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Abstract
Algorithmic composition is a field that is close to 60 years old, and has seen
much research. Systems today are able to do a wide range of compositional
tasks, ranging from simple melody generation to fully automated orches-
tral composition. Systems for computer aided composition are becoming
more and more common, either to evaluate music created by humans, or
as generators of raw material to be used by composers.
This Master’s Thesis describes a novel implementation of a multi-objective

evolutionary algorithm, that is capable of generating short musical ideas
consisting of a melody and abstract harmonization. The implementation
is capable of creating these ideas based on provided material, or autonom-
ously. Three automated fitness features were adapted to the model to
evaluate the generated music during evolution, and a fourth was developed
for ensuring harmonic progression. Four rhythmical pattern matching fea-
tures were also developed.
The implementation produced 21 pieces of music, under various config-

urations, that were evaluated in a study. The results of this study indic-
ates that the system is capable of composing ideas that are subjectively
interesting and pleasant, but not consistently.
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Sammendrag
Algoritmisk komposisjon er et felt som er nærmere 60 år gammelt, og har
nytt mye forskning. Dagens systemer er i stand til å utføre forskjellige
oppgaver innenfor komposisjon, fra å generere enkle melodier, til fullskala
komposisjoner for orkester. Systemer for datastøttet komposisjon blir mer
og mer vanlig, enten til å analyse og evaluering av komposisjoner laget av
mennesker, eller som generatorer av råmateriale for komponister.

Denne masteroppgaven beskriver en ny implementasjon av en multi-
objektiv evolusjonær algoritme, som er i stand til å generere korte mu-
sikalske idéer. Disse idéene består av en melodi og en abstrakt harmon-
isering. Implementasjonen kan basere disse idéene på musikalsk materiale,
eller generere dem helt på egenhånd. Tre automatiserte fitness funksjoner
er tilpasset modellen, for å evaluere den genererte musikken under den
evolusjonære syklen. En fjerde funksjon er utviklet for å forsikre har-
monisk progresjon. Fire målbare attributter som måler repetisjonen av
rytmiske mønstre er også utviklet.

Implementasjonen genererte 21 stykker, under forskjellige konfiguras-
joner, som ble evaluert i en studie. Resultatene av denne studien indikerer
at implementasjonen er i stand til å komponere musikk som er subjektivt
behagelig, og interessant, men ikke konsekvent.
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1. Introduction
Music has been a part of human culture for thousands of years, and behind
every piece of music there is a composer. In orchestral context, this has
been reserved for fully educated, professional composers. On the other
hand, you have music that is composed for a smaller ensembles, like jazz
or rock, and music that can be performed by only one person.
With the emergence of cheap computing power, processing units are

readily available, but the inspiration needed to compose is not always
there. Even for a person with the skillset to create compositions, the abil-
ity to constantly re-invent themselves and produce new and interesting
music can be elusive. Computers are, and have been, used as a source of
inspiration for composers. An example of such a computer aided compos-
itional tool is the Vox Populi system, [Moroni et al., 2000].

1.1. Algorithmic Composition

The notion of algorithmic composition is generally accepted to have first
appeared in the 1950s with the Illiac suite [Hiller and Isaacson, 1958].
The system composed this suite through four experiments, which adopted
both a rule-based approach as well as Markov chains, to generate a score
for a string quartet. Since then, a wide range of techniques found in the
field of artificial intelligence have been applied to composition. Rule-based
systems, stochastic methods, grammar-based methods, neural networks,
and population-based methods have all been utilized.
Systems have been designed to perform a wide range of compositional

and musical tasks, such as generating melodies, harmonization, counter-
point, improvisation, arranging, and in some cases like Melomics and
Iamus [Sánchez-Quintana et al., 2013], the ability to create fully fledged
compositions aimed at orchestral performances in concert halls.
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1. Introduction

1.2. Project Goals
In this section the main goals for this master thesis are presented.

1.2.1. Develop a Novel and Useful Algorithm for
Composition

In systems that are able to generate both melody and harmonziation, these
to tasks are most commonly done sequentially, and by different modules in
hybrid systems. Evolutionary algorithms have been applied to both tasks
separately, but not in tandem. Implementing an evolutionary system that
has the ability to co-evolve melody and harmonization has not been done
before. Is it feasible to do this in an evolutionary algorithm, and what are
the benefits and detriments of this approach? Developing an algorithm
that is able to generate music that can be of use to humans is goal of this
thesis.

1.2.2. Develop an Automated Fitness Functions

McCormack defined a set of five open questions for research in algorithmic
composition, specifically in evolutionary music [McCormack, 2005]. His
second open question is formalized as such: "To devise formalized fit-
ness functions that are capable of measuring human aesthetic properties
of phenotypes. These functions must be machine representable and prac-
tically computable.". This problem is still an important question [Galanter,
2010]. Critique has been made towards artefacts generated by evolution-
ary systems, in terms of having little structure. Defining fitness features
that attempt to stimulate the emergence of patterns is worth delving into,
and is a goal of this thesis.

2



1.3. Contributions

1.3. Contributions
C1 A novel implementation of an algorithm that is capable of writing

music autonomously.

C2 A configuration of automated fitness objectives for evaluating both
melodies and harmonization in parallel.

C3 Four statistical features for rhythmical pattern matching in melodies.

C4 A fitness objective for harmonic progression.

1.4. Thesis Structure
Relevant background theory on evolutionary and multi-objective evolu-
tionary algorithms are described in Chapter 2, while Chapter 3 provides
an overview of basic music theory and music terms needed to understand
and discuss much of the work in this thesis.
An overview of the State-of-art in algorithmic composition and related

work is presented in Chapter 4. Chapter 5 describes the implemented
algorithm in detail, including minor modifications to the non-dominated
sorting genetic algorithm II, genotype representation, genetic operators
and fitness functions.
In 6, the various configurations for how the music was generated is

presented. Chapter 7 describes a survey used to evaluate the generated
music, and also presents the results of the survey.
Finally, Chapter 8 contains a discussion over the results, accompanied

by a conclusions and suggestion for future work.
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2. Evolutionary Algorithms
Evolutionary algorithms (EAs) are inspired by the process of biological
evolution, and try to optimize a solution in regards to some objective
or environment. The algorithm is in essence a parallel heuristic search,
and performs the search by maintaining and developing several potential
solutions at once. The algorithm combines and mutates these solutions in
an effort to converge towards a global minimum or maximum, an optimal
solution, in regards to a fitness function.

2.1. The Standard Algorithm

Evolutionary algorithms use an iterated approach, where each iteration is
called a generation. Each individual, or candidate solution, in a genera-
tion is represented by a genotype. This is the equivalent of the individuals’
DNA. Through a development process, the phenotype for each individual
is generated from their genotype. Together all the phenotypes in a gen-
eration is called the population. A flow chart of a typical evolutionary
algorithm can be found in Figure 2.1.

2.1.1. Initialization

Before the the evolutionary algorithm can start its cyclic process, an initial
population must be present. Genotypes for this population can either be
created at random, or be provided. Once this is done, the phenotypes
are developed from the genotypes, according to the development scheme.
Then, each phenotype in the population is evaluated by the fitness function
of the algorithm and assigned a fitness value. After this is done, the cyclic
process is started.

5



2. Evolutionary Algorithms

Figure 2.1.: Flow chart of an evolutionary algorithm.

2.1.2. Generational Cycle

To create a new population for the next generation, the algorithm has
to select which phenotypes that are allowed to reproduce. This is done
through a process called parent selection. There are several approaches
to parent selection, but in common they will generally select individuals
with a high fitness to ensure convergence towards a good solution. How-
ever, to keep the search from converging too quickly and terminate in a
local minimum or maximum, the best solution is not always selected for
reproduction.
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2.1. The Standard Algorithm

To explore the search space, each new genotype is derived from individu-
als that are selected through parent selection. By copying the genotype
of a selected individual and altering it, a new candidate solution that is
similar to its parent is produced. This alteration of the genotype is called
applying genetic operators, and there are two common ways of doing this.
The first one is by mutation, where a single genotype is altered in a small
way. For instance, a genotype consisting of a bit-string could be altered
by flipping a random bit. These operators are called mutation operators.
The second class of operators are called crossover-operators. These

operators take two genotypes, and recombine them into a new genotype.
A typical way of doing this is to choose a point to split the genomes in
two, and then take the first part from one parent and the second part
from the other. This is called single-point crossover. After a new set of
genotypes are generated and their phenotypes developed, the phenotypes
are evaluated by the fitness function.
After the new phenotypes are developed and evaluated, the algorithm

must select which phenotypes to populate the next generation with. This
is called adult selection, and can be implemented in several ways. One
implementation is to produce an entirely new population and discard the
old one, but this approach has the weakness that it might discard all the
good solutions and be left with only bad ones. To avoid this, some form
of elitism is commonly used, which means that a fixed amount of the best
solutions from the previous generation is transferred to the new one.
The final step in the cycle is to check if the solution has converged.

If the problem has a well defined solution and the fitness has reached a
known maximum value, the algorithm can terminate. This is often not
the case, and other measures of convergence must be used. A typical
measure of convergence would be if the highest fitness in the population
does not change over a certain amount of generations. If this is not pos-
sible, the algorithm must be stopped manually or after a given amount of
generations.

7



2. Evolutionary Algorithms

2.2. Multiple-Objective Evolutionary Algorithms

Multiple-Objective Evolutionary Algorithms (MOEAs) are a specific kind
of evolutionary algorithms (EA), that differ from standard EAs in one con-
ceptual way. In the standard EA the fitness function assigns a single nu-
merical value to the phenotypes. In MOEAs the phenotypes are evaluated
by more than one fitness function, called objectives, and thus have more
than one fitness value. This enables the algorithm to work towards mul-
tiple, and sometimes conflicting, goals. The result is a trade-off between
the objectives, unless some solution exists where all objectives can be
maximized.

2.2.1. Non-Dominated Sorting Genetic Algorithm

The non-dominated sorting genetic algorithm (NSGA) is a MOEA imple-
mentation that uses pareto dominance and pareto optimality, from game
theory, to rank the individuals in a population. An outcome of a game can
be defined as pareto dominated, if there exists some other solution where
at least one player would be better off, without it having any negative
impact on any other player. A solution is said to be pareto optimal if it is
not pareto dominated by any other solution in the solution space. When
evaluating pareto dominance in MOEAs, the fitness values are considered
to be the players of the game. This means that a solution is pareto dom-
inated if there exists another solution where one fitness value is better,
and the remaining features are not worse.

