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Problem description

All people, independent of their language, are equally physically equipped to produce speech.
This means that it is possible to �nd universal features of speech which are acoustically de�ned,
and based on speech production. One example of these features are so-called articulatory fea-
tures, primarily de�ned by manner and place of articulation.

At NTNU, the research projects Spoken Information Retrieval by Knowledge Utilization in Sta-
tistical Speech Processing (SIRKUS) and Atomic Units for Language Universal Speech Processing
(AULUS), and several PhD and master theses have studied detection of articulatory and phonetic
features, and how these can be used for speech recognition and language identi�cation. So far,
none of these studies have included the Norwegian language.

Di�erences between Norwegian dialects are large, mainly lexically (dialectal words), but also
with regard to phoneme realization and intonation. To obtain satisfactory speech recognition
for Norwegian, the speaker must speak normalized, and avoid dialectal words. If it is possible
to automatically identify the speaker’s dialect, this makes it possible for the speech recognizer
to adapt lexicon and pronunciation to the user, and hence give lower error rate. The Norwegian
database “NB tale” contains speech from all dialectal regions. The recordings are also phoneti-
cally labeled, such that it is possible to map acoustics to phonemes, and thus to articulatory/pho-
netic features. Statistical detectors can be trained with this data.

The task is to use “NB tale” for development of a system for automatic classi�cation of Nor-
wegian dialects, based on phonetic features. The work will be based on an existing system for
automatic language recognition, and an important part of the task is to adapt this system to in-
clude Norwegian language, initially for language recognition. It is interesting to evaluate the
quality of the detection system for Norwegian, compared to other languages.
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Sammendrag

Dette prosjektet utforsker en utvidelse av et eksisterende språkidenti�seringssystem, for bruk
med den norske databasen NB tale/NAFTA, med det endelige målet å klassi�sere norske dialek-
ter. Akustiske hendelser blir mappet til fonetiske trekk som er universelle for alle språk. En
gjenkjenner blir trent med et dypt nevronettverk (DNN/ANN), som er koblet til en skjult Markov
Modell (HMM). Testdata blir dekodet med det nevnte systemet, som kalles “frontend”. Disse
fonetiske trekkene blir brukt i en høydimensjons dokumentvektor, som kan brukes i språkiden-
ti�kasjon. I “backenden” blir en one-versus-all Support Vector Machine trent for hvert språk, for
å skille mellom disse språkmerkede dokumentvektorene. En anti-target og en target Gaussian
Mixture Model (GMM) blir så trent for å gjøre en endelig språkdesisjon. Frontenden ble trent
på seks forskjellige språk fra OGI-databasen, og ble testet med OGIs CV sett, i tillegg til den en-
gelske TIMIT databasen, og del 1 av den norske NB tale/NAFTA. Den beste frontenden viste seg
å være et kontekstuavhengig tretilstands system. Backenden ble trent på Callfriend databasen
med spontantale, og ble testet på LID 2003 evalueringssett, i tillegg til del 3 av NAFTA. Den beste
LID språkgjenkjenningsytelsen viste seg å opptre på norsk og japansk datamateriale.
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Abstract

This project explores the expansion of an existing language recognition system for use with
the Norwegian data set NB tale / NAFTA, with the ultimate goal being dialect classi�cation.
Acoustic events are tokenized into phonetic features which are universal for all languages. A
recognizer is trained with a deep/arti�cial neural network (DNN/ANN), which is connected to
a Hidden Markov Model (HMM). Test data is decoded using the aforementioned system, called
the frontend. The features are used in a high-dimensional document vector, which can be used
for language identi�cation. In the backend, a one-versus-all Support Vector Machine (SVM) is
trained for each language, to discriminate between these language-labeled documents. Target
and anti-target Gaussian Mixture Models (GMM) are thus trained, which are used for a �nal
language identi�cation (LID) decision. The frontend was trained with six languages from the
OGI database, and tested with the OGI CV set, in addition to the English TIMIT database, and
part 1 of the NAFTA database. The best frontend system proved to be a context-independent
tristate con�guration. The backend was trained with the Callfriend database of spontaneous
speech, and tested on the LID 2003 evaluation set, in addition to part 3 of NAFTA. The best LID
performance was achieved with Norwegian and Japanese data.
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Chapter 1

Introduction

The aim of this report is to explore the application of neural networks to detection of features
of speech, called articulatory features. Neural networks are a subcategory of machine learn-
ing, which attempts to replace hand crafted functions with iterative algorithms which approxi-
mate these functions themselves, with or without human corrective guidance. In speech recog-
nition, Hidden Markov Models (HMMs) with Gaussian Mixture Models (GMMs) are familiar
and extensively used techniques to model probability distributions over sequences of observa-
tions. The GMM contains probabilistic parameters which are usually found iteratively through
the Expectation-Maximation EM algorithm. Given some dataset, the posterior probabilities for
which class a speech frame or sequence of frames belongs to can be found. An alternative to this
approach is using Arti�cial Neural Networks (ANNs). While much more processing- and time
intensive, research shows that they can produce more accurate posteriors than GMMs [15]. In
this report we shall explore this fact and basic theory of ANNs, as well as HMMs and GMMs.
Above, in �gure 1.1, we see a top-level description of a Language Recognition (LRE) system. Its
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Figure 1.1: LRE system

function is, as the name suggests, to recognize which language it is receiving as input. Each
language has its own acoustic signature, which the system tries to learn in a training phase. The
ANN constitutes the centerpiece of the UAR. It is a powerful discrimination tool, and we use it

1



2 CHAPTER 1. INTRODUCTION

in this thesis to discriminate between articulatory features. The utility of articulatory features
lies in their universality, in that each language shares these features. An acoustic signature can
be learned in a Vector Space Modelling (VSM) approach, through �nding the frequency of the
features, or an ordered, contiguous sequence of such features in a spoken document using Latent
Semantic Analysis (LSA). This half of the system is referred to as the backend. Now, before this
process can be done, we need to determine or estimate the phonetic features. They are found by
running data through the trained Universal Attribute Recogniser (UAR) frontend. As we see in
�gure 1.1, these can include some context from either future or past frames, or both. They can
also only consider the current frame, in a Context Independent (CI) method. In this thesis, CI
and Right Context (RC) are used.

The crucial, limiting factor here is the frontend. Siniscalchi et al.[24] writes that 100 % LRE
can be achieved with a perfect attribute tokenizer. A perfect UAR is, of course, unrealistic. As
such, a great deal of work must be done on the frontend to obtain a satisfactory LRE system.

The backend doesn’t only comprise the LSA block. Like the frontend, it needs a discrimina-
tive block. The job of the VSM block is to project the input features into a high-dimensional
vector space, where a Support Vector Machine (SVM) can easily separate the documents with
a linear border. This part is called a language classi�er. Using a one-versus-all method, each
language is given a model of its own, through training it in an SVM. The veri�cation task is to
determine a GMM for a target class and an anti-target class, using the SVM distances from the
positive target training examples, and the negative anti-target examples. The log-likelihood ra-
tio of a test utterance of 30 seconds duration is compared to a threshold for the �nal decision [24].

With a working LRE system, it could be tested on Norwegian, and the evaluation would con-
sist of comparing the performance on Norwegian with other languages. This is necessary to get
a “benchmark” for further use. The aim is to extend this working system to include Norwegian
dialects.



Chapter 2

Pattern recognition

To understand the methods used in this thesis, knowing some basic theory behind pattern recog-
nition and machine learning is helpful. This chapter will provide a very brief introduction and
overview. The next chapters will go through the core of the UAR in detail.

The �elds of machine learning and pattern recognition provide us with methods to classify data
into di�erent groups, �t curves or make predictions. We say learning, because we don’t explicitly
de�ne a function f that gives us a certain output y, given an input vector x. Problems such as
speech recognition and computer vision are too complex to solve analytically. Algorithms can
help us to instead solve them iteratively. This means that a large part of learning can be done
more or less automatically, but not always entirely automatically, as we shall see.

2.1 Types of learning

We can divide learning into three main subcategories: supervised, unsupervised and reinforced.
Supervised learning involves learning from labeled example vectors that we give to the system.
Digit recognition can be performed in this way. The numbers 0 to 9would be the range of possible
outputs. Example vectors are given as input, and each of them has a single corresponding label,
determining which digit it represents. Here, the output can only take discrete values. This is an
instance of classi�cation. Another task is regression, where the output can take continuous values
[8]. Removing noise from audio or predicting temperature are examples of such a task.

In unsupervised learning, we don’t have labeled examples that the system can learn from. It
can be viewed as the task of �nding patterns and structures, or �nding a higher-level represen-
tation of the input data [3]. Clustering is such a task, where it must now try to gather the data in
regions based on some hypothesized “group a�liation”. Density estimation is used to determine
the distribution of data within the input space, and is also a type of unsupervised learning. Rein-
forcement learning is the last category. Here we have no labeled examples, with the form (input,
correct output), but instead (input, some output, grade for this output) [3]. This form is relevant for
credit assignment, or learning how to play a game. Each action you take in chess has an associ-
ated long-term consequence and reward. The goal is to maximize this reward. Likewise, in credit
assignment, past economic behaviour, yearly income, outstanding loans and other factors come
together to assign a score according to the company or person’s credit value. In other learning
problems, these factors aren’t always easy to ascertain, and even though a computer has learnt
them and numbered them, we often can’t relate them to anything tangible. If one looks at the
weights from a neural network, for example, one will often not be able to interpret them.

3



4 CHAPTER 2. PATTERN RECOGNITION

2.2 Types of modelling

Depending on our goals and what resources we have available, we will use di�erent types of
modelling. Bishop [8] de�nes three approaches to solving decision problems in two di�erent
categories: discriminative and generative modelling.

2.2.1 Discriminative

• First use training data in an inference problem to learn a model for the posterior class
probabilities p(C

k

|x) and then use decision theory to assign each new x to one of the
classes.

• Find a discriminant function f(x), that maps each input x directly onto a class label.

2.2.2 Generative

• First solve the inference problem of determining class-conditional densities p(x|C
k

), for
each C

k

individually. Also infer the prior class probabilities p(C). Then use Bayes’ rule

p(C
k

|x) = p(x|C
k

)p(C
k

)

p(x)
(2.1)

to �nd the posterior class probabilities p(C
k

|x). The reason these models are called generative,
is because we can generate new data from sampling the distributions.

2.3 Error measures

Figure 2.1 illustrates the learning problem, with noise taken into account. The main point here,
is that the ideal hypothesis, or target function, which is the decision surface that separates data,
is unknown.
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g
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g(x) ≈ f(x)

x

P (x)

ERRORERROR
MEASUREMEASURE

Figure 2.1: A general supervised learning problem. 1

1Adopted with permission from Yaser S. Abu-Mostafa [3] at http://www.amlbook.com

http://www.amlbook.com
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An error measure quanti�es how far our hypothesis is from the target function. We de�ne
two di�erent errors. If we have run an algorithm to iteratively produce a viable hypothesis,
we can compute the in-sample error E

in

as how many of our training examples are classi�ed
wrongly, using this hypothesis. The out-of-sample error E

out

tells us how well the hypothesis
performs on examples that are outside of our dataset. Since, as mentioned, we very often don’t
know the entire population of possible examples, we must use probability. If the target is noisy,
i.e. the target is a�ected by, rather than determined by the input data, we can treat y as a random
variable. Thus we have a target distribution P (y|x) rather than a target function f(x) = y, and a
data point is generated by the joint distribution P (x, y) = P (x)P (y|x). A general interpretation
is that the noisy target is equal to the deterministic target plus noise [3].



Chapter 3

Arti�cial neural networks

Arti�cial neural networks is now quite an old sub�eld of pattern recognition, with its earliest
roots lying in McCulloch and Pitts’ work on mimicking biological neurons with simple neural
networks using electrical circuits. Throughout the 50’s and 60’s, computers became more pow-
erful, paving the way for simulation of neural networks with software. In 1962, Widrow and
Ho� developed a well-known learning rule, later popularized by Geo�rey Hinton et al. as back-
propagation, for multi-layer perceptrons [23] [7]. Like all new technologies, neural networks
had great promise, and was imagined to ultimately be able to model the human brain. A silicon
chip can do a single computation faster than the human brain, but the latter has the massively
parallel advantage of an estimated 10

11 neurons [30]. Enthusiasm died down as technical and
mathematical obstacles were discovered. One such famous obstacle was the XOR problem, which
cannot be solved by using a single linear perceptron. The fact that processors were much slower
to compute gradients was also a problem, making it impossible to evaluate solutions e�ectively.

We shall explore the basic theory of perceptrons and neural networks in the following sec-
tions. First though, let’s establish the origin of neural networks: the perceptron.

3.1 Perceptron

The perceptron is a single-layer, threshold network. By thresholdwemean a binary step function,
seen as the activation function in �gure 3.1. In its simplest form, where the input data are used
directly, it has very limited capabilities, due to not being able to express non-linear decision
boundaries. In Bishop’s [8] and [7], the perceptron is de�ned using �xed nonlinear transforms
called basis functions, rather than using the input data directly. We will use this more general
de�nition for this chapter, as it still holds if we assume � = x for all examples x. The network
weighs each input with some value, thus assigning some unique importance to each data point.
The output of the perceptron is given by:

y(x) = g

 
MX

j=0

w
j

�
j

(x)

!
= g(wT�) (3.1)

Where � denotes the vector formed from the activations �0, ...,�M

, and �0 often is set to 1 as a
bias/threshold unit. The nonlinear activation function is an anti-symmetric threshold given by

g(a) =

(
�1, when a < 0

1, when a � 0

(3.2)

To �nd a well performing hypothesis, we use a simple algorithm called the perceptron learn-
ing algorithm. It starts with an arbitrarily initialized weight vector, takes one misclassi�ed ex-
ample (�

j

, y
j

) at a time and uses it to update the weight vector w:

w⌧+1
= w⌧

+ �ntn (3.3)
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Figure 3.1: Perceptron.

Where �n is a vector which is misclassi�ed by the perceptrons, ⌧ represents the time step of
the algorithm, and tn are the desired target values. It can be proven ([7] pages 100-101) that
the perceptron algorithm will always converge, provided that the data is linearly separable. The
decision boundary becomes a one-dimensional hyperplane that divides the data in two classes. If
the data is not linearly separable, the perceptron learning algorithm will never converge, and we
will have to usemore advancedmethods, covered later. Considering basis functions as non-linear
transforms, data that is non-linearly separable in the input space can be separated linearly in the
feature space by the perceptron. As Bishop points out, the real problem with the perceptron is
that these processing elements are �xed in advance and cannot be adapted to a new problem or
data set [7].

Figure 3.2: Linear decision boundary. Figure 3.3: Nonlinear decision boundary.

3.2 Logistic regression

Logistic regression is a bit of a misnomer, since it has to do with classi�cation rather than re-
gression. Its name has historical rather than mathematical roots. It falls under the probabilistic
discriminative category, where we �nd a conditional probability directly, without bothering with
�nding the class-conditional densities and class priors. Before we delve into logistic regression
and the cross-entropy error function, we must �rst de�ne the sigmoid, an important activation
function and building block in neural networks.



8 CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

z

-10 -8 -6 -4 -2 0 2 4 6 8 10

g
(z

)

0

0.5

1
Sigmoid function

z

-10 -8 -6 -4 -2 0 2 4 6 8 10

g
(z

)
-1

-0.5

0

0.5

1
Hyperbolic tangent

Figure 3.4: Sigmoid and hyperbolic tangent.

3.2.1 De�nition of the sigmoid

Figure 3.4 shows the sigmoid function. Its advantage over a linear function is that it is twice
di�erentiable. The aforementioned error gradient bene�ts from this, as we shall soon see. In-
stead of a hard threshold in a binary decision, or no threshold at all in linear regression, logistic
regression uses a soft threshold with the sigmoid. As seen from the �gure, the sigmoid facilitates
a probabilistic output. It is de�ned thusly:

�(a) =
ea

1 + ea
(3.4)

It “squashes” the input and bounds it along its asymptotes. The output result will most often
be close to 0 or 1, making probabilities directly readable. Yann LeCun [20] recommends using
asymmetric sigmoids like the hyperbolic tangent function, over the standard sigmoid.

f(x) = tanh(x) (3.5)

For introductory purposes, we shall concentrate on the standard sigmoid.

3.2.2 Binary classi�cation

Let’s �rst elaborate on how the sigmoid function is built. Consider �rst a binary system of two
classes, C1 and C2 with corresponding labels t

n

2 0, 1. The posterior probability of class C1 is

P (C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + exp(�a)
(3.6)

where we de�ne a as [25]

a = ln

p(x
n

|C1)p(C1)
p(x

n

|C2)p(C2)
(3.7)

The most used error function for classi�cation is cross-entropy. It is built on the maximum like-
lihood method. We assume a coding scheme of t = 1 if the vector belongs to C1 and t = 0 for
C2 Assuming independently generated data points (x

n

, y
n

)

1 and y
n

= p(C1|xn) = �(wTx), the
log likelihood of the target labels can be expressed as [25][8][3]:

ln p(t1, ..., tn|w) =

NX

n

(t
n

ln y
n

+ (1� t
n

) ln(1� y
n

)) (3.8)

1Note that this is not strictly true for speech waveforms. At time t+1, the signal is still dependent on the previous
signal at t, among other things due to coarticulation.
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We maximize this to �nd the parameters w. As the logarithm of the probability is a monotonic
function, maximizing it is the same as maximizing the probability itself. We can express the error,
or loss as a function of the parameters as:

E(w) =

1

N

NX

n=1

ln

�
1 + e�ynw

T
xn
�

(3.9)

Where 1
N

scales the error function with respect to the number of observations. Note that this is
an error function that will lead to severe over�tting if the data are linearly separable. This can be
mitigated by including a prior and �nding a MAP solution for w, or by adding a regularization
term [25][8].

3.2.3 Multiclass classi�cation

Imagine a system where we haveK classes, and each data vector can be assigned to one of these
classes. The system will have one output y

k

for each class, being anywhere between 0 and 1,
representing a probability that the k

th

attribute is present. For classes K > 2, we get a more
general form called the normalized exponential, or softmax function [8]:

p(C
i

|x
n

) =

p(x
n

|C
i

)p(C
i

)P
k
p(x

n

|C
k

)p(C
k

)

=

exp(a
i

)P
k
exp(a

k

)

(3.10)

Where
a
i

= WT

i

x
n

(3.11)
and

a
k

= WT

k

x
n

(3.12)
The parameterW is here a matrix of parametersW = [w1, ...,wK

] of hyper-planes separating
a K number of classes[25]. The multiclass cross-entropy error/loss function is de�ned as:

E(W,x
n

, y
n

) = � ln

exp(WT

yn0xn

)

P
y0
exp(WT

y0xn

)

(3.13)

or normalized as
1

K

KX

k=1

1

N
k

X

n2Sk

E(W,x
n

, y
n

) (3.14)

where N =

P
k
N

k

, N
k

is the number of training samples for language k, S
k

is a subset of
training utterances corresponding to class k and N is the total number of training utterances
[25].

3.3 Neural networks

Neural networks are often called multilayered perceptrons, which is another misnomer, because
they contain multiple layers of logistic regressionmodels with continuous nonlinearities (logistic
sigmoids), rather than multiple perceptrons with discontinuous nonlinearities (sign/step func-
tion) [8]. We can think of a neural network as a “softened” MLP, due to the twice-di�erentiable
sigmoid. The utility of this fact will become apparent when we now examine the gradient descent
algorithm together with backpropagation. The �gure below is an example of a neural network
with two hidden layers. The input layer and all the hidden layers have a bias set to 1, denoted
as x0 for the input layer, and a0 for the hidden layer. This simpli�es algorithm implementation.
The optimal number of hidden layers and hidden units per layer depends on the data, and the
complexity of the data. Deciding on too complex a model can, as always in pattern recognition,
lead to serious over�tting. Some testing is often required to make parameter decisions, although
some more or less heuristic rules of thumb have been developed by Hinton et al.
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3.3.1 Gradient descent

Gradient descent is a general technique for minimizing twice di�erentiable functions such as
the error in logistic regression [3]. The general gradient descent formula is comparable to the
perceptron:

w(⌧+1)
= w(⌧) � ⌘�E(w(⌧)

) (3.15)
Where ⌘ denotes the learning rate, which determines the magnitude of change at next iteration of
the algorithm. The ultimate goal is to �nd the global minimum of the cost function. Depending
on the initialization of the weights and choice of error function, we may very well end up at
a local minimum instead. Using the cross-entropy as error measure produces a convex error
surface, which again makes converging to a global minimum a lot easier. The learning rate (or
learning coe�cient) can either be constant or varying, depending on how far we are from the
global minimum. What we have described in formula 3.15 is batch gradient descent, which means
that we are using the whole data set at once, and subsequently evaluating the error function.
An alternative is to use stochastic gradient descent, which means that we are evaluating the error
function after making a forward pass of one example vector:

w(⌧+1)
= w(⌧) � ⌘�E

n

(w(⌧)
) (3.16)

This can be done either with data vectors in sequence or uniformly at random chosen from
the set of data vectors (which is more in line with the stochastic terminology). An intermediate
approach is to use mini-batches of data.

3.3.2 Backpropagation

To get the gradient needed in the gradient descent algorithm, the backpropagation algorithm is
often used. The general idea behind it is that each neuron in the hidden layers is assigned some
“responsibility” for the error. Bishop [8] calls this a message passing scheme, where information
is alternately sent forwards and backwards through the system. We send the data forward to
produce some error measure, and we send it backwards to �nd out which weights to adjust. Each
neuron’s contribution to the error can be found partially di�erentiating the error with respect to
the weights. The following terminology and approach is taken from Bishop [7], and applies to a
general feed-forward network. It concludes in a batch error measure. Consider a neuron which
computes a weighted sum of its inputs

a
j

=

X

i

w
ji

z
i

(3.17)
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where z
i

is the activation of a unit, which sends a connection to unit j, and weight w
ji

is the
weight associated with that connection. The sum is transformed by a non-linear activation func-
tion g(·) to give the activation function z

j

of unit j in the form

z
j

= g(a
j

) (3.18)

For batch gradient descent, the error summed over all examples is:

E =

X

n

E
n

(3.19)

with n example vectors, and E
n

is a function of the output labels (in the case of classi�cation).
We de�ne

z
i

=

@a
j

@w
ji

(3.20)

�
j

=

@E
n

@a
j

(3.21)

Then we get the error with respect to the weight as
@E

n

@w
ji

= �
j

z
i

(3.22)

Thus, we need to calculate the value of @
j

for each hidden unit (neuron) and each output unit
and then apply equation 3.22. For the output units we de�ne

�
k

=

@E
n

@a
k

= g0(a
k

)

@E
n

@y
k

(3.23)

Where g0 = g(a)(1� g(a)). And for the hidden units, using the chain rule we get

@
j

=

@E
n

@a
j

=

X

k

@E
n

@a
k

@a
k

@a
j

(3.24)

summed over all units k to which unit j sends connections. Substituting eq. 3.21 into eq. 3.24,
we get the backpropagation formula:

�
j

= g0(a
j

)

X

k

w
kj

�
k

(3.25)

Knowing the errors or �0s for the output nodes, we can recursively apply eq. 3.25 to �nd the
�0s for each of the hidden units.

zi

zj

�j
�k

�1

wji wkj

Figure 3.5: Backpropagation2

The algorithm is summarized below.

