit-up. This gave rise to the Master’s thesis of using 3D-

vision and force control to correct for positioning error and prevent re-programing.

Trondheim, 2016-06-10

Simen Hagen Bredvold

ii

Acknowledgment

I would like to thank my supervisor, Olav Egeland, for providing me with a meaningful Master’s

thesis and for guidance. The workshop employees have been very helpful in making the robot

grippers and equipment used for this Master’s thesis. Thank you for the help!

Also, I would thank the department for over the last years expanding the robotics lab, to

provide the students with hands on experience working with robots.

Last, I would like to thanks the other students at the department for the academically coop-

eration and my girlfriend Marie Bjørnsgaard for supporting me throughout the semester.

S.HB.

iii

Summary

The maritime industry are using steel tubes in both ship building and in the aquaculture in-

dustry. To keep labor cost down and to increase quality they want to expand their expertise in

robotic welding to manufacture their products domestically. For this reason have the industry

turned to NTNU and asked if their students could look into the handling and welding of tubes.

This Master’s thesis, on a general request from the maritime industry, have focused on how one

can utilize a robot cell to handle and weld tubes with run-out together.

The approach to this thesis have been to use 3D computer vision and force control to cor-

rect for tube run-out by finding its error in position and orientation. To solve this the field of

computer vision have been studied and presented, including various algorithms for data acqui-

sition, filtering and object registration. For the later, Random sample consensus, Iterative Closest

Point, SAmple Consensus Initial Alignment and a new method for aligning translation called

Search Method are tested against the strict alignment precision required for welding. For safety

of the robots, a Matlab application was developed to simulate the new poses generated by the

alignment algorithms.

The solution was implemented in the robot cell at the Department of Production and Quality

Engineering NTNU utilizing a Kinect 3D-camera for data acquisition and four KUKA robots for

handling and welding. The new poses were obtained and given to the robots using C++, Point

Cloud Library and the establishment of a client-to-server connection in Java which made it pos-

sible to control the robots using a remote computer. With a series of tests, each of the align-

ment algorithms were tested for precision and quality. The tests reviled that only the Search

Method algorithm was good enough to align position for welding. The solution and its results

led to the success of welding together tubes of different lengths and unknown run-out without

re-programing the robots.

iv

Sammendrag

Maritimindustrien bruker stålrør i både skipsbygging og i akvakulturindustrien. For å holde

arbeidskostnadene nede og øke kvaliteten ønsker de å utvide deres kompetanse innenfor robo-

tisert sveising, slik at de kan produsere deres produkter innenlands. På dette grunnlaget har

industrien kontaktet NTNU og spurt om deres studenter kan utforske bruken av roboter til sveis-

ing og håndtering av rør. Denne masteroppgaven har med dette ønsket fra maritimindustrien

utforsket hvordan en robotcelle kan utnyttes til å sveise sammen rør med radielt kast.

Tilnærmingen til denne oppgaven har vært å bruke 3D datasyn og kraftkontroll for korriger-

ing av rørkast ved å finne feilen i rørets orienteringen og posisjonen. Fagomerådet datasyn har

derfor blitt studert og presentert i denne oppgaven. Dette inkluderer algoritmer for dataanskaf-

felses, datafiltrering og objektgjennkjennelse. For sistnevnte tema har «Random sample consen-

sus», «Iterative closest point», “SAmple Consensus Initial Alignment”, samt en nyutviklet metode

for translasjonjustering kalt «Search Method» blitt testet mot de strenge presisjonskravene for

sveising. For robotsikkerhet har en Matlab applikasjon blitt utviklet til å simulere de nye stillin-

gen generert av justeringsalgoritmene.

Løsningen ble implementert i robotcellen hos Instituttet for Produksjons og Kvalitetsteknikk

NTNU ved hjelp av et Kinect 3D-kamera for dataanskaffelse og fire KUKA-roboter for håndering

og sveising. De nye stillingene ble generert og gitt til robotene ved hjelp av C++ programmering

bibliotekene fra «Point Cloud Library» og ved etableringen av en klient-til-server kommukasjon

i Java som gjorde det mulig styre robotene fra en ekstern datamaskin. En serie med testing ble

gjennomført på hver algoritme for å utforske dens presisjon og kvalitet. Testene gjorde fast ved

at bare "Search Method"-algoritmen var god nok til å justere rørets posisjon slik at sveising var

mulig. Arbeidet og resultatene utført i denne masteroppgaven gjorde det mulig å sveise sammen

rør av ukjent lengde og kast.

Contents

Preface . i

Acknowledgment . ii

Summary and Conclusions . iii

Table of Contents viii

List of Tables ix

List of Figures xiv

Abbreviations xv

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Approach . 3

1.4 Structure of the Report . 4

2 Robot Kinematics 5

2.1 Denavit-Hartenberg parameter . 5

2.1.1 Setting up the local coordinate frame to each link 5

2.1.2 Deriving the Denavit-Hartenberg parameters for the KUKA 120 R2500 robot 6

2.2 Forward kinematics . 9

2.2.1 The Jacobian matrix . 9

2.3 Inverse Kinematics . 12

2.4 Joint Space Trajectory . 14

v

CONTENTS vi

2.5 General Transformation . 15

2.6 Roll, pitch, yaw-angles from transformation matrix 16

3 Computer Vision 18

3.1 Introduction . 18

3.2 Kinect . 19

3.2.1 Time Of Flight - Distance measurement . 20

3.2.2 Time Of Flight - Noise . 22

3.2.3 ToF - Noise in practicality . 23

3.2.4 Mapping coordinates from Kinect to robot . 24

3.3 Point Cloud Processing . 26

3.3.1 Passthrough filter . 27

3.3.2 Normal estimation . 27

3.3.3 Voxel Grid Down Sampling . 28

3.3.4 Random sample consensus . 30

3.3.5 Smoothing - Moving Least Squares . 33

3.4 Model a cylinder model . 34

3.4.1 Finding center axis of model cylinder in the camera coordinate system . . . 35

3.5 Alignment of cylinders . 35

3.5.1 SAmple Consensus Initial Alignment - SAC-IA 36

3.5.2 Iterative Closest Point - ICP . 39

3.5.3 RANSAC to align orientation . 40

3.6 Align position using Search Method . 43

3.6.1 Search Method together with RANSAC . 48

4 Setup And Robot Control 51

4.1 Robot Lab . 51

4.2 Offline Programming . 52

4.3 C++ application to align cylinders . 53

4.4 Communication application in Java . 58

4.5 Safety Program . 60

CONTENTS vii

4.6 Robotic welding of cylindrical objects . 62

4.6.1 Welding Programming and Parameters . 63

4.7 Robot programs . 65

4.7.1 Force Control . 66

4.8 Architecture of the process . 67

5 Results 71

5.1 Run-Out . 71

5.1.1 Fit-up without alignment . 72

5.2 Alignment results . 73

5.2.1 Alignment with SAC-IA and ICP . 73

5.2.2 Rotation using RANSAC . 76

5.2.3 Aligning position using Search Method . 78

5.2.4 Using the rotation from SAC-IA/ICP or RANSAC together with Search Method 83

6 Concluding Remarks 86

6.1 Discussion . 86

6.2 Conclusion . 87

6.3 Recommendations for Further Work . 88

Bibliography 90

A Source code 93

A.1 Matlab Safety Application . 93

A.2 Safety Application . 93

A.3 C++ Alignment application . 105

A.3.1 C++ Main source file . 105

A.3.2 C++ Functions source file . 134

A.3.3 C++ Functions header file . 145

A.4 Java code . 148

A.4.1 GUI Source code . 148

A.4.2 Class RobotConnection for reading/writing to robot 157

CONTENTS viii

A.4.3 RobotKR120, a subclass of RobotConnection, which declare methods used

to control the the left robot . 164

A.4.4 RobotKR240, a subclass of RobotConnection, which declare methods used

to control the the right robot . 168

B Digital Appendix 171

List of Tables

2.1 DH- parameters for KUKA 120 R2500 pro in meter. 7

2.2 Range of motion for each joint . 14

3.1 Positions recorded in the camera frame and the two robot frames to obtain the

transformation matrix maping between them. 26

3.2 Report mapping of the Point Cloud Processes. 27

3.3 Parameters found to estimate a cylinder using the RANSAC algorithm. 31

3.4 Data captured in each of the N intervals. The data represents the coordinate values

and normal vector in z direction of the point being the closest to the Kinect. 47

4.1 The libraries used in the C++ application. 54

4.2 Fronius TransSteel 5000 on KUKA robot description for figure 4.9. 62

4.3 The parameters for figure 4.10 . 64

4.4 Tasks for each application. 68

5.1 Aligning results using SAC-IA and ICP. 76

5.2 Orientation results for RANSAC. 77

5.3 Results using Search Method to align position for the two robots. 82

ix

List of Figures

2.1 Local coordiante system for each joint for the KUKA 120 R2500 robot 6

2.2 Axis data for KUKA 120 R2500. Figure taken from [1]. 7

2.3 Velocity in a single revolute joint . 10

2.4 Velocity of end-effector due to link i . 11

2.5 Two 3D coordinate frames O and C. C is rotated and translated with respect to O. . 16

3.1 The coordinate system for the Kinect. 19

3.2 Illustration of how the modulated light is emittet from a source and reflected by

the scene. 20

3.3 Emitted and reflected signal for Time of Flight technology. Figure from [8] 21

3.4 Distance between two adjacent pixels at different Z-values from the Kinect. Fig

from [31]. 23

3.5 Accuracy error distribution of Kinect for Windows v2. Fig from [31] 24

3.6 The robot frames {Or i g ht } and {Ole f t } and the camera frame {C }. 27

3.7 Normal vector for a cylinder. Figure taken from [20]. 29

3.8 A voxel and a voxel grid where the colored points are down sampled to the black

centroid. 29

3.9 A plane and a circle in that plane can be defined by three points. 31

3.10 The distance between a point and the center axis . 33

3.11 The yellow points are outliers and are removed from the data. Left side demon-

strates the boundaries describing a cylinder. Right side demonstrates a data set

captured by the Kinect where it is down sampled using RANSAC. 33

x

LIST OF FIGURES xi

3.12 The surface of a generic cylinder is mathematically represented by knowing the

axis and a starting point. 34

3.13 A created point cloud using parametric equations for the surface of a cylinder. . . . 35

3.14 The process of using FPFH for the SAC-AI alignment. 37

3.15 The influence region diagram for a Point Feature Histogram, figure from [7]. 38

3.16 The influence region diagram for Fast Point Feature Histogram using Simplified

Point Feature Histogram , figure from [7]. 38

3.17 The white points represents a cylinder which is aligned with the yellow target model. 40

3.18 Camera frame C, wanted frame W and cylinder frame K. 42

3.19 The setup of the right robot and the frames used in this thesis. 43

3.20 Points of interest in black and purple are used to represent Med g e while Ped g e is a

known position on the target model. 44

3.21 When searching for a roughly value for the end of a cylinder noise will falsifying

the results representing the actual end. This is the left cylinder where the edge has

a postive x-value. 45

3.22 The end of the cylinder is divided into interval of width δ. 46

3.23 The point on a cylinder with the smallest z-values have a normal vector of (0,0,-1). 47

3.24 When searching for a roughly value for the end of a cylinder noise will falsifying

the results representing the actual end. 49

3.25 The translation value of the tool center point along the approach axis of the robot

is found when the robots picks up its tube. 50

4.1 The coordinate system of the KUKA 120 R2500 robot. 52

4.2 A visualization of the lab containing the three robots and its CR4 controller used in

this thesis, the welding machine and the computer controlling the robots through

the PLC server. 52

4.3 Left side: Cross section of point cloud representing a cylinder with 10 pictures.

Right side: The same point cloud after down sampling using a rectangle sized voxel

grid. 55

LIST OF FIGURES xii

4.4 Left side represents a tube without voxel down sampling, while the right side is

down sampled. 56

4.5 Left side: Cross section of down sampled point cloud . Right side: The same point

cloud after smoothing using MLS. 57

4.6 The client-server model architecture between the robot running KUKAVARPROXY

and OpenShowVar. Figure from [14]. 59

4.7 The first picture on the left shows the pose for both robots when the C++ applica-

tion is running. The two picture in the middle shows configurations not satisfying

for welding, while the picture on the right side is good for welding. 62

4.8 The tubes are handled by the two KUKA KR120 robots and welded together by the

KUKA KR16-2 with its attached welding gun. The position of the Kinect is also

shown. 63

4.9 Fronius TransSteel 5000 welding machine connected with a KUKA robot. Figure

from [5] . 63

4.10 Weld joint parameter. Figure from [13] . 64

4.11 Communication architecture and pseudo code of how a sub-program with robotic

motions are started from a Remote Computer. 65

4.12 Communication architecture and pseudo code of how a new pose declared in a

FRAME type is passed to the controller and how the sub-program reads the FRAME

and moves to this pose in a linear motion. 66

4.13 The ATI omega 160 force/torque sensor placed on the robot end-effector measures

forces Fx , Fy , and Fz and torques Tx , Ty , and Tz . 67

4.14 Architecture of the process of obtaining a sufficiently good fit-up for two cylindri-

cal object to be able to weld them together. 69

4.15 The graphical user interface provided to the operator. Java control used to control

robots and auto operations, Matlab safety application for simulation and collision

testing and a visual stream of the scene including the point clouds representing

current and wanted pose. 70

LIST OF FIGURES xiii

5.1 The setup of how a dial gauge was utilized to measure the translation of the tube

in the z-axis of the robot. 71

5.2 x-axis showing the angle of rotation, while the y-axis represents the translation in

mm. 72

5.3 With colinear approach axis the two tubes exceeding the allowed tolerance for fit-

up before welding. 72

5.4 The box and cylinder used as test objects for the SAC-IA and ICP alignments algo-

rithm. 73

5.5 A noisy point cloud including a box is aligned with a target box using SAC-IA and

ICP. 74

5.6 Two different alignments done by ICP with the same fitness score. 75

5.7 The green point cloud represents the cylinder held by the robot. Blue is the align-

ment done by SAC-IA and the red point cloud is the alignment by ICP. 75

5.8 Fit-up results for alignment with orientation deviation. 77

5.9 The orientation error of 0.28◦ to align coordinates system are shown by aligning

the green point cloud with the target red point cloud. 78

5.10 The y and z values of the point being closest to the camera within the boundaries

of interval Ni . Also the z component of the unit normal vector is presnted in the

bottom graph. 79

5.11 The wanted point is not captured because of depth inaccuracy in the Kinect. This

results in a y,z and normal vector value which is not desirable for estimating Med g e 80

5.12 The wanted point is not captured because of depth noise in the Kinect. This results

in a y,z and normal vector value which is not desirable for estimating Med g e 81

5.13 The distance (internal misalignment) between two point in the XZ-plane. 81

5.14 The Search Method translation of two tubes in three different view points. The

resulting fit-up is presented in the lower right corner. 82

5.15 The alignment with only SAC-IA and ICP on yhe left side and with Search Method

correction on the right side. 83

5.16 The upper part shows two tubes being tilted by the robots while the bottom figure

shows the resulting fit-up using SAC-IA/ICP and Search Method. 84

LIST OF FIGURES xiv

5.17 Coordinate system defined by the orientation of the cylinder and its origin is placed

at Med g e . The red point cloud show the resulting alignment using RANSAC and

Search Method. 85

LIST OF FIGURES xv

Abbreviations

OLP = Offline Programming
TCP = Tool Center Point
SRC = General Source code file
RSL = Robot Scripting Language
DH = Denavit-Hartenberg
PLC = Programmable Logic Controller
PCL = Point Cloud Library
Java = Programming Language
CAD = Computer-aided design
C++ = Programming Language
SAC-IA = SAmple Consensus Initial Alignment
ICP = Iterative Closest Point
RANSAC = RANdom SAmple Consensus
Kinect = 3D Sensor
MLS = Moving Least Squared
ToF = Time-Of-Flight
RGB camera = Camera delivers the three basic

color components red, green, and blue
PCA = Principal Component Analysis
KR C4 = Robot Controller for KUKA robots
FPFH = Fast Point Feature Histograms
SPFH = Simplified Point Feature Histogram
I/O = Input/Output communication between an

information processing system
3DAutomate = 3D factory simulation solution

software
.txt = Text file
SDK = Software Development Kit from Microsoft
VTK = Visualization ToolKit
TCP/IP = End-to-End data communication
RPY-angles = Roll-Pitch-Yaw angles
pHRIWARE = physical Human-Robot Interaction

Workspace Analysis, Research and Evaluation
KUKA FRAME = Data type containing pose of robot
MAG = Metal Active Gas

Chapter 1

Introduction

1.1 Background

The Norwegian aquaculture has in the period between 2005-2014 had an annual production

increase of 6.5% and the government wants the aquaculture to be one of the industries to replace

the oil industry in the long run [33]. The Norwegian Minister of Fisheries, Per Sandberg said on

a press conference in January 2016 that he wants to speed up the technology development to

maintain the growth in the industry. One of the biggest problems the industry is facing today

is salmon louse which are becoming resistant to the current treatments. On of the measures to

reduce louse is to locate the fish cages in rougher sea to increase the flow rate of water going

through the cages, but this have been costly because the cages made of Polyethylene tubing

keeps tearing. For the cages to endure the Norwegian climate and rough sea they need to be

robust and rigid. This is the reason why companies like, Maritim Oppdrett AS, want to build the

cages using steel tubes.

Steel tubes are used in many different industries and accounts for 8% of all global steel ship-

ments according to the international trade center. One of the big consumer of steel tubes are

the oil industry which uses them for drilling casings, tubing to carry the oil or gas to the ground

surface, linepipe to transport the oil from well to the oil refinery etc. [21]. Falling oil prices the

recent years have decreased the demand for steel pipes in the oil industry leading to price de-

crease together with the excess steel making capacity and falling raw material prices [26]. This

have benefited the Norwegian shipping and aquaculture which uses steel tubes for their ships

1

CHAPTER 1. INTRODUCTION 2

and fish cages. Instead of outsourcing the production of these cages to industries abroad they

want manufacture them domestically. To be able to manufacture these metal cages in an eco-

nomically sustainable way many companies are looking for the utilization of robots to weld the

framework of the cages.

Problem Formulation

In order to help the maritime industry for the utilization of robotics technology and having a cost

and quality efficient production, the need for research and development in the field is required.

With the use of software, technology, expertise and the robot lab provided by the Department of

Production and Quality Engineering at NTNU, this master thesis will discuss how one can splice

two tubes together using robots, 3D-vision for position correction due to run-out in steel tubes

and force control to reduce contact forces.

1.2 Objectives

The main objectives of this Master’s thesis are:

1. Describe how the Kinect can be used as sensor for 3D-vision.

2. Describe how 3D-vision can be used to align cylinder position and orientation.

3. Use robot kinematics and Matlab to simulate the movements done by the two robots to

hold two cylinders together.

4. Present a solution for weldment of tubes with correction of its position and orientation

based on 3D-vision. Also, utilize force control to protect to robots when fitting up of tubes

because of inaccuracies when using 3D-vision.

5. Test the solution in the robot lab.

CHAPTER 1. INTRODUCTION 3

1.3 Approach

In this thesis both theoretical and practical challenges have be solved. Literature about robotics

and 3D-vision as well as numerous articles online have been studied to obtain the knowledge of

creating a good solution.

With no experience with C++ all the exercises for the course "TDT4102 - Procedural and

Object-Oriented Programming" was completed in the start of the semester to obtain the skills

needed to be able to develop an 3D-vision application. The Point Cloud Library forum have

been vividly used for discussion and learning about 3D perception topics.

Objective 1

General information about how the Kinect works is presented in chapter 3. In focus are the

properties of how the Kinect works as a camera suitable for 3D image acquisition using Time-

Of-Flight technology. The quality of captured scene is discussed by the means of noise and

depth inaccuracy.

Objective 2

It is presented in the same chapter 3 the processing steps required for using 3D data from the

Kinect for aligning cylindrical object. This includes how raw input data is filtered and the algo-

rithms used for alignment. For alignment SAC-IA, ICP, RANSAC and a self composed method

called Search Method are presented.

Objective 3

Section 4.5 presents the development of a safety program securing that the robots do not collide.

The application was developed in Matlab using the robot kinematics from chapter 2. Forward

and inverse kinematics, as well as joint space trajectory were used to simulate the robot motions.

CHAPTER 1. INTRODUCTION 4

Objective 4

Chapter 4 presentes the setup for the solution of utilizing 3D-vision, robots, force control and

the safety program from objective 3 for welding two tubes together. This includes the Java ap-

plication for controlling the robots, C++ application for 3D image acquisition and alignment

algorithms and all the blocks used to complete the solution.

Objective 5

Using what have been studied in objective 1-4 made it possible to test how the robots in the lab

could cooperate in welding two tubes together with the use of 3D-vision. In chapter 5 problems,

solutions and the results of the implementation are presented.

1.4 Structure of the Report

1. Chapter 2 presents the kinematics used to simulate the robot motions. Also, general trans-

formation matrix manipulation is covered.

2. Chapter 3 presents computer vision and how the Kinect together with point cloud pro-

cessing and algorithms can be used to align cylindrical objects.

3. Chapter 4 presents the setup of the solution, software and the equipment used to weld

two tubes together.

4. Chapter 5 presents the results from the final solution along with which algorithm worked

best for alignment.

5. Chapter 6 summarizes the thesis with a discussion, conclusion and improvements.

Chapter 2

Robot kinematic

In this thesis a safety program have been developed to protect the robots and its environment

against collisions. The collision detection uses robot kinematics to compute paths for the two

handling robots KUKA 120 R2500 pro. This chapter will cover the robot kinematics used in the

safety program.

2.1 Denavit-Hartenberg parameter

Denavit-Hartenberg uses four parameters to describe the pose of each link in the chain relative

to the pose of the preceding link. To relate the kinematic information of the robot component,

one attach a local coordinate frame to each link (i) at joint i+1 and then by following a standard

method of rules the DH-parameters can be found. The four parameters needed at each link(i)

are: link length ai, link offset di, link twist αi and joint angle θi.

2.1.1 Setting up the local coordinate frame to each link

Numbering of links starts from 0 for the immobile ground base link, to link n for the end-effector.

While numbering of joints starts from 1 for the first movable link and increases up to n per joint.

For the local coordinate frame to be determined, there are three rules to follow:

1. The zi-1 is axis of actuation of joint i.

2. Axis xi is set so it is perpendicular to and intersects zi-1.

5

CHAPTER 2. ROBOT KINEMATICS 6

3. Derive yi from xi and zi using the right-hand rule.

The KUKA 120 R2500 pro will have a local coordinate system described in figure 2.1.

Figure 2.1: Local coordiante system for each joint for the KUKA 120 R2500 robot

2.1.2 Deriving the Denavit-Hartenberg parameters for the KUKA 120 R2500

robot

Using the chain of local coordinate system derived in subsection 2.1.1 together with the robots

axis data found in figure 2.2, one can with a set of rules derive the DH- parameters. Rules of

deriving the DH-parameters:

1. ai is the distance from zi-1 to zi measured along xi

2. αi is the angle from zi-1 to zi measured about xi

3. di is the distance from xi-1 to xi measured along zi-1

4. θi is the angle between xi-1 about zi-1 to become parallel to xi

Using these rules, one obtain the DH-parameter found in table2.1.

*In joint 6 the link offset d6 is 0.215m, but the TCP is translated 0.228m along the z6 axis.

Also, the KUKA robots have an offset of -90◦ in joint q3.

CHAPTER 2. ROBOT KINEMATICS 7

Figure 2.2: Axis data for KUKA 120 R2500. Figure taken from [1].

Table 2.1: DH- parameters for KUKA 120 R2500 pro in meter.

Joint (i) θ d a α

1 q1 0.676 0.350 -90◦

2 q2 0 1.150 0
3 q3-90◦ 0 -0.041 -90◦

4 q4 1 0 90◦

5 q5 0 0 -90◦

6 q6 0.215+0.228* 0 90◦

Deriving transformation matrix using the DH-parameters

Every joint is given a local coordinate frame Bi . The necessary motion to transform from one

coordinate Bi to Bi−1 is represented as a product of four basic transformations using the DH-

parameters of link (i).

1. Rotate θi about zi

2. Translate along zi a distance of di to make x axis of the two coorinate frames colinear.

3. Translate along zi a distance of αi to bring the origin together.

4. Rotate αi about xi

The equations are presented below, respectively:

CHAPTER 2. ROBOT KINEMATICS 8

Rotz,θi =



cos(θi) −sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1

 (2.1)

Tr ansz,di =



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

 (2.2)

Tr ansx,αi =



1 0 0 αi

0 1 0 0

0 0 1 0

0 0 0 1

 (2.3)

Rotx,αi =



1 0 0 0

0 cos(αi) −sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1

 (2.4)

The product will give the transformation matrix between the two local coordinate frames.

i−1Ti = Rotz,θi ·Tr ansz,di ·Tr ansx,αi ·Tr ansx,αi (2.5)

i−1Ti =



cos(θi) −si n(θi) 0 ai

si n(θi) · cos(αi) cos(θi) · cos(αi) −si n(αi) −si n(αi) ·di

si n(θi) · si n(αi) cos(θi) · si n(αi) cos(αi) cos(αi) ·di

0 0 0 1

 (2.6)

CHAPTER 2. ROBOT KINEMATICS 9

2.2 Forward kinematics

Forward kinematics is the description of how one can find the coordinates (X Y Z) of the end-

effector in Cartesian space relative to the base frame if the joint configuration is known.

The position and orientation of the end-effector, relative to the base frame, is described by

the transformation matrix given in 2.7. Each term of the equation is taken from equation 2.6,

ranging i from 1 to 6, with its suitable DH-parameters 2.1:

0T6=0T1·1T2·2T3·3T4·4T5·5T6 (2.7)

The rotation matrix (R0
6) and origin (O0

6) to the end-effector from base is derived from the

transformation matrix 2.7:

0T6 =
 R0

6 O0
6

0 1

 (2.8)

O0
6(qi) =


Ox

Oy

Oz

 (2.9)

From joint space using equation 2.7 one can obtain where in Cartesian space the end-effector

is by using 2.9.

2.2.1 The Jacobian matrix

The Jacobian is a square matrix consisting of first-order partial derivatives of a vector-valued

function which among others connects the joint velocity to the end-effector velocity.

 V

ω

= J · q̇ (2.10)

For the kinematics in the thesis, only the linear velocity (V) with all revolute joints is of in-

terest.

CHAPTER 2. ROBOT KINEMATICS 10

Figure 2.3: Velocity in a single revolute joint

Finding the Jacobian matrix

The velocity of the end-effector for an 6 linked manipulator is simply Ȯ0
6. By using the chain

rule:

Ȯ0
6 =

6∑
i=1

∂O0
6

∂qi
q̇i (2.11)

Equation 2.11 is actually just another way of writing 2.10, so it is trivial to see that the ith

column in the Jacobian matrix can be denoted as:

Jvi =
∂O0

6

∂qi
(2.12)

If the manipulator only consist of revolute joint, then equation 2.12 equals:

Jvi = zi−1 × (On −Oi−1) (2.13)

Instead of proving the calculations from equation 2.12 to 2.13, it is easier to illustrates a

second interpretation of 2.13.

Velocity in a single revolute joint:

ω= q̇k

V = q̇k × r
(2.14)

Where k is the unit vector in z-direction (axis of actuation) and r is the vector between two

local coordinates frames 2.3.

CHAPTER 2. ROBOT KINEMATICS 11

For the motion of the end-effector due to link i, see figure 2.4. The equation 2.13 is described as:

r =On −Oi−1

ω= zi−1

Jvi =ω× r

⇒ Jvi = zi−1 ×On −Oi−1

(2.15)

Figure 2.4: Velocity of end-effector due to link i

Where zi−1 is the three first elements in column three in 0Ti :

z0 =


0

0

1



z1→5 = 0T1→5



◦ ◦ zx1→5 ◦
◦ ◦ zy1→5 ◦
◦ ◦ zz1→5 ◦
◦ ◦ ◦ ◦



(2.16)

CHAPTER 2. ROBOT KINEMATICS 12

On , in this case O6, equals the three first elements in column four in the transformation

matrix 0T6. While the Oi−1 equals:

O0 =


0

0

0



O1→5 = 0T1→5



◦ ◦ ◦ Ox1→5

◦ ◦ ◦ Oy1→5

◦ ◦ ◦ Oz1→5

◦ ◦ ◦ ◦



(2.17)

Inverse Jacobian matrix

To compute the joint velocities for a given tool point velocity, one need to invert the Jacobian.

q̇ = J−1 ·
 V

ω

 (2.18)

When taking the inverse of a matrix, one obtain a determinant which each element of the in-

verted matrix is divided by. If the determinant approaches zero, the inverse matrix approaches

infinite. This is called a singularity and it occurs when two axes of revolute joints become paral-

lel. Configurations that makes the determinant go to zero should be avoided.

2.3 Inverse Kinematics

In the opposite of forward kinematics, the inverse kinematics describes how to map the joint

space from cartesian space. There are numerous approaches to finding the joint space if the

end-effector coordinates are known. The one described in this thesis is called the Newton-

Raphson method [24]. The method is based on searching for the joint configuration that gives

the least error/residue between the wanted transformation matrix and the calculated one. The

algorithm for finding the joint configuration:

1. Guess an initial joint configuration, qk .

CHAPTER 2. ROBOT KINEMATICS 13

2. Using forward kinematics, determine the transformation matrix of the end-effector frame

for the guessed joint, Tk (qk).

3. From Tk (qk), derive the rotation matrix Rk (qk) and (Rd) from the desired transformation

matrix Td .

4. Find the deviation rotation matrix (R̃) between the current rotation matrix Rk (qk) and the

desired rotation matrix Rd (q) using the definition 2.19.

R̃ = {r̃i j }

R̃ = Rk RT
d

(2.19)

5. Find the Euler rotation vector ẽ corresponding to the deviation R̃ using 2.20

ẽ = 1

2


r̃32 − r̃23

r̃13 − r̃31

r̃21 − r̃12

 (2.20)

6. Find the position error ẽp .

Td = {di j }

Tk = {ki j }

ẽp =


d14 −kk 14

d24 −k24

d34 −k34


(2.21)

7. Use the inverse Jacobian matrix for the current configuration to find the joint change done

to get closer to Td .

CHAPTER 2. ROBOT KINEMATICS 14

e =



d14 −kk 14

d24 −k24

d34 −k34

r̃32 − r̃23

r̃13 − r̃31

r̃21 − r̃12


∂q = (Jk)−1 ·e

(2.22)

8. Set the new joint configuration to be:

qk = qk +∂q (2.23)

9. Begin at step two with the new joint configuration qk until ∂q goes to zero.

Also, the inverse kinematics should check if the wanted joint configuration is within the

range of motion for each joint. For the KUKA KR 120 R2500 pro the range of motion is given

in table 2.2.