The algorithm described in Chapter 5 is an implementation of the non-
dominated sorted genetic algorithm II (NSGA-II), proposed by [Deb et al.,
2002]. It improved the run-time of the standard NSGA from O(MN3) to
O(MN2), where M is the number of objectives and N is the population
size. NSGA-II also supports elitism and a diversity preserving mechanism
called crowding distance. These three improvements to the NSGA-II over
the original NSGA were shown to have a positive impact on multi-objective
optimization problems.

NSGA-II differs from the standard EA in how it compares fitness values
between individuals. In the standard EA, where there is only one fitness
value, the individual with the higher fitness value could be considered
better. In NSGA-II, a rank is assigned each individual in a population

8



2.2. Multiple-Objective Evolutionary Algorithms

based on pareto optimality. The ranking is computed by finding the non-
dominated individuals and removing them from the population. Some
individuals that were previously dominated then become non-dominated.
This is done iteratively until there are no more individuals left in the pop-
ulation. The rank assigned to an individual is the iteration it was removed
from the population. The non-dominated solutions removed in the first it-
eration obtain rank 1, the solutions removed in the second iteration obtain
rank 2, and so on.
When doing parent selection, tournament selection is used and the ranks

are compared. The individual with the lower rank is considered the better
individual. Note if two individuals with the same rank are to be com-
pared, the comparison will be resolved by comparing another value, called
the crowding distance. This value is in essence a measure of how close
an individual is to its closest neighbours in the fitness landscape. The
bigger the crowding distance, the more unique the solution is within a
rank. By selecting individuals with a high crowding distance over a low
one, genetic diversity is maintained in the population. When performing
adult selection, the newly generated individuals are merged with the cur-
rent population before ranking is performed. The population can then be
trimmed with regards to a maximum population size. This is how elit-
ism is supported, as individuals from previous generations will survive if
they have a high enough rank to remain in the population during adult
selection.

9





3. Basic Music Theory
Music theory has been well defined and formalized in western culture over
several hundred years. For readers who are not initiated in basic music
theory, this section is meant to give a minimal frame of reference for
discussion around musical concepts used in algorithmic composition.

3.1. Basic Musical Elements
Note Pitch

Every note in a piece of music has a pitch, also known as tone.
In western music, there are twelve different named pitches that are
commonly used. The white keys on the keyboard of a piano are
named in a wrapping pattern of seven notes (A, B, C, D, E, F, G)
known as an octave, The black keys to the right of a white note are
represented by adding a # after it, like A#. Each octave is enu-
merated, which means that A1 and A2 are distinct. The "reference
tone" is 440Hz, which is the A4 pitch. All other used pitches are
derived from this pitch. A pause is an absence of pitch.

Musical Key
A musical key denotes a collection of pitches that "belong" in a
musical context. In western musical culture a key contains seven
pitches, and are denoted by a root pitch and a mode. There are two
modes commonly used in western music, major and minor. Together
with a chosen root pitch, the mode defines the musical key. In C
major, the pitches are: C, D, E, F, G, A, B, C. This particular or-
dering of pitches is known as the C major scale. Most musical pieces
only make use of one key.
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3. Basic Music Theory

Interval
An interval is the distance relation between two pitches, commonly
denoted in semi-tones. The most common intervals and names can
be found in Table 3.1. An octave up from C1 is C2, the fifth up from
C1 is G1 and the fifth down from C1 would be F0.

Table 3.1.: Interval names and corresponding distances in semi-tones
Interval Name Distance
Unison 0
Minor Second 1
Major Second 2
Minor Third 3
Major Third 4
Fourth 5
Augmented Fourth/Diminished Fifth 6
Fifth 7
Minor Sixth 8
Major Sixth 9
Minor Seventh 10
Major Seventh 11
Octave 12

Step Interval
And interval between two consecutive notes in a melody that is a
general second. That means the two pitches in a step interval are
either one or two semitones apart.

Chord
A chord is a combination of at least three pitches (a triad) played
together at the same time, where one of them is denoted as the chord
root. The two others are the ones that are two and four steps above
the chord root in the scale, also known as the third and the fifth
of the chord. The two most common chords are major and minor
chords.

12



3.2. Melodies and Harmonization

Dissonance
A relative graded measure of how "tense" or unpleasant an interval
or a chord sounds to the listener. The opposite of dissonance is
consonance.

Note Duration
A note needs both pitch and a duration to have purpose in music.
The duration of a note is represented as a fraction, the most common
being: 1

1 ,
1
2 ,

1
4 ,

1
8 and 1

16 . Pauses also have duration.

Time Signature
A compartmentalization of notes, again represented as a fraction.
The most common one is 4

4 , but others can be observed as well. For
instance, all waltzes use a 3

4 time signature.

Measure
A measure, or bar, of music is one pass of the chosen time signature.
A piece of music usually consists of many sequential measure. Each
fraction of a measure is known as a beat.

Tempo
Refers to the time between beats in a measure while the music is
being performed, in beats-per-minute (bpm).

Figure
A tiny musical idea that can be repeated. It may contain any com-
bination of melodic pitch, harmony and rhythm.

3.2. Melodies and Harmonization
One of the more familiar terms from music is a melody, or a lead. Usually
this is performed by a singer or a monophonic instrument. The melody is
often what makes a song recognizable to the listener, and is often paired
with a text if it is performed by a singer. Melodies can be split into musical
phrases, which consist of an arbitrary amount of notes over an arbitrary
amount of bars.
Harmonization is the act of putting together two or more pitches at the

same time. A harmonization can be built around a melody, or a melody
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around a harmonization. In modern music this is commonly represented
as a chord progression. Through different paradigms in music history,
there have been several rules and norms for what chords should follow
what chords, and how a beautiful melody should sound. These rules were
based on the aesthetic of the time, and have changed throughout both
history and cultures.
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4. Related Work
This chapter is intended to give an overview of the State-of-the-Art in
algorithmic composition, with extra attention to applications of evolu-
tionary algorithms.

4.1. Literary Search Method
There has already been conducted literary surveys in the field of al-
gorithmic composition by Papadopoulus and Wiggins [1999] and Fernán-
dez and Vico [2013]. The latter survey references over 280 works. These
two papers are also the top results returned from Google Scholar with the
following input:

("computer composition" || "algorithmic composition" )
& ("artificial intelligence" || AI)

At the time of writing the query returned a total of 1650 papers. The
two surveys were used as a foundation for literary research, as they give
a comprehensive overview of the field’s history at their respective time of
writing. Filtering the query by release year, looking up specific authors
with referenced works in the surveys and citations, enabled the author to
find relevant papers published after the submission of the Fernández and
Vico paper.
To obtain other papers concerning the use of evolutionary and multi-

objective evolutionary algorithms in algorithmic composition not men-
tioned in the surveys, one of the following terms was concatenated to
previously mentioned query:

& (evolutionary)
or
& (multi objective)

15
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4.2. State-of-the-Art in Algorithmic Composition

After the publication of the Illiac Suite[Hiller and Isaacson, 1958], much re-
search has been made in the field of algorithmic composition. The predom-
inant technologies being used are constraint logic programming, Markov
chains, artificial neural networks and evolutionary algorithms. The ma-
terial here does by no means cover the field in its entirety. It is intended
to give the reader an overview of the more popular applications of various
methods used in the field.

4.2.1. Grammars

The first systems produced, including that of the Illiac Suite, utilized
symbolic methods. Grammars have been a popular method in algorithmic
composition. Stochastic grammars, as they can be translated into Markov
chains to perform generative tasks, have been frequently used. The first
examples of grammars to appear were defined by human human hands,
such as Rader [1974]. Systems have also been developed that extract
grammars automatically from a corpus, and then use these grammars to
generate similar compositions to the ones in the corpus. An example of
this is the work by Cruz-Alcázar and Vidal-Ruiz [1998]. Application of L-
systems is also a popular approach, and an example of this is [McCormack,
1996], where he generates melodies.

4.2.2. Constraint Satisfaction Solvers

Knowledge and rule-based systems have been applied frequently in com-
positional tasks, and frequently with success to classical styles of music and
developmental tasks. CHORAL [Ebcioğlu, 1988] is an example of such a
system. It uses constraint language programming to solve four-part choral
harmonization, in the style of Bach. The system employs around 350 con-
straints to guide the musical composition, as well as heuristic guidance to
generate notes before testing, and backtracking in the case that the con-
straints fail to be met. The system uses various "views" to evaluate con-
straints, most notably vertical ones to evaluate harmony, and horizontal
ones to evaluate progression of the voices. Ebcioğlu found problems with
his system, as the rules employed were incomplete, or inconsistent with
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certain passages in Bach’s work. This is a typical shortcoming of expert
systems. They fail to capture the full creative capabilities of acclaimed
composers, and similar issues were already found by Rothgeb [1969] two
decades earlier.

4.2.3. Markov Chains

Markov chains are a very popular method in algorithmic composition,
and can be traced back to the Illiac suite. It was very popular in the
early days of algorithmic composition, despite the fact that some of their
limitations were discovered quite quickly. Moorer [1972] wrote how higher
order Markov chains would just reproduce excerpts of the corpus it was
trained on, and the lower order chains failed to capture global structures,
such as figuration.
Markov chains are still frequently used, but in more elaborate ways. A

recent example is the SMUG system [Scirea et al., 2015], which generates
melodies using two Markov chains, one for pitch and one for rhythm.
The chains in this system are trained through the use of an evolutionary
algorithm. Markov chains are most often used in conjunction with some
of the other techniques. Another example of this is the system proposed
by Gillick et al. [2009], which constructs Markov chains from extracted
grammars.

4.2.4. Artificial Neural Networks

Artificial Neural Networks (ANNs), within algorithmic composition, star-
ted to appear around the beginning of the 1990s. Recurrent ANNs recieved
a lot of attention, as they have temporal capabilities that are useful when it
comes to music. One example of this is Todd [1989]. The system encoded
melodies by absolute pitch, and presented training data to a three-layer
network sequentially to train it. When provided with other melodic ma-
terial as input after training, the network would generate a new sequence.
Interpolation was achieved if several pieces were supplied, and extrapola-
tion when a single piece was provided.
Efforts have been made to enable the ANNs to capture global structures

in addition to local ones. Eck and Schmidhuber [2002] attacked this prob-
lem in melodic generation by using long-short term memory networks, to
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some success. Boulanger-Lewandowski et al. [2012] attempted the same
using a 67 hour corpus of polyphonic music pieces, but failed to capture
the global structures. The representation used allows for all 88 notes on
the piano to be played, and a maximum of 15 notes played at the same
time. The consequence is in an enormous state-space given the temporal
dimension.

