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Summary

When most people hear the word coordinates, they think of latitude and longitude,
variables that describe a location on a spherical Earth. Unfortunately, the reality of
the situation is far more complex. The Earth is most accurately represented by an
ellipsoid, the coordinates are three-dimensional, and can be found in various forms.
The coordinates are also ambiguous. Without a proper reference system, a geodetic
datum, they have little meaning. This field is what is known as ”Geodesy”, a
science of exactly describing a position on the surface of the Earth.

This Thesis aims to build the foundation required for the position part of a
drilling software. This is accomplished by explaining, in detail, the field of geodesy
and map projections, as well as their associated formulae. Special considerations
is taken for the area offshore Norway. Once the guidelines for transformation and
conversion have been established, the formulae are implemented in MATLAB. All
implemented functions are then verified, for every conceivable method of opera-
tion. After which, both the limitation and accuracy of the various functions are
discussed. More specifically, the iterative steps required for the computation of
geographic coordinates, the difference between the North Sea Formulae and the
Bursa-Wolf transformation, and the accuracy of Thomas-UTM series for UTM
projections.

The conclusion is that the recommended guidelines have been established and
implemented. The implementation has been verified, and the proper handling of
information is suggested. Another conclusion is that all functions are more than
accurate enough for drilling purposes, and that there is a clear difference between
using the Bursa-Wolf transformation and the North Sea Formulae. The difference
is discussed in detail, and a intersecting area near the 62◦N is depicted, with 4
meters or less deviation between the two methods.

There are multiple areas on which to continue the work carried out on this The-
sis. Within the field of Geodesy, it is suggested that work is done to map the trans-
formations used worldwide, and implement these with the appropriate selection
criteria for automation. Attempting to find a joint transformation for the North
Sea and the Norwegian Sea would also be recommended. This transformation
should replace both the North Sea Formulae and the Bursa-Wolf transformation.

Within the field of Map Projection, it is suggested that the conversion of co-
ordinates is expanded to include the MGRS system, the UK grid system, and
implementation of the Krüger-n series of 8th order for UTM coordinates.

Lastly, it is suggested that a graphical interface is developed for both current
and future models. This interface should serve as a prototype for a final drilling
software.
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Sammendrag

De fleste vil tenke p̊a lengdegrader og breddegrader n̊ar de f̊ar høre ordet ko-
ordinater. Variabler som beskriver en posisjon p̊a en sfærisk klode. Dessverre er
realiteten at situasjonen er mye mer komplisert. Jordkloden beskrives best med en
ellipsoide, koordinater er tredimensjonale og de eksisterer er flere former. Koordi-
natene er ogs̊a tvetydige. Uten et referansegrunnlag som et geodetisk datum, betyr
koordinatene svær lite. Omr̊adet som dreier seg om dette er kjent som ”Geodesi”,
en vitenskap som dreier seg om å beskrive eksakte posisjoner p̊a jordens overflate.

Denne oppgaven har som formål å bygge grunnlaget for å utvikle posisjons-
biten til et boreprogram. Dette blir gjort ved å forklare teorien samt formelverket
innen b̊ade geodesi og kartprojeksjoner i detalj. Særs fokus blir lagt p̊a omr̊adet
utenfor kysten til Norge. Formelverket blir implementert i MATLAB etter at ret-
ningslinjer for transformasjon og konvertering har blitt fastsatt. Deretter blir de
implementerte funksjonene verifisert for alle tenkelige operasjoner. Til slutt drøftes
b̊ade begrensingene og nøyaktigheten til de forskjellige funksjonene. Spesifikt; den
iterative beregningen innen konvertering av geografiske koordinater, differansene
mellom Nordsjø-formelen og Bursa-Wolf transformasjonen, samt presisjonen til
Thomas-UTM serien for UTM kartprojeksjoner.

Oppgaven konkluderer med at de anbefalte retningslinjene har blitt fastsatt
og implementert. All matematisk implementering har blitt verifisert, og riktig
behandling av informasjon har blitt foresl̊att. Det blir ogs̊a konkludert at alle
funksjonene er mer enn nøyaktig nok for boreoperasjoner, og at det eksisterer
en klar forskjell mellom resultatet av Bursa-Wolf transformasjonen og Nordsjø-
formelen. Forskjellen blir diskutert i detalj, og et omr̊adet nærliggende 62◦N bred-
degrader blir skildret. Dette omr̊adet har mindre enn 4 meter i avvik mellom de
forskjellige metodene.

Det er flere omr̊ader hvor arbeidet kan videreføres. Innen geodesi anbefales det
at arbeid blir utført slik at alle transformasjonsmetoder blir kartlagt. Disse meto-
dene bør implementeres sammen med valgkriterier slik at transformasjoner kan
automatiseres. Det foresl̊aes ogs̊a at man prøver å finne en felles transformasjon
som erstatter b̊ade Nordsjø-formelen og Bursa-Wolf transformasjonen.

Innen kartprojeksjoner foresl̊aes det at konverteringen blir videreutviklet slik
at det ogs̊a inkluderer MGRS systemet, det britiske systemet, samt at Krüger-n
serien blir implementert i orden 8 for UTM koordinater.

Til slutt anbefales det ogs̊a at et grafisk brukersnitt blir utviklet for b̊ade
n̊aværende samt fremtidige modeller. Dette brukersnittet bør fungere som en
prototype for en endelig programvare.
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Chapter 1

Introduction

1.1 Motivation

Most of the computation involved in the planning of a new well is done by software.
Software such as Landmark, Drilling Office X, and so forth. These softwares handle
everything from the well placement, to analysis of hydraulics, torque, etc. for every
drilled section of the well. The problem, however, is that they are closed systems
with no insight to the procedure of the computation. And they are expensive, very
expensive.

By creating an open-source drilling software, these problems can be eliminated.
An open-source software could provide all users with an insight as to how com-
putations are carried out, and what lies behind them. No longer restricting the
ability to quality control the output to those with vast amounts of experience. An
open-source software would provide others with the ability to improve the soft-
ware, making it more reliable, better, and complete. It could provide researchers
and academics a possibility of implementing theoretical ideas into a working model
without having to create the framework themselves.

The ultimate motivation lies in the academic possibilities. An open software
could improve the academic learning curve, by matching the theory learned in
classes to the functionality of a software. It could also provide a platform, upon
which cross-discipline and cross-university projects could be carried out. Where
the goal could be to improve the software, evolve it into something more than just
a drilling software. Perhaps, one day, a petroleum platform for all disciplines.

1.2 Goal

Although the ultimate goal is to build a complete drilling software, the goal of this
Thesis is to build a part of it. More exact, the foundation for the positioning aspect
of the software. The foundation should be built in such manner that it is easily
understandable, altered, and quality controlled. It should also be built in such a
way that alteration is possible. The foundation should consist of a theoretical part
which explains both the theory and formulae involved in the computations, and
the computational implementation for handling positions. In addition, emphasis
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should be placed on the procedures for position handling offshore Norway.

1.3 Approach

The goal was achieved with a large emphasis on quality control. Every theoretical
aspect has been verified using a plethora of references, including both written
articles and professionals. The implementation of formulae have been designed in
such a way that the structure is easily understandable, so that others can alter
or continue the work without having to go to the same lengths of understanding.
The implemented formulae have been verified for every conceivable purpose, using
external and constructed test values. All transformations have been matched to
external test values, and conversions have been run forwards and backwards with
zero offset for a multitude of values.

1.4 Structure of Thesis

The Thesis first presents the theoretical foundation for understanding positions.
The chapter “Geodesy” explains how positions on the surface of the Earth are
related to coordinates through the use of reference systems known as geodetical
datums. The chapter also details the procedures for transformations offshore Nor-
way.

The next chapter goes into map projections. Map projections are the two-
dimensional representation of three-dimensional coordinates onto a plane surface.
The scope of this chapter revolves around UTM and the coordinates for this system.

The fourth chapter, ”Position Model”, contains a written explanation of every
function and script presented in Appendix B. The purpose and verification of
every line of code is given here, along with the reason for choosing MATLAB as a
programming platform. The chapter is finalized through a worked example, which
details the exact procedure for transformations offshore Norway.

After all the code has been explained, the limits are discussed in the next
chapter. This chapter looks at the differences between various methods of trans-
formation, the importance of iterative steps, the result of verification, and the
accuracy of the chosen map projection formulae.

Lastly, the most vital information is presented in the chapter “Conclusion”,
and the suggested path ahead is described in the chapter ”Future Work”. The
information is presented as bullet-points.

Appendix A contains data information in tables. Data such as test values,
reference parameters, and so forth, where as Appendix B contains every line of
code for the implemented formulae and verification. The last appendice, Appendix
C, consists of the script used for computing values for the worked example pre-
sented earlier. This script also contains comments which describe every step of
the procedure.
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Chapter 2

Geodesy

Geodesy is the science of finding exact positions along the surface of the Earth. It
is further defined as that branch of mathematics which deals with the shape and
area of the Earth, or large portions of it. Geodesy has evolved a lot throughout
the last decades due to recent advances in military and computer technology. The
increased accuracy requirements for military missiles combined with vast amounts
of satellite data and improved computational handling has shaped geodesy into
what it is today.

2.1 The Shape of the Earth

The shape of the Earth needs to be expressed mathematically before a coordinate
system can be put into place. A simple approximation would be to define the
Earth as spherical, which would yield a mathematical model that requires little
effort for navigation. Such an approximation may prove sufficient for many astro-
nomical and navigational computations. The reality is that the Earth resembles
an oblate spheroid, with a shorter polar radius than the equatorial radius. The
actual surface of the Earth is known as a topographic surface upon which geodetic
measurements are made, and reduced into the geoid. The geoid is defined as ”a
surface along which the gravity potential is everywhere equal and to which the
direction of gravity is always perpendicular” (Burkard 1959). This can be thought
of as that surface which the oceans would conform into, if left free to adjust for
the combined effect of the Earth’s mass attraction and the centrifugal force due
to the Earth’s rotation. The uneven distribution of the Earth’s mass results in an
irregular geoidal surface which gives serious limitations as a mathematical model.
In fact, the geoidal surface cannot be completely mathematically expressed. An-
other noteworthy fact is that crustal movement will induce measurement errors
over time.

The solution to this is to approximate the surface. As previously mentioned, a
sphere approximation may prove sufficient for simple navigational purposes, and
for a small city survey, a flat Earth model can prove accurate enough. However, this
approximation is not accurate enough for large scale calculations, nor exact enough
to find the location of a well offshore. The oblate spheroid is best approximated
using what is known as an ellipsoid of revolution.

3
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2.2 Ellipsoid of Revolution

An ellipsoid of revolution is obtained by revolving an ellipse around its semi-minor
axis (see Figure 2.1).

Figure 2.1: An ellipsoid of revoltuion with semi-major axis (a) and semi-minor
axis (b) (Bowditch 1995)

An ellipsoid of revolution can be defined by its semi-major axis and its shape.
The shape is often defined by flattening or inverse flattening, but can also be
represented by the first and second eccentricity. The flattening is given by the
following formulae:

f =
a− b
a

(2.1)

The first eccentricity by:

e =

√
a2 − b2
a2

= 2f − f 2 (2.2)

And the second eccentricity by:

e′ =

√
e2

1− e2
(2.3)

Various ellipsoids have been used throughout the years (Table 2.1) with differ-
ent flattening and semi-major axis. This is because some ellipsoids are better for
localized mapping than other. For instance, England still uses the Airy ellipsoid
of 1830, whereas Ireland uses a slightly modified version of the same ellipsoid. A
detailed list of ellipsoid parameters can be cound in Appendix A (Table A.1).
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Name Year a [m] 1/f Where Used

Airy 1830 6,377,276 299.32 Great Britain
Everest 1830 6,377,276 300.80 India
Bessel 1841 6,377,397 299.15 Japan
Clarke 1866 6,378,206 294.98 North America
Clarke 1880 6,378,249 293.46 France, Africa
Krassowsky 1940 6,378,245 298.3 Russia
International 1942 6,378,388 297 Europe
WGS 66 1966 6,378,160 298.25 USA/DoD
GRS 67 1967 6,378,160 298.25 Australia, South America
WGS 72 1972 6,378,135 298.26 USA/DoD
GRS 80 1979 6,378,137 298.26 Australia, South America
WGS 84 1984 6,378,137 298.257 USA/DoD

Table 2.1: Various ellipsoid of revolutions around the world and throughout time
(Burkard 1959; NIMA 2000)

The ellipsoid is an approximation of the Earth’s surface and not a perfect
representation. The variations between the ellipsoid and the geoid can be seen in
Figure 2.2 where the angle between the plumb line, perpendicular to the geoid, and
the line perpendicular to the ellipsoid is known as the deflection of the vertical.
The difference in height between the geoid and the ellipsoid is known as the geoid
undulation.

Figure 2.2: The surface relation of geoidal surface, ellipsoid surface and topo-
graphic surface (Bowditch 1995)

2.3 Coordinates

Coordinates are used to specify a geodetic position. They are combined with a
coordinate system, which is a set of mathematical rules used to tie coordinates
and position. This system can be further developed by realizing the coordinate
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system through a datum, thus creating a coordinate based reference system, of-
ten referred to as a Terrestrial Reference Frame (TRF) (Geodesividsjonen 2009).
Coordinates can be divided into three categories with respect to their nature;
geographic, Cartesian, and grid based.

2.3.1 Geographic Coordinates (φ, λ, H)

Geographic coordinates consists of latitude (φ), longitude (λ), and ellipsoid height
(H). Latitude and longitude are angles which represent a point on the surface of
an ellipsoid. The angles are defined through the use of meridians and parallels (see
Figure 2.3). Meridians are lines of constant longitude in the north-south direction,
and parallels are lines of constant latitude in the east-west direction. One meridian
is assigned the value of zero degrees longitude, and subsequently named the prime
meridian. The ellipsoid is divided into two hemiellipsoids west and east of the
prime meridian, where the longitude angles range from 0 to 180 degrees in either
west or east respectively. The zero degrees reference for latitude is assigned to
the equator of the ellipsoid, and the latitude angles range from 0 to 90 degrees in
either north or south where 90 degrees is the pole of the ellipsoid.

Figure 2.3: The relation between latitude and longitude, and meridians and par-
allels (Strahler 1963)

Latitude and longitude can be given in either decimal degrees, or in degrees,
minutes, and seconds. In case of the latter, one degree is equal to 60 minutes, which
in turn is equal to 3600 seconds. The ellipsoid height is the distance between the
described point and the ellipsoid surface along a straight line perpendicular to the
ellipsoid surface.

2.3.2 Cartesian Coordinates (X, Y, Z)

Cartesian coordinates, also known as geocentric coordinates, uses three perpen-
dicular axes, X, Y, and Z to describe a position in three dimensions (Figure 2.4).
This coordinate system conveys the same information as the latitude and longitude
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system. The X axis is defined as positive on that side of the geocenter which passes
through the prime meridian, the Z axis is defined as positive on that side of the
geocenter which passes through the North Pole, and Y axis is defined as positive
on that side of the geocenter which passes through 90 degrees west. Just as with
latitude and longitude, a set of cartesian coordinates are bound to the reference
ellipsoid and would have to be transformed if used for a different ellipsoid.

Figure 2.4: The Cartesian axes and planes (OS 2013)

Any point that can be represented by Cartesian coordinates can also be repre-
sented by latitude, longitude, and ellipsoid height. The only required information
for the conversion between these two sets of data is the ellipsoid data.

Geographic coordinates to Cartesian coordinates

Cartesian coordinates can be calculated based on the following set of equations
(OS 2013; Hofmann-Wellenhof et al. 2008):

x = (v +H) cosφ cosλ

y = (v +H) cosφ sinλ

z = ((1− e2)v +H) sinφ

(2.4)

Where e2 is the eccentricity (Equation 2.2) and ν is the prime vertical radius
of curvature at latitude φ and is given by:

ν =
a√

1− e2 sin2 φ
(2.5)

Cartesian coordinates to Geographic coordinates

Geographic coordinates can be computed based on the following set of equations
(OS 2013; Hofmann-Wellenhof et al. 2008):

λ = arctan
y

x
(2.6)

Initial latitude:
φ0 = arctan

z

p(1− e2)
(2.7)
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Where:

p =
√
x2 + y2 (2.8)

The latitude is improved iteratively until desired precision:

φn = arctan
z + e2ν sinφ(n−1)

p
(2.9)

Ellipsoidal height:

H =
p

cosφ
− ν (2.10)

2.3.3 Orthometric Height

Orthometric height is the distance between the Geoid and the ground. This pa-
rameter makes it possible to relate the height of one point to another, since the
ellipsoid height alone is misleading. The orthometric height as presented assumes
that the level passing through the position is parallel to the Geoid, which may
not be true in all instances, but the difference is negligible. The relation between
ellipsoid height and orthometric height is (OS 2013; Hofmann-Wellenhof et al.
2008):

h = V − H (2.11)

Where h is the orthometric height, H is the ellipsoid height and V is the geoid
undulation. The geoid undulation can be found for any longitude and latitude in
what is known as a Geoid model. An important note is that the difference in h
between two points is always more accurate than the h for one point alone, since
the errors present in both points are removed (OS 2013).

2.3.4 Grid Coordinates

Grid coordinates are also known as plane coordinates, map coordinates, or more
colloquial, Northings and Eastings. These coordinates are intended to be used
with a map, which is a two-dimensional plane surface projection of an area. The
map coordinates of a point are computed from ellipsoidal latitude and longitude
by what is known as a map projection. The coordinates are based upon a simple
two-dimensional Cartesian system which uses two axes known as northing and
easting, where the distance from the axes are given in metres and refered to as
Northings and Eastings.

