
Development of a prototype of a
candidate camera payload

Jon Kalevi Oltedal

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET
Co-supervisor: Roger Birkeland, IET

Amund Gjersvik, IET

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology

i

Summary

The second prototype for the NUTS camera module have been tested to confirm if

changes made from the first prototype were successful. The first prototype suffered from

noise issues when operating at the maximum clock frequency of 96MHz. This needed to

be fixed for the MT9P031 image sensor to be usable in further designs. Debugging and

testing using the camera prototype hardware and software proved that the prototype

managed to produce noise free images with bright parts in the images. These results

enable the use of the image sensor in further prototypes. Suggestion and discussion for

the next prototype has also been done. The AT32UC3C MCU was chosen to be used

on the prototype for the communication to the backplane of the satellite. Software and

hardware logic requirements has also been provided. These suggestion were made so

that further development can begin with a better start point.

ii

Sammendrag

Den andre prototypen for NUTS kamera modulen blitt testet for bekrefte at forandrin-

gene gjort fra den frste prototypen var suksessfulle. Den frste prototypen led av sty

problemer nr den opererte p maksimal frekvensen p 96 MHz. Dette mtte bli fikset for at

MT9P031 bilde sensoren kan bli brukt i videre design. Debugging og testing med bruk

av kamera prototypens hardware og software beviste at prototypen klarte produsere

styfrie bilder med hvite deler i bildene. Disse resultatene gir mulighet til bruke bilde-

sensoren i de neste prototypene. Anbefaling og diskusjon for den neste prototypen har

ogs blitt utfrt. AT32UC3C mikrokontrolleren ble valgt til bli brukt p prototypen for

kommunikasjon med bakplanet til satellitten. Software og hardware logikk krav har ogs

blitt oppgitt. Disse anbefalingene ble gjort for at videre utvikling kan begynne fra et

bedre startpunkt.

Contents

Summary i

Sammendrag ii

List of Figures v

List of Tables vi

Abbreviations vii

1 Introduction 1

1.1 Problem Description . 1

1.2 Motivation . 2

1.3 NTNU Test Satelite - NUTS . 2

1.3.1 NUTS Payload . 2

1.4 Scope of the thesis . 3

2 Background 4

2.1 Previous prototypes . 4

2.1.1 First prototype . 4

2.1.2 Second prototype . 5

2.1.3 Prototype setup . 6

2.1.4 Software commands . 7

2.1.5 Xilinx LogiCORE IP blocks . 8

2.1.5.1 Sensor interface block . 8

2.2 Theory . 9

2.2.1 MT9P031 digital Image sensor . 9

2.2.1.1 Exposure time . 9

2.2.2 Harmonics in square signals . 10

2.2.3 NUTS Backplane and module compatibility 11

2.2.4 Electronics in space . 12

2.2.5 Bayer color filter array . 12

3 Testing and debugging of prototype 13

3.1 PCB and data signals . 14

3.1.1 FPGA header pins . 14

3.1.2 Power supply . 15

iii

Contents iv

3.1.3 Clock signals . 15

3.2 Testing of image sensor . 16

3.3 Chipscope debugging . 17

3.4 Exposure and lens adjustment . 18

4 Further development 20

4.1 Requirements . 20

4.2 Camera subsystem design overview . 21

4.3 Microcontroller . 22

4.3.1 Required MCU software . 22

4.3.2 MCU characteristics and suggestion 23

4.4 FPGA logic . 24

4.4.1 Compression logic . 24

4.4.2 Capturing and storing logic . 25

4.4.3 I2C interface . 25

4.4.4 Configuration interface . 25

4.5 Flash memory . 26

4.6 Power sequencers . 27

4.7 Debugging interface . 27

5 Results and Discussion 29

5.1 Second prototype results . 29

5.2 Development discussion . 30

6 Conclusion 32

6.1 Future work . 32

A Terminal logger 33

B Extract image data 36

C Xilinx logiCORE IP code 38

D User Constraint File 45

Bibliography 47

List of Figures

2.1 Captured image from the first prototype, showing the visible noise in
bright parts.. 5

2.2 Block schematic of the first and second camera module prototypes[1]. . . 6

2.3 Square wave constructed from the first, third, fifth, and seventh harmon-
ics. 11

2.4 Square wave constructed from the first, third, fifth, and seventh harmon-
ics. 11

2.5 Red, green and blue pixels forming a Bayer color filter array[2] 12

3.1 Pin connections between the FPGA development kit header and devel-
oped prototype board. Pins are numbered top to bottom, starting in the
top right corner, in accordance to the development kit user guide[3]. . . . 14

3.2 Image showing the ripple on the voltage supply to the image sensor. . . . 15

3.3 Screenshot of the 96MHz clock signal from the image sensor to the devel-
opment kit. 16

3.4 Screenshot of one of the data outputs during a test pattern output. 17

3.5 Image captured with a SW of 50 . 19

3.6 Image captured with a SW of 30 . 19

3.7 Image captured with a SW of 20 . 19

4.1 Overview of the NUTS camera module system. 22

4.2 Setup for the configuration modes for the Spartan 6 FPGA, with the
FPGA as slave. 26

5.1 Color corrected image captured by the second prototype. 30

v

List of Tables

4.1 Functional requirements of the camera module 21

4.2 Comparison for suggested MCUs . 23

vi

Abbreviations

MP MegaPixel

mW milliWatt

mV milliVolt

FPS Frames Per Second

NUTS NTNU Test Satellite

FPGA Field Programmable Gate Array

IR InfraRed

OBC On Board Computer

PCB Printed Circuit Board

XPS Xilinx Platform Studio

IP Iintellectual Property

CAN CController Area Network

ASIC Application Specific Iintergrated Circuit

I2C Iinter Iintegrated Circuit

ISE Integrated Synthesis Environment

DMA Direct Memory Access

UART Universal Asynchronous Receiver/Transmitter

USB Universal Sserial Bus

SPI Serial Peripheral Iinterface

FIFO First In First Out

CCLK Configuration CLocK

DDR SDRAM Double Data Rate Synchronous Random Access Memory

AC Alternating Current

DC Direct Current

VDMA Video Direct Memory Access

vii

Abbreviations viii

UCF User Constraint File

ROM Read Only Memory

EPROM Erasable Programmable ROM

EEPROM Electrical EPROM

SEE Single Event Effects

GIMP GNU Image Manipulation Program

GUI Graphical User Interface

JTAG Joint Test Action Group

Chapter 1

Introduction

1.1 Problem Description

The current focus of the NUTS project is to finish the design and build hardware for

an integrated engineering model. Through this project, the student should focus on the

system design of the camera module in general, with particular focus on the hardware

design, choice of components and aspects of high frequency layout.

The camera module must be designed to be reliable, as maintenance is impossible after

launch. Challenges due to the space environment, such as temperature cycles, radiation

environment and vacuum must be identified and discussed. In areas where mitigation

of such problems is possible, solutions should be presented. Whether the solutions be

implemented should be based on a cost/benefit analysis.

Key tasks for the student:

• Test of previously developed camera prototype

• Design complete schematic of the camera module, including imaging module,

FPGA and MCU

• The module must be designed to be compatible with the NUTS satellite backplane

• Participate in the hardware/software design process of the camera module

1

2

1.2 Motivation

Images from the camera module is the planned payload of the NUTS satellite. Mainte-

nance of hardware in space applications is impossible after launch, and fixing of hardware

problems would require a new expensive launch. Therefore, all the modules must be de-

signed to be as reliable as possible to secure the intended functionality for as long as

possible for the system to accomplish its tasks.

1.3 NTNU Test Satelite - NUTS

The NUTS project is a student satellite project with the goal of developing a double

CubeSat through volunteer and master’s degree students at NTNU[4]. The main goal

of the NUTS project is educate NTNU students in group project work and the design of

space applications. The project started in September 2010, and was originally planned

for launch in 2014. As of spring 2016, no new launch date has been set, and a new one

will be set when the project is nearing completion. Even if the satellite still has not been

launched, the project has completed one of its main goals of recruiting and educating

students, and still continues to do so.

1.3.1 NUTS Payload

The NUTS satellite has several mission goals, such as establishing a two way communi-

cation and de-tumbling of the satellite, where the payload of the project is a camera. It

was originally planned to use an IR-camera to observe gravity waves in the atmosphere.

This payload idea was then later scrapped because of the required workload and the high

cost of the technology. Other types of cameras, such as visual range cameras have been

considered, until it was decided upon a commercial camera, to capture color images of

the earth from space. A couple of cameras have been tested for the use on the satellite,

and a possible candidate has been found and will be used if it can be proven to work

reliable with a custom made PCB and interfaced with the NUTS satellite.

3

1.4 Scope of the thesis

In chapter 2, previous prototypes of the camera module is presented, with some theory

around the functionality of the prototype system to understand the testing of the module,

which appear in a later chapter. Some theory of problems with electronics in space is

also presented, as well as some other relevant theory.

In chapter 3, the testing and debugging of the second iteration of the NUTS camera

prototype design is presented. There were some difficulties with finding the problem of

the prototype, as most of the logic and software used to operate the system where de-

signed by previous students. The documentation for the used software was very limited,

resulting in a lot more time than scheduled where used on understanding and debugging.

Chapter 4 revolves around the design choices and suggestions for the next iteration

of the camera prototype. This involves proposing design alternatives in accordance to

the requirements of the camera module, choosing the main components for the system,

creating an overview of the required logic on the FPGA, and setting requirements for

the software on the module’s MCU. It was initially planned to make a full schematic

design of the next camera payload as stated by the problem description. The scope was

then changed to make some choices and suggestion for the next prototype. This decision

was made because the second prototype of the unexpected time used to fully understand

the functionality of the prototype system’s logic and software.

Chapter 5 presents the results and discussion of the prototype testing. It also discusses

the choices and suggestions for the next camera prototype. Some choices are presented

in regards to challenges of the space environment.