ANNs are also applied frequently in hybrid systems, and some of which
will be mentioned in section 4.2.6.

4.2.5. Evolutionary Methods

The use of evolutionary algorithms (EAs) within algorithmic composition,
and computer aided composition, first appeared in the early 90s. Some
of them were fully automated, such as Horner and Goldberg [1991] and
Ricanek et al. [1993]. Both these were solving simple thematic bridging
problems, in essence formulated as a puzzle, or toy problem, where the
fitness function was a simple distance measure to a pre-defined solution.

In the following years, fully automated systems were developed for vari-
ous compositional tasks with a variety of automated fitness functions.
Marques et al. [2000] composed polyphonic pieces, Papadopoulus andWig-
gins [1998] did jazz improvisation, and Johnson et al. [2004] composed
melodies. All these implementations used a fitness function that was a
weighted sum of features.

Towsey et al. [2001] published a paper that exclusively provided a de-
scription of a a set of musical features used to analyse musical pieces of
various styles, but no generative implementation was presented. Fully
automated fitness functions have been a point of much research and dis-
cussion [de Freitas et al., 2012][McCormack, 2005][Galanter, 2010]. It has
even been suggested using no fitness function at all [Biles, 2001]. Freitas
and Guimarães [2011b] suggested this as a means to circumvent the artistic
constraints that fitness functions impose. As a consequence, much of the
domain knowledge previously found in the fitness function is rather moved
into the genetic operators, the representation, and the initial population
to ensure that the produced material is acceptable.

Another proposed way of introducing originality and diversity to the
systems produced artefacts is using multi-objective fitness functions. This
has been a point of research in the recent years, and has been applied to
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harmonization [Freitas and Guimarães, 2011a]De Prisco et al. [2010], and
melodic composition [Jeong and Ahn, 2015]. All of the three aforemen-
tioned papers use two contradicting functions, one for consonance and one
for dissonance. This results in a musical trade-off between the two func-
tions. Compositions made by these systems are said to have a broader
language of expression, producing subjectively interesting compositions.
These three papers are also the most relevant to the described design in
Chapter 5.
Another group of EAs are commonly referred to as "Musical Interact-

ive Genetic Algorithms" (MIGAs). In these cases, the fitness function
is replaced by a human evaluator. Generally, a handful of solutions are
presented to the reviewer, and are ranked in some fashion. The next gen-
eration of individuals are then produced, based on the human evaluation.
The first occurrences of MIGAs typically also worked on toy problems.
Nelson [1994] described a very simple MIGA for generating rhythmic pat-
terns over short melodies, where the generated music simply contained the
presence or absence of sound.
The most notable MIGA at the time of writing is the GenJam sys-

tem [Biles, 1994]. It improvises jazz solos. During the interactive fitness
evaluation of the composed music, the user simply responds with a good
or bad evaluation, and the system learns from this. A common problem
for interactive genetic algorithms is user fatigue. Evaluating the candidate
solutions for each generation can be extremely time consuming. Biles tried
to eliminate the human evaluator in his system on two occasions. In 1996
he attempts to replace the human element with a trained neural network,
to no success [Biles et al., 1996]. In 2001, however, he successfully removes
the fitness function in its entirety [Biles, 2001]. The musical acceptabil-
ity was ensured by programming the knowledge previously found in the
fitness function into the genetic operators, as well as presenting a good
initial population. This version of the system is said to outperform the
original.
On the cutting edge of evolutionary music, focus has been directed at

the encoding between genotype and phenotype. Given a complex search
space, having similar musical figures appear in the artefacts is unlikely
to happen by random mutation. The main contribution by the Melomics
system [Sánchez-Quintana et al., 2013] is something coined an "evo-devo"
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approach. In essence the systems genotype has an indirect encoding, that
during development phase expands the genome into a more advanced piece
of music than it could do with direct encoding. Thus it is able to deliber-
ately develop themes, global structure and alter motifs.

4.2.6. Hybrid Systems

Due to the inherent strengths and weaknesses of different approaches, all
of the techniques previously mentioned in this section (4.2) have at some
point been hybridized. Two such systems are the HARMONET [Hild
et al., 1992] and its further development, MELONET [Feulner and Hörnel,
1994]. HARMONET has three layers to its architecture, which enables it
to compose four-part chorales. The first layer being a neural network that
extracts harmonic information from a melody. This information is then fed
to a rule-based layer, that creates a chord progression for the melody. The
third layer arranges a four-part harmonization for the melody. MELONET
adds a final layer to this system, another neural network, that creates
melodic variations for the voices, in an attempt to make the produced
artefact more interesting to the listener.

Evolutionary algorithms lend themselves very well to hybridization.
Both the phenotype and the fitness function can be changed from the
traditional approaches mentioned in Section 4.2.5. The system introduced
by Bell [2011] uses an interactive evolutionary algorithm to evolve Markov
chains that write melodies with accompanying text. Each genome is de-
veloped into three first-order chains, one for melody, one for rhythm and
one for harmonization. Thywissen [1999] designed an algorithm where gen-
erative grammars are evolved, and Khalifa et al. [2007] used grammars as
a part of the fitness function. Phon-Amnuaisuk et al. [1999] programmed a
genetic algorithm for harmonization, where some of the genetic operators
follow explicit rules, instead of random bitwise mutations. NEUROGEN
[Gibson and Byrne, 1991] used ANNs trained on a corpus as a fitness
function, in an attempt to emulate the musical style found in the train-
ing data, while Chen and Miikkulainen [2001] evolved recurrent neural
networks that did the actual generation of the melodies.

A system called MetaCompose was recently developed for generating
melodies and harmonization [Scirea et al., 2016]. The system composes
autonomously and does not base the compositions on any musical material.
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It generates chord progressions by doing a random walk through a directed
graph, then creates a melody for the chords through a multi-objective
evolutionary algorithm, supported by some a probability driven module
for rhythms and and accompaniment.
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5. NSGA-II Algorithm
Implementation

The problem domain specific components of the algorithm are described in
this chapter, including the genetic model, operators and fitness functions.
Minor modifications to the NSGA-II algorithm are also described.

5.1. Non-problem Specific Configuration

During preliminary tests of the algorithm, the performance of the ranking
scheme collapsed when four objectives were used. 100% of the population
would be ranked to the first front, meaning that they were all pareto
optimal, but still far from the true pareto front. When this happens,
there is an extreme selection pressure, and exploration of the search is
hampered. Deb [2014] describes this as a phenomenon that occurrs when
there are many fitness functions. This problem also occurred even if
genetically identical phenotypes were removed from the population before
ranking, as many of them evaluated to the same fitness value, despite
being genetically very different. This implementation therefore employs
a scheme that eliminates fitness duplicates to lessen the genetic drift, as
described by Aguirre and Tanaka [2005], to improve the performance when
there are epistatic interactions in genomes. Since notes in the melody are
evaluated in relation to consecutive and preceding notes, as well as the
harmonization, employing this scheme should improve the convergence of
the algorithm by limiting the genetic drift.
For parent selection, a binary tournament selection with an 80% chance

to keep the highest ranked individual was adopted.
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5.2. Genotypes and Phenotype

The genotype will consist of two separate parts. One part will be for the
melody, the other part for the harmonization. Representing the music this
way will allow the algorithm to optimize one of the two separately during
run-time, or both simultaneously.

5.2.1. Genotype for Melody

A flexible representation is implemented to allow the exploration of a
large melodic space. This allows the algorithm to represent a variety
of musical expressions, and to develop many different musical ideas as
possible. Some implementations, such as the GenJam system [Biles, 1994],
use a database of melodic figures to map the resulting genotype into a
melody. Such a database is not part of this architecture. Efforts were
made to put as little musical knowledge as possible into the representation,
by allowing occurrences of what can be considered as "errors" in certain
musical paradigms.

The model used in Jeong and Ahn [2015] is a very flexible one, and
is used as a baseline for the implemented model. A measure of music
is divided into fractions, and each fraction represents a time-step, or a
beat. Each step is occupied by an integer value that represents one of
three things: either a pitch, a rest, or a hold. A rest means the absence
of anything played, and a pitch value means that a new note of the cor-
responding pitch starts, analogous to striking a key on the piano. The
hold value means that the previous note, either a pause or a pitch, is held
from the previous step. The minimal time-step used in this model is a
1
16 note, which results in twice as many time-steps per measure compared
to the representation used by Jeong and Ahn [2015]. The representation
allows the algorithm to generate notes of 1

16 length and longer. It also
supports repeating pitches, and leaps of any size, within the defined range
of allowed pitches. The values are stored in bytes, in consideration to
performance.

Table 5.1 describes the mapping between valid byte values and note
values in the melody genome. The range of pitches employed correspond to
the integer-pitch mapping defined in MIDI standard [MIDI Manufacturers
Association et al., 1996]. As a result, the representable pitches are in the
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Table 5.1.: Table describing the relation between the values of a byte and
corresponding musical interpretation in the melody genome.

Integer value Musical interpretation
0 pause
1 hold
65-85 pitch values

range from F4 to C#6.
The total number of different representable melody genotypes n, of x

measures of length, is therefore defined as:

n = 2216x

5.2.2. Genotype for Harmony

The harmonization is defined by chords, where a new chord appears at the
first beat of every measure. Each chord is represented as a vector of four
bytes, where the bytes hold a value in the range of [-1-11]. The integers
from and including 0 represents a pitch, and -1 represents an absence of a
pitch. Each chord contains at least three notes, where the fourth optional
note is a flavor note that allows chords to be built with a more musically
advanced expression, compared to what is possible with only three pitches.
An example of the genotype can be found in Figure 5.1.

Figure 5.1.: Example harmony gene, in this case a C major triad chord.
0 4 7 -1

In this representation, a 0 translates into a musical pitch of C, and
following a chromatic scale, a 2 will represent an D, and so on.
The total number of different representable harmony genotypes n, of x

measures of length, is therefore defined as:

n = (12 · 113)x
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5.2.3. Phenotype and Developmental Method

Both genotypes employ a direct representation, and hence no explicit de-
velopmental method or phenotype is required. However, for optimization
reasons a phenotype representation is employed to aid in the evaluation
of the generated music. The developmental method iterates through the
genotype and creates a variety of structs. These structs contain inform-
ation about pitch and rest positions, durations and intervals, and mostly
serves as indices utilized by the fitness functions.