A batch error can then be found as the sum of errors over all examples (provided that all
units have the same activation function):

�E

�w
ji

=

X

n

�E
n

�w
ji

(3.26)

2Reproduced with permission from Christopher M. Bishop [8] at http://research.microsoft.com/
en-us/um/people/cmbishop/prml/webfigs.htm

http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
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Algorithm 3.1: Backpropagation
1 Apply input vector x

n

and forward propagate to �nd activations of all hidden and output
nodes using eq. 3.17 and 3.18

2 Evaluate �
k

for the output units with eq. 3.23
3 Backpropagate �’s to obtain �

j

for each hidden unit using eq. 3.25
4 Evaluate the required derivatives with eq. 3.22

3.4 Learning rate and weight initialization

Following a forward pass of training data, and after the cost is determined, we must change the
weights to get a di�erent result the next time around. As mentioned, the learning rate or learning
coe�cient is a constant that determines how drastic the change in weight will be, in the direction
of the negative gradient. Choosing a small learning rate will usually ensure convergence to
the global minimum, but choosing it too small will take considerably longer time than a more
dynamic approach. Using a larger weight to begin with, and scaling it with each epoch (each
pass of total data set) proves more e�cient. Weight initialization is also an important topic, and
forms the basis for much of new research done in this area. The parameters, or weights, should
not be initialized to zero; doing this will leave us with zero derivatives and hence no progress.
Randomizing them works, but is considered to be too ine�cient to use in large-scale networks.
In the next chapter we will discuss techniques with which to initialize them with specialized
functions , leaving the “grunt work” to the subsequent deep network[26].

3.5 Batch methods

If we update the weights with an average gradient after a full pass of the entire dataset, we
have done batch learning. Online (or stochastic) learning means that we randomly choose a
data vector and update the weights after each iteration. Papers by both LeCunn [17] and Wilson
[29] asserts the superiority of online learning to batch learning, although the former requires
a smaller learning rate. As Wilson explains, batch learning can only take one step for each
epoch, with each step being a straight line. It can calculate the true gradient, but it does not
know how far it can go in that direction before it diverges. The batch method is also much
slower (because of redundancy) and less accurate (because of noise). An alternative to both online
training and batch training is to divide the available dataset into mini-batches, accumulate the
gradient contributions from each data point, and then update the weights. With mini-batches,
we update the weights after n data vectors, where 1 < n < data set length. Hinton [12] asserts
that big mini-batches is nearly always the preferable method due to computational e�ciency
with tools such as a GPU (graphical processing unit), while Wilson [29] claims that for large
data-sets, online learning is always preferable with gradient descent.3.

3.6 Over�tting

Over�tting occurs when we �t the data more than is warranted. A classical problem is that of re-
gression, where an erratic polynomial curve contaminated with noise hides a signal underneath.
Over�tting will produce a poor and non-generalizable model, with too much consideration given
to sudden deviations. It will have zero in-sample error but huge out-of-sample error. A complex
model can thus use its many degrees of freedom to worsen our learning model, in spite of our
large data set. Our model complexity has to match the quantity and quality of our data [3]. As
was brie�y mentioned in section ??, regularization is a tool to combat this. Simply guessing the

3Keep in mind that this paper was published in 2003, when GPUs were less prevalent
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optimal regularization coe�cient is a heuristic approach, in which we attempt to penalize what
parts of the data is of less importance to our model. There are also more mathematically justi�ed
methods, which we will not discuss here. Under�tting happens, conversely, when a model is too
simple compared to the data at hand.

3.7 Restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) are a special type of Boltzmann machines, which in turn
are energy-based models with hidden variables (or hidden units). They are parameterized models
representing probability distributions, and can be used to learn important aspects of an unknown
target distribution based on samples from this target distribution. These samples come from our
training data. In training the Boltzmann machine, we adjust its parameters until its probability
distribution �ts the training data [10]. The hidden units models dependencies between the com-
ponents of observation, and can be viewed as non-linear feature detectors.
Making a prediction or decision consists in setting the value of observed variables (visible units)
and �nding values of the remaining variables that minimize the energy. In other words, desir-
able or plausible con�gurations should have low energy [18] [6] [27]. Energy-based probabilistic
models de�ne a probability distribution through an energy function, with hidden and visible
units as variables:

p(v,h) =
e�E(v,h)

Z
(3.27)

Where Z is the partition function, analogous to the normalization factor used in statistical me-
chanics.

Z =

X

v,h

e�E(v,h) (3.28)

RBMs are generative, stochastic neural networks, in that they generate new data, sampled
from the learned distribution (joint distribution of inputs and their labels) [10]. The “restricted”
in RBMs refers to the fact that no neurons in the same layer are connected to each other. This
makes learning less computationally expensive. A neuron of a di�erent layer does, however,
have connections to all neurons in the other layer, as we see in �gure ??. As mentioned in the
previous chapter, RBMs can be used as pre-training algorithms for regular neural networks, as
they �nd higher-order correlations in the data. The probability distributions learned by the RBM
is used as initialization for the deep network parameters (weights), and is then �ne-tuned.
The partition function is intractable, but we can use the bipartite graph structure of RBMs to
compute and sample from the conditional distributions P (h|v) and P (v|h) [5].

v1 v2 v3

h1 h2 h3 h4Hidden

Visible

Figure 3.6: Restricted Boltzmann topology with 3 visible units and 4 hidden units.

For binary RBMs the variables (v,h) take values between zero and one, and their energy is
given by[13]:

E(v,h) = �
X

i2visible
a
i

v
i

�
X

j2hidden
b
j

h
j

�
X

i,j

v
i

h
j

w
ij

(3.29)

The network assigns a probability to every possible pair of hidden and visible vector via the
energy function in eq. 3.27 [13]. The derivative of the log probability of the training vector with
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respect to a weight is as follows[19]:

1

N

n=NX

n=1

@log p(vn

)

@w
ij

= hv
i

h
j

i
data

� hv
i

h
j

i
model

(3.30)

where the brackets denote expectations under the distribution speci�ed by the subscript. We
then get the learning rule for stochastic ascent in the log probability of the data:

�w
ij

= ✏ (hv
i

h
j

i
data

� hv
i

h
j

i
model

) (3.31)

Where ✏ is the learning rate.
Hinton et al. describes an approach to train RBMs: To get unbiased samples of hv

i

h
j

i
data

given
a randomly selected training case v, set the binary state h

j

of each hidden unit j to one with
probability

p(h
j

= 1|v) = �(b
j

+

X

i

v
i

w
ji

) (3.32)

where v
i

h
j

is then an unbiased sample. Likewise, for the visibile unit:

p(v
i

= 1|h) = �(a
j

+

X

i

h
j

w
ji

) (3.33)

It is di�cult to get an unbiased sample from hv
i

h
j

i
model

. An approach called contrastive diver-
gence is used for this. The procedure is described in Hinton et al. [19].

3.7.1 Contrastive divergence

Start by setting the states of the visible units to a training vector. The binary states are computed
in parallell using eq. 3.32. When binary states have been chosen for the hidden units, a “recon-
struction” is produced by setting each v

i

to one with a probability given by eq. 3.33. Then the
states of the hidden units are updated. The change in a weight is given by:

�w
ij

= ✏(hv
i

h
j

i
data

� hv
i

h
j

i
recon

) (3.34)

A simpli�ed version is used for the biases. Contrastive divergence is often shortened to CD, with
a subscript which indicates how many single full steps of alternate Gibbs sampling are done,
after the initial update of the hidden units. In this thesis, CD1 is used.

3.7.2 Real valued data

In speech processing and recognition, real-valued data is used in the form of MFCC or log-bank
features. These are not binary, and thus an intermediate step needs to be done to interface
them with an RBM. The energy function can be modi�ed to de�ne a Gaussian-Bernoulli RBM
(GRBM)[19]:

E(v,h) =
X

i2visible
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(3.35)

Our conditional distributions are then

p(h
j

|v) = �

 
b
j

+

X

i
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�
i

w
ij

!
(3.36)

p(v
i

|h) = N
 
a
i

+ �
i

X

j

h
j

w
ij

,�2
i

!
(3.37)

where N (µ,�2
) is a Gaussian. As Hinton describes, learning the standard deviation of a

GRBM is problematic. For pretraining usingCD1, the data are normalized to zero mean and unit
variance, the standard deviations are set to one when computing P (v|b).



3.8. FITTING IT TOGETHER 15

3.8 Fitting it together

Now we describe how a deep belief network (DBN) is formed, and how it is used in conjunction
with a standard backpropagation layer to form a pretrained deep neural network.
A DBN is trained in this procedure[5]: maximizeE

v⇠pdata logp(v) using constrastive divergence.
The parameters of the RBM de�ne the parameters of the �rst layer of the DBN. The next RBM is
trained to approximately maximize

E
v⇠pdataEh

(1)⇠p

(1)(h(1)|v)log p
(2)

(h(1)
) (3.38)

where p(1) is the probability distribution represented by the �rst RBM and p(2) is the probabil-
ity distribution represented by the second RBM. The second RBM is thus trained to model the
distribution de�ned by sampling the hidden units of the �rst RBM, where the �rst RBM has the
data as visible units. This process can be done for several RBMs. To interface the generative
DBN with the backpropagation layer, we use the weights learned from the pretraining process
as initial weights that are then “�ne-tuned” for discrimination of classes. The initial weights are
given by [5]:

h(1)
= �

 
b(1) + vTW(1)

!
(3.39)

h(l)
= �

 
b(l)
i

+ h(l�1)TW(l)

!
8 2 2, ...,m (3.40)

A good reference for practical considerations in training RBMs is Hinton’s training guide [13].



Chapter 4

Support Vector Machines

Support vector machines (SVM) make decisions directly and do not provide posterior probabil-
ities [8], like a neural network does. A neural network can form an in�nite number decision
boundaries that successfully separate data, be it linearly or non-linearly separated. You may
(and probably will) end up with a di�erent boundary each time you train a neural network, de-
pending on how weights are initialized and what data sequence is applied to the input. So which
boundary is optimal with regards to generalization? An SVM solves this problem through max-
iming the margin. The concept is simple: we have marked our training data as either +1 or �1,
depending on which class it belongs to. Data which belongs to the class in question is denoted by
a positive sign, and data which is not in the class is denoted by a negative sign. Consider �rst a
linear decision boundary that separates them. The optimal boundary is the one which is exactly
halfway between the nearest points that are associated which each of the two classes. Thus, the
boundary will have a maximum margin on both sides, ensuring as little room for misclassi�ca-
tion as possible. SVMs are therefore in the family of maximum margin classi�ers. The margin
is the distance from the decision boundary to the nearest data point, i.e. the data points support
the margin.

4.1 Hard margin case

y = 1
y = 0

y = �1

margin

Figure 4.1: SVM boundary with hard margin1

If we allow some misclassi�ed data points, or some data points just inside the margin, we
have an instance of a soft margin classi�er. This is the setting described in the last paragraph.
First, let’s de�ne a hard margin classi�er. Consider a linear decision boundary, that discriminates
between classes C1 and C2. For this chapter we will keep the bias (or o�set) separate from the

1Reproduced with permission from Christopher M. Bishop [8] at http://research.microsoft.com/
en-us/um/people/cmbishop/prml/webfigs.htm
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weight vector. The following terminology is adopted from [8] and [25]. Consider a training set
of N input vectors x1, ...,xN

with corresponding target values t1, ..., tN where t
n

2 {�1, 1},
and new data points are classi�ed to the sign of y(x). We get a hyperplane de�ned as:

y(x) = wTx+ b = 0 (4.1)

which means that

y(x) =

(
wT

n

x
n

+ b > 0, for t
n

= +1

wT

n

x
n

+ b < 0, for t
n

= �1

(4.2)

The maximum margin can be found through minimizing an error function:

argmin

w,b

(
NX

n=1

E1(y(x
n

)t
n

� 1) + �kwk2)
)

(4.3)

Where� is a regularization parameter, andE1 is a function that is zero if z � 0 and1 otherwise.
This means that all observations must be correctly classi�ed. If they are not, we get an in�nite
penalty. They are therefore called support vectors. If we have outliers, we can use a soft-margin
classi�er.

4.2 Soft margin case

y = 1

y = 0

y = �1

⇠ > 1

⇠ < 1

⇠ = 0

⇠ = 0

Figure 4.2: SVM boundary with soft margin2

As mentioned, a soft margin SVM accepts some outliers or overlap. We describe points that
are inside the margin with so-called slack-variables ⇠ �, with one for each point. ⇠

n

= 0 is
assigned to points that are on, or within the correct side of the boundary (inside the margin).
⇠
n

= |t
n

� y(x
n

) for other points. Our constraints are then formulated as:

t
n

y(x
n

) � 1� ⇠
n

, n = 1, ..., N (4.4)

Thus penalizing points that lie on the wrong side of the margin boundary, whilst also maximizing
the margin. We minimize

C
NX

n=1

⇠
n

+

1

2

kwk2 (4.5)

where parameter C > 0 controls the trade-o� between the penalty and the margin, and plays a
similar role as (or the inverse of) a regularization coe�cient. IfC ! 1, our model is a maximum

2Reproduced with permission from Christopher M. Bishop [8] at http://research.microsoft.com/
en-us/um/people/cmbishop/prml/webfigs.htm

http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
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margin classi�er. The soft margin error function can be written as [3][25]:

argmin

w,b

(
1

2

kxk2 + C
NX

n=1

max{1� y
n

(wTx
n

+ b, 0}
)

(4.6)

For a full treatise of SVM algorithms, the reader is referred to Bishop [8] or Abu-Mostafa et al.
[3], where solutions for non-linear boundaries are also presented.



Chapter 5

Hidden Markov Models

Hidden Markov models (HMM) form the basis of most modern speech recognition systems. The
framework has been known quite some time, but modelling techniques have improved over the
years. HMMs are a method of characterizing the observed data samples of a discrete-time se-
ries, such as speech. The assumption is that the data can be analyzed as a parametric stochastic
process. [14] [11] The HMM is as mentioned, a stochastic model. It has transition and emission
(observation) probabilities. In the case of speech, the state is the con�guration of the larynx,
tongue, teeth etc. Each state has a probability distribution, which determines how likely a cer-
tain a phoneme is to be “drawn” out from our bag of possible utterances. This means that the
emissions or observations are conditioned on the state: as we can imagine, changing the fre-
quency of vocal folds’ excitation or positioning of the tongue greatly alters the generated sound.
If the HMM is in a given state s

i

at time t, it has a probability associated with transitioning to
state s

j

at t + 1, which is only dependent on the current state. Take the case of a spoken word,
“hello”. A language model describes the a priori probability P (W ) of that word occurring in En-
glish vernacular. This word is quite common, and so it has a high prior probability. The spoken
word is encoded as a feature vector, and input to our HMM. The likelihood P (O|�) can through
Bayes’ rule be used to �nd the posterior probability P (�|O), which describes how probable it
is that the model parameters � generated the observed acoustic vector, and hence, the word in
question. It is helpful to lay out the terminology before we go further. The terminology below is
adopted from [14] and [16].

1 2 3

O O O

a11

a12

a22

a23

a33

Figure 5.1: Left-to-right HMM with gaussian emission probabilities

• V = V1, V2, ..., Vv

is the output observation alphabet, or vocabulary

• Q = q1, q2, ..., qN are the set of N states

• q0, qF are start and end states not associated with observations

19
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• A = a
ij

is the transition probability matrix, where a
ij

= P (q
t

= j|q
t�1 = i)

• B = b
i

(o
t

) is the output probability matrix, where b
i

(o
t

) is the probability of emitting the
observation o

t

at time t

• O = o1, o2, ..., ot, .. is the observed output of the HMM.

• S = s1, s2, ..., st, ... is the state sequence. It is not observed, but hidden.

• � = (A,B) is the parameter set

We will solve two problems with the HMM: decoding and forced realignment.

• In decoding, we want to discover the best hidden state sequence Q given the observation
sequence O and an HMM � = (A,B).

• In forced realignment, we iteratively �nd better state boundaries, given a posterior vector
of b

i

(o
t

) and a word transcription.

More on these two problems later. For both of these we need the Viterbi algorithm, which will
be explained now. The following approach is adopted from [16].

5.1 Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm. It processes the observation se-
quence left to right, and �lls out a trellis. Each cell of the trellis v

t

(j) represents the probability
that the HMM is in state j after seeing the �rst t observations and passing through the most
probable state sequence q0, q1, ..., qt�1, given the parameters � [16]. The value of each cell v

t

(j)
is computed by recursively taking the most probable path that leads us to this cell [16].

v
t

(j) = max

q0,q1,...,qt�1
P (q0, q1, ..qt�1, o1, o2, .., ot, qt = j|�) (5.1)

Themax indicates that we �nd the most probable path over all possible previous state sequences.
If we have already computed the probability of being in every state at time t � 1, we can now
compute the Viterbi probability by taking the most probable path of the extensions of the paths
that lead to the current cell. For a given state q

j

at time t, the Viterbi probability v
t

(j) can be
computed as [16]:

v
t

(j) =
N

max

i=1
v
t�1(i)aijbj(ot) (5.2)

where v
t�1(i) is the previous Viterbi path probability from the previous time step. In summary,

the goal of the Viterbi algorithm is to �nd the best state sequence q = (q1, q2, .., qT ) given the set
of observations O = (o1, o2, .., oT ). It also needs to �nd the probability of this state sequence,
which is the joint probability of the state and observation sequences [16]. Viterbi is identical to
the related Forward algorithm, except it takes the max over previous path probabilities where
the Forward algorithm takes the sum [16].

5.2 The hybrid ANN/HMM approach

In �gure 5.1 we see that each of the emission probabilities of the observed outputsO has a single
Gaussian distribution. This is a simple model. In reality, this is much too simplistic. Few, if any,
phonemes or attributes, can be accurately modelled with such a distribution. One approach with
which to increase the granularity is to use Gaussian Mixture Models (GMM), where mixtures of
di�erent gaussians form an arbitrarily precise representation of the emission probability. In our
approach with the HMM though, we will not use this. We will instead use the posterior vector
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obtained from the neural network as our emission probabilities. Now, this is a hard decision
in the sense that the neural network only outputs discrete probabilities for each attribute (or
each state of the attributes). In a standard neural network approach, one would simply take the
maximum probability target and assign the input data vector to the corresponding class. The
ANN can include temporal context by splicing data vectors (this is done in this thesis), but to
obtain a document vector for use in the backend, we need to decode a sequence of words (or
in this case, attributes). Feed-forward ANNs are good at discriminating between classes, but
they cannot decode temporal sequences alone. This is where our HMM comes in: it provides
a reasonable structure for representing sequences of words or speech sounds [21]. The ANN
computes posterior probabilities of a state j given the observation vectors P (q

j

|o
t

). What we
really need for the HMM though, is the observation likelihood, b

j

(o
t

), or P (o
t

|q
j

). But we can
use Bayes’ rule to compute the latter from the former [16]. The ANN computes

p(q
j

|o
t

) =

p(o
t

|q
j

) p(q
j

)

p(o
t

)

(5.3)

Rearranging the terms, we get

p(o
t

|q
j

) =

p(q
j

|o
t

) p(o
t

)

p(q
j

)

(5.4)

1 2 3
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a12
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p(o
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|q2)

a33

p(o
t

|q3)

Figure 5.2: Left-to-right HMM with ANN posteriors

The numerator in the right-hand side of eq. 5.4 is the posterior from the ANN, and the de-
nominator on the right-hand side is the prior over the class. We cannot compute p(o

t

|q
j

), but
we can use the ANN posterior along with the ANN prior to form a scaled likelihood, seen on the
left-hand side of eq. 5.4 . The probability of the observation p(o

t

) is constant for all classes dur-
ing recognition[16], and will not change the classi�cation [21], and so it can be ignored, without
causing harm.

5.2.1 Forced realignment

If we use only a single state in our decoding, we are essentially reducing the HMM into a dummy
model for Viterbi decoding. It’s still useful for decoding a word sequence, but a more powerful
method is to use the tristate HMMwith forced alignment. Forced Viterbi alignment is a simpli�-
cation of the Viterbi decoding algorithm, since it only has to �gure out the correct attribute state
sequence, but it doesn’t have to discover the word sequence, which is given. What we get is the
best state path corresponding to the training observation sequence [16]. Consider nine frames
of an attribute. We start with a uniform segmentation of our training data, meaning that each
state has equally many frames, in this case three frames each. We run the data vector through
the already trained ANN, producing a posterior probability for each frame. Then, we use the
posteriors as emission probabilities in the Viterbi algorithm along with the word or attribute
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transcription. The borders between the states are now moved, and we use this new prior vector
to train the ANN. This can be done iteratively with good results, ultimately producing a better
discrimination and decoding system.

5.2.2 Why use this method?

Traditionally, HMMs were used with GMMs. GMMs can model any distribution accurately, pro-
vided enough components. So why replace it with an ANN? As Morgan/Bourlard [21] write,
there are two main reasons to do this.

• Standard HMM approaches require strong assumptions about the statistical character of
the input, in that they assume that successive acoustic vectors are uncorrelated. An ANN
can splice together vectors to provide some context, and thus the network learns something
about the correlations between them.

• Probabilities will be optimized to maximize discrimination between sound classes, rather
than to closely match the distribution within each class. This type of training can be more
conservative of parameters than for example the GMM.



