
Real Time Intersection Management
using a Multiobjective Evolutionary
Algorithm

Håkon Ørstavik Dissen
Jostein Aune Solaas

Master of Science in Computer Science

Supervisor: Keith Downing, IDI
Co-supervisor: Kazi Shah Nawaz Ripon, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Problem description

The aim of this masters thesis is to explore the usage of a Multiobjective Evolutionary
Algorithm (MOEA) to manage an intersection in real time. In order to achieve this an
intersection manager that divides the time into single time steps has to be implemented.
The vehicular behaviour in single time steps can then be optimised by themselves. There
is no direct way to map optimisation objectives in single time steps to overall performance.
Different optimisation objectives, with different goals in terms of overall performance, will
be used at the same time. The performance evaluation of the intersection manager will be
performed in a simulator.

Supervisor: Keith Downing
Co-supervisor: Kazi Shah Nawaz Ripon

i

ii

Summary

The purpose of this thesis is to investigate the real time use of a Multiobjective Evolution-
ary Algorithm (MOEA) for intersection management.

Intersection managers (IMs) using deterministic methods for real time intersection man-
agement of autonomous vehicles, have been shown to drastically improve traffic flow and
congestion over conventional traffic lights. Others, using evolutionary algorithms or other
search algorithms, have found methods for approaching the optimal sequencing of vehi-
cles in single states. However, a structured literary review revealed no previous studies
on the combination of these methods. In this thesis we used an MOEA to optimise single
time steps based on several objectives, and then examined how this translated to behaviour
over a continuous time frame.

We have proposed and implemented an IM. In order to experimentally test it a simulator
was first adapted for our purposes. Splitting the continuous problem into several discrete
time steps introduced the need for two time step parameters. In order to ensure a fair
evaluation of the IM, and to study the effects of different time steps, the IM was tested with
different values for those parameters. The IM was then tested for specific scenarios, and
for continuous operation with different amounts of traffic. To compare the performance
of the IM in different settings four performance metrics were used: throughput, mean
evacuation time (MET), total loss of kinetic energy and the amount of collisions.

After finding reasonable values for the time step parameters, the IM was shown to route
traffic through the intersection with an MET close to the measured optimal value for low
and medium amounts of traffic. However, for high amounts of traffic, the complexity of
optimising each state becomes too large. As a consequence, the MOEA failed to avoid
collisions within the given amount of evaluations. The total kinetic energy lost was found
to be dependent on the time step parameters, where smaller values lead to a greater loss of
kinetic energy.

iii

Sammendrag

(This is a Norwegian translation of the abstract)

Formålet med denne avhandlingen er å utforske bruken av en multiobjektiv evolusjonær
algoritme (MOEA) til håndtering av autonome biler i kryss.

Bruk av en ”intersection manager” (IM) som benytter seg av deterministiske metoder
for håndtering av autonome biler i kryss i sanntid, har i tidligere forsøk vist å forbedre
trafikkflyten betydelig sammenliknet med vanlige trafikklys. I andre studier, der man har
brukt evolusjonære algoritmer eller andre søkealgoritmer, har man utviklet metoder for å
tilnærme seg optimal sekvensering av biler i enkelttilfeller. Et strukturert litteratursøk fant
ingen tidligere studier der man hadde kombinert disse to metodene. I denne oppgaven
benyttet vi en MOEA for å optimalisere enkeltsteg basert på flere mål, og så sammenliknet
vi hvordan dette påvirket systemets oppførsel over tid.

Vi har foreslått og implementert en IM. For å kunne utføre eksperimentelle tester av denne
benyttet vi en simulator modifisert for å dekke våre behov. Å dele det kontinuerlige prob-
lemet i enkelte tidssteg introduserte behovet for to tidsstegparamtere. For å sikre en rettfer-
dig evaluering av vår IM, og for å kunne studere effektene av forskjellige tidsstegstørrelser,
ble denne testet med forskjellige verdier for de to tidsparameterene. Deretter evaluerte
vi vår IM ved ulike, spesifiserte betingelser, og for kontinuerlig operasjon med ulike
trafikkmengder. Vi brukte fire forskjellige ytelsesmål: gjennomstrømming, gjennomsnit-
tlig evakueringstid, totalt tap av kinetisk energi og antall kollisjoner.

Etter at rimelige verdier for tidsstegparameterene var funnet ble det vist at vår IM, ved
små og mellomstore mengder trafikk, er i stand til å styre trafikken gjennom krysset med
en gjennomsnittlig evakueringstid tilnærmet den målte optimalverdien. Men ved større
trafikkmengder vokser kompleksiteten av å optimalisere hver enkelttilstand for fort. Som
en konsekvens av dette fant vi at vår IM ikke alltid er i stand til å finne en løsning uten en
kollisjon innenfor tidsrammene. Den totale mengden tapt kinetisk energi ble vist å være
avhengig av tidsstegparameterene, der lavere verdier forårsaket et høyere tap av kinetisk
energi.

iv

Preface

This thesis concludes our master’s degree in Computer Science at The Norwegian Univer-
sity of Science and Technology (NTNU). The assignment was given in January 2016 and
completed in June 2016.

We would like to thank our supervisor Kazi Shah Nawaz Ripon, PhD, for his valuable
guidance and support throughout the project. In addition, we would like to thank Professor
Keith Downing and Professor Pauline Haddow for their help with the project.

Håkon Dissen and Jostein Solaas

v

vi

Table of Contents

Problem description i

Summary iii

Sammendrag iv

Preface v

List of Tables xi

List of Figures xiv

Abbreviations xv

1 Introduction 1
1.1 Background and motivation . 1
1.2 Research Goal and Questions . 2
1.3 Contributions . 3
1.4 Method . 3
1.5 Overview . 4

2 Background 5
2.1 Intersection management . 6

2.1.1 Communication . 6
2.1.2 Virtual traffic lights . 7

2.2 Autonomous Intersection Management 8
2.2.1 Vehicle sequencing . 10

2.3 Evolutionary Algorithms . 11
2.3.1 Multiobjective Optimisation Problems 13
2.3.2 Multiobjective Evolutionary Algorithms 14
2.3.3 NSGA-II . 15

vii

2.4 Structured literature review . 16
2.5 Traffic Simulators . 17

2.5.1 Features . 17
2.5.2 Simulators . 18

3 Methodology 21
3.1 System overview . 21

3.1.1 The Intersection Manager . 23
3.1.2 The vehicles . 24
3.1.3 Spawning vehicles . 27
3.1.4 Time modelling . 28
3.1.5 The Simulator . 29
3.1.6 Observing the IM . 30

3.2 MOEA details . 31
3.2.1 Objectives . 31
3.2.2 Genetic encoding . 33
3.2.3 Variation . 33
3.2.4 Choosing a solution . 34

3.3 Measuring performance . 34
3.3.1 Metrics . 34
3.3.2 Collisions . 35

3.4 Selecting the parameters . 35

4 Results and Discussion 37
4.1 Experiment 1: Looking at time steps . 37
4.2 Experiment 2: Continuous traffic . 45
4.3 Experiment 3: Scalability . 47
4.4 Experiment 4: Objectives . 49
4.5 Experiment 5: Conflicting objectives . 52
4.6 Discussion . 54

4.6.1 Independent time step modelling 54
4.6.2 Scaling . 57
4.6.3 The objectives . 59
4.6.4 Real world application . 60

5 Conclusion 63
5.1 Goal evaluation . 63
5.2 Contributions . 65
5.3 Further study . 66

Bibliography 69

A Experiment 1 scenarios 73

B Experiment 5 scenarios 77

C A collision 81

viii

D Running the software 83

ix

x

List of Tables

2.1 The search terms used for the structured literature review 16

3.1 The specifics of the vehicle classes . 25
3.2 A measured relationship between the spawn rate, vehicles

hour and vehicles
300s . . . 28

3.3 A summary of the parameters used in the experiments. 36

4.1 The time step values used in Experiment 1 Part 1. 40
4.2 The time step values, in seconds, used in Experiment 1 Part 2. 43
4.3 IM performance metrics for different levels of traffic in experiment 2. . . 46
4.4 Table showing the Pareto-set found by the EP when run on a simple sce-

nario generated with a spawn rate of 0.4. 53
4.5 Table showing the Pareto-set found by the EP when run on a complex

scenario generated with a spawn rate of 0.8. 53
4.6 Table showing the Pareto-set found by the EP when run on a complex

scenario generated with a spawn rate of 0.9. 54

xi

xii

List of Figures

2.1 VTL in action . 7
2.2 Predefined vehicle trajectories . 9
2.3 An intersection divided into grids . 10
2.4 The standard EA loop . 12
2.5 An example Pareto-front . 13
2.6 FCFS routing cars through the intersection 19

3.1 System overview . 22
3.2 The spawn zones . 24
3.3 A visual representation of the difference between tsim and tmain. 25
3.4 Predefined vehicle trajectories . 26
3.5 The inner intersection . 27