5.3. Genetic Operators

As the system will have two different data structures in the genotype (one
each for melody and harmony), two different sets of mutation operators
are needed.

5.3.1. Crossover Operators

There are two different crossover operators that are employed by the
algorithm. In both operators both the harmonization and melody are
crossed over together, since they are heavily interdependent. Crossover is
applied during offspring creation by a 50% chance.

Single Point Crossover A single point crossover that splices two genomes
together. The splicing points are selected at random, and are restric-
ted to being at the start of a measure. The same splicing point is
used for both genotypes.

Single Measure Crossover This is in essence a dual point crossover op-
erator, with restrictions applied to the splicing points, which are
always placed at the start and end of the same measure. It copies a
measure from one genome to the other.

5.3.2. Melodic Mutation Operators

An overview of the melodic operators can be found in Table 5.2. All
the operators take the following restriction into account: A pause cannot
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Table 5.2.: Table describing the melodic operators and their functions.
Nr. Operator name Operator function
M1 Note Mode Changes the mode of a pitch or rest.
M2 Random Pitch Selects a random pitch value for a time-step.
M3 Pitch Modulation Modulates the pitch by [-4, 4] semitones.
M4 Note Position Swaps a note by [-16, 16] time-steps.
M5 Duplication Duplicates half a measure in the melody.

follow a pause or a held pause. This ensures the effectiveness of the oper-
ators, as these particular mutations will not be reflected in the phenotype,
as this is an inaudible mutation. There are also cases where a melodic op-
erator is not applicable to the genotype. The algorithm ensures that any
operator that is chosen is applicable. One, and only one, melodic operator
is always applied during offspring creation.

Note Mode This operator generates a new value at a randomly selected
time-step in the melody genome. A chosen gene can not retain its
current mode. For instance, a pitch can never remain a pitch, or a
rest remain a rest. If a new pitch is to be created, the pitch value
will be copied from the previous note or, if not applicable, chosen at
random.

Random Pitch This operator generates a randomly generated pitch value
at a random position in the genotype. If any value is found at the
chosen position, it is overwritten.

Pitch Modulation Requires the presence of at least one pitch in the gen-
otype to be applicable. Changes a randomly selected pitch by x,
where x ε [-4, 4] and x 6= 0, semitones. If a modulation will put a
pitch outside of the valid defined range, it will perform the modula-
tion in the other direction, by changing the sign of the modulation.

Note Position Selects a random pitch or rest in the genotype, and moves
it by a random amount of time-steps x, where x ε [-16, 16] and x 6=
0. Any value at the destination gene is swapped into the position of
the initial gene.
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Duplication This operator that causes biggest change in the genome. It
selects a random half measure, with a starting bound restricted to
the beginning or middle of a measure, and overwrites another half
measure in the genome with the same values. This operator is de-
signed for repetition of patterns to occur by intention, and not by
chance.

5.3.3. Harmonic Mutation Operators

An overview of the harmonic operators can be found in Table 5.3.

Table 5.3.: Table of the harmonic operators.
Nr. Operator Name Operator Function
H1 Chord Change Changes the entire chord.
H2 Chord Pitch Mutates a single pitch in the chord.
H3 Chord Swap Swaps two chords in the genotype.

Chord Change Changes the entire chord with regards to the musical key
provided to the algorithm. It will select a random root pitch for the
chord, that is within the scale of the provided key, and derive a triad
that is native to the scale of the key. The operator might also add a
flavor note, with a 50% chance, which will always be the appropriate
seventh in regards to the root pitch and the scale.

Chord Pitch Normally modulates a random pitch in a random chord by
a semitone up or down. In the case that the fourth pitch of the
selected chord is chosen, different rules apply. If the fourth pitch is
absent, a random pitch is inserted. If a pitch is present, it has a 50%
chance to be set to the silent value, otherwise it will be modulated
like a normal pitch.

Chord Swap Swaps the position of two randomly selected chords in the
genotype.
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5.4. Fitness Objectives
The implementation uses four different fitness objectives, described in the
following subsections, to evaluate the phenotypes. Each objective has a
different purpose and evaluates a different aspect of the generated music.

5.4.1. O1: Melodic Local Objective

This objective is based on one of the fitness functions described in Wu
et al. [2014]. It is concerned with the tonality of the melody, the relation
pitches to the given key and the interrelation of pitches within a measure.
The objective is designed with the intention that melodies generated by
the algorithm sound harmonic and pleasant.
In this objective, a pitch can defined as one of the three following classes:

1. A pitch that occurs within the chord of the given measure is regarded
as a chord pitch. This is regardless of whether the pitch occurs in
the provided key or not. This is a non-harmonic pitch.

2. A pitch that occurs within the given scale, or key, is regarded as a
scale pitch. This is also a non-harmonic pitch.

3. Any other pitch is a non-scale pitch.

Further, a pitch that is not classified as a chord pitch is categorized if
certain conditions are met. A passing tone is a pitch that is initiated by
a step from a chord tone, and resolved by a step in the same direction to
another chord tone. A neighbour tone is a pitch that is initiated by a step
from a chord tone, and resolved by a step to the same chord tone. The
sum of passing tones and neighbour tones are labeled ornament tones.
The objective scores each phenotype based of the eight rules found in

Table 5.4. The first six rules give a positive score of 1, if the condition is
met, while the last three deduct points. The maximum score obtainable
by this objective per measure of music is then 6. In rule seven, n denotes
the amount of unresolved non-scale pitches within the measure. The 8th
rule is defined as:

−
∑

i

f(xi) where f(xi) =
{
x− 7 x > 7

0 otherwise (5.1)
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Table 5.4.: Table describing the rules per, measure of music, in the Melody
Voice Objective.

# Condition Fitness value
1 Non-harmonic Pitches < Chord Pitches +1
2 Passing Tones ≤ Scale Pitches +1
3 Neighbour Tones ≤ Scale Pitches +1
4 Non-scale Pitches ≤ Ornament Pitches +1
5 Ornament Pitches ≤ Scale Pitches +1
6 First Pitch is a Chord Pitch +1
7 Unresolved Non-scale Pitches −n
8 Interval greater than a fifth eq. (5.1)
9 Augmented Ninth Interval eq. (5.2)

Where i is an interval in the measure, and xi is the semitone distance
of interval i. The 9th rule is defined as:

−
∑

i

g(xi) where g(xi) =
{
x x = 13
0 otherwise (5.2)

Where i is an interval in the measure, and xi is is the semitone distance
of interval i.

In the special case that no pitches are present in a measure, a score
of 0 is assigned. The total score of a phenotype is the sum of the scores
assigned to each measure.

5.4.2. O2: Melodic Global Objective

The melodic style objective is based on the high-level melodic features
found in Towsey et al. [2001], that were developed for compositional and
analytical purposes of monophonic melodies. It analyses an entire melody,
and gives a more global evaluation of features in the melody, compared
to the objective described in Section 5.4.1. The function uses 18 differ-
ent statistical features, as normalized values, described at the end of this
section. Features 1 through 7 and 9 through 13 are taken directly from
Towsey et al. [2001]. All of the features from the paper were initially
implemented. The pattern features, except pitch and timing repetitions,
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were discarded through qualitative evaluation. The same features were
also excluded by Towsey et al. in their paper, as these particular features
had very large standard deviations. The features that were developed to
replace them are features 15-18 through, and are all based on pattern
matching. Other features such as dissonant intervals, are covered in the
melodic local objective described in section 5.4.1.
Each feature is scored by equation (5.3), where x is the feature value

of the phenotype, and y is a target value provided to the algorithm. The
final score assigned to the phenotype by this fitness objective is the sum
of all the feature scores, resulting in a maximum score of 18.

f(x, y) = 1− |x− y| where x, y ∈ [0, 1] (5.3)

Feature Descriptions

1. Pitch Variety The ratio of distinct pitches to notes. A higher value
means a greater variety of notes.

#distinct pitches
#notes

2. Pitch Range The semitone difference between the highest and the low-
est pitch in the melody, divided by the maximum range possible in
the model. In this implementation the maximum range is 20.

maximum pitch - minimum pitch
20

3. Step Movement The number of intervals that are of step distance,
divided the total number of intervals.

#step intervals
#intervals

4. Non-Scale Pitch Quanta The number of notes outside the scale, di-
vided by the total number of notes.

#non-scale notes
#notes
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5. Contour Stability The proportion of consecutive intervals that follow
in the same direction. Two consecutive intervals incorporate three
pitches and if all the three notes are of the same pitch, it is counted
as moving in the same direction. Rests are ignored in this feature.

consecutive intervals in the same direction
#intervals - 1

6. Contour Direction The sum, measured in semitones, of all rising in-
tervals divided by the (absolute) sum of all intervals. A melody
starting and ending on the same note will get a score of 0.5. Rests
are ignored in this feature.

sum of rising intervals
sum of all intervals

7. Pitch Frequency The ratio of notes with pitches, to total time-steps.
This feature indicates how busy the melody is.

#notes that are pitches
#time-steps

8. Rest Frequency The ratio of notes that are rests, to total time-steps.

#notes that are rest
#time-steps

9. Rest Density The proportion of silent time-steps. This measures the
degree of silence in the melody. Together with feature 8, this feature
indicates how silence is distributed in the melody, i.e., few and long
pauses or many short pauses.

#silent time-steps
#time-steps

10. Rhythmic Variety This feature measures the the degree of 16 different
note durations (16th to whole note) used.

#distinct note durations used
16
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11. Syncopation The proportion of syncopated notes. A syncopated note
is a note with duration ≥ one beat, and that starts off the beat
defined by the time-signature.

#syncopated notes
#notes

12. Repeated Pitches The ratio of intervals of 0 semitones, to the total
number of intervals. It only considers consecutive pitches.

#repeated pitches
#intervals

13. Repeated Timings The proportion of consecutive pitches with the
same duration. It only considers consecutive pitches, meaning rests
are ignored.

#repeated timings
#intervals

14. On-Beat Pitch Coverage The ratio of beats that contain pitch notes.
This feature is a measure of how rhythmically the melody is centered
around the time signature.

#beats covered by a pitch
#beats

15. Distinct Whole Measure Patterns This feature measures the ratio
of distinct whole measure rhythmical patterns. A value of 1 means
that every measure has a unique rhythmical pattern. Rests are ig-
nored for this feature.

#distinct rhythmic patterns
#measures

16. Distinct Half-Measure Patterns This feature measure the ratio of
distinct half-measure rhythmical patterns. A value of 1 means that
every half-measure has a unique rhythmical pattern. Rests are ig-
nored for this feature.