Chapter 6

Articulatory features

The UAR is based on �nding salient, universal features in speech for use in language recognition.
We will now introduce the di�erent attributes that constitute the classes to be discriminated with
the ANN. The descriptions are adopted from Jurafsky et al.[16]. They include both voiced and
unvoiced sounds. Voiced sounds are made by vibrating the vocal chords, while unvoiced sounds
are not made with this vibration. Manner of articulation refers to how air�ow is restricted, while
place of articulation refers to the point of maximal restriction of air�ow.

6.1 Manner of articulation

• A�ricate: Stops followed immediately by fricatives

• Stop: a consonant where air�ow is blocked for a short time

• Flap: sounds made by a quick motion of the tongue against the alveolar ridge

• Fricative: sounds where air�ow is restricted but not blocked

• Glide: sounds where the direction of air�ow glides over the body of the tongue before
exiting the mouth

• Liquid: as for glides, except with the tip of the tongue

• Nasal: sounds made where air is allowed to pass into the nasal cavity

• Sibilant: high pitched fricatives

• Vowel: sounds made with the vocal chords vibrating

6.2 Place of articulation

• Labial: determined by the positioning of the lips.

• Dental: sounds made by pressing the tongue against the teeth

• Coronal: sounds made by pressing the tip of the tongue against the roof of the mouth

• Palatal: sounds made with the blade of the tongue against the alveolar ridge

• Velar: sounds made by pressing the the back of the tongue against the velum, or soft palate

• High: voiced sounds where the tongue is positioned at a high point in the mouth (com-
pared to other voiced sounds)

23
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• Mid: voiced sounds where the tongue is positioned at amid point in the mouth (compared
to other voiced sounds)

• Low: voiced sounds where the tongue is positioned at a low point in the mouth (compared
to other voiced sounds)

• Glottal: sounds made by closing the glottis, i.e. bringing the vocal folds together

6.3 Silence

Silence is also listed as an attribute in this work. Its property lies in its name, and is simply the
absence of audible sound.

6.4 Other

One last attribute that functions more as an anti-attribute, is “other”. Sounds that are unintelligi-
ble or that carry no information can be labelled as “other”. Discontinuities in transcriptions with
respect to time can also be labeled in this way.



Chapter 7

Latent Semantic Analysis

In latent semantic analysis (LSA), we want to �nd the signi�cance of certain attributes occurring
in a document vector. Rare events have more info embedded in them than do frequent events.
We will see how mathematical techniques and terms such as entropy and singular vector de-
compositions can help us map these events into a high dimensional vector space where they can
be easily separated with machine learning techniques. The events in question are speech utter-
ances. The LSA framework was developed for information retrieval, where the aim was to match
words in queries with words in documents [4]. The vector space modelling (VSM) approach used
in this thesis aims to map speech utterances into a high dimensional document vector. An input
spoken utterance is treated as a query, in the terminology of LSA. A feature vector with n-gram
elements (a contiguous sequence of n items) carry some statistics about co-occurrences, and can
say a lot about a language or dialect. Some of the following sections will borrow from Siniscalchi,
Svendsen et al. [24].

7.1 Entropy

It is helpful to know the meaning of the word entropy before going further. Originally a part of
the �eld of thermodynamics, it has been adapted as a term into information theory as well. A
measure of information content in x is dependent on the probability distribution p(x). Given a
uniform probability distribution, an event in which p(x = 0) = 1, x will most certainly be 0.
This means there is not much information in this theorized event. We can de�ne a monotonic
function H(p) which is dependent on the distribution of x.

H(p) = �
X

x2X
p(x

i

)log p(x
i

) (7.1)

where we can use any base logarithm, depending on our application. Distributions p(x
i

) that are
sharply peaked around a few values will have relatively low entropy, while those that are spread
out more evenly will have higher entropy [8].

7.2 Vector space modelling

Suppose an utteranceX , represented by a sequence of speech feature vectors,O, can be decoded
into a spoken document, d(X), consisting of a series of I acoustic units, d(X) = t1, .., ti, .., tI .
The units are drawn from a universal inventory of J attribute labels, U = u1, .., uj , .., uJ . The
spoken documents can be converted into a vector of length M = J , where each entry contains
the number of times that the m

th

label appears in d(X). We can increase indexing power by
using context-dependent modelling and counting n-grams. The vector length is dependent on
the number of n-grams used. If all unigrams, bigrams and trigrams are used, we have M =
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J+J⇥J+J⇥J⇥J . The LSA function f(w
m

) gives us a measure of the signi�cance of having
a particular n-gram in a transcribed document, d(X). Each document is then represented by an
M-dimensional feature vector x = [f(w1), .., f(wm

), .., f(w
M

)]

t where xt denotes the transpose
of x for each spoken document [24].

7.3 Singular value decomposition

The singular value decomposition (SVD) is closely related to principal component analysis (PCA).
The aim of PCA is to �nd the dimension in which data changes most, or equivalently, where we
have biggest variance in that particular dimension’s values. PCA is a form of feature selection,
where we attempt to get rid of redundancy or less informative dimensions [3]. Removing a non-
informative dimension will not hurt our discrimination process (described later). PCA constructs
a small number of linear features to summarize the input data, and it rotates the axes through
a linear transformation so that the important dimensions in the new coordinate system can be
retained while the less important ones get discarded [3]. Singular value decomposition is a gen-
eral way of changing the basis vectors of our new coordinate system. Formally [3], if we have
a data matrix W , we can represent it as a product of three matrices. Assume that W 2 RN⇥R

with N � R. Then,
W = USV T (7.2)

where U 2 Rn⇥d has orthonormal columns, V 2 Rd⇥d is an orthogonal matrix, and S is a non-
negative diagonal matrix. The diagonal elements of S are the singular values ofW , ordered from
largest to smallest, and the number of non-zero singular values is the rank of W , which we can
call d. U contains the left singular values ofW as its columns, and V contains the right singular
vectors ofW , as its columns.

7.4 Latent semantic analysis

A term-count vector is generated by counting the number of times each term appears in the
speech document. A term can be a unigram, bigram or trigram. Term-count vectors of manner
and placewill be separated in this thesis, but they can bemerged to increase discrimination power
[24]. As was mentioned in section 7.1, we can use entropy as a measure of the signi�cance of a
certain event. Regular words like “the” or “a” are commonly used in the English language, and in
Norwegian words like “å” or “du” are not very informative as to which dialect we are classifying.
N-grams are therefore weighted by their likely discriminating power. A term-document matrix
W , is constructed from all N training utterances. The term-document matrix W = {w

i,j

}
consists of weighted count values given by

w
i,j

=

"
1 +

1

logN

X

j=1

N
n
ij

n
i.

log
nij

n
i.

#
n
ij

n
.j

(7.3)

where n
ij

is the number of n-gram i occurs in document j, and n
i.

is the number of times that
n-gram i appears in the N training documents, and n

.j

is the number of n-gram in document j.
The weight is close to zero if the given term has a uniform distribution through our data, and is
close to one if document is very rare. The term-document matrix has a dimension of M ⇥ N ,
where M is equal to the number of n-gram occurences considered (bigram, trigram and so on).
In this thesis, we will use up to trigram. If p is the number of attributes,M = p+ p2 + p3 + p4.
Many of the high number of terms never occur in the data in the training documents, leading to
both a high-dimensional and sparse term-document matrix. This can be improved with the SVD:

W ⇡ ˆW = USV T (7.4)

where U isM ⇥Q, S is Q⇥Q, V is N ⇥Q and Q << M is the rank of ˆW .
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7.4.1 Test documents

A test document ˜d can be used to construct a document vector

ṽ =

˜dTU (7.5)

which is referred to as a pseudo document vector. This can be used in evaluation of the LID
system.
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Gaussian Mixture Models

Gaussian mixture models (GMM) facilitates a richer distribution than what a single Gaussian
distribution can. They will constitute the last LID stage in our system. The following approach
is adopted from Bishop [8]. They can be written as a linear superposition of Gaussians as:

p(x) =
KX

k=1

⇡
k

N (x|µ
k

,⌃
k

) (8.1)

Consider a binary random variable z with a 1-of-K representation, where one of z
k

is equal
to one and the others are zero. The values of z

k

then satis�es z
k

2 {0, 1} and
P

k
z
k

= 1. A
marginal distribution over z can then be speci�ed in terms of mixing coe�cients ⇡

k

:

p(z
k

= 1) = ⇡
k

(8.2)

where parameters {⇡
k

} must satisfy

0  ⇡
k

 1 (8.3)

and
KX

k=1

⇡
k

= 1 (8.4)

We can write the distribution of z as

p(z) =
KY

k=1

⇡zk
k

(8.5)

The conditional distribution of x for a particular value of z is a Gaussian, and can be written
as

p(x|z
k

= 1) = N (x|µ
k

,⌃
k

) (8.6)

or equivalently

p(x|z) =
KY

k=1

N (x|µ
k

,⌃
k

)

zk (8.7)

Themarginal distribution of x can be obtained by summing the joint distribution over all possible
states of z to give

p(x) =
X

z

p(z)p(x|z) =
KX

k=1

⇡
k

N (x|µ
k

,⌃
k

) (8.8)

Which is a marginal distribution of the form seen in eq. 8.1. For every data point x
n

, there is a
corresponding latent variable z

n

. Let us also de�ne another important quantity:
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�(z
k

) ⌘ p(z
k

= 1|x) = ⇡
k

N (x|µ
k

,⌃
k

)

P
K

j=1 ⇡jN (x|µ
j

,⌃
j

)

(8.9)

Where we can view ⇡
k

as the prior probability of z
k

= 1, and �(z
k

) as the posterior proba-
bility once we have observed x, or the “responsibility” that component k takes for “explaining”
the observation x.

If we model a set of observations {x1,x2, ..,xN

}we can now model this data with a mixture
of Gaussians. The data set can be represented as an N ⇥ D matrix X with the nth row given
by xT

n

. The latent variables is denoted by an N ⇥K matrix Z with rows zT
n

. The log-likelihood
function can then be de�ned as

ln p(X|⇡, µ,⌃) =

NX

n=1

ln

(
KX

k=1

⇡
k

N (x
n

|µ
k

,⌃
k

)

)
(8.10)

Maximizing this likelihood is then associated with maximizing the likelihood of the data.

8.1 Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is a method to �nd the maximum likelihood so-
lutions for models with latent variables. We will now see how it can be used for the GMM.

Algorithm 8.1: EM algorithm
1 Initialize the means µ

k

, covariances ⌃
k

and mixing coe�cients ⇡
k

, and evaluate the ini-
tial value of the log likelihood.

2 Expectation step. Evaluate the responsibilities using the current parameters

�(z
nk
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(8.11)

3 Maximization step. Re-estimate the parameters using the current responsibilities

µnew
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(8.12)
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⇡new
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(8.14)

where

N
k

=

NX

n=1

�(z
nk

) (8.15)

4 Evaluate the log-likelihood

ln p(X|⇡, µ,⌃) =

NX

n=1

ln

(
KX

k=1

⇡
k

N (x
n

|µ
k

,⌃
k

)

)
(8.16)

and check for convergence of either the parameters or the log likelihood. If the conver-
gence criterion is not satis�ed, return to step 2.



Chapter 9

Feature extraction

9.1 Mel �lterbanks

The mel-scale was developed to account for the logarithmic nature of human hearing. Humans
do not interpret pitch linearly outside of the range 0-1000 Hz. An approximate formula was
through empirical experiments found to be [14]:

B(f) = 1125 ln(1 + f/700) (9.1)
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Figure 9.1: Mel scale

In using mel �lterbanks, we divide our Fourier transformed signal into triangular bandpass
�lters spaced along the mel-scale, with the �rst �lter being very narrow. The magnitude co-
e�cients are then binned by correlating them with each triangular �lter. Here binning means
that each FFT magnitude coe�cient is multiplied by the corresponding �lter gain and the results
accumulated. Thus, each bin holds a weighted sum representing the spectral magnitude in that
�lterbank channel [2].

1Reproduced from HTKbook with permission from the HTK team [2]
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Figure 9.2: Log mel-scale �lter bank1



Chapter 10

Implementation

The main pipeline that consists of feature extraction, data processing and interfacing with the
software suites HTK, Kaldi and SVM light, is written by professor Sabato Marco Siniscalchi of
Kore University of Enna. Of course, adjustments had to be made to accommodate Norwegian
data, and also to make custom experiments. Additional scripts have been written by the author,
for data processing and result evaluation, as well as top-level experiment scripts. The main
scripting languages used are Bash and Perl. Some Matlab code is also used. In the following
sections the implementation, along with some features of the software suites, will be examined.
In order to follow the plot, the implementation will be outlined from “start to �nish”, with the
required software knowledge along with it. We start with label �le manipulation in HTK, feature
�le generation before giving them as input to the neural network in Kaldi. After this, decoding
will be explained.

10.1 Hidden Markov Model Toolkit

The Hidden Markov Model Toolkit (HTK) is a suite of tools mainly written for HMM-based word
recognition. As such, command-line tools are available for feature extraction, Viterbi training
and realignment, the Forward-Backward algorithm, word network and lattice creation, dictio-
nary and label �le manipulation, and more. The toolbox is quite large, so only the tools used
in this thesis will be outlined below, according to the documentation provided by developers of
HTK [2]. Most of the tools take so-called standard options, names of �les to be processed or
output, and behavioural parameters. These parameters can be written in a con�guration �le

10.1.1 HCopy

HCopy copies one ormore data �les to a designated output �le. It can also convert supported data
formats into the HTK format, concatenate or segment data �les and parameterise the result. In
this thesis, HCopy is used to parameterise .wav or .raw �les into logbank features. The general
form of an HCopy command is:

1 HCopy -T 1 -C config -S list.scp

Where -T 1 a standard trace option with a bit string, where the 1 is set to give us basic
progress reporting from the tool. -C config means that HCopy takes a con�g �le which is
written beforehand, which sets a number of parameters. Lastly, -S list.scp takes in a list of
�les to process. An example of a con�g �le which is used in this thesis is seen below.

1 SOURCEKIND = WAVEFORM
2 SOURCEFORMAT = WAV
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3 SOURCERATE = 1250
4 BYTEORDER = VAX
5 TARGETFORMAT = HTK
6 TARGETKIND = FBANK_D_A_E
7

8 LOFREQ = 64
9 HIFREQ = 4000
10 NUMCHANS = 15
11 USEPOWER = T
12 USEHAMMING = T
13

14 PREEMCOEF = 0
15 TARGETRATE = 100000
16 WINDOWSIZE = 250000
17 SAVEWITHCRC = F
18

19 NUMCEPS = 12
20 WARPFREQ = 1
21 WARPLCUTOFF = 3400
22 WARPUCUTOFF = 3400

Where we have a waveform encoded in the .wav format as input. One of the idiosyncrasies of
HTK is that the sample period (here denoted by sourcerate) must be written in 100 nsec units. So
if we have, as in our case, a source �le with sample rate 8 kHz, this means that the sourcerate is

1
8000⇤100⇤10�9 = 1250. The SOURCEFORMAT is self-explanatory, and in the frontend and backend,
WAV and RAW are used. Note that the .raw format is headerless, meaning no sample rate info
is embedded in the �le, and so it must be explicitly set in the con�g �le before using HCopy.
TARGETRATE sets the frame rate, which means that each frame of 10 ms will later be given a label.
WINDOWSIZE and TARGETRATE are independent; the window size is the segment of the waveform
that is used to determine the parameter vector for the frame in question. A standard choice is
25ms, where we have some overlap over each frame. BYTEORDER = VAX is used to ensure cor-
rect byte order when reading binary �les. The output will be encoded into the HTK format. A
crucial parameter is TARGETKIND, which determines what sort and how many parameters will
appear in the resulting vector for each frame. Here, FBANKmeans that we are using log �lterbank
coe�cients. The options _D_A_E adds delta, acceleration and energy coe�cients. LOFREQ and
HIFREQ denotes lower and upper frequency cuto�s for the �lterbank analysis, respectively. We
have NUMCHANS = 15, meaning 15 critical bands for the �lterbank analysis. Setting USEPOWER

and USEHAMMING to true means that we are using power rather than magnitude of the Fourier
transform in the frequency bins, and the Hamming window over 25ms. We use no preemphasis
coe�cients with the samples. SAVEWITHCRC can be set to attach a checksum to the output pa-
rameter �le. The last four lines are only relevant if we are using MFCC features. In this thesis,
FBANK is used exclusively.

10.1.2 HLEd

HLEd is used for manipulating label �les. An HLEd command extensively throughout this work
is:

1 HLEd -n dict_CI -l '*' -i attributeCI.mlf place.led phone.mlf

Where -n outputs the new label names to a �lename speci�ed as dict_CI. -i is prepended
before the name of the new attribute level master label �le. -l '*' simply gives us an mlf with
the pattern "*/xxx" which means that it is independent of the location of the data �les that
correspond to each sentence in the mlf. place.led is the �le which maps phonemes to attributes.
An example of this is seen below:
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1 RE labial b f m p v w
2 RE coronal d dx en l n s t z er r
3 RE palatal y jh ch zh sh
4 RE low aa ae aw ay oy
5 RE dental dh th
6 RE mid ah eh ey ow
7 RE high ih iy uh uw
8 RE velar g k ng
9 RE glottal hh
10 RE sil pau
11 ME sil sil sil

Each subsequent phoneme following the command RE <attribute> is mapped to that attribute.
To illustrate:

1 RE <attribute> <phoneme1> <phoneme2> <phoneme N>

Also, the command ME sil sil silmerges any repetition of sil into one instance. An example
of a context independent dictionary produced by HLEd is:

1 coronal
2 dental
3 glottal
4 high
5 labial
6 low
7 mid
8 palatal
9 sil
10 velar

This is simply a list of all attributes that result from the conversion from a phone level mlf to
an attribute level mlf. To convert the context independent mlf into a context depedent one, for
example right context (RC), we could execute the following:

1 HLEd -n dict_RC -l '*' -i attributeRC.mlf RC.led attributeCI.mlf

Where we have essentially repeated the process from before, only this time, the �le RC.led is
simply composed of:

1 #TC
2 ME sil sil sil
3 RC
4 #LC

Here, the commented lines are the other possible con�gurations. TC meaning triphones (both
left- and right contexts), and LC meaning left context. The uncommented lines will be evaluated
by HLEd. The merge command is included here, also.

To summarize, HLEd gives us the required context independent or context dependent at-
tribute level label �les. This can be done in batch mode, and an example script to do this is found
in the appendix. A script is also provided to combine mlfs of di�erent languages into one. Care
must be taken to start an mlf with

1 #!MLF!#
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HLEdHLEd
phone.mlfphone.mlf

CI.ledCI.led

refCI.mlfrefCI.mlf

CI.dictCI.dict

HLEdHLEd
refCI.mlfrefCI.mlf

CD.ledCD.led

refCD.mlfrefCD.mlf

CD.dictCD.dict

Figure 10.1: Making a context dependent mlf
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and to end each sentence/�le with a dot

1 .

What we need for the neural network, however, is information about both features and labels in
one �le. We will learn more about in the next section concerning p�les.

10.1.3 HVite

Realignment is done with ICSI-tools, described later. It could also be done in HVite. We will
however, only use HVite for decoding. HVite is a general purpose Viterbi word recogniser (or in
our case, attribute recogniser). Here too, we use con�guration �les as input to the tool. In addi-
tion, we need a word lattice, a dictionary, htk feature �les and a list of HMMs. The appropriate
command for decoding is shown below.

1 HVite -l '*' -i output.mlf -C config_net -w wdnet -s 1.0 -p 0.0 -S ...
htk_filelist.scp -H hmmproto dict hmmlist

Here, we have no penalty and no grammar scaling. Throughout the work, these two param-
eters were kept this way. They could potentially improve decoding with some experimenting.
For evaluation of the results, the arguments -o S need to be added. The reason is that a script
written by the author requires the output form that is obtained with these arguments.

10.2 Strbut2HTK

Strbut2HTK is a little program written in C, by Marco Siniscalchi. It “Gaussianises” the log-
posteriors from the ANN. This is done to �t it with the HTK framework with GMMs. We have
that
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where N is the observation dimension, and we assume µ = 0. Thus:

log P (O|�) = GCONST � 1

2

OT

⌃

�1O (10.3)

GCONST is a variable in HTK, and is calculated bymultiplying the determinant of the covariance
matrix by (2⇡)N . We set this to zero in all experiments. The variance for attribute i is set to 1,
and the variance for the other attributes is set to a large number (practically in�nite). In addition
to this, Strbut2HTK takes in a posterior probability X , such that

O =

p
�2P (�|X) (10.4)

and

log P (O|�) = �1

2

O2
= P (�|X) (10.5)
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10.3 ICSI

10.3.1 P�les as feature �les

P�les are a convenient format with a long history, originating in the International Computer
Science Institiute (ICSI). The format is also quite simple, with the �rst column containing the
sentence or �le number, the second column containing frame number within the �le, followed
byN number of features according to our implementation, and ended by a label. The number of
rows is of course dependent on how many �les and frames we have. An example is seen below.

1 0 0 11.784 13.2271 12.7112 9.97669 9.51784 8.93385 9.32022 9.84839 ...
9.77048 9.75651 9.52307 9.63518 9.96957 10.9014 9.98486 0.226576 ...
0.19763 -0.0563804 -0.0555905 -0.378597 0.0535857 -0.000593472 ...
-0.0215122 -0.072628 -0.176922 -0.176556 -0.0188554 -0.0307481 ...
0.0389602 -0.0674485 -0.00179329 0.000112391 -0.0894245 0.0179495 ...
0.0142691 0.050391 -0.0288078 0.0534145 0.0435024 0.0228186 0.102601 ...
0.0817752 0.0280314 0.0438226 -0.0130251 -0.0254204 -0.0131989 ...
-9.83435e-05 8

10.3.2 P�les as posterior �les

The format can in principle encode any info vector in binary, provided proper formatting at
the human-readable level. Underneath, an example of a log-posterior vector is seen. As before,
sentence and frame numbers precede the posteriors.