Table 2.2: Range of motion for each joint
Axis Range of motion
1 +/- 185◦

2 -5◦ to -140◦

3 +155◦ to -120◦

4 +/-350◦

5 +/-125◦

6 +/-350◦

2.4 Joint Space Trajectory

Given a starting and ending joint configuration, obtaining the intermediate joint configuration

where time t is assumed to vary from 0 to 1 in m steps with separate joint space trajectory for

each joint. Using an additional set of constraint and a quintic polynomial it is possible to fully

determine the quintic trajectory space curve. The additional constraint are the starting and

CHAPTER 2. ROBOT KINEMATICS 15

ending joint velocity and acceleration which gives the six constraints fitted with the 5th order

quintic polynomial to obtain a smooth trajectory q(t) between the m via points. The quintic

polynomial for position q(t), velocity q̇(t) and acceleration q̈(t) are given in equation 2.24 with

the constraints q0, q1, ν0, ν1, a0 and a1.

q(t) = at 5 +bt 4 + ct 3 +d t 2 +et + f

q̇(t) = 5at 4 +4bt 3 +3ct 2 +2d t +e

q̈(t) = 20at 3 +12bt 2 +6ct +2d

(2.24)

The variables are obtained by equation 2.25.



0 0 0 0 0 1

1 1 1 1 1 1

0 0 0 0 1 0

5 4 3 2 1 0

0 0 0 2 0 0

20 12 6 2 0 0





a

b

c

d

e

f


=



q0

q1

ν0

ν1

a0

a1


(2.25)

2.5 General Transformation

Consider two coordinate systems, in this case the camera C(X,Y,Z) and robot 0(x,y,z), which are

employed to express the components of a vector r. There is always a transformation matrix T O
C

to map the components of r from the camera reference frame to the robot reference frame.

Or = T O
C Cr (2.26)

The unit vectors of C(X,Y,Z) along the axes of O(x,y,z) introduces the rotation matrix RO
C to

map the camera frame to the robot frame. Each row of RO
C is decomposition of a unit vector of

the camera frame in the local robot frame. The translation in T O
C is the distance the reference

frame C have been translated with respect to O. Figure 2.5 graphically presents how r can be

CHAPTER 2. ROBOT KINEMATICS 16

expressed in the O frame using the camera frame.

RO
C =


− ~rx −
− ~r y −
− ~rz −

 (2.27)

Figure 2.5: Two 3D coordinate frames O and C. C is rotated and translated with respect to O.

2.6 Roll, pitch, yaw-angles from transformation matrix

KUKA robots uses Z-Y-X Tait–Bryan angles (A,B,C), which is exactly the same as the often so

called roll-pitch-yaw (RPY) convention. A,B and C are the rotation about the Z,Y and X axis,

respectively. From a transformation matrix T , obtain the Tait–Bryan angles needed to assign

the angles of rotation in Cartesian coordinates to the robot. These are found from the rotation

matrix defined in 2.28 and the angles are denoted in equation 2.29,2.30 and 2.31.

CHAPTER 2. ROBOT KINEMATICS 17

T =
 R t

0 1

=



r11 r12 r13 x

r21 r22 r23 y

r31 r32 r33 z

0 0 0 1

 (2.28)

A = at an2(r21,r11) (2.29)

B = at an2(−r31,
√

r32
2 + r33

2) (2.30)

C = at an2(r32,r33) (2.31)

Chapter 3

Computer Vision

3.1 Introduction

Computer vision is a discipline of image understanding of a 3D scene from its 2D images using

the characteristics of the structures present in the scene. The goal of computer vision is to go

beyond the capabilities of human vision to model, replicate and analyse features of a scene

using computer vision algorithms and their software implementation. Doing this, computer

vision can be utilized in a wide range of applications areas as medicine, automation, security,

entertainment industry and for this thesis in robotics. Implementation of computer vision in

the field of robotics gives the rise to vision-based control of robots. Making the robots able to

see have improved industrial robotic systems to the level for them to be used in applications as

obstacles avoidance, assemble, visual serving, human robot interaction, safety, inspection etc.

While 2D imaging is most commonly used in machine vision, the use of 3D vision have its

benefits in robot vision because robots work in a three dimensional world. 3D imaging allows a

robot to sense variations in its physical environment and adapt accordingly, increasing flexibil-

ity, utility and velocity. Using 2D imaging for finding the pose of an object can be done with a

series of assumptions, but if these assumptions are not obtained there will be a miscalculation

of where the part is in space. This occurs if the objects size changes, if the object is moved closer

to the camera or tilted differently, giving the robotic system little flexibility to changes and er-

rors [10]. Hence, 3D imaging is chosen for this thesis because the objects used have a unknown

run-out and length.

18

CHAPTER 3. COMPUTER VISION 19

Existing sensor technologies for 3D image acquisition are, but not limited to, stereo vision,

stereo vision using structured light, laser profiler and time of flight sensors [29]. Microsoft has

created an advanced sensor input device called Kinect for its Xbox video gaming console which

uses a time-of-flight (ToF) camera and a RGB camera for 3D image acquisition. The low cost of

the Kinect, together with the open-source "Point Cloud Library" providing algorithms for data

processing and manipulation which have made the Kinect vastly used by amateurs and profes-

sionals in robotics applications. For these reasons, the author of this thesis have chosen the

technology of time-of-flight found in the new Kinect device to be the best option for correction

of offline-programed robot poses for the two handling robots.

3.2 Kinect

As the Kinect was introduced to the marked in November 2010 it became the fastest selling con-

sumer electronics device ever, selling 8 million units in its 60 first days [27]. Later on, in July

2011, Microsoft released a software development kit for Windows and just before in May 2010

the first version of the Point Cloud Library was released. This made the Kinect suitable for edu-

cational and industrial purposes, epically in the field of robotics.

The current version Kinect v2, hereinafter referred to as just Kinect, is using time of flight

sensors for its 3D image acquisition, capturing depths from 0.5m - 4.6m. It has a depth image

resolution of 512 x 424 pixels, meaning that it can create a 3D picture of the scene with 217088

points. Each point is represented in a coordinate system defined by the Kinect as in figure 3.1.

Figure 3.1: The coordinate system for the Kinect.

CHAPTER 3. COMPUTER VISION 20

3.2.1 Time Of Flight - Distance measurement

A Time Of Flight camera works by translating the phase delay between the emitted signal and

the reflected signal from the scene into distance. The phase delay can be measured using either

a light source which is pulsed or modulated by a continuous-wave. All the commercial ToF

cameras today has adopted the technology of illumination of modulated continuous waves. The

scene is illuminated by a infra-red signal Se (t) of amplitude Ae and modulated by a sinusoid of

frequency fmodul ated , equation 3.1 where t is time. Figure 3.2 illustrates how the infra-red signal

is emitted and reflected by the scene [8].

Se (t) = Ae [1+ si n(2Π f t) (3.1)

Figure 3.2: Illustration of how the modulated light is emittet from a source and reflected by the
scene.

The infra-red signal is reflected by the scene and is registered by a receiver positioned close

to the emitter. The received signal has an attenuated amplitude Ar because of energy absorption

associated with the reflection. The phase delay is denoted∆φ and Br is the ambient light, giving

the equation of interest 3.2. The emittetd and reflected signal are shown in figure 3.3.

Sr (t) = Ar [1+ si n(2Π f t +∆φ)]+Br (3.2)

The unknown variables Ar and Br are measured in volt, while the phase delay is just a num-

ber. The phase delay can be expressed by equation 3.3 and the distance is found by solving the

same equation with respect to distance ρ resulting in equation 3.10 where c is the speed of light.

CHAPTER 3. COMPUTER VISION 21

Figure 3.3: Emitted and reflected signal for Time of Flight technology. Figure from [8]

∆φ= 2Π f
2ρ

c
(3.3)

ρ = c

4Π f
∆φ (3.4)

The received signal is sampled four times per period of the modulating signal, meaning that the

sample frequency is four times fmodul ated . The three unknown values are estimated using the

four sampled values Sn
r in equation 3.5 and the algebraic manipulation from 3.5 to 3.6, 3.7 and

3.8 is described in [6] and [23].

(Ar ,Br ,∆φ) = ar g mi n
Ar ,Br ,∆φ

3∑
n=0

{Sn
r − [Ar si n(

π

2
n)+∆φ+Br]}

2
(3.5)

Ar =
√

(S0
r −S2

r)
2 + (S1

r −S3
r)

2

2
(3.6)

Br =
S0

r +S1
r +S2

r +S3
r

4
(3.7)

∆φ= arctan2(S0
r −S2

r ,S1
r −S3

r) (3.8)

The final distance is obtained combining 3.4 and 3.8.

CHAPTER 3. COMPUTER VISION 22

The above explanation with one emitter and one receiver only describes how to capture one

point of the scene. To capture all the points in a scene, the ToF technology use a Matricial ToF

camera. The Kinect is such a camera and these cameras uses several emitters providing an irra-

diation that is reflected back by the scene and collected by a multitude of receivers close to each

other. The receiver, also called the camera sensor, consist of a CCD/CMOS lock-in pixels ma-

trix that converts the received amount of light into a corresponding number of electrons. The

stronger the light signal exposed to a pixel, the larger amount of electrons are generated. The

amount of electrons is then converted into binary numbers, using A/D- conversion to measure

the voltage from each pixel.

3.2.2 Time Of Flight - Noise

In practice there are several noise generating factors which influence the accuracy of the mea-

sured distance that must be taken into account. Both the generation of sinusoid frequency

waves and the sampling of it are not ideal. Each of the four samples are done over a finite

time interval, generating a harmonic distortion when estimating the phase delay. This again

influences the accuracy of the measured distance.

Further, photon-shot noise is a phenomena caused by the nature of how light act [8]. If

you measure the collection of photons from an unvarying source for a set of time the amount

of photons will fluctuate around a mean value. This noise probability density function can be

approximated by a Gaussian standard deviation equation 3.9 .

σp = c

4π f mod ul ated
p

2

p
Br

Ar
(3.9)

The standard deviation clearly indicates that if the modulation frequency fmodul ated increase

the deviation will decrease, hence better accuracy. Furthermore, if the amplitude Ar of the re-

flected signal increases then the accuracy will do the same. The amplitude can vary due to

inconsistencies at surfaces with low infrared-light reflectivity or the emitted signal waves are at-

tenuated and scattered in the scene. Last, if the offset Br is decreased by the means of increasing

the interference by other sources of near-infrared light such as sunlight or other ToF cameras,

the resulting distance would be less accuracy.

CHAPTER 3. COMPUTER VISION 23

Saturation of the quantity of photons that the CCD/CMOS can collect is another noise gen-

erating problem. This happens if the camera is exposed to external IR illumination or reflection

from highly reflective objects like a mirror.

Finally, the last type of noise this thesis will cover is the phenomena of motion blur. Just as for

a standard camera, if the scene is in movement the result will be erroneous. The error is caused

because of lower frame rates, so the scene when using ToF cameras should stand perfectly still.

3.2.3 ToF - Noise in practicality

The article Evaluating and Improving the Depth Accuracy of Kinect for Windows v2 [31] pre-

formed at the University of Ottawa evaluate properties for the Kinect as depth accuracy and

depth resolution. To determine where the tubes in this project will be placed some of the rele-

vant results from the article will be presented here.

The depth accuracy was mapped by evaluating the true distance with the mean distance of

a planar surface measured by the Kinect. The results presented in figure 3.5 shows the accuracy

error distribution for a planar surface at 40 key points in the horizontal and vertical plane. The

results indicates that in the space between 0.5m -3.0m in Z-direction the accuracy is less than

2mm if kept inside the boundaries represented in figure 3.5.

Figure 3.4: Distance between two adjacent pixels at different Z-values from the Kinect. Fig from
[31].

Together with the best accuracy obtainable, it is also desirable to have the highest resolution

to get the best results possible. The further away an object is located from the Kinect, the fewer

points represents that object because of declining resolution. The results represented in figure

CHAPTER 3. COMPUTER VISION 24

Figure 3.5: Accuracy error distribution of Kinect for Windows v2. Fig from [31]

3.4 was obtain by measuring the distance between two adjacent pixels at different distances

from the Kinect. The further away from the Kinect, as expected the bigger the distance between

two pixels. Knowing this the edge of the tubes were located at a distance of 0.6m in front of the

camera.

3.2.4 Mapping coordinates from Kinect to robot

Using the general transformation described in section 2.5 the transformation matrix mapping

coordinates from the camera local frame to the robot global frame was obtained by the method

described below.

An object was attached to the end-effector of the robot and the position of the object was

recorded both in the robot and camera frame. The object was located in the camera field of view

and its position was recorded as the origin in both the camera frame and robot frame. The object

was then translated by jogging the robot along Y and Z in the robot frame while recording the

position of the object in both frames. The values are presented in table 3.1. With the positions

CHAPTER 3. COMPUTER VISION 25

presented in the table one can define a vector going from the origin two each point along Y

and Z by equation 3.10 where O is the origin and P the position along one of the axes and the

corresponding unit vector is defined by equation 3.11.

~OP = (x −x0, y − y0, z − z0) (3.10)

ÔP =
~OP∥∥ ~OP

∥∥ (3.11)

The unit vector for Y and Z for both robots in the camera frame are now defined, but the unit

vector for X is still undefined. The unit vector representing the X-axis (ÔX) is found by taking

the cross product between unit vector ÔY and ÔZ shown in equation 3.12. To make the defined

coordinate system accurate ÔX is crossed with ÔY to define a new ˆOZnew as in equation 3.13.

ÔX = ÔY ×ÔZ (3.12)

ˆOZnew = ÔX ×ÔY (3.13)

The unit vectors in the camera frame along the axis of the robot are used to derive the rotation

matrix between the two frames. Equation 2.27 from section 2.5 explains how each of the three

unit vectors are used to define the rows in the rotation matrix between camera and robot RC and

is presented in equation 3.14.

RC =


− ÔX −
− ÔY −
− ˆOZnew −

 (3.14)

Once the rotation matrix is obtained the translation between the two frames can be com-

puted. Given a coordinate vector r described in both the camera frame Cr and the robot frame

Or the translation between the two frames are obtained by equation 3.15.

CHAPTER 3. COMPUTER VISION 26

Table 3.1: Positions recorded in the camera frame and the two robot frames to obtain the trans-
formation matrix maping between them.

Right robot Left robot Camera right robot Camera left robot
x y z x y z x y z x y z

Origo 1193.75 1223.59 1353.08 1235.02 -1419.58 1422.66 -222.22 -49.41 811.01 124.27 10.13 842.59
Point along y 1193.75 1383.15 1353.06 1235.02 -1556.57 1422.66 60.65 -55.51 822.86 -15.06 12.70 836.36
Point Along z 1193.75 1223.59 1545.68 1235.02 -1419.58 1591.46 -217.91 144.37 808.76 126.72 180.57 838.77

t =


Or (x)−RO

C Cr (x)

Or (y)−RO
C Cr (y)

Or (z)−RO
C Cr (z)

 (3.15)

This method was executed for each robot with the values in table 3.1 giving the transforma-

tion matrices T r i g ht
C and T le f t

C in equation 3.16 and 3.17. The coordinate frames relative to each

other is presented in figure 3.6.

T r i g ht
c =



−0.0416 0.0125 0.9991 0.3749

0.9989 −0.0215 0.0418 1.4106

0.0222 0.9997 −0.0116 1.4168

0 0 0 1

 (3.16)

T le f t
c =



−0.0443 0.0230 0.9987 0.3988

0.9988 −0.0184 0.0447 −1.5812

0.0144 0.996 −0.0224 1.4296

0 0 0 1

 (3.17)

3.3 Point Cloud Processing

The depth image captured by the Kinect consist of 217088 points each presented by X,Y and

Z values creating a depth frame, called Point Cloud. For application purposes raw data from

the Kinect is not of much use alone, but with Point Cloud Processing one can with a toolbox of

algorithms transform raw and noisy data into useful information. A overview of the processes

of reducing data size and transforming a point cloud to useful data is presented in table 3.2.

CHAPTER 3. COMPUTER VISION 27

Figure 3.6: The robot frames {Or i g ht } and {Ol e f t } and the camera frame {C }.

Table 3.2: Report mapping of the Point Cloud Processes.

Subsection Point Cloud Process

3.3.1 Passthrough filter
3.3.2 Normal estimation

3.3.3
Voxel Grid Down
Sampling

3.3.4 Random Sample Consensus
3.3.5 Smoothing - Moving Least Squares

3.3.1 Passthrough filter

By define a volume of interest by setting minimum and maximum values on each axis an loop

runs through all the data points in the point cloud deleting all the points not satisfying the

boundary conditions. To increase the processing time for later algorithms this method can

greatly reduce the number of data points depending on the volume of the boundaries.

3.3.2 Normal estimation

Many algorithms used in point cloud processing needs the normal estimation of the surface

for computation. Given a geometric surface, the normal for a certain point is the vector being

perpendicular to the surface in that point. For computing a normal for a query point the neigh-

CHAPTER 3. COMPUTER VISION 28

boring points are used to describe the local surface feature. A popular method of estimating

surface normals is called principal component analysis (PCA) developed by Hoppe, H [17] in

1992.

For each point Pi a covariance matrix denoted C is analyzed for its eigenvectors and eigen-

values. A point Pi uses its k-nearest neighbours to compute the covariance matrix as in equation

3.18. p̄ is the 3D centroid from equation 3.22 of the k neighbours. The eigenvalues λ j and eigen-

vectors ~V j are computed analytically by equation 3.19. If two eigenvalues are close together and

one is significantly smaller, then the eigenvectors for the first two will define a plane and the

eigenvector with the smallest eigenvalue determines the normal to this plane. The plane allo-

cated with a point on a cylinder and its normal vector are shown in figure 3.7.

C = 1

k

k∑
i=1

(pi − p̄)(pi − p̄)T (3.18)

C ·~V j =λ j ·~V j , j ∈ {0,1,2} (3.19)

The PCA method makes the normal orientation ambiguous, either pointing inwards or out-

wards of the surface. This problem is solved by knowing the viewpoint Vp and that every normal

vector ~ni have to satisfy the equation given in 3.20. Figure 3.29 shows how a plane is fitted to a

point representing the surface of a cylinder and the normal to this plane is the normal for the

cylinder at that point.

~ni · (vp −pi) (3.20)

3.3.3 Voxel Grid Down Sampling

A voxel is a volume element, while a voxel grid is the composition of several voxels creating a grid

covering the entire scene. The volume of a voxel is defined by the leaf size which is a distance

measure in x,y and z. Every point representing the scene will be contained by a voxel and the

number of data points lying inside the boundary condition of that specific voxel will be reduced

by the means of being represented by the voxel centroid. The centroid of voxel i is defined by

equation 3.21 and the arithmetic mean values X,Y and Z representing the N points inside the

voxel are found using 3.22. Figure 3.8 shows how the colored points constrained by a voxel are

CHAPTER 3. COMPUTER VISION 29

Figure 3.7: Normal vector for a cylinder. Figure taken from [20].

down sampled to the black centroid and how voxel grid covers all the points in the scene.

Centr oi d i = (X̄i , Ȳi , Z̄i) (3.21)

X̄i = 1
N

N∑
i=1

Xi

Ȳi = 1
N

N∑
i=1

Yi

Z̄i = 1
N

N∑
i=1

Zi

(3.22)

Figure 3.8: A voxel and a voxel grid where the colored points are down sampled to the black
centroid.

CHAPTER 3. COMPUTER VISION 30

The leaf size allows the user to decide the resolution of the down sampled data. Small leaf

size results in a larger resolution because the number of voxel i.e centroids increase and the

distance between each centroid decrease.

3.3.4 Random sample consensus

The Random Sample Consensus (RANSAC) algorithm is an approach developed from within

the computer vision community to estimate parameters of a mathematical model from a set

of observed data which contains outliers. These parameters should mathematically describe

a model consisting of only inlier data. The estimation of parameters for a model is a learning

technique where a random subset containing minimal data is taken from the input data set [12].

Within a subset of data the parameters for the model are estimated. These parameters are then

tested against the rest of the data and given a score, namely the number of inliers fitting these

parameters. If the score of inliers is not big enough, new parameters are found from another

random data subset. This is repeated N times until the score of inliers are above an acceptable

level.

The number of iterations N is set high enough to ensure that the probability of at least one

of the sets of random subset does not include an outlier, which should be greater than P = 0.99.

Let u be the probability of selecting an inlier from the data set and v = 1 - u the probability

of selecting an outlier. The probability of all selected data m are inliers is um . This gives the

equality 3.23 and with some manipulation the equation 3.24.

1−p = (1−um)N (3.23)

N = log(1−p)

log(1− (1− v)m)
(3.24)

To define the parameters used in RANSAC the model of interest needs to be defined. If the

model can be mathematically defined such as for boxes, spheres, cones, cylinders, lines, planes

etc. then the RANSAC method can be used to estimate the parameters of the model together

with model specific algorithms [22]. For this thesis RANSAC is used to obtain the parameters for

a cylindrical model.

CHAPTER 3. COMPUTER VISION 31

Table 3.3: Parameters found to estimate a cylinder using the RANSAC algorithm.

Cylinder parameter found by RANSAC

Point on center axis defined by a X-value
Pointon center axis defined by a Y-value
Point on center axis defined by a Z-value

Center axis in X-direction
Center axis in Y-direction
Center axis in Z-direction

Radius of cylinder

Cylinder estimation algorithm

For a cylinder there are seven parameters of interest, listed in table 3.3, and they can be esti-

mated using the RANSAC criteria described in section 3.3.4 and the cylinder estimation algo-

rithm described below.

From a subset of data, randomly select three non collinear points P (xi , yi , zi). With the three

randomly selected points one can define a plane by equation 3.25. The constants A,B and C are

found by solving the set of equations in 3.26. These equations are parametric in D and by setting

D equal to any non-zero number and substituting it into these equations will yield one solution

set.

Ax +B y +C z +D = 0 (3.25)

Ax1 +B y1 +C z1 +D = 0

Ax2 +B y2 +C z2 +D = 0

Ax3 +B y3 +C z3 +D = 0

(3.26)

Figure 3.9: A plane and a circle in that plane can be defined by three points.

When A,B,C and D are obtained a circle lying in the plane is defined, see figure 3.9. The

CHAPTER 3. COMPUTER VISION 32

center of the circle C(x0, y0, z0) and the radius r are found by equation 3.27 and 3.28 which states

that the distance from each point Pi to the center should equal each other and the radius.

d(p1,c) = d(p2,c) = d(p3,c) = r (3.27)

d(pi ,c) =
√

(xi −x0)2 + (yi − y0)2 + (zi − z0)2 (3.28)

The normal vector to the plane has the values given from 3.25 (A,B,C), giving a normal vector

described by equation 3.29. A line parallel to the normal vector and intersects the plane through

the center point of the circle, is equivalent to the center axis for a cylinder given by equation 3.30.

~n = A~i +B~j +C~k (3.29)

Υ≡


x = x0 + t A

y = y0 + tB

z = z0 + tC

(3.30)

Once the center axis is obtained the shortest distance between the axisΥ and every point in

the data are calculated. For this, the vector passing through the center point C(x0, y0, z0) and the

data point of interest P j is defined as c~p j . The cross product of two 3D vectors, c~p j and~n are the

same as the area of the parallelogram spanned by them. The same area can also be calculated by

multiplying the length of the base |~n| times the height d(P,Υ), see figure 3.10 and equation 3.31.

Manipulation of 3.31 gives the equation 3.32 used to calculate the minimum distance between

every point in the data set and the center axisΥ.

∣∣~n × c~p j
∣∣= d(P j ,Υ) · |~n| (3.31)

d(P j ,Υ) =
∣∣~n × c~p j

∣∣
|~n| (3.32)

If the distance of point d(P j) is within the boundaries of the radius plus/minus an error

threshold r ±ε it means that the point is an inlier, while all points outside the boundaries is an

outlier [15]. This method are repeated N times and the parameters with the most inliers are

chosen for the best estimation of the cylinder. In figure 3.11 the boundaries creates an inner

CHAPTER 3. COMPUTER VISION 33

Figure 3.10: The distance between a point and the center axis

and outer radius, all points not bounded by them are removed and the data have been down

sampled. A point cloud representing a cylinder captured by the Kinect is shown in figure 3.11

where the yellow points are outliers and red points inliers.

Figure 3.11: The yellow points are outliers and are removed from the data. Left side demon-
strates the boundaries describing a cylinder. Right side demonstrates a data set captured by the
Kinect where it is down sampled using RANSAC.

3.3.5 Smoothing - Moving Least Squares

After down sampling a data set, the surface still contain irregularities caused by measurements

error and inherent noise 3.2.2. These are very hard to remove using statistical analysis, but the

method Moving Least Squares (MLS) has shown to be very useful to reconstruct and smoothen-

ing of surfaces. Moving least-squares is insensitive to noise using algorithms of higher order

polynomial interpolations between the surrounding data points. The algorithm starts with a

CHAPTER 3. COMPUTER VISION 34

weighted least squares formulation for an arbitrary fixed point and moves this points over the

entire domain. At each point a weighted least squares fit is computed and evaluated individually.

The detailed computation behind this method is presented by P. Lancaster and K. Salkauskas in

their article Surfaces Generated by Moving Least Squares Methods and is beyond the reach of this

thesis.

3.4 Model a cylinder model

Instead of importing CAD meshes and transforming them into point clouds, the target model

is mathematically composed given an arbitrary axis with unit vector w and a point (x0, y0, z0) in

which the axis goes through. Further, suppose that u and v are unit vectors that are both mu-

tually perpendicular and are perpendicular to the axis. By taking a random point P and finding

the vector from (x0, y0, z0) to P then u is obtained by taking the cross product of this vector and

w. v is obtained by the taking the cross-product of u and w. Then the surface of a cylinder can

be expressed by the parametric equations 3.33 using the vectors shown in figure 3.12 [28].

x = x0 + r cos (θ)ux + r si n (θ) vx + t wx

y = y0 + r cos (θ)uy + r si n (θ) vy + t wy

z = z0 + r cos (θ)uz + r si n (θ) vz + t wz

(3.33)

Figure 3.12: The surface of a generic cylinder is mathematically represented by knowing the axis
and a starting point.

Theta (θ) ranges from the interval 0 to 2π and t ranges over the set of real numbers. Figure

CHAPTER 3. COMPUTER VISION 35

3.13 shows a generated point cloud created using equations 3.33. This method of generating a

generic cylinder makes it easy to change pose, length and radius rather than drawing a CAD and

meshing it in MeshLab.

Figure 3.13: A created point cloud using parametric equations for the surface of a cylinder.

3.4.1 Finding center axis of model cylinder in the camera coordinate system

The center axis for a perfect cylinder without run-out should in this project have a unit vector

ŵp of (0,1,0) in the robot coordinate system. In subsection 3.2.4 the transformation matrix to

map vectors from the camera frame to the two robot frames was presented. Using the inverse of

the transformation matrix one can map vectors from the robot frame to the camera frame and

the center axis vector w in the camera frame can be obtained using equation 3.34.

ŵ = T −1
C ŵp (3.34)

3.5 Alignment of cylinders

The goal of this thesis are to locate two cylinders in the scene captured by the Kinect and obtain

the transformation matrix between their actual pose and a wanted pose. The transformation

matrix consist of the rotation and translation needed to align a model in the data set from the

scene onto the target model.

CHAPTER 3. COMPUTER VISION 36

To effectively and successfully detect an object and its pose in a large data set it is required

that most of the points not belonging to the object is removed using the processes described

above in section 3.3. When as much of the points not describing the object are filtered, the

alignment can be executed.

Aligning two point clouds in 3D is called registration and in this thesis different methods

were tested for alignment, namely Iterative Closest Point (ICP) and SAmple Consensus Initial

Alignment (SAC-IA) for a adequate transformation matrix and a self composed method using

RANSAC to obtain rotation and an algorithm denoted Search Method to find translation. These

are described in subsection 3.5.2, 3.5.1 and 3.5.3 respectively.

3.5.1 SAmple Consensus Initial Alignment - SAC-IA

Finding an object and aligning it with a target in a scene can be done using feature descriptors

which describes local geometry such as corners, edges, ridges and shape of surfaces. The fea-

ture descriptors are derived for both the target and the object in the scene. When the feature

descriptors are computed for both target and object the search for matching correspondence

pairs between them is computed and the alignment which minimized the error metric is cho-

sen. SAmple Consensus Initial Alignment (SAC-IA) is an algorithm that uses Fast Point Feature

Histograms(FPFH) to realize a first alignment between two different point clouds. The process of

using SAC-IA for initial alignment is shown in figure 3.14. Down sampling, removing of outliers,

Moving Least Squares and normal estimation are already explained in section 3.3.

Descriptor - Fast Point Feature Histograms

The Fast Point Feature Histograms (FPFH) algorithm originates from Point Feature Histograms

(PFH) which describe the local geometry around a point p for 3D point cloud datasets. FPFH is

a faster way to compute descriptors still able to retaining most of the descriptive power of the

PFH. The PFH computation relies on finding the mean curvature around a point p by looking at

its k-neighbor points surface normals. The accuracy of the PFH is strictly related to how good

the points normal describes the underlying surface. The computation of the histogram for a

point p can be described in three steps [25].

CHAPTER 3. COMPUTER VISION 37

Figure 3.14: The process of using FPFH for the SAC-AI alignment.

1. For each point p all surrounding points enclosed by a sphere with radius r is selected.

These points are denoted k-neighborhood. See figure 3.15 for the enclosed speher and

the points in the k-neighborhood.

2. For every pair of points pi and p j (j 6= i, j < i) in the k-neighborhood and their estimated

normals ni and n j where pi being the one having the smaller angle between the associ-

ated normal and the line connecting the points [7]. Define a Darboux uvw frame where

u = ni , v = (p j −pi)×u and w = u × v .

3. Obtain the angular variations of ni and n j using equation 3.35.

α= v ·n j

φ= (u · (p j −pi))/
∥∥p j −pi

∥∥
θ = arctan(w ·n j ,u ·n j)

(3.35)

PFH is computationally costly O(k2) opposed to FPFH O(k), where k is the number of neigh-

bors for each point. To get the FPFH for a point p a Simplified Point Feature Histogram (SPFH)

CHAPTER 3. COMPUTER VISION 38

Figure 3.15: The influence region diagram for a Point Feature Histogram, figure from [7].

is obtained which only calculates the relationship between itself and its neighbors, see figure

3.16. Further, for each point the k-neigbors is re-determined and their SPFH values are used to

weight the final histogram of p. Equation 3.36 computes FPFH for a point p using the simplified

version, ωk is the weight representing the distance between query point p and a neighbor point

pk .