#distinct rhythmic patterns
#measures · 2
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17. Positional Rhythmic Measure Repetitions This feature gives an in-
dication of how the repeating rhythmical pitch patterns of whole
measures are positionally related to each other. A measure is coun-
ted as a positional repetition if it is repeated four measures later, or
either directly or two measures after. Rests are ignored. The last
four measures are only checked against the previous four, and not
between themselves.

#positional repetitions
#measures - 4

18. Positional Rest Measure Repetitions This feature gives how the re-
peating rhythmical rest patterns of whole measures are positionally
related to each other. A measure is counted as a positional repetition
if it is repeated four measure later, or either directly after or with
two measures after. Pitches are ignored. The last four measures are
only checked against the previous four, and not between themselves.

#positional repetitions
#measures - 4

5.4.3. O3: Harmonization Objective

The representation for the harmonization, often referred to as chords,
supports every possible chord that can be created with four pitches. This
objective attempts to stabilize the chords vertically, based on the melody
and the musical key within each measure, by building triads that belong to
the key. It also allows the presence of a fourth pitch in the chord, but does
not encourage it. Compared to the objective described in Section 5.4.4,
this is the more local of the two for harmonization. It is largely based on
the simplicity fitness objective presented in Freitas and Guimarães [2011a].
The difference in feature values and features in this system, is due to the
absence of a corresponding dissonance function. The feature scores can be
found in Table 5.5. The final score for a phenotype is the summed score
for each chord, where the maximum achievable score is 0.

Condition Descriptions

Chord Root Not in Key Punishes the phenotype harshly if the chord root
is not a pitch within the key.
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Table 5.5.: Overview of feature scores in the Harmonization Objective.
No. Condition Score
1 Chord Root Not in Key -50
2 Third Absence -40
3 Fifth Absence -10
4 Non-Root Unison -5
4.1 Triad Unison -10
5 Semitone Dissonance -20
6 Dissonant Pitch -10
7 Invalid Pitch -30
8 Meaningful Seventh +10

Third Absence This condition is met if there is no major or minor third
in the chord, in relation to the chord root.

Fifth Absence Gives a negative score if a perfect fifth is not present in
the chord, in relation to the chord root. A diminished fifth is not
punished in the case it falls naturally within the scale, which is the
case with a 2nd step root chord in a minor key or a 7th step root
chord in a major key.

Non-Root Unison The presence of a unison that is not of the root pitch
are punished. A triad unison is punished harder than a standard
unison, as it is considered the least desirable unison.

Semitone Dissonance Checks whether any of the pitches is in a semitone
distance to any other note in the chord. In the case a pitch is con-
sidered a meaningful seventh, the presence of this condition is ig-
nored for that particular pitch.

Dissonant and Invalid Pitches A pitch is considered invalid if it is not
found in the chord, or in the melody within the measure the chord
is played. A pitch is considered dissonant if it does not belong in
the triad chord specified by the chord root. A major third is not
considered dissonant, nor invalid, if it appears within a dominant
chord in a minor key.
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Meaningful Seventh A seventh is considered meaningful if it is resolved
by a step in the following chord. A seventh will always be con-
sidered as a dissonant pitch in the implementation, and this feature
is present to offset the punishment in the case the seventh is con-
sidered meaningful. The end result is that meaningful sevenths are
neither encouraged nor discouraged.

5.4.4. O4: Harmonic Progression Objective

Table 5.6.: Overview of conditions in the harmonic progression objective.
No. Condition Score
1 First Chord is Not Tonic -30
2 Dominant Absent -20
3 Unresolved Dominant -20
4 Unresolved Diminished Chord -10
5 Unresolved X7 Chord -20
6 Excessive Chord Repetition -20
7 Positional Chord Repetition eq. (5.4)
8 Harmonic Variety eq. (5.5)

The harmonic progression objective can be considered as a horizontal,
or global, objective for the harmonies generated by the algorithm. While
the harmonization objective described in Section 5.4.3 attempts to es-
tablish triads in regards to the melody within a measure, this objective
rewards, or punishes chords based on their relation to chords in the other
measures of the phenotype. It establishes harmonic variety by punishing
excessive repetitions of any chord, as well as enforcing a global variety of
distinct chord roots. Some simple rules for how certain chords should be
resolved by the following chord are also implemented. An overview of the
conditions in this objective can be found in Table 5.6, and a more thor-
ough descriptions for each condition at the end of this subsection. The
maximum achievable score obtainable in this objective is bound by the
length of the generated phenotypes, due to the nature of the 7th feature,
as described in eq. (5.4).
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Condition Descriptions

First Chord is Not Tonic If the first chord in is not the tonic chord, the
phenotype is punished.

Dominant Absent If a phenotype contains no chord with a 5th step root,
a dominant, the phenotype is punished.

Unresolved Dominant If the chord following a dominant chord is not a
tonic chord, the phenotype is punished. This function wraps, which
means that a dominant chord in the last position of the phenotype
will be checked for a resolution against the first chord.

Unresolved Diminished Chord This condition ensures that any naturally
occurring diminished chord is resolved in one of the following ways:

1. The following chord is a D7, a dominant major chord with a
minor 7th chord.

2. The following chord is one step above the diminished chord in
the scale.

In a minor key the second criterion will result in a 3rd step chord.
In a major key the second criterion will be the tonic. This function
wraps.

Unresolved X7 Chord If a major chord with a minor 7th is not resolved
by circular motion, a punishment is given. Circular motion means
that the distance between two chord roots is either up a fourth, or
down a fifth, as defined by the scale. This function wraps.

Excessive Chord Repetition If the same chord root appears in three con-
secutive positions, a punishment is dealt to the phenotype. This
feature wraps.

Positional Chord Repetition If a chord is repeated in the position eight
measures after, a reward is given to the phenotype. This encourages
the repetition of chord progression patterns that are of eight meas-
ures in size. The condition is similar, but more relaxed, compared
to feature 17 and 18 in Section 5.4.2. It rewards the emergence of
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patterns through repetition. The maximum score, f(x), obtainable
by this condition is:

f(x) =
{
x− 8 x > 8

0 otherwise (5.4)

Where x is the amount of measures in the phenotype.

Harmonic Variety This feature punishes any phenotype that does not
have a predefined number of distinct chord roots. The equation
is described by eq. (5.5), where x is the number of distinct chord
roots in the evaluated phenotype, and y is the target value.

g(x, y) = |y − x| · −1 where x, y ∈ [1, 11] (5.5)

This entails that the maximum achievable score for this feature is 0.

5.5. Initialization and Global Constraints
In the case that one or more pieces of music are supplied to the algorithm
for initialization, the initial population is derived from this material by
applying the standard reproduction mechanic. In the case that no data is
supplied, an arbitrary amount of random genotypes will be generated for
initialization.

Since both melody and harmony are evolved simultaneously, some con-
straints are put on the domain. First, a diatonic key must be set. This
will ensure that the harmonic domain is consistent between individuals of
the population. If this is not done, crossover operators are likely to change
the harmonic and melodic context to the point of reverting progress in the
search, as measured by the fitness function.
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The algorithm implementation described int Chapter 5 was implemented
in Java, and was run with 17 different configurations to generate a total of
21 artefacts. The artefacts would later be evaluated by a survey described
in Section 7.1. The various configurations are determined by the set of
target values for the Global Fitness Objective described in Section 5.4.2,
the supplied genetic material for deriving the initial population, whether
randomly generated individuals were used for initialization or not, and
variations of genotype lengths.
Sheet music of all the generated music can be found in Appendix A.

6.1. Shared Configuration
The following configuration was common for all the 21 runs of the al-
gorithm.

• Maximum population size N = 1000.

• Maximum generation count of G = 3000.

These parameter values were found to be fitting during preliminary test
runs of the algorithm, in terms of convergence to a set of near optimal solu-
tions. In several cases a single optimal solution was evolved that obtained
the maximum possible score in all fitness objectives, a perfect score.
The transformation of the phenotypes into something that would be

audibly presentable to the human evaluators was done by translating the
generated melodies and chord progressions into MIDI. Using Cubase 5, a
digital audio workstation, each melody and chord progression was played
by a sampled piano at 120 beats per minute. No performance data was
added.
The probabilities of selecting a specific genetic operator is described in

Table 6.1. To reiterate what was stated in Section 5.3, there is a defined
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probability, in this case 50%, that exactly one crossover operator will be
applied, and there will always be exactly on mutation operator applied.

Table 6.1.: Overview of operator selection probabilities.
Crossover Probability 50%

Single Measure Crossover 34%
Single Point Crossover 66%

Mutation Probability 100%
Melodic Operators

Note Mode 15%
Random Pitch 15%
Pitch Modulation 15%
Note Position 7.5%
Duplication 7.5%

Harmonic Operators
Chord Change 15%
Chord Pitch 15%
Chord Swap 10%

6.1.1. Phenotype Selection Methodology

With each run of the algorithm, a single produced artefact was chosen
for evaluation in the survey. In the case that a single individual was non-
dominated, it was selected for the survey. If the algorithm did not converge
on a single solution after 3000 generations, but rather a Pareto front with
several rank 1 phenotypes in it, the phenotype was selected purely on
achieved fitness scores. No form of curating was made by the author. The
phenotype in the first front with maximized scores in objective O1, O3
and O4 was selected.

A consequence of this methodology, is that one or more features in O2
were not identical to the the target value. This is an outcome of two
possible situations. Either the solution converged on a local maxima in
the fitness landscape, or a target value for at least one feature in the
O2 objective contradicts a rule or condition in one of the other fitness
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functions. As an arbitrary example, O2 feature 7 (pitch frequency) could
have a target value of 0.0, meaning the melody would be only silence.
This feature can never reach its target value without receiving a score of
0 in objective O1, since no pitches would be present in the phenotype for
evaluation.

6.2. Configuration Taxonomy
The 17 different configurations can be classified into groups, and establish-
ing a taxonomy can benefit the reader by easily providing context. The
taxonomy is described in the following sections.
There are three areas that differ in the configurations. The target values

in the melodic global objective, the data provided to the algorithm for
generating the initial population, and the size of the phenotypes. Further,
the provided data differ in two ways. A single piece of music was, or was
not provided to the algorithm. Either a melody or a chord progression, and
a varying amount of randomly generated phenotypes could be supplied.
The varying sets of target values for objective O2 can be classified by their
"Fitness Configuration", and are described in Section 6.3.
A string of four variables can be created to describe a configuration,

and it has the following format: FC-S-R-M.