At the end in chapter 6, all the work from this thesis is concluded. Future work to be

done on the NUTS camera payload is also presented here.

Chapter 2

Background

2.1 Previous prototypes

Two previous prototypes of the NUTS payload module has been developed. The second,

which is currently the latest fully developed prototype, was a redesign done to solve noise

issues. The following three subsections presents the two prototypes and how the system

is set up.

2.1.1 First prototype

The first NUTS camera prototype was developed by Thomas Hanssen Nornes in the

autumn of 2014[5]. The work was based on finding a compatible camera sensor, optics

and mount for space applications, and then interfacing it with a PCB layout. Although

the design worked, it suffered from some noise issues in bright parts of the captured

images. This problem would be very noticeable on images of the earth, as many images

would contain bright clouds. The causes of these problems were not found, and for the

custom camera module to be used in the final system, design changes would have to be

made to prove that the module can operate reliably.

The noise in the bright parts of images, which can be seen in figure 2.1, appeared only

with the normal operating speed at 96MHz. A temporary workaround to the problem

was found by limiting the clock frequency of the sensor down to 72MHz. Although

this modification is better than having visible noise in the images, a solution should be

4

5

found to get the module to work reliable at intended speeds. The noise was speculated

to either be a result of ripples of 200 mV on the voltage supply to the image sensor,

because of high-speed complications on the data signals from the image sensor, and/or

because of the need for soldered wires on the PCB because of layout limitations of a

two-layer board. A second prototype was then designed, with the goal to remove the

noise issues, high speed complications, and other layout limitations.

Figure 2.1: Captured image from the first prototype, showing the visible noise in
bright parts..

2.1.2 Second prototype

The second and current prototype was designed to solve the aforementioned problems of

the first prototype. The new design was done in the Autumn of 2015 by Jon Oltedal[6].

The changes between the prototypes consisted mainly of some new power supply com-

ponents and routing changes between the image sensor and development board pins.

The TPS799 voltage regulators were chosen for their low output ripple characteristics

of 29,4 µV RMS, compared to 250 µV RMS on the MAX883 used on the first prototype

board. The routing changes were done to ensure that the 12 data bits with pixel values

were sampled simultaneously. This was done by matching the lengths of the routes.

Calculations of propagation delay concluded that this was most likely not the source

6

of the noise issues, but was kept in the design as there were plenty of room to do so

without negative consequences.

As the software and hardware code previously used to read and store data from the

sensor was quite extensive and with little documentation, there was not enough time

to fully test the new board. On the other hand, some small design faults were found

which would have to be fixed before testing of the module. The setup and full testing

procedure of the second prototype can be seen in chapter 3, with its results listed and

discussed in chapter 5.

2.1.3 Prototype setup

The first and second prototype system consists of a prototype board, development board,

and the FPGA on the development board. Figure 2.2 shows the main components, and

how they are connected to each other, with the arrows pointing to the slave modules.

Figure 2.2: Block schematic of the first and second camera module prototypes[1].

The prototype board is a custom made PCB with the MT9P031 image sensor, voltage

supply, and header pins to connect to the FPGA development board. The used develop-

ment board is a Numato Lab Saturn - Spartan 6 FPGA development board with DDR

SDRAM[3]. The memory is used to store the captured images, and the configurable

memory is used to store software for the MicroBlaze processor to run.

7

The logic design of the on the FPGA consist of several modules; three communication

blocks, and three blocks to control image sensor data and memory, as seen on figure 2.2.

UART is used to communicate between Microblaze processor and the host computer.

The processor uses it to recveive the software it needs to operate the camera interface, to

receive information of which part of the software to execute, and to dump the image data

to the host. The SPI block is used to store the executable software to the configurable

memory. The last communication block, I2C, is used to configure the image sensor.

The processor receives commands from the UART, and uses the I2C block to write to

the images sensor’s registers. More about the blocks and the interconnecting buses is

mentioned in section 2.1.5.

2.1.4 Software commands

The software for the camera prototype that runs on the microblaze processor builds up

a command line interface by using the UART communication block. It starts up by

resetting the image sensor before accepting commands via a serial terminal on the host

computer. The different commands and their purpose are as follows:

Memory R/W A command used for reading/writing from/to the DDR memory lo-

cated on the FPGA development kit. This is useful to for example read the memory

locations of captured images, to confirm that a new image has been written before

transferring it to the host. It can also be used to check the pixel values, as they

are written to this memory.

Image sensor control Used to initiate reads and writes to the registers on the MT9P031

sensor, via the I2C interface. The registers control the behaviour settings of the

sensor. This is used to for example change the exposure time, or turn on test

pattern output. The full list of registers can be found in the register reference

document[7].

Frame capture A command used to initialize the sensor interface to capture and store

images in the DDR memory.

Image download A command used to dump the image data from the DDR memory

to the host computer. The argument for this command enables skipping data bits

8

for a faster transfer rate in exchange for lower quality. This is useful for when

changing the focus of the lens, or to adjust the exposure time.

In addition to these software commands, some software to run on the host is also

needed. The host needs to run a script to log the image data transferred over the

UART with the image download command. It also needs to run a script to scan

and extract the image data into an image file. The two scripts used for this has

been developed by previous NUTS project members. The script used to log the

terminal for image data can be found in Appendix A, while the script for scanning

and extracting image data from logs is located in Appendix B.

2.1.5 Xilinx LogiCORE IP blocks

Xilinx Platform Studio (XPS) is a development program that can be used to build,

connect and configure embedded processor-based systems for Xilinx FPGAs. It has a

library of different available cores that can be inserted into a design. The connections

between the blocks and the settings for the blocks are configured with a text file. Every

block inside the FPGA on the prototype setup figure 2.2 is a configurable Xilinx Logi-

CORE IP, and has interconnected to form the prototype system. The different AXI4

buses between the IP blocks are also addded in the XPS software. AXI4 is a bus inter-

face architecture developed by the ARM company. Connections are made with a simple

GUI, and no further configuration is needed. The XPS design file for the prototype

design where the block options is set, is attached in Appendix C.

2.1.5.1 Sensor interface block

The sensor interface block is a Video In to AXI4-Stream LogiCORE IP block. It takes

data and clock input from a video source and outputs the data on an AXI4-Stream video

protocol interface. It uses sync signals and/or blank signals from the same video source

as inputs to show when active video is to be sampled. As seen in the following theory

chapter about the MT9P031 image sensor, it outputs

9

2.2 Theory

The following sub section details some theory around how the image sensor is operated

and some theory relevant to the test and design of the NUTS camera module.

2.2.1 MT9P031 digital Image sensor

The image sensor used for the camera module prototype is a 1/2.5-Inch 5 Mp CMOS

Digital Image Sensor, the MT9P031 by ON Semiconductor[8]. It was chosen for the first

prototype for satisfying the requirements[5] of high resolution (2592x1944), and a low

power consumption (381mW at 14 FPS with full resolution). The settings of the image

sensor, are controlled by writable registers[7]. The settings range from everything from

exposure time, frame size, and test pattern outputs. The registers are set through an

I2C interface between the sensor chip and driver.

The sensor has three frame output modes; continuous, snapshot, and bulb. The con-

tinuous mode outputs frame data continuously and can be captured at any time. The

snapshot and bulb modes outputs one frame, initiated by a trigger signal. The difference

between the two modes is how exposure time is controlled. Snapshot uses is electroni-

cally controlled, as seen in the following sub-section, while bulb exposure time is ended

by a second trigger signal. Two signals, Line valid and Frame valid, are available for

the capturing interface to signal when a new line begins, and when the whole frame is

finished. The output of the image sensor is in the form of RGB Bayer array. More about

Bayer color arrays are presented in section 2.2.5.

2.2.1.1 Exposure time

One of the features of the MT9P031 image sensor is its superior low-light performance.

With the sensors default configurations, even regular lamps appear too bright, causing

images to become almost blank. This means tweaking of the exposure time will be very

important to secure clear images. For the MT9P031, the exposure time EXP is given

by equation 2.1 below,

EXP = SW × tROW − SO × 2 × tPIXCLK (2.1)

10

where:

SW = max(1, (2 × 16 × Shutter Width Upper) + Shutter Width Lower)

SO = 208 × (Row Bin + 1) + 98 + min(SD,SDmax) − 94

SD = Shutter Delay + 1

SDmax = 1232, if SW < 3; 1504 otherwise
tPIXCLK = 1/F, where F is the clock frequency.
tROW = 2 × tPIXCLK ×

max(((W/2) + max(HB, HBMIN)), (41 + 346 × (Row Bin + 1) + 99))

SW stands for shutter width, and tells us how wide the rolling shutter is. The lower the

shutter width, the lower the exposure. SO, shutter overhead, is a combination of row

binning and shutter delay (SD). Binning combines the charge of nearby pixels, making

for a faster capture speed in exchange for spatial resolution, which lowers the quality of

the image[9]. The SD value is a negative adjustment, meaning increasing the SD value

decreases the exposure time. tPIXCLK is the time of one period on the image sensor

clock. tROW is the time period between the first pixel outputs of two rows, where W is

the image width, and horizontal blanking (HB) is a delay added after each row. Every

variable in the expression above has its own register[7]. Thus, to change the exposure

time, one would have to change the value of one or more of the registers.

2.2.2 Harmonics in square signals

Square waves are used in digital systems to signal ones and zeros. In the frequency

domain, square waves are seen as a combination of sine signals with odd harmonics

of the fundamental frequency. The fundamental frequency has the same period as the

period of the square wave. The frequency of the following harmonics increases with the

fundamental frequency for each harmonic, but since a square wave skips every other

harmonic as it consist of only the odd harmonics[10]. Higher harmonics also have a

lower amplitude. Figure 2.3 visualizes how a square wave is generated from four sine

waves, and also shows how they are calculated. The more harmonics that are included

in the square wave, the more closer to a perfect square wave it will be.

11

Figure 2.3: Square wave constructed from the first, third, fifth, and seventh harmon-
ics.