4.1 A sample starting point for a simulation in experiment 1 39
4.2 A deadlock . 41
4.3 How tmain affects collisions by amount. 41
4.4 How MET changes with tmain. 42
4.5 How loss of kinetic energy changes with tmain. 42
4.6 Collisions for different values of tsim 43
4.7 MET when varying tsim for different tmains 44
4.8 Loss of kinetic energy varying with tsim 44
4.9 A plot showing how MET varies in regards to spawn rate. 47
4.10 A plot showing how total kinetic energy lost varies in regards to spawn rate. 47
4.11 Demonstration of how the IM decides to brake the vehicles arriving from

south so that the vehicles arriving from the west can pass. 48
4.12 Evaluations needed to avoid collisions 49
4.13 Comparison of MET between different objectives and spawn rates 51
4.14 Comparison of total kinetic energy lost between different objectives and

spawn rates . 51
4.15 An example of an unsolvable state . 55

xiii

4.16 The number of evaluations needed to avoid collisions based on spawn rates 58

A.1 A sample low-traffic scenario . 74
A.2 A sample medium-traffic scenario . 75
A.3 A sample high-traffic scenario . 76

B.1 The simple scenario used in experiment 5. 78
B.2 The first complex scenario used in experiment 5. 79
B.3 The second complex scenario used in experiment 5. 80

C.1 A collision state . 81

xiv

Abbreviations

IM = Intersection Manager
MOEA = Multiobjective Evolutionary Algorithm
EA = Evolutionary Algorithm
GA = Genetic Algorithm
MOP = Multiobjective Optimisation Problem
V2V = Vehicle to Vehicle
V2I = Vehicle to Intersection
CSG = Compatible Stream Groups
FG = Fundamental mini-groups
DM = Decision Maker
EP = Evolutionary Processor
MET = Mean Evacuation Time

xv

xvi

Chapter 1
Introduction

In this work we have studied the field of intersection management. We present a method
for real time intersection management by using a Multiobjective Evolutionary Algorithm
(MOEA). The method involves dividing the continuous problem of intersection manage-
ment into independent time steps. The combined independent behaviour in these time
steps make up the continuous behaviour of the proposed method.

This chapter is the introductory chapter. Section 1.1 provides an introduction to the back-
ground and motivation of this thesis. Then, section 1.2 explains the research goal and
questions before section 1.3 sums up our contributions to the field and 1.4 gives a brief in-
troduction to the research method. Finally, section 1.5 provides an overview of the whole
thesis.

1.1 Background and motivation

The main motivation of intersection management is to reduce the amount of time vehicles
spend in intersections as a way to ease traffic congestion, mostly in urban scenarios. Dres-
ner et al. [8] state that, in 2008 Americans were spending an average of 46 hours a year
per capita in congested traffic, up from 16 hours in 1982. In the EU the total cost of traffic
congestion was estimated at 1% of total GDP in 2010 [18]. Another goal is to reduce the
total emissions of cars idling by, or traversing an intersection.

No matter the focus of the optimisation, collision avoidance is always essential in inter-
section management approaches. Restricting vehicles to non-conflicting trajectories, like
many current intersection management implementations [24, 25, 22] (including regular
traffic lights), puts some restrictions on available methods, but ensures the safety of all the
cars involved. The introduction of autonomous vehicles allows for fine-level control and
predictability of vehicle behaviour [8]. Therefore, this work will impose no restrictions

1

Chapter 1. Introduction

on vehicles sharing the space in the intersection, other than the fact that they should not
collide. It can be interesting to look at the problem in the context of multiple intersections
working together, but we will focus on single intersections.

Most of the current methods for intersection management, presented in chapter 2, use de-
terministic algorithms for continuous intersection management or explore the use of more
stochastic methods for optimising single scheduling scenarios. This work proposes and
investigates an intersection manager (IM) based on a hybrid of those two concepts. It
looks at splitting the continuous problem of intersection management into smaller inde-
pendent scenarios, then it explores the usage of an MOEA to find solutions for each sce-
nario. This work also investigates how those scenarios together translate into continuous
behaviour.

1.2 Research Goal and Questions

Goal statement: The goal of the project is to investigate the real time use of a Multiob-
jective Evolutionary Algorithm (MOEA) to manage traffic through an intersection.

Most of the current literature on intersection management is focusing on using MOEAs
to optimise parameters for traffic light intersections, or specific algorithms for real time
control. Our goal is to look at the effectiveness of real time usage of an MOEA given
full control of the speeds of all incoming cars. In this work, effectiveness is evaluated by
looking at four different performance metrics, namely:

• Throughput. Defined as the amount of cars that pass through the intersection during
a simulation.

• The mean evacuation time (MET). MET is a measure of the average time the passing
vehicles spend traversing the intersection.

• The amount of collisions. There is no inherent guarantee that the proposed IM will
avoid collisions. Therefore, exploring what scenarios, and internal shortcomings,
that cause collisions is important.

• The total kinetic energy lost. This is done by measuring the total kinetic energy lost
from reducing the speeds of vehicles. Other losses of energy are not considered.

In order to give the MOEA low level control of traffic in the intersection the vehicles
will be modelled as travelling along a predefined path, with a speed determined by the
MOEA.

Research question 1: What are the effects of using independent time step modelling to de-
termine actions for the system, when looking at effects at an infinite time horizon?

The goal of this research question is to study how splitting the large problem of organising
the cars over time into smaller time steps affects performance. It is hard to predict whether
the algorithm can be tuned to avoid problems that could occur over time, such as single
lane starvation or deadlocks. Here we will also look at the effects of using different values

2

1.3 Contributions

for the time step sizes: tmain that determines for how long each solution is deployed and
tsim that specifies how much extra time beyond tmain each solution is evaluated for. These
variables are further described in section 3.1.1.

Single lane starvation is when one lane is left unreasonably long without releasing any
cars. For instance, this could occur if other lanes have more cars; dominating in terms
of throughput. Deadlocks are when the vehicles have positioned themselves so that they
cannot move without colliding.

Research question 2: How does the complexity of solving the independent time steps
scale with the amount of cars present in the intersection?

The more vehicles present within the control range of the intersection, the higher the com-
plexity of the solution space the MOEA has to traverse. We wish to investigate the scaling
of the system, and see if it is plausible for real time usage in the real world.

Research question 3: How do the chosen objective functions contribute to the effective-
ness of the intersection manager?

When using independent time step modelling there is no direct connection between the
objectives being optimised for and the overall performance metrics. Understanding how
the chosen objectives contribute to the overall effectiveness of the IM, and under what
circumstances they conflict, is important to understand why and how it fails/works. The
optimisation objectives chosen for the IM are available in section 3.2.1.

1.3 Contributions

The field of intersection management has changed in the advent of autonomous vehicles.
As they provide much better support for implementing central optimal intersection routing
strategies this thesis contributes a method to that end. In addition, because the proposed
method of dividing the continuous problem into smaller discrete time steps has never been
attempted for intersection management (to the authors’ knowledge), this thesis aims to
provide insight as to whether that is a good approach to intersection management.

1.4 Method

In order to answer the research questions posed in the last section we are going to imple-
ment an IM that will use an MOEA to find vehicle speeds in accordance with the given
objectives. The speeds will be deployed for a given amount of time, before the process
repeats again. The IM will have the ability to explicitly control the speed of every car at
every time step. A simulator, outlined in section 3.1.5, will be used in order to evaluate
the fitness of each solution.

The goal of the IM itself is to optimise its performance in terms of the performance metrics.
There is no direct relation between the performance metrics, evaluated over time, and

3

Chapter 1. Introduction

what is being optimised for. Therefore it was decided to use several distinct objectives,
each objective seeking to better the behaviour of the IM at a single independent time
step. In order to avoid convergence toward a solution adapted for just one of these partial
objectives, and instead get a more diverse Pareto-set for decision making, an MOEA was
used instead of a regular Evolutionary Algorithm.

Complete replication of real world scenarios is not a goal of this work. Therefore, the sim-
ulator used to evaluate solutions will also be used to simulate the real world. No simulator
was found to meet all of the requirements in this project. Thus, we have created a modified
version of the AIM4 simulator [1]. The vehicles will be modelled as single entities travel-
ling along predefined paths (explained in section 3.1.2), where the only variable parameter
is a target speed that the vehicle should accelerate/decelerate to. Vehicle collision and con-
trol after traversing through the intersection is considered beyond the scope of this thesis.
So are the interactions between multiple intersections. The intersection here meaning the
control area of the IM, defined in section 3.1.1.

1.5 Overview

This thesis is divided into five chapters. Chapter 2 explains the background and related
work in intersection management. It also discusses MOEAs, and why they are relevant for
this thesis. Chapter 3 revolves around the technical decisions made for the implementa-
tions in the experiments, in addition to the methodology used in later experiments. Chapter
4 describes the experimental setup in detail. It also provides the results of the experiments
and discusses the findings. In chapter 5 we present a conclusion of our studies, and make
suggestions for further research.

4

Chapter 2
Background

This chapter explains the background of intersection management and how the field has
evolved to its current state.

