
Graph-Based Storage In Social Networks

Kristine Steine

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: May 2016

Norwegian University of Science and Technology

Abstract

How do we e�ciently store an ever-growing amount of data? How do we re-
trieve and analyze relationships between data quickly? These are among the
concerns faced by companies such as Google, Yahoo, Amazon, and Facebook
today. As the world’s leading tech companies are tackling the challenge of
their data aggressively increasing in size, NoSQL databases are emerging as
their weapon of choice. Immediate consistency is sacrificed to gain higher
scalability and availability.

In the case of social networking services, NoSQL graph databases are
obvious contenders for the role currently held by relational databases. This
thesis explores the suitability of graph databases as the main storage for
these services.

Our research suggests that while using graph databases for social network-
ing services eases the task of software development, today’s leading graph
databases are not as robust and mature as these services require.

ii

Sammendrag

Hvordan kan vi e↵ektivt lagre en stadig voksende mengde data? Hvordan kan
vi raskt hente ut og analysere relasjoner mellom data? Dette er bekymringer
selskaper som Google, Yahoo, Amazon og Facebook møter i dag. Samtidig
som verdens ledende teknologiselskaper takler utfordringen med at dataene
deres øker aggressivt i størrelse, vokser NoSQL-databaser frem som deres
redning. Umiddelbar konsistens ofres for å oppn̊a bedre skalerbarhet og til-
gjengelighet.

For tilfellet sosiale nettverk er NoSQL-grafdatabaser åpenbare utfordrere
for rollen relasjonsdatabaser har i dag. Denne masteroppgaven utforsker hvor
egnet grafdatabaser er som hovedlagringssystem for slike tjenester.

V̊ar forskning antyder at selv grafdatabaser letter oppgaven med å ut-
vikle programvare for sosiale nettverk, er dagens ledende grafdatabaser ikke
tilstrekkelig robuste og modne med tanke p̊a kravene som stilles for slike
systemer.

ii

Acknowledgements

I would like to thank my supervisor Professor Svein Erik Bratsberg for sup-
porting and believing in me through the past year of research. Thank you
for giving me flexibility, motivation, thoughtful advice, and the belief that I
could complete this thesis in time – even as the odds were looking very slim
towards the end of these 20 weeks.

I would like to thank my friends who have made the past five years a
fantastic time. We might not have passed all of our exams on the first try
but at least we had fun trying! Special thanks to my o�cemates Juul Arthur
and Hans Kristian for feeding me chocolate and hanging up memes on the
walls to make tough days much better. Thank you, Tibor, for patiently
allowing me to squat in your house, for all the inappropriate laughs and for
comforting me when I need it the most.

Finally, I would like to thank my family for cheering for me through five
years of studies – especially my Dad who has continually lifted my spirits by
admitting he wasn’t a perfect student either. At least I finished in time!

ii

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Hypothesis . 2
1.3 Research process . 2
1.4 Product . 2
1.5 Thesis structure . 3

2 Graph databases 5
2.1 What are graph databases . 5
2.2 NoSQL . 6
2.3 Applications . 8
2.4 Neo4j . 10

2.4.1 Data model . 10
2.4.2 Cypher . 11
2.4.3 Marketing towards social networks 12

2.5 OrientDB . 12
2.5.1 Data model . 12
2.5.2 Query language . 13
2.5.3 Marketing comparison with Neo4j 14

3 Social Networks 15
3.1 Facebook . 15

3.1.1 Functionality . 15
3.1.2 Social graph . 16
3.1.3 Architecture . 17

3.2 Tumblr . 20
3.2.1 Functionality . 21
3.2.2 Social graph . 21

iii

iv CONTENTS

3.2.3 Architecture . 21

4 Use of Graph Databases for Facebook 25
4.1 Experiment motivation . 25
4.2 Design of experiment . 26

4.2.1 Simplified data model 26
4.2.2 Chosen queries . 26

4.3 MySQL . 27
4.4 OrientDB . 33
4.5 Neo4j . 35

5 Evaluation 39
5.1 Compatibility of the data model and the programming model 39
5.2 Usability . 40
5.3 Maturity . 40
5.4 Cost of migration . 41
5.5 ACID compliance . 42
5.6 Use within Facebook . 42

6 Conclusions 43
6.1 Advantages . 43
6.2 Disadvantages . 43
6.3 Conclusion to hypothesis . 44

Bibliography 45

Chapter 1

Introduction

This chapter introduces the research project. In the following sections, the
motivation and goals of the study, as well as the research process, are pre-
sented.

1.1 Purpose

Online social networking services are increasingly becoming a part of daily
life, with a 2013 study showing that 79 percent of U.S. citizens over the age
of 18 are actively using a social networking service [1]. The online social
network Facebook has 1.65 billion monthly active users as of March 2016 [2],
making it the largest social network in the world [3].

Social networks allow users to connect with, interact with, and browse
the activity of, other users of the network. Because of this, one could say
that the usage of the networks is largely concentrated around connections.
Storing, indexing and querying these connections can be done in several ways.
Traditionally the data would be structured in relational database tables, and
when querying for “names of friends of user x” three tables and two join
operations would be involved. Graph databases are specifically designed to
e�ciently traverse connections. The graph database Neo4j claims to o↵er
better performance, more flexibility and agility than traditional databases
when applied to highly connected data [4].

With this research, we aim to study the current database solutions of the
social networking services Facebook and Tumblr with regards to their use
of graph databases. In addition, we aim to understand the applicability of

1

2 CHAPTER 1. INTRODUCTION

graph databases for these social networking services.

1.2 Hypothesis

The hypothesis which serves as the basis for this thesis is as follows:

Social networking services would benefit from storing their data in graph-
based databases as opposed to traditional SQL databases.

With this, we seek to discover any improvements in qualities such as us-
ability, performance, maintainability, and scalability when applying a graph-
based model and database instead of a traditional SQL database on social
networking services. Throughout this paper, the terms SQL database and
relational database are used to describe traditional SQL databases.

1.3 Research process

This research was initially motivated by an interest in graph databases and
NoSQL solutions for distributed services. In order to decide the hypoth-
esis, a pre-study of the current database infrastructures of Facebook and
Tumblr was conducted. The pre-study found that Facebook currently stores
their data in a relational database, supported by several custom made sys-
tems which allow developers to treat the data as though it were stored in a
graph database. This result initiated a new study into whether using graph
databases would be better suited for social networking services such as Face-
book than their current solutions.

1.4 Product

The main product of this research is to test the aforementioned hypothe-
sis. The pre-study provided a survey of graph databases and an analysis of
Facebook and Tumblr’s data structures. In addition, an analysis of how a
graph database could be implemented for Facebook and an evaluation of the
benefits or disadvantages this implementation would give are provided in this
thesis. The products seen as a whole can provide answers to the hypothesis.

1.5. THESIS STRUCTURE 3

1.5 Thesis structure

Chapter 2 presents background theory about graph databases and describes
how these di↵er from traditional relational databases.

Chapter 3 contains a study of the social networks Facebook and Tum-
blr, analysing their storage and querying needs and understanding how they
currently store their data.

A study of how a graph database could be used in Facebook is presented
in Chapter 4, and evaluated in Chapter 5.

Chapter 6 concludes the research and re-evaluates the hypothesis.
Note that Chapter 2 and 3 are largely based on the pre-study thesis which

was delivered in December 2015 [5].

4 CHAPTER 1. INTRODUCTION

Chapter 2

Graph databases

Before delving into the storage solutions Facebook and Tumblr have imple-
mented, a look into graph database technology is relevant.

This chapter begins with a presentation of how graph databases are
defined, followed by a description of the NoSQL context in which graph
databases live. A discussion of relevant and popular application areas for
graph database implementations leads into a presentation of the well-known
graph database system Neo4j.

2.1 What are graph databases

Graph databases are databases in which the data is modeled as a directed
graph or as graph-like structures. Contrasting how relational databases are
optimized for aggregated data, graph databases are optimized for highly
interconnected data, especially for when the relationships between data are
more interesting than the data itself. [6]

A graph is a data structure made up of nodes (or vertices) and edges [7].
Objects or entities are represented by nodes, while connections and relation-
ships between nodes are represented by edges [8]. This structure implies that
the network of nodes can be traversed without using indexes, called “index-
free node adjacency” [6]. In addition, there are key-value properties which
can be connected to edges or nodes [9]. Node metadata is stored within the
node, including the ID of the node as well as information about the edges
going inwards or outwards. Edges keep their ID, information about the type
of connection they represent, as well as the head (incoming) and tail (outgo-

5

6 CHAPTER 2. GRAPH DATABASES

ing) nodes involved. In addition to this, nodes and edges can keep custom
properties defined by the database system.

Nearly anything can be modeled as a graph. Real-world examples include
Soccer World Cups [10], hierarchical organization charts [11], and logistics
networks [12], among other applications presented in section 2.3.

Because graph databases are optimized for graph traversals, they can
e�ciently process datasets with close interconnections. The graph design
allows for constructing systems for pattern detection, predictive models, and
complex relationship analyses. [13] [7]

2.2 NoSQL

Graph databases are categorized as NoSQL databases, a term which is used to
describe non-relational databases as well as “not only SQL” hybrid solutions
[14].