FC This is the fitness configuration for the algorithm run. There are a
total of four different configurations, labeled F0 through F3 that are
described more in depth in section 6.3.

S Describes a single piece of music that is provided to the algorithm for
initialization. There was a total of six different pieces of material
that was provided, which can be found in Table 6.2, along with their
respective label. Three pieces of simple music was used, and split
into melody and harmonization. "Lisa Gikk Til Skolen", an eight
measure Norwegian nursery rhyme, that is frequently used as a first
lesson for piano students. "She Loves You", a work of The Beatles
from their album "Twist and Shout" album, released in 1964. Eight
bars of the verse was used. Finally, the twelve measure verse of
Britney Spears’ breakthrough pop hit "...Baby One More Time",
released in 1998, was used.
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Table 6.2.: Description of labels for musical material provided to the al-
gorithm.

Label Type Material Source
S0 - No material
SM1 Melody "Lisa Gikk Til Skolen"
SM2 Melody "She Loves You", verse
SM3 Melody "...Baby One More Time", verse
SC1 Harmonization "Lisa Gikk Til Skolen"
SC2 Harmonization "She Loves You", verse
SC3 Harmonization "...Baby One More Time", verse

R This label simply describes how many randomly generated individuals
were used in generating the initial population population. There are
two variants: R0, which means zero individuals were provided, and
R10 that corresponds to ten randomly generated individuals being
provided.

M The count of total measures in the developed phenotypes, represented
by the corresponding number. Three different values were used: 8,
12, and 16.

An example description of a run-configuration would then be: F2-SM2-
R10-8. The interpreted meaning is that fitness configuration F2 was used,
the melody of "She Loves You" as well as 10 randomly generated individu-
als were provided for initialization, and the length of the phenotypes was
eight measures.
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6.3. Fitness Configuration Specifications

The Melodic Global Objective, O2, is guided by a set of target values.
In this section, the four different configurations that were used during
artefact generation are described.

6.3.1. F0 Configuration

This set of target values were defined by the author, as it qualitatively pro-
duced satisfying phenotypes during development of the fitness functions.
Target values can be found in table 6.3.

Table 6.3.: Target values of the F0 configuration.
Feature Target Value
Pitch Variety 0.30
Pitch Range 0.60
Step Movement 0.60
Non-Scale Pitch Quanta 0.00
Contour Stability 0.60
Contour Direction 0.70
Pitch Frequency 0.30
Rest Frequency 0.10
Rest Density 0.10
Rhythmic Variety 0.40
Syncopation 0.00
Repeated Pitches 0.30
Repeated Timings 0.65
On-Beat Pitch Coverage 0.70
Distinct Whole Measure Patterns 0.50
Distinct Half Measure Patterns 0.20
Positional Rhythmic Measure Repetitions 1.00
Positional Rest Measure Repetitions 1.00
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6.3.2. F1 Configuration

The set of values obtained by analysing the melody of "Lisa Gikk Til
Skolen" as a phenotype, were set to as the corresponding target value.
Rounded target values are found in Table 6.4. At run-time the exact float
values were used.

Table 6.4.: Rounded target values of the F1 configuration.
Feature Target Value
Pitch Variety 0.27
Pitch Range 0.45
Step Movement 0.45
Non-Scale Pitch Quanta 0.00
Contour Stability 0.38
Contour Direction 0.39
Pitch Frequency 0.17
Rest Frequency 0.00
Rest Density 0.00
Rhythmic Variety 0.19
Syncopation 0.00
Repeated Pitches 0.50
Repeated Timings 0.67
On-Beat Pitch Coverage 0.69
Distinct Whole Measure Patterns 0.63
Distinct Half Measure Patterns 0.19
Positional Rhythmic Measure Repetitions 1.00
Positional Rest Measure Repetitions 0.00
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6.3.3. F2 Configuaration

This configuration was found by analysing the "She Loves You" melody
with the features from the O2 objective. The set of rounded values are
found in table 6.5. During execution, the exact float values were used.

Table 6.5.: Target values of the F2 configuration.
Feature Target Value
Pitch Variety 0.27
Pitch Range 0.60
Step Movement 0.45
Non-Scale Pitch Quanta 0.00
Contour Stability 0.43
Contour Direction 0.55
Pitch Frequency 0.23
Rest Frequency 0.02
Rest Density 0.08
Rhythmic Variety 0.31
Syncopation 0.07
Repeated Pitches 0.17
Repeated Timings 0.03
On-Beat Pitch Coverage 0.63
Distinct Whole Measure Patterns 0.5
Distinct Half Measure Patterns 0.44
Positional Rhythmic Measure Repetitions 1.00
Positional Rest Measure Repetitions 0.25
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6.3.4. F3 Configuration

The following configuration was generated similarly to F1 and F2, with
the target values extracted by analysis of the "...Oh Baby Baby" melody.
Table 6.6 shows the rounded float values. The exact values were used
during run-time.

Table 6.6.: Target values for F3 configuration.
Feature Target Value
Pitch Variety 0.15
Pitch Range 0.95
Step Movement 0.4
Non-Scale Pitch Quanta 0.03
Contour Stability 0.43
Contour Direction 0.52
Pitch Frequency 0.31
Rest Frequency 0.00
Rest Density 0.00
Rhythmic Variety 0.31
Syncopation 0.10
Repeated Pitches 0.42
Repeated Timings 0.59
On-Beat Pitch Coverage 0.69
Distinct Whole Measure Patterns 0.5
Distinct Half Measure Patterns 0.29
Positional Rhythmic Measure Repetitions 0.50
Positional Rest Measure Repetitions 0.00
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A survey for evaluating artefacts produced by the algorithm is described
int this chapter, along with the results of said survey.

7.1. Survey Design

A quantitative online study was performed to evaluate the generated arte-
facts. The main goal is to evaluate how different configurations, and
achieved fitness values, impact how the musical ideas are perceived by
a human audience.
Participants of the survey were presented one artefact generated by the

system at a time, and asked to evaluate and score it in three criteria:
pleasantness, interestingness and randomness. The assigneable values in
each criteria were integers on a scale from 1 to 5, where 1 was defined as
the lowest possible value, and 5 the highest. The terms were not explicitly
described to the participant, but antonyms were provided. Respectively
unpleasant, boring and structured. The artefacts themselves were also
referred to as musical ideas, as they are not fully produced or arranged
pieces of music.
Pleasantness is intended as a measure of how pleasing the musical piece

is to the ear. This criterion does however not give a good measure of
musical quality. There have been several paradigms, or genres, where un-
pleasant music has been regarded as "good" music by individual listeners.
Some examples are contemporary classical music and death metal, which
are notorious for using dissonances.
Interestingness is meant to help offset personal preferences when it

comes to pleasantness, as it is possible to find music unpleasant but inter-
esting. This criteria is however very subjective, and is possibly prone to a
fatigue bias.

Finally, randomness is introduced to to give an indication of logic or
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structure. This criteria is specifically introduced to help evaluate the
pattern features that were designed for fitness objectives O2.

A text box accompanying each piece of music was also provided, where
the participant could enter optional comments or observations. The par-
ticipants were initially asked to describe their relationship with music,
and examples such as consumer, musician, hobby musician, composer and
producer were stated.

Pieces in the survey were all presented in a random order, both to
eliminate possible biases on the artefacts presented last in the survey due
to fatigue. Randomizing the order of presentation also helps getting a
uniform distribution of data, if many participants do not complete the
survey. An artefact would be presented a maximum of one time to each
participant.

7.2. Survey Results

A total of 93 participants contributed to the survey, where 35 of them
evaluated all 21 artefacts. A total of 884 evaluations were made. The
average number of evaluations per artefact was 42 rounded down.

Tables in the following sections describe the scores received in the survey
by average (AVG), standard deviation (SD) and the median (MED). Table
7.1 shows the aggregate scores from the the study for all the artefacts.
Fitness features referred to in this chapter are all from the O2 objective,
described in Section 5.4.2.

Table 7.1.: Aggregate values for all artefacts.
Pleasant Interesting Random

AVG 3.256 3.048 2.550
SD 1.079 1.140 1.152
MED 3 3 2

7.2.1. Fitness Configuration Class Grouping

Grouping the results from the survey based on their fitness configuration
class gives the results found in Table 7.2. Most of the average scores for
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pleasantness do not big variations when grouped in this manner. Every
fitness configuration scores slightly above 3 in terms of pleasantness, which
is the absolute neutral in terms of the scale used for scoring.

Table 7.2.: Aggregate values, grouped by fitness configuration.
Pleasing Interesting Random

F0 AVG 3.141 2.843 2.603
SD 1.067 1.126 1.132
MED 3 3 2.5

F1 AVG 3.138 2.693 2.334
SD 1.161 1.095 1.148
MED 3 3 2

F2 AVG 3.273 3.222 2.847
SD 1.122 1.115 1.161
MED 3 3 3

F3 AVG 3.088 3.300 2.773
SD 1.053 1.137 1.138
MED 3 3 3

In terms of interestingness, the F2 and F3 configurations outperform the
other two. This is possibly due to the material the configurations were
extracted from. F2 and F3 are extracted from what could be considered
major "hits", while F0 is made up of arbitrary numbers. F1 is from a very
simple nursery rhyme, that has very few notes, a very small pitch range,
and very simple rhythms. F1 also scores the lowest of all configurations
in terms of randomness.
The highest average score obtained in randomness by any of the config-

urations, is also the one considered the most pleasant, this is however not
consistent with other classes discussed in this section.

7.2.2. Seed Material Class Grouping

If the results are grouped by their seed material class, some interesting
numbers appear. In terms of previous research Freitas and Guimarães
[2011b], the genetic material provided for initialization has a profound
impact on the output of the algorithm. In this grouping, the class that is
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provided melodies for generating the initial population does indeed score
highest in both pleasantness and interestingness, and the lowest in ran-
domness. This class consists of 6 artefacts, where all of them converged
to a single solution. It is also noteworthy that 5 out these 6 melodies
obtained a perfect fitness score. No other experiments achieved perfect
fitness scores. This is likely caused by the fact that the fitness configur-
ations use, were extracted to match the respective melodies 100%. This
means that immediately after initialization of the algorithm, the pheno-
types of the seeded melodies already have the maximum score in the O2
objective.

Table 7.3.: Aggregate values, grouped by seed material type provided for
intialization.