Latitude and longitude to Eastings and Northings

In order to compute Eastings and Northings one need to know the latitude and
longitude of the position, as well as the Northing and Easting of the true origin
(N0 and E0), the scale factor on the central meridian (F0 or k0), the latitude and
longitude of the true origin (φ0 and λ0), and finally the ellipsoid constants a, b
and e2. All angles should be expressed in radians, and the converting is only
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valid within the same datum. If all these parameters are known, the Eastings and
Northings can be computed based on the following set of equations (OS 2013):

n =
a− b
a+ b

(2.12)

ν = aF0(1− e2 sin2 φ)−0.5 (2.13)

ρ = aF0(1− e2)(1− e2 sin2 φ)−1.5 (2.14)

η2 =
ν

ρ
− 1 (2.15)

M = bF0 [(1 + n+
5

4
n2 +

5

4
n3)(φ− φ0)−

(3n+ 3n2 +
21

8
n3) sin(φ− φ0) cos(φ+ φ0)+

(
15

8
n2 +

15

8
n3) sin(2(φ− φ0)) cos(2(φ+ φ0))·

35

24
n3 sin(3(φ− φ0)) cos(3(φ+ φ0))]

(2.16)

I = M +N0 (2.17)

II =
ν

2
sinφ cosφ (2.18)

III =
ν

24
sinφ cos3 φ(5− tan2 φ+ 9η2) (2.19)

IIIA =
ν

720
sinφ cos5 φ(61− 58 tan2 φ+ tan4 φ) (2.20)

IV = ν cosφ (2.21)

V =
ν

6
cos3 φ(

ν

ρ
− tan2 φ) (2.22)

V I =
ν

120
cos5 φ(5− 18 tan2 φ+ tan4 φ+ 14η2 − 58(tan2 φ)η2) (2.23)

N = I + II(λ− λ0)2 + III(λ− λ0)4 + IIIA(λ− λ0)6 (2.24)

E = E0 + IV (λ− λ0) + V (λ− λ0)3 + V I(λ− λ0)5 (2.25)

The formulae presented above are known as the Redfearn-Lee-OSGB series,
and is further described in the chapter ”Map Projections” below.
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Eastings and Northings to latitude and longitude

Converting from Eastings and Northings to latitude and longitude is an iterative
process which requires the same preliminary parameters as converting latitude and
longitude to Eastings and Northings, namely a, b, e2, N0, E0, F0, φ0 and λ0. The
angles should be expressed in radians and the conversion is only valid within the
same datum. With these preliminaries in place the conversion can be computed
based on the following set of equations (OS 2013): Equation 2.26 calculates the
initial latitude value:

φ′ =
N −N0

aF0

+ φ0 (2.26)

The value of M is obtained from Equation 2.16. As long as the absolute value
of (N−N0−M) ≥ 0.01mm the value of φ′ should be improved using the following
equation:

φ′new =
N −N0 −M

aF0

+ φ′ (2.27)

Once the absolute value is less than 0.01mm the values of ν, ρ, and η2 should
be calculated using Equations 2.13, 2.14, and 2.15 respectively. The following
equations should be calculated next:

V II =
tanφ′

2ρν
(2.28)

V III =
tanφ′

24ρν3
(5 + 3 tan2 φ′ + η2 − 9(tan2 φ′)η2) (2.29)

IX =
tanφ′

720ρν5
(61 + 90 tan2 φ′ + 45 tan4 φ′) (2.30)

X =
secφ′

ν
(2.31)

XI =
secφ′

6ν3
(
ν

ρ
+ 2 tan2 φ′) (2.32)

XII =
secφ′

120ν5
(5 + 28 tan2 φ′ + 24 tan4 φ′)) (2.33)

XIIA =
secφ′

5040ν7
(61 + 662 tan2 φ′ + 1320 tan4 φ′ + 720 tan6 φ′)) (2.34)

φ = φ′ − V II(E − E0)
2 + V III(E − E0)

4 − IX(E − E0)
6 (2.35)

λ = λ0 +X(E −E0)−XI(E −E0)
3 +XII(E −E0)

5 −XIIA(E −E0)
7 (2.36)

10



CHAPTER 2

2.4 Datums

A datum is defined as a set of numerical or geometrical quantities which serve as a
reference point from which to measure other quantities (Bowditch 1995). A datum
defines the placement of a coordinate system through defining the point of origin,
the scale, and the orientation of the axis (Geodesividsjonen 2009). Any change in
the datum values will result in a mismatch of coordinates and position. This is
illustrated in Figure 2.5 which displays the same longitude and latitude realized
with three different geodetic datums. The field of Geodesy recognizes three forms
of datums; geodetic, vertical, and fixed.

Figure 2.5: Three points with equal latitude and longitude in three different coor-
dinate systems (OS 2013)
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2.4.1 Geodetic Datums

A geodetic datum usually consists of both the size and shape of a reference ellipsoid,
along with its placement and orientation in relation to the Earth. Any height is
given as an ellipsoidal height in geodetic datums. There are two distinct forms of
geodetic datums, topocentric and geocentric (Geodesividsjonen 2009).

Topocentric datums are the traditional form of geodetic datums. They are tied
to the surface of the Earth and usually covers one or several nations. They are
tied to a fundamental point, normally an observatory. The fundamental point is
accompanied by geoidal height and deviation from plumb line.

Geocentric datums were made possible due to satellite technology. They as-
sume a three-dimensional coordinate system is placed with the point of origin at
the Earth’s centre of mass. The axis are located such that one falls through the
reference pole dictated by the International Earth Rotation Service (IERS) and
lies quite close to the Earth’s axis of rotation. Another axis falls through the
point where the IERS reference pole and the equatorial plane crosses. This point
is quite close to where the Greenwich meridian crosses the equator. The last, and
final axis, is perpendicular to the aforementioned axes.

2.4.2 Common Geodetic Datums

There is a plethora of geodetic datums used around the world, but only a few will
be covered here. They are the International Terrestrial Reference Frame (ITRF),
World Geodetic System of 1984 (WGS84), and the European Datum of 1950
(ED50). ITRF is considered the most accurate geodetic datum to which all other
geodetic datums matches themselves with. WGS84 was developed specifically for
the use of Global Positioning System (GPS), and is widely used throughout the
world. ED50 is the most common geodetic datum in the European oil and gas
industry, and is considered the standard at both Norwegian and British side of the
North Sea (UKOOA 1999; EPSG 2001).

International Terrestrial Reference Frame

The ITRF is realized for a given year in order to account for the tectonic plate
movement. The referred year is denoted either through two digits for any year
before 2000, or by four digits for the year 2000 and any year following it (Geode-
sividsjonen 2009). A version of the ITRF is known as the European Terrestrial
Reference System (ETRF). This is used by the European countries. Norway de-
cided to use this as a norm for all positions in the mainland in 1990, thus ETRF89
is the standard (Geodesividsjonen 2009).

World Geodetic System of 1984

The WGS84 is the latest generation of WGS datums. The WGS datums origin was
a joint effort by American Army, Navy, and Air Force, led by the US Department
of Defense in order to fulfil global military navigational requirements. This led to
the first generation of WGS datums, namely the World Geodetic System of 1960
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(WGS60). The next instalment was the World Geodetic System of 1966, which
included large amount of data from Doppler and optical satellites which were now
available (Bowditch 1995). The third generation, the World Geodetic System of
1972, was a product of computer evolution, which had produced better methods
for handling and combining data. WGS84 is considered the standard reference
datum for the Global Positioning System (Welch and Homsey 1997) and closely
corresponds to the North American Datum of 1983 (NAD83). WGS 84 uses the
Earth Gravitational Model of 1996 (EGM96) as a geopotential model, replacing
the previous WGS84 geoid, and the WGS84 reference ellipsoid (NIMA 2000).

European Datum of 1950

The ED50 was developed after World War II as a result of incompatible latitude
and longitude positioning at the borders of Germany, Netherlands, Belgium, and
France. The datum uses the International Ellipsoid of 1924 as the reference ellip-
soid, has its origin in Potsdam, Germany, and uses the Greenwhich meridian as
its prime meridian. The modern usage of ED 50 is limited to offshore applications
in western Europe, mainly in the Oil & Gas industry (OGP 2001). As mentioned
earlier, ED50 is considered the standard for both the NCS and the UKSC.

2.4.3 Vertical Datums

Vertical datums form the basis for gravity based heights, i.e., heights affected
by variations in both the strength and the direction of the gravity. The datums
consist of three parameters, the reference area, the fundamental point, and the
time. The reference area is most commonly the Geoid. The Geoid is affected by
forces from both the sun and the moon. The fundamental point is the visible point
on the surface which corresponds to the Geoid. This point defines the zero level of
height. Both the Geoid and the visible surface are affected by time, through erosion
and other factors which need to be accounted for. The official vertical datum
of Norway is NN1954, where the fundamental point lies near Tregde, Mandal
(Geodesividsjonen 2009).

2.4.4 Fixed Datums

A fixed datum is a very simplified datum which only yields unique positions in
a limited area. These types of datums are commonly used in construction sites,
survey boats, and so forth, where everything is related to a fixed point (Geode-
sividsjonen 2009).

2.5 Datum Transformation

Datum transformation is the process where a set of coordinates are transformed
from one datum system to another. This is a necessity since the horizontal da-
tums which form the basis of the geographic coordinate system vary from system
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to system. A unique set of latitude and longitude coordinates could indicate dif-
ferent positions for different datums as seen in Figure 2.5. Datum transformations
can be divided into a subset of two categories, namely geocentric transformations
and geographic transformations. The transformations can be realized by a direct
approach, where the geographic coordinates of both datums are related, or by an
indirect approach, where the geocentric coordinates of both datums are related.
An overview of the two methods and the transformation approaches related to
each method can be seen in Figure 2.6.

Figure 2.6: An overview of the various types of datum transformations, including
coordinate transformations (Knippers 2009)

2.5.1 Geocentric Transformations

Transformations between geocentric coordinate systems are known as three-dimensional
similarity transformations. These transformations are frequently used as a link in
transforming geographic systems to one another by first converting the geographic
coordinates to geocentric coordinates in the first datum, then transforming geo-
centric coordinates, and lastly converting them back to geographic coordinates
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in the second datum. There are three main methods of transforming geocentric
coordinates:

1. the geocentric translation

2. the Helmert 7-parameter transformations

3. the Molodensky-Badekas 10-paramezter transformation

Geocentric Translation

The geocentric translation is the simplest form of transforming geocentric coor-
dinates. The method assumes that the axes of both ellipsoids are parallel, the
prime meridian is Greenwich, and that there is no scale difference between the two
datums. If all the assumptions hold true, the geocentric coordinates of the target
datum (XT , YT , ZT ) can be found by adding three translations known as shifts
(tX, tY , tZ) to the source coordinates (XS, YS, ZS)(OGP 2013):

XT = XS + tX

YT = YS + tY

ZT = ZS + tZ

(2.37)

Conventional Helmert 7-parameter

The Helmert 7-parameter transformation expands upon the simple geocentric
translation by accounting for the rotation and scale differences between the source
and target datum. The transformation is considered to be reversible and can be
expressed as either a position vector transformation or as a coordinate frame trans-
formation, where the difference lies in the definition of the rotation parameters.
The Position Vector Transformation is also known as the Bursa-Wolf transforma-
tion, and assumes that the rotations are applied to the vector of the point and is
expressed by the following matrix equation (OGP 2013):∣∣∣∣∣∣

XT

YT
ZT

∣∣∣∣∣∣ = M ·

∣∣∣∣∣∣
1 −rZ rY
rZ 1 −rX
−rY rX 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
XS

YS
ZS

∣∣∣∣∣∣+

∣∣∣∣∣∣
tX
tY
tZ

∣∣∣∣∣∣ (2.38)

The Helmert 7-parameter transformation is considered reversible for practical
purposes if the transformation parameters are small compared to the magnitude
of the geocentric coordinates. The parameters (tX, tY , tZ) are known as the
translation vector, which is the same as the coordinates of the origin of the source
datum expressed in the coordinates of the target datum. The parameters (rX,
rY , rZ) are the rotations which needs to be applied to the vector of the point.
The rotations are defined as positive in the clockwise direction when viewed from
the origin of the geocentric coordinate system. Equation 2.38 requires the rotation
angles to be input in radians. The last parameter, M, is the scale correction which
is a function of δS, the scale correction in parts per million:
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M = (1 + δS · 10−6) (2.39)

Equation 2.38 is commonly used in the European E&P industry, however the
position vector and transformation sign are not universally accepted. The USA
E&P industry uses a variation of the Position Vector Transformation known as
the Coordinate Frame Rotation and is given as (OGP 2013):∣∣∣∣∣∣

XT

YT
ZT

∣∣∣∣∣∣ = M ·

∣∣∣∣∣∣
1 rZ −rY
−rZ 1 rX
rY −rX 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
XS

YS
ZS

∣∣∣∣∣∣+

∣∣∣∣∣∣
tX
tY
tZ

∣∣∣∣∣∣ (2.40)

The only difference from the European method is in the rotation sign conven-
tion.

Time-dependent Helmert 7-parameter

The Helmert 7-parameter transformation can be modified to account for the tec-
tonic plate motion. The result is a 15-parameter transformation where the addi-
tional parameters are the rates of the original 7 parameters, and the reference time
of the rates. The Time-dependent Position Vector Transformation is given by the
following equations (OGP 2013):∣∣∣∣∣∣

XT

YT
ZT

∣∣∣∣∣∣ = M ′ ·

∣∣∣∣∣∣
1 −rZ ′ rY ′

rZ ′ 1 −rX ′
−rY ′ rX ′ 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
XS

YS
ZS

∣∣∣∣∣∣+

∣∣∣∣∣∣
tX ′

tY ′

tZ ′

∣∣∣∣∣∣ (2.41)

Where ′ indicates time-adjusted parameters:

tX ′ = tX + δtX(t− t0)
tY ′ = tY + δtY (t− t0)
tZ ′ = tZ + δtZ(t− t0)

rX ′ = rX + δtX(t− t0)
rY ′ = rY + δtY (t− t0)
rZ ′ = rZ + δtZ(t− t0)

M ′ = 1 + dS ′ · 10−6

dS ′ = dS + δdS(t− t0)

(2.42)

Where t is the epoch of the dynamic coordinates and t0 is the transformation
reference epoch. In order to reverse the transformation, all the sign conventions
need to be reversed with the only exception being the reference epoch, t0. The
Time-dependent Helmert 7-parameter transformation is also modified for the USA
E&P industry and is known as the Time-dependent Coordinate Frame Rotation
(OGP 2013): ∣∣∣∣∣∣

XT

YT
ZT

∣∣∣∣∣∣ = M ′ ·

∣∣∣∣∣∣
1 rZ ′ −rY ′
−rZ ′ 1 rX ′

rY ′ −rX ′ 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
XS

YS
ZS

∣∣∣∣∣∣+

∣∣∣∣∣∣
tX ′

tY ′

tZ ′

∣∣∣∣∣∣ (2.43)
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Molodensky-Badekas 10-parameter

The Molodensky-Badekas 10-parameter transformation is almost identical to the
Helmert 7-parameter transformation. The difference between the two is that the
Molodensky-Badekas transformation derives the rotation at a location within the
points used in the determination of the parameters, rather than around the geo-
centric origin. This is done in order to eliminate high correlation between the
translations and the rotations, and yields a transformation that is considered to
be a better approximation. The Molodensky-Badekas 10-parameter is given by
the following equation (OGP 2013):∣∣∣∣∣∣

XT

YT
ZT

∣∣∣∣∣∣ = M ·

∣∣∣∣∣∣
1 rZ −rY
−rZ 1 rX
rY −rX 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
XS −XP

YS − YP
ZS − ZP

∣∣∣∣∣∣+

∣∣∣∣∣∣
tX
tY
tZ

∣∣∣∣∣∣ (2.44)

Where XP , YP , and ZP , are the geocentric coordinates of the point about which
the coordinate reference frame is rotated, given in the source coordinate system. If
these values are set equal to zero, the Molodesky-Badekas transformation becomes
identical to the Coordinate Frame Rotation transformation. The Molodensky-
Badekas 10-parameter transformation is not considered reversible.

2.5.2 Geographic Transformations

Transformations through geographic coordinates directly relate the latitude, lon-
gitude, and ellipsoidal height of one datum system to another. There are three
main applicable methods for geographic transformations (Knippers and Hendrikse
2001):

1. the geographic offsets

2. the Molodensky and Abridged Molodensky transformation

3. the multiple regression transformation

Geographic Offsets

Geographic offsets is the simplest method which only requires two parameters,
the difference in geographic latitude and longitude (∆φ and ∆λ). The ellipsoidal
heigh is omitted in most cases, and the method is only used when low accuracy is
tolerated. The coordinates of the target datum are calculated using the following
equations:

φT = φS + ∆φ

λT = λS + ∆λ

HT = HS + ∆H

(2.45)

This method is generally only used for two-dimensional transformations (φ and
λ), but can in very rare circumstances be expanded to include ellipsoidal height
(H).
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Molodensky and Abridged Molodensky

The Molodensky and Abridged Molodensky transformation formulae are what is
known as curvilinear transformation formulae (Deakin 2004). The Abridged Molo-
densky is the same as the standard Molodensky, except that the ellipsoidal height
is ignored, and any terms of second order in small parameters are dropped. The
method assumes that the Cartesian axes of both datums are parallel and the Carte-
sian coordinate difference between the two origins are known (∆X, ∆Y, and ∆Z),
along with the defining reference ellipsoid parameters (a and f) of both datums.
The method uses φ, λ, and H, as input variables and calculates the changes, ∆φ,
∆λ, and ∆H. The main problem with the Molodensky transformation is the signif-
icant errors produced by the limited amount of used parameters for large countries
or continents. The errors could be in the range of tens of meters (Knippers and
Hendrikse 2001).

Standard Molodensky Procedure

The Standard Molodensky transformation is given by (Deakin 2004):

∆φ =
1

ρ+H
[−∆X sinφ cosλ−∆Y sinφ sinλ+

∆Z cosφ+
ve2 sinφ cosφ

a
∆A+

sinφ cosφ(
ρ

1− f
+ v(1− f)∆f ]

(2.46)

∆λ =
1

(v +H) cosφ
(−∆X sinλ+ ∆Y cosλ) (2.47)

∆H = ∆X cosφ cosλ+ ∆Y cosφ sinλ

+∆Z sinφ− a

v
∆a+ v(1− f) sin2 φ∆f

(2.48)

Where ∆X, ∆Y, and ∆Z, is the difference in datum origin, ∆f and ∆a are
the difference in ellipsoidal parameters, ν is the prime vertical radius of curvature
(Equation 2.5), and ρ and is given by the following formula:

ρ =
a(1− e2)

1− e2 sin2 φ)3/2
(2.49)

The new coordinates are found by adding the calculated changes in geographical
coordinates.
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Abridged Molodensky Procedure

The Abridged Molodensky transformation uses the following set of equations (Deakin
2004):

∆φ =
1

ρ
[−∆X sinφ cosλ−∆Y sinφ sinλ+

∆Z cosφ+ (f∆a+ a∆f) sin 2φ]

(2.50)

∆λ =
1

v cosφ
(−∆X sinλ+ ∆Y cosλ) (2.51)

∆H = ∆X cosφ cosλ+ ∆Y cosφ sinλ

+∆Z sinφ−∆a+ (f∆a+ a∆f) sin2 φ
(2.52)

Multiple Regression

The multiple regression method is also known as polynomial transformation. The
method consists of a series of best-fit equations which provide the local latitude
and longitude shifts for two specified datums as a function of position. The local
datums are generally tied to the WGS84 datum or ED50 datum depending on the
location. The transformations can involve polynomial expressions in the 9th order
and are approximated based on a series of selected points with known coordinates
in both datums. The multiple regression transformation can achieve a better fit
over continental size areas than the Molodensky transformation. A general equa-
tion for polynomial transformations can be written as (Knippers and Hendrikse
2001):

∆φ = f(φ, λ, a1, a2, a3, . . . )

∆λ = f(φ, λ, b1, b2, b3, . . . )

∆H = f(φ, λ, c1, c2, c3, . . . )

(2.53)

2.5.3 Transformations for Offshore Norway

The oil and gas industry have to report all operations in the ED50 datum for
offshore Norway. This has caused the need for a transformation between WGS84
and ED50 since the use of GPS has become the most common practice. The first
method of transformation was established in 1990 by Statens Kartverk and is best
known as “The North Sea Formulae” (Geodesidivisjonen 1990).