Traditional relational databases share some main properties, named in
short as ACID. These include; Atomicity, the promise that transactions are
either performed in full or aborted in full; Consistency, requiring transactions
to find and leave the database in a consistent state; Isolation, ensuring the
isolated execution of each transaction without interference from concurrently
executed transactions; and Durability, securing the persistence of data in the
case of a power loss. [15]

Although these properties are viewed as desirable, many modern applica-
tions and services have needs which are hard to meet with the traditional data
model. Services such as LinkedIn, Google Maps, and Yahoo Mail store enor-
mous amounts of data, and require a less constrained DBMS in which large
amounts of data can be accessed correctly and securely, processed quickly,
and stored in a service-specific format. Consistency, structured storage, and
strict schemas are lesser-valued properties for these systems while high perfor-
mance, high scalability, and high availability are top priority. This weighting
of DBMS properties resulted in the emergence of application-specific NoSQL
systems. [15]

The term NoSQL generally applies to databases with a set of key features
which contrast the abovementioned traditional qualities [14] [16]:

• A shared-nothing architecture in which the servers do not share proces-
sors, memory or storage, and communicate through a shared messaging
network.

2.2. NOSQL 7

• Horizontal scaling : scaling the system by adding new nodes for stor-
age and processing, as opposed to increasing the power of the existing
nodes. The shared-nothing architecture is a key part of this scaling
strategy.

• Distributed indexes are used to store key data values to increase search
e�ciency.

• Flexible schemas allowing new attributes to be added to data records
dynamically. This is also possible in some RDBMSs but still uncom-
mon.

• Simple interfaces for data search and procedure calls (SCRUD).

• Eventual consistency, guaranteeing consistency at some point in the
near future, contrasting the immediate consistency required by ACID.
Returned data may not be up-to-date, but all updates are guaranteed
to propagate to all nodes. Locking is not always supported, weakening
the concurrency model further.

With these features, NoSQL databases sidestep strict ACID in favor of
an approach called BASE: Basically Available, Soft-state, Eventually Consis-
tent. This approach allows for higher scalability and availability but sacrifices
immediate consistency. The degree to which they avoid ACID guarantees
varies, as some NoSQL databases o↵er stronger consistency through data
versioning, logging, and locks. [14][17]

In addition to graph databases, several other database types are catego-
rized as NoSQL [16][17]:

• Document databases store standardised documents (e.g. XML or
JSON) containing data in key-value pairings, where the system can
interpret the values and thereby query these as well as keys. Docu-
ments and attributes can be added and removed at runtime as docu-
ment databases are schema-free. Even without set schema restrictions,
multi-attribute lookups can be performed on records with unequal key
sets. These stores are popularly used for schema migration, real-time
analytics, logging, websites in continuing development, and storage for
small systems with yet-to-be-determined data schemes.

8 CHAPTER 2. GRAPH DATABASES

• Pure key-value stores also allow schema-less storage and e�cient
search in large data sets of key-value data, but the values are opaque to
the system. These stores are very useful for simple key-based operations
because of the simplicity of the data structure and are popularly used
for caching of complex SQL queries as the dataset will often be held in
memory.

• Tabular stores extend traditional relational database design by split-
ting rows and columns over multiple nodes, supporting data partition-
ing horizontally and vertically. Unlike in document databases, the sys-
tem is not able to interpret values and other data types than strings are
not natively supported. This data model is most suitable for analytical
applications and for applications requiring very high scalability because
of the e�cient partitioning mechanisms. Tabular stores are also known
as Column Family stores or Column-oriented stores, terms which also
include more traditional relational databases such as C-Store.

• Multi-model databases are combinations of the above database types
and combine several data models to take advantage of the abilities of
each. [8]

Arguably, the most well-known graph database today is Neo4j, which will
be further described in section 2.4. In addition, the multi-model database
OrientDB supports graph models which we will look more closely into in
section 2.5.

Well-known examples of non-graph NoSQL databases include the key-
value and column-oriented hybrid Apache Cassandra [18], Amazon’s key-
value store Dynamo [19], Google’s column-oriented database Bigtable [20],
Apache’s column-oriented database HBase [21], Apache’s document database
CouchDB [22], and the open-source document-oriented database MongoDB
[23].

2.3 Applications

Below is a presentation of some application areas for graph databases. Some
are more obvious than others, and some are more useful than others, but still
these examples show that graph databases are not “one-trick ponies”.

2.3. APPLICATIONS 9

Recommendation systems

Recommendation systems predict user interests and behaviour based on be-
haviour similarities between users (collaborative filtering), or between new
items and items which the user previously has shown interest in (content
based filtering). Matching patterns in user behaviour is implemented in
graph databases by traversing interaction edges along a network of users
and items. [7]

Fraud detection

Fraud can be di�cult to discover if relationships are not obvious. Graph
databases can be helpful in visualizing and searching for hidden relationships
in cases of tax fraud [24] or insurance fraud [25].

Access control

The leading Norwegian telecom provider Telenor implements resource au-
thorization using Neo4j. A graph containing customers, subscriptions, price
plans, accounts, and agreements is used to find out e.g. whether a given
user is qualified for a given price plan. Because this involves traversal of a
network of connected data the graph implementation is favorable to their
previous SQL implementation. [26]

Biological networks

Biological information can be represented as networks with regards to chem-
ical structure, metabolic pathways, food webs, neural networks. In such
networks analysis of connections is very interesting, e.g. in discovering how
proteins interact. [6]

Social networks

Perhaps the most obvious use case for graph databases is storage of social
networks. In such networks, nodes can represent people or groups while edges
represent connections or flows. Online social networks require high scalability
and availability as well as the ability to traverse the network several edges
at a time [27]. Relational databases which provide the former involve costly

10 CHAPTER 2. GRAPH DATABASES

join operations for the latter, while complex and deep edge queries are easily
implemented in graph databases [7].

When to avoid graph databases

The main strength of graph databases is traversal of relationship networks,
so data with a low degree of connections would gain less from such a database.
Simple data models without significant interconnections, or applications where
data relationships are less relevant, would have more to gain from other stor-
age solutions.

2.4 Neo4j

Neo4j is a commercial open-source graph database implemented in Java.
Neo Technologies [28], the developers of Neo4j, claim the database to be the
world’s leading graph database. According to their website, Neo4j is highly
available, scalable to the level of billions of nodes and edges, and o↵ers full
support of ACID. Neo4j is free to use for non-commercial projects under the
GPL v3 license. [29]

2.4.1 Data model

The data model is very similar to the general data model of graph databases.
Nodes are called nodes and edges are called relationships. Nodes can option-
ally be assigned any number of labels which describe the node’s a�liation to
sets of nodes. These sets are used in schema definitions and in filtered queries.
Labels can be added or removed during runtime and can be used to describe
a temporary state as well as a node type. Relationships must be assigned a
relationship type, which categorizes the relationship much like labels do for
nodes. Relationships are always directed but can be traversed bidirectionally.
Nodes and relationships can have properties which are named values: either
numeric, boolean, string type or collections of other value types.

Schemas are not required and graphs may be created and used without
one, but an optional schema in the form of constraints and indexes is avail-
able. Indexes may be created on a property for all nodes with a given label
to improve node lookup time. Note that indexes are eventually available in
Neo4j, meaning an index is created immediately upon the operation being

2.4. NEO4J 11

called, but will not be available for querying immediately as it is populated
in the background. When the index is fully populated it will come online and
be ready to be used in queries. Data integrity may be enforced using con-
straints. Constraints can be made for nodes or relationships, to ensure node
property uniqueness or to require property existence. A property uniqueness
constraint will create an index on that property, which will be dropped if
the constraint is dropped. A combined existence and uniqueness constraint
may be set on a property, and several constraints may be set on the same
label. Adding a constraint is an atomic operation which does not return
immediately, and the constraint will not be active until the operation is fully
performed.

2.4.2 Cypher

Neo4j comes with its own declarative graph query language, Cypher, inspired
by SQL. Cypher is meant to express what data should be returned without
describing exactly how the data should be retrieved. By moving query opti-
mization to the implementation level, the creators intend to relieve the user
of some data structure awareness. The creators intend for Cypher to be easy
to use for users, with self-explanatory queries.

Edges are traversed using an arrow syntax. (n)--(m) describes any rela-
tionship between two nodes, while (n)-->(m) describes any directed relation-
ships from one node to another. The relationship type (i.e. label), direction,
and relationship properties can optionally be added to this syntax by placing
a bracket in the middle of the arrow, e.g. ()-[:FRIEND {BFF: true}]->().
Nodes can also be labelled by adding :LABEL inside the parentheses. Prop-
erties are expressed as map-constructs and can be added to both nodes and
edges.

Below is an example query written in Cypher, searching for a Person node
with the name property value “John”, and the names of friends of friends
of that node. In order to retrieve information about nodes or relationships
in the RETURN statement, these must be given context variable names which
exist only within the query. Here, the first node is given the variable name
j and the friends of his friends are given the variable name fof. [28] [30]

MATCH (j:PERSON {name: ’John’})-[:FRIEND]->()-[:FRIEND]->(fof)
RETURN j.name, fof.name

12 CHAPTER 2. GRAPH DATABASES

2.4.3 Marketing towards social networks

Social applications are highlighted as one of the main use cases for Neo4j
on the Neo4j website [31]. The arguments for this are mainly the same
as for graph databases in general, along with the claim that Neo4j is the
leading, most documented, and best supported graph database in the world.
The comparisons supporting the marketing are made between Neo4j and
relational databases, but not between Neo4j and other NoSQL databases.

2.5 OrientDB

OrientDB is an open-source multi-model DBMS implemented in Java, which
is free to use for any purpose under the Apache License 2.0. [32] [8] Academic
documentation of OrientDB is limited, and for that reason most of this sec-
tion is based upon the documentation provided by Orient Technologies. In
addition, [16] gives a basic overview of the original release of OrientDB in
2012, but this information is mostly outdated and cannot be fully applied to
today’s version.