Pleasing Interesting Random
S0 AVG 3.190 3.000 2.740

SD 1.059 1.110 1.090
MED 3 3 3

SM AVG 3.253 3.274 2.359
SD 1.250 1.189 1.179
MED 3 3 2

SC AVG 3.142 2.988 2.700
SD 1.024 1.110 1.181
MED 3 3 3

It might seem that perfect fitness scores result in the best evaluations,
but computing the correlation between the fitness scores and the evalu-
ation results reveal that there likely is none. Table 7.4 holds the correlation
coefficients, and Figure 7.1(a), 7.1(b) and 7.1(c) show the relating scat-
terplots. It is worthy to note that all but one of the generated artefacts
scored over 17.0 in the O2 objective, when the maximum is 18.0.
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Table 7.4.: Correlation between O2 fitness score and survey score.
O2 Fitness Score

Pleasant -0,0175571708
Interesting 0,0558052797
Random -0,1665035061

7.2.3. Random Seeds Class Grouping

This classification shows the lowest amount of differentiation in scores
between the configurations. This is interesting as it implies that the al-
gorithm is able to reach similar solutions regardless of noise in the starting
material. Also note that all the phenotypes that were develop without any
musical material started with ten randomly generated individuals. The
scores can be found in Table 7.5

Table 7.5.: Aggregate values, grouped by the amount random individuals
provided for initialization.

Pleasant Interesting Random
R0 AVG 3.307 3.096 2.535

SD 1.074 1.140 1.178
MED 3 3 2

R10 AVG 3.229 3.022 2.558
SD 1.082 1.141 1.140
MED 3 3 2

7.2.4. Phenotype Size Class Grouping

If you look at the values by grouping the results of the phenotype size class,
described in Table 7.6 it might appear at first glance as if pleasantness falls
as size increases, and the opposite with randomness. This might be caused
by varying sample sizes in terms of artefacts. The "8" class group consists
of 14 artefacts, the "12" group of 6, and the final "16" group of a single
individual.
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(a) Pleasantness

(b) Interestingness

(c) Randomness

Figure 7.1.: Scatterplots of O2 fitness to survey average scores.
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Table 7.6.: Aggregate values, grouped by the phenotype sizes.
Pleasant Interesting Random

8 AVG 3.357 2.916 2.412
SD 1.090 1.121 1.142
MED 3 3 2

12 AVG 3.089 3.300 2.773
SD 1.053 1.137 1.138
MED 3 3 3

16 AVG 2.878 3.317 3.098
SD 0.872 1.150 1.020
MED 3 3 3

7.2.5. Rank 1 Size Grouping

Out of the 21 runs of the algorithm, 11 of them converged on a single non-
dominated phenotype. Five of these converged to a single fitness perfect
solution. All of these artefacts were created by seeding a melody, the SMx
configurations, and already had a perfect score in the O2 objective. In
the remaining cases the first non-dominated front held between 4 and 22
phenotypes.

Table 7.7.: Aggregate scores, grouped by convergence to a single pheno-
type.

Pleasant Interesting Random
Single AVG 3.367 3.085 2.409

SD 1.113 1.156 1.141
MEDIAN 3 3 2

Multiple AVG 3.134 3.007 2.703
SD 1.028 1.122 1.147
MEDIAN 3 3 3
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7.2.6. Pattern Feature Correlations

Features 15 through 18 in objective O2 are the pattern matching fea-
tures developed for this thesis. The correlation coefficients between their
achieved fitness score and survey score are located in Table 7.8.

Table 7.8.: Fitness pattern features correlation to survey average scores.
Feature no. 15 16 17 18
Pleasant -0.0091 0.2087 0.3126 0.1269
Interesting 0.6956 0.7528 -0.6158 0.0916
Random 0.4218 0.3405 -0.4068 0.0603

While feature 18, the positional rest measure repetitions feature, shows
no sign of correlation, the other three do. Feature 15, 16 and 17, have a
statistically significant correlation to the interestingness score at a 99.5%
confidence interval. Feature 15 and 17 have a statistically significant cor-
relation to randomness at a 95% confidence interval. Feature 15 and 16,
Whole Measure Distinctness and Half Measure Distinctness respectively,
correlate positively with interestingness, which means the more distinct
patterns appear, the more interesting the pieces are perceived. It is very
doubtful that this correlation is of a linear nature, but within the range
of values for the fitness features obtained by the artefacts it might be.
All the feature scores were below 0.5. Feature 17, labeled positional
rhythmic measure repetitions, has a negative correlation to both interest-
ingness and randomness. These correlations are quite confusing. When
feature 17 gets close to its maximum value, it means that a very rigid
structure is observed, where the exact rhythmical patterns are repeated
at given positions later in the piece. A low value merely the means the
absence of the exact patterns it detects.

7.2.7. Participant Sentiments and Qualitative Observations

The sentiments collected from the optional comment boxes in the survey
can provide some interesting opinions. The sentiments can be found in
Appendix A, accompanied by the sheet music and scores obtained in the
survey. Enjoyment and appreciation of music is a very subjective ex-
perience. A self-labeled "Consumer" left a comment on the last question:
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"Not that much good music", and had consistently given scores below 2
for pleasantness and interestingness. Another participant commented on
piece S3-S0-R10-12.1: "Some weird melody beats... Some times very stand-
ard, but other times suddenly weird. ", and scored it 4 in randomness, but
rated it at 5 in interestingness and 4 in pleasing. By looking at the sheet
music, which is located in Figure 7.2, you can see that it has some un-
usual rhythmical phrasings in measure two and three, which are also not
repeated later in the piece. This sentiment is somewhat re-iterated by
another participant who wrote: "First 10 seconds sound like an intro, but
after that is a bit more expected".

Figure 7.2.: Generated music by the first F3-S0-R10-12.1 run.

Pieces that were generated without melodic seeds, sported rhythmical
phrases that were critiqued at times. This was however not always the
case. A comment on piece F2-S0-R10-8.1 states: "Very good melody line.
Nice rhythm on that. " A possible cause of this is that the features that
measure rhythms do not reward good rhythmical phrases, nor punish bad
ones. Something interesting to note, is that all the pieces generated with
a melodic seed were recognized by at least one participant, often more.
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8. Discussion and
Conclusion

This chapter discusses the obtained results, and makes a conclusion in
Section 8.2, and finally, suggestions for future works is proposed.

8.1. Discussion

In the introduction, two goals were introduced for this Master’s Thesis:

G1: Develop a Novel and Useful Algorithm for Composition

G2: Develop an Automated Fitness Function

Whether these these goals were reached or not, will be discussed in the
following sections.

8.1.1. G1: Develop a Novel and Useful Algorithm for
Composition

In terms of novelty, systems within algorithmic composition that make
both harmonization and melody is not unprecedented. Evolutionary al-
gorithms that generate either melodies or harmonization are fairly com-
mon, but developing both in tandem is not common. They are usually
developed sequentially.
Developing a multiple-objective evolutionary algorithm (MOEA) for co-

evolving melody and harmonization provided quite a few obstacles. Simply
making the algorithm converge on a set of solutions that were acceptable
to humans proved challenging. The state space of possible solutions for
genotypes of eight measures is of size 10205 in magnitude, and 10410 for
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8. Discussion and Conclusion

16 measures. This is caused by developing both melody and harmoniza-
tion at the same time, as the state space grows multiplicatively. For eight
measures of melody exclusively, the state space is 34 orders of magnitude
smaller than when combined with a harmonization. Also the use of 1

16
notes increase the state space tremendously. The size of the state space
could be dramatically reduced by only allowing notes of 1

8 or bigger. How-
ever, supporting such a large state space is necessary to allow a wide range
of musical expressions.

Allowing the algorithm to create such a huge variety of phenotypes can
aid in evaluation of fitness functions on a general basis, in relation to
human perception of music. If the algorithm is capable of representing
what could be considered as "bad music", it is possible to validate fitness
functions and features if they guide the search towards what is considered
"good" solutions, or "good music".

Having to apply the step of the algorithm that removes fitness duplicates
is something that could be considered a weakness of the implementation,
as it confines the algorithm to explore a relatively small part of the state
space on any given run. If several equal best solutions in a maxima do
exist, only one will be kept. Removing genetically identical phenotypes,
instead of fitness identical, might be more desirable. It would also allow the
algorithm to escape local maxima more frequently. However, this was not
feasible with while working with four fitness objectives computationally.
Not eliminating fitness duplicates also has the benefit of providing options
to anyone who is using the algorithm. Having a set of slightly different
solutions, that is considered equally good, could provide any user of the
implementation with more ideas, more inspiration.

No correlation was found between the O2 fitness objective scores and the
human evaluations of the music. While little difference, in the perceived
quality of the pieces, was found between the artefacts that maxed out
the O2 score, and the ones that didn’t. I does not mean that this is
not desirable. Getting closer to the maximum score of the O2 objective
could mean getting closer to a desired result, if a user was to tweak the
parameters to their own preference.

While the algorithm did generate pieces of music that were appreciated
by participants of the study, it was not able to do so consistently. The
results proved to be slightly more pleasant and interesting when melodic
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8.1. Discussion

material was provided for initialization, but no evidence was found as to
conclude why.

8.1.2. G2: Develop an Automated Fitness Function

Integrating four fitness functions on a new model, spurred quite a few un-
foreseen interactions between themselves and the model. The most appar-
ent problem with co-evolving melody and harmonization was to the lack of
harmonic context needed by the individual fitness objectives. Pitches that
are outside of the musical key are not punished in the melodic harmonic
objective, as long as the same pitch occurs in the chord of the measure.
The same is also true for the harmonization objective, where a non-scale
pitch in a chord is not punished if it occurs in the melody. The result of
this interaction was that both the melody and harmonization disregarded
the musical key it was supposed to compose in, and generated very atonal
pieces.
While this is not inherently wrong, a goal of this project was to im-

plement an algorithm that can generate useful music for humans. If the
algorithm was not able to work within a given key, it loses its usefulness
in many situations. The harmonization objective was made very rigid in
terms of punishing chords that were not triads in the key, to mitigate the
atonal tendencies. If a slightl atonal piece is desired, then non-scale pitch
quanta feature can be set to a higher value, to provide an atonal context
to the harmonization functions. The harmonic progression objective had
two rules developed to encourage variation of chord roots in the generated
pieces, namely the "excessive chord repetition" rule and the "harmonic
variety feature". Without any of these features, the generated phenotypes
would often consist of one single chord, being repeated for every meas-
ure. Limiting repetitions by punishing three consecutive repetitions of the
same chord root, caused the music pieces to vary between two chords.
This incited the addition of the harmonic variety rule.
The F1 objective for melodic harmony does not take rhythm or note fre-

quency into consideration, and would award melodies flooded with notes,
as they would satisfy its constraints. This objective is based on a fitness
function that was intended for altering melodies with fixed note positions,
and did not work entirely as intended. The second melodic objective, F2,
mitigates this problem with the note frequency feature. It does however

59



8. Discussion and Conclusion

disregard local distribution of notes. As a consequence, some measures in
the generated music may contain melodic phrases with a very high note
density, that might appear "out of place" to the listener. This is supported
by the evidence that artefacts generated with a melody for initialization
generally performed better, where an even and purposeful distribution of
the notes appear naturally. Overall, the fitness objectives lack features or
rules that reward "good" rhythmical phrases.