2.2.3 NUTS Backplane and module compatibility

The NUTS satellite module system consists of a backplane providing power and commu-

nication, with eight slots for the satellite’s sub modules, where two of the slots provide

master functionalities. The dimensions for the sub-module circuit boards has been set

to be 92×90 mm, with the backplane connector situated on the edge of the 90 mm side.

Every sub-module needs to be within these limits to be compatible with the backplane

and frame of the satellite. An early version of the cube satellite’s backplane with the

OBC connected can be seen in figure

Figure 2.4: Square wave constructed from the first, third, fifth, and seventh harmon-
ics.

12

The backplane with the connected modules will be fitted into an a cube with dimensions

of 10×10×20 cm. The outside of the cube frame will be fitted with solar panels on every

side except of the bottom. This gives space for the camera module to be situated on the

bottom of the cube on the end with no solar panels, so that the camera lens can peak

through the bottom.

2.2.4 Electronics in space

The difficulty with using electronics in space applications, is the exposure to hazardous

space radiation[11]. When electronic systems are hit with radiation, there is a chance

for it to trigger faults called Single Event Effects (SEE). These effects can range from a

brief voltage spike at a node, to the breakdown in the gate oxide of a transistor.

2.2.5 Bayer color filter array

Most digital image sensor consists of a grid of red green and blue colored pixels, called

a Bayer color filter array[2]. This filter array is depicted in figure 2.5. Because the

human eye is more sensitive to green light than both red and blue, the bayer array is

constructed to mimic this effect with twice as many green pixels than red and blue. This

also makes image appear less noisy with a finer detail than it would have with equal

amount of pixels for each color. A side effect is that images appear with a green tint.

This effect can be lessened, and more ”natural” colors can be produced with a concept

called color correction. The image editing software GNU Image Manipulation Program

(GIMP) provides the ability to perform manual color correction through its GUI.

Figure 2.5: Red, green and blue pixels forming a Bayer color filter array[2]

.

Chapter 3

Testing and debugging of

prototype

As mentioned in background chapter 2.1.2, a second prototype has been previously

designed, and in need of testing. More time than planned went into the debugging of the

prototype, as the problem was not discovered until internal probing of the FPGA with

the Xilinx Platform Cable USB was available. As the prototype used a lot of software

and hardware from previous students, finding the fault in the system was difficult. The

possible locations of the fault were speculated to be found in one or more of the following

parts:

• PCB pins and routing

• Image sensor

• Software running on the microblaze processor

• Sensor interface and Video DMA on the FPGA

This chapter will go through the testing and debugging process of the second prototype.

13

14

3.1 PCB and data signals

3.1.1 FPGA header pins

As mentioned in section 2.1.2, some of the chosen pins between the FPGA-w development

kit and the PCB prototype were unusable. For the prototype to function properly, these

pins had to be resoldered to usable neighbouring pins. Figure 3.1 shows the pins between

the boards.

Figure 3.1: Pin connections between the FPGA development kit header and developed
prototype board. Pins are numbered top to bottom, starting in the top right corner,

in accordance to the development kit user guide[3].

The blue and red lines show which pins are connected to the imaging sensor. The pins

that marked black are not connected to the FPGA, and can not be used as I/O. This

led to the rewiring to neighboring pins, visualized by the green wires. The resoldered

wire from pin 68 to 62 was chosen, because the pin 62 connects to a global clock buffer.

It is recommended by Xilinx to use global clock buffers on every clock, to ensure correct

timing results[12]. However, during the testing process, the pixel data signal D0 (Pin 68)

and clock signal PIXCLK (Pin 67) were mistakenly swapped. This meant that the clock

signal PIXCLK was not connected to a global clock buffer, as recommended. The Xilinx

ISE tool reports an error when a clock signal uses a regular I/O port. Since the clock

signal is only connected to the sensor interface block, it was concluded that there would

be no timing issues for the signal. If there are to be two or more blocks with this partic-

ular clock signal as input, the pin will have to be soldered to an appropriate neighboring

pin. A workaround for this was to set the constraint CLOCK DEDICATED ROUTE

to false for the clock signal. This forces the routing algorithm of the development Xilinx

ISE to ignore the clock aspects of the signal, and routes it as it would a normal signal.

Constraints are instantiated in the user constraint file (UCF) in the ISE software. The

15

constraint types used for the prototype system is I/O placement and voltage, and some

timing constraints for the clocks. This UCF can be found in appendix D

3.1.2 Power supply

As mentioned in chapter 2.1.1, the voltage regulator on the first prototype suffered from

large spikes of 200 mV peak to peak on the output. A case study on the use of the

MT9P031 image sensor in space applications, stated that the best noise performance

is achieved with a maximum peak to peak of 10 mV[13]. The second prototype was

designed with voltage regulators with a lower noise output[6]. The voltage ripple on the

2.8V power supply is shown in figure 3.2. As seen, the measured noise averaged at about

50 mV.

Figure 3.2: Image showing the ripple on the voltage supply to the image sensor.

3.1.3 Clock signals

During debugging, the clock signal was one of the speculated reasons for the system not

working properly. Figure 3.3 shows the 96 MHz clock signal from the image sensor to the

development board, as sampled by a 150MHZ digital oscilloscope . Note that the figure

shows only the AC component of signal. The DC peaks of the signal was measured to

be 1.76 V, which is within the typical value for the image sensor’s output[8]. The clock

signal was then cross-checked with a different 300MHz oscilloscope, where the signal had

an extra peak when transitioning from high to low. By looking at the theory from 2.2.2,

16

the deformed clock signals was concluded to stem from the inability of the oscilloscopes

to capture more than one or two harmonics from the signal. As square waves have only

odd harmonics, the harmonics of a square wave of 96MHz can be calculated by adding

96 MHz with 96*2 Mhz, giving the first three harmonics with frequencies of 96MHz, 288

MHz, and 480 MHz. This corresponds to the 150 MHz displaying almost a perfect sine

wave of 96 MHz, as it can’t capture the higher frequency harmonics.

Figure 3.3: Screenshot of the 96MHz clock signal from the image sensor to the devel-
opment kit.

3.2 Testing of image sensor

The testing of the image sensor were done by using the software commands listed in the

background chapter 2.1.4. Configuration of the sensor parameters worked as intended, as

the written registers gave the written value when read. When the first image capturing

test was done, the software froze during the writing of the frame. The frame capture

command was cancelled, and the memory location of the frame that was supposed to be

captured had not been written to. There were found to be two possible reasons for the

problem, either the sensor interface did not receive the correct signals, or the VDMA

block could not write the data it received to memory.

The output data and control signals from the image sensor was probed with the con-

tinuous output mode mentioned in theory chapter 2.2.1. The line and frame signals

were output with constant periods, corresponding to the datasheet. The data signals

17

where not possible to probe correctly with a 150 MHz oscilloscope for the same reasons

mentioned in chapter 3.1.3. However, it was noted that the data signals were reacting to

light changes by using a flashlight on the sensor. By changing the output of the sensor

to a test pattern, the sensor seems to output correct and clear signals, as seen in figure

3.4.

Figure 3.4: Screenshot of one of the data outputs during a test pattern output.

To find if the problem really was the image sensor or the FPGA logic, probing of the

signals inside the FPGA needed to be done. Xilinx has its own hardware tool, Chipscope,

and cable, Platform Cable USB II, to probe the internal signals of their FPGAs and

display a waveform of the probed signals[14]. The platform Cable USB II accesses the

FPGA internals via the JTAG debugging interface. The following section goes through

the aspects of the Chipscope debugging.

3.3 Chipscope debugging

The Xilinx ISE tool provides software for easy use of the Chipscope tool. It works by

automatically inserting cores to the design, and the user only needs to choose which

signals to sample[14]. With the use of Chipscope, it was immediately discovered that

no data was sent between the sensor interface block VDMA blocks, seen in figure 2.2.

The signals to the sensor interface was then probed with the Chipscope tool, were the

problem was discovered. During the re-soldering of the prototype board pins in chapter

3.1.1, the data signal D0 and the clock signal PIXCLK had been mistakenly swapped in

18

the UCF. This means that the sensor interface block had a non-clock signal as a clock

input. With this problem fixed, the prototype managed to capture images.

3.4 Exposure and lens adjustment

To get the best quality on captured images, the exposure time has to be adjusted so that

no part of the images are too dark or too bright. The lens on the camera also needs to

be adjusted in order to get the correct focus of the scenery to be imaged. Both the lens

and exposure time were adjusted by trial and error. The exposure time can be changed

by changing one or more of the variables in equation 2.1.

With the default settings of the camera, images in normal daylight produce a fully blank

image, meaning the exposure time has to be decreased. By using the equation, we can

decrease the exposure time by either decreasing SW and/or tROW, or increasing SO

and/or tPIXCLK. tPIXCLK is already at its maximum speed of 96MHz and therefore

can’t be increased more. tROW can only be decreased by decreasing the width W, as

HB and Row Bin can only be increased from the default values. Shrinking the width of

the image is not an option, as the largest resolution possible is wanted. This leaves the

options of either decreasing SW, and/or increasing SD. It was decided to only adjust

the SW, as it had a large enough interval to influence the, and to only have to write one

register between each try.

Figures 3.5 through 3.7 shows images taken with three different values for SW, resulting

in three different exposure times. Note that the images are of lower quality, because

the image download command from chapter 2.1.4 were run with the argument for bit

skipping This was done so that the images could be captured and downloaded one by

one with a faster download speed, and more easily compared together instead of waiting

for the full quality images. As mentioned in chapter 2.2.1, the image sensor uses RGB

Bayer output gives images a green tint. By using equation 2.1 and the default values,

found in the datasheet of the sensor[8], for every variable except SW, we end up with

equation 3.1.