2.5.1 Data model

OrientDB supports four data models: graph, document, key-value, and ob-
ject oriented. All models are supported in the core engine.

The graph model greatly resembles Neo4j’s data model. Nodes are called
vertices and are connected by edges. A vertex must hold its own identifier as
well as sets of incoming and outgoing edges. Edges must hold their identifier,
links to the head (incoming vertex) and tail (outgoing vertex) of the edge, and
a label describing the type of relationship between the vertices. In addition to
these mandatory properties, vertices and edges may keep custom properties
defined by the user.

The OrientDB engine is built to support all four abovementioned data
models, and may be accessed through both a document API and a graph
API. The developers claim that 80 % of a user’s database needs can be han-
dled through the graph API. In the graph API relationships are bidirectional
edges, while in the document API relationships are mono-directional links.
Documents in the document API are atomic units, allowing relationship op-
erations to be performed without involving the target document, which sug-
gests that the document API may be better suited for multi-threading.

2.5. ORIENTDB 13

The graph API may be run in schema-less, schema-full or hybrid modes.
Schemas are defined at class level and may be used to constrain all fields or
a subset of data. Schema-less mode creates classes without properties and
allows fields to be arbitrary. Hybrid mode defines some properties on class
creation and allows custom fields to be added to records. In schema-full
mode all fields are mandatory and must be predefined – custom properties
may not be added to records.

2.5.2 Query language

The developers have chosen to use SQL as OrientDB’s query language, argu-
ing that it remains the most widely recognized standard and that a majority
of developers are comfortable using it. In order to enable graph functional-
ity, some extensions have been added. The OrientDB version of SQL is case
insensitive for keywords and class names, but case sensitive for values and
field names. Any field may be queried, regardless of whether it is indexed.
The engine will automatically detect whether any indexes may be applied to
improve the performance of a query, but indexes may also be used directly
within a query as shown in the example below.

SELECT FROM INDEX:myIndex WHERE key = ’Jay’

Relationships are represented by LINKS in place of JOINs, and the tra-
ditional JOIN syntax is not supported. The dot notation that in SQL is
used to note properties from tables which are joined, is used in OrientDB to
traverse links. This is illustrated below by two equivalent queries: the first
is written in ordinary SQL, the other in OrientDB’s version of SQL.

SELECT *
FROM Person P, Dog D
WHERE P.id = D.owner AND P.name = "John"

SELECT * FROM Dog WHERE owner.name = "John"

Other di↵erences from traditional SQL include the star character * be-
ing optional in projections wherein all fields are included – the developer is
allowed to simply write SELECT FROM Dog. In addition, OrientDB does not
support the HAVING keyword and recommends using nested queries instead.

14 CHAPTER 2. GRAPH DATABASES

2.5.3 Marketing comparison with Neo4j

As described in 2.4.3, one of the main use cases Neo4j is promoted for is social
networking. While we saw that other NoSQL databases are not named in
the promotional material for Neo4j, OrientDB names Neo4j as a competitor
in much of its marketing material. [33] [34] [35]

One of the main arguments Orient Technologies presents for choosing
OrientDB over Neo4j is pricing: The community edition of OrientDB is free
for any purpose under the Apache License while Neo4j is only free for non-
commercial open-source projects. OrientDB is also available in an extended
enterprise edition which includes distributed clustering configuration, met-
rics analysisproduction support, more advanced security features, and more
advanced backup options. The enterprise edition is licensed commercially
with a discount option for startup companies. [36]

In addition to pricing, Orient Technologies lists several features suppos-
edly supported in OrientDB but not in Neo4j, including record level secu-
rity and access control, runtime garbage collection, more advanced schema
handling, custom data types, and using a developer-friendly query language
with familiar data model options. They claim to be better at crash recovery
thanks to write-ahead logging, and promote their multi-master replication as
a better solution than Neo4j’s master-slave architecture by featuring linear
scalability. Sharding is also presented as a feature supported by OrientDB
which is not supported by the community edition of Neo4j, but in the cur-
rent version of OrientDB sharding is only available to a limited degree: auto-
sharding, sharded indexes, distributed aggregation, and backups are not fully
supported yet.

While Neo4j is OrientDB’s main competitor within the world of graph
databases, Orient Technologies also names MongoDB as a competitor. The
main benefits presented in OrientDB’s favor are the multi-model engine,
graph handling of relationships, schema handling, SQL as a query language,
ACID compliance, multi-master replication, and direct management of disk
pages (avoiding memory mapping).

The multi-model engine is among the most important features in the
marketing of OrientDB. Instead of storing parts of a system in MySQL, and
others in MongoDB, HBase or Cassandra, Orient Technologies argue that the
combined features of the di↵erent storage solutions can be found in OrientDB.
By using only one system, companies can be relieved of expensive licensing,
increased system administration, and communication between systems.

Chapter 3

Social Networks

This chapter presents the two social networks Facebook and Tumblr, and
their choices of architecture.

Each section contains a presentation of the social networks, their user
demographics and social graph, the functionality provided, and the storage
architecture implemented.

3.1 Facebook

Facebook is an online social networking service that was launched in February
2004. As of September 2015, Facebook has 1.55 billion monthly active users,
of which 1.01 billion are active daily. Users represent all age groups, though
a small majority of users are under the age of 35. [37] [2]

3.1.1 Functionality

Facebook is an online social network on which users register a personal profile
and connect with other users (such connections are called friends). Users
can add text posts, photos and videos, events and invitations, and personal
information to their profiles, and can publish text or media posts to friends’
profiles. Users can also create and join public or private groups to which such
posts can be added. Businesses may register business profiles called pages
which can be used similarly to personal profiles. Users can control what
parts of their profile other users can see and interact with. Profiles can be
referenced (tagged) in text or media posts by their friends. Users can like or

15

16 CHAPTER 3. SOCIAL NETWORKS

comment on posts they have access to. In addition to this core functionality,
users can chat privately, and businesses can advertise to select user types
(this is how Facebook creates revenue). [38] [39]

3.1.2 Social graph

The Facebook social graph has a variety of entities and connections. As the
functionality is complex, so is the graph. The graph is visualized in Figure
3.2. In this visualization, the main entities are users, posts, comments, pages,
groups, and events. In addition there are several entity types in the full graph,
such as photos, videos, message threads, messages, notifications, life events,
places, apps, and ads, and further edge types such as tagged-in, follows,
checked-into, read, has-seen, and much more [40]. The graph is directed, and
while most edges are unidirectional, the friend-edge is bidirectional. The
graph is sparse but highly clustered. Most users have less than 200 friends,
and the median friend count is 99 [41]. 92.7% of users have fewer friends than
the average friend count of their friends [41]. The giant connected component
includes 99.91% of nodes in the graph [42].

Figure 3.1: Example of friend relationships in Facebook. Each friend of
the center user is represented by a shaded dot, and each friend relationship
among this user’s friends is represented by a line. Retrieved from [43]

3.1. FACEBOOK 17

Figure 3.2: Facebook Social Graph (simplified) [40]

3.1.3 Architecture

Facebook originally stored all data in MySQL. Today data for di↵erent appli-
cations within Facebook are stored in a number of storage solutions. Data for
applications that need low-latency database accesses are stored in RocksDB
[44], Facebook’s open-source key-value store built upon Google’s LevelDB
[45]. Data for Messages, Nearby Friends, search indexing and data scraping
is stored in HBase [46] [47]. Still, not all data has been moved away from

18 CHAPTER 3. SOCIAL NETWORKS

MySQL [48] [27]. Nodes and edges that are added to the social graph are
first written to a single MySQL-instance, before being replicated and pushed
to the various services within Facebook [49].

Despite storing data mostly in relational or key-value stores, Facebook
implements graph-aware layers on top of the storage layer in order to serve
the social graph to their applications.

Graph API

Facebook serves the social graph through TAO [27], a read-optimized graph
abstraction implemented on top of their MySQL storage. TAO serves the
API between Facebook’s web servers and MySQL, replacing the previous
solution of direct access between the servers and storage. It favors availability
and e�ciency over strong consistency. TAO is only deployed as a single
geographically distributed instance, and can handle a billion reads per second
as the multi-petabyte data set continually changes.

In TAO, nodes are objects and edges are associations. Associations are
directed but are often coupled with inverse associations. Bidirectional edges
are represented by two oppositely directed associations. Associations from an
object towards itself are allowed. Through the API, objects can be created,
partially or fully updated, retrieved, or deleted. Associations can be created,
updated, retrieved, or deleted. If an association with a coupled inverse as-
sociation is operated upon, the same operation is automatically performed
on the inverse. Atomicity is not guaranteed for write operations performed
on coupled associations, and failures in such operations are repaired asyn-
chronously. Association queries are performed on association lists, e.g. a list
of all of the comment-associations from a photo object, which can handle
queries such as “10 most liked comments on Bob’s photo”.

The API is mapped to a set of SQL queries, as the underlying storage is
MySQL. The data is highly sharded, and objects are bound to a shard for
their lifetime. Shards have one table for objects and one table for associa-
tions. Associations are stored on the same shard as their ingoing object, to
allow any association query to be served from a single server. The shard ID
is embedded in the object ID to allow simple identification.