Intersection management is a problem that has been tackled in many different ways. As
such, the methods presented in this chapter have very different approaches, and assume
different levels of capabilities of the drivers of the cars. Recent methods often assume the
driver to be autonomous [8, 25, 22], and will therefore allow new and creative approaches
that are otherwise impossible when the vehicles are under human control. However, the
autonomous approaches all build on ideas and results from research on human drivers, and
have to be understood in that context.

A problem with the research into intersection management as it stands is that the papers
presented do not use the same system for benchmarking their results. They use different
simulators with different parameters and often completely different simulation models.
The result is that they can be difficult to compare based on evidence of performance. A
common method of measurement is comparison to regular traffic lights, but no standard
for normal has been defined. However, the methods presented differ so greatly that a
comparison of basic methods is still worthwhile. This chapter will also point out important
inspirational sources for this thesis.

After discussing intersection management, we will discuss Evolutionary Algorithms (EAs),
Genetic Algorithms (GAs), Multiobjective Optimisation Problems (MOPs) and MOEAs.

As described in section 2.4, very little related work was found. To the authors’ knowl-
edge, no complete related projects exist. The methods outlined in section 2.2 are the most
relevant projects found for this thesis.

5

Chapter 2. Background

2.1 Intersection management

Perhaps the most common way of managing busy intersections, aside from explicit right
of way rules or roundabouts, is by traffic lights. Fixed time cycles are the simplest method
of traffic light operation.

In 1981 a system called SCOOT (Split Cycle Offset Optimisation Technique) [13] was
introduced. SCOOT allows regular traffic lights to adapt to incoming traffic with sensors
along the road. While SCOOT is an improvement over the normal timed cycles approach
it is old and does not take advantage of modern vehicle to vehicle communications. It also
relies on infrastructure in the intersection to sense the locations of cars, even though new
cars may know their own location.

Any method based on traffic lights guarantees collision safety as long as all vehicles ad-
here to the rules of the intersection, and no external effects (such as weather) act on the
vehicles. This sets a standard for safety that other methods will have to tangent or beat
in order to be considered viable. We find it unlikely that the public will adopt a new ap-
proach to intersection management if it can not be shown to guarantee safe traversal of
intersections.

2.1.1 Communication

All of the intersection management approaches in this chapter base themselves on some
sort of communication. Two different communication paradigms are most common: ve-
hicle to vehicle (V2V) , and vehicle to infrastructure (V2I). V2I may also be referenced
as vehicle infrastructure integration in some literature [25]. The actual workings of such
communication protocols are beyond the scope of this thesis, but the main principles are
relevant. In V2I, all vehicles communicate with a central server that can make decisions
in regards to intersection management or simply relay messages safely between the cars.
The disadvantage of V2I is that every intersection has to have some sort of physical in-
frastructure, severely limiting the ease of deployment. In contrast, V2V allows vehicles
to communicate with each other and requires no central infrastructure. This removes the
requirement for a central server, but introduces complexity in terms of vehicle communi-
cation. Researchers have come up with effective methods for organising vehicle ad-hoc
networks [20], allowing control systems to be managed by the cars internally [17]. Vehicle
ad-hoc networks in this context means a network that exists only for a limited amount of
vehicles that need to communicate, where vehicles are added to the network as they ap-
proach the area or group affected, and are taken out as they leave. These networks can be
used to manage the traffic for a given area, without requiring further infrastructure, such
as a central server.

6

2.1 Intersection management

Figure 2.1: VTL in action. The yellow car, being the closest to the intersection, has been chosen as
the leader. It broadcasts a green light for conflicting lanes and a red light for its own lane.

2.1.2 Virtual traffic lights

The introduction of V2V allows cars approaching intersections to communicate. VTL
(Virtual Traffic Lights) [10] is a method that clearly shows some benefits from V2V. The
system works by virtualising a regular traffic light intersection. V2V is key for this ap-
proach, because it allows the cars to communicate instructions to each other over an ad
hoc network at the intersection.

The cars involved in an intersection elect a leader amongst themselves. The leader then
takes control of the intersection and broadcasts what signal affects each incoming road at
what time [10]. How each agent communicates the phase of the light-signal to its driver
is undetermined, but a system is proposed where each car has a monitor on the dash-
board showing the driver the current state. This could easily be extended to autonomous
drivers.

VTL can be broken into three simple steps [10]. First, the vehicles approaching an inter-
section communicate amongst themselves to determine a leader for an intersection, unless
one has already been chosen. Second, the leader assigns his incoming lane a virtual red
light (this information is distributed over the network), and determines the light timings
for the other lanes based on information gathered from other vehicles. Finally, when the
leader determines that he is allowed to pass through the intersection, he passes the role of
leader to any car that is waiting in the front of any queue with a red light. If no other car
is present no new leader will be assigned. The process starts over when a new set of cars
are approaching the intersection. See figure 2.1 for a visual representation of the first and

7

Chapter 2. Background

second step.

The implementation relies on the following assumptions [10, 17]:

• All vehicles are DSRC [14] devices, meaning they can communicate with each other.

• All vehicles share the same digital road map, guaranteeing that they agree on where
in the world they are.

• All vehicles are equipped with GPS, guaranteeing that they share a global time and
can know their position with lane-level accuracy.

• The security, reliability and latency of the communication is assumed to be adequate
for VTL.

When compared to an unintelligent IM, VTL improves upon two main areas:

• When the traffic is low the wait time is significantly reduced; no vehicles have to
wait to cross an empty intersection.

• When there are high amounts of traffic in intersections that do not have a traffic
light, VTL can dynamically create one.

According to Ferreira et al. [10] VTL improves traffic-flow by more than 60% over a
simulation of regular traffic lights in Porto, Portugal. A subsequent study found throughput
improvements over regular traffic lights by up to 35% in a simulated single intersection
[17].

VTL is interesting in the scope of this work because it shows that infrastructure normally
existing in the physical intersections can be moved onto virtual infrastructure on an ad hoc
network between the vehicles. However, the use of traffic lights in itself is a limiting factor.
The security of VTL is compromised because two leaders may be elected at once due to
packet loss. However, in a realistic simulation it has been shown that this can quickly be
mitigated [17].

2.2 Autonomous Intersection Management

Autonomous vehicles introduce capabilities far beyond the capabilities of human drivers.
A very important feature of these new vehicles, in regards to the problem of intersection
management, is the capabilities of cars to sense their location in the world and use sophis-
ticated measures to plan their paths of travel [8]. This allows the intersection controller
much finer control over the specific vehicles, opening up for more advanced methods of
IM.

Because autonomous vehicles have such fine control of their movements newer Autonomous
Intersection Management (AIM) research [8, 25, 22] use a system of intersection organ-
ising where cars have to travel along predefined trajectories. These trajectories traverse
the intersection from one source lane to one destination lane. Trajectories may cross each
others paths, and such trajectories are referred to as conflicting trajectories. Approaches

8

2.2 Autonomous Intersection Management

Figure 2.2: The three possible trajectories the vehicle may follow when travelling from the south
bound lane.

differ in whether they allow simultaneous traversal of conflicting trajectories. Trajectories
are also referred to as streams. There are no duplicate trajectories. Figure 2.2 shows the
trajectories of the southbound lane in a simple four way intersection.

FCFS (based on the first-come first-served principle of the same name) is an intersection
control mechanism proposed by Dresner and Stone of the AIM project at the University
of Texas at Austin [8]. It relies on a central IM that delegates time in an intersection,
known as reservations, to vehicles that wish to travel through on predefined trajectories.
The IM communicates with the vehicles over V2I. Unlike other systems [25, 22], vehicles
wanting to travel along conflicting trajectories are allowed to occupy the intersection at
the same time. In order to avoid collisions the IM breaks the centre of the intersection
down to a square grid (as shown in fig 2.3). This grid, over time, can be viewed as a shared
resource between the vehicle agents [22]. The problem now becomes allocating this shared
resource. If a vehicle wants to pass through it asks the IM if it may pass at a certain time
and at a certain speed, it asks for a reservation, and is allowed if the IM can verify that it
will not collide with any other traversals it has scheduled. The collision check is done by
the vehicles reporting their planned paths and checking if any of the squares the vehicle
is going to occupy will be occupied by another at the same time. Just like a hotel holding
reservations, the agents do not need to know the system with which the manager approves
reservations, just whether they have been given one or not. The hotel manager will accept
reservations based on who asks first, unless there is a conflicting reservation where the
car in front of the asking car has reserved a time of passage after the one attempting to
be scheduled. It is important to note that the system does not do anything in particular to
achieve the optimal ordering of the cars. However, the authors suggest that the IM could
delay its responses in order to evaluate the ordering.

FCFS has been shown to significantly outperform traffic lights, stop signs, and overpass

9

Chapter 2. Background

Figure 2.3: What grid cells a car travelling south at a speed of 2 cells per time step is going to
occupy.

-regulated intersections in terms of vehicle delay [8, 7].

The method proposed in this thesis builds upon some of the ideas introduced in AIM, most
importantly the idea that the cars can simulate their own behaviour based on parameters
individual to each car, and having cars travel along predefined paths. In addition, the fact
that autonomous vehicles can perform maneuvers, thought too dangerous for humans, in
order to save time makes the field of AIM more viable.