The North Sea Formulae

The North Sea Formulae was derived with ED50 data from western Europe and
Norwegian data as far north as 64◦N. The lack of data further north resulted in
a boundary at 62◦N north for the North Sea Formulae. The formulae consists
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of a two-step approach where the first part is transforming ED50 to ED87. This
transformation calculates the change in latitude and longitude based on a set of
14 polynomial constants. The backwards transformation is obtained by using the
negative value of the same set of polynomial constants. The change in latitude and
longitude, given in degrees, are computed with the following equations (Geodesidi-
visjonen 1990):

∆ = A0 + A1U + A2V + A3U
2 + A4UV

+A5V
2 + A6U

3 + A7U
2V + A8UV

2

+A9V
3 + A10U

4 + A11U
3V + A12U

2V 2

+A13UV
3 + A14V

4

(2.54)

U = (latitude(degrees)− 55)

V = (longitude(positivedegreeseastGreenwich))
(2.55)

Where the origin is at ED50: 55◦N and 0◦E (Greenwich). The polynomial
constants An can be found in Table A.3.

The second half of the transformation is from ED87 to WGS84*SEA. The
term *SEA is to avoid ambiguity, i.e., to clarify that the WGS84 coordinates
are derived with the North Sea Formulae. This is achieved through a Bursa-
Wolf transformation where the shifts, rotations, and scale change are the following
(Geodesidivisjonen 1990):

Shifts Rotations

tX -82.981 m rX -0.5076E-6 rad
tY -99.719 m rY 0.1503E-6 rad
tZ -110.709 m rZ 0.3898E-6 rad

Scale change
δS -0.3143 ppm

Table 2.2: Parameters for transforming from ED87 to WGS84*SEA

The formulae is backwards compatible and can be used by reversing the signs.
It should also be noted that the North Sea Formulae only covers the area limited
by the 62◦N line in the north, the tripoint GB/NL/B in the south, 9◦E Greenwich
in the east, and a meridian adjacent to the Shetland Islands in the west as seen in
Figure 2.7.

North of 62◦N

The first transformation method for the area North of 62◦N was given by Statens
Kartverk in 1991 as a Bursa-Wolf transformation which was to be used north of
65◦N, and advocated the use of linear interpolation between 62◦N and 65◦N (EPSG
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2001). This method has since been discarded as of 2001, and the recommended
practice is now to use a Bursa-Wolf from 62◦N rather than interpolating. The
following parameters should be used for the transformation from WGS84 to ED50
(EPSG 2001):

Shifts Rotations

tX +116.641 m rX -4.327E-6 rad
tY +56.931 m rY -4.464E-6 rad
tZ +110.559 m rZ +4.444E-6 rad

Scale change
δS +3.520 ppm

Table 2.3: Parameters for transforming from WGS84 to ED50 north of 62◦N

When transforming the other way, from ED50 to WGS84 the signs should be
reversed.

Simplified transformation for south of 62◦N

The same note which details the Bursa-Wolf transformation for north of 62◦N
also suggests a Bursa-Wolf transformation for the area covered by the North Sea
Formulae. This transformation yields an approximation to about 1 metre and uses
the following parameters (EPSG 2001):

Translations Rotations

tX +90.365 m rX -1.614E-6 rad
tY +101.130 m rY -0.373E-6 rad
tZ +123.384 m rZ -4.334E-6 rad

Scale change
δS -1.994 ppm

Table 2.4: Parameters for a simplified transforming from WGS84 to ED50 south
of 62◦N
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Figure 2.7: The area covered by the North Sea Formulae (Geodesidivisjonen 1990)
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Map Projections

A map projection is a transformation of three-dimensional coordinates representing
a location on e.g., an ellipsoid, into a two-dimensional location on a plane surface.
Map projection can be used for large scale purposes such as atlas maps, world
maps, or continental maps. In the oil & gas industry however, map projections
are mostly limited to orthomorphic or conformal projections. These map projec-
tions are used for topographic and exploration mapping, where it is important to
maintain accuracy when scaling positions and distances. (OGP 2013)

3.1 Classification of Map Projections

Map projections can be classified by using both their properties of representation
and their graticule groups (Lee 1944). A complete table of classifications by Lee
can be seen in Appendix A (Table A.4 and A.5).

3.1.1 Property Groups

The property groups used to classify map projections are mutually exclusive and
are known as either conformal, authalic, or aphylactic. Conformal projections are
“projections in which, at any point, the scales in any two orthogonal directions
are equal” (Lee 1944). Conformal projections preserve both the shape and angles
of elementary areas. This is achieved because the scale at any point is equal in all
directions around that point. Conformal projections are also sometimes referred
to as orthomorphic or autogonal projections.

Authalic projections are “projections in which, at any point, the scales in two
orthogonal directions are inversely proportional” (Lee 1944). These projections
preserve a constant area scale, and are sometimes referred to by the colloquial
term equal-area, or equivalent.

The last property group, aphylactic, are projections which are neither con-
formal nor authalic. This group consists of an infinite amount of possible map
projections, but the noteworthy projections are those that are known as balance
of errors, or minimum error projections. These projections minimize the sum of
the square of the errors in scale, in both the specified orthogonal directions over a
mapped area.
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3.1.2 Graticule Groups

The graticule groups are distinguished by the pattern formed by the meridians
and the parallels. The definitions are as follows (Lee 1944):

• “Cylindric: Projections in which the meridians are represented by a system
of equidistant parallel straight lines, and the parallels by a system of parallel
straight lines at right angles to the meridians.”

• “Pseudocylindric: Projections in which the parallels are represented by a
system of parallel straight lines, and the meridians by concurrent curves.”

• “Conic: Projections in which the meridians are represented by a system of
equally inclined concurrent straight lines, and the parallels by concentric
circular arcs, the angle between any two meridians being less than their true
difference of longitude.”

• “Pseudoconic: Projections in which the parallels are represented by concen-
tric circular arcs, and the meridians by concurrent curves.”

• “Poylconic: Projections in which the parallels are represented by a system
of non-concentric circular arcs with their centers lying on the straight line
representing the central meridian.”

A subset of the graticule groups can be found by accounting for the aspect
of which the projections axis of symmetry coincides with the Earth’s axis. The
standard, or normal, projection is when the projections axis of symmetry coin-
cides with the Earth’s axis. The projection is defined as transverse if the axis of
symmetry is at right angles to the Earth’s axis. Any angle in between standard
and transverse is known as oblique (Figure 3.1) (Lee 1944; Snyder and Voxland
1989).
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Figure 3.1: Various projections of the Earth (Snyder 1987)

3.2 Parameters related to Map Projections

Both a conversion method and associated parameters are required in order to
relate a map projection grid to a geographical graticule. There are many different
parameters depending on which conversion method is used, and a complete table
can be seen in Appendix A (Tables A.4 & A.5).

Natural Origin is the shared point of both the map and the ellipsoid surface.
This point would have the grid coordinates of 0,0 in the absence of false coordi-
nates. The Natural Origin is located in the centre of the map projection (OGP
2013). Defining the centre of the map projection as coordinate 0,0 would lead to
the required use of negative coordinates when moving away from the centre. Map
projections are often assigned values of False Easting (FE) and False Northing
(FN) to counter the need for negative coordinates. Adding false values to the map
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projection leads to a shift of the 0,0 coordinate point. This point is known as the
Grid Origin when false values are in place.

Another common parameter is the scale factor at the origin. The function of
the scale factor is to limit the scale distortion within the projected area. This is
achieved by reducing the nominal scale of the map at the origin, and achieving
nominal scale at a distance away from the origin. The scale factor is usually
denoted as k0 (OGP 2013).

3.3 The Mercator Projections

3.3.1 Mercator

The Mercator projection is most likely the first named projection and was devel-
oped by Gerardus Mercator in 1569. The projection is cylindrical and maintains
conformality. It is constructed of equally spaced meridians of longitude, cut by
unequally spaced straight parallels. The spacing of the parallels increases towards
the poles and is proportional to the secant of the latitude (Snyder 1987). The fact
that it is a cylindrical projection along the Equator will lead to great distortion
when nearing the poles. In fact, both the North and South Pole cannot be seen
on the projection, since they are spaced infinitely away from the parallels. The
distortion is best seen when comparing Greenland and South America, as seen in
Figure 3.2. Greenland appears to be larger than South America when seen on the
Mercator projection, but the reality of the situation is that Greenland is closer to
one-eighth of the size of South America.

Figure 3.2: The Mercator projection (Snyder 1987)
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3.3.2 Transverse Mercator

The Transverse Mercator is one of the most common projections for large-scale
maps, and is also known as the Gauss-Krüger projection (Karney 2011). The pro-
jection is, as the name indicates, the transverse form of the Mercator projection.
Rather than wrapping a cylinder along the Equator, the Transverse Mercator co-
incides with the central meridian throughout its length. Unlike the Mercator pro-
jection, the meridians and parallels now form complex curves rather than straight
lines (Snyder 1987). The projection is still conformal, and the distortion increases
with the distance away from the central meridian. The projection can be seen in
Figure 3.3.

Figure 3.3: The Transverse Mercator projection (Snyder 1987)

Mathematical Formulae

The first mathematical projection of the Transverse Mercator was suggested by
Johann Heinrich Louis Krüger in 1912 (Krüger 1912). Krüger suggested two trun-
cated series based on the work of Johann Carl Friedrich Gauss. The suggested
series are today known as the Krüger-n series, and the Krüger-λ series.

The Krüger-λ series are expansion series expressing the longitude difference
from the central meridian. The series was further developed by L.P. Lee in 1946,
and extended to the eighth order by Redfearn in 1948, becoming what is now
known as the Lee-Redfearn-OSGB series (OS 2013). This series is the basis of
the grid map of Great Britain and is given by Equations 2.12 - 2.36. The original
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series was also recalculated by Paul Thomas in 1952, and is today known as the
Thomas-UTM series (Snyder 1987; OGP 2013). The Thomas-UTM series was
chosen as the basis for the UTM system by the United States Defence Mapping
Agency (DMA 1989), which can be found in the UTM section below.

The n-series is often referred to as the JHS formulae, and is currently used by
France, Finland, Sweden, and Japan, of the fourth order (OGP 2013). The pro-
posed n-series by the Finnish Geodetic Institute in 2006 has been further developed
by Karney in 2011 (Karney 2011). Karney proves and concludes that the Thomas
series is unnecessarily inaccurate for Transverse Mercator projections, leading to
maximum errors of over 1 km when far away from the central meridian. In com-
parison, the n-series of the fourth order yields errors of less than 1 µm (Karney
2011) .

3.4 Universal Transverse Mercator

The Universal Transverse Mercator (UTM) was developed by the U.S. Army in
1947 for accurate rectangular coordinates on large-scale military maps (Snyder
1987). The projection divides the world into 60 longitude zones, where each zone
is 6◦ wide (Figure 3.4). These zones are valid between 84◦ N and 80◦S (Snyder
1987). The zone number can be calculated based on the following formula (DMA
1989)

Z = 1 + INT (
λ+ 180

W
) (3.1)

Where Z is the zone number in UTM, INT means the whole integer, rounded down,
λ is the longitude in degrees, 180 is the amount of degrees on each hemisphere,
and W is the width of a zone in degrees.

The position is given by values of Easting and Northing along with the zone
number. Both Easting and Northing are given in meters. The UTM system utilizes
false values of Easting and Northing to avoid negative values. The false Easting
(FE) is set as 500 000 m west of the zones central meridian. This means that
Easting values are given as meters east from a line which is located 500 000 m
west of the zones central meridian (Snyder 1987; DMA 1989).

Northings are given as meters north of Equator for positions in the Northern
Hemisphere. For the Southern Hemisphere, a false Northing (FN) of 10 000 000 m
is applied. This means that the negative values of Northings south of the equator
are subtracted from the FN (Snyder 1987; DMA 1989).

U.S. Military Grid Reference System

Latitude zones of alphabetic distinction are not a part of the UTM system. They
are, however, a part of the U.S. Military Grid Reference System (MGRS). This
system is defined as an alphanumeric adaption of the UTM system, and was created
by the U.S. Army (DMA 1990). In addition to the latitude bands, exceptions for
zone widths for mainland Norway and regions around Svalbard have been added.
Zone 32 is, at the expense of zone 31, widened to 9◦ between latitude 56◦ and 64◦.
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For the Svalbard region, zones 33 and 35 are, between 72◦ and 84◦, widened to 12◦.
This is compensated by widening zones 31 and 37 to 9◦, and eliminating zones 32,
34, and 36 (DMA 1990).

Figure 3.4: A map of the world showing the MGRS zones with UTM longitude
bands (Snyder 1987)

3.4.1 Converting from geographical coordinates to Nor-
thing and Easting (Thomas-UTM)

The Northing and Easting values can be calculated using the Thomas-UTM series
with accurate precision (Karney 2011; Snyder 1987; OGP 2013; DMA 1989):

E = FE + k0ν[A+ (1− T + C)
A3

6

+(5− 18T + T 2 + 72C − 58e′2)
A5

120
]

(3.2)

N = FN + k0[M −M0 + ν tanφ(
A2

2
+ (5− T + 9C + 4C2)

A4

24

+(61− 58T + T 2 + 600C − 330e′2)
A6

720
)]

(3.3)

where all angles are expressed in radians, A, T, C, M, and M0 are auxillary
parameters given below, FE and FN are the false Easting and false Northing
respectively, e’ is the second eccentricity (Equation 2.3), ν is the prime vertical
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radius of curvature using radians (Equation 2.5), and k0 is the scale factor of the
central meridian.

The auxillary parameters are given as:

T = tan2 φ (3.4)

C =
e2 cos2 φ

1− e2
(3.5)

A = (λ− λ0) cosφ (3.6)

M = a((1− e2

4
− 3e4

64
− 5e6

256
− . . . )φ

−(
3e2

8
+

3e4

32
+

45e6

1024
+ . . . ) sin(2φ)

+(
15e4

256
+

45e6

1024
+ . . . ) sin(4φ)

−(
35e6

3072
+ . . . ) sin(6φ) + . . .

(3.7)

M0 = a((1− e2

4
− 3e4

64
− 5e6

256
− . . . )φ0

−(
3e2

8
+

3e4

32
+

45e6

1024
+ . . . ) sin(2φ0)

+(
15e4

256
+

45e6

1024
+ . . . ) sin(4φ0)

−(
35e6

3072
+ . . . ) sin(6φ0) + . . .

(3.8)

where the angles are still expressed in radians, e is the first eccentricity (Equa-
tion 2.2), φ0 and λ0 is the latitude and longitude of natural origin respectively:

φ0 = 0 (3.9)

λ0 = (3 +W (Z − 1)− 180) (3.10)

3.4.2 Converting from Northing and Easting to to geo-
graphical coordinates (Thomas-UTM)

The latitude and longitude values can be calculated using the Thomas-UTM series
(Karney 2011; Snyder 1987; OGP 2013; DMA 1989):

φ = φ1 −
ν1 tanφ1

ρ1
[
D2

2
− (5 + 3T1 + 10C1 − 4C2

1 − 9e′2)
D4

24

+(61 + 90T1 + 298C1 + 45T 2
1 − 252e′2 − 3C2

1)
D6

720
]

(3.11)

30



CHAPTER 3

λ = λ0 +
1

cos(φ1

[D − (1 + 2T1 + C1)
D3

6

+(5− 2C1 + 28T1− 3C2
1 + 8e′2 + 24T 2

1 )
D5

120
)]

(3.12)

Where φ and λ are latitude and longitude respectively, in radians, φ1, D, T1,
C1, ν1, and ρ1 are auxillary parameters given below along with µ1, e1, M1, and
M0:

T1 = tan2 φ1 (3.13)

C1 = e′2 cos2 φ1 (3.14)

ν1 =
a√

1− e2 sin2 φ1

(3.15)

ρ1 =
a(1− e2)

(1− e2 sin2 φ1)1.5
(3.16)

φ1 = µ1 + (e1
3

2
+ e31

27

32
+ . . . ) sin(2µ1)

+(e21
21

16
− e41

55

32
+ . . . ) sin(4µ1)

+(e31
151

96
+ dots) sin(6µ1)

+(e41
1097

512
+ dots) sin(4µ1) + . . .

(3.17)

e1 =
1−

√
(1− e2

1 +
√

(1 + e2
(3.18)

µ1 =
M1

a(1− e2 1
4
− e4 3

64
− e6 5

256
− . . .

(3.19)

M1 = M0 +
N − FN

k0
(3.20)

λ0 = (3 + 6(Z − 1)− 180) (3.21)

φ0 = 0 (3.22)

where angles are still expressed in radians, e and e’ are the first and second
eccentricity respectively, a is the major-axis of the ellipsoid, M0 is given by Equa-
tion 3.8), FN and FE stands for false Northing and false Easting respectively, k0

is the scale factor of the central meridian, and Z indicates the zone number.
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Position Model

4.1 MATLAB as a Platform

The task of the Thesis was to develop a model/calculator for handling coordinates
within geodetic systems and map projections. The calculations for these con-
versions and transformations require many sub-calculations which are often the
same for different methods. Thus, the most logical approach was to develop the
models in a system that supported the use of auxiliary functions which could be
called upon when needed. MATLAB is capable of doing just that, as well as hav-
ing built-in matrix handling capabilities which was essential for transformations
such as the Bursa-Wolf transformation. MATLAB is by default a very accurate
program, with a variable-precision accuracy of 32 digits (MATLAB 2014b). The
variable-precision accuracy can be manually specified to any integer between 1 and
229 + 1 (roughly 0.5 billion) with the Symbolic Math Toolbox, which unfortunately
is not a part of the NTNU licence. An added benefit is that the programming lan-
guage of MATLAB is a fairly intuitive one. The benefit of using an intuitive
programming language is that it makes it easy for others to understand, and then
make use of or continue the work. The second choice for a platform was Excel.
Excel would provide a decent graphical overview, but all functions have to either
be made through macros, or in each cell. This could potentially lead to a model
which would be hard, or impossible, to alter in a later stage. This would also
make it difficult for others to continue the work. The precision of computation is
also vastly smaller in Excel. Excel is designed around IEEE 754 when it comes
to floating-point numbers, and thus has a max value of 15 significant digits of
precision (Excel 2014).