EXP = SW × 36.8s− 2219.46ns (3.1)

19

Figure 3.5: Image captured with a SW of

50

Figure 3.6: Image captured with a SW of

30

Figure 3.7: Image captured with a SW of

20

Using the above equation the resulting exposure time for figures 3.5 through 3.7 are

1.838 ms, 1.1 ms, and 0.734 ms respectively. The differences between these exposure

times are clearly visible in the images. Withe the exposure time of 1.1 ms giving the

best results in normal daylight.

Chapter 4

Further development

Previous prototypes have only consisted of an image sensor with power supply connected

to an FPGA development kit. The next iteration of the prototype will be a complete

design containing all the parts of the module on a single PCB. This chapter focuses on

furthering the development of the camera prototype. Initially, this thesis was planned

to contain the full schematic design of a new prototype. However, because more time

than planned was spent debugging and testing the previous prototype, it was decided

to make design choices for the new prototype without detailed schematic design. This

chapter describes the design choices made for the next iteration of the camera payload

prototype, in accordance to the requirements and tasks of the camera module.

4.1 Requirements

To give a good overview of the requirements and implementations for every module

of the NUTS satellite, a standardized requirement and design implementation lists has

been established. This makes it easy for every project member to check what the other

modules are required to do, and how they are to be solved. It is also useful when

making design choices that depend on other modules, for example choosing components

for receiving and sending information via the backplane. The set requirements for the

camera module can be seen in table 4.1.

The syntax of the requirement list consists of four different codes. R0X states which

system-level the requirement refers to, which in the case of the camera module is R05:

20

21

Test the payload camera. The second code, CAM, refers to which module the require-

ment is entrusted. The third code refers to which main requirement is addressed, for

example CPR for compression of images requirements. The last code consisting of only

numbers, states the number of the sub-requirement of the given main requirement.

Table 4.1: Functional requirements of the camera module

ID CAM = Camera Specification

R05-CAM-COM-001
COM = Internal Communication Bus
Must be able to communicate with the other sub systems using the backplane

R05-CAM-COM-002 Must be able to capture image on request

R05-CAM-COM-003 Must be able to send images to the OBC on request

R05-CAM-COM-004 Must be able to change image sensor parameters on request

R05-CAM-CPR-001
CPR = Compression of images
Must to be able to read images from the image sensor and compress them to reduce file size

R05-CAM-CPR-002 Must be able to produce thumbnails

R05-CAM-CPR-003 Must be able to produce histograms of pixel values

R05-CAM-CPR-004 Must be able to detect and not process unwanted images (Pictures of space or the sun)

R05-CAM-CPR-005 Must be able to make gamma corrections on captured images

R05-CAM-IMG-001
IMG = Storing of images
Must be able to store compressed images to local memory

R05-CAM-IMG-002 Must be able to retrieve images from local memory

R05-CAM-REP-001
REP = Reprogramming
The compression logic should be able to be reprogramed in flight

As seen in the table, the module has four main requirements, along with some sub

requirements. The first requirement, Internal Communication Bus (COM), refers to the

subsystems communication to the OBC via the backplane. The compression of images

(CPR) requirements tells us how the module has to handle compression of captured

images. The last two requirements, Storing of images and reprogramming, tells us that

images are to be stored on the camera module, and that the module has to be designed

so that it can be reprogrammed.

4.2 Camera subsystem design overview

By following the given requirements for the subsystem, a complete block schematic of

the module has been proposed, and can be seen in figure 4.1. The following sections

will go through every part of the figure, and explain how they will fulfill requirements,

as well as component and design choices made for the next iteration of the prototype.

22

Figure 4.1: Overview of the NUTS camera module system.

4.3 Microcontroller

The purpose of the microcontroller (MCU) in the camera module, is to carry out orders

received from the OBC via the backplane. It is meant to fulfill the internal communica-

tion bus requirements listed in chapter 4.1. There were several reasons for the decision

to use a separate MCU for communication instead of only using the FPGA. One reason

was that the payload module will, for the most parts of the satellites lifespan, stay idle.

This can be utilized by using a MCU with very efficient sleep mode to save power, while

the FPGA can be powered off when not in use. Another reason was that the satellite

communicates between modules via the CAN bus interface. As software for communi-

cation over the CAN bus will be developed for the OBC, a lot of time will be saved on

reusing previously developed code. In addition, it also negates the need to implement

the CAN logic on the FPGA.

4.3.1 Required MCU software

The MCU needs to handle all requests from the OBC. The main functions this entails

are the following

23

Write sensor register: Send a write command with register and value to the FPGA

I2C interface.

Configure FPGA: Read the image file from the flash memory, then transfer it to the

FPGA for configuring. The Slave Serial configuration mode in figure 4.2 (a) is

suggested to be implemented, as it requires few pins to operate, and will most

likely not need the speedup of using parallel bins as in (c) in the same figure.

Send file to OBC: Read image or histogram file from flash memory, then transfer it

to the OBC.

Automatic exposure time adjustment: Initiate a series of image captures with his-

tograms. Configure the exposure time according to the histogram data.

4.3.2 MCU characteristics and suggestion

The MCU has no special requirements needed to perform its tasks. The software is

will mainly be relaying data between the OBC and the camera module’s flash memory

and FPGA. This means that it does not need to have a very high storage room for

application data. Although the MCU will be used to transfer large image files, and a

possible large FPGA configuration file. Therefore, the chosen MCU needs more than low

end operating frequency to faster boot the FPGA and to not occupy the CAN bus on

the backplane. When the camera module is not capturing or processing image data, the

MCU will go to sleep mode. The AT32UC3C MCU is planned to be used on the OBC

of the NUTS satellite, and will therefore also be suggested for the camera module, for

the benefits of reusable software. Because of these reasons, the suggestion of MCU will

be decided by evaluating sleep efficiency mode, operating frequency, and reusability of

code previously developed by the NUTS project. Table 4.2 below shows three suggested

MCUs. The suggested MCUs and characteristics are taken from previous work by the

NUTS project, where the choice for the OBC MCU were made[15].

Table 4.2: Comparison for suggested MCUs

Characteristics MSP430 AT32UC3C SAML21

Frequency [MHz] 24 66 48

Power consumption sleep [mA] 0.32−285 31−100 1.2−185.5

reusable NUTS software No Yes No

24

The only downside with the AT32UC3C is the lower end of the power consumption. It

has however a lower upper end of power consumption, meaning it can still potentially

outperform the other two. Additionally, a report done by NASA states overly stringent

requirements can complicate software. There is no reason to set very strict constraints

on the sleep power consumption, as it will be the only current drain on the module when

the module is idling. As long as it is moderately low, it will have little impact on the

total current drain of the satellite. With the higher frequency and the reusable software,

the AT32UC3C is clearly the best suggestion.

4.4 FPGA logic

The FPGA on the next iteration of the prototype will have the same tasks as on the

current prototype, as well as some additional ones. The main tasks are capturing,

compressing, and writing image files to memory. In addition to this, it will need a

configuration interface from the MCU for programming purposes. The choice of FPGA,

will not be discussed in this thesis, as another member of the NUTS project is discussing

the decision.

4.4.1 Compression logic

The compressing logic is the main task for the camera module FPGA. The captured

images will be compressed to the JPEG2000 image format. This format is used for

its ability to retain image quality despite for bit errors[5]. In addition to compressing

images, it will also perform gamma adjustment, color transformation, and histogram

computation. The histogram will be used to show the pixel values. This is useful to know

when the camera is pointing toward empty space or the sun, as all the values will be either

white or black. By only transferring the histogram file, precious satellite bandwidth is

saved from useless black or white pictures. The compression logic is currently being

worked on by another student from the NUTS project.

25

4.4.2 Capturing and storing logic

Until now, Xilinx logiCORE blocks have been used to capture image data and store it.

Even if a Xilinx FPGA will be used or not on the next prototype, a custom capture

and storing logic should be implemented in hardware. The Xilinx blocks are all purpose

blocks and more customizable. Specialize custom made blocks can be made smaller,

and possibly to consume less power as well. Some register should be included between

the capturing interface and the compression logic, so that the external memory is not

needed during compression. This is, however, dependant on the available space on the

FPGA.

4.4.3 I2C interface

The I2C interface needs to be ported from software to the FPGA. As there should not be

a soft-processor running on the FPGA. The commands for configuring the image sensor

will be sent from the MCU to the FPGA, and can be sent directly to the I2C block for

immediate write to the image sensor.

4.4.4 Configuration interface

he MCU will also be used to configure the FPGA. As discussed later in chapter 4.7, the

USB programming and debugging block will not be included in the final iteration of the

prototype. Because FPGAs lose their configuration after being powered down, they need

some external memory to boot from, or a a processor or MCU to write the configuration

to the FPGA. Using the Spartan 6 FPGA from the prototype development kit as an

example, it can be programmed in three different modes by a processor or MCU. Either

slave serial mode, JTAG, or slave SelectMAP mode[16]. The setup for these configuration

modes can be seen in figure 4.2. If the FPGA were to be configured to read from the

memory as a master, a separate ROM chip or an SPI Serial flash interface between the

FPGA and flash memory would have to be added to the system, as noted in the Spartan

6 user guide[16].

To choice of which of the three configuration modes above, is dependent on the on the

size of the configuration file, and available pins on the MCU and FPGA. For simplicity,

26

Figure 4.2: Setup for the configuration modes for the Spartan 6 FPGA, with the
FPGA as slave.

and to save PCB area and I/O pins on both the MCU and FPGA, the slave serial

mode should be chosen. If, on the other hand, the configuration file is very large, the

SelectMAP can be considered for parallel data bus instead of serial. This is however

unlikely, as the size of the bit file for prototype design is at only 1.6 MB. With the

configuration clock (CCLK) of up to 80 MHz on the Spartan 6, transferring 1.6 MB will

only take about 20 ms. Even though the configuration file for the full design will be

larger, it will most likely still be sufficient with the serial interface.

4.5 Flash memory

Flash memory were chosen over other types of non-volatile memories such as EPROM

and EEPROM, because of the need of large storage capacity for the image files. They are

also shock-resistant and power-economic, which are important characteristics for space

applications[17]. The MUX in figure 4.1 is needed to prevent simultaneous reads and

writes between the MCU and FPGA.