2.2.1 Vehicle sequencing

As seen previously in this chapter AIM is generally managed by some explicit protocol;
either implemented in a central controller or distributed among the agents passing the inter-
section. While these solutions to AIM gave improved throughput performance compared
to standard actuated traffic lights, their solutions do not necessarily provide the optimal
vehicle sequencing.

Wu et al. [21] showed that vehicles passing an intersection can be modelled as an ordering
problem, and propose a searching algorithm to find the optimal order for scenarios of
vehicles approaching an intersection. While they show that their algorithm is, in fact, able
to find the optimal ordering they admit that the computational expense of doing so is too
high for the system to be put to use in a real-world scenario. Yan et al. [25] build on
their work and propose a genetic searching approach that also takes into account other
properties of vehicle sequencing in order to reduce the complexity of the problem.

Yan et al. [25] starts by looking at the intersection as a set of stream groups. Stream
groups are defined as sets of vehicle trajectories. They then go on to divide the streams
into subgroups known as Compatible Stream Groups (CSGs), which consist of trajectories

10

2.3 Evolutionary Algorithms

that do not intersect, guaranteeing that vehicles will not collide as long as only one CSG
is active at a time. In a simple two-lane four-way intersection two simple CSGs would be
the paths going straight through, while perpendicular to each other. Each stream may be
present in more than one CSG.

The vehicles in each group are divided into smaller groups known as Fundamental mini-
groups (FGs) that will pass the intersection as one entity. These groups derive from prop-
erties obtained from optimal solutions and will therefore not jeopardise the optimality of
the problem [23, 24]. Combining the cars into FGs reduces the complexity of the problem,
allowing the GA to find a solution faster [25].

Now that the problem has been simplified into the ordering of passages of FGs Yan et al.
[25] propose using a GA (described in section 2.3) to determine a good order. They use the
overall evacuation time (the time until the last vehicle has exited the intersection) of each
solution as an objective function and determine pairings via the roulette wheel. In addition
to the GA they propose a dynamic programming approach that is sure to find the optimal
solution, albeit in a very long time (dynamic programming uses 6.24s for a 100 vehicle
problem while the GA finds a reasonable solution in 0.119s). The use of the dynamic
programming algorithm is primarily to benchmark the solutions found by the GA. For the
worst case scenario, consisting of four lanes each way in a four-way intersection, the GA
is able to get within 10.6% of the optimal solution after only 0.642 seconds [25]. The
best case scenario of ten vehicles in two lanes can be solved by the GA in 0.075 seconds,
yielding optimal results.

It is important to note that this approach does not use more than one objective function,
namely overall evacuation time. There is no consideration of other important objectives,
such as environmental concerns.

2.3 Evolutionary Algorithms

Search and optimisation problems often present with large and complex search spaces.
EAs are used to find a good solution to these problems, without exploring the entire so-
lution space. They work by evolving new solutions from old ones, and favouring the
selection of those that perform well in terms of some fitness function. The concept is
based on the Theory of Evolution. Although an EA can be used to quickly navigate a large
subspace in order to get good solutions it is not guaranteed to find the optimal ones. In
this thesis, one of the main goals is to see if it is possible to find a suitable solution for the
crossing, without having to wait too long. Suitable here refers to a solution that, to some
extent, satisfies the objectives put forth in the methodology chapter (section 3.2.1). Too
long is the notion that any real time system is constrained by time limits in its domain. This
makes EAs ideal for this application, as they can find good, not optimal, solutions pretty
fast. Section 3.1.4 explains how the time constraint is handled in this work. In accordance
with the research questions the solution should also incorporate some way of dealing with
multiple objective functions. This section will explain the advantages of using an MOEA
to control the intersection, as explained in chapter 3.

11

Chapter 2. Background

Figure 2.4: The standard EA loop

EAs need to be able to maintain a population of solutions, and have a way to mate two
solutions with each other. Individuals also need to be able to reproduce and create new
instances through genetic inheritance. In addition, some variance is needed to evolve new
traits[11].

Most EAs follow a standard loop [11], as shown in figure 2.4.

1. Generate an initial population. There are many ways of doing this, but a good start-
ing point often ensures a diverse population.

2. Evaluate and store the fitness of each member of the population.

3. Select the members of the population that should be able to reproduce based on the
individuals’ fitness. A higher fitness should allow for a higher chance of reproduc-
tion.

4. Create new individuals based on the pairings from the last step. These should inherit
their traits from their parents.

5. Introduce small variations in the new individuals (mutate) so that new traits may
emerge.

6. Unless the stopping condition is met, repeat from step 2.

The stopping condition depends on the problem, and may be determined by some goal
fitness or some time of execution. Unless the objective function evaluating fitness for each
individual has no upper bound, the stopping criteria can be hard to determine for certain

12

2.3 Evolutionary Algorithms

problems.

GAs [12] are a special case of EAs where the GAs perform the selection and mating
procedure explained earlier by storing members of the population as genotypes. These
genotypes can have a multitude of representations, but generally they are comprised of
some vector of values.

2.3.1 Multiobjective Optimisation Problems

EAs, as explained earlier in this chapter, focus on optimising the solution for a single
objective. It is often the case that the optimisation should consider several different objec-
tives, creating a multiobjective optimisation problem(MOP). An MOP is a problem where
multiple objective functions (denoted as the vector F (x)) should be minimised with re-
gards to a vector x, where x is a solution (also known as a decision vector). In addition
we can also have a set of constraints, here denoted as C. See equation 2.1 for a formal
definition [26].

minimise
x

F (x) = [f1(x), . . . , fi(x)]

subject to c ∈ C.
(2.1)

0 0.5 1 1.5 2 2.5 3 3.5 4 f2(x)

f1(x)

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.5: The Pareto-front of the problem described by minimising the functions of equation 2.2.
Any solution below the line is considered invalid.

Objectives often conflict with each other, where if one objective improves it may repress
another. The result of this is that there exists several solutions to an MOP, each called a

13

Chapter 2. Background

Pareto optimal solution. A solution is said to be Pareto optimal if there exists no other
solution that dominates it, where domination is defined as follows [15]:
Given two vectors of objective scores of solutions a and b; a dominates b (b ≺ a) if there
is no objective in which b has a better score than a and a has a higher score than b in at
least one objective.
The Pareto-set refers to the set of all Pareto optimal solutions. These solutions form a
Pareto-front when projected in the objective space [26].

Consider the following example MOP (used in [5], originally from [16]). We wish to
minimise the following functions f1(x) and f2(x) with regards to x:

f1(x) = x2

f2(x) = (x− 2)2
(2.2)

The variable bounds are set to x ∈ [−10, 10]. The Pareto-front (shown in figure 2.5) for
this problem lies in the range x ∈ [0, 2]. Any value on the line is non-dominated, as no
other value for both functions can improve upon one objective, while not impeding the
other. All values above the line are dominated by some value on the line. All values under
the line are invalid, as they are not possible to obtain from the problem.

2.3.2 Multiobjective Evolutionary Algorithms

When attempting to find solutions for an MOP it can seem reasonable to simply test out
all possible combinations of variables, and measure the score of each objective. However,
because many such problems (like finding an optimal speed for every vehicle in an inter-
section) have a rather large search space it is often not reasonable to do so. In this work
especially, the time constraints for finding a solution are so strict that it is completely out of
the question to simply run through all the alternatives. MOEAs, like regular EAs, present
an efficient method of finding a set of good, if not optimal, solutions to a problem within
a reasonable time frame.

The main difference between an MOEA and a regular EA is in the way that different
solutions are compared. It is intuitive to simply select some method of linearly combining
the objectives [11] with some weighting factor (shown in equation 2.3) resulting in a single
score for each member of the population. However, this method does not consider the often
non-linear combination of objectives, nor does it consider early dominance from solutions
tuned to only one of the objectives. In order to improve upon this, several MOEAs [5, 11,
26] rank solutions based on position in terms of domination and distance from neighbours
in the solution space.

f(x) =
∑
i

wifi(x) (2.3)

MOEAs produce a whole set of valid solutions [11], not just a single best solution. There-
fore it is important to have some way of selecting a good candidate from the set of possible
solutions. This is normally done by some decision maker (DM) (often a human operator),

14

2.3 Evolutionary Algorithms

so that good trade-offs can be evaluated. However, this work requires the whole procedure
to be automatic, and will therefore require an autonomous DM. In a paper published in
2007 Ferreira et al. [9] propose a method of determining the single best solution after be-
ing given the set of non-dominated ones by comparing the solutions via a metric known as
stress. In this thesis we implemented a very simple DM described in section 3.2.4.

In this thesis we will be relying on a genetic MOEA, namely NSGA-II [5]. Selecting a
good genotype is important in this work. An example genotype is the one used by Yan
et al. [25] to encode the sequence of vehicles passing the intersection. Their best results
(ignoring computation time) came from using a binary encoding. Selecting a good rep-
resentation, so that pairing two solutions via crossover can make a better individual, is
important. Simplicity and computation speed are also important, however. We will there-
fore use a continuous encoding scheme where the values for each car are sorted in terms
of when they spawned. Provided we use some sort of sequential crossover method, this in-
creases the probability that vehicles likely to interact more will maintain their relationships
after a crossover.