1 0 0 -6.77103 -6.104 -6.98091 -7.79767 -7.30796 -8.22175 -12.3695 ...
-12.7881 -12.4091 -9.38573 -8.82207 -8.04157 -5.81232 -5.12931 ...
-6.24505 -11.6171 -10.1496 -8.67616 -9.29866 -8.76515 -7.28647 ...
-11.0553 -11.0238 -10.7244 -1.02345 -1.14843 -1.29596 -8.82008 ...
-8.63673 -9.39287 -5.2201 -4.60787 -4.14726

10.3.3 Tools

The ICSI utilities are numerous, and explaining each of them in detail is beyond the scope of this
report. But the tools that are used here, will now be outlined in broad strokes.

• p�le_create: Creates a p�le given a feature stream and labels, or alternatively, posteriors.

• feacat: Feature stream converter. Can convert and concatenate HTK �les into p�les.

• p�le_patchlabels: Patches labels, or appends them to an existing p�le.

• p�le_info: Outputs number of sentences, frames, labels and features in a p�le.

• p�le_labs: Can expand a labelled p�le into a tristate uniformly segmented label sequence

• p�le_print: Can print a p�le into a human-readable format

• p�le_realign: Performs Viterbi alignment with

1. An input labelled p�le with features

2. An input posterior vector

3. A realigned p�le as output
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10.4 Kaldi

Kaldi is an open source toolkit written in C++, originating in a project at Johns Hopkins Uni-
versity. It includes a vast amount of code which together constitutes a package for extracting
features, training neural networks, RBMs and more. It also has some interfacing capabilities
with other software suites such as HTK. One of the developers, Karel Vesely, has written an im-
plementation of Kaldi in a set of Bash scripts. They have since been slightly modi�ed by Marco
Siniscalchi to �t with his framework, and the resulting package is used in this thesis. Only small
parameter changes have been made by the author. Explaining how the bits and pieces of the
Kaldi framework �t together is far beyond the scope of this thesis, and the reader is referred
to its documentation page at http://kaldi-asr.org for in-depth explanations. Vesely’s
implementation will, however, be explained in broad strokes.

10.4.1 Karel’s implementation, nnet1

The implementation of Kaldi that is used, is Karel Vesely’s code, which is mainly (but not exclu-
sively) a set of shell scripts that calls on Kaldi functions, in a proper order. It is best documented
at http://kaldi-asr.org/doc/dnn1.html. The RBM parameters are tuned on a
100 hour Switchboard set, which is far larger than what we have at our disposal. In this respect,
it would be prudent to do one’s own tuning, but it was deemed to costly to spend time on in this
thesis. Vesely’s original recipe can also do feature extraction, but for our purposes, this is done
in HTK. The top level scripts used are [28]:

• pretrain_dbn.sh - which implements unsupervised RBM training with CD1 contrastive
divergence. Gauss-Bernoulli units are used in the�rst RBM, followed by stacks of Bernoulli-
Bernoulli units. Variance in the training data is compared to the variance of the recon-
struction data in a minibatch, and if the latter is> 2⇥ larger, the weights are shrinked and
learning rate temporarily reduced.

• train.sh - �ne-tunes the standard backpropagation step, with weights initialized by the
RBMs. Output layer is initialized randomly. Mini-batch stochastic gradient descent with
sigmoid hidden units and softmax output is used. Standard is learning rate of 0.008, size of
minibatch 256. The cross validation set is used to do early stopping with a cross-entropy
objective function, to prevent over�tting.

Before being input to the RBM, 5 frames are added from past and future with respect to the
current frame, so that the current frame is Xt+5

t�5 . As mentioned before, this gives the neural
network some context to work with, so that each training vector isn’t just dependent on the
current frame. Note that the delta and acceleration coe�cients also provide some indication of
the trajectory of the speech signal.

10.4.2 Folder structure

Since we do feature extraction outside of the Kaldi environment, some intermediate steps has to
be done before training. We will later learn more about the pipeline that leads us here. For now,
let’s look at the folder structure. The label �les are called “alignment �les” in Kaldi’s terminology.
As an example, for the place attributes, the labels are kept compressed in a folder whose name
indicates its set association.

1 kaldi-trunk/egs/ogi/s5/exp/place_cd_ali_dev/ali.1.gz

The exp folder structure is remade each time we train a new neural network. Feature �les are
kept in a folder named

http://kaldi-asr.org
http://kaldi-asr.org/doc/dnn1.html
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1 kaldi-trunk/egs/ogi/s5/data-fbank

which is, of course, also remade for each new neural network.

10.4.3 Running training scripts

A pretraining can be invoked with the following command

1 dir=exp/place_pretrain-dbn
2

3 $dir/log/pretrain_dbn.log steps/nnet/pretrain_dbn.sh --rbm-iter 3 ...
data-fbank/develop/ $dir

where pretrain_dbn.sh is the pretraining script, iterations are set with --rbm-iter, and as
mentioned, feature �les is found in data-fbank/<set>. For the backpropagation layers, a train-
ing script can be invoked as:

1 $dir/log/train_nnet.log steps/nnet/train.sh --feature-transform ...
$feature_transform --dbn $dbn --hid-layers 0 --learn-rate 0.008 ...
data-fbank/train data-fbank/develop data-fbank/lang $ali_train ...
$ali_cv $dir > train.log&

Where the pretrained RBM location is speci�ed with --dbn. Here, the label �les are required,
since it is not an unsupervised algorithm, like the pretraining is. One peculiar thing about the
setup is that the hidden layers are set in advance, in train.sh. Setting --hid-layers to zero en-
sures that no extra layers beyond this speci�cation are appended. Another thing is the num-tgt
parameter in train.sh. It needs to be set according to the number of attributes we are discrim-
inating, but also according to which context. A CI attribute would only need one class, but with
a RC system, we need (Number of attributes)2+ oth classes. If we further add tristate classes,
we need ((Number of attributes)2 + oth) ⇤ 3 classes. Failing to set the proper number of tar-
gets will (luckily) crash the training process. Note that the “oth” shouldn’t really be modelled as
a tristate attribute. More on this in the Experiment section.

10.4.4 Resulting �les

For each completely trained network, two�les need to be kept for further use. One is final.feature_transform
and the other is final.nnet. The former can for example look like

1 num-components 3
2 input-dim 48
3 output-dim 528
4 number-of-parameters 0.001056 millions
5 component 1 : <Splice>, input-dim 48, output-dim 528,
6 frame_offsets [ -5 -4 -3 -2 -1 0 1 2 3 4 5 ]
7 component 2 : <AddShift>, input-dim 528, output-dim 528,
8 shift_data ( min -15.1179, max 4.35164e-05, mean -4.35758, variance ...

41.6607, stddev 6.45451, skewness -0.821935, kurtosis -1.30548 )
9 component 3 : <Rescale>, input-dim 528, output-dim 528,
10 scale_data ( min 0.256994, max 70.4746, mean 4.20308, variance ...

108.776, stddev 10.4296, skewness 5.53381, kurtosis 31.4043 )

for a CI training of one state classes. The input dimension is 48, according to our number of
logbank features and additional coe�cients. The output dimension is 528 because of the splicing
of feature vectors: 48 ⇤ (1 + 5 + 5) = 528. The feature transform does three things:

• Splices features
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• Shifts features to have zero mean

• Scales features to have unit variance

For the same network, final.nnet carries contains the weights and statistics about weights
that have been learned in the training process:

1 num-components 14
2 input-dim 528
3 output-dim 11
4 number-of-parameters 22.0877 millions
5 component 1 : <AffineTransform>, input-dim 528, output-dim 2048,
6 linearity ( min -1.80865, max 1.3898, mean -0.000922673, variance ...

0.00299962, stddev 0.0547688, skewness 0.259902, kurtosis 17.8454 )
7 bias ( min -5.36165, max -0.302768, mean -3.26977, variance 0.335196, ...

stddev 0.578961, skewness 0.766596, kurtosis 4.81403 )
8 component 2 : <Sigmoid>, input-dim 2048, output-dim 2048,
9 component 3 : <AffineTransform>, input-dim 2048, output-dim 2048,
10 linearity ( min -1.50755, max 2.43644, mean -0.00271999, variance ...

0.00287751, stddev 0.0536424, skewness 1.23347, kurtosis 41.5754 )
11 bias ( min -42.4032, max 59.3772, mean -4.21697, variance 15.2342, ...

stddev 3.9031, skewness 0.527746, kurtosis 71.9775 )
12 component 4 : <Sigmoid>, input-dim 2048, output-dim 2048,
13 component 5 : <AffineTransform>, input-dim 2048, output-dim 2048,
14 linearity ( min -3.0185, max 3.12063, mean -0.00268391, variance ...

0.00259756, stddev 0.0509663, skewness 3.31557, kurtosis 155.823 )
15 bias ( min -12.1571, max 3.80626, mean -3.60882, variance 0.732204, ...

stddev 0.855689, skewness -0.342962, kurtosis 14.5589 )
16 component 6 : <Sigmoid>, input-dim 2048, output-dim 2048,
17 component 7 : <AffineTransform>, input-dim 2048, output-dim 2048,
18 linearity ( min -2.77141, max 3.75801, mean -0.00189897, variance ...

0.00204982, stddev 0.0452749, skewness 4.48462, kurtosis 225.94 )
19 bias ( min -16.1135, max 2.68882, mean -3.91713, variance 2.09377, ...

stddev 1.44699, skewness -2.8918, kurtosis 15.1214 )
20 component 8 : <Sigmoid>, input-dim 2048, output-dim 2048,
21 component 9 : <AffineTransform>, input-dim 2048, output-dim 2048,
22 linearity ( min -2.69317, max 3.05688, mean -0.00198038, variance ...

0.00187974, stddev 0.043356, skewness 5.69599, kurtosis 279.882 )
23 bias ( min -8.68595, max 2.35644, mean -3.7733, variance 0.464799, ...

stddev 0.681762, skewness 0.888941, kurtosis 14.4933 )
24 component 10 : <Sigmoid>, input-dim 2048, output-dim 2048,
25 component 11 : <AffineTransform>, input-dim 2048, output-dim 2048,
26 linearity ( min -3.07659, max 2.70959, mean -0.00294674, variance ...

0.00178236, stddev 0.042218, skewness 4.27828, kurtosis 272.425 )
27 bias ( min -17.6855, max 3.14401, mean -3.85512, variance 1.26257, ...

stddev 1.12364, skewness -3.18669, kurtosis 22.9487 )
28 component 12 : <Sigmoid>, input-dim 2048, output-dim 2048,
29 component 13 : <AffineTransform>, input-dim 2048, output-dim 11,
30 linearity ( min -1.8421, max 2.12262, mean 0.00106659, variance ...

0.0411283, stddev 0.202801, skewness 0.45185, kurtosis 10.6692 )
31 bias ( min -0.963688, max 0.696117, mean -8.45302e-07, variance ...

0.362841, stddev 0.602363, skewness -0.503332, kurtosis -1.40392 )
32 component 14 : <Softmax>, input-dim 11, output-dim 11,

Here, we have 11 output classes, since it is a CI training of 10 attributes + “oth”. The number of
neurons per layer is set uniformly to 2048, which explains the output and input dimensions. The
layers are connected with a�ne transforms followed by sigmoid layers. Note that estimates are
made for Cepstral Mean Variance Normalization (CMVN) internally in the Kaldi scripts, and this
is why normalization is not done in feature extraction, prior to the training.

Having these two �les, we are ready to use them for testing and classi�cation.
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10.5 SoX

Sound eXchange (SoX) http://sox.sourceforge.net is, as the developers call it, a
“swiss army knife” of sound processing programs. It has ready-made implementations of down-
sampling and upsampling of audio, play and record functionality, and �ltering included. The
tools can be called upon in the command line, facilitating batch methods to processing databases
of audio. Some commands used in this thesis will now be outlined. Some examples to do batch
downsampling and �ltering is shown in the appendix, along with a handy script for calculating
the total duration of a given set of input audio �les.

10.5.1 Downsampling

To downsample a wav �le, a simple command can be called:

1 sox $foo.wav $bar.raw rate -s -a 8k

Note that since the input is a wav �le, there is no need to specify input sample rate. Only the
output sample rate needs to be speci�ed, which in this case is 8 kHz.

10.5.2 Filtering

Since the Callfriend database that is used in this work is encoded in the µlaw format, which is
bandlimited to 300� 3400Hz, it is prudent to �lter other formats in addition to downsampling
it.

1 sox -r 8000 -e signed -b 16 -c 1 $foo ${bar}.raw sinc 250-3450

The above command �lters a 16 bit, one channel signed raw �le with a sinc �lter, with cuto�s
at 250 and 3450Hz, which is near the Nyquist frequency at 8 kHz. Here, telephone quality is
assumed to be 300 � 3400 Hz. The sinc �lter used in this work is seen below. The upper
and lower cuto�s were chosen such that they are not too “strict”, and that they do not remove
too much frequency content in the upper band. Some early tests were made both subjectively
through listening to �ltered �les, and through a test with the TIMIT database, that showed better
recognition with the sinc �lter shown below, than with a more constrained cuto�. Even setting
the upper cuto� to 3400Hz was noticeably more “tinny” than what the Callfriend sounds like,
unprocessed.

10.6 SVM light tools

SVM light tools is an implementation of SVMs, written in C by Thorsten Joachims. It uses fast
optimization algorithms, and is well suited for classi�cation problems. The two main functions
we use are outlined in the next sections.

10.6.1 Training a model

All we need is a simple command, where the number following -j determines the cost-factor, by
which training errors on positive examples outweigh errors on negative examples [1].

1 svm_learn -j ${weight} ${set}.dat theModel

A set of training examples are provided in the .dat �le, and the trained model is output. The
weight factor is included to account for the imbalance of positive and negative examples in a

http://sox.sourceforge.net
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one-versus-all training [22]. This can also be called multiplying by cost factors, where training
errors on positive examples outweigh errors on negative examples [1]. Default is 1.

10.6.2 Testing a model

Again, a simple command is used for testing the model.

1 svm_classify test.dat theModel ${set}.pred

This is about as much knowledge that is needed to proceed with this tool. For further infor-
mation, the reader is referred to the tool’s website at at http://svmlight.joachims.
org.

http://svmlight.joachims.org
http://svmlight.joachims.org


Chapter 11

Experiments: Frontend

The use of software has been explained in the last chapter. Now, we will see how it all ties
together, while going through some of themethodology. Wewill also see some results and discuss
them. The goal was to compare manner and place attributes and the performance of the system
using them, but �rst the system needed to be proven to work for one of them, as a �rst step. The
bulk of the work on the frontend was dedicated to

1. Experimenting with Siniscalchi’s setup, connecting the pieces of the pipeline

2. Appropriating data for processing

3. Creating CI and CD master label �les

4. Fitting the pipeline to tristate HMM decoding

5. Implementing Viterbi realignment and retraining the networks

6. Evaluating the realigned networks and comparing them to ordinary networks

11.1 Databases

Three databases were used for experiments in the frontend. The “story” part of the OGI database
is used for training the UAR. Six di�erent languages are included in the training, ensuring a
diverse set. The selection for OGI data was kept as in Siniscalchi’s setup. The Norwegian

Table 11.1: Durations in hours for OGI training sets

English 2.64
German 1.30
Hindi 0.89
Japanese 0.83
Mandarin 0.79
Spanish 1.38
Total 7.83

testing data is taken from part 1 of NAFTA, which consists of transcribed, planned out sentences.
As such, it is good for testing the UAR. TIMIT is a purely English database with transcriptions. It
is sampled in 16 kHz, and had to be downsampled to 8 kHz as well as �ltered to resemble OGI’s
µlaw format. The same goes for NAFTA, except it is sampled at 48 kHz.

44
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Table 11.2: Durations in hours for OGI CV sets

English 0.21
German 0.10
Hindi 0.06
Japanese 0.06
Mandarin 0.04
Spanish 0.10
Total 0.57

Table 11.3: Durations in hours for test sets

NAFTA 3.29
TIMIT 1.44



46 CHAPTER 11. EXPERIMENTS: FRONTEND

11.2 Feature extraction

Feature extraction has been explained in the Implementation chapter, where we used HCopy to
extract log melbank features. The example of a parameter set for HCopy shown there, is used for
every language and dialect. To automate the process, Marco Siniscalchi has written a script called
ogi_place.sh. It takes in a list of training, testing and cross-validation �les, a dictionary and an
MLF. It calls on HCopy to extract features with the con�guration outlined in the implementation
chapter. These features are concatenated to produce a single �le per data set (training,test or
cross-validation). It not only produces feature �les in the p�le format, with labels. It also checks
for discontinuities in the input MLFs, and labels themwith the “oth” mark. With this comes some
warnings:

1 WARNING: Discontinuity - frames 4845:4877 in file GEcall-101-G.story-bt.
2 WARNING: The feature file 'GEcall-101-G.story-bt' is shorter than ...

labels: 4881 / 4882.

These discontinuities are often silence that are not labelled from frame zero to the start in the
original transcriptions. They can also be caused by mappings done to the originals in converting
them to an HTK friendly format, or in compacting the original phone set. Below we see an
excerpt of the phone level German OGI MLF that is used as input to HLEd:

1 482520000 483890000 A:
2 483890000 484560000 d
3 487700000 488240000 pau

The raw, original transcription included in the OGI database, looks like:

1 48252 48389 A:
2 48389 48439 dc
3 48439 48456 d
4 48456 48770 .br
5 48770 48824 .pau

Here, we see that dc and d has been compacted together. Notice that some extra zeroes are ap-
pended to �t with the HTK time format mentioned in the implementation chapter. The phoneme
.br has also been cut out, leaving us with a discontiuity before the pau segment (which will be
replaced with sil later on). There are many such instances in the OGI mappings. Regrettably,
they were not provided with the code, and so a thorough review of them could not be performed.
The “oth” label is primarily intended to represent sounds other than intelligible speech or silence
(such as coughing), and so training an ANN with speech or silence labelled as “oth” is thought to
potentially harm the training, albeit perhaps to a negligible degree. After p�les are made, with
features and labels embedded, they are moved to a new folder, Pfile2Kaldi, for converting the
p�les to the Kaldi format. A script to perform all of this is condensend into eyscript.sh. There,
three types of �les are made. One is a �le that gives the borders between di�erent sentences.
ali_train_labs.scp is an example.

1 GEcall-1-G :11
2 GEcall-10-G :13253
3 GEcall-100-G :25593

Each �le is given a number which indicates where the corresponding feature and frame se-
quence starts, in the .ark �le. The .ark �le is a generic format that can contain posteriors,
features or labels. An outtake from a label sequence:
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1 GEcall-1-G 79 79 79 79 79 79 79 99 99 99 29 29 29 29 29 29 4 4 4 4 4 4 ...
4 4 39 39 39 39 39 39 39 99

It starts with the name of the �le, followed by the labels. The frame posteriors from an English
�le of 33 posteriors are similarly listed as:

1 ENcall-167-G [
2 -8.428092 -6.21559 -7.195301 -8.495845 -7.85171 -9.073958 -14.80102 ...

-14.32045 -13.61943 -8.056107 -9.656265 -8.614976 -6.54748 ...
-5.498335 -9.241637 -11.98215 -12.986 -11.51024 -9.811481 ...
-10.03226 -7.903199 -11.67692 -11.08974 -11.50559 -1.216823 ...
-0.6279603 -1.884112 -10.92035 -8.802866 -11.24253 -8.064992 ...
-7.670111 -4.984917

If we want a tristate training, we must divide the posteriors into three uniform segments to
begin with. This is done with pfile_labs -st 3 -i train.pfile -o trainthree.pfile. A
modi�ed version of eyscript.sh, eyscript_tristate.sh, adds this to the process, before doing
the same conversion into Kaldi format, mentioned before. A last step encodes the features into
binary, for use in ANN training.

1 copy-feats ark:train.ark.txt ark,scp:train.ark,feats.scp

The labels are also compressed into the .gz format.

1 gzip -c ali_train_labs.ark > ali.1.gz

11.3 ANN training

For each data set (training, test and cv), we nowhave a folder containing the�le position sequence
feats.scp, and the features <dataset>.ark. The training can now commence. We use the com-
mands mentioned in chapter 10 to start pre-training. The parameters set in pretrain_dbn.sh

are set to be the same for all experiments. They are listed in table 11.4, where L2 penalty refers

Table 11.4: RBM parameters

Num hidden layers 6
Num neurons per layer 2048
Standard dev GBRBM 0.01
Standard dev other RBMs 0.1
Input type to �rst RBM Gaussian
RBM iterations 3
RBM learning rate for Gaussian units 0.01
RBM learning rate for other units 0.4
L2 penalty 0.0002

to a penalty function that is half of the sum of the squared weights times a coe�cient called
the weight-cost. This is called weight decay, which limits the growth of the weights [13]. The
number of neurons and layers are the same as in the pretraining script, for train.sh. The target
number is set according to number of classes. As mentioned before, we always splice 5 features
on each side of the current frame before inputing it to the GBRBM. All of the steps needed to run
a complete training is included in the script masterplace.sh, found in the appendix. It takes
arguments CI, RC, LC or TC to train the network with a requested context, and it can also train
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with either single- or tristate attributes. There is an extra binary argument called “compacted”
which refers to the LEDs. If attributes are combined to produce a lower resolution class set, this
is referred to as compaction in the script. Unfortunately, there was not time to experiment with
this, and the full resolution was kept throughout all experiments. An option to bypass ANN
training can also be chosen, mostly for control purposes. One bene�t of automating training
with shell scripts is of course time saving, but it also ensures that training is done correctly each
time, without forgetting important steps. Care must be taken, though, to check for anomalies
during and after training. For example, one issue mentioned in the implementation chapter, is
that adding –num-layers=6 to the train.sh command appends unwanted layers to the network,
and was only seen after training the network. This has since been avoided.

11.4 Realignment

Realignment is only done for the tristate networks. For them, we need to �nd better segmentation
borders between attribute states. This is, as mentined, done with the Viterbi algorithm imple-
mented in the pfile_realign binary. The realignment training is also automated in realign_train.sh,
found in the appendix. It is best understood by reading the code, but a rundown will be done be-
low. Note that in this example, we use the place attributes with right context, giving 303 classes
including “oth”.