In addition to the storage layer, TAO has a caching layer which imple-
ments the entire API for clients. Multiple caching servers work together in
tiers to be able to respond to any API request. The in-memory cache holds
objects, association lists, and association counts, in a least-recently-used pol-

3.1. FACEBOOK 19

icy. This separation of caching and storage is highlighted by Facebook as
useful in the design, operation, and scaling of each, allowing for di↵erent
tradeo↵ decisions for the two layers.

Figure 3.3: An example of how a check-in post can be mapped into TAO
objects and associations [27]

Graph search

Searches within Facebook are also graph-aware. The social graph is indexed
by Unicorn [43], Facebook’s online, in-memory, graph-aware indexing system.
Unicorn is designed to handle searches on trillions of edges and billions of
nodes. Data scrapes accessed through Hive [50] are built into indices using
Hadoop [51]. Real-time updates to the indices are supported by a pipeline
from the front-end cluster through Thrift [52] into Unicorn index servers.

Unicorn can handle queries that involve several round-trips between the
top aggregator and index servers, such as friend-of-friend queries. Nested

20 CHAPTER 3. SOCIAL NETWORKS

queries are also handled internally by Unicorn to simplify client code. Nodes
are stored in entity-type specific verticals along with edges of the same result-
type, e.g. all users and user-id yielding edges are held in the same vertical,
so that edge traversals between nodes of the same kind do not have to cross
into other verticals. This reduces latency as set operations can be performed
at the leaf level.

Unicorn serves the lineage of the graph traversals involved in a search
result along with the results so that the client can investigate whether the
user performing the search is authorized to view the necessary edges leading
to the search result. Privacy is as such not handled within Unicorn, but
privacy controls are supported through this lineage presentation.

Graph processing

Large-scale analysis of the social graph is handled by a custom version of
Apache Giraph [53] [54]. Giraph is an iterative graph processing system that
scales to thousands of machines and can process trillions of edges. Data is
provided from various sources, including MySQL, Hadoop, and Hive. Face-
book applications that use analyses of large subgraphs or even the entire
social graph include content rankings, content recommendations, and evalu-
ating ad preferences.

Facebook’s People You May Know service is one of these applications.
Evaluating relevant friend suggestions based on a user’s friends’ friend lists
can in a worst case require tra�c to 25 million machines. Facebook im-
plements an algorithm involving graph partitioning on a set of Giraph ma-
chines and optimizing these partitions to maximize the number of local edges
within each partition, before performing the graph analysis. This algorithm
improved the bandwidth utilization twofold when first implemented. [55]

3.2 Tumblr

Tumblr is an online social network and microblogging platform that was
launched in February 2007. Tumblr has more than 230 million active users
as of November 2015 [3]. These users manage a total of 268.1 million blogs
with more than 125 billion blog posts [56]. The majority of users are under
the age of 35 [57] and the number of users is growing very rapidly [58].

3.2. TUMBLR 21

3.2.1 Functionality

Tumblr allows users to create blogs to which multimedia can be posted. Posts
can be categorized (tagged) with an arbitrary amount of keywords, and such
tags can be browsed individually either within a blog or site-wide. Blogs are
categorized as primary or secondary : primary being the blog which is created
upon user registration, and secondary being blogs which the user has created
in addition to the primary. Users have one primary blog and any number of
secondary blogs. Secondary blogs can be password-protected while primary
blogs must be public. Users can add other users as contributing members or
admins of secondary blogs. Posts from blogs which a user follows are shown
chronologically on the user’s Dashboard, which is the landing page upon login.
Users can also interact in several ways: by sending Fan Mails which are
private messages, sending Ask messages to which the recipient can choose to
answer publicly on their blog or privately through direct messages, or through
Submissions to other users’ blogs. Ask and Submissions are optional features
to a blog while Fan Mail is by default and immutably enabled. [59]

3.2.2 Social graph

Tumblr’s social graph is simpler than Facebook’s, as the functionality is more
limited. For the purpose of this visualization, the messaging functionality has
been disregarded. The main entities are users, posts, blogs, and tags. The
follows connection is unidirectional in contrast to Facebook’s bidirectional
friend connection, and 29% of such connections are reciprocated which is
very high in the blogosphere. The giant connected component covers 99.61%
of the nodes in the social graph. [60] [42]

3.2.3 Architecture

A 2012 interview with the then VP of Engineering at Tumblr, Blake Ma-
theny, is the main source for the following presentation of the architecture
of Tumblr’s storage systems. At the time, Tumblr was already a very large
application, with 500 million page views each day. The users consume more
data than they produce: in February 2012 about 50 GB of new blog posts
were added each day, while user inbox updates (posts from blogs a user fol-
lows) totaled at 2.7 TB a day. [61]

The data is stored in a variety of systems. The majority is stored in a

22 CHAPTER 3. SOCIAL NETWORKS

Figure 3.4: Tumblr Social Graph (simplified) [60]

greatly partitioned MySQL architecture [62], a remnant of the original LAMP
(Linux, Apache, MySQL, PHP) stack Tumblr was built upon. For situations
requiring write-optimization such as the Dashboard (which receives many
million writes per second), HBase [21] is used. HBase was considered as a
replacement for MySQL, but Tumblr decided against this because of insecu-
rities regarding deploying HBase without their engineers being experienced
with how it works.[61]

Notifications (alerting a user that someone liked one of their posts, or
that their Dashboard is updated, etc.) are stored in the open-source NoSQL
key-value store Redis [63]. Redis was considered acceptable for notifica-
tion storage despite its lack of persistency guarantees, as notifications are
ephemeral and the loss of these would not be critical. Redis is also used as
the first level cache for the Tumblr URL shortener (with HBase as permanent
storage) and for the secondary index of Dashboard.[61]

At the time of the interview, Tumblr was moving its Dashboard storage
from a scatter-gather model to a cell-based model. The scatter-gather model
involves data being stored without regards to the locality of related data,
then being read from these di↵erent locations. The cell-based model stores

3.2. TUMBLR 23

all posts in a user’s Dashboard together chronologically. This reduces the
cost involved in traversing all of the user’s follows connections to retrieve
posts significantly. All users are mapped into cells, which are self-contained
structures containing all data for a body of users. Each cell has a Redis
caching cluster as well as an HBase cluster. When a post is published by
any user, it is written to Kafka [64], the internal firehose. All cells consume
posts from the firehose and write them to their HBase. Cells then determine
whether any of the author’s followers are mapped to the cell, in which case
the post ID is pushed to the followers’ inboxes. This is to say that all posts
are stored in all cells. When a user opens their Dashboard, all the data which
is being read comes from their own cell. The goals of the cell based model
are to improve parallelization, enable rolling upgrades and beta testing of
features on subsets of users, and isolate failures. If one cell fails, only the
users in that cell are a↵ected and all other users can still interact with all
posts. The cell-based model is regarded as very robust. [61]

Tumblr’s model of moving into new architecture designs is to gradually
use new technologies in pilot projects so that engineers can get familiar with
them, before implementing larger projects with more critical potential dam-
age. This model is a result of Tumblr being a slowly growing startup with a
low number of employees – in 2012 there were only 20 engineers out of 100
employees [65] [61].

24 CHAPTER 3. SOCIAL NETWORKS

Chapter 4

Use of Graph Databases for
Facebook

This chapter looks into what an implementation of a graph database for
Facebook can look like. The background and design of the experiment are
presented first, before we look more closely at specific examples of implemen-
tations.

4.1 Experiment motivation

We have seen that graph data models are suited to represent real-world social
networks and that the modern graph databases Neo4j and OrientDB provide
several features required by large-scale social network services. Still, neither
Facebook nor Tumblr use graph databases for their storage, though Facebook
does implement graph-like systems on top of their relational or key-value
stores.

Our hypothesis is that Facebook would benefit from using a graph-based
database. To understand whether this is the case, we want to demonstrate
how an implementation in Neo4j or OrientDB would compare to an imple-
mentation in MySQL. For the purposes of this demonstration, any secondary
graph-like systems used in conjunction with MySQL are disregarded.

25

26 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

4.2 Design of experiment

We examine how the Facebook data model may be implemented and queried
in a graph database, by implementing a simplified version of the data model
and performing some key queries unto it. This is also demonstrated in
MySQL for the purpose of comparison.

4.2.1 Simplified data model

The implemented data model, shown in Figure 4.1 is a simplified version
of Figure 3.2 from Section 3.1.2. Groups and Events are not part of this
version, and while User, Page, Post, and Comment remain the functionality
is reduced. In addition to the illustrated node network, Users hold several
properties such as birth year, gender, and current city, and hold additional
relationship links for family and romantic relationships.

4.2.2 Chosen queries

As described in Section 3.1.3 Facebook o↵ers their users graph-aware search-
ing. Queries can range from simply searching for a named user, to more
complex searches such as “photos of friends of people who like bacon”. Some
example searches are illustrated in Figures 4.2 and 4.3.

In addition to graph search queries, Facebook must support queries for
basic functionality such as viewing lists of mutual friends between two users,
suggesting relevant users or Pages to follow, and generating the News Feed.
The latter is quite intricate, as it involves retrieving relevant recent posts by
a user’s friends and followed pages in addition to posts that the user’s friends
recently have interacted with.

To demonstrate the varied queries Facebook should support, the queries
below have been chosen.

Q1: Retrieving the names of all mutual friends of two users.
Q2: Retrieving the names of a user’s friends that live in Bergen, Horda-

land and like NTNU’s Facebook page.
Q3: Retrieving all posts by a user’s friends and followed pages from the

past 24 hours.
Q4: Retrieving photos of a user’s friends who have friends who like the

Bacon Facebook page.