2.3.3 NSGA-II

There are many MOEA algorithms. NSGA-II was chosen because it is easy to understand,
has few parameters, and is very well known. NSGA-II was introduced in 2002 by Deb et.
al. [6]. When it was introduced one of its main features was the low complexity1 of sorting
solutions, but that is not a focus in this thesis. Further strides in the field of MOEAs have
been made since then, but that is beyond the scope of this thesis. This section will describe
the MOEA chosen, and highlight some of its relevant features.

The main loop of NSGA-II is similar to the one of regular EAs described in section 2.3.
The generation of an initial population, and the scoring of each solutions fitness, is done on
a problem by problem basis. In this work the initial population is random and the fitness
consists of multiple objective scores (the objectives are defined in section 3.2.1). In addi-
tion, mutation and the mechanics of reproduction are problem specific. The methodology
chapter (section 3.2) describes the approach used for those in this project.

The main difference between a regular GA and NSGA-II is the way it does parent selection
and population selection. Both operations require two metrics to score each individual
(i) in the population known as the nondomination rank (irank) and crowding distance
(idistance).

The irank of an individual is the Pareto-front that the individual belongs to, starting from
0. In other words, when looking at a population all the immediately non-dominated indi-
viduals have rank 0. When you remove those with rank 0 from the pool whatever solutions
are then non-dominated have a rank of 1. This continues until no solutions are left in the
population.

The crowing distance of a solution is calculated in order to favour solutions that lie fur-
ther away from others in the search space, thereby making it more likely to find a more

1O(MN2), where N is the amount of solutions in a population and M is the amount of objectives

15

Chapter 2. Background

uniformly spread out Pareto-front. It is calculated by summing up the normalised dis-
tance in the search space to a solutions two closest neighbours of the same non-dominated
front for each objective. The distance is infinite if no neighbour exists to one side. The
normalised distance between two individuals (I1, I2) for one objective is defined in equa-
tion 2.4, where f is one of the objective functions and fmax and fmin are the respective
minimum and maximum currently found of that objective.

distance(I1, I2, f) =

∣∣∣∣f(I1)− f(I2)fmax − fmin

∣∣∣∣ (2.4)

When comparing two individuals for retainment in the population or parent selection
(which is done by binary tournament selection) they are first ordered by the individuals’
irank, ties are then broken by idistance. NSGA-II has elitism (it always retains the best
individuals), where retainment is done on a combination of both the parent generation and
the new individuals.

2.4 Structured literature review

In order to familiarise ourselves with the field we started with an informal exploratory
search on Google Scholar. This lead us to the works of Dresner et al. [7]. After reading
their articles on FCFS and looking at their cited literature we familiarised ourselves with
the field, and started a more formal literature review process.

The search engines used were Google Scholar and the IEEE Xplore search engine. The
search terms, presented in table 2.1, were combined by combining the search terms in a
group with the OR operator. Those groups were then combined with the AND operator.
For example, a paper would be included in the search if it contained the terms ”Inter-
section”, ”Evolutionary algorithm”, ”Vehicle”, ”Autonomous”, ”Road” and ”Simulation”.
No articles from before 2006 were included.

Table 2.1: The search terms used for the structured literature review. Each row represents a search
term within each group.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Intersection
Evolutionary
Algorithm Car Autonomous Road Simulation

Crossing MOEA Vehicle Self-driven Traffic

Junction
Genetic
Algorithm

Multi Objective

After the search was completed the resulting articles were first filtered based on title. If
the title seemed related to the project the papers were filtered on abstracts. The process

16

2.5 Traffic Simulators

resulted in very few articles. The articles were then read, again filtering out some. In addi-
tion, when an article referenced literature that seemed relevant, those were also considered
regardless of their age. The process produced few related works; no projects were found to
use the same independent time step modelling. More literature was sourced from informal
searches.

2.5 Traffic Simulators

There are two applications for a simulator in this report. First, and most importantly,
we need a simulator when evolving solutions with an EA. The objective function scoring
each population will have to simulate the intersection. Then, collecting statistics such as
distance travelled, stoppage time, vehicle locations and loss of kinetic energy, in order to
give the population a score for further use in the traffic optimisation algorithm. Second,
we will use a simulator when reviewing the solution presented for traffic optimisation. The
results of this simulation will present the overall performance of our solution.

This section will discuss what features are important in our choice of simulator. Then we
will discuss several existing simulators and explain the choices made for this project.

2.5.1 Features

By using a simulator that has already been made and tested, we have the advantage of
not having to focus our work on the behaviour of autonomous vehicles in traffic. The
simulator should be able to control the cars in a reasonable way, with the only input being
the speed of the car. The low level properties of the cars, such as turning, acceleration and
deceleration will be factors considered in the simulator.

Communication between vehicles and the infrastructure is important in this project. The
simulator should provide the functionality to incorporate a central controller that can com-
municate with the cars in the intersection.

When calculating the score for the EA, we will need recorded data from the simulation.
The data should contain information on a per vehicle basis and performance score for the
whole intersection such as throughput.

Another feature we are looking for is modularity. We want to have the opportunity to incor-
porate our own code, modify the existing code and be able to review the code. This gives
the added advantage that the simulator does not have to include all the needed features,
instead we can implement them ourselves.

During testing of our system, we will need to use different setups for the simulation. Pa-
rameters such as size of the intersection(i.e. number of lanes), traffic density and speed
limit will be taken as input before each run.

We are not evaluating the simulators based on runtime speed. There is a lot to learn from
having a visualised representation of the intersection, where we can analyse the behaviour

17

Chapter 2. Background

of the vehicles. There might be an alternative to this that is a lot faster, that in turn would
make the MOEA a lot faster, but this is not the focus of our project.

2.5.2 Simulators

Several traffic simulators already exist [2, 3, 19]. These are being used to optimise traffic,
predict traffic in the future and test optimisation strategies. These simulators are made to
function for different environments and different areas of use. AIMSUN [2] and VISSIM
[19] are hybrids of microscopic and macroscopic simulators. This means that they simulate
larger areas than an intersection with lower details than microscopic simulators. For us this
means that the simulator can not simulate each car in detail. CORSIM [3] is a microscopic
traffic simulator, but the program is not made so that we can use our own code to control
the simulation.

The main factors against the simulators mentioned so far are:

• No modularity. They are made as a complete package, and therefore it is difficult
for us to add features.

• Complexity. Since they are made as a package, there are a lot of features we do not
want to use. We predict that the effort it would take to learn these simulators would
be better spent making our own.

• Licensing. These simulators are made as commercial alternatives to be sold to gov-
ernments/other infrastructure managers, so that they can create efficient road maps,
intersections and freeways.

The AIM project mentioned in section 2.2 provides the source code for the simulator they
use in their projects. The features of this simulator are as follows:

• Low level details. The simulator focuses on one or more intersections with a high
level of detail, i.e. it is a microscopic traffic simulator. Each car has its own rules
making it possible to control each car individually.

• V2I communication. The project uses communication between cars and a central
controller.

• Controlling vehicles. To solve the problem of controlling cars the simulator uses
a path following system, as described in section 2.2. The assumption is that each
car follows a predefined path, where the path is one lane into the intersection and
another out. The system does not deal with collisions outside the intersection. This
is reasonable, since the IM should only handle collisions inside the intersection.
Cars colliding outside of the intersection are ignored in the simulation, as this is
considered beyond the scope of the simulator [8].

• Input parameters. The parameters they use to initialise the simulation are: traffic
level(i.e. 1000 vehicles per hour per lane), speed limit, stopping distance before in-
tersection, number of east-bound/west-bound Roads, number of north-bound/south-
bound Roads and the number of lanes per road. These parameters cover the size of

18

2.5 Traffic Simulators

the intersection, the traffic density and speed limit as we mentioned in the section
2.5.1.

Figure 2.6: FCFS routing cars through the intersection, simulated on the simulator of the AIM
project.

As explained in section 3.1.5 this work will modify the simulator created in the AIM
project. Dresner et al. [8] introduced the concept of cars following predefined paths to
deal with the low level control of vehicles (shown in figure 2.6), and the AIM project
implemented an example of similar behaviour in their simulator. However, this had to
be reimplemented for this thesis. The vehicles in the simulator follow predefined paths in
order to relay their travel plans to the IM for scheduling, but they do not all follow the same
paths. The paths of the vehicles are dependent on their speed and other parameters. In
addition to this, the simulator also has the input parameters and the vehicle to infrastructure
communications needed in this work. The simulator lacks the ability to calculate the data
needed for our objective functions.

19

Chapter 2. Background

20

Chapter 3
Methodology

This section outlines the functionality of the system as a whole. The intersection manager
explained in this chapter is a hybrid of two approaches described in the background chap-
ter. It builds on the idea of predictable planned trajectories [8, 22], agreed upon between
the IM and the vehicles. The IM then, in a similar fashion to other intersection optimi-
sation methods [25, 22, 21], attempts to find a good solution for one state at a time. In
order to translate the behaviour in each state into continuous behaviour, and to give the IM
more explicit control of the vehicles in its control area, the IM is given direct control of
the target speed of each vehicle.