Algorithm 11.1: Realignment
1 Do feature extraction, p�le conversion to kaldi format and tristate conversion, and train
the �rst network with masterplace.sh. Keep the features in a Kaldi folder

2 Do a forward pass for each data set (train, test, cv) through the obtained network
3 Copy the posteriors obtained after the forward pass to a temporary folder
4 Copy the p�les that were converted to kaldi format and used to train the previous net-
work, to a temporary folder

5 Convert the posteriors obtained after the forward pass to p�le format
6 Calculate class priors over the frames from the previous p�le
7 Realign with pfile_realign, using the p�le formatted posteriors, the previous p�le con-
taining features and labels

8 Convert the realigned p�les (train, cv, and test) to kaldi format, using only the new labels.
The features from the �rst step is kept and reused through the process, since they do not
change.

9 Train a new ANN using the new segment borders
10 Repeat while noticeable improvement

An example of how realignment changes the segment boundaries is seen below. Now, it may
not make much sense to model silence as a tristate attribute either. But the example at least
illustrates what happens to an attribute when its segment borders are realigned. The same is
done for the other attributes.
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Figure 11.1: Realignment procedure
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Table 11.5: CI 3-state realignment of “ENcall-112-G.story-bt.wav”

Sentence nr Frame nr Uniform label 1st realigned label 6th realigned label
0 0 sil_1 sil_1 sil_1
0 1 sil_1 sil_2 sil_2
0 2 sil_1 sil_2 sil_2
0 3 sil_1 sil_2 sil_2
0 4 sil_1 sil_2 sil_2
0 5 sil_1 sil_2 sil_2
0 6 sil_1 sil_2 sil_2
0 7 sil_1 sil_2 sil_2
0 8 sil_1 sil_2 sil_2
0 9 sil_2 sil_2 sil_2
0 10 sil_2 sil_2 sil_2
0 11 sil_2 sil_2 sil_2
0 12 sil_2 sil_2 sil_2
0 13 sil_2 sil_2 sil_2
0 14 sil_2 sil_2 sil_2
0 15 sil_2 sil_3 sil_2
0 16 sil_2 sil_3 sil_2
0 17 sil_2 sil_3 sil_2
0 18 sil_3 sil_3 sil_2
0 19 sil_3 sil_3 sil_3
0 20 sil_3 sil_3 sil_3
0 21 sil_3 sil_3 sil_3
0 22 sil_3 sil_3 sil_3
0 23 sil_3 sil_3 sil_3
0 24 sil_3 sil_3 sil_3
0 25 dental_1 dental_1 dental_1
0 26 dental_1 dental_2 dental_2
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11.5 Decoding

In all, 31 networks were trained, including all realignment iterations. The �rst round of training
was done without English data to see how the networks fare as truly general, universal attribute
recognisers. It was planned to test the networks with both Norwegian and TIMIT. The networks
are:

• CI 1-state no english

• CI 3-state no english

• RC 1-state no english

• RC 3-state no english

• CI 3-state all data

• RC 3-state all data

where it is implicit that the 3-state networks were realigned. Before decoding, feature extraction
using HCopy is done, with the same con�guration as before ANN training, only with .raw �les
instead of .wav �les. Then, the features that result are concatenated into the .ark format, using
a C program written by Marco Siniscalchi, htk2ark.

1 htk2ark language_dataset_fea.scp language_dataset_concat.ark

The ark �le is then input to the ANN with a forward pass, producing posterior vectors for each
frame. To decode with HVite, the posteriors are converted into HTK format, with the Kaldi
command

1 copy-feats-to-htk --output-ext=lop --output-dir=logposterior/ ...
ark:language_dataset_out.ark

An additional step is needed to “Gaussianize” the posteriors for use with HVite (HVite is designed
for use with GMMs).

1 strbut2htk $posterior_number language_dataset_lop.scp

We need 4 di�erent con�gurations for HVite, because we train CI and RC networks, each with
either single state or tristate classes. Let’s look at the steps needed for con�guration. First, the
dictionary referred to as dict:

1 coronal coronal
2 dental dental
3 glottal glottal
4 high high
5 labial labial
6 low low
7 mid mid
8 palatal palatal
9 sil sil
10 velar velar
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In a conventional word recognizer, the dictionary would be a set of mappings from a higher
level representation to a lower one. That is, from a word down to phonemes. In our case, at-
tributes is as low as we go, and this explains the identical columns; we have a one-to-one map-
ping. If we use a context-dependent system, we can either specify the expanded attributes man-
ually, or simply add a few lines to the con�guration �le that is input to HVite. Note that if we
are decoding a CI system, this is not needed. The con�guration �le, referred to as config_net,
looks like:

1 FORCECXTEXP = T
2 ALLOWXWRDEXP = T

Where FORCECXTEXP means “force context expansion”, and ALLOWXWRDEXP means “allow cross-
word expansion”. When both are set true, full cross-word context expansion will be performed.
HNet is the module that does this expansion. It infers the required expansion from the dictionary
and the associated list of HMMs, hmmlist. The grammars for CI and RC are listed in tables 11.6
and 11.7.

Table 11.6: CI attributes

Number Attribute
0 coronal
1 dental
2 glottal
3 high
4 labial
5 low
6 mid
7 palatal
8 sil
9 velar

The word network can be made in HTKwith HParse, which creates an .slf �le that contains
all legal sequences. The CI grammar is illstrated in �gure 11.2. The grammar for RC is identical,
except of course, that it has more HMM models.

Lastly, we look at the HMM de�nitions in hmmproto. The �rst few lines of the hmmproto for
3-state CI look like:

1 ⇠o <VecSize> 30 <USER>
2 ⇠s "coronal__2"
3 <Mean> 30
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 <Variance> 30
6 1.0 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...

1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...
1e30 1e30 1e30

7 <GConst> 0
8 ⇠s "coronal__3"
9 <Mean> 30
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 <Variance> 30
12 1e30 1.0 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...

1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...
1e30 1e30 1e30

13 <GConst> 0
14 ⇠s "coronal__4"
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Table 11.7: RC attributes

Number Attribute Number Attribute
0 coronal+coronal 50 low+coronal
1 coronal+dental 51 low+dental
2 coronal+glottal 52 low+glottal
3 coronal+high 53 low+high
4 coronal+labial 54 low+labial
5 coronal+low 55 low+low
6 coronal+mid 56 low+mid
7 coronal+palatal 57 low+palatal
8 coronal+sil 58 low+sil
9 coronal+velar 59 low+velar
10 dental+coronal 60 mid+coronal
11 dental+dental 61 mid+dental
12 dental+glottal 62 mid+glottal
13 dental+high 63 mid+high
14 dental+labial 64 mid+labial
15 dental+low 65 mid+low
16 dental+mid 66 mid+mid
17 dental+palatal 67 mid+palatal
18 dental+sil 68 mid+sil
19 dental+velar 69 mid+velar
20 glottal+coronal 70 palatal+coronal
21 glottal+dental 71 palatal+dental
22 glottal+glottal 72 palatal+glottal
23 glottal+high 73 palatal+high
24 glottal+labial 74 palatal+labial
25 glottal+low 75 palatal+low
26 glottal+mid 76 palatal+mid
27 glottal+palatal 77 palatal+palatal
28 glottal+sil 78 palatal+sil
29 glottal+velar 79 palatal+velar
30 high+coronal 80 sil
31 high+dental 81 sil+coronal
32 high+glottal 82 sil+dental
33 high+high 83 sil+glottal
34 high+labial 84 sil+high
35 high+low 85 sil+labial
36 high+mid 86 sil+low
37 high+palatal 87 sil+mid
38 high+sil 88 sil+palatal
39 high+velar 89 sil+velar
40 labial+coronal 90 velar+coronal
41 labial+dental 91 velar+dental
42 labial+glottal 92 velar+glottal
43 labial+high 93 velar+high
44 labial+labial 94 velar+labial
45 labial+low 95 velar+low
46 labial+mid 96 velar+mid
47 labial+palatal 97 velar+palatal
48 labial+sil 98 velar+sil
49 labial+velar 99 velar+velar
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coronalcoronal

dentaldental

glottalglottal

silsil silsil

highhigh

labiallabial

lowlow

midmid

palatalpalatal
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velarvelar

othoth

not included in decodingnot included in decoding

Figure 11.2: Grammar for CI
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15 <Mean> 30
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 <Variance> 30
18 1e30 1e30 1.0 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...

1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 1e30 ...
1e30 1e30 1e30

This is a “dummy” model, because we don’t really use GMMs in our setup. The õ means “global
option value”. Following on the same line, the observation vector size is set to the number of
posteriors. s̃ means “shared state distribution”, and is followed by the state name, underscore
and state number. It is numbered from 2 to 4, because states 1 and 5 are reserved start and end
states, respectively. Underneath is the HMM de�nition of coronal:

1 ⇠h "coronal"
2 <BeginHMM>
3 <NumStates> 5
4 <State> 2 ⇠s "coronal__2"
5 <State> 3 ⇠s "coronal__3"
6 <State> 4 ⇠s "coronal__4"
7 <TransP> 5
8 0 1 0 0 0
9 0 0.5 0.5 0 0
10 0 0 0.5 0.5 0
11 0 0 0 0.5 0.5
12 0 0 0 0 0
13 <EndHMM>

which includes the transition matrix. All states after the start state have 0.5 probability of either
progressing to the next state, or going back on itself. These transition probabilities are not re-
estimated, as in the conventional HMM training, but are rather left like this, as they haveminimal
e�ect on the decoding. The number of posteriors for all di�erent decodings are listed below.

Table 11.8: Number of posteriors

CI 1-state 10
CI 3-state 30
RC 1-state 100
RC 3-state 300

Now we are �nally ready to do decoding with HVite, with the command

1 HVite -l '*' -i output.mlf -C config_net -w wdnet -s 1.0 -p 0.0 -S ...
htk_filelist.scp -H hmmproto dict hmmlist
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11.6 Evaluating the frontend

The di�erent trainingmethods were then evaluated at the frame level, after decoding. The decod-
ing gives us new label �les, that we will compare with an original p�le. The reason for comparing
it with a p�le rather than an original label �le, is that the discontinuities have been taken into
consideration here with the “oth” label. The information in the p�le is also what the ANN has
to work with, and so it is logical to compare the results with that. The original p�le to be com-
pared with is always a single state CI one, because what we really care about is the attribute
recognition, not the states that we have used in between, for training the ANN. It might seem
counter-intuitive to compare with a p�le that includes “oth” when it is not included in decoding,
but to get a real and honest number about the performance, we need to take it into consideration.
A few, or many frames may be labeled “oth”, and those frames will never be recognized with our
setup. They will get some di�erent label. No doubt, this will impact the evaluation negatively. As
was mentioned earlier, the �rst round of training was done without English data. This reduces
the dataset quite drastically, and this e�ect must be taken into account. Less data probably entails
a poorer ANN to use for recognition.

11.6.1 Evaluation method

Evaluation is done on frames, and not segments of multiple frames.Each frame has its own label
and is 10 ms long. By default, HVite gives scoring information (log likelihoods) in the recognized
label �le, such as:

1 #!MLF!#
2 "*/p1_g01_f1_1_t-a0001.rec"
3 0 11600000 sil -95.436058
4 11600000 13000000 sil -17.501068
5 13000000 17900000 sil -43.445045
6 17900000 18500000 velar -10.734372
7 18500000 19400000 mid -12.244259
8 19400000 19900000 coronal -8.889365
9 19900000 20400000 mid -5.715060
10 20400000 21000000 dental -8.824461
11 21000000 23100000 mid -18.393522
12 23100000 23600000 dental -5.103466
13 23600000 23900000 dental -6.842369
14 23900000 25100000 low -18.461010
15 25100000 26100000 coronal -20.219107
16 26100000 26900000 dental -10.475648
17 26900000 27600000 mid -7.869104
18 27600000 29400000 coronal -27.718321

Above is an example of decoding of Norwegian training data. We see the start frame in the �rst
column, end frame in the second column, attribute in the third column, and scoring information
in the fourth column. The state information is suppressed by default, and we don’t need it for
evaluation either. For evaluation, we want to strip o� all unneeded information. This can be
done with the argument -o S. Below is an example of decoding of Norwegian test data:

1 #!MLF!#
2 "*/p1_g01_f1_4_x-a0001.rec"
3 0 3000000 sil
4 3000000 7900000 sil
5 7900000 12000000 sil
6 12000000 13600000 sil
7 13600000 14500000 sil
8 14500000 17100000 sil
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9 17100000 17800000 sil
10 17800000 19100000 sil
11 19100000 20000000 sil
12 20000000 20400000 velar
13 20400000 20900000 mid
14 20900000 21200000 coronal
15 21200000 21600000 mid
16 21600000 22300000 dental
17 22300000 23800000 mid
18 23800000 24500000 dental

The measures of interest are True Positives, False Positives, True Negatives and False Nega-
tives. From them, other measures can be calculated. From [9] we get:

Accuracy =

TP + TN

P +N
(11.1)

Precision =

TP

TP + FP
(11.2)

Recall =
TP

P
(11.3)

F
score

=

2

1/Precision+ 1/recall
(11.4)

The evaluation script is found in appendix H. It takes in a decoded mlf with the three-column
form demonstrated above, and an original p�le to compare with. A dictionary is also supplied.
It can be invoked as

1 perl Eval_Decoding.pl cv.pfile decoded.mlf

It removes header and �le information from the input mlf until we are left only with a se-
quence of frames and labels. If it encounters a frame progression bigger than 10 ms, it expands
that frames into 10 ms frames, so that each and every start and stop is strictly incremented with
1 ⇤ 10

5. It prints out this new, expanded mlf without header information for control purposes.
The p�le labels are also printed. It already progresses strictly with 10 ms at a time, for each frame.
For example, an mlf looking like

1 #!MLF!#
2 "*/GEcall-106-G.rec"
3 0 500000 sil
4 500000 1700000 sil
5 1700000 2100000 high

would look like this, after processing by the evaluation script:

1 0 100000 sil
2 100000 200000 sil
3 200000 300000 sil
4 300000 400000 sil
5 400000 500000 sil
6 500000 600000 sil
7 600000 700000 sil
8 700000 800000 sil
9 800000 900000 sil
10 900000 1000000 sil
11 1000000 1100000 sil
12 1100000 1200000 sil
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13 1200000 1300000 sil
14 1300000 1400000 sil
15 1400000 1500000 sil
16 1500000 1600000 sil
17 1600000 1700000 sil
18 1700000 1800000 high
19 1800000 1900000 high
20 1900000 2000000 high
21 2000000 2100000 high

Then the time information is removed, and we are left with only the labels, with indices taken
from the dictionary.

1 8
2 8
3 8
4 8
5 8
6 8
7 8
8 8
9 8
10 8
11 8
12 8
13 8
14 8
15 8
16 8
17 8
18 3
19 3
20 3
21 3

The last step before calculating scores, is to expand these labels into binary vectors, as though
we were using a detector bank, rather than a multiclass recognizer. Only the �rst frame is shown
below.

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 1
10 0

The same process is done for the p�le information. Now we can compare the two lists with the
equations 11.1, 11.2, 11.3 and 11.4. The scores are calculated for each attribute separately, and
then a total score.

All 34 networks were tested in this way. F-score is the harmonic mean of recall and precision,
and gives us the best single number to compare networks with. Other results are found in the
appendix. Numbers for a single state is �rst shown in a table, then a plot of the Fscore of the
realignment development is shown for 3-state. Finally, a table for the best iteration is provided for
easy comparison with single state networks. Let’s start with the results from the RC networks.
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11.7 RC trained without English

In this section we will see how RC networks perform, in 1-state and 3-state con�gurations. First,
let’s look at OGI’s development set, which like the training set, does not include English. Then
we will compare the results with TIMIT and the Norwegian NAFTA database.

11.7.1 OGI CV set

For RC, one-state is shown in the table below.

Table 11.9: OGI scores for RC 1-state

Articulation Accuracy % Precision % Recall % F-Score
Coronal 90.5 52.4 54.2 0.53
Dental 92.0 51.8 55.7 0.54
Glottal 99.4 58.1 54.1 0.56
High 94.0 61.5 61.2 0.61
Labial 95.8 61.6 64.9 0.63
Low 93.0 68.1 66.8 0.67
Mid 88.9 59.3 72.9 0.65

Palatal 98.2 58.7 50.5 0.54
Sil 91.0 84.1 88.1 0.86

Velar 97.1 68.0 55.3 0.61
Oth nan nan nan nan

Total 94.1 67.6 67.6 0.68

Now, let’s look at the development in RC 3-state alignment F-score.
Looking at the total precision reveals that the best network is the unaligned network, which is
unexpected and disappointing. Nevertheless, as expected, the tristate network outperforms the
single state one.

Table 11.10: OGI scores for RC 3-state 0 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 91.5 56.9 60.6 0.59
Dental 92.5 55.1 57.1 0.56
Glottal 99.4 62.9 49.6 0.55
High 94.2 63.4 61.1 0.62
Labial 95.9 63.1 64.5 0.64
Low 93.3 68.9 69.6 0.69
Mid 89.3 59.9 76.8 0.67

Palatal 98.2 57.9 51.6 0.55
Sil 91.2 84.7 87.7 0.86

Velar 97.3 72.7 55.9 0.63
Oth nan nan nan nan

Total 94.4 69.1 69.1 0.69
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Figure 11.3: RC OGI FScore realignment

11.7.2 TIMIT test set

We see that the TIMIT scores rea�rm what we learned in last subsection. The unaligned RC
network is better than all the realigned ones.
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Table 11.11: TIMIT scores for RC 1-state

Articulation Accuracy % Precision % Recall % F-Score
Coronal 77.2 65.1 42.3 0.51
Dental 96.6 3.9 7.5 0.05
Glottal 99.2 82.9 15.7 0.26
High 88.9 57.7 32.4 0.42
Labial 91.2 58.5 34.3 0.43
Low 88.2 58.7 45.4 0.51
Mid 80.0 22.3 45.1 0.30

Palatal 97.0 60.2 56.6 0.58
Sil 83.7 45.4 92.0 0.61

Velar 95.2 56.6 58.4 0.58
Oth nan nan nan nan

Total 90.5 47.9 47.9 0.48
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Figure 11.4: RC TIMIT FScore realignment
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Table 11.12: TIMIT scores for RC 3-state 0 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 77.6 64.7 46.2 0.54
Dental 96.7 4.6 8.5 0.06
Glottal 99.2 78.4 17.6 0.29
High 88.6 54.5 37.2 0.44
Labial 91.3 58.0 38.1 0.46
Low 89.1 60.7 55.8 0.58
Mid 77.4 22.4 57.0 0.32

Palatal 97.2 64.2 56.0 0.60
Sil 93.8 72.3 88.8 0.80

Velar 95.5 58.0 63.7 0.61
Oth nan nan nan nan

Total 91.3 52.3 52.3 0.52

11.7.3 NAFTA test set

Table 11.13: Norwegian scores for RC 1-state

Articulation Accuracy % Precision % Recall % F-Score
Coronal 88.7 26.1 49.8 0.34
Dental 83.6 41.4 18.9 0.26
Glottal 99.2 58.7 20.3 0.30
High 91.7 55.0 38.3 0.45
Labial 93.6 61.1 28.1 0.39
Low 94.1 60.6 46.6 0.53
Mid 85.9 42.4 72.3 0.53

Palatal 97.7 46.5 48.4 0.47
Sil 94.6 89.6 96.8 0.93

Velar 94.9 46.1 53.1 0.49
Oth nan nan nan nan

Total 93.1 62.1 62.1 0.62

Once again, the results from before are rea�rmed. The unaligned RC network performs
better than all the realigned ones. Notice though, that the Norwegian results are far better than
for TIMIT. Notice also that the tristate precision is only marginally higher than the single state
precision.

11.7.4 Summary

We clearly see from all the test and CV sets that tristate RC systems always performs better than
single state counterparts. The maximum OGI total precision at 69.1 % is far higher than for
TIMIT at 52.3 % and for NAFTA at 62.9 %. Remember though, that the CV set isn’t directly
comparable to the test sets of TIMIT and NAFTA. It is primarily used as a indicator for when
realignment no longer bears fruit.
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Figure 11.5: RC Norwegian FScore realignment

Table 11.14: Norwegian scores for RC 3-state 0 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 88.7 26.4 50.9 0.35
Dental 83.2 40.7 22.2 0.29
Glottal 99.2 60.6 18.7 0.29
High 91.7 55.1 42.0 0.48
Labial 93.7 60.6 30.6 0.41
Low 94.2 60.3 51.9 0.56
Mid 86.1 42.7 71.4 0.53

Palatal 98.0 55.0 42.9 0.48
Sil 95.4 92.0 95.9 0.94

Velar 95.5 51.7 51.9 0.52
Oth nan nan nan nan

Total 93.3 62.9 62.9 0.63
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11.8 CI trained without English

In this section, the same is done as for RC systems trained without English, only with CI at-
tributes.