The main task for the flash memory, is to store captured images before, during, and

after compression. This fulfills the two requirements concerning storing of images. In

addition to these two requirements, it will also be used in reprogramming of the FPGA,

which is the last point on the requirement list in table 4.1. There are two reasons for

27

having the possibility of reprogramming the FPGA logic after launch. The first reason

being having the ability to modify the FPGA logic, either to add other functionalities,

or to improve on the existing logic in regards to resources or speed. The second, and

most likely scenario for the use of FPGA logic reprogramming, is in cases of logic faults,

either from an undiscovered bug, or from bit flips as caused by cosmic radiation, as

mentioned in section 2.2.4 .

For the flash memory, SD-Card is recommended. This is mainly because of the easy to

use SPI interface. More research has to be done to estimate how reliable it performs in

space environment.

4.6 Power sequencers

As seen on figure 4.1, two power sequencers are needed on the camera module; one for

the FPGA, and one for the image sensor. The power sequencer for the image sensor is

present on the second prototype. The output ripple from the sequencer, as mentioned

in chapter 3.1.2, has a peak to peak value of 50 mV, while a case study recommends a

maximum of 10 mV peak to peak for best noise performance[13]. However, as discussed

in the result chapter 5, no noise was present in the captured images. This means it is

not necessary to modify the power sequencer, unless it is very certain that a possible

modification can decrease the ripple effect. The power sequencer to the FPGA switch

connected to the backplane, which will be triggered by the MCU.

4.7 Debugging interface

The USB UART + USB FIFO block is there to serve as a high-speed link for debug

purposes. In addition to the USB interface, if a Xilinx FPGA is chosen for the next

prototype, a JTAG interface should be added in addition to the USB interface. This

gives access to the valuable debugging properties of the Chipscope tool, as is evident in

section 3.3.

The FT2232H Dial high Speed USB to Multipurpose UART/FIFO integrated circuit,

which was used on the prototype development board[3], is perfect for the debugging

interface, as it provides two separate channels which can be configured to nine different

28

types of communication interfaces[18]. This gives a good opportunity to use both USB

UART, USB FIFO and JTAG.

Chapter 5

Results and Discussion

5.1 Second prototype results

The second prototype succeeded its goal of noise free images with the normal operating

speed of 96 MHz. Figure 5.1 shows a full quality and color corrected image captured by

the prototype. The color correction was necessary because of the Bayer color array of

the image sensor, and was done manually through the GIMP software. Comparing the

white parts of this figure, and the figures in chapters 3.4 and 2.1.1, it can be seen that the

brightness noise that was present in the first prototype has been eliminated. The ripple

voltage on the image sensor’s power supply has been decreased by 75% from 200 mV on

the first prototype to 50mV on the second. The high ripple noise of the first prototype

might have been the source of the brightness noise, but was not confirmed. It is a

possible source of the issue, therefore future prototypes should keep the ripple at 50 mV

or less. The length matching of the data wires on the second prototype design[6] should

also be kept on further installments. This should be done to mitigate complication that

may occur with high frequency layout that was discussed in the paper for the design of

the second prototype.

With the brightness noise gone, the MT9P031 image sensor has been proved to be able

to capture clear high resolution images with a custom designed PCB interface. Some

dark spots on the upper right side of images appeared on every captured image, and can

be seen in figure 5.1. These spots were most likely some dust stuck under the lens, or

29

30

in worst case the image sensor has been damaged. Either way, it should disappear by

cleaning under the lens or changing to a new sensor chip.

Figure 5.1: Color corrected image captured by the second prototype.

5.2 Development discussion

The AT32UC3C MCU has been proposed to be used on the camera module because of

its reusable code from the OBC, as well as its potential for low power sleep mode and

goof clock speed. The main software functions needed to be implemented on the OBC

has also been listed.

For the FPGA, the main logic blocks functionalities needed for have been explained.

The slave serial configuration mode for the FPGA has been suggested to use, because of

it simple needs of only two pins. This frees up MCU pins for other uses, as well as lessens

the amount of traces needed on the. However, this is only applicable if the Spartan 6

FPGA is chosen to use, or the other chosen FPGA has the same configuration mode.

31

SD-card flash memory was suggested as external memory because of its simplicity. Fur-

ther research should be done on the use of SD-card in space environment to confirm that

it is usable for the intended purpose.

As mentioned in above in the prototype testing results, the power sequencer should only

be changed if it is with utmost certainty that the new regulator can provide less than

50 mV peak to peak ripple. Worsening the ripple may bring back the brightness noise

issues if the power supply was the cause.

For the debugging interface, the FT23232H is a excellent candidate to handle the debug-

ging interface because of the possibility to configure it to multiple different interfaces. It

is important to implement the JTAG interface if a Xilinx FPGA is to be used, to enable

the internal debugging with Chipscope.

Chapter 6

Conclusion

During the course of this project, the previously developed camera prototype has been

debuged and tested. This needed to be done to be able to confirm whether or not the

chosen image sensor, MT9P031, was a valid candidate or not for the NUTS camera

module. Through tedious debugging without much success, the problem was ultimately

found when the Chipscope tools were available. The tests could then be issued on the

camera prototype. By adjusting for exposure and using a color correction tool, a high

resolution, noiseless image was produced. This allows for the image sensor to be part of

further on the NUTS camera module.

The setup and suggestion for the next iteration helps the next iteration of the prototype

to be developed. This was done instead of fully developing the next prototype, becuase

of the time drain from debugging the previous prototype. The suggestions made provides

basic knowledge of how the whole system is inteded to be developed.

6.1 Future work

None of the modules on the NUTS satellite are completely finished, so there is always

more work to be done for the next students on the project. Further work needed to

be done on the camera module can be divided into three main parts; Designing the

full PCB, implementing the software for the MCU on the module, and develop the full

hardware logic needed for the FPGA.

32

Appendix A

Terminal logger

This software is used to log incoming image data through the USB. The QT toolkit

software is used to run this code.

#include <QtSerialPort/QSerialPort >

#include <QTextStream >

#include <QCoreApplication >

#include <QStringList >

#include <QFile >

QT_USE_NAMESPACE

#define PROGRESS_DOT_INTERVAL 16*1024

#define PROGRESS_TEXT_INTERVAL PROGRESS_DOT_INTERVAL *64

int main(int argc , char *argv [])

{

QCoreApplication coreApplication(argc , argv);

int argumentCount = QCoreApplication :: arguments ().size();

QStringList argumentList = QCoreApplication :: arguments ();

QTextStream standardout(stdout);

if (argumentCount != 5) {

standardout << QString("Usage: %1 <serialportname > <baudrate > <

scriptfile > <logfilename >").arg(argumentList.first()) << endl;

return 1;

}

QSerialPort serialPort;

QString serialPortName = argumentList.at(1);

serialPort.setPortName(serialPortName);

33

34

int serialPortBaudRate = argumentList.at(2).toInt ();

serialPort.setBaudRate(serialPortBaudRate);

// open files used for input and output , as well as the serial port

QString scriptFileName = argumentList.at(3);

QFile scriptFile(scriptFileName);

if (! scriptFile.open(QIODevice :: ReadOnly)) {

standardout << QString("Failed to open script file for reading:

%1").arg(scriptFile.errorString ()) << endl;

return 1;

}

QByteArray script = scriptFile.readAll ();

QString logFileName = argumentList.at(4);

QFile logFile(logFileName);

if (! logFile.open(QIODevice :: WriteOnly)) {

standardout << QString("Failed to open log file for writing: %1")

.arg(logFile.errorString ()) << endl;

return 1;

}

QDataStream logStream (& logFile);

if (! serialPort.open(QIODevice :: ReadWrite)) {

standardout << QString("Failed to open port %1: %2").arg(

serialPortName).arg(serialPort.errorString ()) << endl;

return 1;

}

// send the input data , then log all output to file

standardout << "Executing script:" << endl << script << endl;

serialPort.write(script);

QByteArray readData = serialPort.readAll ();

int lastProgressDot = 0;

int lastProgressText = 0;

while (serialPort.waitForReadyRead (250)) {

readData.append(serialPort.readAll ());

int nowsize = readData.size();

if (nowsize > lastProgressDot + PROGRESS_DOT_INTERVAL) {

standardout << ’.’ << flush;

lastProgressDot += PROGRESS_DOT_INTERVAL;

}

if (nowsize > lastProgressText + PROGRESS_TEXT_INTERVAL) {

standardout << " " << lastProgressDot /1024 << "K" << endl

<< flush;

lastProgressText += PROGRESS_TEXT_INTERVAL;

}

35

}

standardout << endl;

if (serialPort.error () == QSerialPort :: ReadError) {

standardout << QString("Failed to read from port %1: %2").arg(

serialPortName).arg(serialPort.errorString ()) << endl;

return 1;

} else if (serialPort.error() == QSerialPort :: TimeoutError && readData.

isEmpty ()) {

standardout << QString("No data was received").arg(serialPortName

) << endl;

return 1;

}

standardout << QString("Total: %1 bytes received and saved to %2.").arg(

readData.size()).arg(logFileName) << endl;

logStream.writeBytes(readData.constData (), readData.size());

standardout << ’\a’; // ring system bell

return 0;

}

Appendix B

Extract image data

import os, sys

from datetime import datetime

from struct import *

from array import array

import numpy as np

from netpbmfile import imsave

from raw2ppm import raw2ppm

if len(sys.argv) < 2:

print ’Not enough arguments. Specify log file name.’

sys.exit()

if not os.path.isfile(sys.argv [1]):

print ’Log file not found’

sys.exit()

logfilename = sys.argv [1]

fdata = open(logfilename , "rb").read()

start = fdata.find(’####’)

end = fdata.find(’****’)

if start == -1 or end == -1:

print ’Could not find start or end marker for size’

sys.exit()

start = start +4 # skip leading ####

parameters = fdata[start:end].split(’:’) # split parameters separated by :

if len(parameters) != 3:

print ’Not 3 parameters: ’ + str(parameters)

sys.exit()

address = parameters [0]. lower ()