F PF H(p) = SPF H(p)+ 1

k

k∑
i=1

1

ωk
·SPF H(pk) (3.36)

Figure 3.16: The influence region diagram for Fast Point Feature Histogram using Simplified
Point Feature Histogram , figure from [7].

CHAPTER 3. COMPUTER VISION 39

SAC-IA algorithm

After FPFH sample large numbers of correspondence candidates and rank each of them very

quickly using the following scheme:

1. Select a number of sample points from the data point representing the object. The sample

points are denoted s and their pairwise distances must be larger than a defined distance

dmi n .

2. For each point s compare its histogram to the histograms for points on the target and

make a list of points which has similar histograms. From the list, select randomly one

point which will be considered that sample points correspondence.

3. Calculate the rigid transformation matrix to align the sample points and their correspon-

dences. An error metric for the quality of the transformation is computed.

These steps are repeated and the transformation with the lowest error metric is used for

initial alignment.

3.5.2 Iterative Closest Point - ICP

ICP starts with two sets of data, point clouds, and an initial guess for their relative rigid-body

transform. In this case SAC-IA has been used to obtain the initial guess. It then iteratively refines

the transform by repeatedly generating pairs of corresponding points in the point cloud and

minimizing the error metric. Figure 3.17 shows a cylinder represented by white points being

aligned with a target model with yellow points using ICP. The algorithm scheme for ICP [32]:

1. Create a pairing between point sets, closest points are matched.

2. Compute the rigid registration given the pairing.

3. Apply the transformation to the data and compute the mean distance between point sets.

4. If change in the mean distance is not below a given limit or the number of iterations has

not reached a maximum number, repeat steps 1,2 and 3.

CHAPTER 3. COMPUTER VISION 40

Figure 3.17: The white points represents a cylinder which is aligned with the yellow target model.

Given the data points {~Di } and target model points {~Mi }, find the rigid transformation with

translation ~T and rotation R which minimizes the sum of the squared distance of equation 3.37

[19].

di
2 = [~Mi − (R~Di +~T)]2 (3.37)

For the equation to be able to handle inconsistent points and outliers Chen And Medioni [9]

dynamically weighted every point so that the error is calculated according to equation 3.38.

er r or =
(

1

n

) n∑
i=1

wi ∗di
2 (3.38)

wi is the weight for point i and di
2 is the squared distance from a data point to the model surface.

The result of using ICP for alignment of cylindrical object is found in 5.2.1

3.5.3 RANSAC to align orientation

Described in section 3.3.4 the RANSAC algorithm is used to down sample the data set by re-

moving outliers not within a distance threshold of the cylinder surface. Three of the parameters

found when estimating a cylinder are used to define the direction vector of the center axis. The

direction vector of the captured cylinder can be rotated so that it becomes parallel to the cen-

ter axis of the target model. This is done by defining a coordinate system for the cylinder using

the direction vector as one of the axis and the two other axis being perpendicular to this vec-

tor. The direction vector found by RANSAC is denoted vk and the wanted direction vector ŵ .

CHAPTER 3. COMPUTER VISION 41

Henceforth, the estimated cylinder and the modeled cylinder will be referred to as "cylinder"

and "target".

First find the unit vector for the direction vector for the cylinder v̂k [11].

v̂k = v̂k

|v̂k |
(3.39)

Define a coordinate system for the cylinder by obtaining two vectors which are perpendicu-

lar to the direction unit vector and each other. There exists an infinite number of vectors in three

dimension that are perpendicular to a fixed one. Pick any non-zero vector υ̂ that is not parallel

to v̂k . The cross product between the unit vector υ̂ and v̂k will define one of the axis denoted

r̂ , as in equation 3.40. The other axis is defined by the cross product between r̂ and v̂k and is

denoted â , see equation 3.41.

r̂ = v̂k × υ̂ (3.40)

~a =~r × ~m (3.41)

These three unit vectors defines the cylinder coordinate system denoted K and the rotation

matrix which can map the components of any vector r between the cylinder frame and the cam-

era frame consists of rows being the unit vector defining the cylinder frame, see 2.5. The rotation

matrix RK is found in equation 3.42.

RK =


− v̂k −
− ~r −
− ~a −

 (3.42)

The wanted frame also needs to be defined. The cylinder wants to have a direction vector

parallel to the approach axis of the robot (Y-axis) in the robot frame ŵ , but because the robot

and camera frame are not perfectly aligned a rotation matrix is needed to map from the camera

to the wanted orientation. In the camera frame, the wanted frame for the cylinder is the same

as the robot frame and this rotation matrix was found when calibrating the camera in the two

robot frames. This means that the wanted frame can be defined according to equation 3.43 and

this gives the two rotation matrices 3.44 and 3.45 between the camera and wanted orientation.

CHAPTER 3. COMPUTER VISION 42

Rw =


− ÔY −
− ˆOZnew −
− ÔX −

 (3.43)

Rwr i g ht =


0.9989 −0.0215 0.0418

0.0222 0.9997 −0.0116

−0.0416 0.0125 0.9991

 (3.44)

Rwl e f t =


0.9988 −0.0184 0.0447

0.0144 0.9996 −0.0224

−0.0443 0.0230 0.9987

 (3.45)

The rotation for the robot frame is denoted RR and is defined in equation 3.46. RC is the

rotation matrix between camera and robot, Rw is the wanted frame and RK is the actual frame.

RR = RC Rw Rk (3.46)

Figure 3.18 represents a cylinder and its coordinate system in the camera frame and figure

3.19 shows the setup for the right robot.

Figure 3.18: Camera frame C, wanted frame W and cylinder frame K.

CHAPTER 3. COMPUTER VISION 43

Figure 3.19: The setup of the right robot and the frames used in this thesis.

3.6 Align position using Search Method

As the rotation matrix is found using RANSAC the missing part to fully define a transformation

matrix is the translation needed to align a cylinder given a wanted pose. To find the transla-

tion the implementation of an algorithm developed by the author of this thesis called "Search

Method" is used.

The algorithm consist of searching for a set of points, represented by the black and purple

points in figure 3.20, near the edge of the cylinder and use their values to represent the point

Med g e = (xm , ym , zm) denoted with orange color in the same figure. The black points are used to

estimate ym and zm , while the purple points are used to estimate xm . How the algorithm filters

and finds these points are explained later. As the values for the target value are known Ped g e =
(xp , yp , zp), the translation t consist of the difference between Med g e and Ped g e described in

equation 3.47.

CHAPTER 3. COMPUTER VISION 44

Figure 3.20: Points of interest in black and purple are used to represent Med g e while Ped g e is a
known position on the target model.

t =


xm −xp

ym − yp

zm − zp

 (3.47)

There are two cylindrical object to be align in this thesis and they are both held by the robots

shown in 4.2. Each cylinder is denoted as left cylinder and right cylinder where all the points

representing the right cylinder have negative x-values in the camera frame and left wtih all pos-

tive values. For the following algorithm the conditions change depending on which cylinder

that will be aligned.

The first step in the Search Method is to roughly locate the end of the right cylinder going

through every data point and searching for the biggest value lying on the axis represented by the

center axis. For the left cylinder the smallest value is wanted. The target models in this thesis

will have a center axis, earlier denoted as ÔY to be approximately equal to (1,0,0) and to be

parallel with the robot y-axis (0,1,0). Hence, search for the point with the biggest and smallest

value of x in the camera frame when estimating the edge of the right and left cylinder. This

point is denoted Mest i mate and found according to equation 3.48 and 3.49 for the point cloud

Q representing the right cylinder and D for left cylinder repectivly. Because of noise, specially

around the edge in which the point processing described in 3.3 fails to perfectly filter, this value

CHAPTER 3. COMPUTER VISION 45

can not represents any values of Med g e . Figure 3.21 is an exaggerated example of how noise

near the edge is not perfectly filtered, resulting in a point Mest i mate not describing any part of

the cylinder.

Mest i mate (xr i g ht , yr i g ht , zr i g ht) = max
x

~Qi (3.48)

Mest i mate (xl e f t , yle f t , zle f t) = mi n
x
~Di (3.49)

Figure 3.21: When searching for a roughly value for the end of a cylinder noise will falsifying the
results representing the actual end. This is the left cylinder where the edge has a postive x-value.

The next step in finding the set of points used to estimate Med g e is to divide parts of the

cylinder lying close to the value of Mest i mate into n intervals along the x-axis. Figure 3.22 shows

how the cylinder is divided over a length Lx starting from Mest i mate into intervals of width δ.

Starting at the first interval N1 and going through until Nn the algorithm does the following:

1. Search for the point with the smallest z-value (closest to the camera) which is lying within

the boundaries of interval Ni and store the z and y value for the point.

2. Calculate the normal vector for the point found in step 1.

3. Count the number of point lying inside interval Ni .

CHAPTER 3. COMPUTER VISION 46

Figure 3.22: The end of the cylinder is divided into interval of width δ.

4. Check if the number of points in interval Ni is above a given limit. If so, calculate the mean

of the x-values contained by that interval.

5. Repeat 1-3, with interval Ni+1 until Nn .

The data given from the scheme is stored in a two-dimensional array as the one given in

table 3.4. The purple points are defined as every point inside the first interval containing over a

given number of points. These are used to estimate xm by taking the mean of the x j -values of

the Ci number of points inside interval i.

xm = 1

Ci

Ci∑
j=1

x j (3.50)

Further, duo to noise and irregularities on the surface representing the cylinder the data

stored from the search scheme above is filtered before computing the estimation of ym and zm .

All data from interval i is removed from the array if its data do not meet the two following criteria:

1. The normal vector in Z direction n~ki is outside the value of [0.99,1.00],

2. The number of points Ci in interval i is below a given threshold.

CHAPTER 3. COMPUTER VISION 47

Table 3.4: Data captured in each of the N intervals. The data represents the coordinate values
and normal vector in z direction of the point being the closest to the Kinect.

Interval yi zi NormalZi PointCounti

0 y0 z0 n~k0 C0

1 y1 z1 n~k1 C1

2 y2 z2 n~k2 C2

...
N xn yn zn n~kn Cn

Looking at a cylinder with a center axis perpendicular to the observer, the normal vector for

the closest point on a cylinder will always point back towards the observer. This means that

if the center axis is in the XY-plane of the camera frame and the observer is looking down the

z-axis the points with the smallest z-values should have a normal vector of (0,0,-1), see figure

3.23. This gives that all points stored in table 3.4 with normal vectors deviating greatly from

(0,0,-1) will give an erroneous estimation of Med g e and are therefor removed. Secondly, the

algorithm for calculating the estimation of the normal vector for a point utilizes the surrounding

data neighbors. If there is a lack of sufficient neighbors the normal vector can be wrongfully

calculated passing an erroneous point through the first criteria. For this reason intervals not

containing enough points are removed as well.

Figure 3.23: The point on a cylinder with the smallest z-values have a normal vector of (0,0,-1).

Because of the high accuracy needed in this thesis to be able to fit-up two tubes for welding,

an outlier detection algorithm is applied on the remaining data as well. If the weight of noise

CHAPTER 3. COMPUTER VISION 48

inside a voxel grid wrongfully place the centroid or if two grids splits a dense sampling of points

into two separate centroids, the representation of the underlying surface by that single point

will be inaccurate. To remove potential outliers in both yi and zi the THE MODIFIED Z-SCORE

outlier detection algorithm by Iglewicz and Hoaglin [18] was implemented. Each value of y and

z in the data set is given a Z-Score, where absolute scores over 3.5 are denoted an outlier and

removed.

The median and the median of the absolute deviation of the median (MAD) given in equa-

tion 3.51 where x̃ is the median of the remaining xi values.

M AD = medi an{|xi − x̃|} (3.51)

The Z-Score (Zi) is computed by equation 3.52 where E(M AD) = 0.6545σ for data with over 10

samples.

Zi = 0.6745(xi − x̃)

M AD
(3.52)

The highly filtered remaining data is finally ready to be used for calculating ym and zm . The

values are computed taking the mean value of the remaining yi and zi values.

ym = 1

N

n∑
i=1

yi (3.53)

zm = 1

N

n∑
i=1

zi (3.54)

As all the values in Med g e are found the translation t can be computed. The results of the

filtering and the performance of the algorithm are presented in section 5.13

3.6.1 Search Method together with RANSAC

Explained in 3.5.3 RANSAC can only be used to find and align orientation, but to obtain an

adequate transformation matrix one need to find translation as well. For this the Search Method

algorithm described above is utilized. To search for the point earlier denoted as Med g e the point

cloud must be orientated such that the center axis lies in the XY-plane. Any rotation of a point

cloud captured by the Kinect will be rotated about the camera frame, changing the position

CHAPTER 3. COMPUTER VISION 49

value of every point in the cloud including Med g e . To reduce the position change of Med g e due to

rotation one should align it with the origin of the camera frame, but since Med g e is still unknown

the centroid of the point cloud is aligned instead. The centroid of a point cloud is computed

using equation 3.22. When the centroids position is aligned with the camera origin the cylinder

frame is oriented to have the same frame as the camera. It is at this stage the Search Method

algorithm can start searching for Med g e , but since this point have been shifted when rotating

around the centroid it is denoted as M |
ed g e . To find the true value of Med g e multiply with the

inverse rotation matrix of equation ?? and add the translation done when aligning the centroid

with the origin t c
0 . The steps of finding the true value of Med g e is described in figure 3.24. This

gives the equation 3.55 which precisely estimates the value of the end of the cylinder in any

orientation.

Med g e = (RK)−1M |
ed g e + t c

0 (3.55)

Figure 3.24: When searching for a roughly value for the end of a cylinder noise will falsifying the
results representing the actual end.

For the robots to rotate about Med g e the tool center point is translated along the approach

axis of the end effector by the value of the length of the cylinder. This value is computed when

the robots picks up the cylinder with unknown length by storing the value of z in the robot frame

when it grabs the tube. This is shown in figure 3.25.

CHAPTER 3. COMPUTER VISION 50

Figure 3.25: The translation value of the tool center point along the approach axis of the robot is
found when the robots picks up its tube.

Chapter 4

Setup and Robot Control

4.1 Robot Lab

For this thesis the utilization of four robots are used to handle cylindrical tubes and weld them

together. Two KUKA 120 R2600 pro are used as handling robots, being able to pick up cylin-

drical object using pneumatic 3-finger centric grippers. The coordinate system for the KUKA

KR 120 is shown in figure 4.1. For welding the lab is equipped with a Fronius TransSteel 5000

welding machine which has a welding gun connected to the KUKA KR 16-2 while the control of

the welding is integrated on the KUKA KR 5 Arc robot. This is a Metal Active Gas (MAG) weld

which uses a shielding gas to protect the process from being contaminated by air. Further, the

Kinect is located between the two handling robots. In the direction of the Kinect, the KUKA 120

on the left side is now denoted as LEFT robot and the other as RIGHT robot. Figure 4.2 shows a

visualization of the lab setup.

The robot controllers used by the KUKA robots at the lab are four KR C4 and they can inte-

grate robot control, PLC control, motion control and safety control. The SoftPLC option makes

the KR C4 controller able to control complete robot cells by I/O handling. However, the CR 4

controllers at the lab do not support this because there is no implementation of the physical

connection opportunities to other devices. For this reason the I/O handling is done through

the PLC at the lab. The only exception is the Fronius TransSteel 5000 welding machine which is

connected to the KR C4 for the KUKA KR 5 robot. This means that the welding machine can be

controlled independently by the KR 5 without the use of an external PLC.

51

CHAPTER 4. SETUP AND ROBOT CONTROL 52

Figure 4.1: The coordinate system of the KUKA 120 R2500 robot.

Figure 4.2: A visualization of the lab containing the three robots and its CR4 controller used
in this thesis, the welding machine and the computer controlling the robots through the PLC
server.

4.2 Offline Programming

Offline Programming is a method to develop a simulation of a robot in a virtual environment

similar to the real one in the robot cell. There are a number of steps to follow to successfully

CHAPTER 4. SETUP AND ROBOT CONTROL 53

generate robot programs for a robot.

When the program is tested for errors, collision detection and optimized motion planing, the

next step is to convert the program to a language that the robot can understand. The post pro-

cessing for KUKA is done in KUKA-SIM, which converts RSL (Robot Scripting Language) into

the native KUKA source code file (SRC).

The program is then installed and tested on the robot, but very often there is deviation between

the simulation and the real robot that needs to be calibrated. It is often caused in step 2 when

creating the environment with coordinate offset error, but also deviation occur because of geo-

metric parameters and non-geometric parameter [16]. Geometric parameters are play between

parts and mechanical deflection due to load. While non-geometric parameters are joint and

link flexibility and thermal strain [30].

For the deviation in the program, one need to go back to the simulation and correct it until the

deviation is minimized. To ensure that the coordinate system in the simulation is translatable to

the real coordinate system, the robot need to be completely and correctly mastered. Only then

can the robot preform poses and path accurately, and be moved using programmed motions

at all. This includes calibration of the tool and base and teaching offsets using load correction

of tool and workpiece [3]. This is called Robot Calibration and is preformed using the KUKA-

pendant.

All the robots and peripheral devices needs to be controlled so that they can work together.

Depending on how many I/O counts the system runs and the complexity of the system logic,

the choice of control method is decided. If the system is complex the need for an external PLC

which manage I/O processing over various different bus level networks is required. The PLC has

the role of being ’master’ and the robots/devices connected to the PLC being ’nodes’.

4.3 C++ application to align cylinders

An application was developed for this thesis using the programming language C++ in the inte-

grated development environment from Visual Studio 2013. For the development of the applica-

tion the Point Cloud Library and a set of 3rd party libraries were used. These are open-source

CHAPTER 4. SETUP AND ROBOT CONTROL 54

libraries of algorithms for point cloud processing tasks and 3D geometry processing. The li-

braries used in the development are listed in table 4.1

Table 4.1: The libraries used in the C++ application.
Library Includes Function
3rd party
library
dependencies

Boost Shared pointers and threading

Eigen Matrix and Vector operations
VTK Visualization of point clouds

FLANN
Kdtree for fast approximate nearest
neighbors search.

Point Cloud Library Registration ICP, SAC-IA and RANSAC
Features Normal estimation and FPFH
Filters Voxel Grid and passthrough
Surface MLS
IO Point cloud handling

The operations in this application are to locate two cylinders in the scene and calculate a

correction transformation matrix to align them with two target models using the two robots.

The different steps in the application are listed below.

1. Capture the scene using the Kinect and store it in a point cloud.

2. Filter the point cloud using pass through filter, voxel down sampling, RANSAC down sam-

pling and MLS.

3. Store each cylinder in separate point clouds.

4. Create two target cylinders point clouds and set their position and orientation.

5. Run one of the alignments algorithms described in 3.5.

6. Obtain two transformation matrices for alignment of both cylinders and find the corre-

sponding values in the robot frame.

7. Write and store the transformation matrices into two separate .txt files.

8. Visualize the alignment of the transformed cylinders.

CHAPTER 4. SETUP AND ROBOT CONTROL 55

Figure 4.3: Left side: Cross section of point cloud representing a cylinder with 10 pictures. Right
side: The same point cloud after down sampling using a rectangle sized voxel grid.

Step 1: Capture the scene

Using a class in C++ called Kinect2Grabber developed by Tsukasa SUGIURA one can grab a point

cloud of the scene using the Kinect using the third party dependencies, Point Cloud Library

(PCL), Windows SDK v2.0 and Visual Studio 2013. A series of 10 pictures were saved in the same

point cloud because the representation from one captured point cloud can give erroneous re-

sults because of the fluctuating depth values. This can be seen on the left side in figure 4.3 where

the cross section of a cylinder composed by 10 pictures are represented. The consequence of the

depth inaccuracy is that points with relative similar x and y values have varying z-values, giving

a row of points in the YZ-plane.

Step 2: Down sampling

A passthrough filter will greatly reduce the number of data points. The cylinders are held in the

air by two robots in front of the Kinect fare a way from interfering floors or walls, making this

filter efficient in removing insignificant data points. All data points lying outside the boundaries

CHAPTER 4. SETUP AND ROBOT CONTROL 56

of Z[0.6,2], Y[-0.7,0.7] and X[-1.4,1.4], given in meter will be removed.

To deal with the rows of points voxel grid down sampling method explained in 3.3.3 is used,

with a large leaf length in Z-direction. The red points in figure 4.3 are reduced to either one or

two black points representing the underlying surface. The figure also shows how the grid system

can split up an adjacent group of points into two points representing the surface. In figure 4.4

the red point cloud is a tube represented by 98,978 points, while the black point cloud is the

same tube down sampled using voxel grid represented by 1,351 points.

Figure 4.4: Left side represents a tube without voxel down sampling, while the right side is down
sampled.

The RANSAC algorithm is used to remove every point not representing the surface of the

cylinder or not being within a threshold distance of the surface, denoted outliers. Figure 3.11

shows how outliers are removed.

Further, for better representation of the cylinder surface the application runs the point cloud

through the Moving Least Squares algorithm for smoothing the surface. The cross section of a

down sampled point cloud to a smooth surface is shown in figure 4.5.

Step 3: Splitting the scene

The camera is positioned between the two handling robots and they both hold a cylindrical

object in such a way that all points representing the cylinder held by the RIGHT KUKA robot

has negative x-values. Going through every data point filtering and storing data with positive

x-values and negative x-values into two separate point clouds.

CHAPTER 4. SETUP AND ROBOT CONTROL 57

Figure 4.5: Left side: Cross section of down sampled point cloud . Right side: The same point
cloud after smoothing using MLS.

Step 4: Create a target model

Two target cylinder are mathematically generated using the basics of equation 3.13. For simpli-

fication the cylinders are modeled along the x-axis for a length of 0.3m and then later translated

0.6m in z-direction and rotated so the direction vector of the target cylinder is parallel to the y-

axis of the robot. The radius of the tube equals the radius of the cylinder used in the lab, 84mm.

Step 5: Select alignment algorithm

The algorithm for the selected method for alignment is started. The three methods are RANSAC

together with Search Method, SAC-IA with ICP and Search Method for correction of translation

and lastly the Search Method used without any rotation. These methods, RANSAC, SAC-IA, ICP

and Search method are explained separately in subsection 3.5.3, 3.5.1, 3.5.2 and 3.6 respectively.

Step 6-7: Find the transformation matrix for each robot

The output from each of the alignment algorithms are the correction translation in each of the

robot frames which are needed to align the position of the cylinders and a rotation needed to

CHAPTER 4. SETUP AND ROBOT CONTROL 58

align orientation. The transformation matrices are written to two separate files tranformation-

matrix_RIGHT.txt and transformationmatrix_LEFT.txt which are used by Matlab and a Java ap-

plication later.

Step 8: Visualization

The Visualization ToolKit (VTK) is used to visualize the point clouds of importance for this

project. This includes the starting pose, the target pose and the aligned point cloud which have

been translated and rotated onto the target point cloud together with a live stream of the scene.

4.4 Communication application in Java

The software KUKA.RobotSensorInterface makes it possible to influence the robot motion or

program execution via sensor data. The sensor data and signals can be read by a field bus,

processed and forwarded to the robot controller. Or it is possible to use the software package

KUKA.Ethernet KRL XML which makes it possible to set up under KUKA.RobotSensorInterface

an anticyclic Ethernet link between a robot controller and up to nine external systems, like the

Kinect. The data are transmitted via the Ethernet TCP/IP protocol as XML strings. The problem

is that neither of these software packages are acquired at the robot lab.

The solution is to use a Java open-source cross-platform called JOpenShowVar. This allows

for communication with all KUKA robots connected to a KR C4 controller. The communica-

tion allows for reading and writing variables and data structures of the controlled manipulators.

The JOpenShowVar works as a client middleware between the Java application running on a re-

mote computer and the KUKAVARPROXY acting as a server on the KR4 controller connected via

TCP/IP [14]. Figure 4.6 show the architecture for JOpenShowVar communication with the KUKA

robots.

To be able to read and write information to the robots, all variables need to be predefined

as global variables in the system data list $CONFIG.DAT. The type of the global variables needs

to be declared according to the information required, for this thesis BOOL and FRAME. The

Boolean variable are used to signal the start and stop of robot programs and welding while the

FRAME variable can store robot poses. Additional, there are global variables which are already

CHAPTER 4. SETUP AND ROBOT CONTROL 59

Figure 4.6: The client-server model architecture between the robot running KUKAVARPROXY
and OpenShowVar. Figure from [14].

declared in the system for READ-ONLY purposes such as $POS_ACT and $AXIS_ACT. These vari-

ables are constantly updated and contains the joint configuration and pose of the robot. Below

is a code snippet of a function from the Java application "ControlSystem" which takes as input a

string frameName, double presicion variable position and orientation. The sting contents must

be a FRAME variable declared in $CONFIG.DAT. An object takes as input the frameName and the

position and orientation are written to the object. Using the CrossComClient class the object is

send to the robot using writeVariable method.

public void writeFrame (Str ing frameName, double X , double Y , double Z . . .

, double A , double B, double C) {

KRLFrame frame = new KRLFrame(frameName) ;

frame . setX (X) ;

frame . setY (Y) ;

frame . setZ (Z) ;

frame . setA (A) ;

frame . setB (B) ;

frame . setC (C) ;

t r y {

t h i s . connection . writeVariable (frame) ;

}

catch (Exception e) {

System . out . print ln (" Error writing frame to Robot ") ;

CHAPTER 4. SETUP AND ROBOT CONTROL 60

}

}

Not limited to setting up communication, the Java script is used to control the sequencing

of every part of the operation for welding together two tubes. This including starting robot pro-

grams by sending Boolean signals to each of the robots, starting and stopping the weld, running

the C++ application and Matlab Safety program described below 4.5 and it reads the two matri-

ces from the C++ application and calculates the new PRY-angles using the equations described

in 2.6.

4.5 Safety Program

The two transformation matrices found by the C++ application are written to two separate .txt

files and then read by a safety application in Matlab. From the matrices the new RPY-angles

and position correction for each robot are obtained. For safety reasons the two new poses are

simulated and visualized using a safety application developed in Matlab. The Matlab appli-

cation is developed using the Robotic toolbox for Matlab [10] by Peter Corke for plotting two

generic robot using the SerialLink class that generates an object of a serial-link arm-type robot

by taking the KUKA 120 Denavit-Hartenberg parameters as input. The class offers a method for

checking collision between the robot object and a solid model which belongs to the class Colli-

sionModel found in physical Human-Robot Interaction Workspace Analysis, Research and Evalu-

ation (pHRIWARE) toolbox for solid object construction. Further, the application uses forward

and inverse kinematics to compute joint configuration and poses while joint space trajectory

planning is used to simulate the path between the current and wanted joint configuration. The

robot kinematics used are described in chapter 2.

The application is developed to protect the robots and its environment against collisions if

the poses obtained are erroneously calculated. The Matlab application tracks the robot config-

uration from the offline programmed robot programs using the known joint configurations for

when the tubes are picked up and for holding the tubes in front of the camera. The following

motion for each robot are simulated in Matlab by reading the two transformation matrices to

CHAPTER 4. SETUP AND ROBOT CONTROL 61

be able to weld together the two tubes. Inverse kinematics are used on the transformation ma-

trices to obtain the wanted joint configurations qRIG HT and qLEF T and joint space trajectory

between the current configurations and the wanted configurations are computed to estimate

the robot paths. When the wanted pose is visualized two cylinders are added to check if they

collide. The length of the cylinders are calculated when they are picked up by reading the Z-

values of the end-effectors at contact. Before these motions are executed on the robots, the user

have to verify if the trajectory and wanted pose for each robot including the attached cylinders

do not crash. If the cylinders crash with either the other cylinder or robot it will be colored red

for transparency. This application is not only useful to see if they crash or not, but also to vi-

sualize where the two cylinder will be held. If they are held at poses obviously not suitable for

welding the operator can chose to cancel the welding operation. To summarize the algorithm in

the application:

1. The joint configurations when holding the tubes in front of the Kinect is known because

they are programmed using 3DAutomate.

2. The wanted transformation matrices are given to the Matlab application from the C++

application.

3. Inverse kinematics are utilized to obtain the wanted joint configuration for each robot.

4. Compute a joint space trajectory between current and wanted configurations.

5. Move the end-effector of each robot according to the trajectory computed in (4).

6. Add two cylinders located at the grippers for each robot with the actual length of the cylin-

ders picked up.

7. The program checks any collisions have occurred and colors the crashing cylinder red if

so.

8. The user is prompted if the wanted poses are OK for welding or not. If they are OK, the

user tells the program to continue. IF not, no further motions are executed.

CHAPTER 4. SETUP AND ROBOT CONTROL 62

Figure 4.7: The first picture on the left shows the pose for both robots when the C++ application
is running. The two picture in the middle shows configurations not satisfying for welding, while
the picture on the right side is good for welding.

Figure 4.7 shows the initial pose during the run-time of the C++ application and three ex-

amples of the robots being moved to the poses given from the C++ application. It is clear to

see that the two in the middle are not acceptable since the spacing is to big for welding and the

other collide. On the right side the cylinders are suitable for welding and the welding process

can start.

4.6 Robotic welding of cylindrical objects

The KUKA KR16-2 is attached with a Fronius TransSteel 5000 welding machine feeding a welding

rod with thickness of 1.0 mm, see figure 4.9. Figure 4.8 shows how the two KUKA 120 robots hold

their tubes against each other and how the KUKA KR16-2 is used to weld them together. The

robot programming for the KUKA KR16-2 and welding parameters was developed and tested

in the project thesis, but for the reader to fully understand this thesis the results are presented

next.

Table 4.2: Fronius TransSteel 5000 on KUKA robot description for figure 4.9.

Description

1 Power source
2 Wire feeder
3 Adapter Flange
4 Collision Box
5 Weld Torch

CHAPTER 4. SETUP AND ROBOT CONTROL 63

Figure 4.8: The tubes are handled by the two KUKA KR120 robots and welded together by the
KUKA KR16-2 with its attached welding gun. The position of the Kinect is also shown.

Figure 4.9: Fronius TransSteel 5000 welding machine connected with a KUKA robot. Figure from
[5]

4.6.1 Welding Programming and Parameters

The two tubes must be fitted up together in such a way that they can be welded together. For

two tubes with wall thickness less than 6mm, the internal misalignment can not exceed 25% of

its wall thickness [4]. This thesis uses tubes with wall thickness of 5mm giving a misalignment

tolerance of 1.25mm. Further, the root opening between the two tubes should be 1.6mm.

Given that the tubes are fitted up correctly using the Kinect for correction the first operation

for the welding robot is to tack weld the tubes together. Tack welding is a temporary weld used

to create the initial joint between two pieces of metal being welded together. The paths for tack

CHAPTER 4. SETUP AND ROBOT CONTROL 64

Table 4.3: The parameters for figure 4.10

Parameter Description Dimention

t Wall-thickness 5mm
A Root opening 1.6mm

Figure 4.10: Weld joint parameter. Figure from [13]

welding a 1.9cm long seam on four points evenly spaced around the tube was developed in

3DAutomate using a Python script to create several linear points lying on the natural curvature

defined by the radius of the tubes. Since the goal of the thesis focuses on the welding preparation

of fitting up the tubes correctly the 360◦ welding of the tubes is left out.