11.8.1 OGI CV set

Table 11.15: OGI scores for CI 1-state alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 90.5 52.4 51.1 0.52
Dental 91.8 50.8 49.3 0.50
Glottal 99.4 60.3 53.6 0.57
High 93.9 61.0 59.6 0.60
Labial 95.9 63.6 61.3 0.62
Low 92.9 66.4 69.1 0.68
Mid 89.1 59.7 73.4 0.66

Palatal 98.0 54.3 50.4 0.52
Sil 91.0 82.9 90.0 0.86

Velar 97.0 65.5 55.8 0.60
Oth nan nan nan nan

Total 94.1 67.3 67.3 0.67
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Figure 11.6: CI OGI FScore realignment

The third alignment gives the best total precision here.
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Table 11.16: OGI scores for CI 3-state 3 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 92.6 63.2 62.2 0.63
Dental 93.5 62.6 55.8 0.59
Glottal 99.5 69.8 55.1 0.62
High 94.6 66.0 65.2 0.66
Labial 96.8 73.7 66.8 0.70
Low 93.3 67.8 73.4 0.70
Mid 90.4 63.3 77.9 0.70

Palatal 98.4 65.5 53.6 0.59
Sil 91.2 82.3 91.6 0.87

Velar 97.5 74.7 59.9 0.66
Oth nan nan nan nan

Total 94.8 71.6 71.6 0.72
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11.8.2 TIMIT test set

Table 11.17: TIMIT scores for CI 1-state alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 77.0 65.4 39.7 0.49
Dental 95.7 4.5 12.4 0.07
Glottal 99.2 75.1 20.5 0.32
High 89.1 58.2 34.5 0.43
Labial 91.7 62.1 37.6 0.47
Low 88.2 56.7 54.9 0.56
Mid 77.2 21.9 55.2 0.31

Palatal 97.0 61.0 50.3 0.55
Sil 90.9 61.3 92.4 0.74

Velar 95.3 57.4 55.5 0.56
Oth nan nan nan nan

Total 90.9 49.7 49.7 0.50
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Figure 11.7: CI TIMIT FScore realignment

For TIMIT, the �rst alignment gives the best result. The improvement is small compared to
the OGI CV set, though.
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Table 11.18: TIMIT scores for CI 3-state 1 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 78.4 69.5 42.6 0.53
Dental 96.1 6.0 14.4 0.08
Glottal 99.2 81.3 22.9 0.36
High 88.9 56.9 35.5 0.44
Labial 92.2 66.7 40.2 0.50
Low 88.3 56.8 60.3 0.58
Mid 76.6 21.8 57.5 0.32

Palatal 97.5 67.4 60.7 0.64
Sil 93.5 69.7 93.7 0.80

Velar 96.2 67.2 60.0 0.63
Oth nan nan nan nan

Total 91.4 52.7 52.7 0.53
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11.8.3 NAFTA test set

Table 11.19: Norwegian scores for CI 1-state alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 87.8 25.4 55.0 0.35
Dental 83.6 41.9 20.6 0.28
Glottal 99.2 67.8 21.7 0.33
High 91.7 55.0 38.8 0.46
Labial 93.7 60.8 30.3 0.40
Low 94.0 57.9 51.8 0.55
Mid 86.4 43.3 71.5 0.54

Palatal 98.1 56.0 45.6 0.50
Sil 96.3 92.6 97.9 0.95

Velar 95.5 52.1 45.3 0.48
Oth nan nan nan nan

Total 93.3 63.1 63.1 0.63
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Figure 11.8: CI Norwegian FScore realignment

For Norwegian, the fourth alignment gives the best results. The di�erence between NAFTA
and TIMIT is stark.
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Table 11.20: Norwegian scores for CI 3-state 4 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 88.5 28.2 61.4 0.39
Dental 84.3 46.0 20.3 0.28
Glottal 99.3 72.7 21.0 0.33
High 92.0 58.0 40.5 0.48
Labial 94.2 71.7 29.0 0.41
Low 94.2 59.2 55.6 0.57
Mid 86.5 43.8 73.1 0.55

Palatal 98.2 60.4 51.6 0.56
Sil 95.9 90.9 98.9 0.95

Velar 96.1 60.2 48.9 0.54
Oth nan nan nan nan

Total 93.6 64.6 64.6 0.65
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11.8.4 Summary

Again, as with RC, it is clear that tristate CI systems perform better than single state counterparts.
For OGI, the best performing system has a maximum total precision at 71.6 %, which is an
improvement of 2.5 % compared to the highest RC precision. TIMIT’s maximum total precision
lies at 52.7%, giving an improvement of 0.4% compared to RC. NAFTA’s precision lies at 64.6%,
with an improvement of 1.7 % compared to RC.

11.9 CI trained with English

Since the CI network proved most promising, it was chosen as the network to use going for-
ward. A last test is done in which we see the OGI CV improvement over 3-state CI realignment
realignments, as well as performance on NAFTA.

11.9.1 OGI CV set

In this section, the same is done as for RC systems trainedwithout English, onlywith CI attributes
with all languages in the training set. The third alignment gives the best results here. Notice
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Figure 11.9: CI OGI FScore realignment

the small decrease in precision when including all training languages, and testing on the cv set
with all languages, compared with the last section where English was not included.
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Table 11.21: OGI scores for CI 3-state 3 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 89.7 63.7 72.1 0.68
Dental 95.3 64.0 40.8 0.50
Glottal 99.5 76.9 54.9 0.64
High 94.5 67.4 67.2 0.67
Labial 96.0 73.2 69.8 0.71
Low 93.3 66.4 73.1 0.70
Mid 90.3 62.7 72.1 0.67

Palatal 98.7 68.6 58.8 0.63
Sil 90.7 81.0 88.0 0.84

Velar 97.8 77.7 67.7 0.72
Oth nan nan nan nan

Total 94.7 70.9 70.9 0.71
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11.9.2 NAFTA test set
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Figure 11.10: CI Norwegian FScore realignment

As for the OGI CV set, the third alignment gives best performance for Norwegian.
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Table 11.22: Norwegian scores for CI 3-state 3 alignment

Articulation Accuracy % Precision % Recall % F-Score
Coronal 88.7 29.0 63.5 0.40
Dental 84.8 50.3 19.0 0.28
Glottal 99.3 82.6 21.8 0.35
High 92.1 56.6 50.9 0.54
Labial 94.5 69.2 39.8 0.51
Low 94.3 63.3 46.2 0.53
Mid 87.2 45.5 72.7 0.56

Palatal 98.4 69.5 42.8 0.53
Sil 95.1 89.1 98.7 0.94

Velar 96.5 65.2 51.6 0.58
Oth nan nan nan nan

Total 93.7 65.4 65.4 0.65
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11.9.3 Summary

Notice a slight decrease in performance on the OGI CV set compared to the network not trained
on English: with a total precision at 70.9%, we see a drop of 0.7%. The Norwegian total precision
improves, however: 65.4%, giving an increase of 0.8%. The third CI alignment proves to be the
model to use, going forward. All decoded attributes will henceforth be recognized through this
network, and decoded with the tristate CI framework.

11.10 Discussion

In retrospect, the TIMIT and Norwegian test sets should have been partitioned to be roughly
equal size. The Norwegian test set is over twice the size of TIMIT’s. This partition requires some
work so that each speaker, region and gender is represented equally. Still, it is doubtful that the
results for RC would have been dramatically di�erent, as all numbers point to it being inferior
to CI.



Chapter 12

Experiments: Backend

12.1 Datasets

The datasets used in the backend are di�erent from the ones used in the frontend. The di�erence
lies mainly in that here, we use spontaneous speech, as opposed to speech read from planned out
sentences. All training languages except for Norwegian are taken from the Callfriend database.
The test utterances (apart from Norwegian) are from the NIST LID 2003 evaluation plan. Nor-
wegian training and test data are from part 3 of the same database, NB tale/NAFTA. All data

Table 12.1: Durations in hours for training sets

Arabic 8.55
English 10.02
Farsi 9.13
French 9.75
German 9.14
Hindi 9.25
Japanese 9.51
Korean 8.22
Mandarin 8.28
Spanish 9.52
Tamil 7.47
Vietnamese 10.70
Norwegian 4.57
Total 114.11

in the backend are run through a VAD tool (provided by Marco Siniscalchi), that removes si-
lence from the waveforms. The point of this is that silence skews the probability distribution
of the attributes. In spontaneous speech recordings, silence is plentiful. Frames of silence are
non-informative, and should be removed.

The VAD tool divides each �le into a folder of chunks, where each folder do not exceed ⇡ 30

seconds worth of silence-free speech. The folder naming scheme for Callfriend English training
data is, for example:

1 en_4175_A_chunk
2 en_4175_B_chunk

where A and B refer to two speakers in a telephone conversation. For Norwegian, the database
is originally sorted in 24 dialect groups, with 12 of them being with foreign accents. These are

75
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Table 12.2: Durations in hours for silence-removed test sets

Arabic 0.64
English 1.93
Farsi 0.63
French 0.64
German 0.65
Hindi 0.64
Japanese 1.28
Korean 0.64
Mandarin 0.64
Russian 0.64
Spanish 0.63
Tamil 0.63
Vietnamese 0.63
Norwegian 1.85
Total 12.07

excluded in this work, leaving us with 12 dialect groups. These are all resampled, run through
VAD and combined into a single folder. Then a script, written by the author, sorts the NAFTA
testing data into per-speaker folders of approximately 30 seconds each. There is some wiggle
room here. The tolerance is set to 25-36 seconds, and some folders include a single �le from
a di�erent speaker. Due to project time constraints, this simple scheme was chosen. Lastly,
NAFTA testing data folders are renamed according to the LID naming scheme in Siniscalchi’s
setup (Russian data was removed, since it is intended to be a “surprise language”, beyond the
scope of this thesis). They have names such as lid00001_chunk. In all, there are 1443 folders of
testing data, when Norwegian is included, whose total time roughly adds up to the numbers in
table 12.2 (which are exact numbers). For each testing �le, there is a label provided in a �le called
rec_lid03e1_30.lab.

12.2 Procedure

12.2.1 Preprocessing

Before LSA can be performed, some text manipulation must be done in advance. Siniscalchi’s
scripts do most of this. Siniscalchi’s top level script is called backendNIST.sh, and is found in the
appendix. breakNIST.pl breaks master label �les into individual .rec �les. Then, the attribute
identities are replaced with a number from a dictionary indice, with replacePhns.pl. For use in
training, the time markers in the .rec’s are used to divide them further, into �les representing
approximately 30 seconds worth of attribute labels, with the script combineCALL.m. Variants of
these scripts were modi�ed by the author to �t with the NAFTA training set naming scheme. A
list of all these 30 second .rec’s for training and testing data are input to quadlsaNIST.m, which
performs the LSA.

12.2.2 LSA

quadlsaNIST.m is implemented in accordance with chapter 7. Despite its name, it performs up to
trigram LSA. Its inputs are: list of training �les, list of testing �les, number of phones/attributes
and number of support vectors.

Since we have 10 attributes including “sil”, the n-gram count is 10 + 100 + 1000 = 1110. After
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combining training �les into 30 seconds each, into 12525 we get a count vector C of dimension
1110 ⇥ 12525. Notice that this doesn’t completely add up to the total number of hours in the
table ??, but this is because several of the .rec �les slightly surpass the 30 second mark. It is
clear, upon inspection, that C is quite sparse. Many of the bigrams, and especially the trigrams,
never occur. This a�rms the utility of the SVD, which we will soon use.

The script computesweighted count values, or term-documentmatrixW with dimensions 1110⇥
12525 with eq. 7.3, and subsequently uses it with the prescribed number of support vectors in
the command

1 [U,S,V] = svds(W,numSV);

Which is the time-consuming part. The number of support vectors are here equal to the singular
values used in SVD. Thus we get matricesU with 1110⇥300, a diagonal matrix S with 300⇥300

and V with 12525⇥ 300. We keep the largest singular values and compute

B = S V T (12.1)

Giving us a down-projected “concept space” matrixB with 300⇥12525, which is written (trans-
posed) to train.csv for use with the SVM. The same process is done for testing �les, producing
a new term weighted W , except we use the left singular matrix U to obtain a pseudo document
vector in the reduced rank space (here written as in Siniscalchi’s code):

Q = UT W (12.2)

Before being written to test.csv, Q is also transposed (this corresponds to the equations in
chapter 7).

test.csv and train.csv are normalized for use in the SVM. The script mkSVM1vALL.pl re-
formats the 300 dimensional scores into .dat �les, giving them a positive or negative label:

1 +1 1:0.6825 2:0.23966 3:-0.038572 4:0.087513 5:0.077157 6:-0.055949 ...

where the number of singular values following the label is 300 (equal to number of support vec-
tors). Then the command in section 10.6.1 is invoked with the right parameters, and with term
weighting 3. This choice might seem arbitrary. It had been iteratively determined by Marco
Siniscalchi, and project time constraints made it impossible to experiment with both this and the
number of support vectors. Thus, all experiments were done with these parameters.

Each language is then trained and tested (classi�ed) as in section 10.6.2 on its own one-versus-all
SVM, and output distances is kept for each language in a separate �le with the .pred extension.
We are now ready to use GMMs to get probability distributions for the target and anti-target
classes for each language. This is implemented in Siniscalchi’s marcoTestGMM.m, where the EM
algorithm is implemented through other scripts, and the LLR (log-likelihood ratio test) is done.

Beforewe go there, a preliminary experiment should bementioned. Part 1 of the NAFTA database
was used initially, in the backend. It has a lot of overlap between sentences and speakers in
training and testing, and the e�ect of this became apparent after running the training and test-
ing scripts. SVMlight outputs some statistics after classi�cation, that can be used as indicators
before doing the subsequent GMM analysis. Norwegian scored:

1 Accuracy on test set: 99.32% (1602 correct, 11 incorrect, 1613 total)
2 Precision/recall on test set: 98.49%/98.20%
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while, in contrast, Vietnamese scored

1 Accuracy on test set: 95.10% (1534 correct, 79 incorrect, 1613 total)
2 Precision/recall on test set: 50.43%/73.75%

Across the board, Norwegian scoredmuch better than all the other languages. This is an obvious
red �ag for overtraining/over�tting. Near 100% precision with the �awed frontend is unrealistic.
Even after removing most of the overlap (the a-marked sentences were removed), this outper-
formance persisted. This is why part 1 of NAFTA was exchanged for part 3, which is far more
comparable to Callfriend (both are spontaneous speech, removing almost all overlap between
sentences). The following results validate this assumption. Results for Norwegian part 3:

1 Accuracy on test set: 92.31% (1332 correct, 111 incorrect, 1443 total)
2 Precision/recall on test set: 79.46%/73.25%

To compare, here are results for Vietnamese in the new system:

1 Accuracy on test set: 93.97% (1356 correct, 87 incorrect, 1443 total)
2 Precision/recall on test set: 47.11%/71.25%

The number of Norwegian testing �les was also increased, so this could explain the slight drop
in Vietnamese performance. Notice that Norwegian still outperforms the rest. Part 3 was used
from then on.

12.2.3 LLR

We are mainly interested in the results from the �nal LID stage. The veri�cation is done in a
null hypothesis fashion, while still using the precision/recall dichotomy from last chapter. The
likelihood ratio test (LLR) can be expressed as

⇤ = log
⇣L(C

language

|x)
L(C

allothers

|x)

⌘
> ✓ (12.3)

Where ✓ is some threshold over which we accept the target language hypothesis, x is SVM dis-
tances and the C’s represent some class or classes. The GMMs have the classi�ed training data
scores as input to the EM algorithm. With these GMMs, we can with the test data as input,
obtain the likelihoods ⇤. There is no obvious choice for this ✓ parameter; it depends on what
performance we value. For this thesis, the FScore is used as a metric. It is the harmonic mean of
precision and recall, and so a natural goal would be to maximize FScore. ✓ can be found itera-
tively. The parameter is to be shifted with small incremental values to maximize FScore. The FN,
TN, FP and TP values are found through Siniscalchi’s script marcoTestGMM.m, where the thresh-
old is an input parameter. A scoring �le with extension .comp is made for each language, with
format:

1 norwegian yes correct
2 norwegian yes correct
3 norwegian no wrong

A script written by the author (makescores.pl) takes these �les, converts them to binary (cor-
rect/incorrect becomes 1 or 0) and computes accuracy, precision, recall and FScore, as in the
frontend chapter. First though, the maximum FScore is found with respect to the entire language
set. It can be found by simply adding the lines
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1 Acc=100*(TP+TN)/(TP+FP+TN+FN);
2 Prec=100*(TP)/(TP+FP);
3 Reca=100*(TP)/(TP+FN);
4 FScore=(2*TP)/((2*TP)+FP+FN);
5 disp(str)
6 disp(Acc)
7 disp(Prec)
8 disp(Reca)
9 disp(FScore)

to marcoTestGMM.m and simply iterating over ✓.

12.3 Results

With the ⇡ maximum FScore at ✓ = 2.4, the scores for the languages are found in table 12.3.

Table 12.3: Test LID scores

Language Accuracy % Precision % Recall % F-Score
Arabic 95.0 55.3 52.5 0.54
English 89.5 75.6 54.2 0.63
Farsi 93.8 44.3 43.8 0.44
French 95.7 61.8 58.8 0.60
German 92.0 37.9 68.8 0.49
Hindi 94.5 50.0 52.5 0.51
Japanese 94.9 83.1 67.5 0.74
Korean 95.7 59.2 72.5 0.65
Mandarin 94.2 48.0 58.8 0.53
Spanish 93.7 44.8 58.8 0.51
Tamil 93.7 45.5 68.8 0.55
Vietnamese 94.9 53.6 65.0 0.59
Norwegian 92.7 78.0 79.0 0.79
For entire set 93.9 59.6 63.1 0.61

12.4 Discussion

We see from table 12.3 that Norwegian performs best, with FScore at 0.79. Runner up is Japanese
at 0.74, then Korean at 0.65. Worst performer is Farsi at 0.44. Of course, Norwegian and Japanese
has considerably longer testing sets than the others, so this could be a factor, in that the testing
sets possibly become more representative of their respective languages. The Vietnamese and
English training sets are the largest. Remember also that the frontend is trained on, among
others, English. One would hence expect the OGI languages to perform best. This is not the case
(with the exception of Japanese). Overall, the results aren’t overwhelmingly good. The precision
score for the entire set is 59.6%. This means that on average, a little over half of any random
language in the set will be detected correctly. And logically, this means that the frontend needs
work, which we already knew from chapter 11.
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Conclusion

In this project, a LRE (language recognition) system was implemented with various tools. It was
based on an existing system, largely written by professor Marco Siniscalchi of Kore University
of Enna. The aim was to test a working system with Norwegian language, and compare the per-
formance to other languages.

The system is divided into two main parts: the frontend and the backend. The frontend “tok-
enizes” the audio data into a sequence of articulatory features. This part is called an UAR (univer-
sal attribute recogniser). These are then used in a VSM (vector space modelling) approach, where
the spoken utterance is considered as a spoken document vector [24]. The “place” category of
articulatory features were chosen as a starting point. A binary maximum margin classi�er, SVM
(support vector machine), separates the spoken documents which belong to a given language,
and subsequently a target and anti-target probability distribution is made for each language.

The frontend was trained with six languages, and alternately with context independent (CI) and
right context (RC) place attributes. A deep neural network functioned as a discriminative block,
after which an HMM did decoding, in a connectionist approach. Both one- and tristate HMM
(Hidden Markov Models) were implemented with each of these contexts. In the tristate con�gu-
ration, Viterbi realignmentwas done six times. Di�erent con�gurationswere performance-tested
at the frame level. The RC con�guration proved to be inferior to the CI counterpart. This was
unexpected, because a similar approach implemented by Siniscalchi et al. [24] (although tested
at the segment level) delivered better results for RC, than CI. What was expected, however, was
that the tristate con�guration always outperformed the single state con�guration. Even at the
best performance level (total FScore of 0.65% for Norwegian), it is clear that the frontend is not
satisfactory. The frontend clearly needs improvement.

The backend was tested with 13 languages (including Norwegian). Since the frontend was the
limiting factor here, we couldn’t expect very impressive results. The best performer was Norwe-
gian, with FScore at 0.79. However, the average over the entire test set at 0.61 indicates that the
system needs improvement.
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Future work

The �rst goal of the project was to do LID on Norwegian data. As the title of this thesis suggests,
the ultimate goal is to extend it to recognition of Norwegian dialects. This is a natural next step.
Some improvements should be made �rst, though. The backend results, as well as the frontend
results, indicate that the frontend is not satisfactory for attribute tokenization. Several mitigating
measures can be done here:

• Increase training data, and possibly training languages

• Custom tune the RBM and ANN parameters

• Partition all testing data to have roughly equal size, taking speaker and sentence variation
into consideration

As was mentioned, the “oth” attribute shouldn’t be modelled with three states, but rather a single
one. HTKbook [2] (p. 34) describes a context-free “short pause” model that can be used here. The
e�ect of including “oth” in decoding is unclear, and could also be investigated. Expanding the
attribute to tristates must also be avoided, in using the ICSI tools. The “sil” attribute is another
potential candidate for single state representation. Another experiment that actually is already
prepared for, is �nding the e�ect of including priors in the decoding. The script prior_pfile.pl
�nds frame priors in a p�le, and can be used for this purpose.

The current backend setup for language recognition could then be used with dialects, where
each dialect takes the place of a language. Again, care must be taken to avoid overlap between
testing and training data.

Lastly, foreign accents in Norwegian could be included in the LID system. iVectors with Finnish
data have been used with success for this purpose. Kaldi already has some functionality for
iVectors, and the extent of the functionality, as well as required extensions to it, could be inves-
tigated.
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Scores

A.1 Trained without english

A.1.1 Norwegian test set
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Figure A.1: RC Norwegian Accuracy realignment
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Figure A.2: RC Norwegian Precision realignment
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Figure A.3: RC Norwegian Recall realignment
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Figure A.4: CI Norwegian Accuracy realignment
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Figure A.5: CI Norwegian Precision realignment
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Figure A.6: CI Norwegian Recall realignment
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A.1.2 TIMIT test set
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Figure A.7: RC TIMIT Accuracy realignment
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Figure A.8: RC TIMIT Precision realignment
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Figure A.9: RC TIMIT Recall realignment
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Figure A.10: CI TIMIT Accuracy realignment
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Figure A.11: CI TIMIT Precision realignment
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Figure A.12: CI TIMIT Recall realignment
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A.1.3 OGI development set
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Figure A.13: RC OGI Accuracy realignment
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Figure A.14: RC OGI Precision realignment

0 1 2 3 4 5 6
Realignment iterations

45

50

55

60

65

70

75

80

85

90

P
e
rc

e
n
t 
%

Recall OGI

coronal
dental
glottal
high
labial
low
mid
palatal
sil
velar
total

Figure A.15: RC OGI Recall realignment
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Figure A.16: CI OGI Accuracy realignment
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Figure A.17: CI OGI Precision realignment
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Figure A.18: CI OGI Recall realignment
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Figure A.19: CI Norwegian Accuracy realignment
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Figure A.20: CI Norwegian Precision realignment
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Figure A.21: CI Norwegian Recall realignment
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A.2.2 OGI development set
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Figure A.22: CI OGI Accuracy realignment
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Figure A.23: CI OGI Precision realignment
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Figure A.24: CI OGI Recall realignment



Appendix B

LED script

1 #!/bin/bash
2 #Script to make RC, TC, LC and CI master label files from phone mlfs in ...

batch.
3 #--Ãystein Staven, NTNU---
4 lans="eng spa ger hin jap man"
5 contexts="TC LC RC"
6 for lan in $lans; do
7

8 HLEd -n dicts/non_compacted/dict_CI_place.dict -l '*' -i ...
attMLFs/non_compacted/CI/refCI_$lan".mlf" ...
LEDS/non_compacted/$lan"_place.led" phoneMLFs/$lan".mlf"

9

10 for context in $contexts; do
11 HLEd -n dicts/non_compacted/dict_$context"_place_"$lan".dict" -l '*' -i ...

attMLFs/non_compacted/$context/ref$context"_"$lan".mlf" ...
LEDS/non_compacted/$context".led" ...
attMLFs/non_compacted/CI/refCI_$lan".mlf"

12 sort dicts/non_compacted/dict_$context"_place_"$lan".dict" -o ...
dicts/non_compacted/dict_$context"_place_"$lan".dict"

13 done
14 done
15

16 contexts="CI TC LC RC"
17 for context in $contexts; do
18 cd "/home/studenter/oyststa/LRE/create_place/EYSTEIN/ \
19 attMLFs/non_compacted/$context"
20 i=0
21 for lan in $lans; do
22 if [ "$i" = "0" ]; then
23 cat ref$context"_"$lan".mlf" > combined_$context".mlf"
24 else
25 tail -n +2 ref$context"_"$lan".mlf" >> combined_$context".mlf"
26 fi
27 i=1
28 done
29 done
30

31 cd /home/studenter/oyststa/LRE/create_place/EYSTEIN
32 contexts="TC LC RC"
33 for context in $contexts; do
34 #finally, merge all dicts into one, for each context except CI.
35

36 for lan in $lans; do
37 cat dicts/non_compacted/dict_$context"_place_"$lan".dict" >> temp1
38 done
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39

40 sort -u temp1 > dicts/non_compacted/dict_$context"_place.dict"
41 rm temp1
42 # for lan in $lans; do
43 # rm dicts/non_compacted/dict_$context"_place_"$lan".dict"
44 # done
45 done



Appendix C

Combine MLFs

1 #!/bin/bash
2 #Script to combine mlf of different languages into one.
3 #--Ãystein Staven, NTNU--
4 context=CI
5 lans="eng ger hin jap man spa"
6 i=0
7 for lan in $lans; do
8 if [ "$i" = "0" ]; then
9 cat ref$context"_"$lan".mlf" > combined_$context".mlf"
10 else
11 tail -n +2 ref$context"_"$lan".mlf" >> combined_$context".mlf"
12 fi
13 i=1
14 done
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Appendix D

Resample and �lter

1 ## !/bin/bash
2 ##
3 ## first resample to 8 kHz:
4 ##RESAMPLING####
5

6 rm -r /prosjekt/studenter/oyststa/NAFTA
7 find /talebase/data/speech_raw/NAFTA/Speech/sennheiser -not -path ...