This chapter introduces the IM that was implemented for this thesis. First, there is a section
(3.1) describing the functional parts of the system. Second, a section (3.2) that describes
the MOEA setup. Finally, section 3.3 explains the performance metrics that the system
will be scored on in the experiments in chapter 4 before 3.4 sums up the experimental
parameters.

3.1 System overview

The goal of the system is to control the behaviour of cars in an intersection by controlling
the speed of each vehicle. The speed of each vehicle is optimised based on the objectives
specified in section 3.2.1. In order to achieve this we have implemented a system with a
central IM that communicates with each car. The system can be split into three main parts
(shown in figure 3.1). The IM, the Evolutionary Processor (EP) and the simulator.

The IM’s job is to read the current state of the physical intersection and pass that to the
EP so that it can develop a speed vector v. In the context of the EP each speed vector is
an individual; a solution to the problem it is trying to solve. It is important to note that
v is not a multi-dimensional vector specifying the speed of a single vehicle, but rather

21

Chapter 3. Methodology

Figure 3.1: A complete overview of the system. Grey rounded squares signify entities. Yellow
slanted rectangles are the information shared between them.

22

3.1 System overview

an n-dimensional vector describing the target speed of n vehicles (described in section
3.2.2). The vehicles travel along predefined trajectories, so their speed can be described
with one variable. A state consists of every piece of information needed to recreate the
current physical world, including vehicles and their current speeds, in a simulator.

The EP evaluates the individuals, using an MOEA described in section 3.2, by emulating
them in multiple instances of the simulator. Once the stopping conditions of the MOEA
are met (described in section 3.1.4) the DM (described in section 3.2.4) selects one of the
available Pareto-optimal solutions, before the IM is returned a speed vector. The IM then
sets the target speed of each car in the intersection in accordance with the solution. This
determines how fast the cars should travel for the next time step.

We assume that the vehicles are reporting perfect positions and speeds to the IM. This
means that the IM’s internal representation of the intersection is a perfect representation
of the real world. Then, as long as the simulator used by the EP is able to perfectly
simulate the real world, the resulting speed vector should produce a result identical to the
one that was simulated in the EP. Because we are using the same deterministic simulator
for representing the real world and evaluating the solutions, perfect reproduction between
the modelled world and the real one can be guaranteed.

3.1.1 The Intersection Manager

The IM is responsible for controlling the speed of the cars in the intersection. The control
area of the IM is defined as the whole intersection, including the spawning zones (see
3.1.3). The IM does not control the areas outside the intersection, nor does the EP consider
what happens there when evaluating objectives. The IM will only take new vehicles into
account when calculating a new solution. The vehicles are themselves responsible for
collision avoidance before they are under the control of the IM. Collision avoidance before
IM control is considered beyond the scope of this work. Therefore, such collisions are
avoided by not allowing two cars to occupy each spawn zone at the same time. The speeds
of spawning cars are also scaled so that the IM will have time to stop them before they
leave the spawn zone. The spawn zones can be seen in figure 3.2.

Communication between the IM and the vehicles is modelled as a two way system similar
to the V2I protocol explained in 2.1.1. In order to find a suitable speed vector the IM
gets all the relevant vehicle information from each vehicle. Once one has been found it
transmits back a target speed as according to the system specifications. The model does
not consider loss of data or transmission delays.

In order to remain consistent between the experiments the intersection itself never changes.
There are two lanes going in each direction, the same trajectories are always used, and we
never change the dimensions of the lanes or the cars. There is a global speed limit that all
cars must adhere to. This is always set to 25m/s, unless it is lowered to aid in the creation
of scenarios. Scenario creation is explained in section 3.1.3.

When managing the intersection the IM is concerned with two time step sizes. We call
these tmain and tevalulate. tmain is the lifetime of one solution in the real world; once

23

Chapter 3. Methodology

the EP has decided on a solution, that solution is used for the next tmain seconds, before
the EP is ordered to come up with a new solution. However, if the EP had only validated
the solution for t + tmain (where t is the current time) there are no guarantees that the
intersection does not end up in an unsolvable state 1. In order to guarantee that the IM
never approves a solution that is unsolvable the EP is also asked to evaluate the solutions
for an extra amount of time. This time is represented by the variable tsim. The total
amount of time that the EP evaluates each solution is then given by:

tevaluate = tmain + tsim (3.1)

Figure 3.3 shows the function of these time steps visually.

Because the state of an intersection can be incredibly complex, there is no simple way to
calculate the minimum value for tsim to keep the system safe. Different values for the
time parameters are explored in experiment section 4.1.

3.1.2 The vehicles

Before entering the intersection each car will decide on a path. The choice of path is
determined via a look-up table where cars say what lane they are in, and what lane they
wish to end up in. For every incoming lane there are two paths that end in either a turn or
going straight. This is shown in figure 3.4. After deciding on the path to follow the car
is not allowed to switch lanes or diverge from the path in any way. This path-following
behaviour ensures that the IM only has to regulate the speed of the vehicles. It also ensures
that the behaviour of the cars is predictable. This is important to ensure that the behaviour
of a combination of speed vector and state are consistent across multiple instances of the
simulator. In order to avoid the need for lane-changing, and to ensure that no vehicle must
deviate from its trajectory to reach its intended goal, they spawn in the path that terminates
at the vehicles goal. In a real world application this would entail that the vehicles need to
change lanes before reaching the control area of the IM.

1Unsolvable state means a state where a collision is unavoidable for the next tmain.

Figure 3.2: The eastern spawn zones. Each lane has its own. They are not to scale, and are much
smaller and further away from the intersection in the actual simulator.

24

3.1 System overview

Figure 3.3: A visual representation of the difference between tsim and tmain. tevaluate is the time
it takes for the cars to travel along both the solid blue and the dotted red lines.

When a car enters the intersection it will receive a message from the controller containing
the speed the car should maintain. The first message is received once the IM is ready;
at the next start of a tmain. Upon receiving a message the car will either accelerate or
decelerate until it has reached the provided speed. It may receive a new message before it
has reached this speed; the car should then change its goal speed to the new one. Vehicles
will accelerate or decelerate as fast as possible to reach their target speed.

Table 3.1: The specifics of the vehicle classes. These values are the same as used by Dresner et al.
[8].

Vehicle type Acceleration (m/s2) Deceleration (m/s2)

Van 3.08 -30.0
Sedan 3.25 -39.0
Coupe 4.50 -45.0
SUV 3.83 -39.0

In order to better simulate real-world conditions there are four types of vehicles: coupes,
vans, SUVs and sedans. They have slightly different sizes and acceleration/deceleration

25

Chapter 3. Methodology

Figure 3.4: The possible paths of travel when spawning in the left or right southern spawn points.
This pattern is repeated for all four incoming directions.

26

3.1 System overview

speeds. The differences in acceleration can be seen in table 3.1. Every type of vehicle has
the same mass.

3.1.3 Spawning vehicles

Spawning vehicles is done by spawn zones. Vehicles may only spawn in the simulator that
represents the real world. The EP assumes that no new vehicles need to be controlled while
a solution is deployed. The rate at which vehicles spawn is determined by the simulator
parameter known as spawn rate. In order for a vehicle to spawn two conditions have to be
met:

• The spawn zone must want to spawn a vehicle. How often this happens is deter-
mined by the spawn rate parameter.

• The spawn zone must not be occupied by another car. This is to make sure that no
collisions occur inside the spawn zones before the IM has control of the cars.

Figure 3.5: The inner intersection is displayed in red. Car B is counted as having evacuated the
inner intersection. Car A has yet to enter it.

The spawn rate is a number between 0 and 1 that represents the probability that the spawn
zone is going to spawn a vehicle in one second in the real world simulator. This means
that there is no direct way to set the amount of vehicles arriving in vehicles

hour . The initial
speed given to a vehicle as it spawns is dependent on the amount of time left of the current
time step. The IM can only take control of a new vehicle when a new time step starts.
Therefore, to avoid cars spawning into unsolvable states, the speed of the new vehicle is
set so that it is possible to stop it before it exits the spawn zone. This makes the vehicles

hour

27

Chapter 3. Methodology

dependent on the size of tmain. A measured relationship where collisions are ignored, and
cars evacuated as fast as possible is shown in table 3.2 for tmain = 1.5s. This table also
includes a measure of vehicles

300s , which would be the expected throughput in section 4.2 if
all vehicles could pass through the intersection while maintaining the speed limit.

Table 3.2: A measured relationship between the spawn rate, vehicles
hour

and vehicles
300s

. It was generated
by running the simulator for one hour with each spawn rate, ignoring collisions and evacuating cars
from the spawn zones and intersection as fast as possible. vehicles

300s
was included to allow comparison

with the results in the experiments.