In the C++ application the wanted position for the two tubes are defined according to the co-

ordinate system of the camera and the positioning of the camera in the environment. Meaning

that the position of the tubes for this master project differs from the project thesis. To be able to

use the old robot programs the base of the KUKA KR 16-2 is translated the same amount as the

tubes. To find the translation needed a simple method was executed using the old robot pro-

gram for the top tack weldment. First contact between the welding rod and the tubes for the old

position had the coordinate values xol d ,yol d and zol d and marked on the tubes. The tubes were

placed at the wanted position for this thesis and the welding robot was moved by jogging it with

constant orientation until the welding rod touched the marked spot. This new robot position is

denoted as xnew ,ynew and znew . The translation of base tbase is defined in equation 4.1.

tbase =


xnew −xol d

ynew − yol d

znew − zol d

 (4.1)

CHAPTER 4. SETUP AND ROBOT CONTROL 65

4.7 Robot programs

In Automatic mode the main program in the each robot runs a while-loop constantly checking

Boolean values, true and false. The Boolean values are declared as global variables and can be

read and written to from a remote computer. Every Boolean value are by default set to FALSE,

but when a value is changed to TRUE from the remote computer the loop pauses and the wanted

sub-program is executed. When the given sub-program has ended, the main loops continues

and waits for further operations. The utilization of Boolean values makes it possible to sequence

the sub-programs in a wanted order. The communication architecture and pseudo code to start

the sub-program denoted as ONE is described in figure 4.11.

Figure 4.11: Communication architecture and pseudo code of how a sub-program with robotic
motions are started from a Remote Computer.

To set a new pose the java application writes a global variable of type FRAME which can store

position and orientation, this is shown in the code snippet in 4.4. When the new pose is written

a sub-program is executed which reads the FRAME and moves the robot to this pose in a linear

motion. Figure 4.12 shows how the Boolean variable setPose is set to TRUE and the sub-program

CHAPTER 4. SETUP AND ROBOT CONTROL 66

called setPose is started and how it reads the values in the FRAME variable.

Figure 4.12: Communication architecture and pseudo code of how a new pose declared in a
FRAME type is passed to the controller and how the sub-program reads the FRAME and moves
to this pose in a linear motion.

4.7.1 Force Control

The tubes used in this thesis are of a unknown length making the force sensor attached to the

robot end-effector very useful. Instead of re-programming the robot program for picking up

the tubes for varying length the approach is controlled by a force control application to prevent

collision. Also, when setting the tubes against each other force control is implemented to pro-

tect the robots against the uncertainty from the Kinect and C++ application for alignment. The

KUKA.ForceTorqueControl 3.0 is an add-on technology package which together with the multi-

axis force and torque sensor "ATI OMEGA 160" sensor can simultaneously measures forces Fx ,

Fy and Fz and torques Tx , Ty and Tz [2], see figure 4.13. The value of forces and torques are

CHAPTER 4. SETUP AND ROBOT CONTROL 67

obtained using silicon strain guages by measuring the voltage running through them. When the

guages are strained the electrical conductor becomes narrower and longer which decrease its

electrical resistance and voltage.

Figure 4.13: The ATI omega 160 force/torque sensor placed on the robot end-effector measures
forces Fx , Fy , and Fz and torques Tx , Ty , and Tz .

The force control is implemented as an application on the teach-pendant where the wanted

option is to preform a "sensor-guided: make contact" operation. The application is called by

the robot program when the end-effector is about to make contact with another object in the

environment. The predefined approach speed, main direction of the resistance force and the

set-point force, in which the robot stops when reached is all defined in the application options.

In the case of picking up the tubes from the floor, the main force direction is in the z-axis of the

world coordinate frame while in the y-axis for placing the tubes together. The set-point force for

both cases is set to 50N and the approach speed 0.01m/s.

4.8 Architecture of the process

The above sections describes the different applications and programs used in the correction

process of making it possible to weld two cylindrical object with a unknown run-out and length

together. The process to achieve this is presented in figure 4.14 showing how the C++ appli-

cation, Java application, Matlab application collaborates with the Kinect sensor, pre-made .src

files and human operator to execute a correction of the cylinders pose making it possible to

weld them together. Table 4.4 lists the different tasks for each application. The solution pro-

vides a graphical user interface showing a robot control table, robot simulation from the Safety

CHAPTER 4. SETUP AND ROBOT CONTROL 68

Table 4.4: Tasks for each application.

Application: Tasks:

Java Sequence robot programs
Calculate RPY-angles
Calculate new pose
Read and write variables to robots
Start C++ application
Start Matlab application
Control welding ON/OFF
Prompt user for OK poses

Matlab Visualize robot movements
Simulate new pose
Check for collision

C++ Visualization of 3D image
Visualization of wanted and current point cloud
Calculate correction transformation matrices

Force/torque
control

Prevent large forces/torques on robot

3DAutomate
Create robot program for welding robot and
handling robots

Program and a stream including point clouds representing the uncorrected pose and the point

clouds transformed to the wanted pose. This is shown in figure 4.15.

CHAPTER 4. SETUP AND ROBOT CONTROL 69

Figure 4.14: Architecture of the process of obtaining a sufficiently good fit-up for two cylindrical
object to be able to weld them together.

CHAPTER 4. SETUP AND ROBOT CONTROL 70

Figure 4.15: The graphical user interface provided to the operator. Java control used to control
robots and auto operations, Matlab safety application for simulation and collision testing and a
visual stream of the scene including the point clouds representing current and wanted pose.

Chapter 5

Results

5.1 Run-Out

The origin of this master thesis is based on the run-out of industrial steel tubes making them

impossible to fit-up by offline programmed robot motions without any feedback. To test for

run-out a dial gauge measured the translation in z-axis of the robot while the tube was rotated

360◦. Figure 5.1 shows the setup for circular radial run-out measurement and the resulting trans-

lation in mm is presented in figure 5.2. The results proved a difference between minimum and

maximum z-value to be 4.56mm.

Figure 5.1: The setup of how a dial gauge was utilized to measure the translation of the tube in
the z-axis of the robot.

71

CHAPTER 5. RESULTS 72

Figure 5.2: x-axis showing the angle of rotation, while the y-axis represents the translation in
mm.

Figure 5.3: With colinear approach axis the two tubes exceeding the allowed tolerance for fit-up
before welding.

5.1.1 Fit-up without alignment

When the two approach axes for each of the end-effectors are collinear the resulting run-out

will produce a fit-up which exceeds the allowed misalignment error of 1.25mm. The graph in

5.2 shows that the tube is translated 4.56mm from the starting point when rotated to 210 ◦. This

results in a fit-up greatly exceeding the tolerance of 1.25mm and is not suitable for welding, see

figure 5.3.

CHAPTER 5. RESULTS 73

5.2 Alignment results

This section will cover the alignment results for testing SAC-IA, ICP, RANSAC and Search Method

to aligning cylindrical objects.

5.2.1 Alignment with SAC-IA and ICP

The results of an alignment algorithm can be determined by three factors, namely the robust-

ness, quality and time consummation. For this thesis computation time used by an algorithm is

not of interest and will not be discussed further. For the SAC-IA and ICP a fitness score describes

the quality of the alignment by obtaining the sum of squared distances between corresponding

points in the transformed cloud and the target. The robustness is obtained by looking at the

deviation of the quality over many samples.

Figure 5.4: The box and cylinder used as test objects for the SAC-IA and ICP alignments algo-
rithm.

For testing SAC-IA and ICP two objects were used, a cubic box and a cylindrical tube as

the one shown in figure 5.4. The cubic box was designed in SolidWorks and imported to the

software CloudCompare which can sample points on a mesh into a Point Cloud Data (PCD) file.

As explained in 3.4 the cylinder was modeled mathematically in C++.

Cubic box alignment

There is no correlation between the box alignment testing and welding of tubes, but the test was

executed to see if the SAC-IA and ICP alignment worked correctly or not. Running a series of test

where a box was located at different positions and orientations relative to the camera concluded

that the combination of SAC-IA and ICP managed to align a box captured with the Kinect and

align it with high quality to the target box model. SAC-IA is often used as an initial alignment

CHAPTER 5. RESULTS 74

tool and the ICP used for fine adjustment. Due to the box geometrical features including corners

and edges the SAC-IA becomes very efficient and precise because the alignment is based on

corresponding feature points. Applying the ICP algorithm using the SAC-IA alignment as an

initial guess resulted in a transformation matrix closely to a identity matrix meaning that almost

no rotation or translation was executed by the ICP alignment. This method of aligning cubic

boxes proved to be both robust and with high quality. Figure 5.5 shows the result of aligning a

box in a noisy point cloud with a target box.

Figure 5.5: A noisy point cloud including a box is aligned with a target box using SAC-IA and ICP.

Cylindrical tube alignment

The combination of SAC-IA and ICP resulted in a highly accurate alignment for a cubic box

and the reason why this was tested was because the two algorithms had problems with aligning

cylindrical object. The geometrical feature descriptors for a straight cylinder is highly homo-

geneous and similar throughout the length of the tube making the process of matching cor-

responding features "confusing" for the lack of a better word. Also, the fitness score which de-

scribes the quality of the alignment by the means of the squared distances between correspond-

ing points is misleading. Figure 5.6 shows a point cloud which have been processed and aligned

twice by the ICP algorithm. The fitness score for both cases are the same, but the alignments

are not. This together with a varying initial alignment by the SAC-IA resulted in a transforma-

tion not possible to use for aligning two cylindrical objects for welding because the positioning

CHAPTER 5. RESULTS 75

along the length of the cylinder varies to much.

Figure 5.6: Two different alignments done by ICP with the same fitness score.

A series of 10 tests were conducted on a cylindrical Polyvinylklorid (PVC) plastic tube with no

run-out to test orientation and translation accuracy. The tube was held by the right robot in such

a way that no rotation were needed to align the tubes, hence all the correction RPY-angles from

the alignment should equal 0◦. One of the results is shown in figure 5.7 where the translation

along the length of the cylinder is inaccurate. The white point cloud is the target cylinder while

the blue is the initial guess done by SAC-IA and the red point cloud is the final alignment by ICP.

The results for the 10 tests are presented in table 5.1.

Figure 5.7: The green point cloud represents the cylinder held by the robot. Blue is the alignment
done by SAC-IA and the red point cloud is the alignment by ICP.

From table 5.1 one can observe that the deviation along the Y-axis in the robot frame is

±27.1mm which will cause the two tubes to either crash or be to far apart for welding. Fur-

ther, the deviation along the X-axis is also to big, resulting in a misalignment greater than the

specified 1.25mm.

For orientation the mean value, mean error angle, about the Z-axis and X-axis of the robot

frame, given as A and C have the values of 1.67◦ and 1.21◦ respectively. The error in orientation

CHAPTER 5. RESULTS 76

Table 5.1: Aligning results using SAC-IA and ICP.

Test #
Pose

x[mm] y[mm] z[mm] A[Degrees] C[Degrees]

Test1: 3.10 11.11 -0.93 2.10◦ 1.30◦

Test2: 1.71 -36.95 -0.30 2.06◦ 0.76◦

Test3: -1.33 11.73 -0.41 2.20◦ 0.60◦

Test4: -1.64 10.28 0.76 2.19◦ 1.10◦

Test5: -0.71 1.70 0.46 3.10◦ 0.85◦

Test6: -0.90 28.36 -0.82 0.10◦ 1.60◦

Test7: -0.66 11.50 -0.19 1.40◦ 1.50◦

Test8: -1.37 12.01 -0.14 0.80◦ 1.50◦

Test9: -0.60 -4.77 1.51 0.20◦ 2.40◦

Test10: 3.58 -62.51 0.61 2.50◦ 0.46◦

Results:

Mean Value: 0.12 -1.75 0.12 1.67◦ 0.95◦

Standard Deviation: 1.83 25.91 0.73 1.61◦ 0.55◦

will result in either a gap or a welding seam not going along the root opening, see figure 5.8. The

gap can be expressed by equation 5.1 where D is the diameter of the tubes and φ and θ are error

angles of alignment for the right robot and left robot. The error angles in the equation are either

for error orientation about the Z-axis or X-axis.

∆ε= D(si n(φ)+ si n(θ)) (5.1)

Using this equation and the values of the mean error of 1.67◦ and 1.22◦ with a diameter of

168mm gives gaps of 9.79mm and 7.02mm respectively. Both values will give gapes not possible

to weld because they are bigger than the root opening of 1.6mm. The deviation in both position

and orientation clearly exceeds misalignment and orientation limit which makes SAC-IA and

ICP not suitable for aligning two tubes for welding.

5.2.2 Rotation using RANSAC

As explained in 3.5.3 the RANSAC algorithm for cylinder parameter estimation can be used to

obtain the center axis for a cylinder found in the scene captured by the Kinect. To test the per-

formance of the RANSAC algorithm the same test as for the SAC-IA and ICP were executed. A

series of 10 test on a cylinder with no run-out was orientated in such a way that there should be

CHAPTER 5. RESULTS 77

Figure 5.8: Fit-up results for alignment with orientation deviation.

no change in the RPY-angles to align the cylinder. The results are represented in table 5.2.

Table 5.2: Orientation results for RANSAC.

Test #
Orientation

A[Degrees] C[Degrees]

Test1: 1.82◦ 1.29◦

Test2: 1.81◦ 1.65◦

Test3: 1.61◦ 1.72◦

Test4: 1.29◦ 1.04◦

Test5: 1.05◦ 1.78◦

Test6: 1.81◦ 1.11◦

Test7: 1.75◦ 1.23◦

Test8: 1.81◦ 1.73◦

Test9: 1.31◦ 1.25◦

Test10: 1.21◦ 1.05◦

Results:
Mean Value: 1.54◦ 1.38◦

Standard Deviation: 0.28◦ 0.28◦

The RANSAC algorithm is a orientation alignment only with no translation calculation. It

has a mean error angle of 1.54◦ and 1.38◦ for A and C respectively. The reason for the orientation

error is because of the mathematically model given in 3.5.3 which is used to define a cylinder

and the fact that the data from the Kinect is noisy. When estimating the center axis for a cylin-

der the normal of the transversal plane defined by three randomly chosen points are used. Since

CHAPTER 5. RESULTS 78

these points are randomly selected from points lying on the surface of the cylinder it is almost

impossible to locate three points which are actually located on the transversal plane to the orig-

inal cylinder. For this reason the normal, center axis, is always a bit off the actual center axis [15]

which gives deviating results. Given the results above, the RANSAC algorithm provides a stan-

dard deviation of 0.28◦ for both A and C, see figure 5.9, which makes it more accurate than the

SAC-IA and ICP for orientation. Still, it do not provide for a sufficiently good alignment for weld-

ing because the gaps calculated with equation 5.1 to be 9.02mm and 8.09mm using the mean

angle error of 1.54◦ and 1.38◦ respectively.

Figure 5.9: The orientation error of 0.28◦ to align coordinates system are shown by aligning the
green point cloud with the target red point cloud.

5.2.3 Aligning position using Search Method

In the preparation prior to welding the tubes are processed by turning to obtain two ends which

are perfectly parallel. This ensures that the root opening distance is homogeneous through-

out the fit-up. This means that the resulting run-out can be fixed by translation only. After ICP

proved to generate inaccurate translational results an algorithm denoted Search Method was de-

veloped to search for a specific point on the edge of cylindrical object and generate a translation

between this point and a wanted point.

Described in 3.6 the algorithm search for a set of data points used to estimate Med g e by

finding the points with lowest z-values, being closest to the camera, within the boundaries of

CHAPTER 5. RESULTS 79

interval Ni . The y and z-values for each interval are presented in figure 5.10 which shows very

noisy data.

Figure 5.10: The y and z values of the point being closest to the camera within the boundaries of
interval Ni . Also the z component of the unit normal vector is presnted in the bottom graph.

Depth variations in the Kinect results in varying y and z-value because the wanted point can

be wrongfully measured to be further away then its surrounding neighbors, resulting in either

the point above or below can have a smaller z-value than the wanted point. This is illustrated in

figure 5.11 where an unwanted point is selected because it has lower z-values than the wanted

point. The unwanted point still has a higher z-value than the rest of the intervals and this can

be seen by the small spikes in the middle graph in figure 5.10. The increase in z-value from the

mean results in that a unwanted point is selected which have either lower or higher y-values

than the mean. The correlation between the small spikes in z-values and the y-values is clearly

shown in figure 5.10. Negative spikes means that the point below has been captured, while

positive is points above. Further, all the points being represented by spikes in the y and z graph

will have normal vectors deviating from (0,0,1) which again will give spikes when plotting the

z value of the normal vector shown in the bottom graph in 5.10. Figure 5.11 illustrates how a

wrongfully captured point gives spikes in y,z and normal value.

CHAPTER 5. RESULTS 80

Figure 5.11: The wanted point is not captured because of depth inaccuracy in the Kinect. This
results in a y,z and normal vector value which is not desirable for estimating Med g e

Filtering these results by removing any points having a normal vector in z-direction below

0.99 reduces the data from 55 points to 13. The remaining points are further filtered by THE

MODIFIED Z-SCORE which removes potential outliers. The results after normal and outlier

filtering are presented by the graphs in figure 5.12.

The mean of the remaining point will be used to estimate the y and z-values for Med g e . The

estimated x-value is the mean of the points within the first interval Ni which contain more than

10 points. Because of noise near the edge the first intervals often contain less than 10 points and

do not represents the edge of the cylinder.

The algorithm was tested by placing the two tube with unknown run-out at 10 different posi-

tions in front of the camera and by estimating Med g e it calculated the correction position values

needed to fit-up the two tubes. Figure 5.13 visualises the results for one of the tests showing how

two tubes apart is translated to a consisted fit-up. For these tests the perfect position with the

corresponding run-out was found to be at robot position pRIG HT (976.19, 924.36, 1422.81) and

pLEF T (1002.27, -1044.16, 1416.88). The results given in table 5.3 presents the deviation between

the new position computed by Search Method and the perfect position pLEF T and pRIG HT . Also,

the table present the internal misalignment for the fit-up due to the position deviation by com-

CHAPTER 5. RESULTS 81

Figure 5.12: The wanted point is not captured because of depth noise in the Kinect. This results
in a y,z and normal vector value which is not desirable for estimating Med g e .

puting the distance between the two deviating points in the XZ-plane using equation 5.2.

d =
√

(xr i g ht −xle f t)2 + (zr i g ht − zle f t)2 (5.2)

Figure 5.13: The distance (internal misalignment) between two point in the XZ-plane.

All cells in the last column in table 5.3 are marked by green, meaning that they all have an in-

CHAPTER 5. RESULTS 82

Figure 5.14: The Search Method translation of two tubes in three different view points. The
resulting fit-up is presented in the lower right corner.

Table 5.3: Results using Search Method to align position for the two robots.
Right Robot Left Robot

Test #
Position

x[mm] y[mm] z[mm] x[mm] y[mm] z[mm]
Internal misalignment
between the tubes held
by two robots

Test1: 0.30 -0.18 0.15 0.37 0.10 -0.08 0.24
Test2: 0.32 -0.63 0.02 -0.18 0.28 -0.43 0.67
Test3: -0.21 0.04 0.05 -0.45 0.02 0.01 0.24
Test4: -0.40 0.18 -0.01 0.08 -0.06 -0.02 0.47
Test5: -0.21 0.23 -0.12 -0.18 0.17 -0.12 0.02
Test6: -0.55 -0.15 0.04 0.09 -0.05 -0.22 0.69
Test7: 0.26 0.18 0.08 -0.46 -0.12 -0.06 0.73
Test8: 0.49 0.20 0.00 -0.21 0.27 -0.18 0.72
Test9: -0.31 0.21 -0.03 -0.02 -0.17 0.08 0.31
Test10: 0.30 -0.03 0.00 0.08 0.10 0.58 0.63
Results:

Mean Value: 0.03 -0.02 0.03 -0.09 0.05 -0.05 0.49
Standard Deviation: 0.35 0.26 0.07 0.24 0.16 0.26 0.25

ternal misalignment less than 1.25mm which satisfy the requirement for fit-up for welding. The

mean value for the internal misalignment was obtained to be 0.49mm with a standard deviation

of 0.25mm which by the means of the samples taken indicates that the method is very accurate

and robust. Further, with a mean value and deviation in y-direction of only -0.02±0.26mm and

CHAPTER 5. RESULTS 83

0.05±0.16mm for the two robots it clearly does not exceed the root opening of 1.6mm. Figure

5.14 shows two captured point clouds representing the left and right cylinder at start position

and the translated position.

5.2.4 Using the rotation from SAC-IA/ICP or RANSAC together with Search

Method

As explained in subsection 5.2.1 the SAC-IA/ICP alignment had a varying value along the length

of the tube and the RANSAC rotation alignment described in subsection 5.2.2 has no translation.

To obtain a complete as possible alignment the Search Method was implemented together with

the SAC-IA/ICP and RANSAC to align tubes not only having a run-out, but also if the tubes are

tilted by the robots. Because of the orientation deviation for both RANSAC and SAC-IA/ICP the

resulting fit-up was either oblique or it had gaps not suitable for welding.

Figure 5.15 shows the visualization of how two point clouds representing two tubes are first

by SAC-IA and ICP tried to be aligned with two target cylinders and then with translation correc-

tion using Search Method. Left side in the figure represents the SAC-IA and ICP alignment while

the right side Search method is implemented. Even though the alignment might seem good, it

was proven in 5.2.1 that the orientation deviation for SAC-IA and ICP is to big for welding. Figure

5.16 shows the actual result of the alignment using SAC-IA and ICP.

Figure 5.15: The alignment with only SAC-IA and ICP on yhe left side and with Search Method
correction on the right side.

CHAPTER 5. RESULTS 84

Figure 5.16: The upper part shows two tubes being tilted by the robots while the bottom figure
shows the resulting fit-up using SAC-IA/ICP and Search Method.

The same test were executed using the RANSAC together with Search Method to obtain a

complete transformation. The result is shown in figure 5.17 where the coordinate system is lo-

cated on Med g e with the orientation of the tilted cylinder and the red point cloud represents the

final alignment for the two point clouds using RANSAC and Search Method. Also this method

was proven to be insufficiently accurate to use for welding.

CHAPTER 5. RESULTS 85

Figure 5.17: Coordinate system defined by the orientation of the cylinder and its origin is placed
at Med g e . The red point cloud show the resulting alignment using RANSAC and Search Method.

Chapter 6

Concluding Remarks

6.1 Discussion

In the process of developing a solution using the Kinect for pose corrections of the two tubes for

welding, a considerable large amount of time was used to learn the language of programming.

It was invested much effort in learning how Visual Studio 2013 worked and how to utilize C++ to

develop a working script. By balancing one block of code on top of the other and testing for error

and bugs the script became long and with unorthodox structure. With no experience in how to

build a script from the ground using functions, classes, methods and structs a good programmer

would probably set question marks on the coding approach. But with persistence the final code

ables to preform every intended implementation with success, even though the structure and

handling of data could have been done more efficiently. That being said, if the author of this

thesis could go back in time the development of a script with better user interface would have

been developed. Not having a GUI Graphical user interface (GUI) for the C++ application made

small changes like changing the volume for passthrough filtering very time consuming because

the whole code had to be recompiled. Recompiling and testing small changes along the way was

considerable time consuming and could have been avoided.

Further more, the knowledge of computer vision and 3D data processing was absent, making

the handling of 3D data and extraction of vital information from it time consuming to master.

Traditional pipelines for point cloud registration was looking promising at start being able to

align object with simple geometry found in the office, but when tested on cylindrical objects

86

CHAPTER 6. CONCLUDING REMARKS 87

these alignment methods struggled because of the cylinder’s homogeneous geometry. After the

fact that several implementation of registration methods failed, it was decided that the already

well documented alignments methods was not suitable for aligning two tubes with both the

translational and orientational accuracy needed for this project. The development of a method

to find the precise position of a tubes lead to the Search Method algorithm. This method made it

possible to reposition the two tubes in such a way that they could be welded together. It became

also an excessive tool to improve the bad translation results using ICP.

For communication between the remote computer and the robots a solid work had already

been done in the project thesis by knowing how to sequence robot programs and staring/stop-

ping the weld using Boolean values. Still, how to write and read the robot poses using the Cross-

ComClient class and the JOpenShowVar had to be mastered. Since the Java "ControlSystem"

application had to be used for communication it was decided that it would also be used for con-

trolling the Matlab and C++ application. Java presented it self as an easier programing-language

than C++ and was the obvious choice for programing the control of the solution.

6.2 Conclusion

In this Master’s thesis solutions to align cylindrical object with a target cylinders to preform

sufficiently good fit-ups for welding was tested. Using SAmple Consensus for Initial Align-

ment and Iterative Closest Point for fine adjustment resulted in a standard deviation y-value

of 25.91mm making the translation too inaccurate for welding. The translation was fixed by

Search Method, but the deviation in orientation makes the ICP together with SAC-IA not accu-

rate enough to meet the welding criteria of having a root opening of 1.6mm and internal mis-

alignment of 1.25mm. The other aligning method was to use RANSAC to find orientation and

Search Method to obtain translation. This method had a lower standard deviation than the ICP

for finding orientation, but still not good enough for welding. This concludes that for orienta-

tion neither RANSAC or ICP are suitable for aligning two cylinders for welding. For translation

the ICP showed great weakness because of the homogeneous geometry of a cylinder, while the

Search Method tailored for finding the edge of a cylinder proved to be very precise with a stun-

ning mean internal misalignment error of only 0.48±0.25mm making it suitable for fitting up

CHAPTER 6. CONCLUDING REMARKS 88

two tubes for welding.

The alignment methods could due to data noise generate erroneous alignment poses which

could possible damage the robot or its environment. To protect the robots, two safety measures

were implemented. First, because the two tubes have to be closer than 1.6mm from each other

to be weldable, the slightest error could cause the cylinders to crash and potentially damage the

robots. A force controlled approach was implemented to stop the robot protecting the fit-up

against damaging reaction forces. Secondly, a robot safety application was developed in Matlab

to simulate the calculated new pose obtained by the Kinect and C++ alignment application. By

collision testing and visual observation of the simulation a operator can decide if the new poses

are weldable or if the robots collide.

6.3 Recommendations for Further Work

The task of welding together tubes with unknown run-out is solved, but there could be improve-

ments. For starters, the C++ code could be cleaned up making it more readable for third party

readers and it could have had a better user interface. With better user interface it could be pos-

sible to change processing parameters in real time instead of recompiling the code for every

change. Qt GUI is a cross-platform application framework that could be used for developing a

better graphical user interface.

The calibration of the camera frame relative to the robot frames was done manually by

jogging the robots and recoding different positions. If the Kinect had been bumping into or

moved, the calibration had to be repeated. To prevent the time-consuming effort of manually

re-calibrate the camera regularly and calibration application should be developed. This could

be done by attaching a ball of known radius to the robots end-effector and by utilizing RANSAC

for spheres to track the ball origin position. Pre-made robot motions with known position and

the position detection using RANSAC could generate the needed positions to calculate the trans-

formation matrix between the two frames.

Next, for better flexibility a parameterized solution could be developed to weld together

tubes of different diameter. The Search Method algorithm works for any tube independent of its

diameter, but new welding paths would have to be generated and written to the KR-16 robot.

CHAPTER 6. CONCLUDING REMARKS 89

Last, the JOpenShowVar solution for communication only provides for soft real-time ac-

cess to the manipulator to be controlled. Soft real-time means that the communication de-

lay is to big to control the manipulators in real-time. By acquiring KUKA.RobotSensorInterface

and KUKA.Ethernet KRL XML a real-time control system can be developed opening for the op-

portunities of using the already installed KUKA.ForceTorqueControl to move the manipulators

according the input forces.

Bibliography

[1] KUKA KR QUANTEC PRO Specification.

[2] Net F/T Network Force/Torque Sensor System Installation and Operation Manual.

[3] Robot programming 1 Kuka System Software 8 Training Documentation.

[4] specification for pipework welding, inspection, supporting and testing.

[5] TRANSSTEEL ROBOTICS CONFIGURATION.

[6] B. Buttgen, T. Oggier, M. L. R. K. and Lustenberger, F. (2005). Ccd/cmos lock-in pixel for

range imaging: Challenges, limitations and state-of-the-art. Swiss Center for Electronics and

Microtechnology.

[7] Burgard, W. (2009). Intelligent Autonomous Systems 10: IAS-10. IOS Press.

[8] Carlo Dal Mutto, Pietro Zanuttigh, G. M. C. (2012). Time-of-Flight Cameras and Microsoft

Kinect. Springer.

[9] Chen, Y. and Medioni, G. (1991). Object modeling by registration of multiple range images.

Image and Vision Computing.

[10] Corke, P. (2011). Robotic Vision and Control Fundamental Algorithm in MATLAB. Springer.

[11] Corral, M. (2008). Vector Calculus. LL.

[12] David Forsyth, Philip Torr, A. Z. (2008). Computer Vision - ECCV 2008: 10th European Con-

ference on Computer Vision, Marseille, France, October 12-18, 2008. Proceedings. Springer

Science & Business Media.

90

BIBLIOGRAPHY 91

[13] Davison, R. (2000). General guidelines, practical aspects for production welding, a fabrica-

tors view. TAPPI journal 2000, volume 83, no.9.

[14] F. Sanfilippo, L. I. Hatledal, H. Z. M. F. and Pettersen, K. Y. (2014). Jopenshowvar: an open-

source cross-platform communication interface to kuka robots. Information and Automation

(ICIA), 2014 IEEE International Conference on.

[15] Garcia, S. (2009). Fitting primitive shapes to point clouds for robotic grasping. Master’s

thesis, School of Electrical Engineering - Royal Institute of Technology.

[16] H. Nakamura, K. Yamamoto, T. I. and Koyama, T. (1993). Development of off-line program-

ming system for spot welding robot. IEEE.

[17] HOPPE, H., D. T. D. T. M. J. and STUETZLE, W. (1992). Surface reconstruction from unor-

ganized points. Computer Graphics (SIGGRAPH’92 Proceedings) 26.

[18] Iglewicz, B. and Hoaglin, D. (1993). How to Detect and Handle Outliers. ASQC Quality Press.

[19] Jason Luck, C. L. and Hoff, W. (2000). Rigistration of range data using a hybrid simulated an-

nealing and iterative closest point algorithm. IEEE 2000 International Conference on Robotics

& Automation.

[20] Jeff Knisley, K. S. (2014). Calculus: A Modern Approach. John Wiley & Sons,.

[21] Katsumi, M. and Kenji*2, O. (2013). Steel products for energy industries. JFE TECHNICAL

REPORT No. 18, JFE TECHNICAL REPORT.