'*/\.*' -type f > naftafiles.scp
8

9 cd /talebase/data/speech_raw/NAFTA/Speech/sennheiser
10

11 mkdir /prosjekt/studenter/oyststa/NAFTA && mkdir ...
/prosjekt/studenter/oyststa/NAFTA/sennheiser

12 find . -type d | cpio -pd /prosjekt/studenter/oyststa/NAFTA/sennheiser
13

14 cd ⇠/VAD_NTNU
15

16 fileset=`cat naftafiles.scp`
17 prefix="/talebase/data/speech_raw/NAFTA/Speech/sennheiser/"
18 suffix=".wav"
19 for file in `echo $fileset`; do
20 foo=${file#$prefix}
21 foo=${foo%$suffix}
22 sox $file /prosjekt/studenter/oyststa/NAFTA/sennheiser/$foo.raw ...

rate -s -a 8k
23 done
24 rm naftafiles.scp
25

26

27 ##Now for the bandpass
28 ####BANDPASS######
29

30 for file in `find /prosjekt/studenter/oyststa/NAFTA/sennheiser/ -not ...
-path '*/\.*' -type f`; do

31 sox -r 8000 -e signed -b 16 -c 1 $file ...
/prosjekt/studenter/oyststa/temp.raw sinc 250-3450

32 mv /prosjekt/studenter/oyststa/temp.raw $file
33 done

105



Appendix E

Find durations

1 #!/bin/bash
2 #Script to find duration of a set of files combined.
3 #--Ãystein Staven, NTNU
4 list=$1
5 files=`cat $list`
6 totdur=`echo "0" | bc`
7 for file in $files; do
8 durtemp=`sox -r 8000 -e signed -b 16 $file -n stat 2>&1 | sed -n ...

's#^Length (seconds):[^0-9]*\([0-9.]*\)$#\1#p'`
9 durtemp=`echo $durtemp | bc`
10 totdur=$(echo "scale=2;$totdur+$durtemp" | bc)
11 done
12 echo "Duration of all files combined, in seconds:"
13 echo $totdur
14 echo "Durations of all files combined, in hours:"
15 totdur=$(echo "scale=2;$totdur/60/60" | bc)
16 echo $totdur
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Appendix F

Feat. extract and ANN train

1 #!/bin/bash
2

3 context=$1
4 compacted=$2
5 tristates=$3
6 do_kalditrain=$4
7

8 #test input arguments
9 if [ \( "$compacted" = "yes" \) -o \( "$compacted" = "no" \) ] && \
10 [ \( "$context" = "CI" \) -o \( "$context" = "LC" \) -o \( "$context" ...

= "RC" \) \
11 -o \( "$context" = "TC" \) ] && \
12 [ \( "$tristates" = "yes" \) -o \( "$tristates" = "no" \) ] && \
13 [ \( "$do_kalditrain" = "yes" \) -o \( "$do_kalditrain" = "no" \) ]; then
14 echo "---Starting process....."
15 else
16 printf "Usage: ./masterplace.sh context='CI|LC|RC|TC' ...

compacted='yes|no' \
17 tristates='yes|no' do_kalditrain='yes|no' \n"
18 exit 1
19 fi
20

21 if [ "$compacted" = "yes" ]; then
22 com_path="compacted"
23 else
24 com_path="non_compacted"
25 fi
26

27 rm -r out tmp
28

29 dict="/home/studenter/oyststa/LRE/create_place/EYSTEIN/dicts/ \
30 "$com_path"/dict_"$context"_place.dict"
31 mlf="/home/studenter/oyststa/LRE/create_place/EYSTEIN/attMLFs \
32 /"$com_path"/"$context"/combined_"$context".mlf"
33

34 ./ogi_place.sh $mlf $dict > ogi_log.txt
35 if grep -Fxq ogi_log.txt -e 'ERROR'; then
36 printf "Errors found in ogi_place. See ogi_log.txt \n"
37 exit 1
38 else
39 printf "No errors in ogi_place. Continuing. \n"
40 fi
41

42 if [ "$tristates" = "yes" ]; then
43 states=5;
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44 printf "Tristates chosen. Changing target number and HMM models \n"
45 wc_temp=`wc "dicts/"$com_path"/dict_"$context"_place.dict"`
46 numlabels=$(echo ${wc_temp[0]}|cut -d' ' -f1)
47 numlabels=$(((numlabels+1)*3))
48 else
49 states=3;
50 printf "Single state chosen. Changing target number and HMM models \n"
51 wc_temp=`wc "dicts/"$com_path"/dict_"$context"_place.dict"`
52 numlabels=$(echo ${wc_temp[0]}|cut -d' ' -f1)
53 numlabels=$((numlabels+1))
54 fi
55

56 ###PFILE2KALDI####
57

58 cp -r /home/studenter/oyststa/LRE/create_place/EYSTEIN/out \
59 /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/
60 cp -r /home/studenter/oyststa/LRE/create_place/EYSTEIN/tmp \
61 /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/
62

63 cd /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi
64

65 if [ "$tristates" = "yes" ]; then
66 ./eyscript_tristate.sh
67 else
68 ./eyscript.sh
69 fi
70

71 ##KALDI##
72 if [ "$do_kalditrain" = "yes" ]; then
73 #copying results to kaldi-trunk
74 cp -r ...

/home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/kaldiformat/ark \
75 /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/
76

77 cd /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/
78 rm -r data-fbank
79 mkdir data-fbank
80 cd data-fbank
81 mkdir develop lang train test
82 cd /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/exp
83 rm -r place_cd_ali_dev place_cd_ali_test place_cd_ali_train \
84 place_pretrain-dbn-dnn place_pretrain-dbn
85 mkdir place_cd_ali_dev place_cd_ali_test place_cd_ali_train
86 cd ..
87 . cmd.sh
88 . path.sh
89

90 copy-feats ark:ark/train.ark.txt ark, scp:/home/studenter/ \
91 oyststa/kaldi-trunk/egs/ogi/s5/data-fbank/train/train.ark,\
92 /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/data-fbank \
93 /train/feats.scp
94 copy-feats ark:ark/cv.ark.txt \
95 ark,scp:/home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/ \
96 data-fbank/develop/cv.ark,\
97 /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/data-fbank/ \
98 develop/feats.scp
99 copy-feats ark:ark/test.ark.txt \
100 ark,scp:/home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/ \
101 data-fbank/test/test.ark, \
102 /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/ \
103 data-fbank/test/feats.scp
104

105 cd exp



109

106 cd place_cd_ali_train
107 gzip -c ../../ark/ali_train_labs.ark > ali.1.gz
108 cd ../place_cd_ali_test
109 gzip -c ../../ark/ali_test_labs.ark > ali.1.gz
110 cd ../place_cd_ali_dev
111 gzip -c ../../ark/ali_cv_labs.ark > ali.1.gz
112 cd /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/
113 dir=exp/place_pretrain-dbn
114 #pretraining
115 $cuda_cmd $dir/log/pretrain_dbn.log steps/nnet/pretrain_dbn.sh \
116 --rbm-iter 3 data-fbank/train/ $dir > pre.log
117 #fine tuning
118 dir=exp/place_pretrain-dbn-dnn
119 ali_train=exp/place_cd_ali_train
120 ali_cv=exp/place_cd_ali_dev
121 feature_transform=exp/place_pretrain-dbn/final.feature_transform
122

123 dbn=exp/place_pretrain-dbn/6.dbn
124

125 $cuda_cmd $dir/log/train_nnet.log steps/nnet/train.sh \
126 --feature-transform $feature_transform --dbn $dbn --hid-layers 0 \
127 --learn-rate 0.008 data-fbank/train data-fbank/develop \
128 data-fbank/lang $ali_train $ali_cv $dir > train.log
129

130 #mkdir /home/studenter/oyststa/LRE/backend/deepnetwork/
131 #place/$context"_"$states"_"$com_path
132 mkdir /home/studenter/oyststa/LRE/backend/deepnetwork \
133 /place/CI_5_non_compacted_0
134 cp /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/exp/ \
135 place_pretrain-dbn-dnn/final.nnet \
136 /home/studenter/oyststa/LRE/backend/deepnetwork/place/ \
137 CI_5_non_compacted_0/final.nnet
138 cp /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/exp/ \
139 place_pretrain-dbn-dnn/final.feature_transform \
140 /home/studenter/oyststa/LRE/backend/deepnetwork/place/ \
141 CI_5_non_compacted_0/final.feature_transform
142 tar -cvf /prosjekt/studenter/oyststa/EXPs/ \
143 ${context}_${states}_${com_path}_0.tar.gz \
144 /home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/exp
145 else
146 printf "Kaldi training not chosen. Moving on \n"
147 fi
148 ###BACKEND###
149

150 #Now, go to the backend and run the script "run_all.sh" with your ...
preferred languages.

151 # Also change strbut2htk argument in SVite.sh
152

153 #cleanup
154 #rm /home/studenter/oyststa/LRE/create_place/EYSTEIN/ogi_log.txt
155 #rm /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/tempvar
156 echo "---ALL DONE--- "



Appendix G

Realignment

1 # #!/bin/bash
2 #
3 # #
4 # #test input arguments
5 # #check if files exists and if iterations is a number
6 # if [[ $iterations =⇠ ^-?[0-9]+$ ]]; then
7 # echo "---Starting process.....";
8 # else
9 # printf "Usage: ./realign_train.sh <num of iterations>\n"
10 # exit 1
11 # fi
12

13 #First make the .ark file from the very first training, to subsequently ...
do realignment

14

15 ####NEW - KALDI FIRST FORWARD PASS
16

17 cd /home/studenter/oyststa/LRE/create_place/EYSTEIN
18 ./masterplace.sh RC no yes yes
19

20 cd /home/studenter/oyststa/LRE/backend/tristates/scoring/OGI/scripts
21 echo "Forwarding Phase 0"
22 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...

--apply-log=true \
23 --use-gpu=yes ...

--feature-transform=/home/studenter/oyststa/LRE/backend/deepnetwork/ \
24 place/RC_5_non_compacted_0/final.feature_transform ...

/home/studenter/oyststa/LRE/ \
25 backend/deepnetwork/place/RC_5_non_compacted_0/final.nnet \
26 ark:"/home/studenter/oyststa/kaldi-trunk/egs \
27 /ogi/s5/data-fbank/train/train.ark"\
28 ark:"/home/studenter/oyststa/LRE/backend/tristates \
29 /scoring/OGI/arks/OGI_train_out.ark"
30

31 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...
--apply-log=true \

32 --use-gpu=yes ...
--feature-transform=/home/studenter/oyststa/LRE/backend/deepnetwork/ \

33 place/RC_5_non_compacted_0/final.feature_transform ...
/home/studenter/oyststa/LRE/ \

34 backend/deepnetwork/place/RC_5_non_compacted_0/final.nnet \
35 ark:"/home/studenter/oyststa/kaldi-trunk/egs/ \
36 ogi/s5/data-fbank/develop/cv.ark"\
37 ark:"/home/studenter/oyststa/LRE/backend/ \
38 tristates/scoring/OGI/arks/OGI_cv_out.ark"
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39

40 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...
--apply-log=true \

41 --use-gpu=yes ...
--feature-transform=/home/studenter/oyststa/LRE/backend/deepnetwork\

42 /place/RC_5_non_compacted_0/final.feature_transform ...
/home/studenter/oyststa/LRE/\

43 backend/deepnetwork/place/RC_5_non_compacted_0/final.nnet \
44 ark:"/home/studenter/oyststa/kaldi-trunk/egs/ \
45 ogi/s5/data-fbank/test/test.ark" \
46 ark:"/home/studenter/oyststa/LRE/backend/tristates/ \
47 scoring/OGI/arks/OGI_test_out.ark"
48 # # ###END NEW PART
49

50 #loop over iterations
51 for i in {1..6}; do
52 j=$[i-1]
53 if [ $i -eq 1 ]; then
54 cp /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/ \
55 out/timit_0-16k_23mel_1st/ \
56 pfiles/train.pfile ...

/home/studenter/oyststa/LRE/backend/tristates/scoring/OGI/ \
57 originalpfiles/train.pfile
58 cp /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/ \
59 out/timit_0-16k_23mel_1st/ \
60 pfiles/test.pfile /home/studenter/oyststa/LRE/backend/ \
61 tristates/scoring/OGI/originalpfiles/test.pfile
62 cp /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi/ \
63 out/timit_0-16k_23mel_1st/ \
64 pfiles/cv.pfile /home/studenter/oyststa/LRE/backend/ \
65 tristates/scoring/OGI/originalpfiles/cv.pfile
66 else
67 cp "/home/studenter/oyststa/LRE/backend/tristates/ \
68 scoring/OGI/realigned/train${j}.pfile" \
69 /home/studenter/oyststa/LRE/backend/tristates/scoring \
70 /OGI/originalpfiles/train.pfile
71 cp "/home/studenter/oyststa/LRE/backend/tristates/ \
72 scoring/OGI/realigned/test${j}.pfile" \
73 /home/studenter/oyststa/LRE/backend/tristates/ /
74 scoring/OGI/originalpfiles/test.pfile
75 cp "/home/studenter/oyststa/LRE/backend/tristates/ \
76 scoring/OGI/realigned/cv${j}.pfile" \
77 /home/studenter/oyststa/LRE/backend/tristates/ \
78 scoring/OGI/originalpfiles/cv.pfile
79

80

81 echo "Forwarding phase $j"
82 ####NEW - KALDI J'TH FORWARD PASS
83 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...

--apply-log=true \
84 --use-gpu=yes --feature-transform= \
85 "/home/studenter/oyststa/LRE/backend/deepnetwork \
86 /place/RC_5_non_compacted_${j} \
87 /final.feature_transform" "/home/studenter/oyststa/LRE \
88 /backend/deepnetwork/place/RC_5_non_compacted_${j}/final.nnet" \
89 ark:"/home/studenter/oyststa/kaldi-trunk/egs/ogi/s5/ \
90 data-fbank/train/train.ark" \
91 ark:"/home/studenter/oyststa/LRE/backend/tristates/ \
92 scoring/OGI/arks/OGI_train_out.ark"
93

94 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...
--apply-log=true \

95 --use-gpu=yes --feature-transform= \
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96 "/home/studenter/oyststa/LRE/backend/deepnetwork \
97 /place/RC_5_non_compacted_${j}/ \
98 final.feature_transform" "/home/studenter/oyststa/LRE \
99 /backend/deepnetwork/place/RC_5_non_compacted_${j}/final.nnet" \
100 ark:"/home/studenter/oyststa/kaldi-trunk/egs/ogi/ \
101 s5/data-fbank/develop/cv.ark"\
102 ark:"/home/studenter/oyststa/LRE/backend/ \
103 tristates/scoring/OGI/arks/OGI_cv_out.ark"
104

105 /home/studenter/oyststa/kaldi-trunk/src/nnetbin/nnet-forward ...
--apply-log=true \

106 --use-gpu=yes --feature-transform="/home/studenter/oyststa \
107 /LRE/backend/deepnetwork\
108 /place/RC_5_non_compacted_${j}/final.feature_transform" \
109 "/home/studenter/oyststa/\
110 LRE/backend/deepnetwork/place/RC_5_non_compacted_${j}/final.nnet" \
111 ark:"/home/studenter/oyststa/kaldi-trunk/egs/ \
112 ogi/s5/data-fbank/test/test.ark" \
113 ark:"/home/studenter/oyststa/LRE/backend/tristates/ \
114 scoring/OGI/arks/OGI_test_out.ark"
115 ###END NEW PART
116 fi
117

118 for set in "train" "cv" "test"; do
119 cd /home/studenter/oyststa/LRE/backend/tristates/scoring/OGI/scripts
120 perl prior_pfile.pl "../originalpfiles/${set}.pfile" ../dict/dict \
121 ../priors/"priors_reali${j}_${set}" #find priors
122 perl post2pfile.pl "../arks/OGI_${set}_out.ark" \
123 "../posteriori/post_reali${i}_${set}.pfile" #make new posteriorfile
124 pfile_realign -i "../originalpfiles/${set}.pfile" -o \
125 "../realigned/${set}${i}.pfile" -p ...

"../posteriori/post_reali${i}_${set}.pfile" \
126 -v=true -l #realign
127 done
128

129 #now let's do the training
130 cd /home/studenter/oyststa/LRE/Pfile2Kaldi/create_kaldi
131 ./eyscript_realign.sh $i
132 cd /home/studenter/oyststa/LRE/backend/tristates/scoring/OGI/scripts
133

134 ./kaldtrain.sh $i
135

136 done
137

138 #last priors for the i'th iteration
139 for set in "train" "cv" "test"; do
140 cd /home/studenter/oyststa/LRE/backend/tristates/scoring/OGI/scripts
141 perl prior_pfile.pl "../realigned/${set}${i}.pfile" ../dict/dict \
142 "../priors/priors_reali${i}_${set}" #find priors
143 done
144

145 echo "All iterations done!"



Appendix H

Evaluate decoding

1 #!/usr/bin/perl
2 ##Script to compare a prior pfile with a decoded mlf
3 ##
4 ##Ãystein Staven, NTNU, 7 june 2016
5 #
6 #Requires an input mlf made with arguments <-o S>
7

8 use List::MoreUtils qw(firstidx);
9 #use strict;
10 #use warnings;
11 ###########################################
12 ## Check input arguments
13 ###########################################
14 # $num_args = $#ARGV+1;
15 # if ($num_args != 2) {
16 # print "\nUsage: prior_ark.pl <input pfile> <output ark> ...

<priorlist>\n";
17 # exit;
18 # }
19

20 ######################
21 ## Input arguments
22 ######################
23 $input_pfile=$ARGV[0];
24 $dict="dict_CI_place.dict";
25 $dictlatex="dictlatex";
26 #$list="cv.scp";
27 $input_mlf=$ARGV[1];
28 #############################
29 ## Get some info about pfile
30 ##############################
31 @pfile_info=split(/[\n,\s]+/,`pfile_info -i $input_pfile`);
32 #make original labs
33 system("pfile_print -i $input_pfile -o temppfile.txt -q");
34 $pfile_sentences=$pfile_info[1];
35 $pfile_frames=$pfile_info[3];
36 #print "@info\n";
37 #print "$pfile_sentences\n";
38 #print "$pfile_frames\n";
39

40 $numatts=`cat $dict | wc -l`;
41 ###################
42 ## Initialize
43 ######################
44 my @starts_array=();
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45 my @stops_array=();
46 my @phns_array=();
47 #$time_shift=10*(1e-3); #frame shift constant
48 $time_shift=1e5;
49 #my $dir = './tmpdecode'; #temporary folder for recs
50 #mkdir $dir unless -d $dir;
51 @attributes=();
52 @attributes = do {
53 open $fh, "<", $dict
54 or die "could not open $dict: $!";
55 <$fh>;
56 };
57

58 close($fh);
59 @attributeslatex=();
60 @attributeslatex = do {
61 open $fh, "<", $dictlatex
62 or die "could not open $dictlatex: $!";
63 <$fh>;
64 };
65

66 close($fh);
67 #####################################
68 ## Import MLF and make new continous mlf, then print to two new files
69 ######################################
70 $mlf_sentences=`grep $input_mlf -e '.rec' | wc -l`;
71

72 if ($pfile_sentences != $mlf_sentences){
73 die("MLF and pfile has different number of sentences\n");
74 }
75 open(FOUT1,">newref.txt") || die("Cannot open newref.txt \n");
76 open(FOUT2,">reclabs.txt") || die("Cannot open reclabs.txt \n");
77 open(FIN,"$input_mlf") || die("Cannot open MLF file\n");
78

79 while($line = <FIN>) {
80 chomp $line;
81 next if ($line =⇠ m/MLF/); #skip if it's the MLF header
82 next if ($line =⇠ m/^\./); #skip if it's the end of sentence
83 if ($line =⇠ m/.rec/) { #this means a new file
84 for($el=0;$el<=$#phns_array;$el++) {
85 print FOUT1 "$starts_array[$el] $stops_array[$el] ...