36

37

sizestr = parameters [1]. lower ()

skipstr = parameters [2]. lower ()

size = int(sizestr , 16)

skip = int(skipstr , 16)

start = end+4

end = start + size

data = fdata[start:end]

filename = datetime.now().strftime(’%Y-%m-%dT%H-%M-%S.%f’) + ’ ’+ address +’-’ +

sizestr + ’.dat’

udata = array("H")

udata.fromstring(data)

npdata = np.array(udata , dtype=np.uint16)

#np. set_printoptions (edgeitems = 5)

print npdata.shape

npdata = npdata.reshape ((1944/ skip ,-1))

print npdata.shape

print npdata

imsave(filename + ’.pgm’, npdata , maxval =2**12 -1)

npdata.tofile(open(filename , ’wb’))

raw2ppm(filename + ’.pgm’, filename + ’.ppm’)

Appendix C

Xilinx logiCORE IP code

##

Created by Base System Builder Wizard for Xilinx EDK 14.5 Build EDK_P .58f

Fri Oct 10 23:37:56 2014

Target Board: Numato Lab Saturn_LX45 Rev 3.0

Family: spartan6

Device: xc6slx45

Package: csg324

Speed Grade: -2

##

PARAMETER VERSION = 2.1.0

PORT rzq = rzq , DIR = IO

PORT mcbx_dram_we_n = mcbx_dram_we_n , DIR = O

PORT mcbx_dram_udqs = mcbx_dram_udqs , DIR = IO

PORT mcbx_dram_udm = mcbx_dram_udm , DIR = O

PORT mcbx_dram_ras_n = mcbx_dram_ras_n , DIR = O

PORT mcbx_dram_ldm = mcbx_dram_ldm , DIR = O

PORT mcbx_dram_dqs = mcbx_dram_dqs , DIR = IO

PORT mcbx_dram_dq = mcbx_dram_dq , DIR = IO, VEC = [15:0]

PORT mcbx_dram_clk_n = mcbx_dram_clk_n , DIR = O, SIGIS = CLK

PORT mcbx_dram_clk = mcbx_dram_clk , DIR = O, SIGIS = CLK

PORT mcbx_dram_cke = mcbx_dram_cke , DIR = O

PORT mcbx_dram_cas_n = mcbx_dram_cas_n , DIR = O

PORT mcbx_dram_ba = mcbx_dram_ba , DIR = O, VEC = [1:0]

PORT mcbx_dram_addr = mcbx_dram_addr , DIR = O, VEC = [12:0]

PORT RESET = RESET , DIR = I, SIGIS = RST , RST_POLARITY = 1

PORT FT2232_UART_SOUT = FT2232_UART_SOUT , DIR = O

PORT FT2232_UART_SIN = FT2232_UART_SIN , DIR = I

PORT CLK_100MHZ = CLK_100MHZ , DIR = I, SIGIS = CLK , CLK_FREQ = 100000000

PORT sensor_pixclk = v_vid_in_axi4s_0_vid_in_clk , DIR = I, SIGIS = CLK

38

39

PORT sensor_de = v_vid_in_axi4s_0_vid_de , DIR = I

PORT sensor_vblank = v_vid_in_axi4s_0_vid_vblank , DIR = I

PORT sensor_hblank = v_vid_in_axi4s_0_vid_hblank , DIR = I

PORT sensor_data = v_vid_in_axi4s_0_vid_data , DIR = I, VEC = [11:0]

PORT sensor_extclk = clock_generator_0_CLKOUT3 , DIR = O, SIGIS = CLK , CLK_FREQ =

96000000

PORT axi_spi_0_SCK_pin = axi_spi_0_SCK , DIR = IO

PORT axi_spi_0_MISO_pin = axi_spi_0_MISO , DIR = IO

PORT axi_spi_0_MOSI_pin = axi_spi_0_MOSI , DIR = IO

PORT axi_spi_0_SS_pin = axi_spi_0_SS , DIR = IO

PORT iic_gpo = axi_iic_0_Gpo , DIR = O, VEC = [7:0]

PORT iic_sda = axi_iic_0_Sda , DIR = IO

PORT iic_scl = axi_iic_0_Scl , DIR = IO

BEGIN proc_sys_reset

PARAMETER INSTANCE = proc_sys_reset_0

PARAMETER HW_VER = 3.00.a

PARAMETER C_EXT_RESET_HIGH = 1

PORT MB_Debug_Sys_Rst = proc_sys_reset_0_MB_Debug_Sys_Rst

PORT Dcm_locked = proc_sys_reset_0_Dcm_locked

PORT MB_Reset = proc_sys_reset_0_MB_Reset

PORT Slowest_sync_clk = clk_100_0000MHzPLL0

PORT Interconnect_aresetn = proc_sys_reset_0_Interconnect_aresetn

PORT Ext_Reset_In = RESET

PORT BUS_STRUCT_RESET = proc_sys_reset_0_BUS_STRUCT_RESET

PORT Peripheral_aresetn = proc_sys_reset_0_Peripheral_aresetn

PORT Peripheral_Reset = proc_sys_reset_0_Peripheral_Reset

END

BEGIN lmb_v10

PARAMETER INSTANCE = microblaze_0_ilmb

PARAMETER HW_VER = 2.00.b

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT LMB_CLK = clk_100_0000MHzPLL0

END

BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = microblaze_0_i_bram_ctrl

PARAMETER HW_VER = 3.10.c

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00001fff

BUS_INTERFACE SLMB = microblaze_0_ilmb

BUS_INTERFACE BRAM_PORT = microblaze_0_i_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN lmb_v10

PARAMETER INSTANCE = microblaze_0_dlmb

40

PARAMETER HW_VER = 2.00.b

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT LMB_CLK = clk_100_0000MHzPLL0

END

BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = microblaze_0_d_bram_ctrl

PARAMETER HW_VER = 3.10.c

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00001fff

BUS_INTERFACE SLMB = microblaze_0_dlmb

BUS_INTERFACE BRAM_PORT = microblaze_0_d_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN bram_block

PARAMETER INSTANCE = microblaze_0_bram_block

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = microblaze_0_i_bram_ctrl_2_microblaze_0_bram_block

BUS_INTERFACE PORTB = microblaze_0_d_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN microblaze

PARAMETER INSTANCE = microblaze_0

PARAMETER HW_VER = 8.50.a

PARAMETER C_INTERCONNECT = 2

PARAMETER C_USE_BARREL = 1

PARAMETER C_USE_FPU = 1

PARAMETER C_DEBUG_ENABLED = 1

PARAMETER C_ICACHE_BASEADDR = 0xa4000000

PARAMETER C_ICACHE_HIGHADDR = 0xa7ffffff

PARAMETER C_USE_ICACHE = 1

PARAMETER C_CACHE_BYTE_SIZE = 8192

PARAMETER C_ICACHE_ALWAYS_USED = 1

PARAMETER C_DCACHE_BASEADDR = 0xa4000000

PARAMETER C_DCACHE_HIGHADDR = 0xa7ffffff

PARAMETER C_USE_DCACHE = 1

PARAMETER C_DCACHE_BYTE_SIZE = 8192

PARAMETER C_DCACHE_ALWAYS_USED = 1

BUS_INTERFACE ILMB = microblaze_0_ilmb

BUS_INTERFACE DLMB = microblaze_0_dlmb

BUS_INTERFACE M_AXI_DP = axi4lite_0

BUS_INTERFACE M_AXI_DC = axi4_0

BUS_INTERFACE M_AXI_IC = axi4_0

BUS_INTERFACE DEBUG = microblaze_0_debug

PORT MB_RESET = proc_sys_reset_0_MB_Reset

PORT CLK = clk_100_0000MHzPLL0

END

41

BEGIN mdm

PARAMETER INSTANCE = debug_module

PARAMETER HW_VER = 2.10.a

PARAMETER C_INTERCONNECT = 2

PARAMETER C_USE_UART = 1

PARAMETER C_BASEADDR = 0x41400000

PARAMETER C_HIGHADDR = 0x4140ffff

BUS_INTERFACE S_AXI = axi4lite_0

BUS_INTERFACE MBDEBUG_0 = microblaze_0_debug

PORT Debug_SYS_Rst = proc_sys_reset_0_MB_Debug_Sys_Rst

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

END

BEGIN clock_generator

PARAMETER INSTANCE = clock_generator_0

PARAMETER HW_VER = 4.03.a

PARAMETER C_CLKIN_FREQ = 100000000

PARAMETER C_CLKOUT0_FREQ = 400000000

PARAMETER C_CLKOUT0_GROUP = PLL0

PARAMETER C_CLKOUT0_BUF = FALSE

PARAMETER C_CLKOUT1_FREQ = 400000000

PARAMETER C_CLKOUT1_PHASE = 180

PARAMETER C_CLKOUT1_GROUP = PLL0

PARAMETER C_CLKOUT1_BUF = FALSE

PARAMETER C_CLKOUT2_FREQ = 100000000

PARAMETER C_CLKOUT2_GROUP = PLL0

PARAMETER C_CLKOUT3_FREQ = 48000000

PARAMETER C_CLKOUT3_BUF = TRUE

PORT LOCKED = proc_sys_reset_0_Dcm_locked

PORT CLKOUT2 = clk_100_0000MHzPLL0

PORT RST = RESET

PORT CLKOUT0 = clk_400_0000MHzPLL0_nobuf

PORT CLKOUT1 = clk_400_0000MHz180PLL0_nobuf

PORT CLKIN = CLK_100MHZ

PORT CLKOUT3 = clock_generator_0_CLKOUT3

END

BEGIN axi_interconnect

PARAMETER INSTANCE = axi4lite_0

PARAMETER HW_VER = 1.06.a

PARAMETER C_INTERCONNECT_CONNECTIVITY_MODE = 0

PORT INTERCONNECT_ARESETN = proc_sys_reset_0_Interconnect_aresetn

PORT INTERCONNECT_ACLK = clk_100_0000MHzPLL0

END

BEGIN axi_interconnect

PARAMETER INSTANCE = axi4_0

PARAMETER HW_VER = 1.06.a

42

PORT interconnect_aclk = clk_100_0000MHzPLL0

PORT INTERCONNECT_ARESETN = proc_sys_reset_0_Interconnect_aresetn

END

BEGIN axi_s6_ddrx

PARAMETER INSTANCE = LPDDR

PARAMETER HW_VER = 1.06.a

PARAMETER C_MCB_RZQ_LOC = N4

PARAMETER C_MCB_ZIO_LOC = NOT_SET

PARAMETER C_MEM_TYPE = MDDR

PARAMETER C_MEM_PARTNO = MT46H32M16XXXX -5

PARAMETER C_MEM_BANKADDR_WIDTH = 2

PARAMETER C_MEM_NUM_COL_BITS = 10

PARAMETER C_SKIP_IN_TERM_CAL = 1

PARAMETER C_S0_AXI_ENABLE = 1

PARAMETER C_INTERCONNECT_S0_AXI_MASTERS = microblaze_0.M_AXI_DC & microblaze_0.