4.2 Converting between Decimal Degrees and De-

grees, Minutes, Seconds

Degrees, Minutes, and Seconds (DMS), are by far the most common way of ex-
pressing geographical coordinates. They are, however, not used for computations.
All transformations and coordinate conversions make use of decimal degrees (DD).
A full circle consists of 360 degrees, one degree consists of 60 minutes, and one
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minute consists of 60 seconds. The implementation of these relations in MATLAB
are fairly straightforward, but requires a lot of conditional statements which han-
dles the cases of negative number inputs. The functions can be seen in Appendix
B as “coord2dec” and “dec2coord”. When going from DMS to DD it is impor-
tant to maintain the sign notation of the largest number. This was implemented
as a series of conditional IF statements checking the value of degrees, minutes,
and seconds in turn, in order to properly add the values to DD with the correct
sign notation. Going back from DD to DMS is a slightly more complicated ordeal
when programming. The function utilizes the built-in floor function in order to
round down positive numbers to the nearest low integer, as well as the built-in fix
function to round down negative numbers to the integer closest to 0. Combining
this with numerous IF statements makes it possible to account for the size of the
DD number, in order to correctly relate it to either negative degrees, minutes, or
seconds. It should also be noted that MATLAB has built-in functions which does
exactly this, known as degrees2DMS and DMS2degrees. Unfortunately, they are
a part of the Mapping Toolbox, which is not a part of licence available to NTNU.
However, MATLAB has given example values for all possible input and output
variations in DMS and DD, which the built functions have been tested against
and proved to be completely accurate (MATLAB 2014a).

4.3 Converting between Cartesian and Geograph-

ical Coordinates

Coordinates are normally presented in their geographical form, as latitude, longi-
tude, and ellipsoidal height. However, in order to transform between WGS84 and
ED50 offshore Norway, the coordinates have to be in Cartesian form, as X, Y, and
Z values. This is because both methods utilizes the Bursa-Wolf transformation,
which is a geocentrical transformation.

The forward conversion from geographic to Cartesian is a straight forward
computation which uses the radius of curvature in the prime vertical to relate the
latitude, longitude, and height, to X, Y, and Z parameters in combination with
the ellipsoid parameters a and b. This can be seen in Appendix B as ”geo2cart”.
The only computational issue lies in the backwards conversion, from Cartesian
to geographic. As seen in “cart2geo”, from Appendix B, the computation is an
iterative one. This is because both the latitude and ellipsoid height are dependent
on the same equation. This is solved by using a WHILE condition that loops the
calculations until the precision of the computation is sufficient. In “cart2geo” the
tolerated difference between one latitude and the next has been set to 10−20. In
terms of meters, this would relate to a difference in the order of approximately
10−15, varying slightly depending on the position. The functions have been verified
by computing both forward and backwards for a large set of coordinates and cal-
culating the difference between the original input and final output. The difference
was non-existent with 32 digit precision.
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4.4 Ellipsoid Parameters

The function “ellipsoid” is a database constructed of IF statements, which checks
an input, or ID code, and returns the parameters related to that ID code. It will
also return an error message if the ID code is invalid or unknown. This function
exists because the ellipsoid parameters are involved in many computations, and
it creates a better overview and functionality than merely defining the relevant
ellipsoid parameters for every unique case. The ellipsoid parameters are taken from
the National Geospatial-Intelligence Agency of the United States, and matches
those found from other sources.

4.5 Polynomials in the North Sea Formulae

The polynomial function “northsea1” calculates the changes for latitude and longi-
tude when transforming between ED87 and ED50 in either direction. The function
takes in an input “A”, which should be set equal to 1 when going from ED50 to
ED87, and as -1 when going the other way. It uses two sets of 14 polynomials for
either latitude or longitude respectively given by Statens Kartverk as described
in Chapter 2. The function has been verified using a set of test values which de-
scribes the transformation from ED87 to ED50. They can be found in Table A.6
(Geodesidivisjonen 1990). The deviation between the computed values and the
given values are:

Latitude Longitude Distance

DD D M S DD D M S meter
-5.94E-09 0 0 -2.14E-05 1.15E-08 0 0 4.15E-05 0.00143697
7.02E-09 0 0 2.53E-05 -5.66E-09 0 0 -2.04E-05 0.00099866
1.09E-08 0 0 3.92E-05 1.47E-08 0 0 5.28E-05 0.00202552

-3.52E-10 0 0 -1.27E-06 -6.70E-09 0 0 -2.41E-05 0.00074383
-1.23E-08 0 0 -4.42E-05 -7.05E-09 0 0 -2.54E-05 0.00156582
-1.54E-08 0 0 -5.53E-05 2.82E-09 0 0 1.01E-05 0.00172731
1.15E-08 0 0 4.15E-05 -1.03E-09 0 0 -3.73E-06 0.00128006
1.52E-08 0 0 5.46E-05 -4.80E-09 0 0 -1.73E-05 0.00175922
9.53E-10 0 0 3.43E-06 -4.00E-09 0 0 -1.44E-05 0.00045662
2.61E-09 0 0 9.41E-06 2.15E-09 0 0 7.74E-06 0.00037477

-9.90E-09 0 0 -3.56E-05 1.04E-08 0 0 3.74E-05 0.00159035

Table 4.1: Deviation from test values found using the script ”test NorthSea1”.
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4.6 Bursa-Wolf in the North Sea Formulae

The “helmert7” function is a Bursa-Wolf transformation. The function uses the
geocentrical source coordinates along with the 7 parameters needed for computa-
tion as input. The output is the geocentrical target coordinates. The function has
been verified using two sets of test values. The first set describes the transforma-
tion from ED87 to WGS84*SEA, found in Table A.7 (Geodesidivisjonen 1990).
The computed deviation from these values are:

Latitude Longitude Distance

DD D M S DD D M S meter
2.40E-08 0 0 8.64E-05 1.58E-08 0 0 5.70E-05 0.00318313
1.81E-08 0 0 6.53E-05 2.24E-08 0 0 8.07E-05 0.00320149
1.24E-08 0 0 4.47E-05 2.34E-08 0 0 8.43E-05 0.00294672
3.85E-12 0 0 1.39E-08 3.09E-08 0 0 0.00011127 0.00344067
9.73E-09 0 0 3.50E-05 1.91E-08 0 0 6.89E-05 0.00238619
1.12E-08 0 0 4.04E-05 2.58E-08 0 0 9.30E-05 0.00313059
1.62E-10 0 0 5.83E-07 1.67E-08 0 0 5.99E-05 0.00184757
2.12E-08 0 0 7.62E-05 1.17E-08 0 0 4.22E-05 0.0026764
2.52E-08 0 0 9.06E-05 2.27E-08 0 0 8.16E-05 0.00375692
6.27E-09 0 0 2.26E-05 1.40E-08 0 0 5.05E-05 0.00170454
1.15E-08 0 0 4.16E-05 2.51E-08 0 0 9.04E-05 0.00307306

Table 4.2: Deviation from test values found using the script ”test NorthSea2”.

The final set of test values are for a complete transformation from ED50 to
WGS84 using the Bursa-Wolf transformation with parameters for areas north of
62◦N. The values can be found in Table A.8 (EPSG 2001) and the deviation is:

Latitude Longitude Distance

DD D M S DD D M S meter
-3.92E-08 0 0 -0.00014108 2.89E-07 0 0 0.00104102 0.03248062
1.13E-07 0 0 0.00040761 2.90E-07 0 0 0.00104528 0.03466205
1.59E-07 0 0 0.00057187 4.66E-07 0 0 0.00167811 0.05478244
1.81E-07 0 0 0.00065166 4.15E-07 0 0 0.00149222 0.05029649
1.80E-07 0 0 0.00064651 4.13E-07 0 0 0.00148635 0.05006677
1.54E-07 0 0 0.00055594 4.61E-07 0 0 0.00165919 0.05407195
1.05E-07 0 0 0.00037948 2.80E-07 0 0 0.00100946 0.03331935
3.24E-08 0 0 0.00011666 4.27E-07 0 0 0.00153586 0.0476264

-6.47E-08 0 0 -0.00023299 3.44E-07 0 0 0.00123709 0.03891651
9.17E-08 0 0 0.00033008 3.09E-07 0 0 0.00111183 0.03584356

-5.41E-08 0 0 -0.00019459 3.22E-07 0 0 0.00115878 0.03632654
9.79E-08 0 0 0.0003526 3.19E-07 0 0 0.00114833 0.03712327

Table 4.3: Deviation from test values found using the script ”test Northof62”.
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4.7 Computing the Distance between two Coor-

dinates

The distance in meters between two sets of geographical coordinates can be com-
puted by using the function “vdist”. The function was created by Michael Kleder
(Kleder n.d.) and is built upon algorithms described by Vincenty (Vincenty 1975).
The function is precise to within 0.01 mm for any position on a WGS84 ellipsoid,
with the exception of the poles. At the poles, a position is shifted by 0.6 mm in
order to be computed.

4.8 Computing UTM Coordinates

There are two functions which deal with UTM. The first, “coord2grid USGS”,
takes geographical coordinates, along with ellipsoid parameters, and computes the
Northing, Easting, zone number, and a parameter indicating whether the position
is located on the Northern or Southern hemisphere (indicated by 1 for north and
-1 for south). The computation is achieved by using the Thomas-UTM formulae.
The function will first check if the given geographical coordinates are valid, and
promptly produce an error code if they are not. It will then compute the false
Northing along with the hemisphere indicator. Next, the zone number is com-
puted, and along with it the longitude of natural origin which is used in the final
computation. The last part of the function is the computation of the auxiliary
parameters T, C, A, ν, M, and M0, which are all used for computing the Easting,
E, and Northing, N. The auxiliary parameters are all truncated series where all
coordinates are expressed in radians.

The second function, “grid2coord USGS”, is the reverse calculation. It takes in
the Northing, Easting, zone number, hemisphere indicator, along with the ellipsoid
parameters, and computes the longitude and latitude. The reverse function is
constructed much like the forward function, with a validity check at first, followed
by an IF statement which dictates the false Northing depending on the hemisphere
indicator. The function then proceeds to compute the auxillary parameters M0,
M1, µ1, e1, T1, C1, ν1, ρ1, and D, which are subsequently used to compute the
longitude and latitude in radians. The function then computes the latitude and
longitude degrees and return them as output.

The functions have been verified by running forwards and backwards compu-
tations for a multitude of values both for the Northern and Southern Hemisphere.
The differences between computed values and real values were zero. The functions
have also been tested against several online UTM calculators (Dutch 20014; Taylor
2003). The computed result matched that of the online calculators, albeit more
precise.
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4.9 Modelled Example Case

A worked example has been created in order to exemplify the formulae and func-
tions presented in the Thesis. The example aims to describe the exact locations of
wells in the North Sea and the Norwegian Sea without the loss of information when
converting between different coordinate forms, and transforming between different
geodetic systems. The coordinates are also projected into UTM coordinates as the
end result.

4.9.1 Background

A rig is located south of the 62◦N latitude band, and a target exists north of the
62◦N latitude band. The coordinates for both the rig and the target have been
given as geographical coordinates for the ED50 system. The target should be
expressed in terms of ∆N, ∆E, and ∆TVD away from the wellhead.

4.9.2 Wellhead Coordinates

The rig is located at 61◦ 59’ 30.45”N and at 02◦ 30’ 20.10”E. The rig is assumed
to be at MSL and the water depth is 180 m. The first step is to convert the
DMS coordinates into DD coordinates by using the function “coord2dec” for both
latitude and longitude. This results in 61.99179◦N and 2.50558◦E.

The next step is to find the geographic offset required to transform the coor-
dinates from ED50 to ED87. This is achieved by using Equation 2.54 which is
implemented as the function “northsea1”. The function produces a latitude offset
of 2.1767◦·10−6 and a longitude offset of -2.4563◦·10−5.

The ED87 coordinates are found by applying the geographic offset as described
by Equation 2.45. It is assumed that ED50 and ED87 ellipsoids have no difference
in ellipsoidal height.

The ED87 coordinates will have to be converted into geocentrical coordinates
before they can be transformed further. The geocentrical coordinates are com-
puted using Equation 2.4. This set of equations require the appropriate ellipsoid
parameters, which in this case is the ellipsoid for ED87. This ellipsoid is known
as International 1924, and the parameters are found by using the function “ellip-
soid” for the ID code 17. The coordinates are then converted using the function
“geo2cart”. This results in the geocentrical coordinates (X, Y, Z) 3000286.16,
131286.96, and 5608208.94.

Now that the geocentrical coordinates have been found, the next step is to
transform the ED87 coordinates into WGS84*SEA coordinates using the Bursa-
Wolf transformation. The Bursa-Wolf transformation is given by Equation 2.38,
and the appropriate parameters are found in Table 2.2. The transformation is
computed by using the function “helmert7”. The geocentrical WGS84*SEA coor-
dinates then becomes 3000203.02, 131191.21, and 5608095.95.

Since the UTM formulae only accepts geographical coordinates, the geocen-
trical coordinates will have to be converted into geographical coordinates. The
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geographical coordinates are found using the function “cart2geo” which is an im-
plementation of Equations 2.6 - 2.10. The geographical WGS84*SEA coordinates
are 61.99132◦N, 2.50380◦E, and 39.11 m below ellipse surface.

The Thomas-UTM series described by Equations 3.2 - 3.10 is implemented as
the function “coord2grid USGS”. This function also requires the ellipsoid param-
eters in addition to the longitude and latitude. The ellipsoid for WGS84 is given
by the ID code 23. Running the function yields 6873313.43 Northing, 474003.35
Easting, and the zone number 31.

Going from rig coordinates to wellhead coordinates is straightforward. The
39.11 m ellipsoidal height is subtracted from the water depth (180 m) which pro-
duces a TVD of 140.88 m below ellipse surface. The Northing, Easting, and zone
number is the same.

4.9.3 Target Coordinates

The target is given in geographical ED50 coordinates as 62◦ 01’ 04.30”N, 02◦ 30’
40”E and H is 2300 m below ellipse surface. Just as for the rig, the coordinates will
have to be converted from DMS to DD, and then into geocentrical coordinates. The
geocentrical coordinates then becomes 2996632.50, 131418.03, and 5607541.53.

The geocentrical ED50 coordinates can now be transformed into WGS84 coor-
dinates using the Bursa-Wolf transformation, but with different parameters than
before. The parameters for the area north of 62◦ are found in Table 2.3. The trans-
formation is computed using the function “helmert7” with the specified parame-
ters. This results in the geocentrical WGS84 coordinates 2996530.93, 131323.06,
and 5607398.42. The major difference between the target and the rig is that this
transformation does not go through the ED87 datum, but is a direct transforma-
tion.

The UTM coordinates for the target are found in the same manner as that of
the rig coordinates. The result is 6876217.28 Northing, 474317.69 Easting, zone
number 31, and a TVD of 2296.14 m.

4.9.4 Solution

Calculating the change in Northing, Easting, and TVD between the wellhead and
the target is straightforward. The wellhead is given the position 0, 0, 0 by subtract-
ing the wellhead coordinates. The wellhead coordinates are also subtracted from
the target coordinates, producing 2903.84 Northing, 314.34 Easting, and 2155.25
TVD.

The example case can be found as a script in Appendix C with all relevant
data.
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Discussion

5.1 Iteration in the function for converting Carte-

sian to Geographic coordinates

Geographic coordinates are computed from Cartesian coordinates using the func-
tion “cart2geo”. The function uses iterative mathematics, where a WHILE loop
checks the difference between step 1 and step 2, and stops only when a certain
level of accuracy has been reached. The level of accuracy was set to 1 · 10−25 for
all verification and computation, which proved to be more than sufficient. How-
ever, it is important to understand the limits of all functions. A script was made,
which alters the level of accuracy 10% at a time in order to fully comprehend the
importance of the accuracy level. The script runs this alteration from 1 · 10−25 to
1 · 103, and computes the deviation from true value and computed value, as well
as monitoring the amount of iterative steps required to reach the accuracy.

Figure 5.1 shows the graphical output of the 700 data-sets generated by the
script. The figure shows that any accuracy level set higher than 6 · 10−13 will give
the least amount of computational error, and run 5 steps. Up until an accuracy
level of 1.2 · 10−10 the function will use 4 iterative steps. Both 5 and 4 steps yield
the same deviation, 1.7 nm. 3 iterative steps yield a deviation of 64.6 nm. The
next step-change occurs at an accuracy level of 2.67 · 10−8. Now only 2 iterative
steps are required, yielding a considerably higher deviation of 13.7 µm. The final
step-change occurs at an accuracy level of 6.1 · 10−6, after which only 1 step is
required. At 1 step the function is at its most unreliable, yielding a deviation of
2.9 mm. Although all deviations can be said to be negligible in terms of drilling
and positioning, the fact is that by merely increasing the iterative process from 1
step to 2 steps, the accuracy is increased by over 4700 times. For a single set of
coordinates, the added computational effort for maximum accuracy is negligible.
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Figure 5.1: The effect of decreasing the level of accuracy required for the iterative
function ”cart2geo”.

5.2 Bursa-Wolf vs. The North Sea Formulae

Although the official recommendation by Statens Kartverk is the use of a Bursa-
Wolf transformation north of 62◦N, and the North Sea Formulae south, there is
a discrepancy between the computed results at the boundary. This difference is
important to be aware of, especially when the target and platform are on separate
sides of the border.

The script “test 62degext” computes the difference between transforming with
either Bursa-Wolf or the North Sea Formulae, using the same set of coordinates.
The longitude coordinates represent the area between the UK/Norwegian border
and mainland Norway. The amount of elements between these two points can be
altered by changing the parameter “n”. Similarly, the latitude coordinates are
given with a set of start and end coordinates that represent the area near the
62◦N latitude band, where the amount of elements can be altered by changing
the parameter “d”. The script will then proceed to run both transformations for
a matrix of n rows and d columns, and finally compute the difference between
each point in both degrees, minutes, seconds, and in meters. The result is also
converted into a colorized image by using the bar3 function.
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Figure 5.2: The computational difference between Bursa-Wolf and The North Sea
Formulae for a latitude interval of 48-55, offshore Norway.

Figure 5.3: The computational difference between Bursa-Wolf and The North Sea
Formulae for a latitude interval of 52-68, offshore Norway.
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Figure 5.4: The computational difference between Bursa-Wolf and The North Sea
Formulae for a latitude interval of 55-62, offshore Norway.

Figure 5.5: The computational difference between Bursa-Wolf and The North Sea
Formulae for a latitude interval of 62-69, offshore Norway.
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Figure 5.2 shows the lower extent where the Bursa-Wolf transformation be-
comes very unreliable. A large increase in computation difference is seen south of
51◦N. The trend also builds as it progresses towards the UK boundary.

The next image, Figure 5.3, shows the area in close proximity to the 62◦N
boundary. The difference in computation is 4 meters at the boundary, and increases
dramatically when progressing further north. Unlike the southern extent, the
deviation trend builds towards mainland Norway.