$phns_array[$el]\n";
86 $idx = firstidx {/$phns_array[$el]/} @attributes;
87 print FOUT2 "$idx\n";
88 }
89 @starts_array=();
90 @stops_array=();
91 @phns_array=();
92 next;
93 }
94 ($start, $stop, $phn) = split /\s+/, $line, 3;
95 $diff=$stop-$start;
96 #section that takes care of time jumps more than time_shift:
97 if($diff == $time_shift){
98 push @starts_array, $start;
99 push @stops_array, $stop;
100 push @phns_array, $phn; }
101 else {
102 $counter=0;
103 #push @starts_array, $start;
104 $newtime=$start;
105 while($counter != $diff){
106 push @starts_array, $newtime;
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107 $newtime=$newtime+$time_shift;
108 push @stops_array, $newtime;
109 push @phns_array, $phn;
110 $counter=$counter+$time_shift;
111 }
112

113 }
114 }
115 #Printing the final file
116 for($el=0;$el<=$#phns_array;$el++) {
117 print FOUT1 "$starts_array[$el] $stops_array[$el] $phns_array[$el]\n";
118 $idx = firstidx {/$phns_array[$el]/} @attributes;
119 print FOUT2 "$idx\n";
120 }
121 close(FIN);
122 close(FOUT);
123

124 open(FIN,"temppfile.txt") || die("Cannot open temppfile.txt\n");
125 open(FOUT,">lablabs.txt") || die("Cannot open lablabs.txt\n");
126 while($line = <FIN>) {
127 chomp $line;
128 @columns= split / /, $line;
129 print FOUT "$columns[50]\n";
130 }
131 close(FIN);
132 close(FOUT);
133

134 unlink("temppfile.txt");
135 #unlink("newref.txt");
136

137 ####################################
138 ## Make binary recognizer vectors
139 ####################################
140 open(FIN1,"reclabs.txt") || die("Cannot open reclabs.txt");
141 open(FIN2,"lablabs.txt") || die("Cannot open lablabs.txt");
142 open(FOUT1,">binreclabs.txt") || die("Cannot open binreclabs.txt");
143 open(FOUT2,">binlablabs.txt") || die("Cannot open binlablabs.txt");
144

145 while($line = <FIN1>) {
146 for($el=0;$el<=$numatts-1;$el++) {
147 if ($el == $line)
148 {print FOUT1 "1\n";}
149 else{print FOUT1 "0\n";}
150 }
151 }
152

153 while($line = <FIN2>) {
154 for($el=0;$el<=$numatts-1;$el++) {
155 if ($el == $line)
156 {print FOUT2 "1\n";}
157 else{print FOUT2 "0\n";}
158 }
159 }
160

161 close(FIN1); close(FIN2);
162 close(FOUT1); close(FOUT2);
163

164 ##########################################
165 ## Now for the evaluation for each class
166 ##########################################
167 open(LATEX,">latex.txt") || die("Cannot open latex.txt");
168 open(MATLAB,">matlab.txt") || die("Cannot open matlab.txt");
169 @lablabs=(); #import truth labels
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170 @lablabs = do {
171 open $fh, "<", "binlablabs.txt"
172 or die "could not open binlablabs.txt: $!";
173 <$fh>;
174 };
175 close($fh);
176 @reclabs=(); #import recognized labels
177 @reclabs = do {
178 open $fh, "<", "binreclabs.txt"
179 or die "could not open binreclabs.txt: $!";
180 <$fh>;
181 };
182 close($fh);
183

184 for($class=0;$class<=$numatts-1;$class++) {
185 $TP=0; #true positives
186 $FP=0; #false positives
187 $TN=0; #true negatives
188 $FN=0; #false negatives
189 $globalcount=0;
190 $counter=0;
191 foreach my $line (@reclabs) {
192 #print "counter: $counter\n";
193 #now check for TP,FP,TN,FN
194 if ($counter==$class)
195 {
196 if ($line==1 and $lablabs[$globalcount]==1) {$TP++;}
197 if ($line==1 and $lablabs[$globalcount]==0) {$FP++;}
198 if ($line==0 and $lablabs[$globalcount]==0) {$TN++;}
199 if ($line==0 and $lablabs[$globalcount]==1) {$FN++;}
200 }
201 $counter++;
202 $globalcount++;
203 if ($counter == $numatts){$counter=0;}
204 }
205 #print "$class: TP: $TP FP: $FP TN: $TN FN $FN\n";
206 if ($TN == 0 || $TP == 0) {$Acc = $Prec = $Reca = $FScore = "nAn";}
207 else{
208 $Acc=100*($TP+$TN)/($TP+$FP+$TN+$FN);
209 $Prec=100*($TP)/($TP+$FP);
210 $Reca=100*($TP)/($TP+$FN);
211 $FScore=(2*$TP)/((2*$TP)+$FP+$FN);
212 printf MATLAB ("%5.1f %5.1f %5.1f %5.2f \n",$Acc,$Prec,$Reca,$FScore);
213 }
214 printf("$attributeslatex[$class] Acc=%5.2f\%, Prec=%5.2f\%, ...

Reca=%5.2f\%, FScore=%5.2f\n",$Acc,$Prec,$Reca,$FScore);
215 # print latex formatted table
216 printf LATEX ("%s %s",$attributeslatex[$class],"\&");
217 printf LATEX ("%5.1f \& %5.1f \& %5.1f \& %5.2f ...

\\\\\n",$Acc,$Prec,$Reca,$FScore);
218 }
219

220 ##################################################
221 ## Now for the evaluation for each frame regardless of class
222 ##################################################
223 $TP=0; #true positives
224 $FP=0; #false positives
225 $TN=0; #true negatives
226 $FN=0; #false negatives
227 $globalcount=0;
228 $counter=0;
229 foreach my $line (@reclabs) {
230 #print "counter: $counter\n";
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231 #now check for TP,FP,TN,FN
232 if ($line==1 and $lablabs[$globalcount]==1) {$TP++;}
233 if ($line==1 and $lablabs[$globalcount]==0) {$FP++;}
234 if ($line==0 and $lablabs[$globalcount]==0) {$TN++;}
235 if ($line==0 and $lablabs[$globalcount]==1) {$FN++;}
236

237 $globalcount++;
238 }
239 #print "Total: TP: $TP FP: $FP TN: $TN FN $FN\n";
240 if ($TN == 0 || $TP == 0) {$Acc = $Prec = $Reca = $FScore = "nAn";}
241 else{
242 $Acc=100*($TP+$TN)/($TP+$FP+$TN+$FN);
243 $Prec=100*($TP)/($TP+$FP);
244 $Reca=100*($TP)/($TP+$FN);
245 $FScore=(2*$TP)/((2*$TP)+$FP+$FN);
246 printf MATLAB ("%5.1f %5.1f %5.1f %5.2f \n",$Acc,$Prec,$Reca,$FScore);
247 }
248 printf("\nTotal: Acc=%5.2f\%, Prec=%5.2f\%, Reca=%5.2f\%, ...

FScore=%5.2f\n",$Acc,$Prec,$Reca,$FScore);
249

250 # print latex formatted table
251 printf LATEX ("Total \&");
252 printf LATEX ("%5.1f \& %5.1f \& %5.1f \& %5.2f ...

\\\\\n",$Acc,$Prec,$Reca,$FScore);
253

254 close(LATEX);
255 close(MATLAB);
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Backend top script (Siniscalchi)

1 #!/bin/bash
2 #
3 #$ -cwd
4 #$ -j y
5 #$ -S /bin/bash
6 #
7 ###THIS ASSUMES THAT USENGNSD IS ENGLISH AND SPANISHNCD IS SPANISH. ...

THERE IS NO TAWAIN,USENGSD,SPANISHCD
8

9 #trainSets="rec_canadian_train rec_farsi_train rec_german_train"
10 ####UNCOMMENT FOLLOWING TWO LINES FOR FULL EVALUATON
11 trainSets="rec_arabic_train rec_english_train rec_farsi_train ...

rec_french_train rec_german_train rec_hindi_train rec_japanese_train ...
rec_korean_train rec_mandarin_train rec_spanish_train ...
rec_tamil_train rec_vietnamese_train"

12 trainlans=("arabic" "english" "farsi" "french" "german" "hindi" ...
"japanese" "korean" "mandarin" "spanish" "tamil" "vietnamese" ...
"norwegian")

13 #trainSets="rec_arabic_train"
14 #trainlans=("arabic")
15

16 ####COMMENT THE FOLLOWING LINE FOR FULL EVALUATION
17 #trainlans=("canadian" "farsi" "german") #changed from arabic and ...

german to canadian and farsi -Ãžystein
18

19 testSet="rec_lid03e1_30"
20

21 numSV=$1
22 weight=$2
23 rm -rf nist
24 mkdir nist
25

26 for set in `echo $trainSets`
27 do
28 echo $set
29 done
30

31 echo "special treatment for Norwegian"
32 for set in `echo rec_norwegian_train`; do
33 mkdir nist/$set
34 perl breakNIST.pl $set.mlf place
35 ls nist/$set > nist/curSet.scp
36 perl replaceNAFTAPhns.pl place $set
37 mkdir nist/temp30
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38 matlab -nodisplay -nodesktop -nojvm -r ...
"combineNAFTA('nist/curSet.scp','$set')"

39 rm -rf nist/$set
40 mv nist/temp30 nist/$set
41 perl listFiles.pl "nist/$set" >> nist/all.scp
42 done
43

44 for set in `echo $trainSets`
45 do
46 echo $set
47 mkdir nist/$set
48 perl breakNIST.pl $set.mlf place
49 perl listCALL.pl $set
50 perl replacePhns.pl place $set
51 mkdir nist/temp30
52 matlab -nodisplay -nodesktop -nojvm -r ...

"combineCALL('nist/setCount.txt','$set')"
53 rm -rf nist/$set
54 mv nist/temp30 nist/$set
55 perl listFiles.pl "nist/$set" >> nist/all.scp
56 done
57

58 perl mkLabels.pl "nist/all.scp" "nist/train.lab"
59

60 echo "Done making training files"
61 echo "Making testing file"
62 mkdir nist/$testSet
63 perl breakNIST.pl $testSet.mlf
64 perl listNIST.pl $testSet
65

66 perl replacePhns.pl place $testSet
67 mkdir nist/temp30
68 matlab -nodisplay -nodesktop -nojvm -r ...

"combineNIST('nist/setCount.txt','$testSet')"
69 rm -rf nist/$testSet
70 mv nist/temp30 nist/$testSet
71 perl listFiles.pl "nist/$testSet" > nist/test.scp
72 perl mkTestLabs.pl "$testSet"
73 echo "Done making testing files"
74

75 numPhns=`wc -l phn_place | awk '{ print $1 }'`
76 echo "Num svs = $numSV"
77 matlab -nodisplay -nodesktop -nojvm -r ...

"quadlsaNIST('nist/all.scp','nist/test.scp',$numPhns,$numSV)"
78 #matlab -r "quintlsa('nist/all.scp','nist/test.scp',$numPhns,$numSV)" ...

#was commented
79 matlab -nodisplay -nodesktop -nojvm -r "normVects('nist')"
80 ##mv nist/train.csv nist/trainNorm.csv #was commented
81 ##mv nist/test.csv nist/testNorm.csv #was commented
82

83 for ((pos=0;pos<${#trainlans[@]};pos++))
84 do
85 set=${trainlans[$pos]}
86 echo "$set"
87 perl mkSVM1vAll.pl nist/trainNorm.csv nist/train.lab ${set} ...

nist/${set}.dat
88 perl mkSVM1vAll.pl nist/testNorm.csv nist/test.lab $set nist/test.dat
89 svm_learn -j ${weight} nist/${set}.dat nist/theModel
90 svm_classify nist/test.dat nist/theModel nist/${set}.pred
91 svm_classify nist/${set}.dat nist/theModel nist/${set}.predT
92 # perl svm2scores.pl nist $set nist/test.lab nist/${set}.pred
93 done > NISTsvmlog.txt
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LSA (Siniscalchi)

1 function quadlsaNIST(trainList,testList,numWords,numSV)
2 % trainList=('nist/all.scp');
3 % testList=('nist/test.scp');
4 % numWords=10;
5 % numSV=300;
6 % numSV = numSV
7 fileList = textread(trainList,'%s');
8 C = zeros(numWords+numWords*numWords+numWords^3,length(fileList));
9 numDocs = length(fileList);
10 for fileNum = 1:numDocs
11 str = sprintf('%s',fileList{fileNum});
12 x = dlmread(str);
13 xsize = size(x);
14 % x = x(:,3);
15 for n = 1:numWords
16 C(n,fileNum) = length(find(x == n));
17 end
18

19 temp = zeros(numWords,numWords);
20 for n = 2:length(x)
21 temp(x(n),x(n-1)) = temp(x(n),x(n-1)) + 1;
22 end
23 C((numWords+1):(numWords+numWords^2),fileNum) = temp(:);
24

25 temp = zeros(numWords,numWords,numWords);
26 for n = 3:length(x)
27 temp(x(n),x(n-1),x(n-2)) = temp(x(n),x(n-1),x(n-2)) + 1;
28 end
29 C((numWords+numWords^2+1):end,fileNum) = ...
30 temp(:);
31

32 end
33 dlmwrite('nist/Cquad.txt',C,' '); %<---Remove this after done debugging
34

35 W = zeros(size(C));
36 n = sum(C);
37 t = sum(C');
38 epsilon = zeros(1,numWords+numWords*numWords+numWords^3);
39

40 for ii = 1:length(t)
41 if (t(ii) > 0)
42 temp = C(ii,:)./t(ii);
43 temp = temp.*log(temp);
44 I = find(C(ii,:) == 0);
45 temp(I) = 0;
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46 epsilon(ii) = -1/log(numDocs) * sum(temp);
47 end
48 end
49

50 dlmwrite('nist/wordEntropies.txt',epsilon,'\n'); %<---Remove this after ...
done

51 %debugging
52

53 for ii = 1:length(t)
54 for jj = 1:numDocs
55 W(ii,jj) = (1-epsilon(ii))*C(ii,jj)/n(jj);
56 end
57 end
58 dlmwrite('nist/W.txt',W,' ')
59 clear C
60 [U,S,V] = svds(W,numSV);
61 clear W
62 B = S*V';
63 %B = V';
64 dlmwrite('nist/train.csv',B','delimiter',',','precision','%.10f')
65 clear S
66 clear V
67 fileList = textread(testList,'%s');
68 C = zeros(numWords+numWords*numWords+numWords^3,length(fileList));
69 numDocs = length(fileList);
70 for fileNum = 1:numDocs
71 str = sprintf('%s',fileList{fileNum});
72 x = dlmread(str);
73 % x = x(:,3);
74 for n = 1:numWords
75 C(n,fileNum) = length(find(x == n));
76 end
77 temp = zeros(numWords,numWords);
78 for n = 2:length(x)
79 temp(x(n),x(n-1)) = temp(x(n),x(n-1)) + 1;
80 end
81 C((numWords+1):(numWords+numWords^2),fileNum) = temp(:);
82 temp = zeros(numWords,numWords,numWords);
83 for n = 3:length(x)
84 temp(x(n),x(n-1),x(n-2)) = temp(x(n),x(n-1),x(n-2)) + 1;
85 end
86 C((numWords+numWords^2+1):end,fileNum) = ...
87 temp(:);
88

89 end
90 dlmwrite('nist/Cquadtest.txt',C,' '); %<---Remove this after done debugging
91 Q = zeros(size(C));
92 n = sum(C);
93

94 for ii = 1:length(t)
95 for jj = 1:numDocs
96 Q(ii,jj) = (1-epsilon(ii))*C(ii,jj)/n(jj);
97 end
98 end
99

100 dlmwrite('nist/Q.txt',Q,' ')
101 Q = U'*Q;
102 dlmwrite('nist/test.csv',Q','delimiter',',','precision','%.10f')
103

104

105

106

107
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108

109

110

111 quit
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Find priors

1 #!/bin/perl
2 #This script calls on pfile_print to find prior probabilities ...

associated with each class
3 #------------Ãystein Staven, NTNU 22 May 2016-----------------------------
4

5 #############################
6 ## Declarations
7 #############################
8 use Math::BigFloat;
9 Math::BigFloat->precision(-8);
10 ############################
11 ## Check input arguments
12 #############################
13 $num_args = $#ARGV+1;
14 if ($num_args != 3) {
15 print "\nUsage: prior_pfile.pl <input pfile> <dict> <output file>\n";
16 exit;
17 }
18

19 ####################
20 ## Input arguments
21 ####################
22 $pfile=$ARGV[0];
23 $dict=$ARGV[1];
24 $output=$ARGV[2];
25 #######################################
26 ## Get info about number of states/attributes and make a txt version ...

of pfile
27 ######################################
28 $num_attr=`cat $dict | wc -l`;
29

30 system("pfile_print -i $pfile -o temppfile.txt"); #TODO:uncomment
31

32 $pfileinfo=`pfile_info -i $pfile`;
33 $num_frames = (split / /, $pfileinfo)[2];
34 #print "$num_frames\n";
35 ##############################
36 ## Initialize all count_array elements to zero. Needed later.####
37 ################################
38 my @labellist=();
39 my @logprior=();
40 ##################################
41 ## Load entire pfile into array
42 ##################################
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43 open(TEXTFILE,"temppfile.txt") or die "ERROR: can not open ...
temppfile.txt\n";

44 while($line = <TEXTFILE>) {
45 chomp $line;
46 #now starts count process for each label
47 $curlabel=(split / /, $line)[50];
48 #increase at appropriate index
49 $labellist[$curlabel]=$labellist[$curlabel] + 1;
50 }
51 close(TEXTFILE);
52 ############################################
53 ## Now find log priors and print to output
54 ############################################
55 open(OUTFILE, ">$output") or die "ERROR: can not open $output\n";
56 for($el=0;$el<=$num_attr-1;$el++) {
57

58 if ($labellist[$el] eq "")
59 { $logprior[$el] = -1000; }
60 else
61 { $logprior[$el] = log($labellist[$el]) - log($num_frames); }
62 printf OUTFILE "%.5f\n", $logprior[$el];
63 }
64 close (OUTFILE);
65 #########################################
66 ##Check if all probabilities sum to one.
67 #########################################
68 open $fh, "<", "$output" or die "Can't open '$output'\n";
69 my $probsum=Math::BigFloat->new(0.0);
70 while($line = <$fh>)
71 {
72 chomp $line;
73 $probsum=$probsum+exp($line);
74 }
75 print "\n-------------------Sum of all probabilities is: ...

$probsum------------------------\n";
76

77 close $fh;
78 unlink("temppfile.txt");
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OGI LEDs

English:

1 RE labial b f m p v w
2 RE coronal d dx en l n s t z er r
3 RE palatal y jh ch zh sh
4 RE low aa ae aw ay oy
5 RE dental dh th
6 RE mid ah eh ey ow
7 RE high ih iy uh uw
8 RE velar g k ng
9 RE glottal hh
10 RE sil pau
11 ME sil sil sil

German:

1 RE dental f v
2 RE palatal y jh ch sh
3 RE glottal hh
4 RE labial p b f m w
5 RE coronal cx d dx l n r s t ts x z
6 RE low A: a aa ae aw
7 RE mid ah uh oo ee eh oa ea
8 RE high iy ih uh uw ihw ai ia
9 RE velar k g ng
10 RE sil pau
11 ME sil sil sil

Hindi:

1 RE palatal y sh jhh jh chh ch
2 RE dental dt dd ddh dth n
3 RE glottal hh
4 RE labial p b bh f m w
5 RE coronal d dx dh t th s z l r rd
6 RE low a aa ae aw ai
7 RE mid ah eh ow e
8 RE high iy ih uw uh
9 RE velar k kh g ng
10 RE sil dtcl ddcl pau
11 ME sil sil sil

Japanese:
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1 RE palatal y zh sh jh ch
2 RE dental d dz t ts s z n
3 RE glottal hh
4 RE labial p b f m w
5 RE coronal rrr
6 RE low a ay
7 RE mid ah ey ow
8 RE high iy uw
9 RE velar k g ng
10 RE sil pau
11 ME sil sil sil

Mandarin:

1 RE palatal sh ch ts c
2 RE dental tH
3 RE glottal hh
4 RE labial p ph f w m v
5 RE coronal l n s t r shr tsr tsh
6 RE low aa ae ao aw ai a
7 RE mid eh ah ax oe ox er ow ey
8 RE high iyw iy uw ih u
9 RE velar k kh ng
10 RE sil tscl tsrcl chcl pau
11 ME sil sil sil

Spanish:

1 RE palatal ly y jh sh ch
2 RE dental t d th dh s n l
3 RE glottal hh
4 RE labial p b bx f m w
5 RE coronal hs r
6 RE low aa ae ay
7 RE mid ey eh ow ah
8 RE high iy ih uw uh y
9 RE velar k g gx hx ng
10 RE sil pau
11 ME sil sil sil
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Norwegian phone mapping

1 2 high
2 2: high
3 2y high
4 2} mid
5 3: low
6 4 dental
7 4_= dental
8 ? glottal
9 @ mid
10 @U mid
11 A low
12 A: low
13 Ai low
14 A} low
15 C palatal
16 D dental
17 I high
18 J palatal
19 J\ palatal
20 J_= palatal
21 L palatal
22 L_= palatal
23 O mid
24 O: mid
25 Oy mid
26 R coronal
27 R_= coronal
28 S palatal
29 T dental
30 U high
31 V low
32 Z coronal
33 aU low
34 b labial
35 c palatal
36 c__C palatal
37 d dental
38 d__Z palatal
39 d` dental
40 e mid
41 e: mid
42 eI mid
43 f labial
44 h glottal
45 i high

127



128 APPENDIX M. NORWEGIAN PHONE MAPPING

46 i: high
47 j palatal
48 l dental
49 l_= dental
50 l` palatal
51 l`_= dental
52 m labial
53 m_= labial
54 n dental
55 n_= dental
56 n` palatal
57 n`_= palatal
58 p labial
59 r\ glottal
60 r\_= glottal
61 r` dental
62 s coronal
63 s_= coronal
64 t dental
65 t__S palatal
66 t` dental
67 t`_= dental
68 u high
69 u: high
70 ui high
71 v labial
72 v_= labial
73 w labial
74 x glottal
75 y high
76 y: high
77 z coronal
78 { low
79 {: low
80 {i low
81 } high
82 }: high
83 }i high
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