[22] Klein†, R. S. R. W. R. (2007). Efficient ransac for point-cloud shape detection. The Euro-

graphics Association and Blackwell Publishing 2007.

[23] Muft, F. and Mahony, R. (2009). Statistical analysis of measurement processes for time-of

flight cameras. Proceedings of SPIE the International Society for Optical Engineering.

[24] N.Jazar, R. (2010). Theory of Applied Robotics Kinematics, Dynamics, and Control. Springer.

[25] Radu Bogdan Rusu, Nico Blodow, M. B. (2009). Fast point feature histograms (fpfh) for 3d

registration. 2009 IEEE International Conference on Robotics and Automation.

BIBLIOGRAPHY 92

[26] Sekiguchi, N. (2015). Steel market developments.

[27] Smith, C. (2011). Microsoft kinect: World’s fastest-selling con-

sumer electronics device. http://www.washingtonpost.com/wp-

dyn/content/article/2009/03/27/AR2009032701576.html.

[28] T. Huysmans, J. S. and Verdonk, B. (2005). Parameterization of tubular surfaces on the

cylinder. Journal of the Winter School of Computer Graphics.

[29] Wajahat Kazmia, Sergi Foixb, G. A. H. J. A. (2014). Indoor and outdoor depth imaging of

leaves with time of flight and stereo vision sensors: Analysis and comparison. ISPRS J. Pho-

togram. Remote Sens.

[30] Yu Liu, Zainan Jiang, H. L. and Xu, W. (2012). Geometric parameter identification of a 6-dof

space robot using a laser-ranger. Journal of Robotics Volume 2012 (2012), Article ID 587407,.

[31] Zhang, L. and Saddik, A. E. (2015). Evaluation and improving the depth accuracy of kinect

for windows v2. IEEE Sensors Journal.

[32] Ziv (2010). Rigid registration: The iterative closest point algorithm. Master’s thesis, The

Hebrew University, Jerusalem, Isreal.

[33] Ø. Karlsen, B., F. O. U. o. T. S. (2015). Kunnskapsstatus som grunnlag for kapasitetsjustering

innen produksjonsområder basert på lakselus som indikator. Technical report, havforskn-

ingsinstituttet.

Appendix A

Source code

A.1 Matlab Safety Application

A.2 Safety Application

1

2 % Simen Hagen Bredvold 05.06.2016

3 % Master ’s Thesis

4 % NTNU

5 % This is a program for to simulate the new poses given from

the C++

6 % application and the Kinect. To protect the environment and

robots against

7 % collision this program will test the new poses against

collision.

8

9 %Read in the DH parameters for KUKA 120 robot

10 DH=getDH();

11 Radconverter =(2*pi)/360;

12

93

APPENDIX A. SOURCE CODE 94

13 % Start position right robot

14 qrightstart =[0 (-pi/2) pi/2 0 0 0]; %need a offsett on theta3

15 qrightstart (3)=qrightstart (3) -(pi/2);

16 %Right object using the SerialLink class. Plot the start

position

17 RIGHT = SerialLink(DH, ’name’, ’KUKA 120 RIGHT’);

18 RIGHT.plot(qrightstart ,’notiles ’);

19

20 hold on % to plot in the same figure

21

22 % Start position left robot

23 qleftstart =[0 (-pi/2) pi/2 0 0 0]; %need a offsett on theta3

24 qleftstart (3)=qleftstart (3) -(pi/2);

25 LEFT = SerialLink(DH, ’name’, ’KUKA 120 LEFT’); %LEFT object

26 LEFT.base=transl ([0 -3.12 0]); %

27 LEFT.plot(qleftstart ,’notiles ’)

28

29 % qPickUpRight and qPickUpLeft are the joint configuration

when the robots picks up their

30 % tubes from the floor.

31

32 % RIGHT

33 qPickUpRight =[-0.02 -55.7 90.10 0.07 55.56 89.92]; %need a

offsett on theta3

34 qPickUpRight (3)=qPickUpRight (3) -((90));

35 qPickUpRightTH =(-(qrightstart/Radconverter)+qPickUpRight)/10;

36

37 %ONE LEFT

38 qPickUpLeft =[0.77 -54.8 87.07 -0.04 57.76 0.77]; %need a

offsett on theta3

APPENDIX A. SOURCE CODE 95

39 qPickUpLeft (3)=qPickUpLeft (3) -((90));

40 qPickUpLeftTH =(-(qleftstart/Radconverter)+qPickUpLeft)/10;

41

42 %The program waits until the robot program starts

43 B=1;

44 while B==1

45 A=fileread(’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

MatlabStarter.txt’);

46 B=strfind(A, ’FALSE’);

47 pause (1);

48 disp(B)

49 end

50

51 %Move to the pick up position for the tubes.

52 % The jtraj method can only visualize one robot moving at the

time.

53 % To display them at the "same" time the robot movements are

split

54 % up into 10 parts.

55 t = [0:.1:0.1] ’;

56 for k=1:10

57 CurrentRight =(qPickUpRightTH *(k-1)*Radconverter) +

qrightstart;

58 NextRight =(qtwoTH *(k)*Radconverter) + qrightstart;

59 CurrentLeft =(qPickUpLeftTH *(k-1)*Radconverter) +

qleftstart;

60 NextLeft =(qPickUpLeftTH *(k)*Radconverter) + qleftstart;

61 %Joint space trajectory

62 qright = jtraj(CurrentRight , NextRight , t);

APPENDIX A. SOURCE CODE 96

63 qleft = jtraj(CurrentLeft , NextLeft , t);

64 RIGHT.plot(qright ,’notiles ’);

65 LEFT.plot(qleft ,’notiles ’);

66 end

67 t = [0:.05:2] ’;

68 %Wait for the robots to finish picking up the tubes.

69 B=1;

70 while B==1

71 A=fileread(’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

MatlabTubePickedUp.txt’);

72 B=strfind(A, ’FALSE’);

73 C = textscan(A,’%s %f %f’); % save the number values in

the file. Length of tube.

74 pause (1);

75 disp(B)

76 end

77

78 % Position the robots infront of the camera using program

SETPOSITIONLEFT and SETPOSITIONRIGHT:

79

80 % Program SETPOSITIONRIGHT RIGHT joint configuration

81 qSETPOSITIONRIGHT =[-8.2 -92.88 114.67 -93.2 82.39 127.05]; %

need a offsett on theta3

82 qSETPOSITIONRIGHT (3)=qSETPOSITIONRIGHT (3) -((90));

83 [Tsetpositionright ,Jsetpositionright]= forwardkinematics(DH,

qSETPOSITIONRIGHT*Radconverter);

84

85 %Program SETPOSITIONLEFT LEFT joint configuration

APPENDIX A. SOURCE CODE 97

86 qSETPOSITIONLEFT =[1.77 -91.03 113.38 90.51 88.64 -3.78]; %

need a offsett on theta3

87 qSETPOSITIONLEFT (3)=qSETPOSITIONLEFT (3) -((90));

88 [Tsetpositionleft ,Jsix]= forwardkinematics(DH,

qSETPOSITIONLEFT*Radconverter);

89

90 qSETPOSITIONRIGHTTH =(-(qSETPOSITIONRIGHT) + qSETPOSITIONRIGHT

)/10;

91 qSETPOSITIONLEFTTH =(-(qSETPOSITIONLEFT) + qSETPOSITIONLEFT)

/10;

92

93 %Display the robot movements:

94 t = [0:.1:0.1] ’;

95 for k=1:10

96 CurrentRight =(qSETPOSITIONRIGHTTH *(k-1)*Radconverter) +

qPickUpRight*Radconverter;

97 NextRight =(qSETPOSITIONRIGHTTH *(k)*Radconverter) +

qPickUpRight*Radconverter;

98 CurrentLeft =(qSETPOSITIONLEFTTH *(k-1)*Radconverter) +

qPickUpLeft*Radconverter;

99 NextLeft =(qSETPOSITIONLEFTTH *(k)*Radconverter) +

qPickUpLeft*Radconverter;

100 %Joint space trajectory

101 qright = jtraj(CurrentRight , NextRight , t);

102 qleft = jtraj(CurrentLeft , NextLeft , t);

103 RIGHT.plot(qright ,’notiles ’);

104 LEFT.plot(qleft ,’notiles ’);

105 end

106

APPENDIX A. SOURCE CODE 98

107 %Create two cylinders in the plot with the same pose as the

end -effectore.

108 location= [0 0 0]’;

109 scale_right = [0.168 0.168 C{2}]; %diameter of cylder and

length of tube

110 scale_left = [0.168 0.168 C{1}]; %diameter of cylder and

length of tube

111 Trotx=[rotx(-pi/2), location; 0,0, 0, 1];

112

113 location_RIGHT = [0 0 0]’;

114 T_RIGHT_cylinder_HOLD = [eye(3), location_RIGHT; 0, 0, 0, 1];

115 Tnew_RIGHT_HOLD=T_RIGHT_cylinder_HOLD*Tsetpositionright*Trotx

; %Pose of cylinder

116 base_RIGHT_HOLD = Cylinder(Tnew_RIGHT_HOLD , scale_right , ’

FaceColor ’, [1 1 1], ’EdgeColor ’, ’none’); %Object of

class Cylinder

117 cylinder_RIGHT_HOLD=CollisionModel(base_RIGHT_HOLD);

118 hold_right=cylinder_RIGHT_HOLD.plot;

119

120 %Left robot

121 location_LEFT = [0 -3.12 0]’;

122 T_LEFT_cylinder_HOLD = [eye(3), location_LEFT; 0, 0, 0, 1];

123 Tnew_LEFT_HOLD=T_LEFT_cylinder_HOLD*Tsetpositionleft*Trotx;

124 base_LEFT_HOLD = Cylinder(Tnew_LEFT_HOLD , scale_left , ’

FaceColor ’, [1 1 1], ’EdgeColor ’, ’none’);

125 cylinder_LEFT_HOLD=CollisionModel(base_LEFT_HOLD);

126 hold_left=cylinder_LEFT_HOLD.plot;

127

128 %Waits until the C++ application is finished. The next

movement is based

APPENDIX A. SOURCE CODE 99

129 %on the information from the Kinect and it checks if the new

pose is

130 %possible to reach without crashing.

131

132 B=1;

133 while B==1

134 A=fileread(’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

MatlabSafetyProgram.txt’);

135 B=strfind(A, ’FALSE’);

136 pause (1);

137 disp(B)

138 end

139 delete(hold_left); % remove the cylinders.

140 delete(hold_right); % remove the cylinders.

141

142 % The current transformation matrix for each robot.

143 [Tright ,Jtuberight]= forwardkinematics(DH,qSETPOSITIONRIGHT*

Radconverter);

144 [Tleft ,Jtubeleft]= forwardkinematics(DH,qSETPOSITIONLEFTTH*

Radconverter);

145

146 % Read the new transformation matrix from each robot.

147 % Also , the dimmensjion is in mm while matlab uses meter.

148 %Function to convert the commas to dots because matlab can ’t

read commas.

149 comma2point_overwrite(’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

transformationmatrix_RIGHT.txt’);

APPENDIX A. SOURCE CODE 100

150 comma2point_overwrite(’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

transformationmatrix_LEFT.txt’);

151

152 %Read the transformation matrices greated by the C++

application.

153 filename = ’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

transformationmatrix_RIGHT.txt’;

154 RightTransformation=importdata(filename);

155 filename = ’C:\Users\simen_000\Desktop\

NetBeansProjectsmededit\JavaControlSystem\ControlSystem\

transformationmatrix_LEFT.txt’;

156 LEFTTransformation=importdata(filename);

157

158 %Convert to meter from mm:

159 LEFTTransformation (1,4)=LEFTTransformation (1,4) /1000;

160 LEFTTransformation (2,4)=LEFTTransformation (2,4) /1000;

161 LEFTTransformation (3,4)=LEFTTransformation (3,4) /1000;

162

163 RightTransformation (1,4)=(RightTransformation (1,4) /1000);

164 RightTransformation (2,4)=RightTransformation (2,4) /1000;

165 RightTransformation (3,4)=RightTransformation (3,4) /1000;

166

167 % Add the correction translation to the new transformation

matrix

168 NewTransformationMatrixLeft (1,4)=LEFTTransformation (3,4)+

Tleft (1,4); %Translation

169 NewTransformationMatrixLeft (2,4)=LEFTTransformation (1,4)+

Tleft (2,4); %Translation

APPENDIX A. SOURCE CODE 101

170 NewTransformationMatrixLeft (3,4)=LEFTTransformation (2,4)+

Tleft (3,4); %Translation

171

172 NewTransformationMatrixRight (1,4)=RightTransformation (3,4)+

Tright (1,4);

173 NewTransformationMatrixRight (2,4)=RightTransformation (1,4)+

Tright (2,4);

174 NewTransformationMatrixRight (3,4)=RightTransformation (2,4)+

Tright (3,4);

175

176 %Inverse kinematics to find the new joint configurations for

the two new

177 %poses.

178 qright = InverseKinematics(DH, NewTransformationMatrixRight ,

qSETPOSITIONRIGHT*Radconverter);

179 qleft = InverseKinematics(DH, NewTransformationMatrixLeft ,

qSETPOSITIONLEFTTH*Radconverter);

180 t=[0:0.05:2] ’;

181 %Move the end effector from the current configuration to the

new

182 %configuration

183 q1 = jtraj(qSETPOSITIONRIGHT*Radconverter , qright , t);

184 q2 = jtraj(qSETPOSITIONLEFTTH*Radconverter , qleft , t);

185

186 RIGHT.plot(q1,’notiles ’);

187 LEFT.plot(q2,’notiles ’);

188

189 %Check if they crash:

190 %This is done by preforming collision checking which takes

the SerialLink

APPENDIX A. SOURCE CODE 102

191 %object and its joint configuration and check if it

intersects with a solid

192 %model.

193

194 %Create the solid model object for left and right robot:

195 location_RIGHT = [0 0 0]’;

196 T_RIGHT_cylinder = [eye(3), location_RIGHT; 0, 0, 0, 1];

197 Tnew_RIGHT=T_RIGHT_cylinder*NewTransformationMatrixRight*

Trotx;

198 base_RIGHT = Cylinder(Tnew_RIGHT , scale_right , ’FaceColor ’,

[0 1 0], ’EdgeColor ’, ’none’); % Green tube

199 cylinder_RIGHT=CollisionModel(base_RIGHT);

200

201 location_LEFT = [0 -3.12 0]’;

202 T_LEFT_cylinder = [eye(3), location_LEFT; 0, 0, 0, 1];

203 Tnew_LEFT=T_LEFT_cylinder*NewTransformationMatrixLeft*Trotx;

204 base_LEFT = Cylinder(Tnew_LEFT , scale_left , ’FaceColor ’, [0 1

0], ’EdgeColor ’, ’none’);

205 cylinder_LEFT=CollisionModel(base_LEFT);

206

207 %Create two new SerialLink object which have an extended last

link equal to

208 % the length of the cylinder.

209 DH_right=DH;

210 DH_right (6,2)=DH_right (6,2)+C{2}; %C{2} is the lenght of the

right tube.

211 RIGHT_collision = SerialLink(DH_right , ’name’, ’KUKA 120

RIGHT’);

212

213 DH_left=DH;

APPENDIX A. SOURCE CODE 103

214 DH_left (6,2)=DH_left (6,2)+C{1}; %C{1} is the lenght of the

right tube.

215 LEFT_collision = SerialLink(DH_left , ’name’, ’KUKA 120 RIGHT’

);

216

217 %Check if the right robot crash with the left tube and the

right tube::

218 C_right=RIGHT_collision(q1,cylinder_LEFT);

219 C_left=LEFT_collision(q2,cylinder_RIGHT);

220

221 %If either C_left or C_right is true then on of them crashes

and the pose

222 %must not be executed by the real robots. To visualize plot

the two robots

223 %holding their tube and color the tube that crashes red.

224

225 if C_left ==1

226 base_LEFT_red = Cylinder(Tnew_LEFT , scale_left , ’

FaceColor ’, [1 0 0], ’EdgeColor ’, ’none’); %red tube

227 cylinder_LEFT_red=CollisionModel(base_LEFT_red);

228 cylinder_LEFT_red.plot;

229 else

230 cylinder_LEFT.plot;

231 end

232

233 if C_right ==1

234 base_RIGHT_red = Cylinder(Tnew_RIGHT , scale_right , ’

FaceColor ’, [1 0 0], ’EdgeColor ’, ’none’); %red tube

235 cylinder_RIGHT_red=CollisionModel(base_RIGHT_red);

236 cylinder_LEFT_red.plot; %Plot the red tube

APPENDIX A. SOURCE CODE 104

237 else

238 cylinder_RIGHT.plot; %Plot the green tube which does not

crash

239 end

Listing A.1: SafetyApplication.m

APPENDIX A. SOURCE CODE 105

A.3 C++ Alignment application

A.3.1 C++ Main source file

The source code below is for processing and finding the transformation matrix the right

cylinder. The left cylinder is left out to save pages. The whole code is found in the digital

appendix.

1

2 /*

3 − Author : Simen Hagen Bredvold

4 − Master ’ s Thesis NTNU IPK 2016

5

6 This code was developed for the purpose of al igning two c y l i n d r i c a l object to a

known position .

7 The following code does the following :

8 − Capture point cloud from the environment

9 − F i l t e r the captured environment and storing the two c y l i n d r i c a l object in each

point cloud

10 − Three d i f f e r e n t methods for al igning a c y l i n d r i c a l object :

11 1) SAC−IA as i n i t i a l guess for ICP .

12 2) RANSAC together with Search Method .

13 3) Only search method for t r a n s l a t i o n

14 − Visual izat i on of wanted and current point cloud

15

16 The source code consist of :

17 1) MultiPictureMain . cpp : where the classe s and main i s defined

18 2) Functions . h : header f i l e which includes a l l l i a b a r i e s and declear a l l functions

needed .

19 3) Functions . cpp : Function d e f i n i t i o n s needed .

20

21 Environment :

22 −Point Cloud Library

23 −Kinect for Windows SDK v2 . 0

24 −Visual Studio Community 2013

25 −C++ Standard Library

APPENDIX A. SOURCE CODE 106

26 −Eigen l i b r a r y for l i n e a r algebra : matrices , vectors , numerical solvers , and

related algorithms .

27 */

28

29 #define _SCL_SECURE_NO_WARNINGS

30 #define _CRT_SECURE_NO_WARNINGS

31

32 #include " Functions . h"

33 #include " kinect2_grabber . h"

34

35 // Object decleration

36 pcl : : NormalEstimation<PointT , pcl : : Normal> ne_right ;

37 pcl : : SACSegmentationFromNormals<PointT , pcl : : Normal> seg_right ;

38 pcl : : ExtractIndices<PointT> e x t r a c t _ r i g h t ;

39 pcl : : ExtractIndices<pcl : : Normal> extract_normals_right ;

40 pcl : : search : : KdTree<PointT > : : Ptr t r e e _ r i g h t (new pcl : : search : : KdTree<PointT >()) ;

41 pcl : : search : : KdTree<PointT > : : Ptr search_local_feature_right (new pcl : : search : : KdTree

<PointT >()) ;

42 pcl : : SampleConsensusInitialAlignment<pcl : : PointXYZ , pcl : : PointXYZ , pcl : :

FPFHSignature33> s a c _ i a _ r i g ht ;

43 pcl : : FPFHEstimation<pcl : : PointXYZ , pcl : : Normal , pcl : : FPFHSignature33>

f p f h _ e s t _ r i g h t ;

44 pcl : : I t e r a t i v e C l o s e s t P o i n t <pcl : : PointXYZ , pcl : : PointXYZ> icp_RIGHT ;

45 pcl : : PCDWriter writer ;

46

47 // Algorithm parameters

48 f l o a t LengthFromCamera (0 . 6) ;

49 f l o a t TubeRadius (0 . 0 8 4) ;

50 i n t i t e r a t i o n s (150) ;

51

52 using namespace std ;

53

54 // Class for grabbing point clouds and f i l t e r i n g them

55 c l a s s ViewGrapAndFilter

56 {

57 public :

APPENDIX A. SOURCE CODE 107

58 ViewGrapAndFilter () : viewer ("PCL Viewer") {

59 frames_saved = 0 ;

60 save_one = f a l s e ;

61 }

62

63 void GetFiltered PointCloud (const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr

cloudfiltered_LEFT ,

64 const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloudfiltered_RIGHT) {

65 //To get the clouds found in t h i s c l a s s

66 * cloudfiltered_LEFT = cloud_from_camera_filtered_LEFT ;

67 * cloudfiltered_RIGHT = cloud_from_camera_filtered_RIGHT ;

68 }

69

70 void Grab (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr &cloud) {

71 //Grabs the scene and adds i t to cloud_a .

72 i f (! viewer . wasStopped ()) {

73 viewer . showCloud (cloud) ;

74

75 i f (save_one) {

76 save_one = f a l s e ;

77

78 cloud_a = cloud_a + * cloud ;

79 }

80 }

81 }

82

83 void FilterCapturedPC () {

84 // Point clouds , model c o e f f i c i e n t s , normals and Indices storage

85 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_inn (new pcl : : PointCloud<pcl : : PointXYZ

>) ;

86 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_passthroughz (new pcl : : PointCloud<pcl

: : PointXYZ >) ;

87 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_passthroughx (new pcl : : PointCloud<pcl

: : PointXYZ >) ;

88 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_passthroughy (new pcl : : PointCloud<pcl

: : PointXYZ >) ;

APPENDIX A. SOURCE CODE 108

89 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_passthroughxyz (new pcl : : PointCloud<

pcl : : PointXYZ >) ;

90 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_downsampled (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

91 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_negativ_x (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

92 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_positiv_x (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

93 pcl : : PointCloud<PointT > : : Ptr cloud_right (new pcl : : PointCloud<PointT >) ;

94 pcl : : PointCloud<pcl : : Normal > : : Ptr cloud_normals_right (new pcl : : PointCloud<pcl : :

Normal>) ;

95 pcl : : ModelCoefficients : : Ptr c o e f f i c i e n t s _ c y l i n d e r _ r i g h t (new pcl : :

ModelCoefficients) ;

96 pcl : : PointIndices : : Ptr i n l i e r s _ c y l i n d e r _ r i g h t (new pcl : : PointIndices) ;

97

98 //Get point cloud captured

99 * cloud_inn = cloud_a ;

100 // Pass thorugh f i l t e r . Removes every point not ly ing within the boundaries of x

, y and z .

101 PassthroughFilter (cloud_inn , cloud_passthroughz , 0 . 6 , 2 , ’ z ’) ;

102 PassthroughFilter (cloud_passthroughz , cloud_passthroughy , −0.7 , 0 . 7 , ’ y ’) ;

103 PassthroughFilter (cloud_passthroughy , cloud_passthroughx , −1.4 , 1 . 4 , ’ x ’) ;

104

105 //downsampling voxel grid :

106 DownsamplingFilter (cloud_passthroughx , cloud_downsampled , 0.008 f) ; // a c t u a l l y

0.008

107

108 // S p l i t the point cloud into two . Right and l e f t tube .

109 //−−−−−−−−−−−−−−−LEFT − RIGHT cloud s p l i t t i n g s t a r t−−−−−−−−−−−
110 // Go through every point and store a l l point with negative and postive value

of

111 // x in d i f f e r e n t point clouds

112 f l o a t X ;

113 for (s i z e _ t i = 0 ; i < cloud_downsampled−>points . s i z e () ; ++ i) {

114 X = cloud_downsampled−>points [i] . x ;

115 i f (X < 0)

APPENDIX A. SOURCE CODE 109

116 {

117 pcl : : PointXYZ basic_point_negativ ;

118 basic_point_negativ . x = X ;

119 basic_point_negativ . y = cloud_downsampled−>points [i] . y ;

120 basic_point_negativ . z = cloud_downsampled−>points [i] . z ;

121 cloud_negativ_x−>points . push_back (basic_point_negativ) ;

122 }

123 else

124 {

125 pcl : : PointXYZ basic_point_posit iv ;

126 basic_point_posit iv . x = X ;

127 basic_point_posit iv . y = cloud_downsampled−>points [i] . y ;

128 basic_point_posit iv . z = cloud_downsampled−>points [i] . z ;

129 cloud_positiv_x−>points . push_back (basic_point_posit iv) ;

130 }

131 }

132

133 cloud_negativ_x−>width = (i n t) cloud_negativ_x−>points . s i z e () ;

134 cloud_negativ_x−>height = 1 ;

135 cloud_positiv_x−>width = (i n t) cloud_positiv_x−>points . s i z e () ;

136 cloud_positiv_x−>height = 1 ;

137 cloud_right = cloud_positiv_x ;

138 cloud_lef t = cloud_negativ_x ;

139

140 //−−−−−−−−−−−−−−−−LEFT − RIGHT cloud s p l i t t i n g end−−−−−−−−−−−−−−−−−−−
141

142 //−−−−−−−−−−−−−−−−−−−−−−−−−− RANSAC RIGHT − START −−−−−−−−−−−−−−−−−−−−−
143 // Estimate point normals

144 ne_right . setSearchMethod (t r e e _ r i g h t) ;

145 ne_right . setInputCloud (cloud_right) ;

146 ne_right . setKSearch (50) ;

147 ne_right . compute (* cloud_normals_right) ;

148

149 // RANSAC for c y l i n d r i c a l object

150 seg_right . setOptimizeCoefficients (true) ;

151 seg_right . setModelType (pcl : : SACMODEL_CYLINDER) ;

APPENDIX A. SOURCE CODE 110

152 seg_right . setMethodType (pcl : : SAC_RANSAC) ;

153 seg_right . setNormalDistanceWeight (0 . 1) ;

154 seg_right . setMaxIterations (10000) ;

155 seg_right . setDistanceThreshold (0 . 0 5) ;

156 seg_right . setRadiusLimits (0 , 0 .09) ;

157 seg_right . setInputCloud (cloud_right) ;

158 seg_right . setInputNormals (cloud_normals_right) ;

159

160 // Obtain the cylinder i n l i e r s and c o e f f i c i e n t s

161 seg_right . segment (* i n l i e r s _ c y l i n d e r _ r i g h t , * c o e f f i c i e n t s _ c y l i n d e r _ r i g h t) ;

162 std : : cerr << " Cylinder c o e f f i c i e n t s : " << * c o e f f i c i e n t s _ c y l i n d e r _ r i g h t << std : :

endl ;

163

164 // Write the cylinder i n l i e r s to disk

165 e x t r a c t _ r i g h t . setInputCloud (cloud_right) ;

166 e x t r a c t _ r i g h t . setIndices (i n l i e r s _ c y l i n d e r _ r i g h t) ;

167 e x t r a c t _ r i g h t . setNegative (f a l s e) ;

168 pcl : : PointCloud<PointT > : : Ptr cloud_cylinder_right (new pcl : : PointCloud<PointT >()

) ;

169 e x t r a c t _ r i g h t . f i l t e r (* cloud_cylinder_right) ;

170

171 i f (cloud_cylinder_right−>points . empty ())

172 std : : cerr << "Can ’ t find the r i g h t c y l i n d r i c a l component . " << std : : endl ;

173 else

174 {

175 std : : cerr << "PointCloud representing the l e f t c y l i n d r i c a l component : "

176 << cloud_cylinder_right−>points . s i z e () << " data points . " << std : : endl ;

177 }

178 //−−−−−−−−−−−−−−−−−−−−−−− RANSAC RIGHT − END −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179

180 //−−−−−−−−−−−−−−−−−−−−−REMOVE BACK SIDE − START −−−−−−−−−−−−−−−−−−−−−−−−−−−−
181 // WANT TO REMOVE ALL POINTS THAT REPRESENT THE BACK SIDE OF THE

182 // TUBE BECAUSE THEY DISTURB ICP and SAC−IA ALIGNMENT.

183 pcl : : PointXYZ minPt_right , maxPt_right ;

184 pcl : : getMinMax3D (* cloud_cylinder_right , minPt_right , maxPt_right) ;

185 f l o a t ZvalueFilter_RIGHT ;

APPENDIX A. SOURCE CODE 111

186 f l o a t zlimit_RIGHT = minPt_right . z + 0 . 0 8 4 ; // the distance along the z−axis to

the center of the cylinder

187 pcl : : PointCloud<PointT > : : Ptr c l o u d _ c y l i n d e r _ r i g h t _ f i l t e r e d (new pcl : : PointCloud<

PointT >()) ;

188 cout << " the value of z−r i g h t i s " << zlimit_RIGHT << endl ;

189

190 //Remove every point having a l a r g e r z−value then zlimit_RIGHT and zlimit_LEFT .

191 //RIGHT SIDE :

192 for (s i z e _ t i = 0 ; i < cloud_cylinder_right−>points . s i z e () ; ++ i) {

193 ZvalueFilter_RIGHT = (cloud_cylinder_right−>points [i] . z) ;

194 i f (ZvalueFilter_RIGHT <zlimit_RIGHT)

195 {

196 pcl : : PointXYZ basic_point_right ;

197 basic_point_right . x = cloud_cylinder_right−>points [i] . x ;

198 basic_point_right . y = cloud_cylinder_right−>points [i] . y ;

199 basic_point_right . z = cloud_cylinder_right−>points [i] . z ;

200 cl o u d _c y l i n de r _ r i gh t_ f i l t e re d −>points . push_back (basic_point_right) ;

201 }

202 }

203 c l o u d _ cy l i nd e r_ r i g ht_ f i l te r e d −>width = (i n t) c l o u d_ c y l i n de r _ r i gh t_ f i l t er e d −>

points . s i z e () ;

204 c l o u d _ cy l i nd e r_ r i g ht_ f i l te r e d −>height = 1 ;

205

206

207 //−−−−−−−−−−−−−−−−−−−−−−−−−REMOVE BACK SIDE OF TYPE − END −−−−−−−−−−−−−−−−−−−−
208

209 //−−−−−−−−−−−−−−−−−−−−−−−Make the surface smoother − s t a r t−−−−−−−−−−−−−−−−−−−−
210 // Use the function defined in functions . cpp using moving l e a s t surface to

smoothen surface

211 MLS(cl o u d _c y l i n de r _ r i gh t_ f i l t e re d , c l o u d _ cy l i nd e r _r i g ht_ f i l te r e d , 0 .03) ;

212 //−−−−−−−−−−−−−−−−−−−−−−−−Make the surface smoother − end −−−−−−−−−−−−−−−−−−−−
213

214 // Store the two f i l t e r e d in the private point cloud variable

cloud_from_camera_filtered_LEFT

215 // and cloud_from_camera_filtered_RIGHT

216 cloud_from_camera_filtered_RIGHT = * c l o u d _ c y l i n d e r _ r i g h t _ f i l t e r e d ;

APPENDIX A. SOURCE CODE 112

217 }

218

219 void RunControl () {

220 pcl : : Grabber * grabber = new pcl : : Kinect2Grabber () ;

221 boost : : function <void (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr &)> f =

222 boost : : bind(&ViewGrapAndFilter : : Grab , this , _1) ;

223 grabber−>registerCal lback (f) ;

224 grabber−>s t a r t () ;

225 // capture 10 point cloud from the scene and add them together .