Figure 5.4 is a close-up of the previous area. The close-up shows the 62◦N
boundary and the area south. The figure shows that the deviation decreases along
southern progression, and continues to do so until 52◦N as, seen in Figure 5.2.

Figure 5.5 shows the northern extent, and how rapidly the computational dif-
ference increases. The difference exceeds 5 meters at approximately 65.5◦N, after
which it follows an exponential trend.

Comparing all of the figures above will yield an area (50◦N - 62◦N) where
the only difference between the methods is in the order of 2-4 m. This means
that if the location is positioned within this field, and the method of which the
coordinates were obtained is unknown, an uncertainty of the responding deviation
can be added to the drillers target if possible. For any position beyond this field,
it is vital to know the method used for obtaining the coordinates.

5.3 Accuracy of Thomas-UTM

Karney (Karney 2011) provides algorithms for computing Transverse Mercator
positions, and also looks into the accuracy of the various formulae. He shows that
the flattening series provide the most accurate result, with errors less than 1 µm.
On the other hand, the Thomas-UTM series, derived from the expansion series,
yield errors over 1 km in size for Transverse Mercator. These errors propagate
with the distance from the central meridian. Since UTM is built of grids, each
with its own central meridian, this problem is no longer a concern. Karney states
that the errors for applying the Thomas-UTM formulae in a UTM system are less
than 1 mm.

5.4 Offset for Verification

Tables 4.1, 4.2, and 4.3, all show offset values in the order of 1·10−5 for the seconds.
This is not a computational error, but a round off error as a result of accuracy
limits in the test values. The test values, seen in Tables A.6, A.7, and A.8, are
given with a precision of 1 · 10−4 in seconds. This means that any computed value
more precise than the reference value, will show as an offset for any higher order.

5.5 Quality Control

Maintaining quality control over the geodetic information is absolutely vital. Any
set of coordinates are meaningless without the datum tying them as a position on
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the surface of the Earth. If the coordinates have been transformed from a different
datum, the source coordinates should always be available, if not, then at least the
method of transformation.

Figure 5.6: A is WGS84 coordinates for Nidarosdomen, B is the same set of
coordinates in ED50 (created using Google Maps).

Figure 5.6 shows the WGS84 coordinates of Nidarosdomen plotted as point A.
The same coordinates have been plotted for the ED50 system as point B. The dis-
tance between these points is 83.57 m. This might be a feasible walking distance,
but when it comes to exploration and drilling, this would most likely mean a com-
plete miss. The ED50 coordinates were plotted by transforming them into WGS84
coordinates using the Helmert-7 parameter transformation since Nidarosdomen is
positioned north of 62◦N. If the coordinates had been transformed using the North
Sea Formulae, the position would have been shifted another 4 meters.
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Conclusion

• The mathematical formulae for converting between different coordinate types
have been implemented in MATLAB and verified.

• The mathematical formulae for datum transformation, offshore Norway, have
been implemented in MATLAB and verified.

• There is an overlapping area between 50◦N And 62◦N (WGS84) where the
deviation between the two methods of datum transformation do not exceed
4 meters. The deviation grows with an exponential trend beyond this extent.

• The iterative function for converting from geocentric to geographic coordi-
nates has been proven accurate even with just a single-step.

• The Thomas-UTM formulae for calculating UTM positions based on geogr-
pahic coordinates have been implemented and verified. The errors for this
set of formulae are less than 1mm.

• Coordinates must always be given with their respective datum, preferably
along with their source datum, and method of transformation. This prevents
loss of key information, which could lead to grave errors for exact positioning.
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Future Work

• Geodesy: Attempt to find a method of transformation which replaces both
the North Sea Formulae and the Bursa-Wolf Transformation for North of 62◦.
It is suggested that best-fit equations are used for computing parameters for
a Bursa-Wolf Transformation.

• Geodesy: Expand the position model to cover the world. This model should
include selection critera, either based on a graphical selection, or an auto-
matic selection based on coordinates. The model should be in accordance
with current geo-political boundaries and best practice.

• Map Projection: Expand the current UTM model into a MGRS model,
displaying the MGRS zone and coordinates as a secondary set of information.

• Software: Develop a graphical user interface for both the current and the
future model. It is suggested that the interface is designed to be an intuitive
prototype for a final software.

49



FUTURE WORK

50



References

Bowditch, Nathaniel (1995). The American Practical Navigator. US. Defense Map-
ping Agency.

Burkard, Lt. Col. Richard K. (1959). Geodesy for the Layman. Fourth Ed. US.
Department of Defense.

Deakin, R. E. (2004). The Standard and Abridged Moldensky Coordinate Trans-
formation Formulae. Department of Mathematical and Geospatial Scioences,
RMIT University.

DMA (1989). TM8358.2: THE UNIVERSAL GRIDS: Universal Transverse Mer-
cator (UTM) and Universal Polar Stereographic (UPS). U.S. Defense Mapping
Agency.

— (1990). TM8358.1: Datums, Ellipsoids, Grids, and Grid Reference Systems.
U.S. Defense Mapping Agency.

Dutch, Steven (20014). Convert Between Geographic and UTM Coordinates. url:
http://www.uwgb.edu/dutchs/usefuldata/ConvertUTMNoOZ.HTM.

EPSG (2001). Guidance Note Number 10 - Geodetic Transformations Offshore
Norway. European Petroleum Survey Group.

Excel (2014). Floating-point arithmetic may give inaccurate results in Excel. url:
http://support.microsoft.com/kb/78113.

Geodesidivisjonen (1990). The transformation between ED 50 and WGS84 for ex-
ploration purposes in the North Sea. Statens Kartverk.

Geodesividsjonen (2009). Koordinatbasert referansesystem, versjon 2.1. Statens
Kartverk.

Hofmann-Wellenhof, Bernhard, Herbert Lichtenegger, and Elmar Wasle (2008).
GNSS - Global Navigation Satellite Systems. SpringerWienNewYork.

Karney, Charles F. F. (2011). “Transverse Mercator with an accuracy of a few
nanometers”. In: J. Geodesy 8.85, pp. 475–485.

51

http://www.uwgb.edu/dutchs/usefuldata/ConvertUTMNoOZ.HTM
http://support.microsoft.com/kb/78113


Kleder, Michael. Geodetic distance on WGS84 earth ellipsoid. url: http://www.
mathworks.com/matlabcentral/fileexchange/5379-geodetic-distance-

on-wgs84-earth-ellipsoid/content/vdist.m.

Knippers, R. A. (2009). Coordinate Transformations. url: http://kartoweb.
itc.nl/geometrics/.

Knippers, R. A. and J. Hendrikse (2001). Coordinate Transformations.
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Appendix A

ID Semi-Major Semi-Minor Flattening

Code Axis a Axis b f
1 6377563.396 6356256.909 1/299.3249646
2 6378160 6356774.719 1/298.25

3 6377397.155 6356078.963 1/299.1528128
4 6377483.865 6356165.383 1/299.1528128
5 6378206.4 6356583.8 1/294.9786982
6 6378249.145 6356514.87 1/293.465

7 6377298.556 6356097.55 1/300.8017
8 6377276.345 6356075.413 1/300.8017
9 6377301.243 6356100.228 1/300.8017
10 6377309.613 6356109.571 1/300.8017
11 6377304.063 6356103.039 1/300.8017
12 6377295.664 6356094.668 1/300.8017
13 6378137 6356752.314 1/298.257222101
14 6378200 6356818.17 1/298.3
15 6378270 6356794.343 1/297
16 6378160 6356774.504 1/298.247
17 6378388 6356911.946 1/297
18 6378245 6356863.019 1/298.3
19 6377340.189 6356034.448 1/299.3249646
20 6378155 6356773.32 1/298.3
21 6378160 6356774.719 1/298.25
22 6378135 6356750.52 1/298.26
23 6378137 6356752.314 1/298.257223563

Table A.1: A detailed list of reference ellipsoid parameters (NGIA 2014)
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Reference Ellipsoid ID

Code
Airy (1930) 1
Australian National 2
Bessel 1841
Ethiopia, Indonesia, Japan, Korea 3
Namibia 4
Clarke 1866 5
Clarke 1880 6
Everest
Brunei & E. Malasia (Sabah & Sarawak) 7
India 1830 8
India 1956* 9
Pakistan* 10
W. Malasia and Singapore 1948 11
W. Malasia 1969* 12
Geodetic Reference System 1980 (GRS 80) 13
Helmert 1906 14
Hough 1960 15
Indonesian 1974 16
International 1924 17
Krassovsky 1940 18
Modified Airy 19
Modified Fischer 1960 (South Asia) 20
South American 1969 21
World Geodetic System 1972 (WGS 72) 22
World Geodetic System 1984 (WGS 84) 23

Table A.2: The relation between ID and Reference Ellipsoid
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Constants From ED50 to ED87

Latitude Longitude
A0 -.556098E-05 .148944E-04
A1 -.155391E-05 .268191E-05
A2 -.402620E-06 .245290E-05

A3 -.509693E-06 .294400E-06
A4 -.819775E-06 .152260E-05
A5 -.247592E-06 .910592E-06

A6 .136682E-06 -.368241E-06
A7 .186198E-06 -.851732E-06
A8 .123350E-06 -.566713E-06

A9 .568797E-07 -.185188E-06
A10 -.232217E-08 .284312E-07
A11 -.769931E-08 .684853E-07

A12 -.786953E-08 .500828E-07
A13 -.612216E-08 .415937E-07
A14 -.401382E-08 .762236E-08

Table A.3: Polynomial Constants for the transformation between ED50 and ED87
(Geodesidivisjonen 1990).
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CONICAL PROJECTIONS

CONFORMAL AUTHALIC APHYLACTIC
CYLINDRIC Mercator Authalic Cylindric Equidistant Cylindric

Rectangular Cylindric
Central Cylindric
Gall

PSEUDOCYLINDRIC . . . Collignon Trapezoidal
Sinusoidal Apianus
Mollweide Loritz
Authalic Parabolic Orthographic
Prépétit-Foucault Fournier II
Eumorphic Arago

CONIC Conformal conic Authalic conic with Equidistant conic
with one one standard parallel with one standard
standard parallel parallel
Conformal conic Authalic conic with Equidistant conic standard parallels (Albers)
with two standard two standard parallels with two standard
parallels (Lambert) (Albers) parallels Murdoch I, II, III

PSEUDOCONIC . . . Bonne . . .
Sinusoidal
Werner

POLYCONIC Lagrange Authalic Polyconic Equidistant Polyconic
Stereographic Rectangular Polyconic

Fournier I
Nicolosi
Van der Grinten

AZIMUTHAL
Perspective Stereographic . . . Orthographic

(Sphere) Gnomonic
Clarke
James
La Hire
Parent
Lowry

Non-Perspective Stereographic Authalic Azimuthal Equidistant Azimuthal
(Spheroid) Airy

Breusing

Table A.4: Classification of conical map projections (Lee 1944)

NON-CONICAL PROJECTIONS

CONFORMAL AUTHALIC APHYLACTIC
RETROAZIMUTHAL . . . . . . Equidistant

Retroazimuthal

ORTHOAPSIDAL . . . Authalic Orthoapsidal pp. Orthoapsidal pp.

MISCELLANEOUS Littrow Aitoff Schmidt
August Petermann
Peirce Two-point Azimuthal
Guyou (Orthodromic)
Adams pp. Two-point Equidistant
Laborde pp.

Table A.5: Classification of non-conical map projections (Lee 1944)
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ED87 ED50

Latitude Longitude Latitude Longitude
deg. deg. deg. min. sec. deg. min. sec.
52 2 52 0 0.0133 1 59 59.9699
53 4 53 0 0.0089 3 59 59.9402
54 0 54 0 0.0168 0 0 -0.0464
55 6 55 0 0.0353 5 59 59.8838
56 -2 56 0 0.023 -2 0 0.0504
57 8 57 0 0.0582 7 59 59.9366
58 8 58 0 0.0572 7 59 59.9777
59 4 59 0 0.049 3 59 59.9888
60 2 60 0 0.0404 2 0 0.0011
61 0 61 0 0.0242 0 0 0.004
62 2 61 59 59.9944 2 0 0.078

Table A.6: Test values for the transformation between ED87 and ED50 using the
14-polynomial method (Geodesidivisjonen 1990).

ED87 WGS84*SEA

Latitude Longitude Latitude Longitude
deg. deg. deg. min. sec. deg. min. sec.
52 2 51 59 57.0927 1 59 55.14
53 4 52 59 57.2812 3 59 55.1916
54 0 53 59 57.2224 0 0 -5.2508
55 6 54 59 57.5876 5 59 55.1325
56 -2 55 59 57.3584 -2 0 5.6811
57 8 56 59 57.9079 7 59 55.0669
58 8 57 59 58.0334 7 59 54.9297
59 4 58 59 57.9938 3 59 54.3814
60 2 59 59 58.0339 1 59 54.0159
61 0 60 59 58.0722 0 0 -6.3666
62 2 61 59 58.2998 1 59 53.6259

Table A.7: Test values for the transformation between ED87 and WGS84*SEA
using the modified Bursa-Wolf (Geodesidivisjonen 1990).
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ED50 WGS84 North of 62

Latitude Longitude Latitude Longitude
deg. min. sec. deg. min. sec. deg. min. sec. deg. min. sec.
62 0 0 1 22 22.769 61 59 58.343 1 22 16.425
62 0 0 1 40 0 61 59 58.355 1 39 53.689
62 0 0 2 0 0 61 59 58.369 1 59 53.726
62 0 0 2 20 0 61 59 58.383 2 19 53.764
62 0 0 2 40 0 61 59 58.397 2 39 53.802
62 0 0 3 0 0 61 59 58.411 2 59 53.84
62 0 0 3 20 0 61 59 58.425 3 19 53.879
62 0 0 3 40 0 61 59 58.439 3 39 53.917
62 0 0 4 0 0 61 59 58.453 3 59 53.956
62 0 0 4 20 0 61 59 58.466 4 19 53.995
62 0 0 4 40 0 61 59 58.48 4 39 54.034
62 0 0 4 52 45.24 61 59 58.488 4 52 39.299

Table A.8: Test values for the transformation between ED50 and WGS84 (OGP
2001)
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Appendix B

Functions DMS and DD

Degrees, Minutes, Seconds to Decimal Degrees

1 f unc t i on [ dec ]= coord2dec (d ,m, s )
2

3 %Name : coord2dec .m
4 %Last−Updated : 15 . 05 . 2014
5 %Formulae :
6 %Notes : Takes in to account negat ive va lue s o f e i t h e r
7 % degrees , minutes , and seconds . V e r i f i e d .
8 %Name :
9

10 deg = abs (d) ;
11 min = abs (m/60) ;
12 s e c = abs ( s /3600) ;
13

14 dec = deg + min + sec ;
15

16 i f d == 0
17

18 i f m < 0
19

20 dec = s i gn (m) ∗(min + sec ) ;
21

22 e l s e i f m == 0
23

24 i f s < 0
25

26 dec = s i gn ( s ) ∗ s ec ;
27

28 end
29

30 end
31

32 e l s e i f d < 0
33

34 dec = s i gn (d) ∗( deg + min + sec ) ;
35

36 end
37

38 r e turn
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Decimal Degrees to Degrees, Minutes, Seconds

1 f unc t i on [ d ,m, s ]= dec2coord ( dec )
2

3 %Name : dec2coord .m
4 %Last−Updated : 15 . 05 . 2014
5 %Formulae :
6 %Notes : Takes in to account negat ive va lue s o f e i t h e r
7 % degrees , minutes , and seconds .
8 i f dec > 0
9 d = f l o o r ( dec ) ;

10 dm = ( dec−d) ∗60 ;
11 m = f l o o r (dm) ;
12 ms = (dm−m) ∗60 ;
13 s = ms ;
14

15 e l s e i f dec == 0
16 d = 0 ;
17 m = 0 ;
18 s = 0 ;
19

20 e l s e i f dec <0
21 d = f i x ( dec ) ;
22

23 i f d < 0
24 dm = abs ( ( dec−d) ∗60) ;
25 m = f l o o r (dm) ;
26 ms = (dm−m) ∗60 ;
27 s = ms ;
28

29 e l s e i f d == 0
30 dm = ( dec−d) ∗60 ;
31 m = f i x (dm) ;
32

33 i f m < 0
34 ms = abs ( (dm−m) ∗60) ;
35 s = ms ;
36

37 e l s e i f m == 0
38 ms = (dm−m) ∗60 ;
39 s = ms ;
40 end
41 end
42 end
43

44 r e turn
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Script for testing DMS and DD

1

2 %Name : t e s t d e c .m
3 %Last−Updated : 15 . 05 . 2014
4 %Formulae :
5 %Notes : Test o f func t i on f o r conver t ing
6 % between decimal and r e g u l a r coo rd ina t e s
7 % Test va lue s from MATLAB DMS func t i on
8

9 c l e a r a l l
10

11 deg = [ 3 0 , −82, 0 , 0 ] ;
12 min = [ 5 0 , 2 , −30, 0 ] ;
13 s e c = [44 .7801200001663 , 39.9082499998644 ,

17.1234500000003 , 14 .8200000000012 ] ;
14 dec = [30 .8457722555556 , −82.0444189583333 ,

−0.504756513888889 , 0 .004116666666667 ] ;
15

16 f o r i = 1 : l ength ( deg )
17

18 [ dec2 ( i ) ]= coord2dec ( deg ( i ) , min ( i ) , s e c ( i ) ) ;
19 [ deg2 ( i ) , min2 ( i ) , s ec2 ( i ) ]= dec2coord ( dec ( i ) ) ;
20

21 o f f d e g ( i ) = deg ( i ) − deg2 ( i ) ;
22 o f f m in ( i ) = min ( i ) − min2 ( i ) ;
23 o f f s e c ( i ) = sec ( i ) − sec2 ( i ) ;
24 o f f d e c ( i ) = dec ( i ) − dec2 ( i ) ;
25

26 end
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Functions for Cartesian and Geographic Coordinates

Cartesian to Geographic

1 f unc t i on [ l a t , long ,H]= car t2geo (X,Y, Z , a , b )
2

3 %Name : car t2geo .m
4 %Last−Updated : 10 . 04 . 2014
5 %Formulae : OS / Master 1.5−1.9
6 %Notes : The c a l c u l a t i o n o f l a t i s an i t e r a t i v e process ,
7 % where the number a f t e r > d i c t a t e s the accuracy .
8

9 p = s q r t (X.ˆ2+Y. ˆ 2 ) ;
10 ecc2 = ( a.ˆ2−b . ˆ 2 ) /a . ˆ 2 ;
11 l a t 0 = atand (Z/(p∗(1− ecc2 ) ) ) ;
12 N0 = a /( s q r t (1− ecc2 ∗( s ind ( l a t 0 ) . ˆ 2 ) ) ) ;
13 H = (p/ cosd ( l a t 0 ) )−N0 ;
14 l a t = atand ( (Z+ecc2 ∗N0∗( s ind ( l a t 0 ) ) ) /p) ;
15