4.3. MYSQL 27

Figure 4.1: The simplified Facebook data model which is implemented

4.3 MySQL

As MySQL is relational, edge traversals must be performed using JOINs or
nested queries. Simply joining two tables can be performed quite easily, while
longer edge traversals can be equally complex.

In our case, the nodes in Figure 4.1 are stored in tables. Relationship stor-
age depends on the cardinality of the relationships: one-to-one relationships
are stored as properties at each end of the edge; one-to-many relationships are
stored as a property of the tail node of the edge (e.g. a mother-to-child rela-
tionship is stored in the child’s node as the child may only have one mother);
many-to-many relationships are stored as separate tables containing the ID
property of the nodes at each end of the edge. [15]

28 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

Figure 4.2: The results of the Facebook graph search “photos of friends of
people who like bacon”

Figure 4.3: The results of the Facebook graph search “friends of people who
live in Bergen”

4.3. MYSQL 29

In the following queries, we assume the existence of the tables Person,
Posts, Page, Friends, LikesPage, and Tagged. The first three represent nodes
in the social graph, while the latter three represent many-to-many relation-
ships.

Q1: Retrieving the names of all mutual friends of two users.
To implement Q1 we query for the names of friends of the person with

username “jane.doe” who are also friends with the person with username
“john.doe”. This must be performed using a triple-nested query, as we need
to resolve the ID of the persons, find their mutual friends’ IDs, and resolve
the names of those mutual friends.

SELECT firstname, lastname
FROM Person
WHERE personid IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM Person
WHERE username = "jane.doe"

)
)
AND personid IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM Person
WHERE username = "john.doe"

)
)

30 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

Q2: Retrieving the names of a user’s friends that live in Bergen, Hordaland
and like NTNU’s Facebook page.

Q2 is performed by joining the Person and LikesPage tables and filtering
for the page with the alias “ntnu.no”, then filtering the persons’ current city
as well as only selecting persons who are friends with the person holding
the username “john.doe”. This produces a nested query to find the correct
pageid for the NTNU page, and a double-nested query to filter friends of
“john.doe”.

SELECT firstname, lastname
FROM Person, LikesPage
WHERE Person.personid = LikesPage.personid
AND LikesPage.pageid IN (

SELECT pageid
FROM Pages
WHERE aliasURL = "ntnu.no"

)
AND Person.currentcity = "Bergen, Hordaland"
AND Person.personid IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM Person
WHERE username = "john.doe"

)
)

4.3. MYSQL 31

Q3: Retrieving all posts by a user’s friends and followed pages from the past
24 hours.

Q3 is similarly complex. We assume the Posts table to be indexed on the
time_posted property. To find the desired posts, two double-nested queries
are required: one to find a list of friends of “john.doe”, and one to find a
list of pages “john.doe” likes. Only posts with a timestamp from the past 24
hours are returned, in descending order.

SELECT postid
FROM Posts USE INDEX (time_index)
WHERE time_posted > DATE_SUB(CURDATE(), INTERVAL 1 DAY)
AND (postedbyperson IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM Person
WHERE username = "john.doe"

)
)
OR postedbypage IN (

SELECT pageid
FROM LikesPage
WHERE personid IN (

SELECT personid
FROM Person
WHERE username = "john.doe"

)
))
ORDER BY time_posted DESC

32 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

Q4: Retrieving photos of a user’s friends who have friends who like the Bacon
Facebook page.

To resolve Q4 we query for friends of the person “john.doe” who like the
page holding the alias “Bacon”, then join this list of persons with the Tagged
table to find photos the persons have been tagged in. As shown below, this
results in a query containing an inner query containing two double-nested
queries.

SELECT photoid
FROM Tagged
WHERE personid IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM LikesPage
WHERE pageid IN (

SELECT pageid
FROM Pages
WHERE aliasURL = "Bacon"

)
)
AND personidB IN (

SELECT personidB
FROM Friends
WHERE personidA IN (

SELECT personid
FROM Person
WHERE username = "john.doe"

)
)

)

4.4. ORIENTDB 33

4.4 OrientDB

In OrientDB, the data model can be implemented as a graph, which would
be preferable as the data will be queried as a graph. Using the graph-based
data model and the graph API enables bidirectional edge traversal and allows
the developer to choose between SQL-like queries and declarative pattern-
matching. [66]

As shown in Section 2.5.2 LINKs are used to avoid JOINs: one-to-one
relationships are represented as LINKs pointing directly from one record to
the other; one-to-many relationships can be represented as LINKSETs which
are unordered sets of distinct pointers from a record, as LINKLISTs which are
ordered sets of pointers from a record and allows duplicates, or as LINKMAPs
which are Java Maps storing a key for each pointer; many-to-many relation-
ships are represented by one-to-many pointers stored at both ends of the
edge. In the graph API one-to-many relationships are not allowed: to imple-
ment such relationships the developer must instead create multiple edges.

Q1: Retrieving the names of all mutual friends of two users.
Q1 is implemented below as a pattern-matching query, finding the per-

son whose username is “john.doe” and their friends, filtering those who also
have a friend relation with the person whose username is “jane.doe”. This
query format resembles Neo4j’s query language Cypher although the path
traversal is presented di↵erently. Path traversal may also be represented by
a shortened arrow format which will be shown in the next query.

MATCH {class: Person, where: (username="john.doe")}
.both("friend"){as: mutual}
.both("friend"){class: Person, where (username="jane.doe")}

RETURN mutual.firstname, mutual.lastname

Q2: Retrieving the names of a user’s friends that live in Bergen, Hordaland
and like NTNU’s Facebook page.

Below, Q2 is shown implemented both using OrientDB’s version of SQL
and as a pattern-matching query. In the first query, we resolve the record ID
of the vertex holding the person whose username is “john.doe” and create
a context variable called $friend holding the friends of that person. Then,
those friends are filtered on the currentcity property, and the record ID
of the page with the “ntnu.no” alias is required to be among the pages the
friends like.

34 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

In the second version of the query, the pattern is spelled out more directly.
We query for the vertex holding the person whose username is “john.doe”,
traverse his friend relationships to find friends who live in Bergen, create an
alias for the nodes at the other end of those relationships, and traverse their
likes relationships to find whether they like the “ntnu.no” page. Note that
the shortened arrow format is used to represent the edge traversal in this
query. The traversal shown as {...}-friend-{...} represents a bidirec-
tional “friend” edge, while the {...}-likes->{...} traversal is a directed
edge.

SELECT $friend.firstname, $friend.lastname
FROM (SELECT @rid FROM Person WHERE username = "john.doe")
LET $friend = out("friend")
WHERE $friend.currentcity = "Bergen, Hordaland"
AND (SELECT @rid FROM Page WHERE aliasURL = "ntnu.no") IN

$friend.out(likes)

MATCH {class: Person, where: (username="john.doe")}-friend-
{as: friends, where: currentcity="Bergen, Hordaland"}
-likes->{class: Page, where: (aliasURL="ntnu.no")}

RETURN friends.firstname, friends.lastname

Q3: Retrieving all posts by a user’s friends and followed pages from the past
24 hours.

The implementation of Q3 shows how the two query formats can be com-
bined in queries. Two separate pattern matches are used to find the posts
made in the last 24 hours (timestamps in OrientDB are milliseconds since
the Unix Epoch) by “john.doe”’s friends and liked pages, and a SELECT query
handles merging the two result collections and returning them sorted by time.

SELECT unionall(friendsposts, pagesposts)
FROM (MATCH {class: Person, where: (username="john.doe"),

as: john}-friend-{class: Person}<-postedby-{class: Post,
where: posted_time >(sysdate().asLong()-24*60*60*1000),
as: friendsposts}),
(MATCH {as: john}-likes->{class: Page}<-postedby{class: Post,
where: posted_time >(sysdate().asLong()-24*60*60*1000),
as: pagesposts})

ORDER BY posted_time desc

4.5. NEO4J 35

Q4: Retrieving photos of a user’s friends who have friends who like the Bacon
Facebook page.

Q4 is performed as a pure pattern match with multiple paths. Two
pattern matches find photos of friends of “john.doe” and filter those of his
friends who have friends who like the “Bacon” page. In order for nodes with
the alias photos to end up in the query results they must have a tagged edge
to a node given the johnsfriends alias which has passed both expressions.

MATCH {class: Person, where: username = "john.doe"}-friend-
{as: johnsfriends}<-tagged-{as: photos},
{as: johnsfriends}-friend-{}-likes->{class: Page,
where: aliasURL = "Bacon"}

RETURN photos

4.5 Neo4j

In Neo4j the data is modelled as a graph just as in Figure 4.1. Note that all
edges must be directed but may be traversed bidirectionally. Bidirectional
edges should be implemented as two oppositely directed edges.

As mentioned in the previous section, pattern-matching in Cypher queries
is similar to OrientDB’s pattern match expressions. Cypher matches node
and relationship patterns to the graph to perform SCRUD operations. Nodes
are assigned labels which can be indexed. Because this syntax is assumed to
be less familiar to readers than SQL might be, the Cypher syntax is described
shortly below. See also Section 2.4.2 for further explanation of the syntax.

The Cypher syntax represents nodes with parentheses that can optionally
be filled with property value filters, labels, or context variables. In the follow-
ing example, we match for a node labeled as a Person, with the firstname
property value “Alice”. In order to retrieve information from this node we
must assign it a variable within the query – in this case we set the variable
alice to represent the node.