226 bool F i l t e r S t a r t e r = f a l s e ;

227 bool P i c t u r e S t a r t e r = true ;

228 while (! viewer . wasStopped ()) {

229 i f (P i c t u r e S t a r t e r)

230 {

231 for (s i z e _ t i = 0 ; i < 10; i ++)

232 {

233 cout << " Saving frame " << frames_saved << " . \ n" ;

234 frames_saved ++;

235 save_one = true ;

236 Sleep (500) ;

237 }

238 Sleep (3000) ;

239 }

240 i f (F i l t e r S t a r t e r)

241 {

242 FilterCapturedPC () ;

243 Sleep (3000) ;

244 viewer .~ CloudViewer () ;

245 break ;

246 }

247 F i l t e r S t a r t e r = true ;

248 P i c t u r e S t a r t e r = f a l s e ;

249 grabber−>stop () ;

250 }

251 }

252 pcl : : v i s u a l i z a t i o n : : CloudViewer viewer ;

APPENDIX A. SOURCE CODE 113

253 private :

254 i n t frames_saved ;

255 bool save_one ;

256 pcl : : PointCloud<pcl : : PointXYZ> cloud_a ;

257 pcl : : PointCloud<pcl : : PointXYZ> cloud_from_camera_filtered_LEFT ;

258 pcl : : PointCloud<pcl : : PointXYZ> cloud_from_camera_filtered_RIGHT ;

259 } ;

260

261 template <typename PointType>

262 // Class for alignment :

263 c l a s s AlignmentViewerStream

264 {

265 typedef pcl : : PointCloud<PointType> PointCloud ;

266 typedef typename PointCloud : : Const Ptr Const Ptr ;

267 public :

268 AlignmentViewerStream (pcl : : Grabber& grabber)

269 : viewer (new pcl : : v i s u a l i z a t i o n : : PCLVisualizer (" Point Cloud Viewer"))

270 , grabber (grabber)

271 {

272 }

273 //Method for passing in the f i l t e r e d point clouds

274 void PassClouds (const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_in_filtered_LEFT ,

275 const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_in_filtered_RIGHT) {

276 scene_filtered_LEFT = * scene_in_filtered_LEFT ;

277 scene_filtered_RIGHT = * scene_in_filtered_RIGHT ;

278 } ;

279

280 //Method for ICP algorithm and SearchMethod for correction

281 void ICPalgorithm () {

282 // PointCloud s :

283

284 pcl : : PointCloud<pcl : : Normal > : : Ptr cloud_normals_Feature_LEFT (new pcl : :

PointCloud<pcl : : Normal>) ;

285 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_ready_RIGHT (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

286 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr SAC_IA_RIGHT(new pcl : : PointCloud<pcl : :

APPENDIX A. SOURCE CODE 114

PointXYZ >) ;

287 pcl : : PointCloud<pcl : : Normal > : : Ptr cloud_normals_Feature_RIGHT (new pcl : :

PointCloud<pcl : : Normal>) ;

288 pcl : : PointCloud<pcl : : FPFHSignature33 > : : Ptr features_RIGHT (new pcl : : PointCloud <

pcl : : FPFHSignature33 >) ;

289 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr model_icp_RIGHT (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

290 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr basic_cloud_ptr_RIGHT (new pcl : : PointCloud<

pcl : : PointXYZ >) ;

291 pcl : : PointCloud<pcl : : Normal > : : Ptr model_normals_Feature_RIGHT (new pcl : :

PointCloud<pcl : : Normal>) ;

292 pcl : : PointCloud<pcl : : FPFHSignature33 > : : Ptr model_features_RIGHT (new pcl : :

PointCloud <pcl : : FPFHSignature33 >) ;

293

294 // T e l l the user which algorithm that have been chosen

295 cout << " This i s the SAC−IA and ICP algorithm " << endl ;

296

297 //Get the point cloud captured by the GrabAndFilter which i s stored as private

var iables in t h i s c l a s s

298 * scene_ready_LEFT = scene_filtered_LEFT ;

299 *scene_ready_RIGHT = scene_filtered_RIGHT ;

300

301 //−−−−−−−−−−Create t a r g e t model for tube l e f t and r i g h t − START −−−−−−−−−−−
302

303 // Create a point cloud which represents where the tube should be and the

t a r g e t for ICP AND SAC−IA

304 // For s i m p l i c i t y the cloud i s modeled along the x−axis and i s l a t e r transformed

to the wanted position .

305 // For the r i g h t robot :

306 for (f l o a t x (−0.3) ; x <= 0 ; x += 0.005)

307 {

308 for (f l o a t angle (135) ; angle <= 225; angle += 5 . 0)

309 {

310 pcl : : PointXYZ basic_point ;

311 basic_point . x = x ;

312 basic_point . y = TubeRadius* s i n f (pcl : : deg2rad (angle)) ;

APPENDIX A. SOURCE CODE 115

313 basic_point . z = TubeRadius* cosf (pcl : : deg2rad (angle)) ;

314 basic_cloud_ptr_RIGHT−>points . push_back (basic_point) ;

315 }

316 }

317 basic_cloud_ptr_RIGHT−>width = (i n t) basic_cloud_ptr_RIGHT−>points . s i z e () ;

318 basic_cloud_ptr_RIGHT−>height = 1 ;

319 //−−−−−−−−−−−−−−−Create t a r g e t model for tube l e f t and r i g h t − END

−−−−−−−−−−−−−−
320

321 // Transform the t a r g e t model to have a center axis p a r a l l e l to the y axis

of the robot .

322 //−−−−−−−−−−Locate the t a r g e t point cloud at wanted position − START −−−−−−−−
323 // /RIGHT:

324 Eigen : : Matrix4f transform_target_right = Eigen : : Matrix4f : : I d e n t i t y () ;

325 transform_target_right (0 , 0) = 0.9989;

326 transform_target_right (0 , 1) = −0.0215;

327 transform_target_right (0 , 2) = 0.0418;

328 transform_target_right (0 , 3) = LengthFromCamera ;

329 transform_target_right (1 , 0) = 0.0222;

330 transform_target_right (1 , 1) = 0.9997;

331 transform_target_right (1 , 2) = −0.0116;

332 transform_target_right (2 , 0) = −0.0416;

333 transform_target_right (2 , 1) = 0.0125;

334 transform_target_right (2 , 2) = 0.9991;

335 // Executing the transformation

336 pcl : : transform PointCloud (* basic_cloud_ptr_RIGHT , *model_icp_RIGHT ,

transform_target_right) ;

337 //−−−−−−−−−−−−−−−−−Locate the t a r g e t point cloud at wanted position − END

−−−−−−−−−−−−−−
338

339 //−−−−−−−−−−−−−−−−SAC−IA ALIGNMENT RIGHT SIDE START−−−−−−−−−−−−−−−−−−−−−−−−−−
340 // Estimate point normals for cylinder and t a r g e t model

341 ne_right . setSearchMethod (t r e e _ r i g h t) ;

342 ne_right . setInputCloud (scene_ready_RIGHT) ;

343 ne_right . setKSearch (50) ;

344 ne_right . compute (* cloud_normals_Feature_RIGHT) ;

APPENDIX A. SOURCE CODE 116

345

346 ne_right . setSearchMethod (t r e e _ r i g h t) ;

347 ne_right . setInputCloud (model_icp_RIGHT) ;

348 ne_right . setKSearch (50) ;

349 ne_right . compute (* model_normals_Feature_RIGHT) ;

350

351 //compute l o c a l features for l e f t side cylinder and t a r g e t model

352 // cylinder :

353 f p f h _ e s t _ r i g h t . setInputCloud (scene_ready_RIGHT) ;

354 f p f h _ e s t _ r i g h t . setInputNormals (cloud_normals_Feature_RIGHT) ;

355 f p f h _ e s t _ r i g h t . setSearchMethod (search_local_feature_right) ;

356 f p f h _ e s t _ r i g h t . setRadiusSearch (0.02 f) ;

357 f p f h _ e s t _ r i g h t . compute (* features_RIGHT) ;

358 // t a r g e t :

359 f p f h _ e s t _ r i g h t . setInputCloud (model_icp_RIGHT) ;

360 f p f h _ e s t _ r i g h t . setInputNormals (model_normals_Feature_RIGHT) ;

361 f p f h _ e s t _ r i g h t . setSearchMethod (search_local_feature_right) ;

362 f p f h _ e s t _ r i g h t . setRadiusSearch (0.02 f) ;

363 f p f h _ e s t _ r i g h t . compute (* model_features_RIGHT) ;

364

365 //SAC−IA for the RIGHT side :

366 s a c _ i a _ r i g ht . setInputSource (scene_ready_RIGHT) ;

367 s a c _ i a _ r i g ht . setSourceFeatures (features_RIGHT) ;

368 s a c _ i a _ r i g ht . setInputTarget (model_icp_RIGHT) ;

369 s a c _ i a _ r i g ht . setTargetFeatures (model_features_RIGHT) ;

370 s a c _ i a _ r i g ht . setMaximumIterations (500) ;

371 s a c _ i a _ r i g ht . al ign (* SAC_IA_RIGHT) ;

372 Eigen : : Matrix4f transformation_SAC_IA_RIGHT = s ac _ i a _ r i g ht .

getFinalTransformation () ;

373 //−−−−−−−−−−−−−−−−−−−−−−−SAC−IA ALIGNMENT l e f t SIDE END−−−−−−−−−−−−−−−−−−−
374

375 //−−−−−−−−−−−−−−−−−−−−−−−ICP alignment RIGHT side START −−−−−−−−−−−−−−−−−−−
376 //ICP for r i g h t side

377 icp_RIGHT . setMaximumIterations (i t e r a t i o n s) ;

378 icp_RIGHT . setInputSource (SAC_IA_RIGHT) ;

379 icp_RIGHT . setInputTarget (model_icp_RIGHT) ;

APPENDIX A. SOURCE CODE 117

380 icp_RIGHT . al ign (* SAC_IA_RIGHT) ;

381 icp_RIGHT . setMaximumIterations (1000) ;

382 //−−−−−−−−−−−−−−−ICP alignment r i g h t side END −−−−−−−−−−−−−−−
383 //Check i f the ICP score

384 Eigen : : Matrix4f transformation_ICP_RIGHT = Eigen : : Matrix4f : : I d e n t i t y () ;

385 i f (icp_RIGHT . hasConverged ())

386 {

387 std : : cout << " \nICP for the r i g h t side has converged , score i s " << icp_RIGHT

. getFitnessScore () << std : : endl ;

388 std : : cout << " \nICP transformation " << i t e r a t i o n s << " : model_icp −>

cloud_in " << std : : endl ;

389 transformation_ICP_RIGHT = icp_RIGHT . getFinalTransformation () ;

390 print4x4Matrix (transformation_ICP_RIGHT) ;

391 }

392 else

393 {

394 PCL_ERROR(" \nICP for one of the sides have not converged . \ n") ;

395 }

396

397

398 //The transformation matrix obtained by the SAC−IA and the ICP i s :

399 Eigen : : Matrix4f transformation_SAC_IA_ICP_RIGHT = Eigen : : Matrix4f : : I d e n t i t y () ;

400 transformation_SAC_IA_ICP_RIGHT = transformation_ICP_RIGHT *

transformation_SAC_IA_RIGHT ;

401

402 //−−−−−−−−−−−−−SearchMethod r i g h t side for ICP algorithm START−−−−−−−−−−−−−
403 scene_ready_RIGHT = SAC_IA_RIGHT ;

404 f l o a t Xvalue_RIGHT = 0 ;

405 f l o a t ValueYY_RIGHT = 0 ;

406 f l o a t ValueZZ_RIGHT = 0 ;

407 SearchMethod_RIGHT (scene_ready_RIGHT , Xvalue_RIGHT , ValueYY_RIGHT ,

ValueZZ_RIGHT) ;

408 Eigen : : Matrix4f transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT = Eigen : :

Matrix4f : : I d e n t i t y () ;

409 f l o a t translateX_RIGHT = −Xvalue_RIGHT ;

410 f l o a t translateY_RIGHT = −ValueYY_RIGHT ;

APPENDIX A. SOURCE CODE 118

411 f l o a t translateZ_RIGHT = −ValueZZ_RIGHT ;

412 transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT =

transformation_SAC_IA_ICP_RIGHT ;

413 transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT (0 , 3) =

transformation_SAC_IA_ICP_RIGHT (0 , 3) + translateX_RIGHT ;

414 transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT (1 , 3) =

transformation_SAC_IA_ICP_RIGHT (1 , 3) + translateY_RIGHT ;

415 transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT (2 , 3) =

transformation_SAC_IA_ICP_RIGHT (2 , 3) + translateZ_RIGHT ;

416 //−−−−−−−−−−−−SearchMethod r i g h t side for ICP algorithm end−−−−−−−−−−−−−−
417

418 //−−−−−−Translation and Rotation in the robot coordinate system r i g h t START

−−−−−−−−
419 Eigen : : Matrix4f Tcameratorobot_right = Eigen : : Matrix4f : : I d e n t i t y () ;

420 // Transformation matrix which mapes from the camera frame to the robot frame .

421 Eigen : : Matrix4f Trobot_right = Eigen : : Matrix4f : : I d e n t i t y () ;

422 // Transformation matrix which mappes from the camera frame to the robot frame .

423 GetRightRobotToCameraMatrix (Tcameratorobot_right) ;

424 Trobot_right = Tcameratorobot_right *

transformation_matrix_searchMethod_SAC_IA_ICP_RIGHT ;

425 write4x4Matrix_RIGHT (Trobot_right) ; // Write the transformation matrix to f i l e

426 //−−−−−−−Translation and Rotation in the robot coordinate system r i g h t END

−−−−−−−−
427

428 //−−−−Translate the cloud with the values found by SearchMethod for

v i s u a l i z a t i o n r i g h t s t a r t−−−
429 Eigen : : A f f i n e 3 f transform_right (Eigen : : A f f i n e 3 f : : I d e n t i t y ()) ;

430 transform_right . t r a n s l a t i o n () << translateX_RIGHT , translateY_RIGHT ,

translateZ_RIGHT ;

431 pcl : : transform PointCloud (* scene_ready_RIGHT , *scene_ready_RIGHT ,

transform_right) ;

432 writer . write (" Final aligned r i g h t side SACIA ICP SEARCHMETHOD. pcd" , *

scene_ready_RIGHT , f a l s e) ;

433 //−−−−−Translate the cloud with the values found by searchMethod for

v i s u a l i z a t i o n r i g h t end −−−−
434

APPENDIX A. SOURCE CODE 119

435 // store the aligned cloud .

436 scene_alignedRun_RIGHT = *scene_ready_RIGHT ;

437

438 }

439 //Method for RANSAC algorithm and SearchMethod for t r a n s l a t i o n

440 void SearchForEndOfTubeandRANSAC () {

441 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_filtered_search_RIGHT (new pcl : :

PointCloud<pcl : : PointXYZ >) ;

442 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_ready_RIGHT (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

443 pcl : : PointCloud<PointT > : : Ptr cloud_right (new pcl : : PointCloud<PointT >) ;

444 pcl : : PointCloud<pcl : : Normal > : : Ptr cloud_normals_right (new pcl : : PointCloud<pcl : :

Normal>) ;

445 pcl : : ModelCoefficients : : Ptr c o e f f i c i e n t s _ c y l i n d e r _ r i g h t (new pcl : :

ModelCoefficients) ;

446 pcl : : PointIndices : : Ptr i n l i e r s _ c y l i n d e r _ r i g h t (new pcl : : PointIndices) ;

447

448 //−−−−−−−Translate the tube captured with the values found above END −−−−−−−
449 //Do the same with for r i g h t side :

450 //−−−−−−−−−−−−−SEARCH METHOD RIGHT SIDE − START−−−−−−−−−−−−−−−−−−
451 * scene_filtered_search_RIGHT = scene_filtered_RIGHT ;

452 cloud_right = scene_filtered_search_RIGHT ;

453

454 //−−−−−−−−−−−−Find centroid of the cloud and t r a n s l a t e i t to the origin of the

camera RIGHT START−−−−−−−−−
455 Eigen : : Vector4f centroid_RIGHT (Eigen : : Vector4f : : Zero ()) ;

456 pcl : : compute3DCentroid (* scene_filtered_search_RIGHT , centroid_RIGHT) ;

457 Eigen : : A f f i n e 3 f transform_centroid_right (Eigen : : A f f i n e 3 f : : I d e n t i t y ()) ;

458 transform_centroid_right . t r a n s l a t i o n () << −centroid_RIGHT (0) , −centroid_RIGHT

(1) , −centroid_RIGHT (2) ;

459 pcl : : transform PointCloud (* scene_filtered_search_RIGHT , *

scene_filtered_search_RIGHT , transform_centroid_right) ;

460 //−−−−−−−−−−−−−−Find centroid of the cloud and t r a n s l a t e i t to the origin of

the camera RIGHT END−−−−−
461

462 //−−−−−−−−−FIND ORIENTATION OF CYLINDER AND ALIGN IT WITH A KNOWN FRAME START

APPENDIX A. SOURCE CODE 120

RIGHT−−−−−−−−−−
463 //−−−−−−−−−Use RANSAC to find orientation of r i g h t cyl inder s t a r t

−−−−−−−−−−−−−−−−−−−−
464 // Estimate point normals

465 ne_right . setSearchMethod (t r e e _ r i g h t) ;

466 ne_right . setInputCloud (cloud_right) ;

467 ne_right . setKSearch (50) ;

468 ne_right . compute (* cloud_normals_right) ;

469

470 // Create the segmentation object for cylinder segmentation and set a l l the

parameters

471 seg_right . setOptimizeCoefficients (true) ;

472 seg_right . setModelType (pcl : : SACMODEL_CYLINDER) ;

473 seg_right . setMethodType (pcl : : SAC_RANSAC) ;

474 seg_right . setNormalDistanceWeight (0 . 1) ;

475 seg_right . setMaxIterations (10000) ;

476 seg_right . setDistanceThreshold (0 . 0 5) ;

477 seg_right . setRadiusLimits (0 . 0 8 , 0 .09) ;

478 seg_right . setInputCloud (cloud_right) ;

479 seg_right . setInputNormals (cloud_normals_right) ;

480

481 // Obtain the cylinder i n l i e r s and c o e f f i c i e n t s

482 seg_right . segment (* i n l i e r s _ c y l i n d e r _ r i g h t , * c o e f f i c i e n t s _ c y l i n d e r _ r i g h t) ;

483 std : : cerr << " Cylinder c o e f f i c i e n t s : " << * c o e f f i c i e n t s _ c y l i n d e r _ r i g h t << std : :

endl ;

484

485 // Write the cylinder i n l i e r s to disk

486 e x t r a c t _ r i g h t . setInputCloud (cloud_right) ;

487 e x t r a c t _ r i g h t . setIndices (i n l i e r s _ c y l i n d e r _ r i g h t) ;

488 e x t r a c t _ r i g h t . setNegative (f a l s e) ;

489 pcl : : PointCloud<PointT > : : Ptr cloud_cylinder_right (new pcl : : PointCloud<PointT >()

) ;

490 e x t r a c t _ r i g h t . f i l t e r (* cloud_cylinder_right) ;

491 //−−−−−−Use RANSAC to find orientation of r i g h t cyl inder s t a r t −−−−−−−
492

493 //−−−−−−−−−Define orientation RIGHT START −−−−−−−−−−−−−−−

APPENDIX A. SOURCE CODE 121

494

495 // The direction vector using the c o e f f i c i e n t s from RANSAC

496 Eigen : : Vector3f vector_orientat ion_right (Eigen : : Vector3f : : Zero ()) ;

497 vector_orientat ion_right [0] = c o e f f i c i e n t s _ c y l i n d e r _ r i g h t −>values [3] ;

498 vector_orientat ion_right [1] = c o e f f i c i e n t s _ c y l i n d e r _ r i g h t −>values [4] ;

499 vector_orientat ion_right [2] = c o e f f i c i e n t s _ c y l i n d e r _ r i g h t −>values [5] ;

500

501 // Any non−zero vector which i s not p a r a l l e l to vector_orientat ion_right

502 Eigen : : Vector3f vector_Y_right (Eigen : : Vector3f : : Zero ()) ;

503 vector_Y_right [0] = 0 ;

504 vector_Y_right [1] = 1 ;

505 vector_Y_right [2] = 0 ;

506

507 i f (vector_Y_right . dot (vector_orientat ion_right) ==0)

508 {

509 vector_Y_right [0] = 1 ;

510 vector_Y_right [1] = 0 ;

511 vector_Y_right [2] = 0 ;

512 }

513

514 Eigen : : Vector3f crossproductAxis1_right (Eigen : : Vector3f : : Zero ()) ;

515 Eigen : : Vector3f crossproductAxis2_right (Eigen : : Vector3f : : Zero ()) ;

516 Eigen : : Vector3f crossproductNew_right (Eigen : : Vector3f : : Zero ()) ;

517

518 // Define a coordinate by finding two vectors which are perpendicular to

vector_orientat ion_right and each other .

519 crossproductAxis1_right = vector_Y_right . cross (vector_orientat ion_right) ;

520 crossproductAxis2_right = vector_orientat ion_right . cross (

crossproductAxis1_right) ;

521 crossproductNew_right = crossproductAxis2_right . cross (vector_orientat ion_right)

;

522

523 Eigen : : Matrix4f rotmatrix_right_coordinatesystem = Eigen : : Matrix4f : : I d e n t i t y () ;

524

525 rotmatrix_right_coordinatesystem (0 , 0) = vector_orientat ion_right [0] ;

526 rotmatrix_right_coordinatesystem (0 , 1) = vector_orientat ion_right [1] ;

APPENDIX A. SOURCE CODE 122

527 rotmatrix_right_coordinatesystem (0 , 2) = vector_orientat ion_right [2] ;

528 rotmatrix_right_coordinatesystem (1 , 0) = crossproductAxis2_right [0] ;

529 rotmatrix_right_coordinatesystem (1 , 1) = crossproductAxis2_right [1] ;

530 rotmatrix_right_coordinatesystem (1 , 2) = crossproductAxis2_right [2] ;

531 rotmatrix_right_coordinatesystem (2 , 0) = crossproductNew_right [0] ;

532 rotmatrix_right_coordinatesystem (2 , 1) = crossproductNew_right [1] ;

533 rotmatrix_right_coordinatesystem (2 , 2) = crossproductNew_right [2] ;

534

535 // Executing the transformation

536 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr rotated_cloud_RIGHT (new pcl : : PointCloud<pcl

: : PointXYZ >()) ;

537 pcl : : transform PointCloud (* cloud_right , * rotated_cloud_RIGHT ,

rotmatrix_right_coordinatesystem) ;

538

539 Eigen : : Matrix3f Alignmentrotation_right ;

540

541 Alignmentrotation_right (0 , 0) = vector_orientat ion_right [0] ;

542 Alignmentrotation_right (0 , 1) = vector_orientat ion_right [1] ;

543 Alignmentrotation_right (0 , 2) = vector_orientat ion_right [2] ;

544 Alignmentrotation_right (1 , 0) = crossproductAxis2_right [0] ;

545 Alignmentrotation_right (1 , 1) = crossproductAxis2_right [1] ;

546 Alignmentrotation_right (1 , 2) = crossproductAxis2_right [2] ;

547 Alignmentrotation_right (2 , 0) = crossproductAxis1_right [0] ;

548 Alignmentrotation_right (2 , 1) = crossproductAxis1_right [1] ;

549 Alignmentrotation_right (2 , 2) = crossproductAxis1_right [2] ;

550

551 // The wanted frame

552 Eigen : : Matrix3f rotmatr ix_r ight_target_correct ion ;

553 rotmatr ix_r ight_target_correct ion (0 , 0) = 0.9989;

554 rotmatr ix_r ight_target_correct ion (0 , 1) = −0.0215;

555 rotmatr ix_r ight_target_correct ion (0 , 2) = 0.0418;

556 rotmatr ix_r ight_target_correct ion (1 , 0) = 0.0222;

557 rotmatr ix_r ight_target_correct ion (1 , 1) = 0.9997;

558 rotmatr ix_r ight_target_correct ion (1 , 2) = −0.0116;

559 rotmatr ix_r ight_target_correct ion (2 , 0) = −0.0416;

560 rotmatr ix_r ight_target_correct ion (2 , 1) = 0.0125;

APPENDIX A. SOURCE CODE 123

561 rotmatr ix_r ight_target_correct ion (2 , 2) = 0.9991;

562

563 Eigen : : Matrix3f AlignmentRotation_correction_right ;

564 AlignmentRotation_correction_right = rotmatr ix_r ight_target_correct ion *

AlignmentRotation_left ;

565 scene_ready_RIGHT = rotated_cloud_RIGHT ;

566 //−−−−−−−−−−−−Define orientation RIGHT END −−−−−−−−−−−−−−−−−−−−−
567 //−−−−−−−−FIND ORIENTATION OF CYLINDER AND ALIGN IT WITH A KNOWN FRAME END

RIGHT−−−−−
568

569

570 //−−−−−−−−−Search Method to obtain t r a n s l a t i o n r i g h t s t a r t −−−−−−−−−−
571 f l o a t Xvalue_RIGHT = 0 , ValueYY_RIGHT = 0 , ValueZZ_RIGHT = 0 ;

572 SearchMethod_RIGHT (scene_ready_RIGHT , Xvalue_RIGHT , ValueYY_RIGHT ,

ValueZZ_RIGHT) ;

573 cout << "The r i g h t values found in searchMethod are : x" << Xvalue_RIGHT << "y :

" << ValueYY_RIGHT << "z : " << ValueZZ_RIGHT << endl ;

574 //−−−−−−−Search Method to obtain t r a n s l a t i o n r i g h t end −−−−−−−−−−−−
575

576 //−−−−−−−−−Find M_edge for the t i l t e d r i g h t tube START−−−−−−−−−−−−−−
577 // Because the robot w i l l rotate the cylinder about the end of the tube , while

578 // the cloud cylinder i s rotated about the camera frame .

579 // To adjust for t h i s the inverse of the rotation matrix i s multiplied with

580 // the values found in SearchMethod and added the centroid t r a n s l a t i o n .

581 // This gives the position of the wanted point on the edge of the tube in a

t i l t e d orientation .

582

583 Eigen : : Vector4f wanted_RIGHT ;

584 Eigen : : Vector4f rotated_RIGHT (Xvalue_RIGHT , ValueYY_RIGHT , ValueZZ_RIGHT , 0) ;

585 Eigen : : Matrix4f inverse_RIGHT = Eigen : : Matrix4f : : I d e n t i t y () ;

586

587 // Find the M_edge mark to account for t r a n s l a t i o n of edge when rotat ing . See

report for further information .

588 inverse_RIGHT = rotmatrix_right_coordinatesystem . inverse () ;

589 // M_edge in the camera frame :

590 wanted_RIGHT = inverse_RIGHT * rotated_RIGHT ;

APPENDIX A. SOURCE CODE 124

591 wanted_RIGHT (0) = wanted_RIGHT (0) + centroid_RIGHT (0) ;

592 wanted_RIGHT (1) = wanted_RIGHT (1) + centroid_RIGHT (1) ;

593 wanted_RIGHT (2) = wanted_RIGHT (2) + centroid_RIGHT (2) ;

594

595 //The correction value to place the tube at wanted position .