M_AXI_IC & axi_vdma_0.M_AXI_S2MM

PARAMETER C_MEM_DDR2_RTT = 50OHMS

PARAMETER C_S0_AXI_STRICT_COHERENCY = 0

PARAMETER C_INTERCONNECT_S0_AXI_AW_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_AR_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_W_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_R_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_B_REGISTER = 8

PARAMETER C_S0_AXI_BASEADDR = 0xa4000000

PARAMETER C_S0_AXI_HIGHADDR = 0xa7ffffff

BUS_INTERFACE S0_AXI = axi4_0

PORT rzq = rzq

PORT s0_axi_aclk = clk_100_0000MHzPLL0

PORT ui_clk = clk_100_0000MHzPLL0

PORT mcbx_dram_we_n = mcbx_dram_we_n

PORT mcbx_dram_udqs = mcbx_dram_udqs

PORT mcbx_dram_udm = mcbx_dram_udm

PORT mcbx_dram_ras_n = mcbx_dram_ras_n

PORT mcbx_dram_ldm = mcbx_dram_ldm

PORT mcbx_dram_dqs = mcbx_dram_dqs

PORT mcbx_dram_dq = mcbx_dram_dq

PORT mcbx_dram_clk_n = mcbx_dram_clk_n

PORT mcbx_dram_clk = mcbx_dram_clk

PORT mcbx_dram_cke = mcbx_dram_cke

PORT mcbx_dram_cas_n = mcbx_dram_cas_n

PORT mcbx_dram_ba = mcbx_dram_ba

PORT mcbx_dram_addr = mcbx_dram_addr

PORT sysclk_2x = clk_400_0000MHzPLL0_nobuf

PORT sysclk_2x_180 = clk_400_0000MHz180PLL0_nobuf

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT PLL_LOCK = proc_sys_reset_0_Dcm_locked

END

43

BEGIN axi_uartlite

PARAMETER INSTANCE = FT2232_UART

PARAMETER HW_VER = 1.02.a

PARAMETER C_BAUDRATE = 921600

PARAMETER C_DATA_BITS = 8

PARAMETER C_USE_PARITY = 0

PARAMETER C_ODD_PARITY = 1

PARAMETER C_BASEADDR = 0x40600000

PARAMETER C_HIGHADDR = 0x4060ffff

BUS_INTERFACE S_AXI = axi4lite_0

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

PORT TX = FT2232_UART_SOUT

PORT RX = FT2232_UART_SIN

END

BEGIN v_vid_in_axi4s

PARAMETER INSTANCE = v_vid_in_axi4s_0

PARAMETER HW_VER = 2.01.a

PARAMETER C_M_AXIS_VIDEO_DATA_WIDTH = 12

PARAMETER C_M_AXIS_VIDEO_FORMAT = 12

PARAMETER RAM_ADDR_BITS = 5

PARAMETER HYSTERESIS_LEVEL = 8

BUS_INTERFACE M_AXIS_VIDEO = v_vid_in_axi4s_0_M_AXIS_VIDEO

PORT aclk = clk_100_0000MHzPLL0

PORT vid_in_clk = v_vid_in_axi4s_0_vid_in_clk

PORT rst = proc_sys_reset_0_Peripheral_Reset

PORT aresetn = proc_sys_reset_0_Peripheral_aresetn

PORT vid_data = v_vid_in_axi4s_0_vid_data

PORT aclken = net_vcc

PORT axis_enable = net_vcc

PORT vid_de = v_vid_in_axi4s_0_vid_de

PORT vid_vblank = v_vid_in_axi4s_0_vid_vblank

PORT vid_hblank = v_vid_in_axi4s_0_vid_hblank

END

BEGIN axi_vdma

PARAMETER INSTANCE = axi_vdma_0

PARAMETER HW_VER = 5.04.a

PARAMETER C_NUM_FSTORES = 1

PARAMETER C_DYNAMIC_RESOLUTION = 0

PARAMETER C_INCLUDE_MM2S = 0

PARAMETER C_S_AXIS_S2MM_TDATA_WIDTH = 16

PARAMETER C_S2MM_MAX_BURST_LENGTH = 16

PARAMETER C_ENABLE_VIDPRMTR_READS = 1

PARAMETER C_BASEADDR = 0x7e200000

PARAMETER C_HIGHADDR = 0x7e20ffff

PARAMETER C_S2MM_LINEBUFFER_DEPTH = 128

44

PARAMETER C_INCLUDE_S2MM_DRE = 1

BUS_INTERFACE S_AXI_LITE = axi4lite_0

BUS_INTERFACE M_AXI_S2MM = axi4_0

BUS_INTERFACE S_AXIS_S2MM = v_vid_in_axi4s_0_M_AXIS_VIDEO

PORT s_axi_lite_aclk = clk_100_0000MHzPLL0

PORT m_axi_s2mm_aclk = clk_100_0000MHzPLL0

PORT s_axis_s2mm_aclk = clk_100_0000MHzPLL0

END

BEGIN axi_spi

PARAMETER INSTANCE = axi_spi_0

PARAMETER HW_VER = 1.02.a

PARAMETER C_FIFO_EXIST = 0

PARAMETER C_SCK_RATIO = 2

PARAMETER C_BASEADDR = 0x40a00000

PARAMETER C_HIGHADDR = 0x40a0ffff

BUS_INTERFACE S_AXI = axi4lite_0

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

PORT SCK = axi_spi_0_SCK

PORT MISO = axi_spi_0_MISO

PORT MOSI = axi_spi_0_MOSI

PORT SS = axi_spi_0_SS

END

BEGIN axi_iic

PARAMETER INSTANCE = axi_iic_0

PARAMETER HW_VER = 1.02.a

PARAMETER C_GPO_WIDTH = 8

PARAMETER C_BASEADDR = 0x40800000

PARAMETER C_HIGHADDR = 0x4080ffff

BUS_INTERFACE S_AXI = axi4lite_0

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

PORT Gpo = axi_iic_0_Gpo

PORT Sda = axi_iic_0_Sda

PORT Scl = axi_iic_0_Scl

END

Appendix D

User Constraint File

NET "clk_100mhz" LOC = V10 | IOSTANDARD = LVCMOS33;

TIMESPEC TS_CLK = PERIOD "clk_100mhz" 100 MHz HIGH 50%;

NET "nreset" IOSTANDARD = LVTTL | LOC = G13 | PULLUP; # external pullup , used for

button

NET "uart_in" LOC = L17 | IOSTANDARD = LVCMOS33;

NET "uart_out" LOC = L18 | IOSTANDARD = LVCMOS33;

NET "iic_sda" LOC = B12 | IOSTANDARD = I2C;

NET "iic_scl" LOC = D11 | IOSTANDARD = I2C;

NET "pixclk" LOC = D9 | IOSTANDARD = LVCMOS33; #resoldered

NET "pixclk" PERIOD = 96 MHz HIGH 50 %;

NET "extclk" LOC = A9 | IOSTANDARD = LVCMOS33;

NET "extclk" PERIOD = 96 MHz HIGH 50 %;

NET "frame_valid" LOC = A13 | IOSTANDARD = LVCMOS33;

NET "line_valid" LOC = B14 | IOSTANDARD = LVCMOS33;

NET "data [3]" LOC = B11 | IOSTANDARD = LVCMOS33;

NET "data [2]" LOC = G9 | IOSTANDARD = LVCMOS33;

NET "data [1]" LOC = B9 | IOSTANDARD = LVCMOS33;

NET "data [0]" LOC = B8 | IOSTANDARD = LVCMOS33;

NET "data [4]" LOC = C11 | IOSTANDARD = LVCMOS33;

NET "data [5]" LOC = A12 | IOSTANDARD = LVCMOS33;

NET "data [6]" LOC = F13 | IOSTANDARD = LVCMOS33;

NET "data [7]" LOC = E13 | IOSTANDARD = LVCMOS33;

NET "data [10]" LOC = A15 | IOSTANDARD = LVCMOS33;

NET "data [11]" LOC = C18 | IOSTANDARD = LVCMOS33;

45

46

NET "data [9]" LOC = C15 | IOSTANDARD = LVCMOS33;

NET "data [8]" LOC = A14 | IOSTANDARD = LVCMOS33;

#strobe input at A7, not currently used (Not verified , spring 2015)

NET "gpo [0]" LOC = H16 | IOSTANDARD = LVCMOS33; #led

#NET "gpo [1]" LOC = C7 | IOSTANDARD = LVCMOS33; # standby_bar , external pullup

#NET "gpo [2]" LOC = D8 | IOSTANDARD = LVCMOS33; # oe_bar , external pullup

NET "gpo [1]" LOC = C7 | IOSTANDARD = LVCMOS33; # standby_bar , external pullup

NET "gpo [2]" LOC = F9 | IOSTANDARD = LVCMOS33; # oe_bar , external pullup , unused

pin , might not work

NET "gpo [3]" LOC = A3 | IOSTANDARD = LVCMOS33; # img_enable , external pulldown

NET "gpo [4]" LOC = G14 | IOSTANDARD = LVCMOS33; #led

NET "gpo [5]" LOC = F16 | IOSTANDARD = LVCMOS33; #Led

NET "gpo [6]" LOC = B4 | IOSTANDARD = LVCMOS33; #changed from LED4 to test pin

NET "oe_bar" LOC = C8 | IOSTANDARD = LVCMOS33; # always low

NET "axi_spi_0_SCK_pin" LOC = R15 | IOSTANDARD = LVCMOS33;

NET "axi_spi_0_SS_pin" LOC = V3 | IOSTANDARD = LVCMOS33;

NET "axi_spi_0_MOSI_pin" LOC = T13 | IOSTANDARD = LVCMOS33;

NET "axi_spi_0_MISO_pin" LOC = R13 | IOSTANDARD = LVCMOS33;

Bibliography

[1] A. Bertheussen. Digital processing system for a cubesat camera. 2014.