MATCH (alice:PERSON {firstname: ’Alice’}) RETURN alice.lastname

Relationships are traversed using an arrow syntax, where variables, labels,
and properties can be specified in a bracket in the middle of the arrow. Using
variables we can retrieve property values from relationships as well as nodes.
See an example relationship query below.

36 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

MATCH ()-[rel:WROTE]->() RETURN rel.year

Q1: Retrieving the names of all mutual friends of two users.
Q1 is implemented in Cypher by matching nodes that have FRIEND re-

lations with both a Person node holding the username “john.doe” and a
Person node holding the username “jane.doe”. The relationship direction is
not specified as the FRIEND relationship can be considered as bidirectional.
Nodes that match the pattern are assigned the context variable mutual so
that their properties may be extracted.

MATCH (:PERSON {username: "john.doe"})-[:FRIEND]-
(mutual)-[:FRIEND]-(:PERSON {username: "jane.doe"})

RETURN mutual.firstname, mutual.lastname

Q2: Retrieving the names of a user’s friends that live in Bergen, Hordaland
and like NTNU’s Facebook page.

Q2 is implemented by assigning the context variable friend to nodes
holding the PERSON label and the currentcity value “Bergen, Hordaland”,
with a FRIEND relation to the PERSON node with the username “john.doe”
and a LIKES relation to a node with the PAGE label and the aliasURL value
“ntnu.no”. The names of these friend nodes are returned.

MATCH (:PERSON {username: "john.doe"})-[:FRIEND]-
(friend:PERSON {currentcity: "Bergen, Hordaland"})
-[:LIKES]->(:PAGE {aliasURL: "ntnu.no"})

RETURN friend.firstname, friend.lastname

Q3: Retrieving all posts by a user’s friends and followed pages from the past
24 hours.

ImplementingQ3 in Cypher does not require multiple pattern expressions,
as Cypher allows operators within the pattern. Thus, we are able to match
for posts by pages “john.doe” follows as well as his friends, using only one
pattern-matching expression. The query searches for the node holding the
username “john.doe” and traverses his FRIEND and LIKES relationships to find
nodes that have incoming postedby edges from POST nodes. The POST nodes
that match the pattern are filtered on their posted_time value, requiring it
to be a timestamp within the past 24 hours (Neo4j uses milliseconds since
the Unix Epoch as timestamps). Posts that match the pattern and pass the
filter are returned, sorted by time in descending order.

4.5. NEO4J 37

MATCH (:PERSON {username:"john.doe"})
-[:FRIEND|:LIKES]-()<-[:POSTEDBY]-(p:POST),

WHERE p.posted_time > (timestamp() - 24*60*60*1000)
ORDER BY p.posted_time DESC
RETURN p

Q4: Retrieving photos of a user’s friends who have friends who like the Bacon
Facebook page.

While Q3 could be resolved using one pattern, Q4 must use two patterns
as it involves three incoming edge patterns on the same node – “john.doe”’s
friends. The first pattern seeks out friends of “john.doe” who have friends
who like the “Bacon” page, while the second finds the photos these friends
of his have been tagged in. The two patterns are separated by a comma and
share the nodes assigned the variable n – these nodes must match with both
patterns.

MATCH (:PERSON {username:"john.doe"})-[:FRIEND]-(n)-[:FRIEND]-()
-[:LIKES]->(:PAGE {aliasURL: "Bacon"}), (photos)-[:TAGGED]->(n)

RETURN photos

38 CHAPTER 4. USE OF GRAPH DATABASES FOR FACEBOOK

Chapter 5

Evaluation

In the previous chapter, we showed how MySQL, OrientDB, and Neo4j could
be used to store and query Facebook’s social graph. This chapter presents an
evaluation of the three databases with regards to the use cases of Facebook’s
social graph and graph search.

5.1 Compatibility of the data model and the
programming model

Among the most important qualities of the data model of a database are the
similarity of the data model with the real-world structure of the data, and
the similarity of the data model with the data structure implemented in the
application software.

There is a clear mismatch between the relational model of MySQL and
the graph model used in the software for Facebook’s social graph. Mapping
between the two delays and complicates the process of performing transac-
tions and queries. The issues associated with the dissimilarity between the
model used by the software and the model used in the database are described
in the literature using the term impedance mismatch. [15]

The mismatching issue is avoided in Neo4j and OrientDB as the social
graph may be mapped more directly into their data models. The social graph
holds highly connected data, which these databases are primarily made for.
Comparing the two using non-distributed implementations, [67] found that
Neo4j handled big graphs more e�ciently than OrientDB.

39

40 CHAPTER 5. EVALUATION

5.2 Usability

With regards to querying the data, OrientDB and Neo4j provide the ability to
query using pattern-matching expressions, which we find to be the most com-
fortable way to perform these queries. The relational queries MySQL applies
are better suited for aggregation, while deep graph traversal and pattern-
matching strategies result in complex JOINs and nested queries. Relational
databases are not designed to perform deep traversal queries. [68]

Querying the social graph using Cypher is on the other hand very comfort-
able and e�cient. Relevant queries such as deep graph traversal, computing
the distance between two nodes along a relationship type, and matching pat-
terns within the graph are easily implemented. Meanwhile, Cypher is not as
well known among developers as SQL is. Using Cypher in a large applica-
tion requires recruiting developers who have experience with the language or
training previously hired developers.

OrientDB seems to be a golden mean between the two - making use of
SQL as their query language which most developers would be familiar with
while also supporting syntax for traversing the edges of the graph. This
combination allows developers with SQL experience to ease into declarative
graph queries.

5.3 Maturity

Relational databases, including MySQL, are well established and widely used
all over the world. There is no lack of academic literature on topics concern-
ing relational databases, neither is there a lack of tools or software related
to managing such databases. Both academic and commercial projects are
known to adopt relational databases, ranging from small school projects to
critical projects within large corporations. The fact that large corporations
are willing to trust relational databases with their most valuable data means
that they have reason to invest time and money into maintenance, support,
and further development of the technology. Oracle, the owners of MySQL,
facilitate a large online community for MySQL users including forums, doc-
umentation, blogs, podcasts, and the opportunity for other developers to
contribute code. [69] [68] Searching for “mysql” on the website for the npm
registry [70], a platform for JavaScript developers to share code and tools,
returns 2095 results. The same search performed on the MvnRepository [71],

5.4. COST OF MIGRATION 41

a search engine for Maven packages, returns 159 results.

Neo4j has a much less established community. Most of the online com-
munity for Neo4j is hosted by Neo Technologies, while support outside of
the company’s website is sparse. [68] There is a notable amount of academic
papers discussing and analyzing the database, though much of the academic
comment was based on the 1.x.x release of Neo4j and published before the re-
lease of version 2.0 in late 2013. At the time of writing this thesis, the newest
stable release was version 3.0.0 in late April 2016. A general search for re-
lated tools on the npm.js website returns 162 results. The MvnRepository
returns 298 results for the same search.

OrientDB’s user community is also mostly facilitated by their parent com-
pany, Orient Technologies. The online user community is somewhat active,
with a handful of discussion threads being posted daily to the forum provided
by the company. Academic papers discussing NoSQL or graph databases will
often mention OrientDB among other well-known databases, but few papers
discuss OrientDB in-depth. Searching for “OrientDB” on the npm.js web-
site returns 49 results at the time of writing. The MvnRepository found 67
results for the same search.

5.4 Cost of migration

Migrating data from one database solution to another is costly, as both prac-
tically moving the data and recreating the complex data structure in another
database are time-consuming projects. In addition, the process of rewriting
the software that communicates with the database can be very expensive for
large applications such as Facebook. The high cost of migration is a concern
which should not be taken lightly when considering a move from relational
databases into NoSQL.

The migration would have to be performed while the database is online
because of the uptime requirements of social networking services. Such a
migration could be performed on a few database sites at a time by moving a
site’s load to a neighbouring site while the migration is run, then rebalancing
the load once the migration for that site has completed. As only some sites are
migrated at a time this would take longer but would ensure data availability
during the process.

42 CHAPTER 5. EVALUATION

5.5 ACID compliance

Neo4j claims to be ACID compliant, a claim supported by [7]. OrientDB
claims to fully support ACID transactions, which [72] and [73] confirm.

Durability and replication are critical requirements for Facebook’s social
graph, and while they can a↵ord to sacrifice immediate consistency, these
concerns are non-negotiable. The fact that both OrientDB and Neo4j o↵er
ACID transactions makes them more attractive as prospective storage solu-
tions. Sharding seems to be supported better by the Enterprise edition of
Neo4j than by the current version of OrientDB, though the replication op-
portunities in the community edition of OrientDB far exceed those o↵ered
by the community edition of Neo4j.

The availability and scalability o↵ered by NoSQL solutions are very inter-
esting for applications such as Facebook, where availability requirements are
extremely high. The BASE approach would be appealing for this reason, but
guarantees of data persistence simply cannot be deprioritized. In [47] Face-
book comments that scaling their MySQL clusters is a task which is hard to
combine with their availability demands, and that the administration costs
of the clusters are higher than they expect from NoSQL services.

5.6 Use within Facebook

Facebook needs their main storage to be compliant with several very di↵er-
ent applications. Graph Search, Messenger, Insights, and News Feed have
diverging needs regarding read/write optimization, indexing, replication, and
availability. [47]

Should Facebook migrate their main storage into a graph database, some
of the applications within Facebook would need to perform a reverse mapping
into a relational model. This task is not entirely straightforward as a graph
model in many cases can badly misrepresent relational data. [68]

A graph-based database would be more appropriate as a storage layer be-
tween the main storage and social graph applications within Facebook, sim-
plifying the communication between graph-based software and a relational
database.