596 f l o a t translateX_RIGHT = −wanted_RIGHT (0) ;

597 f l o a t translateY_RIGHT = −wanted_RIGHT (1) ;

598 f l o a t translateZ_RIGHT = (LengthFromCamera − TubeRadius) − wanted_RIGHT (2) ;

599

600 rotmatrix_right_coordinatesystem (0 , 3) = translateX_RIGHT ;

601 rotmatrix_right_coordinatesystem (1 , 3) = translateY_RIGHT ;

602 rotmatrix_right_coordinatesystem (2 , 3) = translateZ_RIGHT ;

603

604 //−−−−−−−−−−Translation and Rotation in the robot coordinate system RIGHT START

−−−−−−−
605 Eigen : : Matrix4f Tcameratorobot_right = Eigen : : Matrix4f : : I d e n t i t y () ;

606 GetRightRobotToCameraMatrix (Tcameratorobot_right) ;

607

608 Eigen : : Matrix3f Rcameratorobot_right ;

609 Rcameratorobot_right (0 , 0) = −0.0416;

610 Rcameratorobot_right (0 , 1) = 0.0125;

611 Rcameratorobot_right (0 , 2) = 0.9991;

612 Rcameratorobot_right (1 , 0) = 0.9989;

613 Rcameratorobot_right (1 , 1) = −0.0215;

614 Rcameratorobot_right (1 , 2) = 0.0418;

615 Rcameratorobot_right (2 , 0) = 0.0222;

616 Rcameratorobot_right (2 , 1) = 0.9997;

617 Rcameratorobot_right (2 , 2) = −0.0116;

618

619 Eigen : : Vector4f TanslationInCamera_right (translateX_RIGHT , translateY_RIGHT ,

translateZ_RIGHT , 0) ; // Translation correction in camera frame

620 Eigen : : Vector4f TanslationInRobot_right ;

621 TanslationInRobot_right = Tcameratorobot_right * TanslationInCamera_right ; //

Translation correction in robot frame

622

623 Eigen : : Matrix3f RotationInRobot_right ;

APPENDIX A. SOURCE CODE 125

624 RotationInRobot_right = Rcameratorobot_right *

AlignmentRotation_correction_right ; // Rotation corrections for robot

625

626 cout << " In the r i g h t robot coordinate system det t r a n s l a t i o n equals : \n" << "x

" <<

627 TanslationInRobot_right (0) << "y " << TanslationInRobot_right (1) << "z " <<

TanslationInRobot_right (2) << endl ;

628

629 // f i n a l transformation matrix which i s used to correct the end e f f e c t o r of the

robot :

630

631 Tcameratorobot_right (0 , 0) = Rcameratorobot_right (0 , 0) ;

632 Tcameratorobot_right (0 , 1) = Rcameratorobot_right (0 , 1) ;

633 Tcameratorobot_right (0 , 2) = Rcameratorobot_right (0 , 2) ;

634 Tcameratorobot_right (0 , 3) = TanslationInRobot_right (0) ;

635 Tcameratorobot_right (1 , 0) = Rcameratorobot_right (1 , 0) ;

636 Tcameratorobot_right (1 , 1) = Rcameratorobot_right (1 , 1) ;

637 Tcameratorobot_right (1 , 2) = Rcameratorobot_right (1 , 2) ;

638 Tcameratorobot_right (1 , 3) = TanslationInRobot_right (1) ;

639 Tcameratorobot_right (2 , 0) = Rcameratorobot_right (2 , 0) ;

640 Tcameratorobot_right (2 , 1) = Rcameratorobot_right (2 , 1) ;

641 Tcameratorobot_right (2 , 2) = Rcameratorobot_right (2 , 2) ;

642 Tcameratorobot_right (2 , 3) = TanslationInRobot_right (2) ;

643 Tcameratorobot_right (3 , 0) = 0 ;

644 Tcameratorobot_right (3 , 1) = 0 ;

645 Tcameratorobot_right (3 , 2) = 0 ;

646 Tcameratorobot_right (3 , 3) = 1 ;

647

648 write4x4Matrix_RIGHT (Tcameratorobot_right) ;

649 //−−−−−−−−Translation and Rotation in the robot coordinate system RIGHT END

−−−−−−−
650

651 // For v i s u a l i z a t i o n with values not equal to the one given to the robot :

652

653 //−−−−−−−Translate the centroid back to the o r i g i n a l position r i g h t s t a r t

−−−−−−−

APPENDIX A. SOURCE CODE 126

654 Eigen : : A f f i n e 3 f transform_centroid_back_right (Eigen : : A f f i n e 3 f : : I d e n t i t y ()) ;

655 transform_centroid_back_right . t r a n s l a t i o n () << centroid_RIGHT (0) ,

centroid_RIGHT (1) , centroid_RIGHT (2) ;

656 pcl : : transform PointCloud (* scene_ready_RIGHT , *scene_ready_RIGHT ,

transform_centroid_back_right) ;

657

658 //−−−−−−−−−Translate the centroid back to the o r i g i n a l position r i g h t end

−−−−−−−−−−−
659

660 //−−−−−−−−Translate the tube captured with the values found above START

−−−−−−−−−−
661 Xvalue_RIGHT = Xvalue_RIGHT + centroid_RIGHT (0) ;

662 ValueYY_RIGHT = ValueYY_RIGHT + centroid_RIGHT (1) ;

663 ValueZZ_RIGHT = ValueZZ_RIGHT + centroid_RIGHT (2) ;

664 f l o a t translateXfake_RIGHT = −Xvalue_RIGHT ;

665 f l o a t translateYfake_RIGHT = −ValueYY_RIGHT ;

666 f l o a t translateZfake_RIGHT = (LengthFromCamera − TubeRadius) − ValueZZ_RIGHT ;

667

668 Eigen : : A f f i n e 3 f transform_SearchMethod_RIGHT = Eigen : : A f f i n e 3 f : : I d e n t i t y () ;

669

670 // Define the t r a n s l a t i o n

671 transform_SearchMethod_RIGHT . t r a n s l a t i o n () << translateXfake_RIGHT ,

translateYfake_RIGHT , translateZfake_RIGHT ;

672

673 // Executing the transformation

674 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr transformed_cloud_RIGHT (new pcl : : PointCloud

<pcl : : PointXYZ >()) ;

675 pcl : : transform PointCloud (* scene_ready_RIGHT , * transformed_cloud_RIGHT ,

transform_SearchMethod_RIGHT) ;

676

677 writer . write <pcl : : PointXYZ >("5 r o t e r t og t r a n s l e r t RIGHT. pcd" , *

transformed_cloud_RIGHT , f a l s e) ;

678

679 //−−−−−−−−Translate the tube captured with the values found above end −−−−−−
680

681 scene_alignedRun_RIGHT = * transformed_cloud_RIGHT ;

APPENDIX A. SOURCE CODE 127

682

683 }

684 //Method for only SearchMethod

685 void OnlySearchMethod () {

686

687 // PointCloud s for the environment :

688

689 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_ready_RIGHT (new pcl : : PointCloud<pcl : :

PointXYZ >) ;

690

691

692

693

694 //Get the point cloud captured by the GrabAndFilter

695 *scene_ready_RIGHT = scene_filtered_RIGHT ;

696

697 //−−−−−−−−−−−−−− SEARCH METHOD RIGHT SIDE − START−−−−−−−−−−−−−−−−−−−−−−−−−−
698 f l o a t Xvalue_RIGHT = 0 ;

699 f l o a t ValueYY_RIGHT = 0 ;

700 f l o a t ValueZZ_RIGHT = 0 ;

701 // S t a r t SearchMethod for l e f t tube

702 SearchMethod_RIGHT (scene_ready_RIGHT , Xvalue_RIGHT , ValueYY_RIGHT ,

ValueZZ_RIGHT) ;

703 //−−−−−−−−−−−−−− SEARCH METHOD RIGHT SIDE − END−−−−−−−−−−−−−−−−−−−−−−−−−−−−
704

705 //−−−−−−−−−−−−−−−Translate the r i g h t tube captured with the values found above

START −−−−−−−−−−−−−−−−−
706 f l o a t translateX_RIGHT = −Xvalue_RIGHT ;

707 f l o a t translateY_RIGHT = −ValueYY_RIGHT ;

708 f l o a t translateZ_RIGHT = (LengthFromCamera − TubeRadius) − ValueZZ_RIGHT ;

709 Eigen : : A f f i n e 3 f transform_SearchMethod_RIGHT = Eigen : : A f f i n e 3 f : : I d e n t i t y () ;

710 // Define the t r a n s l a t i o n

711 transform_SearchMethod_RIGHT . t r a n s l a t i o n () << translateX_RIGHT ,

translateY_RIGHT , translateZ_RIGHT ;

712 // Executing the transformation

713 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr transformed_cloud_RIGHT (new pcl : : PointCloud

APPENDIX A. SOURCE CODE 128

<pcl : : PointXYZ >()) ;

714 pcl : : transform PointCloud (* scene_ready_RIGHT , * transformed_cloud_RIGHT ,

transform_SearchMethod_RIGHT) ;

715 //−−−−−−−−−−−−−−−−Translate the r i g h t tube captured with the values found above

END −−−−−−−−−−−−−−−−−−−−−−
716

717 //−−−−−−−−−−−−−−Find the correction t r a n s l a t i o n in the robot frame and write i t

to f i l e r i g h t START −−−−−−−−−−−−−−
718 Eigen : : Vector4f TanslationInCamera_right (translateX_RIGHT , translateY_RIGHT ,

translateZ_RIGHT , 0) ;

719 Eigen : : Vector4f TanslationInRobot_right ;

720 Eigen : : Matrix4f Tcameratorobot_right = Eigen : : Matrix4f : : I d e n t i t y () ;

721 GetRightRobotToCameraMatrix (Tcameratorobot_right) ;

722 TanslationInRobot_right = Tcameratorobot_right * TanslationInCamera_right ; // The

t r a n s l a t i o n given to the robot

723 Eigen : : Matrix4f transformation_matrix_searchMethod_RIGHT = Eigen : : Matrix4f : :

I d e n t i t y () ;

724 // There i s no rotation using t h i s method so the rotation matrix in the

transformation matrix i s j u s t an i d e n t i t y matrix .

725 transformation_matrix_searchMethod_RIGHT (0 , 0) = 1 ;

726 transformation_matrix_searchMethod_RIGHT (0 , 1) = 0 ;

727 transformation_matrix_searchMethod_RIGHT (0 , 2) = 0 ;

728 transformation_matrix_searchMethod_RIGHT (0 , 3) = TanslationInRobot_right (0) ;

729 transformation_matrix_searchMethod_RIGHT (1 , 0) = 0 ;

730 transformation_matrix_searchMethod_RIGHT (1 , 1) = 1 ;

731 transformation_matrix_searchMethod_RIGHT (1 , 2) = 0 ;

732 transformation_matrix_searchMethod_RIGHT (1 , 3) = TanslationInRobot_right (1) ;

733 transformation_matrix_searchMethod_RIGHT (2 , 0) = 0 ;

734 transformation_matrix_searchMethod_RIGHT (2 , 1) = 0 ;

735 transformation_matrix_searchMethod_RIGHT (2 , 2) = 1 ;

736 transformation_matrix_searchMethod_RIGHT (2 , 3) = TanslationInRobot_right (2) ;

737 transformation_matrix_searchMethod_RIGHT (3 , 0) = 0 ;

738 transformation_matrix_searchMethod_RIGHT (3 , 1) = 0 ;

739 transformation_matrix_searchMethod_RIGHT (3 , 2) = 0 ;

740 transformation_matrix_searchMethod_RIGHT (3 , 3) = 1 ;

741 write4x4Matrix_RIGHT (transformation_matrix_searchMethod_RIGHT) ;

APPENDIX A. SOURCE CODE 129

742 //−−−−−−−−−−−Find the correction t r a n s l a t i o n in the robot frame and write i t to

f i l e LEFT END −−−−−−−−−−−−−−
743

744 scene_alignedRun_RIGHT = * transformed_cloud_RIGHT ;

745 }

746

747 void runAlignment (char * argv []) {

748

749 //Check which of the alignment methods that has been chosen :

750 i f (strcmp (argv [1] , " i ") == 0)

751 {

752 cout << "SAC−IA and ICP are going to al ign " << endl ;

753 ICPalgorithm () ;

754 }

755

756 i f (strcmp (argv [1] , " r ") == 0)

757 {

758 cout << "RANSAC and SearchMethod are going to al ign " << endl ;

759 SearchForEndOfTubeandRANSAC () ;

760

761 }

762 i f (strcmp (argv [1] , "h") == 0)

763 {

764 cout << "Only SearchMethod for t r a n s l a t i o n " << endl ;

765 OnlySearchMethod () ;

766 }

767

768 //−−−−−−Write bool to f i l e to t e l l the java−s c r i p t the tube i s found s t a r t

−−−−−
769

770 ofstream myfile ;

771 myfile . open(" startJAVA . t x t ") ;

772 myfile << "TRUE \n" ;

773 myfile . close () ;

774

775 //−−−−Write bool to f i l e to t e l l the java−s c r i p t the tube i s found end −−−−−

APPENDIX A. SOURCE CODE 130

776

777 // Visual iz at ion of a l i v e stream where the wanted and actual point clouds are .

778 //−−−−−−−−−−−−−−−−−−−−−−Visual izat ion START−−−−−−−−−−−−−−−−−
779

780 boost : : function <void (const Const Ptr &) > callback = boost : : bind(&

AlignmentViewerStream : : cloud_callback , this , _1) ;

781 boost : : s ignals2 : : connection connection = grabber . registerCal lback (callback) ;

782

783 grabber . s t a r t () ;

784 //The point clouds added to the v i s u a l i z a t i o n

785 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr cloud_transformed_viz_right (new pcl : :

PointCloud<pcl : : PointXYZ >) ;

786 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c l ou d_ori gi nal _vi z_r i ght (new pcl : :

PointCloud<pcl : : PointXYZ >) ;

787 * cloud_transformed_viz_right = scene_alignedRun_RIGHT ;

788 * clou d_or ig inal_vi z_ r ight = scene_filtered_LEFT ;

789

790 // IF RANSAC i s chosen add a coordinate system on M_edge with the orientation of

the tubes

791 i f (strcmp (argv [1] , " r ") == 0)

792 {

793 // Add the coordinate system for the captured cylinder using RANSAC.

794 Eigen : : A f f i n e 3 f t t _ r i g h t ;

795 t t _ r i g h t = Eigen : : Translation3f (wanted_RIGHT (0) , wanted_RIGHT (1) ,

wanted_RIGHT (2)) * Eigen : : AngleAxisf (ea_robot_right (0) , Eigen : : Vector3f : : UnitX ()) *

Eigen : : AngleAxisf (ea_robot_right (1) , Eigen : : Vector3f : : UnitY ()) * Eigen : : AngleAxisf

(ea_robot_right (2) , Eigen : : Vector3f : : UnitZ ()) ;

796 viewer−>addCoordinateSystem (1 , t t _ r i g h t) ;

797 }

798

799 // Add the point cloud to the viewer and pass the color handler

800 //Where the tubes a c t u a l l y are :

801 pcl : : v i s u a l i z a t i o n : : PointCloudColorHandlerCustom<pcl : : PointXYZ>

source_cloud_color_handler_RIGHT (cloud_original_viz_r ight , 255 , 255 , 0) ;

802 viewer−>addPointCloud (cloud_original_viz_r ight ,

source_cloud_color_handler_RIGHT , "Where the r i g h t a c t u a l l y i s ") ;

APPENDIX A. SOURCE CODE 131

803 viewer−>set PointCloud RenderingProperties (pcl : : v i s u a l i z a t i o n : :

PCL_VISUALIZER_POINT_SIZE , 4 , "Where the r i g h t a c t u a l l y i s ") ;

804

805 //Where the tubes are transformed to :

806 pcl : : v i s u a l i z a t i o n : : PointCloudColorHandlerCustom<pcl : : PointXYZ>

source_cloud_color_handler_transformed_cloud_RIGHT (cloud_transformed_viz_right ,

255 , 255 , 0) ;

807 viewer−>addPointCloud (cloud_transformed_viz_right ,

source_cloud_color_handler_transformed_cloud_RIGHT , "Where the r i g h t tube i s

transported ") ;

808 viewer−>set PointCloud RenderingProperties (pcl : : v i s u a l i z a t i o n : :

PCL_VISUALIZER_POINT_SIZE , 2 , "Where the r i g h t tube i s transported ") ;

809

810 //Stream the v i s u a l i z a t i o n :

811 while (! viewer−>wasStopped ()) {

812 viewer−>spinOnce () ;

813 viewer−>setCameraPosition (−0.0684716 , 1.77067 , −2.51146 , −0.193301 , 0.992061 ,

−0.659233 , 0.0155019 , 0.921378 , 0.388357) ; //Camera position

814

815 Const Ptr cloud ;

816

817 i f (mutex . try_lock ()) {

818 buffer . swap(cloud) ;

819 mutex . unlock () ;

820 }

821

822 i f (cloud) {

823 i f (! viewer−>updatePointCloud (cloud , "Cloud")) {

824 viewer−>addPointCloud (cloud , "Cloud") ;

825 viewer−>resetCameraViewpoint ("Cloud") ;

826 }

827 }

828

829 i f (GetKeyState (VK_ESCAPE) < 0) {

830 break ;

831 }

APPENDIX A. SOURCE CODE 132

832 }

833

834 grabber . stop () ;

835

836 i f (connection . connected ()) {

837 connection . disconnect () ;

838 }

839 }

840

841

842 private :

843 void cloud_callback (const Const Ptr& cloud)

844 {

845 boost : : mutex : : scoped_lock lock (mutex) ;

846 buffer = cloud ;

847 }

848 Eigen : : Vector4f wanted_RIGHT ;

849 Eigen : : Vector3f ea_robot_right ;

850

851 boost : : shared_ptr<pcl : : v i s u a l i z a t i o n : : PCLVisualizer> viewer ;

852 pcl : : Grabber& grabber ;

853 boost : : mutex mutex ;

854 Const Ptr buffer ;

855

856 pcl : : PointCloud<pcl : : PointXYZ> scene_alignedRun_RIGHT ;

857 pcl : : PointCloud<pcl : : PointXYZ> scene_filtered_RIGHT ;

858

859 } ;

860

861 pcl : : PointCloud<pcl : : PointXYZ > : : Ptr scene_filtered_RIGHT_main (new pcl : : PointCloud<

pcl : : PointXYZ >) ;

862

863 f l o a t vectorOrientation [3] ;

864

865 i n t main(i n t argc , char * argv [])

866 {

APPENDIX A. SOURCE CODE 133

867 ofstream myfile ;

868 myfile . open(" startJAVA . t x t ") ;

869 myfile << "FALSE \n" ;

870 myfile . close () ;

871

872 //Grab point cloud and f i l t e r i t

873 ViewGrapAndFilter v ;

874 v . RunControl () ;

875

876 //Get the point clouds from ViewGrapAndFilter and store them in

scene_filtered_LEFT_main and scene_filtered_RIGHT_main

877 v . GetFi ltered PointCloud (scene_filtered_LEFT_main , scene_filtered_RIGHT_main) ;

878

879 boost : : shared_ptr<pcl : : Grabber> grabber = boost : : make_shared<pcl : : Kinect2Grabber

>() ;

880 AlignmentViewerStream<pcl : : PointXYZRGB> viewer (* grabber) ;

881

882 // Pass the point clouds to AlignmentViewerStream object viewer

883 viewer . PassClouds (scene_filtered_LEFT_main , scene_filtered_RIGHT_main) ;

884 viewer . runAlignment (argv) ;

885 return 0 ;

886 }

887 // That ’ s i t !

Listing A.2: Main.cpp

APPENDIX A. SOURCE CODE 134

A.3.2 C++ Functions source file

1

2 /*

3 − Author : Simen Hagen Bredvold

4 − Master Thesis NTNU IPK 2016

5

6 This Source F i l e holds a l l the functions used .

7 */

8

9 #define _SCL_SECURE_NO_WARNINGS

10 #define _CRT_SECURE_NO_WARNINGS

11

12 #include " Functions . h"

13

14 //Downsamlping function d e f i n i t i o n :

15 void DownsamplingFilter (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

cloudtobefi l tered , const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered ,

const f l o a t g r i d s i z e) {

16

17 pcl : : VoxelGrid <pcl : : PointXYZ> sor ;

18 sor . setInputCloud (cloudtobefi l tered) ;

19 sor . setLeafSize (gridsize , gr idsize , g r i d s i z e +0.05 f) ; // I t i s added 0.05m in the

z−axis because of var iat ion in depth values . T

20 sor . f i l t e r (* c l o u d f i l t e r e d) ;

21 }

22 // Passthrough function d e f i n i t i o n :

23 void PassthroughFilter (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

cloudtobefi l tered , const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered ,

const f l o a t minrange , const f l o a t maxrange , char xyz) {

24 pcl : : PassThrough<pcl : : PointXYZ> pass ;

25 pass . setInputCloud (cloudtobefi l tered) ;

26 i f (xyz== ’ x ’)

27 {

28 pass . setFilterFieldName ("x") ;

29 }

APPENDIX A. SOURCE CODE 135

30 i f (xyz== ’ y ’)

31 {

32 pass . setFilterFieldName ("y") ;

33 }

34 i f (xyz == ’ z ’)

35 {

36 pass . setFilterFieldName ("z") ;

37 }

38 pass . s e t F i l t e r L i m i t s (minrange , maxrange) ;

39 pass . f i l t e r (* c l o u d f i l t e r e d) ;

40 }

41 // Move l e a s t surface smoothning algorithm

42 void MLS(const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr& cloudtobefi l tered , const

pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered , const f l o a t SearchRadius) {

43

44 // Create a KD−Tree

45 pcl : : search : : KdTree<pcl : : PointXYZ > : : Ptr tree (new pcl : : search : : KdTree<pcl : :

PointXYZ >) ;

46

47 // Output has the PointNormal type in order to store the normals calculated by

MLS

48 pcl : : PointCloud<pcl : : PointNormal> scene_mls_points ;

49

50 // I n i t object (second point type i s for the normals , even i f unused)

51 pcl : : MovingLeastSquares<pcl : : PointXYZ , pcl : : PointNormal> mls ;

52 mls . setComputeNormals (true) ;

53

54 // Set parameters

55 mls . setInputCloud (cloudtobefi l tered) ;

56 mls . setPolynomialFit (true) ;

57 mls . setSearchMethod (tree) ;

58 mls . setSearchRadius (SearchRadius) ;

59

60 // Reconstruct

61 mls . process (scene_mls_points) ;

62

APPENDIX A. SOURCE CODE 136

63 // Save output

64 pcl : : io : : savePCDFile ("tube_mls . pcd" , scene_mls_points) ;

65 Sleep (5000) ;

66 pcl : : io : : loadPCDFile ("tube_mls . pcd" , * c l o u d f i l t e r e d) ;

67 }

68 void

69 print4x4Matrix (const Eigen : : Matrix4f & matrix)

70 {

71 p r i n t f (" Rotation matrix : \ n") ;

72 p r i n t f (" | %6.3 f %6.3 f %6.3 f | \n" , matrix (0 , 0) , matrix (0 , 1) , matrix (0 , 2)) ;

73 p r i n t f ("R = | %6.3 f %6.3 f %6.3 f | \n" , matrix (1 , 0) , matrix (1 , 1) , matrix (1 , 2)) ;

74 p r i n t f (" | %6.3 f %6.3 f %6.3 f | \n" , matrix (2 , 0) , matrix (2 , 1) , matrix (2 , 2)) ;

75 p r i n t f (" Translation vector : \ n") ;

76 p r i n t f (" t = < %6.3f , %6.3f , %6.3 f >\n\n" , matrix (0 , 3) , matrix (1 , 3) , matrix (2 ,

3)) ;

77 }

78

79 void write4x4Matrix_RIGHT (const Eigen : : Matrix4f & matrix)

80 {

81 ofstream fout ("transformationmatrix_RIGHT . t x t ") ; // writes matrix with the given

name

82 /*

83 fout << " Rotation matrix : \ n " ;

84 fout << " | " << matrix (0 , 0) << matrix (0 , 1) << matrix (0 , 2) << " | \n " ;

85 fout << "R = | " << matrix (1 , 0) << matrix (1 , 1) << matrix (1 , 2) << " | \n " ;

86 fout << " | " << matrix (2 , 0) << matrix (2 , 1) << matrix (2 , 2) << " | \n" , matrix

(2 , 0) , matrix (2 , 1) , matrix (2 , 2) ;

87 fout << " Translation vector : \ n " ;

88 fout << " t = <" << matrix (0 , 3) << matrix (1 , 3) << matrix (2 , 3) << ">\n\n\n " ;

89 */

90 std : : locale mylocale (" ") ; // get global locale

91 fout . imbue(mylocale) ;

92 fout << matrix (0 , 0) << " " << matrix (0 , 1) << " " << matrix (0 , 2) << " " <<

matrix (0 , 3) * 1000 << " \n" ;

93 fout << matrix (1 , 0) << " " << matrix (1 , 1) << " " << matrix (1 , 2) << " " <<

matrix (1 , 3) * 1000 << " \n" ;

APPENDIX A. SOURCE CODE 137

94 fout << matrix (2 , 0) << " " << matrix (2 , 1) << " " << matrix (2 , 2) << " " <<

matrix (2 , 3) * 1000 << " \n" ;

95 fout << 0.000000 << " " << 0.000000 << " " << 0.000000 << " " << 1.000000 << " \n"

;

96 }

97

98 void SearchMethod_RIGHT (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

Searchmethodcloud , f l o a t& x , f l o a t& y , f l o a t& z) {

99

100 //−−−−−−−−−−Compute normals s t a r t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 // Estimate point normals

102 pcl : : NormalEstimation<PointT , pcl : : Normal> ne ;

103 pcl : : search : : KdTree<PointT > : : Ptr tree (new pcl : : search : : KdTree<PointT >()) ;

104 ne . setSearchMethod (tree) ;

105 ne . setInputCloud (Searchmethodcloud) ;

106 ne . setKSearch (50) ;

107 pcl : : PointCloud<pcl : : Normal > : : Ptr cloud_normals (new pcl : : PointCloud<pcl : : Normal>)

;

108 ne . compute (* cloud_normals) ;

109 //−−−−−−−−−−−−−−−−−−−Compute normals end −−−−−−−−−−−−−−−−−−−−−−−
110

111

112 //−−−−−−−−−−−−−−−search for the end of the tube s t a r t−−−−−−−−−−−−−−−−−−−−−−−−
113 // S t a r t with a large negative x value and large z−value for the search

114 f l o a t minX = −1000;

115 f l o a t minZ = 100000;

116 f l o a t minY ;

117

118 f l o a t currentX , currentY , currentZ ;

119 for (s i z e _ t i = 0 ; i < Searchmethodcloud−>points . s i z e () ; ++ i) {

120

121 currentX = Searchmethodcloud−>points [i] . x ; // gets the x−value for point i

122 currentY = Searchmethodcloud−>points [i] . y ; // gets the y−value for point i

123 currentZ = Searchmethodcloud−>points [i] . z ; // gets the z−value for point i

124

125 i f (currentX >= minX) // I f the current x−value i s l a r g e r then the stored minX

APPENDIX A. SOURCE CODE 138

126 {

127 minX = currentX ;

128 i f (currentZ < minZ) // I f the current z−value i s l a r g e r then the stored minZ

129 {

130 minZ = currentZ ;

131 minY = currentY ;

132

133 }

134 }

135 }

136

137 //−−−−−−−−−−−−−−search for the end of the tube END−−−−−−−−−−−−−−−−−−−−−−−−−
138

139 //−−−−−−−−−−−−Search method dividing into i n t e r v a l START−−−−−−−−−−−−−−−−−−−−−
140

141 f l o a t treshold = 0 . 0 0 5 ; // distance between each i n t e r v a l

142 f l o a t searchX , searchY , searchZ , searchZnormal ;

143 f l o a t holdX , holdY , holdZ , holdZnormal ;

144 holdZ = 1000;

145 f l o a t scoreArray [1 0 1] [5] ;

146 i n t counter = 0 ;

147 i n t score = 1 ;

148 minX = minX + treshold ;

149 bool FirstOver10=FALSE ;

150 f l o a t SumX=0;

151 f l o a t Xvalue = 0 . 0 ;

152

153 // Create 100 i n t e r v a l s and for each of the i n t e r v a l s find the point with

154 // lowest z−value , i t s normal vector , x−value , y−value and how many point inside

the given i n t e r v a l

155 for (f l o a t s t a r t = minX ; s t a r t > (minX − 0 . 5) ; s t a r t = s t a r t − treshold)

156 {

157

158 for (s i z e _ t i = 0 ; i < Searchmethodcloud−>points . s i z e () ; ++ i)

159 {

160 searchX = Searchmethodcloud−>points [i] . x ; // gets the x−value for point i

APPENDIX A. SOURCE CODE 139

161 searchY = Searchmethodcloud−>points [i] . y ; // gets the y−value for point i

162 searchZ = Searchmethodcloud−>points [i] . z ; // gets the z−value for point i

163 searchZnormal = cloud_normals−>points [i] . normal_z ; // gets normal vector in z−
direction

164

165 i f (searchX< s t a r t && searchX> s t a r t − treshold) // f i l t e r s point not inside the

i n t e r v a l

166 {

167 score = score + 1 ; //Counts how many points are inside the i n t e r v a l

168

169 i f (holdZ > searchZ) // store the c l o s e s t z−value

170 {

171 holdX = searchX ;

172 holdZ = searchZ ;

173 holdY = searchY ;

174 holdZnormal = searchZnormal ;

175 }

176

177 }

178

179 }

180 // Find the sum of the x values inside the f i r s t i n t e r v a l containing more

points than 10.

181 i f ((score >10) && (FirstOver10==FALSE))

182 {

183 for (s i z e _ t i = 0 ; i < Searchmethodcloud−>points . s i z e () ; ++ i) {

184

185 searchX = Searchmethodcloud−>points [i] . x ; // gets the x−value for point i

186 i f (searchX< s t a r t && searchX> s t a r t − treshold) // f i l t e r s point not inside

the i n t e r v a l

187 {

188 SumX = SumX + searchX ;

189

190 }

191 }

192 FirstOver10 = TRUE; // To never enter t h i s loop again

APPENDIX A. SOURCE CODE 140

193 Xvalue = SumX / score ; // The mean value of the x−values

194 }

195

196

197 scoreArray [counter] [0] = s t a r t ; // X−value for the point chosen

198 scoreArray [counter] [1] = holdY ; // y−value for the point chosen

199 scoreArray [counter] [2] = holdZ ; // z−value for the point chosen

200 scoreArray [counter] [3] = holdZnormal ; // z−normal for the point chosen

201 scoreArray [counter] [4] = score ; //number of point inside a i n t e r v a l

202 holdZ = 1000; // r eset variable

203 score = 1 ; // rese t variable

204 counter = counter + 1 ;

205 }

206

207 // Check which i n t e r v a l s that contain bore than 10 points and have normal

208 // vectors above 0 . 9 9 . Calulates the mean of the 8 f i r s t value . Check for

o u t l i e r s ;

209 counter = 0 ;

210 f l o a t Values [2] [8] ;

211 f l o a t sumY = 0 . 0 , sumZ = 0 . 0 ;

212 f l o a t Yvalues [8] , Zvalues [8] ;

213 for (s i z e _ t i = 0 ; i < 101; i ++)

214 {

215 // f i l t e r away a l l i n t e r v a l s not having over 10 point in i t s i n t e r v a l and a

normal vector value below 0.99

216 i f ((scoreArray [i] [4] >10) && (abs (scoreArray [i] [3])) >0.99)

217 {

218 sumY = sumY + scoreArray [i] [1] ;

219 sumZ = sumZ + scoreArray [i] [2] ;

220 Values [0] [counter] = scoreArray [i] [1] ; // y value

221 Values [1] [counter] = scoreArray [i] [2] ; // z value

222

223 Yvalues [counter] = scoreArray [i] [1] ; // y value for z−score

224 Zvalues [counter] = scoreArray [i] [2] ; // z value for z−score

225 counter = counter + 1 ;

226

APPENDIX A. SOURCE CODE 141

227 i f (counter >7) // Breaks the loop i f 8 i n t e r v a l s are obtained .

228 {

229 break ;

230 }

231 }

232 }

233

234

235 //−−−−−−−−−−−−−−−Modified z−score for o u t l i e r detection START−−−−−−−−−−−−−−−−−
236 // Find the median of the 8 stored y z values in Values_RIGHT :

237 // Sort the values by s i z e .

238 std : : sort (Yvalues , Yvalues + 8) ;

239 std : : sort (Zvalues , Zvalues + 8) ;

240 f l o a t medianY , medianZ ;

241 medianY = (Yvalues [3] + Yvalues [4]) / 2 . 0 ; // the median of 8 i s the sum of the

third and fourth value devided on 2

242 medianZ = (Zvalues [3] + Zvalues [4]) / 2 . 0 ;

243

244 f l o a t AbsDeviationY [8] ;

245 f l o a t AbsDeviationZ [8] ;

246 // Compute the absolute deviation about medianY and medianZ .