16 whi le abs ( la t0−l a t )>1e−20
17 l a t 0 = l a t ;
18 N0 = a /( s q r t (1− ecc2 ∗( s ind ( l a t 0 ) . ˆ 2 ) ) ) ;
19 H = p/ cosd ( l a t 0 )−N0 ;
20 l a t = atand ( (Z+ecc2 ∗N0∗( s ind ( l a t 0 ) ) ) /p) ;
21 end
22

23 long = atand (Y/X) ;
24 r e turn
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Geographic to Cartesian

1 f unc t i on [X,Y, Z]= geo2car t ( l a t , long ,H, a , b)
2

3 %Name : geo2car t .m
4 %Last−Updated : 08 . 04 . 2014
5 %Formulae : GNSS / Master 1.3−1.4
6 %Notes : l a t / long in decimal degree s
7

8 N = a .ˆ2/ ( s q r t ( ( a . ˆ 2 ) ∗( cosd ( l a t ) . ˆ 2 ) +(b . ˆ 2 ) ∗( s ind ( l a t ) . ˆ 2 ) )
) ;

9 X = (N+H) ∗ cosd ( l a t ) ∗ cosd ( long ) ;
10 Y = (N+H) ∗ cosd ( l a t ) ∗ s ind ( long ) ;
11 Z = ( ( b .ˆ2/ a . ˆ 2 ) ∗N+H) ∗ s ind ( l a t ) ;
12

13 r e turn
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Script for testing Cartesian to Geographic

1 %Name : t e s t c a r t 2 g e o .m
2 %Last−Updated : 22 . 05 . 2014
3 %Formulae :
4 %Notes : The c a l c u l a t i o n o f l a t i s an i t e r a t i v e process ,
5 % where the number a f t e r > d i c t a t e s the accuracy .
6

7 c l e a r a l l
8

9 l a t 1 = 33 .782341679 ;
10 long1 = 64 .56450923 ;
11 H1 = 203 .2343298 ;
12

13

14 %Get e l l i p s o i d parameters f o r ED50
15 [ a , b , f ]= e l l i p s o i d (17) ;
16

17 [X,Y, Z]= geo2car t ( la t1 , long1 , H1 , a , b ) ;
18

19 acc (1 ) = 1e−25;
20 ecc2 = ( a.ˆ2−b . ˆ 2 ) /a . ˆ 2 ;
21 p = s q r t (X.ˆ2+Y. ˆ 2 ) ;
22

23 f o r i = 1:700
24

25 n( i ) = 1 ;
26 acc ( i +1) = acc ( i ) ∗1 .1 ;
27 l a t 0 ( i ) = atand (Z/(p∗(1− ecc2 ) ) ) ;
28 N0( i ) = a /( s q r t (1− ecc2 ∗( s ind ( l a t 0 ( i ) ) . ˆ 2 ) ) ) ;
29 H( i ) = (p/ cosd ( l a t 0 ( i ) ) )−N0( i ) ;
30 l a t ( i ) = atand ( (Z+ecc2 ∗N0( i ) ∗( s ind ( l a t 0 ( i ) ) ) ) /p) ;
31 whi le abs ( l a t 0 ( i )− l a t ( i ) )>acc ( i )
32 l a t 0 ( i ) = l a t ( i ) ;
33 N0( i ) = a /( s q r t (1− ecc2 ∗( s ind ( l a t 0 ( i ) ) . ˆ 2 ) ) ) ;
34 H( i ) = p/ cosd ( l a t 0 ( i ) )−N0( i ) ;
35 l a t ( i ) = atand ( (Z+ecc2 ∗N0( i ) ∗( s ind ( l a t 0 ( i ) ) ) ) /p) ;
36 n( i ) = n( i ) +1;
37 end
38 long ( i ) = atand (Y/X) ;
39 d i s t ( i ) = v d i s t ( la t1 , long1 , l a t ( i ) , long ( i ) ) ;
40 end
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Function for collecting Ellipsoid Parameters

1 f unc t i on [ a , b , f ]= e l l i p s o i d ( ID)
2

3 %Name : e l l i p s o i d .m
4 %Last−Updated : 03 . 04 . 2014
5 %Formulae :
6 %Notes : Al l va lue s from NGA
7 % Al l measurements are in meters
8 % ∗ Through adoption o f a new yard to meter convers ion−
9 % f a c t o r in the r e f e r e n c e d country .

10

11 i f ID==1
12

13 %Airy (1930)
14 a =6377563.396;
15 b=6356256.9090;
16 f =1/299.3249646;
17

18 e l s e i f ID==2
19

20 %Aust ra l i an Nat iona l
21 a=6378160;
22 b=6356774.7190;
23 f =1/298.25
24

25 e l s e i f ID==3
26

27 %Besse l 1841 − Ethiopia , Indones ia , Japan , Korea
28 a =6377397.155;
29 b=6356078.9630;
30 f =1/299.1528128;
31

32 e l s e i f ID==4
33

34 %Besse l 1841 − Namibia
35 a =6377483.865;
36 b=6356165.383;
37 f =1/299.1528128;
38

39 e l s e i f ID==5
40

41 %Clarke 1866)
42 a =6378206.4;
43 b=6356583.800;
44 f =1/294.9786982;
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45

46 e l s e i f ID==6
47

48 %Clarke 1880
49 a =6378249.145;
50 b=6356514.870;
51 f =1/293.465;
52

53 e l s e i f ID==7
54

55 %Everest − Brunei & E. Malasia ( Sabah & Sarawak )
56 a =6377298.556;
57 b=6356097.550;
58 f =1/300.8017;
59

60 e l s e i f ID==8
61

62 %Everest − Ind ia 1830
63 a =6377276.345;
64 b=6356075.413;
65 f =1/300.8017;
66

67 e l s e i f ID==9
68

69 %Everest − Ind ia 1956∗
70 a =6377301.243;
71 b=6356100.228;
72 f =1/300.8017;
73

74 e l s e i f ID==10
75

76 %Everest − Pakistan ∗
77 a =6377309.613;
78 b=6356109.571;
79 f =1/300.8017;
80

81 e l s e i f ID==11
82

83 %Everest − W. Malasia and Singapore 1948
84 a =6377304.063;
85 b=6356103.039;
86 f =1/300.8017;
87

88 e l s e i f ID==12
89

90 %Everest − W. Malasia 1969∗
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91 a =6377295.664;
92 b=6356094.668;
93 f =1/300.8017;
94

95 e l s e i f ID==13
96

97 %Geodetic Reference System 1980 (GRS 80)
98 a=6378137;
99 b=6356752.3141;

100 f =298.257222101;
101

102 e l s e i f ID==14
103

104 %Helmert 1906
105 a=6378200;
106 b=6356818.170;
107 f =1/298.3;
108

109 e l s e i f ID==15
110

111 %Hough 1960
112 a=6378270;
113 b=6356794.343;
114 f =1/297;
115

116 e l s e i f ID==16
117

118 %Indones ian 1974
119 a=6378160;
120 b=6356774.504;
121 f =1/298.247;
122

123 e l s e i f ID==17
124

125 %I n t e r n a t i o n a l 1924 (ED50)
126 a=6378388;
127 b=6356911.946;
128 f =1/297;
129

130 e l s e i f ID==18
131

132 %Krassovsky 1940
133 a=6378245;
134 b=6356863.019;
135 f =1/298.3;
136

69



APPENDIX B

137 e l s e i f ID==19
138

139 %Modif ied Airy
140 a =6377340.189;
141 b=6356034.4480;
142 f =1/299.3249646;
143

144 e l s e i f ID==20
145

146 %Modif ied F i s che r 1960 ( South Asia )
147 a=6378155;
148 b=6356773.320;
149 f =1/298.3;
150

151 e l s e i f ID==21
152

153 %South American 1969
154 a=6378160;
155 b=6356774.719;
156 f =1/298.25;
157

158 e l s e i f ID==22
159

160 %World Geodetic System 1972 (WGS 72)
161 a=6378135;
162 b=6356750.520;
163 f =1/298.26;
164

165 e l s e i f ID==23
166

167 %World Geodetic System 1984 (WGS 84)
168 a=6378137;
169 b=6356752.3142;
170 f =1/298.257223563;
171

172 e l s e
173 e r r o r ( ’The ID code i s i nva l i d , s e e r e f e r e n c e t ab l e ’ )
174 end
175

176 r e turn

70



APPENDIX B

Reversible Polynomial in North Sea Formulae

Function for Reversibel Polynomial in the North Sea Formulae

1 f unc t i on [ D lat , D long ]= northsea1 ( la t , long ,A)
2

3 %Name : northsea1 .m
4 %Last−Updated : 17 . 04 . 2014
5 %Formulae : Kartverk 90 / 2 .54 Master ’ s Thes i s
6 %Notes : Output i s change in l a t i t u d e and long i tude
7 % Al l parameters are taken from Kartverk 90 .
8 % Transformation o f ED50 to ED87 when A = 1
9 % Transformation from ED87 to ED50 when A =

−1
10

11

12 %Lat i tude polynomia ls
13 A lat=A.∗ [−0.556098∗10.ˆ−5 −0.155391∗10.ˆ−5

−0.402620∗10.ˆ−6 −0.509693∗10.ˆ−6 . . .
14 −0.819775∗10.ˆ−6 −0.247592∗10.ˆ−6 0.136682∗10.ˆ−6

0.186198∗10.ˆ−6 0.123350∗10.ˆ−6 . . .
15 0.568797∗10.ˆ−7 −0.232217∗10.ˆ−8 −0.769931∗10.ˆ−8

−0.786953∗10.ˆ−8 −0.612216∗10.ˆ−8 . . .
16 −0.401382∗10.ˆ−8] ;
17

18 %Longitude polynomia ls
19 A long=A.∗ [ 0 .148944∗10 .ˆ −4 0.268191∗10.ˆ−5 0.245290∗10.ˆ−5

0.294400∗10.ˆ−6 . . .
20 0.152260∗10.ˆ−5 0.910592∗10.ˆ−6 −0.368241∗10.ˆ−6

−0.851732∗10.ˆ−6 . . .
21 −0.566713∗10.ˆ−6 −0.185188∗10.ˆ−6 0.284312∗10.ˆ−7

0.684853∗10.ˆ−7 . . .
22 0.500828∗10.ˆ−7 0.415937∗10.ˆ−7 0 .762236∗10 .ˆ −8 ] ;
23

24 %Orig in : 55N, 0E ( Greenwich )
25 U=lat −55;
26 V=long ;
27

28 %Change in l a t i t u d e in degree s
29 D lat=A lat (1 )+A lat (2 ) ∗U+A lat (3 ) ∗V+A lat (4 ) ∗U.ˆ2 . . .
30 +A lat (5 ) ∗U∗V+A lat (6 ) ∗V.ˆ2+ A lat (7 ) ∗U.ˆ3 . . .
31 +A lat (8 ) ∗U.ˆ2∗V+A lat (9 ) ∗U∗V.ˆ2+ A lat (10) ∗V.ˆ3 . . .
32 +A lat (11) ∗U.ˆ4+ A lat (12) ∗U.ˆ3∗V+A lat (13) ∗U.ˆ2∗V.ˆ2 . . .
33 +A lat (14) ∗U∗V.ˆ3+ A lat (15) ∗V. ˆ 4 ;
34

35 %Change in l ong i tude in degree s
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36 D long=A long (1 )+A long (2 ) ∗U+A long (3 ) ∗V+A long (4 ) ∗U.ˆ2 . . .
37 +A long (5 ) ∗U∗V+A long (6 ) ∗V.ˆ2+ A long (7 ) ∗U.ˆ3 . . .
38 +A long (8 ) ∗U.ˆ2∗V+A long (9 ) ∗U∗V.ˆ2+ A long (10) ∗V.ˆ3 . . .
39 +A long (11) ∗U.ˆ4+ A long (12) ∗U.ˆ3∗V+A long (13) ∗U.ˆ2∗V.ˆ2 . . .
40 +A long (14) ∗U∗V.ˆ3+ A long (15) ∗V. ˆ 4 ;
41

42 r e turn
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Script for testing the Reversibel Polynomial

1 %Name : tes t NorthSea1 .m
2 %Last−Updated : 16 . 05 . 2014
3 %Formulae : 14 polynomial SKV
4 %Notes : Al l va lue s from Statens Kartverk
5 % Purpose i s to t e s t the 14−polynomial
6 % func t i on from ED87 to ED50
7

8 c l e a r a l l
9

10 ED87 lat = [52 53 54 55 56 57 58 59 60 61 6 2 ] ;
11 ED87 long = [ 2 4 0 6 −2 8 8 4 2 0 2 ] ;
12

13 ED50 lat deg = [52 53 54 55 56 57 58 59 60 61 6 1 ] ;
14 ED50 lat min = [ 0 0 0 0 0 0 0 0 0 0 5 9 ] ;
15 ED50 lat sec = [ 0 . 0 1 3 3 0 .0089 0 .0168 0 .0353 0 .023 0 .0582

0 .0572 0 .049 0 .0404 0 .0242 5 9 . 9 9 4 4 ] ;
16

17 ED50 long deg = [ 1 3 0 5 −2 7 7 3 2 0 2 ] ;
18 ED50 long min = [59 59 0 59 0 59 59 59 0 0 0 ] ;
19 ED50 long sec = [59 . 9699 59.9402 −0.0464 59.8838 0 .0504

59.9366 59.9777 59.9888 0 .011 0 .004 0 . 0 7 8 ] ;
20

21 %Find the amount o f e lements
22 N=length ( ED87 long ) ;
23

24 f o r i = 1 :N;
25

26 %Step 1 : Ca l cu la te change in l a t / long to ED87
27 [ D lat ( i ) , D long ( i ) ]= northsea1 ( ED87 lat ( i ) ,

ED87 long ( i ) ,−1) ;
28

29 %Add changes to i n i t i a l va lue s
30 ED50 lat2 ( i )=D lat ( i )+ED87 lat ( i ) ;
31 ED50 long2 ( i )=D long ( i )+ED87 long ( i ) ;
32

33 %Convert ED50 s o l u t i o n to DD
34 [ ED50 lat ( i ) ]= coord2dec ( ED50 lat deg ( i ) ,

ED50 lat min ( i ) , ED50 lat sec ( i ) ) ;
35 [ ED50 long ( i ) ]= coord2dec ( ED50 long deg ( i ) ,

ED50 long min ( i ) , ED50 long sec ( i ) ) ;
36

37 %Calcu la te d i f f e r e n c e
38 o f f l a t ( i ) = ED50 lat ( i ) − ED50 lat2 ( i ) ;
39 o f f l o n g ( i ) = ED50 long ( i ) − ED50 long2 ( i ) ;
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40 [ o f f l a t d e g ( i ) , o f f l a t m i n ( i ) , o f f l a t s e c ( i ) ] =
dec2coord ( o f f l a t ( i ) ) ;

41 [ o f f l o n g d e g ( i ) , o f f l o n g m i n ( i ) , o f f l o n g s e c ( i ) ] =
dec2coord ( o f f l o n g ( i ) ) ;

42 d i s t ( i ) = v d i s t ( o f f l a t ( i ) , o f f l o n g ( i ) , 0 , 0 ) ;
43

44 end
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Bursa-Wolf Transformation

Function for the Bursa-Wolf Transformation

1 f unc t i on [ Xt , Yt , Zt ]= helmert7 (Xs , Ys , Zs , tX , tY , tZ , rX , rY , rZ , dS )
2

3 %Name : helmert7 .m
4 %Last−Updated : 11 . 04 . 2014
5 %Formulae : OGP−7.2 / 1.37+1.38 Master ’ s Thes i s
6 %Notes : Input and output in Cartes ian coo rd ina t e s
7

8 M=(1+dS .∗10.ˆ−6) ;
9 t =[tX ; tY ; tZ ] ;

10 S=[Xs ; Ys ; Zs ] ;
11 H=[1 −rZ rY ; rZ 1 −rX ; −rY rX 1 ] ;
12 T=M∗H∗S+t ;
13 Xt=T(1 ,1 ) ;
14 Yt=T(2 ,1 ) ;
15 Zt=T(3 , 1 ) ;
16

17 r e turn
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Script for testing the Bursa-Wolf Transformation

1 %Name : tes t NorthSea2 .m
2 %Last−Updated : 16 . 05 . 2014
3 %Formulae : Helmert−7
4 %Notes : Al l va lue s from Statens Kartverk
5 % Purpose i s to t e s t the 7−parameter
6 % func t i on from ED87 to WGS84SEA
7

8 c l e a r a l l
9

10 ED87 lat = [52 53 54 55 56 57 58 59 60 61 6 2 ] ;
11 ED87 long = [ 2 4 0 6 −2 8 8 4 2 0 2 ] ;
12

13 WGS84SEA lat deg = [51 52 53 54 55 56 57 58 59 60 6 1 ] ;
14 WGS84SEA lat min = [59 59 59 59 59 59 59 59 59 59 5 9 ] ;
15 WGS84SEA lat sec = [57 . 0927 57.2812 57.2224 57.5876 57.3584

57.9079 58.0334 57.9938 58.0339 58.0722 5 8 . 2 9 9 8 ] ;
16

17 WGS84SEA long deg = [ 1 3 0 5 −2 7 7 3 1 0 1 ] ;
18 WGS84SEA long min = [59 59 0 59 0 59 59 59 59 0 5 9 ] ;
19 WGS84SEA long sec = [ 5 5 . 1 4 55.1916 −5.2508 55.1325 5 .6811

55.0669 54.9297 54.3814 54.0159 −6.3666 5 3 . 6 2 5 9 ] ;
20

21 %Find the amount o f e lements
22 N=length ( ED87 long ) ;
23

24 %Parameters f o r ED87 to WGS84SEA
25 tX=−82.981;
26 tY=−99.719;
27 tZ =−110.709;
28 rX=−0.5076E−6;
29 rY=+0.1503E−6;
30 rZ=+0.3898E−6;
31 D=−0.3143;
32

33 %Assume MSL = 0 , H = 0
34 H = 0 ;
35

36 %Get e l l i p s o i d parameters f o r ED87
37 [ a ED87 , b ED87 , f ED87]= e l l i p s o i d (17) ;
38

39 %Get e l l i p s o i d parameters f o r WGS84 (23)
40 [ a WGS84 , b WGS84 , f WGS84]= e l l i p s o i d (23) ;
41

42 f o r i = 1 :N;
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43

44 %Convert to Cartes ian
45 [ X ED87( i ) ,Y ED87( i ) ,Z ED87( i ) ]= geo2car t ( ED87 lat ( i