Chapter 6

Conclusions

In this chapter, we present improvements and disadvantages to choosing a
graph database rather than a relational database for social networks, and
conclude the project.

6.1 Advantages

By using a complete graph implementation as their main storage in place of
a relational database, social network services would see an improvement in
the ease of development and performance of graph-based applications such
as graph search, graph analytics, and pattern recognition.

The multi-model engine makes OrientDB more useful than Neo4j in graph-
based applications that also o↵er a combination of non-graph services such
as messaging, data aggregation, and managing documents.

In services where the data model is not finally determined and may be sub-
ject to change, many NoSQL databases have the benefit of flexible schemas
which can lead to lower administration costs of iterative changes.

Largely, NoSQL databases claim to o↵er better scalability with regards to
administration costs and flexibility than what relational databases are able
to o↵er.

6.2 Disadvantages

Sharding in OrientDB is not well documented, and Neo4j only o↵ers cache
sharding in their Enterprise edition. Well-documented replication strategies

43

44 CHAPTER 6. CONCLUSIONS

are needed for large-scale applications such as Facebook where availability
and data integrity are critical concerns.

Because of the high cost of data migration, the level of improvement from
today’s architecture must be very high in order for a migration to be worth
performing.

The developer communities for Neo4j and OrientDB are significantly less
established than for MySQL, and the tools and literature available come up
short in comparison. Developers must to a larger degree rely on self-made
tools than when working with MySQL.

While mapping from relational data to a graph model is non-optimal, the
reverse is also true. An application based on graph storage that also handles
relational data may experience this poorly represented in a graph structure.

6.3 Conclusion to hypothesis

While there are some great advantages to using graph-based storage for
graph-based applications, the current infrastructure around the presented
graph databases does not appear to be robust enough for them to be used as
the main storage for social networking services such as Facebook and Tumblr.

Using NoSQL databases as a layer between relational storage and the
application software o↵ers many of the same advantages while conserving
the advantages of relational storage but involves extra implementation and
administration costs. Facebook have implemented this architecture by using
Tao as a layer between the front-end software and their MySQL servers.

Bibliography

[1] Maeve Duggan, Nicole B. Ellison, Cli↵ Lampe, Amanda Lenhart, and
Mary Madden. Social Media Update 2014. http://www.pewinternet.
org/2015/01/09/social-media-update-2014/, January 2015. Last
checked: 24.11.2015.

[2] Facebook. Company Info. https://newsroom.fb.com/company-info/,
March 2016. Last checked: 31.05.2016.

[3] Statista The Statistics Portal. Leading social networks world-
wide as of November 2015, ranked by number of active users
(in millions). http://www.statista.com/statistics/272014/
global-social-networks-ranked-by-number-of-users/, November
2015. Last checked: 24.11.2015.

[4] Neo Technology. Why Graph Databases? http://neo4j.com/
why-graph-databases/, 2015. Last checked: 24.11.2015.

[5] Kristine Steine. Data Storage In Social Networks, December 2015. un-
published prestudy, conducted as part of the MTDT program at NTNU.

[6] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models.
ACM Comput. Surv., 40(1):1:1–1:39, February 2008.

[7] Justin J Miller. Graph database applications and concepts with neo4j. In
Proceedings of the Southern Association for Information Systems Con-
ference, Atlanta, GA, USA March 23rd-24th, 2013.

[8] Orient Technologies. OrientDB Multi-Model Open Source NoSQL
DBMS. http://orientdb.com/docs/last, 2016. Last checked:
15.5.2016.

45

http://www.pewinternet.org/2015/01/09/social-media-update-2014/
http://www.pewinternet.org/2015/01/09/social-media-update-2014/
https://newsroom.fb.com/company-info/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://neo4j.com/why-graph-databases/
http://neo4j.com/why-graph-databases/
http://orientdb.com/docs/last

46 BIBLIOGRAPHY

[9] Rachel Roumeliotis. The Future Is Graph Databases. http://radar.
oreilly.com/2013/06/the-future-is-graph-databases-2.html,
2013. Last accessed: 6.12.2015.

[10] Neo Technology. World Cup Fun with Neo4j. http://worldcup.neo4j.
org/, 2014. Last checked: 16.12.2015.

[11] U.S. Department of State. Department of State Organization
Chart. http://www.state.gov/s/d/rm/rls/perfrpt/2007/html/
98613.htm#BackFromLD, 2007. Last checked: 16.12.2015.

[12] Neo Technology. Transforming Logistics - Real-time Rout-
ing and Tracking with Neo4j. http://neo4j.com/case-studies/
global-500-logistics/, 2015. Last checked: 16.12.2015.

[13] Adrian Silvescu, Doina Caragea, and Anna Atramentov. Graph
Databases, 2002.

[14] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[15] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Pearson, 7th edition, 2015.

[16] Konstantinos Barmpis and Dimitrios S. Kolovos. Evaluation of Contem-
porary Graph Databases for E�cient Persistence of Large-Scale Models.
Journal of Object Technology, 13(3):3:1–26, July 2014.

[17] Robin Hecht and Stefan Jablonski. NoSQL evaluation: A use case ori-
ented survey. In 2012 International Conference on Cloud and Service
Computing, CSC 2011, pages 336–341. CSC, 2011.

[18] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized
Structured Storage System. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

http://radar.oreilly.com/2013/06/the-future-is-graph-databases-2.html
http://radar.oreilly.com/2013/06/the-future-is-graph-databases-2.html
http://worldcup.neo4j.org/
http://worldcup.neo4j.org/
http://www.state.gov/s/d/rm/rls/perfrpt/2007/html/98613.htm#BackFromLD
http://www.state.gov/s/d/rm/rls/perfrpt/2007/html/98613.htm#BackFromLD
http://neo4j.com/case-studies/global-500-logistics/
http://neo4j.com/case-studies/global-500-logistics/

BIBLIOGRAPHY 47

[20] Fay Chang, Je↵rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed Storage System for Struc-
tured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[21] The Apache Software Foundation. Apache HBase. http://hbase.
apache.org/, 2015. Last checked: 10.12.2015.

[22] The Apache Software Foundation. CouchDB: A Database for the Web.
http://couchdb.apache.org/, 2015. Last checked: 10.12.2015.

[23] MongoDB, Inc. The MongoDB 3.2 Manual. https://docs.mongodb.
org/manual/, 2015. Last checked: 9.12.2015.

[24] MAPS Student Organization. Med BEKK: Workshop i graf-
databaser. http://foreninger.uio.no/maps/arrangementer/
med-bekk%3A-workshop-i-grafdatabaser.html, 2014. Last checked:
9.12.2015.

[25] Linkurious. Whiplash for cash : using graphs
for fraud detection. https://linkurio.us/
whiplash-for-cash-using-graphs-for-fraud-detection/, 2014.
Last checked: 9.12.2015.

[26] Neo Technology. Telenor’s Resource Authorization Challenge. http:
//neo4j.com/case-studies/telenor/, 2015. Last checked: 9.12.2015.

[27] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Pe-
ter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry C Li, et al. TAO: Facebook’s Distributed Data Store for the Social
Graph. In USENIX Annual Technical Conference, pages 49–60, 2013.

[28] Neo Technology. Neo4j Manual. http://neo4j.com/docs/, 2015. Last
checked: 9.12.2015.

[29] Neo Technology. Neo4j Licensing. http://neo4j.com/licensing/,
2016. Last checked: 19.5.2016.

[30] Florian Holzschuher and René Peinl. Performance of Graph Query Lan-
guages: Comparison of Cypher, Gremlin and Native Access in Neo4J.
In Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT ’13,
pages 195–204, New York, NY, USA, 2013. ACM.

http://hbase.apache.org/
http://hbase.apache.org/
http://couchdb.apache.org/
https://docs.mongodb.org/manual/
https://docs.mongodb.org/manual/
http://foreninger.uio.no/maps/arrangementer/med-bekk%3A-workshop-i-grafdatabaser.html
http://foreninger.uio.no/maps/arrangementer/med-bekk%3A-workshop-i-grafdatabaser.html
https://linkurio.us/whiplash-for-cash-using-graphs-for-fraud-detection/
https://linkurio.us/whiplash-for-cash-using-graphs-for-fraud-detection/
http://neo4j.com/case-studies/telenor/
http://neo4j.com/case-studies/telenor/
http://neo4j.com/docs/
http://neo4j.com/licensing/

48 BIBLIOGRAPHY

[31] Neo Technology. Use Case: Social Network. http://neo4j.com/
use-cases/social-network/, 2015. Last checked: 9.12.2015.

[32] Orient Technologies. OrientDB on Github. https://github.com/
orientechnologies/orientdb, 2016. Last checked: 15.5.2016.

[33] Orient Technologies. OrientDB vs Neo4j. http://orientdb.com/
orientdb-vs-neo4j/, 2016. Last checked: 19.5.2016.

[34] Orient Technologies. OrientDB: Why OrientDB? http://orientdb.
com/why-orientdb/, 2016. Last checked: 19.5.2016.

[35] Orient Technologies. OrientDB: Success Stories. http://orientdb.
com/success/, 2016. Last checked: 19.5.2016.

[36] Orient Technologies. OrientDB Enterprise. http://orientdb.com/
orientdb-enterprise/, 2016. Last checked: 19.5.2016.