Spawn rate vehicles
hour

vehicles
300s

0.1 2972 247.67
0.2 5529 460.75
0.3 7688 640.67
0.4 9478 789.83
0.5 11234 936.17
0.6 12746 1062.17
0.7 14233 1186.08
0.8 15570 1297.50
0.9 17064 1422.00
1.0 21822 1818.50

In order to compare different configurations of the system there is a need for reproducible
scenarios in the simulator. We have solved this in two different ways, depending on the
experiment and its goals. The first way is the one previously described in this section.
We simply re-run the experiment with different parameters and the same spawn rates for
a long time. However, when more accurate reproducibility is needed, as in section 4.1,
we have precomputed scenarios. These scenarios are created by running the simulator for
a given amount of time, with known good values, until a set amount of cars have been
spawned into the system. The scenarios are then manually inspected to make sure that
no unsolvable state is present. For instance, when wanting to test with a high amount
of cars the system is set to spawn cars until 40 cars are present, before leaving the inner
intersection (as shown in figure 3.5). A sample scenario can be seen in figure 4.1. If it is
observed that we are unable to create scenarios with a certain amount of cars because the
cars are successfully evacuated too fast we lower the speed limit in order to evacuate cars
more slowly. This has the side effect that no cars in the generated scenario will start with
a speed that is faster than the speed limit used. The IM used in the experiments is free to
accelerate the cars up to its own speed limit.

3.1.4 Time modelling

Some simplifications have been made when modelling real time in the system. The need
for such simplifications arose because outside variables, such as hardware and computing
time, were not considered. The first simplification is that we consider the calculations done

28

3.1 System overview

in the controller, by the EP, as instant. This means that the simulation of the real world
must stop and wait for the EP to calculate the speed for each vehicle. This can be justified,
and relies on the assumption that the system has a way of evaluating what the state of the
intersection will be at a given time in the future (tfuture = tcurrent + tmain). The time it
takes the IM to evaluate the future state, here given as tcompute, also has to be significantly
smaller than tmain. If the time of the intersection is currently tcurrent and the controller is
currently employing the solution obtained for tcurrent, it can, using the simulator, obtain
the state that the intersection will be in at tfuture. Because the state at tfuture is known
the IM may start processing a solution for tfuture at tcurrent. This shows that there exists
an amount of time (tcomputation) given by:

tcomputation = tfuture − (tcurrent + tstatecalculation) = tmain − tstatecalculation (3.2)

, where tstatecalculation is the time it takes the IM to calculate the next state. As long as
tstatecalculation < tmain it follows from equation 3.2 that tcomputation > 0 . Therefore
there exists some amount of solution evaluations that the EP has time to perform. The
actual amount of evaluations given realistic current hardware is beyond the scope of this
work.

We use a parameter (ev) to decide the computation time for the EP measured in the amount
of solutions evaluated. This provides the benefit of our controller not being dependent on
the hardware it runs on. It should however be noted, as evident in section 4.3, that the
actual evaluation time of a solution depends on the amount of cars present in the intersec-
tion. In order to keep the amount of ”time” given to the EP consistent across experiments
a global amount of evaluations per second (e

second) is set for each experiment. The amount
of evaluations per tmain of real time is then given by

ev =
e

second
∗ tmain (3.3)

3.1.5 The Simulator

There are two main applications for a simulator. First, and most importantly, for the EP
to work we need a simulator when evolving solutions with an EA. The objective func-
tions scoring each individual rely on simulations of the intersection. Then, statistics are
collected (see 3.2.1) such as distance travelled, throughput of inner intersection, vehicle
wait-time and total kinetic energy lost, in order to give the individuals in the population a
score for further use in the traffic optimisation algorithm. Second, the simulator is used to
simulate the real world. In a real-world implementation of the system the simulator would
only be used in the EP.

The simulator is a modified version of the AIM4 Simulator v1.0.3 (the same as used by
[7]). By adapting a simulator that has already been made and tested, we have the advan-
tage of not having to focus our work on the behaviour of autonomous vehicles in traffic.

29

Chapter 3. Methodology

The AIM4 simulator was chosen because it has support for implementing custom vehicle
behaviour. This allowed the implementation of trajectory-following behaviour, described
in 3.1.2. In addition, the simulator was written in Java, which made it possible to combine
with the chosen MOEA framework, as introduced in 3.2. The AIM4 simulator was avail-
able with source code, making it possible to investigate un-documented behaviour and to
modify. See Section 2.5.2 for more details about the choice of simulator. Unfortunately
the APIs provided by the simulator did not include much of the functionality needed for
this work, so large parts of it (besides the graphical presentation) had to be rebuilt. This
was also necessary to improve the speed of the simulator, as that was a much more impor-
tant feature in this project than the one for which the simulator was originally intended.
Any references to the simulator outside of this subsection refers to the one implemented
for this work.

The simulator is used to evaluate speed vectors for the EP in the following way. First, it
is given a state s0 to spawn from. Second, the simulator is given the speed vector it is to
evaluate. The simulator then relays the speed information to the vehicles and simulates for
a given time (tevaluate) before returning the relevant metrics for the objective functions.
Because the simulator has to be able to generate objective scores for a lot of different speed
vectors it was important to use a completely deterministic simulator. One guarantee of the
simulator is therefore that it will always end up in the exact same state when provided with
the same starting state and speed vector.

3.1.6 Observing the IM

Running the IM implemented in this thesis takes a long time. For example, one run with
the parameters used in section 4.2 and a spawn rate of 1.0 took 35 hours and 3 minutes2

to complete. A spawn rate of 1.0 is the worst case, as the simulator runs faster with
less vehicles. The speed of the real world simulation was too slow to manually observe.
Therefore, in order to manually observe the behaviour of the IM, there was a need to
create a system to record and replay the IM’s behaviour. This was done by storing each
state between time steps, and the speed vector found by the IM for that time step. After
the completion of an experiment, a simulator could then be instantiated from the states,
and the chosen solution to each state would be immediately available. Thus allowing for
continuous playback.

In addition, the graphical interface of the simulator was extended so that cars slowing
down were coloured red, and vehicles speeding up were coloured green (figure 4.1 shows
the simulator while active). This allowed us to make observations as to what vehicles were
being prioritised for traversal in which scenarios. Collisions were marked by colouring the
vehicles blue.

2On an intel i7 4770. Several computers were used to gather the data needed in this thesis.

30

3.2 MOEA details

3.2 MOEA details

We used The MOEA Framework [4] to implement the MOEA. This framework provides
several MOEAs. We will use NSGA-II (described in section 2.3.3). All objective functions
need to be minimisation objectives in this framework. Therefore, we will negate any
optimisation objectives to convert them to minimisation objectives.

The MOEA tries to optimise the speed of each car based on a given set of objective func-
tions. Given a population P of the MOEA and n cars each having a speed v, the vector for
the population will be represented as:

P = [v1,v2, . . . ,vn] (3.4)

where vi denotes a speed vector, as discussed previously in this chapter.

The elitism in NSGA-II is important. It ensures that a collision avoiding solution is avail-
able from the population when the stopping conditions are met, as long as the MOEA was,
at some point, able to find one.

3.2.1 Objectives

The objective function scores are calculated by simulating the behaviour of the cars in the
simulator and gathering data for the given tevaluate.

The optimisation goals for the MOEA are to maximise throughput in the inner intersection,
maximise the distance travelled for each car, minimise total stoppage time and minimise
total kinetic energy lost. The definitions of these are presented below. It is important
to note that while these objectives are important in terms of performance, they are not
the final metrics by which the system is measured. For performance metrics see section
3.3.

In order to choose one solution based on a weighted average (the method for choosing
a solution is described in section 3.2.4) every objective value is scaled between 0 and
1. This is done by finding the maximum value for the given objective, while ignoring
constraints, and dividing the objective score by the maximum value. Maximum objective
scores for distance travelled and throughput in the inner intersection are found by running
a simulation that ignores collisions with every vehicle speed set to the speed limit, then
reading the objective scores from that simulation. The maximum values for total kinetic
energy wasted and total stoppage time are found by running the simulator with all target
speeds set to 0.

Maximise distance travelled
In order to make the vehicles move as fast through the intersection as possible they
should move as far as possible in every time step. Therefore the goal of this objective
is to maximise the total cumulative distance travelled for all vehicles, represented as
minimising the negated distance travelled D. The concrete objective is as follows:

31

Chapter 3. Methodology

minimise D = −
∑
v∈V

distanceTravelled(v) (3.5)

where V is the set of all vehicles and distanceTravelled(v) is the distance travelled
by v in the last tevaluate.

Maximise throughput in inner intersection
This objective is also referred to as tiny throughput. Throughput is defined as the
number of cars exiting the inner intersection during a simulation. The inner in-
tersection is defined as the area not made up by the lanes (shown in figure 3.5).
Maximising this objective is important to get as many cars as possible through the
intersection, thereby avoiding congestion and deadlocks. The objective is defined
as:

minimise T = −n (3.6)

where n is the amount of cars that have vacated the inner intersection and T is the
negated total throughput.