) , ED87 long ( i ) ,H, a ED87 , b ED87 ) ;
46

47 %Transform ED87 to WGS84SEA
48 [X WGS84SEA( i ) ,Y WGS84SEA( i ) ,Z WGS84SEA( i ) ]=

helmert7 (X ED87( i ) ,Y ED87( i ) ,Z ED87( i ) , tX , tY , tZ ,
rX , rY , rZ ,D) ;

49

50 %Convert back to Geographic with WGS84 e l l i p s o i d
51 [ WGS84SEA lat2 ( i ) ,WGS84SEA long2( i ) ,WGSSEA H2( i ) ]=

car t2geo (X WGS84SEA( i ) ,Y WGS84SEA( i ) ,Z WGS84SEA(
i ) ,a WGS84 , b WGS84) ;

52

53 %Convert WGS84SEA s o l u t i o n to DD
54 [ WGS84SEA lat ( i ) ]= coord2dec ( WGS84SEA lat deg ( i ) ,

WGS84SEA lat min ( i ) , WGS84SEA lat sec ( i ) ) ;
55 [ WGS84SEA long( i ) ]= coord2dec ( WGS84SEA long deg ( i ) ,

WGS84SEA long min ( i ) , WGS84SEA long sec ( i ) ) ;
56

57 %Calcu la te d i f f e r e n c e
58 o f f l a t ( i ) = abs (WGS84SEA lat ( i ) − WGS84SEA lat2 ( i )

) ;
59 o f f l o n g ( i ) = abs (WGS84SEA long( i ) − WGS84SEA long2

( i ) ) ;
60 [ o f f l a t d e g ( i ) , o f f l a t m i n ( i ) , o f f l a t s e c ( i ) ] =

dec2coord ( o f f l a t ( i ) ) ;
61 [ o f f l o n g d e g ( i ) , o f f l o n g m i n ( i ) , o f f l o n g s e c ( i ) ] =

dec2coord ( o f f l o n g ( i ) ) ;
62 d i s t ( i ) = v d i s t ( o f f l a t ( i ) , o f f l o n g ( i ) , 0 , 0 ) ;
63

64 end
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Scripts for testing complete transformations

Script for transformations North of 62 degrees

1 %Name : t e s t Nor tho f 62 .m
2 %Last−Updated : 13 . 04 . 2014
3 %Formulae : North
4 %Notes : Al l va lue s from Statens Kartverk
5 % S c r i p t made to t e s t f u n c t i o n s / formulae
6 % vs . t e s t va lue s g iven by EPSG10 Annex 1
7 % Tests tfm ED50 to WGS84 along 62 deg N
8 % Name ” te s t Nor tho f 62 ”
9

10 c l e a r a l l
11

12 %I n i t i a l l a t i t u d e va lues in ED50
13 lat deg ED50 =[62 62 62 62 62 62 62 62 62 62 62 6 2 ] ;
14 lat min ED50 =[0 0 0 0 0 0 0 0 0 0 0 0 ] ;
15 l a t sec ED50 =[0 0 0 0 0 0 0 0 0 0 0 0 ] ;
16

17 %I n i t i a l l ong i tude va lue s in ED50
18 long deg ED50 =[1 1 2 2 2 3 3 3 4 4 4 4 ] ;
19 long min ED50 =[22 40 0 20 40 0 20 40 0 20 40 5 2 ] ;
20 long sec ED50 =[22.769 0 0 0 0 0 0 0 0 0 0 4 5 . 2 4 ] ;
21

22 %End l a t i t u d e va lue s in WGS84
23 lat deg WGS84 SKV=[61 61 61 61 61 61 61 61 61 61 61 61 ] ;
24 lat min WGS84 SKV=[59 59 59 59 59 59 59 59 59 59 59 59 ] ;
25 lat sec WGS84 SKV =[58.343 58 .355 58 .369 58 .383 58 .397

58 .411 58 .425 58 .439 58 .453 58 .466 58 .48 58 .488 ] ;
26

27 %End long i tude va lue s in WGS84
28 long deg WGS84 SKV=[1 1 1 2 2 2 3 3 3 4 4 4 ] ;
29 long min WGS84 SKV=[22 39 59 19 39 59 19 39 59 19 39 52 ] ;
30 long sec WGS84 SKV =[16.425 53 .689 53 .726 53 .764 53 .802

53 .84 53 .879 53 .917 53 .956 53 .995 54 .034 39 .299 ] ;
31

32 %Parameters f o r ED50 to WGS84 North o f 62 deg
33 tX=−116.641;
34 tY=−56.931;
35 tZ =−110.559;
36 rX=+4.327∗10.ˆ−6;
37 rY=+4.464∗10.ˆ−6;
38 rZ=−4.444∗10.ˆ−6;
39 dS=−3.520;
40
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41 %Find the amount o f e lements
42 N=length ( lat deg ED50 ) ;
43

44 %Assume MSL = 0 , H = 0
45 H = 0 ;
46

47 %Get e l l i p s o i d parameters f o r ED50
48 [ a ED50 , b ED50 , f ED50]= e l l i p s o i d (17) ;
49

50 %Get e l l i p s o i d parameters f o r WGS84 (23)
51 [ a WGS84 , b WGS84 , f WGS84]= e l l i p s o i d (23) ;
52

53 %Run the t rans fo rmat ion f o r every element
54 f o r i =1:N;
55

56 %Convert to decimal
57 [ lat ED50 ( i ) ]= coord2dec ( lat deg ED50 ( i ) ,

lat min ED50 ( i ) , l a t sec ED50 ( i ) ) ;
58 [ long ED50 ( i ) ]= coord2dec ( long deg ED50 ( i ) ,

long min ED50 ( i ) , long sec ED50 ( i ) ) ;
59

60 %Convert to Cartes ian with ED50 e l l i p s o i d
61 [ X ED50( i ) ,Y ED50( i ) ,Z ED50( i ) ]= geo2car t ( lat ED50 ( i

) , long ED50 ( i ) ,H, a ED50 , b ED50 ) ;
62

63 %Use Helmert 7 North o f 62N
64 [X WGS84( i ) ,Y WGS84( i ) ,Z WGS84( i ) ]= helmert7 (X ED50(

i ) ,Y ED50( i ) ,Z ED50( i ) , tX , tY , tZ , rX , rY , rZ , dS) ;
65

66 %Convert back to Geographic with WGS84 e l l i p s o i d
67 [ lat WGS84 ( i ) , long WGS84 ( i ) ,H WGS84( i ) ]= car t2geo (

X WGS84( i ) ,Y WGS84( i ) ,Z WGS84( i ) ,a WGS84 , b WGS84
) ;

68

69 end
70

71 %Calcu la te the e r r o r / o f f−s e t
72 f o r i =1:N;
73

74 %Convert WGS84 SKV to decimal
75 [ lat WGS84 SKV( i ) ]= coord2dec ( lat deg WGS84 SKV ( i ) ,

lat min WGS84 SKV ( i ) , lat sec WGS84 SKV ( i ) ) ;
76 [ long WGS84 SKV( i ) ]= coord2dec ( long deg WGS84 SKV ( i )

, long min WGS84 SKV ( i ) , long sec WGS84 SKV ( i ) ) ;
77

78 %Calcu la te o f f−s e t
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79 o f f s e t l a t ( i )=lat WGS84 ( i )−lat WGS84 SKV( i ) ;
80 o f f s e t l o n g ( i )=long WGS84 ( i )−long WGS84 SKV( i ) ;
81 [ o f f d e g l a t ( i ) , o f f m i n l a t ( i ) , o f f s e c l a t ( i ) ] =

dec2coord ( o f f s e t l a t ( i ) ) ;
82 [ o f f d e g l o n g ( i ) , o f f m i n l o n g ( i ) , o f f s e c l o n g ( i ) ] =

dec2coord ( o f f s e t l o n g ( i ) ) ;
83

84 d i s t ( i ) = v d i s t ( abs ( o f f s e t l a t ( i ) ) , abs ( o f f s e t l o n g (
i ) ) , 0 , 0 ) ;

85 end
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Script for computing the deviation between the North Sea
Formula and the Bursa-Wolf Transformation

1 %Name : t e s t 6 2 d e g e x t .m
2 %Last−Updated : 14 . 05 . 2014
3 %Formulae :
4 %Notes : A s c r i p t made to check the d i f f e r e n c e between
5 % the North Sea Formulae and Helmert 7 at
6 % the 62 deg N l a t i t u d e band when

trans forming
7 % from ED50 to WGS84
8

9 c l e a r a l l
10

11 %Amount o f s t ep s
12 n = 100 ;
13

14 %Star t − UK/Norway boundary ( roughly )
15 s t a r t = 1 . 1 ; %degree s East
16

17 %Stop − Mainland Norway ( roughly )
18 stop = 4 . 9 ; %degree s East
19

20 %Length o f s tep
21 dn = ( stop−s t a r t ) /n ;
22

23 %Set t ing l a t and long va lue s f o r each step
24 long = ze ro s (n : 1 ) ;
25 H = ze ro s (n : 1 ) ;
26

27 l a t = [ 5 9 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 6 7 ] ;
28 s = length ( l a t ) ;
29 long (1 ) = s t a r t ;
30

31 f o r i =2:n ;
32 long ( i ) = long ( i −1)+dn ;
33 end
34

35 %Get e l l i p s o i d parameters f o r ED50
36 [ a ED50 , b ED50 , f ED50]= e l l i p s o i d (17) ;
37

38 %Get e l l i p s o i d parameters f o r WGS84 (23)
39 [ a WGS84 , b WGS84 , f WGS84]= e l l i p s o i d (23) ;
40

41 %Parameters f o r ED87 to WGS84SEA
42 tX = −82.981;
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43 tY = −99.719;
44 tZ = −110.709;
45 rX = −0.5076E−6;
46 rY = +0.1503E−6;
47 rZ = +0.3898E−6;
48 D = −0.3143;
49

50 %Parameters f o r ED50 to WGS84 North o f 62 deg
51 tX2 =−116.641;
52 tY2 = −56.931;
53 tZ2 = −110.559;
54 rX2 = +4.327∗10.ˆ−6;
55 rY2 = +4.464∗10.ˆ−6;
56 rZ2 = −4.444∗10.ˆ−6;
57 dS2 = −3.520;
58

59

60 f o r r = 1 : s ;
61

62 f o r i = 1 : n ;
63

64 %Assume MSL = 0 , H = 0
65 H( i ) = 0 ;
66

67 %Star t North Sea Formulae
68 %Step 1 : Ca l cu la te change in l a t / long to ED87
69 [ D lat ( r , i ) , D long ( r , i ) ]= northsea1 ( l a t ( r ) , long ( i )

, 1 ) ;
70

71 %Add changes to i n i t i a l va lue s
72 lat ED87 ( r , i )=D lat ( r , i )+l a t ( r ) ;
73 long ED87 ( r , i )=D long ( r , i )+long ( i ) ;
74

75 %Convert to Cartes ian with ED50 e l l i p s o i d ( same as
ED87)

76 [ X ED87( r , i ) ,Y ED87( r , i ) ,Z ED87( r , i ) ]= geo2car t (
lat ED87 ( r , i ) , long ED87 ( r , i ) ,H( i ) , a ED50 , b ED50 )
;

77

78 %Step 2 : Transform ED87 to WGS84SEA
79 [X WGS84SEA( r , i ) ,Y WGS84SEA( r , i ) ,Z WGS84SEA( r , i ) ]=

helmert7 (X ED87( r , i ) ,Y ED87( r , i ) ,Z ED87( r , i ) , tX
(1) , tY (1) , tZ (1 ) , rX (1) , rY (1) , rZ (1 ) ,D(1) ) ;

80

81 %Convert back to Geographic with WGS84 e l l i p s o i d
82 [ lat WGS84SEA( r , i ) , long WGS84SEA( r , i ) ,H WGS84SEA( r ,

82



APPENDIX B

i ) ]= car t2geo (X WGS84SEA( r , i ) ,Y WGS84SEA( r , i ) ,
Z WGS84SEA( r , i ) ,a WGS84 , b WGS84) ;

83 %End o f North Sea Formulae
84

85 %Star t Helmert 7−parameter
86 %Convert to Cartes ian with ED50 e l l i p s o i d
87 [ X ED50( r , i ) ,Y ED50( r , i ) ,Z ED50( r , i ) ]= geo2car t ( l a t (

r ) , long ( i ) ,H( i ) , a ED50 , b ED50 ) ;
88

89 %Use Helmert 7 North o f 62N
90 [X WGS84( r , i ) ,Y WGS84( r , i ) ,Z WGS84( r , i ) ]= helmert7 (

X ED50( r , i ) ,Y ED50( r , i ) ,Z ED50( r , i ) , tX2 (1) , tY2
(1 ) , tZ2 (1 ) , rX2 (1 ) , rY2 (1 ) , rZ2 (1 ) , dS2 (1 ) ) ;

91

92 %Convert back to Geographic with WGS84 e l l i p s o i d
93 [ lat WGS84 ( r , i ) , long WGS84 ( r , i ) ,H WGS84( r , i ) ]=

car t2geo (X WGS84( r , i ) ,Y WGS84( r , i ) ,Z WGS84( r , i ) ,
a WGS84 , b WGS84) ;

94 %End Helmert 7−parameter
95

96 %Calcu la te the d i f f e r e n c e o f each step in meters
97 d l a t ( r , i ) = lat WGS84 ( r , i ) − lat WGS84SEA( r , i ) ;
98 d long ( r , i ) = long WGS84 ( r , i ) − long WGS84SEA( r , i ) ;
99 d H( r , i ) = H WGS84( r , i ) − H WGS84SEA( r , i ) ;

100 [ d e g l a t ( r , i ) , min la t ( r , i ) , s e c l a t ( r , i ) ] =
dec2coord ( d l a t ( r , i ) ) ;

101 [ deg long ( r , i ) , min long ( r , i ) , s e c l o n g ( r , i ) ] =
dec2coord ( d long ( r , i ) ) ;

102 d i s t ( r , i ) = v d i s t ( lat WGS84 ( r , i ) , long WGS84 ( r , i ) ,
lat WGS84SEA( r , i ) , long WGS84SEA( r , i ) ) ;

103

104 end
105 end
106

107

108 Y = long ;
109 X = l a t ;
110 Z = d i s t ;
111

112 f i g u r e ;
113 h = bar3 (Z) ;
114 s e t ( gca ( g c f ) , ’ x t i c k l a b e l ’ ,{ ’ 1 . 1 ’ , ’ 1 .52 ’ , ’ 1 .94 ’ , ’ 2 .36 ’ ,

’ 2 .78 ’ , ’ 3 .21 ’ , ’ 3 .63 ’ , ’ 4 .05 ’ , ’ 4 .47 ’ , ’ 4 . 9 ’ } , ’
y t i c k l a b e l ’ ,{ ’ 59 ’ , ’ 60 ’ , ’ 61 ’ , ’ 62 ’ , ’ 63 ’ , ’ 64 ’ , ’ 65 ’ , ’
66 ’ , ’ 67 ’ })

115 co l o rba r
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116

117 t i t l e ( ’ D i f f e r e n c e between North Sea Formulae and Bursa−Wolf
’ ) ;

118 x l a b e l ( ’ Degrees East ’ ) ;
119 y l a b e l ( ’ Degrees North ’ ) ;
120 z l a b e l ( ’ Meters ’ ) ;
121

122 f o r k = 1 : l ength (h)
123 zdata = get (h( k ) , ’ ZData ’ ) ;
124 s e t (h( k ) , ’CData ’ , zdata , . . .
125 ’ FaceColor ’ , ’ i n t e r p ’ )
126 end
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Function for calculating the distance between two Geographical coordi-
nates

1 f unc t i on s = v d i s t ( la t1 , lon1 , la t2 , lon2 )
2 % − NOT MINE − by Michael Kleder , 30 Jun 2004 (

Updated 01 Sep 2004)
3

4

5

6 %VDIST − compute d i s t anc e between po in t s on the WGS−84
e l l i p s o i d a l Earth

7 % to with in a few m i l l i m e t e r s o f accuracy us ing
Vincenty ’ s a lgor i thm

8 %
9 % s = v d i s t ( la t1 , lon1 , la t2 , lon2 )

10 %
11 % s = d i s t anc e in meters
12 % l a t 1 = GEODETIC l a t i t u d e o f f i r s t po int ( degree s )
13 % lon1 = long i tude o f f i r s t po int ( degree s )
14 % lat2 , lon2 = second po int ( degree s )
15 %
16 % Or ig ina l a lgor i thm source :
17 % T. Vincenty , ” Di rec t and Inve r s e S o l u t i o n s o f Geodes ics

on the E l l i p s o i d
18 % with Appl i cat ion o f Nested Equations ” , Survey Review ,

vo l . 23 , no . 176 ,
19 % Apr i l 1975 , pp 88−93
20 %
21 % Notes : (1 ) Error c o r r e c t i n g code , convergence f a i l u r e

traps , ant ipoda l c o r r e c t i o n s ,
22 % pola r e r r o r c o r r e c t i o n s , WGS84 e l l i p s o i d

parameters , t e s t i ng , and comments
23 % wri t t en by Michael Kleder , 2004 .
24 % (2) Vincenty d e s c r i b e s h i s o r i g i n a l a lgor i thm as

p r e c i s e to with in
25 % 0.01 mi l l ime t e r s , s ub j e c t to the e l l i p s o i d a l

model .
26 % (3) E s s e n t i a l l y ant ipoda l po in t s are t r ea t ed as

exac t l y ant ipodal ,
27 % p o t e n t i a l l y reduc ing accuracy by a smal l

amount .
28 % (4) F a i l u r e s f o r po in t s exac t l y at the po l e s are

e l im inated by
29 % moving the po in t s by 0 .6 m i l l i m e t e r s .
30 % (5) Vincenty ’ s azimuth formulas are not

implemented in t h i s
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31 % vers ion , but are a v a i l a b l e as comments in the
code .

32 % (6) The Vincenty procedure was t r a n s c r i b e d
verbatim by Peter Cederholm ,

33 % August 12 , 2003 . I t was modi f i ed and
t r a n s l a t e d to Engl i sh by Michael Kleder .