247 for (s i z e _ t c = 0 ; c < 8 ; c++)

248 {

249 AbsDeviationY [c] = abs (Yvalues [c] − medianY) ;

250 AbsDeviationZ [c] = abs (Zvalues [c] − medianZ) ;

251 }

252 std : : sort (AbsDeviationY , AbsDeviationY + 8) ;

253 std : : sort (AbsDeviationZ , AbsDeviationZ + 8) ;

254 f l o a t srtAbsDevY = (AbsDeviationY [3] + AbsDeviationY [4]) / 2 . 0 ;

255 f l o a t srtAbsDevZ = (AbsDeviationZ [3] + AbsDeviationZ [4]) / 2 . 0 ;

256

257 f l o a t ZscoreY [8] ;

258 f l o a t ZscoreZ [8] ;

259

260 //compute the z−scores

261 for (s i z e _ t z = 0 ; z < 8 ; z++)

APPENDIX A. SOURCE CODE 142

262 {

263 ZscoreY [z] = (0 . 6 7 4 5 * (Yvalues [z] − medianY)) / srtAbsDevY ;

264 ZscoreZ [z] = (0 . 6 7 4 5 * (Zvalues [z] − medianZ)) / srtAbsDevZ ;

265 }

266

267 // calculate the mean for the point not having a z−score above 3.5

268 f l o a t sumY_Zscore = 0 . 0 ;

269 f l o a t sumZ_Zscore = 0 . 0 ;

270 i n t passedY = 0 ;

271 i n t passedZ = 0 ;

272 for (s i z e _ t score = 0 ; score < 8 ; score ++)

273 {

274 i f (ZscoreY [score] <3.5)

275 {

276 sumY_Zscore = sumY_Zscore + Yvalues [score] ;

277 passedY = passedY + 1 ;

278 }

279 i f (ZscoreZ [score] <3.5)

280 {

281 sumZ_Zscore = sumZ_Zscore + Zvalues [score] ;

282 passedZ = passedZ + 1 ;

283 }

284

285 }

286 f l o a t meanY_Zscore = sumY_Zscore / passedY ;

287 f l o a t meanZ_Zscore = sumZ_Zscore / passedZ ;

288

289 //−−−−−−−−−−−−−−−−Modified z−score for o u t l i e r detection END−−−−−−−−−−−−−−−−−−−−
290

291 // return the value

292 x = Xvalue ;

293 y = meanY_Zscore ;

294 z = meanZ_Zscore ;

295 }

296

297 void GetLeftRobotToCameraMatrix (Eigen : : Matrix4f& matrix) {

APPENDIX A. SOURCE CODE 143

298 matrix (0 , 0) = −0.0443;

299 matrix (0 , 1) = 0.0230;

300 matrix (0 , 2) = 0.9987;

301 matrix (0 , 3) = 0 ;

302 matrix (1 , 0) = 0.9988;

303 matrix (1 , 1) = −0.0184;

304 matrix (1 , 2) = 0.0447;

305 matrix (1 , 3) = 0 ;

306 matrix (2 , 0) = 0.0144;

307 matrix (2 , 1) = 0.9996;

308 matrix (2 , 2) = −0.0224;

309 matrix (2 , 3) = 0 ;

310 matrix (3 , 0) = 0 ;

311 matrix (3 , 1) = 0 ;

312 matrix (3 , 2) = 0 ;

313 matrix (3 , 3) = 1 ;

314 }

315

316 void GetRightRobotToCameraMatrix (Eigen : : Matrix4f& matrix) {

317 matrix (0 , 0) = −0.0416;

318 matrix (0 , 1) = 0.0125;

319 matrix (0 , 2) = 0.9991;

320 matrix (0 , 3) = 0 ;

321 matrix (1 , 0) = 0.9989;

322 matrix (1 , 1) = −0.0215;

323 matrix (1 , 2) = 0.0418;

324 matrix (1 , 3) = 0 ;

325 matrix (2 , 0) = 0.0222;

326 matrix (2 , 1) = 0.9997;

327 matrix (2 , 2) = −0.0116;

328 matrix (2 , 3) = 0 ;

329 matrix (3 , 0) = 0 ;

330 matrix (3 , 1) = 0 ;

331 matrix (3 , 2) = 0 ;

332 matrix (3 , 3) = 1 ;

333 }

APPENDIX A. SOURCE CODE 144

Listing A.3: Functions.cpp

APPENDIX A. SOURCE CODE 145

A.3.3 C++ Functions header file

1 /*

2 − Author : Simen Hagen Bredvold

3 − Master ’ s Thesis NTNU IPK 2016

4

5 This Header F i l e holds functions declarations and l i b r a r i e s used .

6 */

7

8 #include <iostream >

9 #include <str ing >

10 #include <sstream>

11 #include <tchar . h>

12 #include <math . h>

13 #include <cmath>

14 #include <algorithm >

15 #include <pcl / io /pcd_io . h>

16 #include <pcl / io / ply_io . h>

17 #include <pcl / point_types . h>

18 #include <pcl / f i l t e r s / voxel_grid . h>

19 #include <pcl / f i l t e r s / s t a t i s t i c a l _ o u t l i e r _ r e m o v a l . h>

20 #include <pcl / f i l t e r s /passthrough . h>

21 #include <pcl / r e g i s t r a t i o n / icp . h>

22 #include <pcl / v i s u a l i z a t i o n / p c l _ v i s u a l i z e r . h>

23 #include <pcl / v i s u a l i z a t i o n / cloud_viewer . h>

24 #include <pcl / kdtree / kdtree_flann . h>

25 #include <pcl / kdtree /impl/ kdtree_flann . hpp>

26 #include <pcl / surface /mls . h>

27 #include <pcl / keypoints /uniform_sampling . h>

28 #include <pcl / point_cloud . h>

29 #include <pcl /common/ io . h>

30 #include <pcl /correspondence . h>

31 #include <pcl / features /normal_3d_omp . h>

32 #include <pcl / features /shot_omp . h>

33 #include <pcl / features /board . h>

34 #include <pcl / recognition /cg/hough_3d . h>

APPENDIX A. SOURCE CODE 146

35 #include <pcl / recognition /cg/ geometric_consistency . h>

36 #include <pcl /common/ transforms . h>

37 #include <pcl / console / parse . h>

38 #include <Eigen/ StdVector >

39 #include <pcl / keypoints / s i f t _ k e y p o i n t . h>

40 #include <pcl / features /normal_3d . h>

41 #include <pcl / features /pfh . h>

42 #include <Eigen/SVD>

43 #include <pcl /common/ transformation_from_correspondences . h>

44 #include <pcl / r e g i s t r a t i o n / ia_ransac . h>

45 #include <pcl / r e g i s t r a t i o n / correspondence_rejection_sample_consensus . h>

46 #include <pcl / r e g i s t r a t i o n / correspondence_rejection_one_to_one . h>

47 #include <pcl / keypoints / harris_3d . h>

48 #include <pcl / ModelCoefficients . h>

49 #include <pcl / f i l t e r s / extract_indices . h>

50 #include <pcl /segmentation/ sac_segmentation . h>

51 #include <pcl /sample_consensus/model_types . h>

52 #include <pcl /sample_consensus/method_types . h>

53 #include < f l o a t . h>

54 #include <boost / thread / thread . hpp>

55 #include <pcl /common/common_headers . h>

56 #include <pcl / features / fpfh . h>

57

58 // short handings

59 typedef pcl : : PointXYZ PointT ;

60 typedef pcl : : PointXYZ PointType ;

61 typedef pcl : : Normal NormalType ;

62 typedef pcl : : ReferenceFrame RFType ;

63 typedef pcl : : SHOT352 DescriptorType ;

64

65 //Downsample decleration :

66 void DownsamplingFilter (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

cloudtobefi l tered , const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered ,

const f l o a t g r i d s i z e) ;

67

68 // Passthrough decleration :

APPENDIX A. SOURCE CODE 147

69 void PassthroughFilter (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

cloudtobefi l tered , const pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered ,

const f l o a t minrange , const f l o a t maxrange , char xyz) ;

70

71

72 //MLS f i l t e r decleration :

73 void MLS(const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr& cloudtobefi l tered , const

pcl : : PointCloud<pcl : : PointXYZ > : : Ptr c loudfi l tered , const f l o a t SearchRadius) ;

74

75 //SearchMethod for r i g h t robot decleration :

76 void SearchMethod_RIGHT (const pcl : : PointCloud<pcl : : PointXYZ > : : Const Ptr&

Searchmethodcloud , f l o a t& x , f l o a t& y , f l o a t& z) ; //& pass by reference

77

78 // Prints to screen matrix

79 void print4x4Matrix (const Eigen : : Matrix4f & matrix) ;

80 // Write 4x4 matrix to f i l e for both l e f t and r i g h t

81 void write4x4Matrix_RIGHT (const Eigen : : Matrix4f & matrix) ;

82

83 //The transformation matrix between robot and camera for r i g h t robo

84 void GetRightRobotToCameraMatrix (Eigen : : Matrix4f& matrix) ;

Listing A.4: Functions.h

APPENDIX A. SOURCE CODE 148

A.4 Java code

A.4.1 GUI Source code

1

2 // Author: Simen HAgen Bredvold

3 // Master ’s Thesis NTNU IPK 2016

4

5 // For fully run the robots and solutuin in auto mode this

code is // run to sequence robot programs ,

6 // start Matlab and C++ application , read/write to robot ,

ask if

7 // the new poses are OK or not , start/stop welding. This is

done by // calling the class RobotConnection and its

subclasses RobotKR120 // and RobotKR240.

8

9 // Signal Matlab Safety application to start:

10 try {

11 String str = "TRUE";

12 File newTextFile = new File("MatlabStarter.txt");

13

14 FileWriter fw = new FileWriter(newTextFile);

15 fw.write(str);

16 fw.close();

17 }

18 catch (IOException iox) {

19 iox.printStackTrace ();

20 }

21

22 //Close the grippers for both robots.

APPENDIX A. SOURCE CODE 149

23 PLCConnection.closeGripper120 ();

24 PLCConnection.closeGripper240 ();

25 // pick up left tube

26 System.out.println("Pick up the tubes");

27 KR120.startPickUp120 ();

28 try{

29 Thread.sleep (1000);

30 }

31 catch(Exception e){

32 }

33 KR240.startPickUp240 ();

34 try{

35 Thread.sleep (1000);

36 }

37 catch(Exception e){

38 }

39

40 // wait for the two pick up programs to finished

41 while(KR120.PickUpRunning ()&& KR240.PickUpRunning ()){

42 try{

43 Thread.sleep (500);

44 }

45 catch(Exception e){

46 }

47 }

48 //open the grippers to grab the tubes.

49 System.out.println("Open the Grippers");

50 PLCConnection.openGripper120 ();

51 PLCConnection.openGripper240 ();

52

APPENDIX A. SOURCE CODE 150

53 //to find the length of the tube. After pick up

read the pose and the z-values.

54 double [] pose_left ,pose_right;

55 pose_left=KR120.readPose_LEFT ();

56 pose_right=KR240.readPose_RIGHT ();

57

58 //Tell matlab that the tubes are picked up and the

length of the tubes.

59 try {

60 double z_left=pose_left [2];

61 double z_right=pose_right [2];

62 String str = "TRUE" + z_left + z_right;

63 File newTextFile = new

File("MatlabTubePickedUp.txt");

64 FileWriter matlabobject = new

FileWriter(newTextFile);

65 matlabobject.write(str);

66 matlabobject.close();

67

68 } catch (IOException iox) {

69 //do stuff with exception

70 iox.printStackTrace ();

71 }

72

73

74 //Move the tubes infront of the camera

75 System.out.println("Place the tubes infront of the

camera");

76 KR120.startSetCamera120 ();

77 try{

APPENDIX A. SOURCE CODE 151

78 Thread.sleep (1000);

79 }

80 catch(Exception e){

81 }

82

83 KR240.startSetCamera240 ();

84 try{

85 Thread.sleep (1000);

86 }

87 catch(Exception e){

88 }

89 //wait for the set infront of camera programs to

finish

90 while(KR120.SetCameraRunning ()&&

KR240.SetCameraRunning ()){

91 try{

92 Thread.sleep (500);

93 }

94 catch(Exception e){

95 }

96 }

97 // start the MultiPicture.exe file which is the c++

application for

98 // pose correction of tubes.

99 try{

100 Process process = new

ProcessBuilder("C:\\ Users\\ simen_000 \\ Desktop \\Skole\\ Master \\C++

for innlevering

10mai\\ Win32Project1 \\x64\\Debug\\ MultiPicture.exe","h").start();

101

APPENDIX A. SOURCE CODE 152

102 Thread.sleep (5000);

103 boolean end=false;

104 int i =1;

105 System.out.println("The C++ application is

running ...");

106 //While loop which runs until the C++ application

is finished.

107 while (!end){

108

109 Thread.sleep (1000);

110

111 Path filePath =

Paths.get("C:\\ Users\\ simen_000 \\ Desktop \\ NetBeansProjectsmededit \\ JavaControlSystem \\ ControlSystem \\ startJAVA.txt");

112 Scanner input = new Scanner(filePath);

113 while(input.hasNext ()) {

114 String word = input.next();

115 if(word.equals("TRUE")){

116 end=true;

117 System.out.println("The

application is finished");

118 } //if end

119

120 } //while end

121

122 } //while end

123

124 } // outter try end

125 catch(Exception e){

126 }

127

APPENDIX A. SOURCE CODE 153

128 //Tell matlab safety program to start.

129 try {

130 String str = "TRUE";

131 File newTextFile = new

File("MatlabSafetyProgram.txt");

132

133 FileWriter fw = new FileWriter(newTextFile);

134 fw.write(str);

135 fw.close();

136

137 } catch (IOException iox) {

138 //do stuff with exception

139 iox.printStackTrace ();

140 }

141

142 //Ask operator if the new poses are ok!

143

144 int choice = JOptionPane.showOptionDialog(null ,

145 "Are the new poses OK?",

146 "Matlab Safety Program",

147 JOptionPane.YES_NO_OPTION ,

148 JOptionPane.QUESTION_MESSAGE ,

149 null , null , null);

150

151 // interpret the user’s choice

152 if (choice == JOptionPane.NO_OPTION)

153 {

154 System.exit (0);

155 }

156

APPENDIX A. SOURCE CODE 154

157 // Now read the transformation matrix from the

application above.

158 // Then write the new position to the variable in

the KR controller

159 // called "NEW_POINT" which is stored in config.dat

in KR120 LEFT robot.

160 KR240.writeEEposRIGHT ();

161 KR120.writeEEposLEFT ();

162

163 // Set UpgratePosition (KR variable) to true to

start the robot program

164 // SETPOSITION which moves the robot to the new

position.

165

166 System.out.println("Move the tubes to the wanted

position");

167 KR120.startSETPOSITION ();

168 try{

169 Thread.sleep (1000);

170 }

171 catch(Exception e){

172

173 }

174 while(KR120.SETPOSITIONRunning ()){

175 try{

176 Thread.sleep (500);

177 }

178 catch(Exception e){

179

180 }

APPENDIX A. SOURCE CODE 155

181 }

182

183 KR240.startSETPOSITIONright ();

184 try{

185 Thread.sleep (1000);

186 }

187 catch(Exception e){

188

189 }

190 while(KR240.SETPOSITIONRunningRIGHT ()){

191 try{

192 Thread.sleep (500);

193 }

194 catch(Exception e){

195

196 }

197 }

198

199 // Start the tack welding program for the KR16 robot.

200 KR16.startFive ();

201 try{

202 Thread.sleep (1000);

203 }

204 catch(Exception e){

205 }

206

207 int i = 0;

208 while(KR16.fiveRunning ()){

209

210 boolean weld_sh = false;

APPENDIX A. SOURCE CODE 156

211 while(i < 3){

212 if(KR16.isWelding () && !weld_sh){

213 KR5.startWelding ();

214 System.out.println("Started welding

sequence: "+(i+1));

215 weld_sh = true;

216 }

217

218 if(!KR16.isWelding () && weld_sh){

219 KR5.stopWelding ();

220 System.out.println("Stopped welding");

221 weld_sh = false;

222 i++;

223 }

224 }

225 }

Listing A.5: GUI Source code for controlling the process

APPENDIX A. SOURCE CODE 157

A.4.2 Class RobotConnection for reading/writing to robot

1

2 // Author: Simen HAgen Bredvold

3 // Master ’s Thesis NTNU IPK 2016

4

5 // This class declares the methods for connecting with the

robot.

6 // Also , methods for reading/writing to system global

variables and

7 // methods for reading the transformation matrix from the C++

8 // application and method obtain the RPY -angles.

9

10 package controlsystem;

11

12 import java.io.*;

13 import java.io.File;

14 import java.io.FileNotFoundException;

15 import java.util.ArrayList;

16 import java.util.Scanner;

17 import java.nio.file.Path;

18 import java.nio.file.Paths;

19 import java.util .*;

20 import java.util.Arrays;

21 import java.util.List;

22 import java.lang .*;

23 import java.io.IOException;

24 import java.net.UnknownHostException;

25 import no.hials.crosscom.CrossComClient;

26 import no.hials.crosscom.KRL.KRLBool;

APPENDIX A. SOURCE CODE 158

27 import no.hials.crosscom.KRL.structs.KRLFrame;

28 import no.hials.crosscom.KRL.KRLReal;

29 import no.hials.crosscom.KRL.structs.KRLPos;

30 import no.hials.crosscom.KRL.KRLVariable;

31 import no.hials.crosscom.KRL.structs.KRLE6Pos;

32

33 public class RobotConnection {

34 private CrossComClient connection;

35 private String ipAddress;

36 private int port;

37 public RobotConnection (){

38 }

39 public RobotConnection(String ipAddress , int port){

40 this.port = port;

41 this.ipAddress = ipAddress;

42 connect ();

43 }

44

45 //Reads bool values

46 public boolean readBoolean(KRLBool bool){

47 try{

48 this.connection.readVariable(bool);

49 }

50 catch(Exception e){

51 System.out.println("Error writing bool to

Robot");

52 }

53 return bool.getValue ();

54 }

55 // Writes bool values

APPENDIX A. SOURCE CODE 159

56 public void writeBoolean(KRLBool bool){

57 try{

58 this.connection.writeVariable(bool);

59 }

60 catch(Exception e){

61 System.out.println("Error writing bool to

Robot");

62 }

63 }

64

65 // reads position x,y,z and orientation A,B,C from robot

66 public double [] readFrame(String frameName){

67 KRLFrame frame = new KRLFrame(frameName);

68 try{

69 this.connection.readVariable(frame);

70 }

71 catch(Exception e){

72 System.out.println("Error reading frame from

Robot");

73 }

74 // Return the pose

75 double

[] CurrentValue ={frame.getX(),frame.getY(),frame.getZ(),frame.getA(),frame.getB(),frame.getC()};

76 return CurrentValue;

77 }

78

79 //Read the transformation matrix created in the c++

application.

80 public double [] readTransformation(String textfile){

81 try{

APPENDIX A. SOURCE CODE 160

82 Path filePath = Paths.get(textfile);

83 Scanner scanner = new Scanner(filePath);

84 List <Double > integers = new ArrayList <>();

85 while (scanner.hasNext ()) {

86

87 if (scanner.hasNextDouble ()) {

88 integers.add(scanner.nextDouble ());}

89 else {

90 scanner.next();}

91 }

92

93 double [] T = new double[integers.size()];

94

95 for (int i = 0; i < T.length; i++) {

96 T[i] = integers.get(i);

97 }

98 // returns an array of type double.

99 return T;

100 }

101

102 catch(IOException ioe){

103 System.out.println("Error reading the file");

104 double [] K={0,0,0};

105 return K;

106 }

107 }

108 // Calculation of the RPY angles from the transformation

matrix

109 public double [] RPYanglesCalculation(double

[] TransformationMatrix){

APPENDIX A. SOURCE CODE 161

110 // calculate the RPY angles:

111 double A,B,C;

112

A=Math.atan2(TransformationMatrix [4], TransformationMatrix [0]);

113

B=Math.atan2(-TransformationMatrix [8],Math.sqrt(Math.pow(TransformationMatrix [10] ,2)

114 +

Math.pow(TransformationMatrix [9],2)));

115

C=Math.atan2(TransformationMatrix [9], TransformationMatrix [10]);

116 //The correction translation

117 double []

CorrectionValues ={ TransformationMatrix [3], TransformationMatrix [7],

118

TransformationMatrix [11],A,B,C};

119 return CorrectionValues;

120 }

121

122 //Input: Current pose and correction pose for robot.

123 // Writes the new pose to to robot.

124 public void writeFrame(String frameName ,double

[] CurrentValue ,double []NewPose ,String WhichRobot){

125 double X,Y,Z,A,B,C;

126

127 if (WhichRobot.equals("LEFT")) {

128 X=CurrentValue [0]+ NewPose [0];

129 Y=CurrentValue [1]+ NewPose [1];

130 Z=CurrentValue [2]+ NewPose [2];

131 A=NewPose [3];

132 B=NewPose [4];

APPENDIX A. SOURCE CODE 162

133 C=NewPose [5];

134

135 KRLFrame newframe = new KRLFrame(frameName);

136 newframe.setXToZ(X,Y,Z);

137 newframe.setAToC(A,B,C);

138 try{

139 this.connection.writeVariable(newframe);

140 }

141 catch(Exception e){

142 System.out.println("Error reading frame from

the left Robot");

143 }

144 }

145

146 if((WhichRobot.equals("RIGHT"))){

147

148 X=CurrentValue [0]+ NewPose [0];

149 Y=CurrentValue [1]+ NewPose [1];

150 Z=CurrentValue [2]+ NewPose [2];

151 A=NewPose [3];

152 B=NewPose [4];

153 C=NewPose [5];

154

155 //write to robot

156 KRLFrame newframe = new KRLFrame(frameName);

157 newframe.setXToZ(X,Y-5,Z); //take away 5mm to let

the force control put them togehter

158 newframe.setAToC(A,B,C);

159 try{

160 this.connection.writeVariable(newframe);

APPENDIX A. SOURCE CODE 163

161 }

162 catch(Exception e){

163 System.out.println("Error reading frame from the

right Robot");

164 }

165 }

166 }

Listing A.6: RobotConnection.java

APPENDIX A. SOURCE CODE 164

A.4.3 RobotKR120, a subclass of RobotConnection, which declare meth-

ods used to control the the left robot

1

2 // Author: Simen HAgen Bredvold

3 // Master ’s Thesis NTNU IPK 2016

4

5 // Subclass of RobotConnection. This subclass declares the

methods // called by the process control in GUI.java to

control the left //robot. The methods calls the methods

from RobotConnection to // function.

6

7 public class RobotKR120 extends RobotConnection {

8 // The system variable files declared in $config.dat

file.

9 private KRLBool KR120UpdatePosition = new

KRLBool("UpdatePosition");

10 private KRLBool KR120startPickUp = new

KRLBool("startPickUp");

11 private KRLBool KR120startSetCamera= new

KRLBool("startSetCamera");

12 private KRLBool KR120startGetPosition = new

KRLBool("startGETPOSITION");

13

14 public RobotKR120(String ipAddress , int port){

15 super(ipAddress , port);

16 KR120UpdatePosition.setValue(false);

17 KR120startPickUp.setValue(false);

18 KR120startSetCamera.setValue(false);

19 KR120startGetPosition.setValue(false);

APPENDIX A. SOURCE CODE 165

20 }

21

22 //read the current pose from the robot

23 public double [] readPose_LEFT (){

24 double

[] CurrentValue_LEFT=readFrame("POINT_IN_SPACE_LEFT");

25 return CurrentValue_LEFT;

26 }

27

28 // Method which does the following:

29 // 1)reads transformation matrix

30 // 2) Calculates the correction angles

31 // 3)Reads current robot pose from "POINT_IN_SPACE_LEFT"

which is stored in the robot

32 // 4) Writes the new pose to "NEW_POINT_LEFT" stored in

the robot.

33

34 public void writeEEposLEFT (){

35 double

[] Tmatrix_left=readTransformation("C:\\ Users\\ simen_000 \\ Desktop \\ NetBeansProjectsmededit \\ JavaControlSystem \\ ControlSystem \\ transformationmatrix_LEFT.txt");

36 double

[] NewValue_LEFT=RPYanglesCalculation(Tmatrix_left);

37 double

[] CurrentValue_LEFT=readFrame("POINT_IN_SPACE_LEFT");

38

writeFrame("NEW_POINT_LEFT",CurrentValue_LEFT ,NewValue_LEFT ,"LEFT");

39 }

40

41 // Starts the robot program called SETPOSITION which reads

"NEW_POINT_LEFT"

APPENDIX A. SOURCE CODE 166

42 // and moves to this pose.

43 public void startSETPOSITION (){

44 KR120UpdatePosition.setValue(true);

45 writeBoolean(KR120UpdatePosition);

46 }

47

48 public boolean SETPOSITIONRunning (){

49 readBoolean(KR120UpdatePosition);

50 return KR120UpdatePosition.getValue ();

51 }

52

53 // The following is for starting the robot program for

pick up of tube

54 public void startPickUp120 (){

55 KR120startPickUp.setValue(true);

56 writeBoolean(KR120startPickUp);

57 }

58

59 public boolean PickUpRunning (){

60 readBoolean(KR120startPickUp);

61 return KR120startPickUp.getValue ();

62 }

63

64 public void startSetCamera120 (){

65 KR120startSetCamera.setValue(true);

66 writeBoolean(KR120startSetCamera);

67 }

68

69 public boolean SetCameraRunning (){

70 readBoolean(KR120startSetCamera);

APPENDIX A. SOURCE CODE 167

71 return KR120startSetCamera.getValue ();

72 }

73 }

Listing A.7: RobotKR120.java

APPENDIX A. SOURCE CODE 168

A.4.4 RobotKR240, a subclass of RobotConnection, which declare meth-

ods used to control the the right robot

1

2

3 // Author: Simen HAgen Bredvold

4 // Master ’s Thesis NTNU IPK 2016

5

6 // Subclass of RobotConnection. This subclass declares the

methods // called by the process control in GUI.java to

control the right //robot. The methods calls the methods

from RobotConnection to // function.

7

8 public class RobotKR240 extends RobotConnection {

9 private KRLBool KR240startPickUp = new

KRLBool("startPickUp");

10 private KRLBool KR240startSetCamera= new

KRLBool("startSetCamera");

11 private KRLBool KR240UpdatePositionRight = new

KRLBool("UpdatePositionRight");

12

13 public RobotKR240(String ipAddress , int port){

14 super(ipAddress , port);

15

16 // Set all KRLBool FALSE

17 KR240UpdatePositionRight.setValue(false);

18 KR240startPickUp.setValue(false);

19 KR240startSetCamera.setValue(false);

20 }

21 //read the current pose from the robot

APPENDIX A. SOURCE CODE 169

22 public double [] readPose_RIGHT (){

23 double

[] CurrentValue_RIGHT=readFrame("POINT_IN_SPACE_RIGHT");

24 return CurrentValue_RIGHT;

25 }

26

27 // Function which does the following:

28 // 1)reads transformation matrix

29 // 2) Calculates the correction angles

30 // 3)Reads current robot pose from

"POINT_IN_SPACE_RIGHT" which is stored in the robot

31 // 4) Writes the new pose to "NEW_POINT_RIGHT" stored

in the robot.

32

33 public void writeEEposRIGHT (){

34 double

[] Tmatrix_right=readTransformation("C:\\ Users\\ simen_000 \\ Desktop \\ NetBeansProjectsmededit \\ JavaControlSystem \\ ControlSystem \\ transformationmatrix_RIGHT.txt");

35 double

[] NewValue_RIGHT=RPYanglesCalculation(Tmatrix_right);

36 double

[] CurrentValue_RIGHT=readFrame("POINT_IN_SPACE_RIGHT");

37

writeFrame("NEW_POINT_RIGHT",CurrentValue_RIGHT ,NewValue_RIGHT ,"RIGHT");

38 }

39

40 public void startSETPOSITIONright (){

41 KR240UpdatePositionRight.setValue(true);

42 writeBoolean(KR240UpdatePositionRight);

43 }

44

APPENDIX A. SOURCE CODE 170

45 public boolean SETPOSITIONRunningRIGHT (){

46 readBoolean(KR240UpdatePositionRight);

47 return KR240UpdatePositionRight.getValue ();

48 }

49

50 public void startPickUp240 (){

51 KR240startPickUp.setValue(true);

52 writeBoolean(KR240startPickUp);

53 }

54

55 public boolean PickUpRunning (){

56 readBoolean(KR240startPickUp);

57 return KR240startPickUp.getValue ();

58 }

59

60 public void startSetCamera240 (){

61 KR240startSetCamera.setValue(true);

62 writeBoolean(KR240startSetCamera);

63 }

64

65 public boolean SetCameraRunning (){

66 readBoolean(KR240startSetCamera);

67 return KR240startSetCamera.getValue ();

68 }

69 }

Listing A.8: RobotKR240.java

Appendix B

Digital Appendix

A .zip file is included as digital appendix. This contains:

• A video "Masters Simen Hagen Bredvold Welding with pose correction.avi" showing the

alignment using SAC-IA and ICP, RANSAC with Search Method and only Search Method.

• Source code for the C++ application. Needs PCL and its 3third party libraries to be build

and run.

• KUKA Robot files for handling of the tubes.

• $Config.dat file for right and left robot.

• Source code for the "ControlSystem" project developed in Java for communication with

the robots.

• Matlab files to run the Safety application.

171

	Preface
	Acknowledgment
	Summary and Conclusions
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Objectives
	Approach
	Structure of the Report

	Robot Kinematics
	Denavit-Hartenberg parameter
	Setting up the local coordinate frame to each link
	Deriving the Denavit-Hartenberg parameters for the KUKA 120 R2500 robot

	Forward kinematics
	The Jacobian matrix

	Inverse Kinematics
	Joint Space Trajectory
	General Transformation
	Roll, pitch, yaw-angles from transformation matrix

	Computer Vision
	Introduction
	Kinect
	Time Of Flight - Distance measurement
	Time Of Flight - Noise
	ToF - Noise in practicality
	Mapping coordinates from Kinect to robot

	Point Cloud Processing
	Passthrough filter
	Normal estimation
	Voxel Grid Down Sampling
	Random sample consensus
	Smoothing - Moving Least Squares

	Model a cylinder model
	Finding center axis of model cylinder in the camera coordinate system

	Alignment of cylinders
	SAmple Consensus Initial Alignment - SAC-IA
	Iterative Closest Point - ICP
	RANSAC to align orientation

	Align position using Search Method
	Search Method together with RANSAC

	Setup And Robot Control
	Robot Lab
	Offline Programming
	C++ application to align cylinders
	Communication application in Java
	Safety Program
	Robotic welding of cylindrical objects
	Welding Programming and Parameters

	Robot programs
	Force Control

	Architecture of the process

	Results
	Run-Out
	Fit-up without alignment

	Alignment results
	Alignment with SAC-IA and ICP
	Rotation using RANSAC
	Aligning position using Search Method
	Using the rotation from SAC-IA/ICP or RANSAC together with Search Method

	Concluding Remarks
	Discussion
	Conclusion
	 Recommendations for Further Work

	Bibliography
	Source code
	Matlab Safety Application
	Safety Application
	C++ Alignment application
	C++ Main source file
	C++ Functions source file
	C++ Functions header file

	Java code
	GUI Source code
	Class RobotConnection for reading/writing to robot
	RobotKR120, a subclass of RobotConnection, which declare methods used to control the the left robot
	RobotKR240, a subclass of RobotConnection, which declare methods used to control the the right robot

	Digital Appendix