URL http://nuts.cubesat.no/upload/2015/03/06/digital_processing_for_

cubesat_camera_andreas_bertheussen.pdf.

[2] ON Semiconductor. Image sensor color correction. Rev. 3, 2015. URL http:

//www.onsemi.com/pub_link/Collateral/TND6114-D.PDF.

[3] Numato Lab. Saturn spartan 6 fpga development board user guide. Rev.

9, 2011. URL http://community.numato.com/api/productdata/assets/

downloads/fpga/saturn/SaturnSpartan6ModuleV9.pdf.

[4] C. J. Hawthorn, K. P. Weber, and R. E. Scholten. Littrow configuration tunable

external cavity diode laser with fixed direction output beam. Review of Scientific

Instruments, 72(12):4477–4479, December 2011. URL http://nuts.cubesat.no/

upload/2012/01/20/nuts-1_mission.pdf.

[5] T. H. Nornes. Prototype design for cubesat camera. 2014. URL

http://nuts.cubesat.no/upload/2015/03/06/prototype_design_for_

cubesat_by_thomas_hanssen_nornes.pdf.

[6] J. K. Oltedal. Review of the hardware description of the camera module prototype

for ntnu test satellite (nuts). 2015. URL http://nuts.cubesat.no/upload/2016/

03/12/prosjektoppgave_ferdig_oltedal.pdf.

[7] Aptina imaging. Mt9p031 register reference. Rev. A, 2011. URL http://dl.btc.

pl/kamami_wa/mt9p031_rr.pdf.

[8] ON Semiconductor. 1/2.5-inch 5 mp cmos digital image sensor. Rev. J, 2015. URL

http://www.onsemi.com/pub_link/Collateral/MT9P031-D.PDF.

47

http://nuts.cubesat.no/upload/2015/03/06/digital_processing_for_cubesat_camera_andreas_bertheussen.pdf
http://nuts.cubesat.no/upload/2015/03/06/digital_processing_for_cubesat_camera_andreas_bertheussen.pdf
http://www.onsemi.com/pub_link/Collateral/TND6114-D.PDF
http://www.onsemi.com/pub_link/Collateral/TND6114-D.PDF
http://community.numato.com/api/productdata/assets/downloads/fpga/saturn/SaturnSpartan6ModuleV9.pdf
http://community.numato.com/api/productdata/assets/downloads/fpga/saturn/SaturnSpartan6ModuleV9.pdf
http://nuts.cubesat.no/upload/2012/01/20/nuts-1_mission.pdf
http://nuts.cubesat.no/upload/2012/01/20/nuts-1_mission.pdf
http://nuts.cubesat.no/upload/2015/03/06/prototype_design_for_cubesat_by_thomas_hanssen_nornes.pdf
http://nuts.cubesat.no/upload/2015/03/06/prototype_design_for_cubesat_by_thomas_hanssen_nornes.pdf
http://nuts.cubesat.no/upload/2016/03/12/prosjektoppgave_ferdig_oltedal.pdf
http://nuts.cubesat.no/upload/2016/03/12/prosjektoppgave_ferdig_oltedal.pdf
http://dl.btc.pl/kamami_wa/mt9p031_rr.pdf
http://dl.btc.pl/kamami_wa/mt9p031_rr.pdf
http://www.onsemi.com/pub_link/Collateral/MT9P031-D.PDF

Bibliography 48

[9] M. Parmarac J. Farrella, M. Okinchab and B. Wanellac. Using visible snr (vsnr)

to compare image quality of pixel binning and digital resizing. Technical report,

Stanford University, 2010. URL http://scien.stanford.edu/jfsite/Papers/

ImageCapture/vSNR_PixelBinningSPIE_111809.pdf.

[10] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal

Processing. California Technical Publishing, 2nd edition, 199. URL

http://ft-sipil.unila.ac.id/dbooks/The%20Scientist%20and%20Engineer’

s%20Guide%20to%20Digital%20Signal%20Process.pdf.

[11] Mayeul Marcadella. Improvement in the reliability of a bi-processing unit satellite

subject to radiation-induced bit-flips. Technical report, NTNU, 2014. URL http:

//daim.idi.ntnu.no/masteroppgaver/011/11553/masteroppgave.pdf.

[12] Xilinx. 7 series fpgas clocking resources. V. 1.11.2, 2015. URL http://www.xilinx.

com/support/documentation/user_guides/ug472_7Series_Clocking.pdf.

[13] D. Sinclair J. Enright and K. C. Fernando. Cots detector for nanosatel-

lite star trackers: A case study. Technical report, Ryerson University,

2011. URL http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=

1162&context=smallsat.

[14] Xilinx. Chipscope pro 11.4 software and cores. V. 11.4, 2009.

URL http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/

chipscope_pro_sw_cores_ug029.pdf.

[15] M. A. Normann. Hardware review of an on board controller for a cubesat.

2015. URL http://nuts.cubesat.no/upload/2015/03/06/prototype_design_

for_cubesat_by_thomas_hanssen_nornes.pdf.

[16] Xilinx. Spartan-6 fpga configuration user guide. V. 2.8, 2015. URL http://www.

xilinx.com/support/documentation/user_guides/ug380.pdf.

[17] M. Fabiano P. Prinetto M. Caramia, S. D. Carlo. Flash-memories in space applica-

tions: Trends and challenges. Technical report, Thales Alenia Space, and Politecnico

di Torino, 2009. URL http://porto.polito.it/2296440/2/2009_EWDTS_Flash_

AuthorVersion.pdf.

http://scien.stanford.edu/jfsite/Papers/ImageCapture/vSNR_PixelBinningSPIE_111809.pdf
http://scien.stanford.edu/jfsite/Papers/ImageCapture/vSNR_PixelBinningSPIE_111809.pdf
http://ft-sipil.unila.ac.id/dbooks/The%20Scientist%20and%20Engineer's%20Guide%20to%20Digital%20Signal%20Process.pdf
http://ft-sipil.unila.ac.id/dbooks/The%20Scientist%20and%20Engineer's%20Guide%20to%20Digital%20Signal%20Process.pdf
http://daim.idi.ntnu.no/masteroppgaver/011/11553/masteroppgave.pdf
http://daim.idi.ntnu.no/masteroppgaver/011/11553/masteroppgave.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1162&context=smallsat
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1162&context=smallsat
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/chipscope_pro_sw_cores_ug029.pdf
http://nuts.cubesat.no/upload/2015/03/06/prototype_design_for_cubesat_by_thomas_hanssen_nornes.pdf
http://nuts.cubesat.no/upload/2015/03/06/prototype_design_for_cubesat_by_thomas_hanssen_nornes.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://porto.polito.it/2296440/2/2009_EWDTS_Flash_AuthorVersion.pdf
http://porto.polito.it/2296440/2/2009_EWDTS_Flash_AuthorVersion.pdf

Bibliography 49

[18] FTDI Chip. Future technology devices international ltd ft2232h. V. 2.3,

2016. URL http://www.ftdichip.com/Support/Documents/DataSheets/ICs/

DS_FT2232H.pdf.

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf

	Summary
	Sammendrag
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Description
	1.2 Motivation
	1.3 NTNU Test Satelite - NUTS
	1.3.1 NUTS Payload

	1.4 Scope of the thesis

	2 Background
	2.1 Previous prototypes
	2.1.1 First prototype
	2.1.2 Second prototype
	2.1.3 Prototype setup
	2.1.4 Software commands
	2.1.5 Xilinx LogiCORE IP blocks
	2.1.5.1 Sensor interface block

	2.2 Theory
	2.2.1 MT9P031 digital Image sensor
	2.2.1.1 Exposure time

	2.2.2 Harmonics in square signals
	2.2.3 NUTS Backplane and module compatibility
	2.2.4 Electronics in space
	2.2.5 Bayer color filter array

	3 Testing and debugging of prototype
	3.1 PCB and data signals
	3.1.1 FPGA header pins
	3.1.2 Power supply
	3.1.3 Clock signals

	3.2 Testing of image sensor
	3.3 Chipscope debugging
	3.4 Exposure and lens adjustment

	4 Further development
	4.1 Requirements
	4.2 Camera subsystem design overview
	4.3 Microcontroller
	4.3.1 Required MCU software
	4.3.2 MCU characteristics and suggestion

	4.4 FPGA logic
	4.4.1 Compression logic
	4.4.2 Capturing and storing logic
	4.4.3 I2C interface
	4.4.4 Configuration interface

	4.5 Flash memory
	4.6 Power sequencers
	4.7 Debugging interface

	5 Results and Discussion
	5.1 Second prototype results
	5.2 Development discussion

	6 Conclusion
	6.1 Future work

	A Terminal logger
	B Extract image data
	C Xilinx logiCORE IP code
	D User Constraint File
	Bibliography