[37] Maeve Duggan, Nicole B. Ellison, Cli↵ Lampe, Amanda Lenhart,
and Mary Madden. Demographics of Key Social Network-
ing Platforms. http://www.pewinternet.org/2015/01/09/
demographics-of-key-social-networking-platforms-2/, Jan-
uary 2015. Last checked: 14.12.2015.

[38] Facebook, Inc. Facebook Privacy Basics. https://www.facebook.com/
about/basics/, 2015. Last checked: 12.12.2015.

[39] Facebook, Inc. Facebook Help Centre. https://www.facebook.com/
help/, 2015. Last checked: 12.12.2015.

[40] Facebook, Inc. Facebook For Developers — The Graph API. https:
//developers.facebook.com/docs/graph-api, 2015. Last checked:
14.12.2015.

[41] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow.
The Anatomy of the Facebook Social Graph. CoRR, abs/1111.4503,
2011. http://arxiv.org/abs/1111.4503.

[42] Yi Chang, Lei Tang, Yoshiyuki Inagaki, and Yan Liu. What is Tumblr:
A Statistical Overview and Comparison. ACM SIGKDD Explorations
Newsletter, 16(1):21–29, 2014.

http://neo4j.com/use-cases/social-network/
http://neo4j.com/use-cases/social-network/
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/orientdb
http://orientdb.com/orientdb-vs-neo4j/
http://orientdb.com/orientdb-vs-neo4j/
http://orientdb.com/why-orientdb/
http://orientdb.com/why-orientdb/
http://orientdb.com/success/
http://orientdb.com/success/
http://orientdb.com/orientdb-enterprise/
http://orientdb.com/orientdb-enterprise/
http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/
http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/
https://www.facebook.com/about/basics/
https://www.facebook.com/about/basics/
https://www.facebook.com/help/
https://www.facebook.com/help/
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
http://arxiv.org/abs/1111.4503

BIBLIOGRAPHY 49

[43] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lu-
cian Grijincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip
Pronin, Sriram Sankar, et al. Unicorn: A System for Searching the
Social Graph. Proceedings of the VLDB Endowment, 6(11):1150–1161,
2013.

[44] Dhruba Borthakur. Under the Hood: Building and open-sourcing
RocksDB. https://code.facebook.com/posts/666746063357648/
under-the-hood-building-and-open-sourcing-rocksdb/, Novem-
ber 2013. Last checked: 15.12.2015.

[45] Sanjay Ghemawat and Je↵ Dean. LevelDB. https://github.com/
google/leveldb, 2015. Last checked: 15.12.2015.

[46] Zelaine Fong and Rishit Shro↵. HydraBase – The evolu-
tion of HBase@Facebook. https://code.facebook.com/posts/
321111638043166/hydrabase-the-evolution-of-hbase-facebook/,
June 2014. Last checked: 15.12.2015.

[47] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache
hadoop goes realtime at facebook. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pages 1071–
1080. ACM, 2011.

[48] Mark Callaghan. MySQL and Database Engineering.
https://code.facebook.com/posts/624181104289118/
mysql-and-database-engineering-mark-callaghan/, March 2012.
Last checked: 15.12.2015.

[49] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and
Kaushik Veeraraghavan. Challenges to adopting stronger consistency at
scale. In 15th Workshop on Hot Topics in Operating Systems (HotOS
XV), Kartause Ittingen, Switzerland, May 2015. USENIX Association.

[50] The Apache Software Foundation. Apache Hive. http://hive.apache.
org/, 2015. Last checked: 15.12.2015.

[51] The Apache Software Foundation. Apache Hadoop. http://hadoop.
apache.org/, 2015. Last checked: 15.12.2015.

https://code.facebook.com/posts/666746063357648/under-the-hood-building-and-open-sourcing-rocksdb/
https://code.facebook.com/posts/666746063357648/under-the-hood-building-and-open-sourcing-rocksdb/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://code.facebook.com/posts/624181104289118/mysql-and-database-engineering-mark-callaghan/
https://code.facebook.com/posts/624181104289118/mysql-and-database-engineering-mark-callaghan/
http://hive.apache.org/
http://hive.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

50 BIBLIOGRAPHY

[52] The Apache Software Foundation. Apache Thrift. http://thrift.
apache.org/, 2015. Last checked: 15.12.2015.

[53] The Apache Software Foundation. Apache Giraph. http://giraph.
apache.org/, 2015. Last checked: 15.12.2015.

[54] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis,
and Sambavi Muthukrishnan. One trillion edges: graph processing at
facebook-scale. Proceedings of the VLDB Endowment, 8(12):1804–1815,
2015.

[55] Alessandro Presta and Alon Shalita. Large-scale
graph partitioning with Apache Giraph. https:
//code.facebook.com/posts/274771932683700/
large-scale-graph-partitioning-with-apache-giraph/, April
2014. Last checked: 15.12.2015.

[56] Tumblr, Inc. Press Information — Tumblr. https://www.tumblr.com/
press, 2015. Last checked: 13.12.2015.

[57] Jason Mander. Tumblr and Instagram have the youngest
audiences. http://www.globalwebindex.net/blog/
tumblr-instagram-audiences, 2014. Last checked: 13.12.2015.

[58] Jason Mander. TPinterest and Tumblr are the fastest grow-
ing social networks. http://www.globalwebindex.net/blog/
pinterest-and-tumblr-are-the-fastest-growing-social-networks,
2015. Last checked: 13.12.2015.

[59] Tumblr, Inc. Help Center — Tumblr. https://www.tumblr.com/help/,
2015. Last checked: 12.12.2015.

[60] Tumblr, Inc. API — Tumblr. https://www.tumblr.com/docs/en/api/
v2, 2015. Last checked: 13.12.2015.

[61] Todd Ho↵. Tumblr Architecture - 15 Billion Page
Views a Month and Harder to Scale than Twit-
ter. http://www.highscalability.com/blog/2012/2/13/
tumblr-architecture-15-billion-page-views-a-month-and-harder.
html, February 2012. Last checked: 13.12.2015.

http://thrift.apache.org/
http://thrift.apache.org/
http://giraph.apache.org/
http://giraph.apache.org/
https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
https://www.tumblr.com/press
https://www.tumblr.com/press
http://www.globalwebindex.net/blog/tumblr-instagram-audiences
http://www.globalwebindex.net/blog/tumblr-instagram-audiences
http://www.globalwebindex.net/blog/pinterest-and-tumblr-are-the-fastest-growing-social-networks
http://www.globalwebindex.net/blog/pinterest-and-tumblr-are-the-fastest-growing-social-networks
https://www.tumblr.com/help/
https://www.tumblr.com/docs/en/api/v2
https://www.tumblr.com/docs/en/api/v2
http://www.highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html
http://www.highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html
http://www.highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html

BIBLIOGRAPHY 51

[62] Tumblr, Inc. Jetpants. https://github.com/tumblr/jetpants, 2013.
Last checked: 14.12.2015.

[63] Salvatore Sanfilippo. Redis. https://github.com/antirez/redis,
2015. Last checked: 14.12.2015.

[64] The Apache Software Foundation. Apache Kafka. http://kafka.
apache.org/, 2015. Last checked: 14.12.2015.

[65] Josh Halliday. David Karp, founder of Tumblr, on realis-
ing his dream. http://www.theguardian.com/media/2012/jan/
29/tumblr-david-karp-interview, January 2012. Last checked:
14.12.2015.

[66] Orient Technologies. OrientDB SQL - MATCH. http://orientdb.
com/docs/last/SQL-Match.html, 2016. Last checked: 24.5.2016.

[67] Sotirios Beis, Symeon Papadopoulos, and Yiannis Kompatsiaris. New
Trends in Database and Information Systems II: Selected papers of the
18th East European Conference on Advances in Databases and Infor-
mation Systems and Associated Satellite Events, ADBIS 2014 Ohrid,
Macedonia, September 7-10, 2014 Proceedings II, chapter Benchmark-
ing Graph Databases on the Problem of Community Detection, pages
3–14. Springer International Publishing, Cham, 2015.

[68] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, and Dawn Wilkins. A Comparison of a Graph Database and a
Relational Database: A Data Provenance Perspective. In Proceedings
of the 48th Annual Southeast Regional Conference, ACM SE ’10, pages
42:1–42:6, New York, NY, USA, 2010. ACM.

[69] Oracle Corporation. MySQL Developer Zone. http://dev.mysql.com/,
2016. Last checked: 27.5.2016.

[70] npm, Inc. npm. https://www.npmjs.com/, 2016. Last checked:
27.5.2016.

[71] MvnRepository. The Mvn Repository. http://mvnrepository.com/,
2016. Last checked: 27.5.2016.

https://github.com/tumblr/jetpants
https://github.com/antirez/redis
http://kafka.apache.org/
http://kafka.apache.org/
http://www.theguardian.com/media/2012/jan/29/tumblr-david-karp-interview
http://www.theguardian.com/media/2012/jan/29/tumblr-david-karp-interview
http://orientdb.com/docs/last/SQL-Match.html
http://orientdb.com/docs/last/SQL-Match.html
http://dev.mysql.com/
https://www.npmjs.com/
http://mvnrepository.com/

52 BIBLIOGRAPHY

[72] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and
Samir Belfkih. Comparison and classification of nosql databases for big
data. In Proceedings of International Conference on Big Data, Cloud
and Applications, 2015.

[73] Vivek Mishra. Beginning Apache Cassandra Development, chapter Titan
Graph Databases with Cassandra, pages 123–151. Apress, Berkeley, CA,
2014.