Three of the four developed fitness features for pattern matching on
melodies showed strong correlations to the interestingness score, where
whole measure distinctness and half measure distinctness both showed
a positive correlation. Whether or not more distinct patterns cause the
music to be more interesting, is inconclusive, but one could be inclined
to believe that more variation in the melodies cause them to be more
interesting.

The positional rhythmic measure repetitions feature has a negative cor-
relation to interestingness. This feature is very strict when matching pat-
terns to positions. Any variation in the rhythm will be interpreted as a
mismatch. It only accepts perfect matches of the rhythmical phrases. It is
important to note that a fitness value of 0 does not mean that no pattern
structure occurs, but rather a distinct absence of the particular structures
it detects. The correlation might be caused by the fact that this feature
creates a boring pattern as it gets closer to 1. Altering this feature to
accept less than perfect matches might cause it evaluate to 1 for a large
amount of melodies, and having a target value for the feature would be
meaningless.

A few of the participant sentiments stated that an artefact was "not
good", or even bad. There was however more positive sentiments than
bad ones. If the average scores for pleasantness, interestingness and ran-
domness are considered together with the sentiments, it is reasonable to
conclude that the fitness functions are able to measure human aesthetic
to some extent.
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8.2. Conclusion

A novel approach to generating musical material with a multi-objective
evolutionary algorithm was implemented, along with a set of 43 fitness
measures split into four objectives. The implementation was then used
to produce 21 pieces of music with different configurations, which were
evaluated in a study.
The implementation is not able to write music that is perceived by every-

one to be aesthetically good consistently. The best results were achieved
when some melodic material was supplied during the initialization phase.
Features that evaluate rhythmical phrasing is lacking in the fitness func-
tions, and the performance of the system could possibly improve by intro-
ducing new features that guide the search of the algorithm towards good
rhythmical phrasing.
While the implementation shows that it is feasible to develop both har-

monization and melodies in parallel with an evolutionary algorithm, the
benefits of doing so are not prominent besides the ability for both har-
monization and melody to adapt to each other during generation.
Due to the large search space and relatively high amount of fitness

objectives, computational viability was hard to achieve. To do this, only
short musical ideas were developed, and a scheme for removing duplicates
in the population was implemented, which might not be desirable.
Overall the algorithm will probably never write any musical masterpiece,

but evaluations made by participants of the study indicate that some of
the generated pieces were subjectively enjoyable. This suggests that the
implementation could be useful in terms computer assisted composition.

8.3. Possible Future Work

Efforts could be made in developing fitness features that concern melodic
phrases, especially rhythms. Toussaint [2010] suggests ways of generat-
ing "good" musical rhytms, and Toussaint et al. [2012] contains a variety
features and concepts that could be adopted.
The most interesting prospect, in regards to future work, is to integrate

a feasible–infeasible two-population approach to the implementation [Kim-
brough et al., 2008]. This was recently done in the MetaCompose system
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Scirea et al. [2016]. By adopting this approach, all the fitness objectives
but the F2 objective could be used as the constraints for separating the
populations, allowing other objectives to be introduced to the algorithm.
One such objective could work on rhythms.
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A. Sheet Music and
Sentiments

In this appendix, the sheet music for the generated music can be found,
along with the sentiments and achieved average evaluations from the sur-
vey as [pleasant, interesting, random].

Figure A.1.: Sheet music for F0-S0-R10-8.1.

Survey scores: [3.757, 2.865, 2.054].

F0-S0-R10-8.1 sentiments:

• "Quite OK, It is just very hard to judge music from just 16 seconds.
As a listener, I mentally add a temporal context."
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A. Sheet Music and Sentiments

Figure A.2.: Sheet music for F0-S0-R10-8.2.

Survey scores: [3.302, 2.860, 2.372].

F0-S0-R10-8.2 had no sentiments.
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Figure A.3.: Sheet music for F0-S0-R10-16.

Survey scores: [2.879, 3.317, 3.098].

F0-S0-R10-16 sentiments:

• "Very interesting!"
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A. Sheet Music and Sentiments

Figure A.4.: Sheet music for F1-S0-R10-8.1.

Survey scores: [3.182, 2.500, 2.523].

F1-S0-R10-8.1 sentiments:

• "well the end chord was unexpected..."
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Figure A.5.: Sheet music for F1-S0-R10-8.2.

Survey scores: [3.324, 2.514, 2.351].

F1-S0-R10-8.2 sentiments:

• "Fantastic last chord."
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A. Sheet Music and Sentiments

Figure A.6.: Sheet music for F1-SC1-R0-8.

Survey scores: [3.378, 2.689, 2.111].

F1-SC1-R0-8 sentiments:

• "Standard rhythm on the melody line."

• "Seems like a 4 year old plays the piano."
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Figure A.7.: Sheet music for F1-SC1-R10-8.

Survey scores: [3.548, 2.619, 1.976].

F1-SC1-R10-8 sentiments:

• "A bit standard."

• "This was quite boring. The chord progression felt unsurprising all
the way and the melody didn’t bring much to it either."
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A. Sheet Music and Sentiments

Figure A.8.: Sheet music for F1-SM1-R0-8.

Survey scores: [3.195, 2.561, 2.000].

F1-SM1-R0-8 sentiments:

• "Seems like a pretty classic progression."

• "Lisa gikk til skolen", 5 times.
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Figure A.9.: Sheet music for F1-SM1-R10-8.

Survey scores: [3.333, 2.667, 1.769].

F1-SM1-R0-8 sentiments:

• "Is there maj7 chords making it a lot more interesting??"

• "Lisa gikk til skolen", 7 times.
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A. Sheet Music and Sentiments

Figure A.10.: Sheet music for F2-S0-R10-12.1.

Survey scores: [3.439, 3.512, 2.902].

F2-S0-R10-12.1 sentiments:

• "Very good melody line. Nice rhythm on that."

• "Awesome!"

• "Melody is very nice! It is more alive in both ascending/descending
manner and tone length. Chords are more boring and didn’t create
much tension or enthusiasm."

• "Despite the scores, it sounds it could have been a human pianist
(under severe influence of substances)".
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Figure A.11.: Sheet music for F2-S0-R10-12.2.

Survey scores: [3.067, 3.044, 2.844].

F2-S0-R10-12.2 sentiments:

• "Such a sweet melody!"

• "Very nice melody line! The high note did everything! (along with
a good chord progression)."
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A. Sheet Music and Sentiments

Figure A.12.: Sheet music for F2-SC2-R0-12.

Survey scores: [2.762, 2.833, 3.333].

F2-SC2-R0-12 sentiments:

• "A bit off beat?"
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Figure A.13.: Sheet music for F2-SC2-R10-12.

Survey scores: [3.163, 3.442, 3.000].

F2-SC2-R10-12 had no sentiments.
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A. Sheet Music and Sentiments

Figure A.14.: Sheet music for F2-SM2-R0-12.

Survey scores: [3.955, 3.318, 2.136].

F2-SM2-R0-12 sentiments:

• "The chord progression was a little weird."

• "Happy and nice."

• "Beatles", two times.
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Figure A.15.: Sheet music for F2-SM2-R10-12.

Survey scores: [3.650, 3.350, 2.275].

F2-SM2-R10-12 sentiments:

• "Nice!"

• "Min første kjærlighet?"

• "Sounded like Beatles."
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A. Sheet Music and Sentiments

Figure A.16.: Sheet music for F3-S0-R10-12.1.

Survey scores: [3.227, 3.273, 3.023].

F3-S0-R10-8.1 sentiments:

• "Pretty random phrases."

• "Some weird melody beats... Some times very standard, but other
times suddenly weird."

• "First 10s sounds like an intro, but after that is a bit more expected."

• "Far from adequate, however still quite impressive for a machine."
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Figure A.17.: Sheet music for F3-S0-R10-12.2.

Survey scores: [2.610, 3.073, 3.390].

F3-S0-R10-12.2 sentiments:

• "A little messy with the melody and chords."

• "Some stuff i really didn’t expect here..."

• "First 7 sec is sweet classical sounding with a nice minor chord where
I suspected major. Then the beat felt like it stumbled, and it all got
a bit random. And from there on it never settled on one idea."

• "It sounds like some keys are hit without intention (like a beginner
playing)."

• "Poorly written piano play."
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A. Sheet Music and Sentiments

Figure A.18.: Sheet music for F3-SC3-R0-12.

Survey scores: [3.065, 3.239, 2.978].

F3-SC3-R0-12 sentiments:

• "I like this one! The chords are far more interesting and the length
and pace of the notes are more dynamic."

• "A bit boring rhythm on the melody line."

• "Sounds quite human-like, but a few details gives it away; i.e. a num-
ber of very short notes. These details have no link back to (Western)
musical tradition (not Bach, not Palestrina, not even popular music
tradition)."
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Figure A.19.: Sheet music for F3-SC3-R10-12.

Survey scores: [2.929, 3.095, 2.786].

F3-SC3-R10-12 had no sentiments.
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Figure A.20.: Sheet music for F3-SM3-R0-12.

Survey scores: [3.341, 3.500, 2.295].

F3-SM3-R0-12 sentiments:

• "Pokemon and Britney spears?"

• "The melody has a pretty big range of tones. And it has some nice
dissonances!"

• "This is "Baby One More Time" by Britney Spears, with some notes
off here and there."

• "Oooops! But of course a very good progression."

• "Sounds like it is a little bit off at 9 seconds."

• "Britney Spears", four times.
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Figure A.21.: Sheet music for F3-SM3-R10-12.

Survey scores: [3.326, 3.605, 2.186].

F3-SM3-R10-12 sentiments:

• "Oh baby baby, in minor this time."

• "Britney with Baby One More Time, just a little better."

• "Britney Spears", ten times.
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