34 % Mr. Cederholm ’ s webs i te i s http ://www. plan . aau
. dk/˜ pce/

35 % (7) Code to t e s t the disagreement between t h i s
a lgor i thm and the

36 % Mapping Toolbox s p h e r i c a l earth d i s t anc e
func t i on i s provided

37 % as comments in the code . The maximum
d i f f e r e n c e s are :

38 % Max abso lu t e d i f f e r e n c e : 38 k i l ome t e r s
39 % Max f r a c t i o n a l d i f f e r e n c e : 0 .56 percent
40

41 % Input check :
42 i f abs ( l a t 1 )>90 | abs ( l a t 2 )>90
43 e r r o r ( ’ Input l a t i t u d e s must be between −90 and 90

degrees , i n c l u s i v e . ’ )
44 end
45 % Supply WGS84 earth e l l i p s o i d a x i s l eng th s in meters :
46 a = 6378137; % d e f i n i t i o n a l l y
47 b = 6356752 .31424518 ; % computed from WGS84 earth

f l a t t e n i n g c o e f f i c i e n t d e f i n i t i o n
48 % convert inputs in degree s to rad ians :
49 l a t 1 = l a t 1 ∗ 0 .0174532925199433 ;
50 lon1 = lon1 ∗ 0 .0174532925199433 ;
51 l a t 2 = l a t 2 ∗ 0 .0174532925199433 ;
52 lon2 = lon2 ∗ 0 .0174532925199433 ;
53 % c o r r e c t f o r e r r o r s at exact po l e s by ad ju s t i ng 0 .6

m i l l i m e t e r s :
54 i f abs ( p i/2−abs ( l a t 1 ) ) < 1e−10;
55 l a t 1 = s i gn ( l a t 1 ) ∗( p i /2−(1e−10) ) ;
56 end
57 i f abs ( p i/2−abs ( l a t 2 ) ) < 1e−10;
58 l a t 2 = s i gn ( l a t 2 ) ∗( p i /2−(1e−10) ) ;
59 end
60 f = (a−b) /a ;
61 U1 = atan ((1− f ) ∗ tan ( l a t 1 ) ) ;
62 U2 = atan ((1− f ) ∗ tan ( l a t 2 ) ) ;
63 lon1 = mod( lon1 ,2∗ pi ) ;
64 lon2 = mod( lon2 ,2∗ pi ) ;
65 L = abs ( lon2−lon1 ) ;
66 i f L > pi
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67 L = 2∗ pi − L ;
68 end
69 lambda = L ;
70 lambdaold = 0 ;
71 i t e r c o u n t = 0 ;
72 whi le ˜ i t e r c o u n t | abs ( lambda−lambdaold ) > 1e−12 % f o r c e

at l e a s t one execut ion
73 i t e r c o u n t = i t e r c o u n t +1;
74 i f i t e r c o u n t > 50
75 warning ( ’ Points are e s s e n t i a l l y ant ipoda l .

P r e c i s i o n may be reduced s l i g h t l y . ’ ) ;
76 lambda = pi ;
77 break
78 end
79 lambdaold = lambda ;
80 s ins igma = s q r t ( ( cos (U2) ∗ s i n ( lambda ) ) ˆ2+( cos (U1) ∗ . . .
81 s i n (U2)−s i n (U1) ∗ cos (U2) ∗ cos ( lambda ) ) ˆ2) ;
82 coss igma = s i n (U1) ∗ s i n (U2)+cos (U1) ∗ cos (U2) ∗ cos ( lambda ) ;
83 sigma = atan2 ( s ins igma , coss igma ) ;
84 alpha = as in ( cos (U1) ∗ cos (U2) ∗ s i n ( lambda ) / s i n ( sigma ) ) ;
85 cos2sigmam = cos ( sigma )−2∗ s i n (U1) ∗ s i n (U2) / cos ( alpha ) ˆ2 ;
86 C = f /16∗ cos ( alpha ) ˆ2∗(4+ f ∗(4−3∗ cos ( alpha ) ˆ2) ) ;
87 lambda = L+(1−C) ∗ f ∗ s i n ( alpha ) ∗( sigma+C∗ s i n ( sigma ) ∗ . . .
88 ( cos2sigmam+C∗ cos ( sigma )∗(−1+2∗cos2sigmam ˆ2) ) ) ;
89 % c o r r e c t f o r convergence f a i l u r e in the case o f

e s s e n t i a l l y ant ipoda l po in t s
90 i f lambda > pi
91 warning ( ’ Points are e s s e n t i a l l y ant ipoda l .

P r e c i s i o n may be reduced s l i g h t l y . ’ ) ;
92 lambda = pi ;
93 break
94 end
95 end
96 u2 = cos ( alpha ) ˆ2∗( aˆ2−bˆ2) /b ˆ2 ;
97 A = 1+u2/16384∗(4096+u2∗(−768+u2∗(320−175∗u2 ) ) ) ;
98 B = u2/1024∗(256+u2∗(−128+u2∗(74−47∗u2 ) ) ) ;
99 de l tas igma = B∗ s i n ( sigma ) ∗( cos2sigmam+B/4∗( cos ( sigma )

∗(−1+2∗cos2sigmam ˆ2) . . .
100 −B/6∗ cos2sigmam∗(−3+4∗ s i n ( sigma ) ˆ2)∗(−3+4∗cos2sigmam ˆ2)

) ) ;
101 s = b∗A∗( sigma−de l tas igma ) ;
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Function for Converting from Geographical to UTM Coor-
dinates using USGS

1 f unc t i on [N,E, Z , hemi]=coord2grid USGS ( latd , longd , a , b , f )
2

3 %Name : coord2grid USGS .m
4 %Last−Updated : 01 . 05 . 2014
5 %Formulae : OGP 7−2, 1 . 3 . 5 . 1 USGS
6 %Notes : Modif ied TM f o r UTM
7 % Hemi 1 means North , Hemi −1 means South
8

9 %Error codes f o r l i m i t s
10 i f l a td < −180 | l a td > 180
11 e r r o r ( ’ Lat i tude must be between 180 and −180. ’ )
12 e l s e i f longd < −90 | longd > 90
13 e r r o r ( ’ Longitude must be between 90 and −90. ’ )
14 e l s e i f longd < −89 | longd > 89
15 e r r o r ( ’ Longitude va lue s c l o s e to 90 w i l l not y i e l d

accurate r e s u l t s . ’ )
16 end
17

18 %Zone width , degree s
19 W = 6 ;
20

21 %False Easting , metre
22 FE = 500000;
23

24 %False Northing , metre
25 i f l a td >= 0 ;
26 FN = 0 ;
27 hemi = 1 ;
28 e l s e
29 FN = 10000000;
30 hemi = −1;
31 end
32

33 %Centra l Meridian s c a l e f a c t o r
34 k0 = 0 . 9 9 9 6 ;
35

36 %Calcu la te UTM Zone number
37 Z = 1+ f l o o r ( ( longd +180)/W) ;
38

39 %Longitude o f natura l o r i g i n
40 longd0 = (3+W∗(Z−1)−180) ;
41

42 %Lat i tude o f natura l o r i g i n
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43 l a td0 = 0 ;
44

45 %e c c e n t r i c i t y
46 e = s q r t (2∗ f−f . ˆ 2 ) ;
47

48 %second e c c e n t r i c i t y
49 ecc = s q r t ( e .ˆ2/(1− e . ˆ 2 ) ) ;
50

51 %Degrees to rad ians
52 l a t = ( l a td /360) ∗2∗ pi ;
53 l a t 0 = ( la td0 /360) ∗2∗ pi ;
54 long = ( longd /360) ∗2∗ pi ;
55 long0 = ( longd0 /360) ∗2∗ pi ;
56

57 T = ( tan ( l a t ) . ˆ 2 ) ;
58 C = ( e . ˆ2∗ ( cos ( l a t ) . ˆ 2 ) ) /(1−e . ˆ 2 ) ;
59 A = ( long−long0 ) ∗ cos ( l a t ) ;
60 nu = a/(1−e . ˆ2∗ ( s i n ( l a t ) . ˆ 2 ) ) . ˆ 0 . 5 ;
61

62 M = a∗((1−( e . ˆ 2 ) /4−(3∗e . ˆ 4 ) /64−(5∗ e . ˆ 6 ) /256) ∗ l a t . . .
63 −((3∗ e . ˆ 2 ) /8+(3∗ e . ˆ 4 ) /32+(45∗ e . ˆ 6 ) /1024) ∗ s i n (2∗ l a t ) . . .
64 +((15∗ e . ˆ 4 ) /256+(45∗ e . ˆ 6 ) /1024) ∗ s i n (4∗ l a t ) . . .
65 −((35∗ e . ˆ 6 ) /3072) ∗ s i n (6∗ l a t ) ) ;
66

67 M0 = a∗((1−( e . ˆ 2 ) /4−(3∗e . ˆ 4 ) /64−(5∗ e . ˆ 6 ) /256) ∗ l a t 0 . . .
68 −((3∗ e . ˆ 2 ) /8+(3∗ e . ˆ 4 ) /32+(45∗ e . ˆ 6 ) /1024) ∗ s i n (2∗ l a t 0 ) . . .
69 +((15∗ e . ˆ 4 ) /256+(45∗ e . ˆ 6 ) /1024) ∗ s i n (4∗ l a t 0 ) . . .
70 −((35∗ e . ˆ 6 ) /3072) ∗ s i n (6∗ l a t 0 ) ) ;
71

72 E = FE+k0∗nu∗(A+(1−T+C) ∗ ( (A. ˆ 3 ) /6)+(5−18∗T+T.ˆ2+72∗C−58∗ ecc
. ˆ 2 ) ∗ ( (A. ˆ 5 ) /120) ) ;

73 N = FN+k0 ∗(M−M0+nu∗ tan ( l a t ) ∗ ( (A. ˆ 2 ) /2+(5−T+9∗C+4∗C. ˆ 2 ) ∗ ( (A
. ˆ 4 ) /24)+(61−58∗T+T.ˆ2+600∗C−330∗ ecc . ˆ 2 ) ∗ ( (A. ˆ 6 ) /720) ) ) ;

74

75 r e turn
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Function for converting from UTM to geographical coordi-
nates using USGS

1 f unc t i on [ latd , longd ]=grid2coord USGS (N,E, Z , a , b , f , hemi )
2

3 %Name : grid2coord USGS .m
4 %Last−Updated : 01 . 05 . 2014
5 %Formulae : OGP 7−2, 1 . 3 . 5 . 1 USGS
6 %Notes :
7

8 %Error codes f o r l i m i t s
9 i f E < 160000 | E > 840000

10 e r r o r ( ’ East ings may not exceed 840000 or be below
160000. ’ )

11 e l s e i f N < 0
12 e r r o r ( ’ Negat ive Northing i s not a l low . ’ )
13 e l s e i f N > 10000000
14 e r r o r ( ’ Northing may not exceed 10000000. ’ )
15 end
16

17 %Centra l Meridian s c a l e f a c t o r
18 k0 = 0 . 9 9 9 6 ;
19

20 %e c c e n t r i c i t y
21 e = s q r t (2∗ f−f . ˆ 2 ) ;
22

23 %Zone width , degree s
24 W = 6 ;
25

26 %False Northing
27 i f hemi == 1
28 FN = 0 ;
29 e l s e i f hemi == −1
30 FN = 10000000;
31 e l s e
32 e r r o r ( ’ Hemisphere must be 1 f o r North , or −1 f o r South .

’ )
33 end
34

35 %second e c c e n t r i c i t y
36 ecc = s q r t ( e .ˆ2/(1− e . ˆ 2 ) ) ;
37

38 %e c c e n t r i c i t y squared
39 e2 = e . ˆ 2 ;
40

41 %second e c c e n t r i c i t y squared
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42 ecc2 = ( e .ˆ2/(1− e . ˆ 2 ) ) ;
43

44 %False Easting , metre
45 FE = 500000;
46

47 %Longitude o f natura l o r i g i n
48 longd0 = (3+6∗(Z−1)−180) ;
49

50 %Lat i tude o f natura l o r i g i n
51 l a td0 = 0 ;
52

53 %Degrees to rad ians
54 l a t 0 = ( la td0 /360) ∗2∗ pi ;
55 long0 = ( longd0 /360) ∗2∗ pi ;
56

57

58 M0 = a∗((1−( e . ˆ 2 ) /4−(3∗e . ˆ 4 ) /64−(5∗ e . ˆ 6 ) /256) ∗ l a t 0 . . .
59 −((3∗ e . ˆ 2 ) /8+(3∗ e . ˆ 4 ) /32+(45∗ e . ˆ 6 ) /1024) ∗ s i n (2∗ l a t 0 ) . . .
60 +((15∗ e . ˆ 4 ) /256+(45∗ e . ˆ 6 ) /1024) ∗ s i n (4∗ l a t 0 ) . . .
61 −((35∗ e . ˆ 6 ) /3072) ∗ s i n (6∗ l a t 0 ) ) ;
62

63 M1 = M0+(N−FN) /k0 ;
64 mu1 = M1/( a∗(1−e2/4−e . ˆ4∗ (3/64)−e .ˆ6∗ (5/256) ) ) ;
65 e1 = (1−(1−e2 ) . ˆ 0 . 5 ) /(1+(1−e2 ) . ˆ 0 . 5 ) ;
66

67 l a t 1 = mu1+(e1 ∗ (3/2)+e1 .ˆ3∗ (27/32) ) ∗ s i n (2∗mu1) . . .
68 +(e1 .ˆ2∗ (21/16)−e1 .ˆ4∗ (55/32) ) ∗ s i n (4∗mu1) . . .
69 +(e1 .ˆ3∗ (151/96) ) ∗ s i n (6∗mu1) . . .
70 +(e1 .ˆ4∗ (1097/512) ) ∗ s i n (8∗mu1) ;
71

72 T1 = ( tan ( l a t 1 ) . ˆ 2 ) ;
73 C1 = ecc2 ∗( cos ( l a t 1 ) . ˆ 2 ) ;
74 nu1 = a/((1− e2 ∗( s i n ( l a t 1 ) . ˆ 2 ) ) . ˆ 0 . 5 ) ;
75 rho1 = ( a∗(1−e2 ) ) /((1− e2 ∗( s i n ( l a t 1 ) . ˆ 2 ) ) . ˆ 1 . 5 ) ;
76

77 D = (E−FE) /( nu1∗k0 ) ;
78

79 l a t = lat1 −((nu1∗ tan ( l a t 1 ) ) / rho1 ) ∗ ( (D. ˆ 2 ) /2−(5+3∗T1+10∗C1
−4∗C1.ˆ2−9∗ ecc2 ) ∗ ( (D. ˆ 4 ) /24) . . .

80 +(61+90∗T1+298∗C1+45∗T1.ˆ2−252∗ ecc2−3∗C1 . ˆ 2 ) ∗ ( (D. ˆ 6 ) /720) ) ;
81 long = long0+(D−(1+2∗T1+C1) ∗ ( (D. ˆ 3 ) /6)+(5−2∗C1+28∗T1−3∗C1

.ˆ2+8∗ ecc2+24∗T1 . ˆ 2 ) ∗ ( (D. ˆ 5 ) /120) ) / cos ( l a t 1 ) ;
82

83 l a td = ( l a t / p i ) ∗180 ;
84 longd = ( long / p i ) ∗180 ;
85 r e turn
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Appendix C

Script

The computations were made using the following script:

1 % Worked Example
2

3 c l e a r a l l
4

5 %Def ine coo rd ina t e s
6 l a t D r i g = 61 ;
7 l a tM r ig = 59 ;
8 l a t S r i g = 3 0 . 4 5 ;
9 l ongD r ig = 2 ;

10 longM rig = 30 ;
11 l o n g S r i g = 2 0 . 1 0 ;
12 H rig = 0 ;
13

14 l a t D t a r g e t = 62 ;
15 l a tM targe t = 01 ;
16 l a t S t a r g e t = 0 4 . 3 0 ;
17 l ongD target = 2 ;
18 longM target = 30 ;
19 l o n g S t a r g e t = 40 ;
20 H target = 2300 ;
21

22 %Convert to DD
23 [ l a tDD rig ] = coord2dec ( l a tD r i g , latM rig , l a t S r i g ) ;
24 [ longDD rig ] = coord2dec ( longD rig , longM rig , l o n g S r i g ) ;
25

26 [ l a tDD target ] = coord2dec ( l a tD targe t , la tM target ,
l a t S t a r g e t ) ;

27 [ longDD target ] = coord2dec ( longD target , longM target ,
l o n g S t a r g e t ) ;

28

29 %Calcu la te geographic o f f s e t
30 [ l a t o f f , l o n g o f f ] = northsea1 ( latDD rig , longDD rig , 1) ;
31

32 %Transform to ED87
33 latDD rig ED87 = latDD rig + l a t o f f ;
34 longDD rig ED87 = longDD rig + l o n g o f f ;
35

36 %Get e l l i p s o i d parameters
37 [ a ED87 , b ED87 , f ED87 ] = e l l i p s o i d (17) ;
38 [ a WGS84 , b WGS84 , f WGS84 ] = e l l i p s o i d (23) ;
39
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40 %Convert to g e o c e n t r i c a l c oo rd ina t e s
41 [ X rig ED87 , Y rig ED87 , Z rig ED87 ] = geo2car t (

latDD rig ED87 , longDD rig ED87 , H rig , a ED87 , b ED87 ) ;
42 [ X target , Y target , Z ta rge t ] = geo2car t ( latDD target ,

longDD target , H target , a ED87 , b ED87 ) ;
43

44 %Transform to WGS84
45 [ X rig WGS84SEA , Y rig WGS84SEA , Z rig WGS84SEA ] = helmert7

( X rig ED87 , Y rig ED87 , Z rig ED87 , −82.981 , −99.719 ,
−110.709 , −0.5076E−6, 0 .1503E−6, 0 .3898E−6, −0.3143) ;

46 [ X target WGS84 , Y target WGS84 , Z target WGS84 ] = helmert7
( X target , Y target , Z target , −116.641 , −56.931 ,
−110.559 , 4 .327E−6, 4 .464E−6, −4.444E−6, −3.520) ;

47

48 %Convert to geog raph i ca l c oo rd ina t e s
49 [ latDD rig WGS84SEA , longDD rig WGS84SEA , H rig WGS84SEA ] =

cart2geo (X rig WGS84SEA , Y rig WGS84SEA , Z rig WGS84SEA
, a WGS84 , b WGS84) ;

50 [ latDD target WGS84 , longDD target WGS84 , H target WGS84 ] =
cart2geo ( X target WGS84 , Y target WGS84 , Z target WGS84

, a WGS84 , b WGS84) ;
51

52 %Convert to UTM coord ina t e s
53 [ N rig , E r ig , Z r ig , hemi r i g ] = coord2grid USGS (

latDD rig WGS84SEA , longDD rig WGS84SEA , a WGS84 ,
b WGS84 , f WGS84) ;

54 [ N target , E target , Z target , hemi targe t ] =
coord2grid USGS ( latDD target WGS84 , longDD target WGS84 ,
a WGS84 , b WGS84 , f WGS84) ;

55

56 %Calcu la te TVD (H + above MSL, water depth + below MSL)
57 TVD wellhead = 180 − H rig WGS84SEA ;
58 TVD target = H target WGS84 ;
59

60 %Calcu la te d i f f e r e n c e
61 DN = N target − N rig ;
62 DE = E targe t − E r ig ;
63 DZ = Z ta rge t − Z r i g ;
64 DTVD = TVD target − TVD wellhead ;
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