Minimise total stoppage time
This objective is also referred to as the starvation objective. The goal of this ob-
jective is to minimise starvation. Starvation meaning the effect where a single car
is halted for a prolonged amount of time in order to let other cars pass. Because
every time step is considered individually as single problems an objective was set
up where the total stoppage time of each car that was also stopped in the considered
time step are added together. The equation below explains how the objective S is
calculated.

minimise S =
∑

s∈Vstopped

s (3.7)

where s is the total amount of time each vehicle has been stopped and Vstopped is
the set of stoppage times of all cars that have not moved in the considered tevaluate.
This does not violate the notion that the time steps are independent. The vehicles
carry the information about how long they have been physically stopped, and only
report a single value to the IM at each time step. The IM itself does not have to
remember anything.

Minimise total kinetic energy lost
This objective seeks to minimise the total amount of energy wasted, which is also
one of the global metrics that the system is scored on.

minimise E =

N∑
i=1

Ei (3.8)

32

3.2 MOEA details

where Ei is the kinetic energy lost in each car. Because we only want to look at
wasted kinetic energy Ei works out to the following:

Ei = max

(
1

2
m(v2end − v2start), 0

)
(3.9)

We know that the car will either decelerate or accelerate in order to match a given
speed in a simulation. This allows us to avoid looking at smaller time steps. Here,
vend is the speed of the vehicle at the end of the evaluation and vstart is the speed of
the vehicle at the beginning of the evaluation.

3.2.2 Genetic encoding

The speed of each vehicle in the intersection is represented by a real number (si). The
genotype is made up of an array of these numbers. This is equivalent to the speed vector
previously mentioned in this chapter.

v = [s1, s2, . . . , sn] si ∈ [0,SpeedLimit] (3.10)

where v represents the speed vector and si represents the speed for vehicle i.

The genotype is ordered so that new cars are appended on the right side; car i+1 spawned
right after car i. Based on the assumption that vehicles that spawn close to each other in
time are more likely to arrive at the inner intersection at similar times, this ensures that
cars that are likely to interact will be close in the genotype. This is beneficial as it allows
the evolutionary algorithm to solve problems occurring between a subset of cars, and then
keeping those solutions after crossover.

3.2.3 Variation

When individuals are picked for reproduction they are paired with another parent. The
outcome of the reproduction depends on two probabilities. The first being the crossover
rate(Pcrossover) and the second being the mutation rate(Pmutation). Given that a crossover
should be applied, the tail of the parents genome are switched from a random index. This
results in two new individuals based on both the parents. After crossover, the children
might mutate. Each si in the new individual has the probability Pmutation of mutating.
When a mutation occurs, a new speed is picked based on a random draw. The random
draw works as follows: A random number between -1 and the speed limit + 1 is generated.
If the number is below 0, it is set to 0. If the number is above the speed limit, it is set to
the speed limit. The reason we have these margins at each end, is to make sure there is a
nonzero probability of hitting both 0 and the speed limit.

For this work, the parameters have been set to:

• Pcrossover = 0.9

• Pmutation = 0.1

33

Chapter 3. Methodology

3.2.4 Choosing a solution

When the MOEA returns a Pareto-set, i.e. a population of several non-dominated solu-
tions, the problem of picking the preferred individual have to be solved in order to au-
tomate the system. In order to achieve this, we utilise a simple DM. A complex DM
was avoided in order to make it easier to understand the behaviour of the system as a
whole.

The non-dominated population is sorted based on two factors. Since the MOEA may not
have enough evaluations to find a solution where there are no collisions, the population is
first sorted on the number of collisions. Then, if the number of collisions are equal, each
remaining objective score is multiplied by their corresponding weight (α) and summed
up. This value is the secondary sorting option. In a run where there are no collisions, this
function prioritises the objectives based on the weights provided to the IM. As mentioned
in section 3.2.1 the objective scores are normalised based on the worst or best case score
of that objective.

3.3 Measuring performance

This section describes how the performance of the system is measured. All measurements
are taken from the real world simulator.

3.3.1 Metrics

The performance of the system is measured based on the following four factors. Some of
these factors are similar to the optimisation objectives, but are scored over longer periods
of time.

• Throughput: The amount of cars that pass through the intersection during a simula-
tion.

• Mean evacuation time (MET): The MET of all the cars. Evacuation time here means
the time it takes the car to leave the IM controlled zone completely. By running a
simulation ignoring collisions with the maximum speed set on each vehicle, the
optimal value for MET was determined to be 13.12s.

• Total kinetic energy lost. The same as the optimisation objective, just summed over
the whole time period.

• Amount of collisions. The amount of collisions that occurred during the simulation.
There is no distinction between types of collisions.

34

3.4 Selecting the parameters

3.3.2 Collisions

When cars collide, it is impossible to keep running the simulation and keep recording valid
metrics. Three ways of dealing with collisions were considered. First, an approach similar
to [7] where the collided cars would simply stop, and it would be up to the rest of the
vehicles to route around them, was considered. This was not a fitting solution, as one of
the premises of the proposed IM is that vehicles move along predefined predictable paths.
If cars are to be stopped in the middle of the intersection, and cars may not route around
them, the rest of the simulation would simply break down and the only usable result would
be the time it takes before a collision occurs.

Secondly, it was considered to simply remove cars that collide. Removing cars is positive
in the sense that they no longer count towards the measured MET, and can be ignored for
calculations of total kinetic energy lost. However, the resulting performance metrics would
be skewed very favourably when problematic cars are simply allowed to vanish.

Finally, it was decided to handle cars that have collided as still being active cars in the
intersection, but ignore the physics between cars that have collided. The cars are allowed
to pass through each other in order to clear them from the intersection. The EP will ig-
nore the collision occurring between the colliding pair for the following time steps, but
still count other cars colliding with the ones that are collided. This approach was used
because the goal is to measure the number of collisions that occur, and not the EPs ability
to separate cars that already occupy the same space. The performance scores are still af-
fected by this approach, but they should only be affected in the positive sense. Therefore,
observing both a rise in MET and collisions leaves the increase in MET open to other
interpretations.

3.4 Selecting the parameters

Table 3.3 gives a summary of the parameters used in the experiments. The system was
tested multiple times, with the spawn rate set to 0.5, tmain and tsim to 1.5s and given
25000 evaluations, with different values for Pmutation, Pcrossover, population size and the
objective weightings in order to find values that worked well. The values represented in
table 3.3 were selected as they were found not to cause collisions, and produce acceptable
values for MET and total kinetic energy lost.

The amount of evaluations
second was set based on two criteria. First, like for other parameters

the IM performed reasonably well in terms of performance metrics for a medium amount
of cars. Secondly, running the IM takes a long time. Therefore, the amount of evaluations
had to be limited to a reasonable amount in terms of computation time to make the amount
of experiments in chapter 4 feasible.

35

Chapter 3. Methodology

Table 3.3: A summary of the parameters used in the experiments.

Parameter Value Notes

Pmutation 0.1
The probability that the speed of one vehicle
is mutated.

Pcrossover 0.9 The probability of crossover.

Population size 100 The population size used for the MOEA.

tmain 1.5s
The amount of time the IM deploys each solution.
Different values are explored in section 4.1.

tsim 1.5s
The amount of time the EP evaluates a solution
beyond tmain. Different values are explored
in section 4.1.

Speed limit 25m/s The speed limit in the intersection.

Vehicle mass 1000kg
The mass of each vehicle. This is the same for
each vehicle. Used when calculating kinetic energy.

evaluations
second 50 000

The amount of evaluations available per
second of tmain.

Objective weighting 0.25
The importance of each objective. This work
used same weight for all objectives.

36

Chapter 4
Results and Discussion

This chapter will present the experiments conducted in this thesis. Each experiment fol-
lows the methodology presented in chapter 3, and is aimed to give insight into the re-
search questions introduced in chapter 1. The results will be discussed for each experi-
ment.

Section 4.1 explores the use of different time step sizes and finds reasonable time step
values. These values are then used to examine the effects of independent time step mod-
elling over continuous time in section 4.2. In order to understand the effects of the chosen
optimisation objectives section 4.3 explores the behaviour of the IM when only optimising
for different subsets of said objectives. Section 4.4 and section 4.5 explore the effects and
behaviour of the objectives. Finally, section 4.6 sums up and discusses the overall obser-
vations in relation to the goal and research questions presented in the introductory chapter
(chapter 1).

4.1 Experiment 1: Looking at time steps

Goal

This experiment aimed to give more information about how solving independent time
segments affects the overall behaviour of the system. As stated in research question 1,
we have investigated the effects of dividing the intersection management problem into
smaller time steps. This section looks at the effects of varying tmain and tsim. A thorough
explanation of these variables is available in section 3.1.1.

Methodology

As explained in chapter 3, we have found solutions for individual time segments with the
MOEA. By using the results of these smaller time segments when routing vehicles through

37

Chapter 4. Results and Discussion

the intersection we have looked at the overall behaviour of the IM. In this experiment
we looked at how the performance metrics are affected by varying the size of tsim and
tmain, with focus on the number of collisions in the intersection. This experiment also
provided results showing how the chosen values for tmain and tsim performs in regards to
the performance metrics described in section 3.3.1.

The number of evaluations in the MOEA for each second(ev , described in section 3.1.4)
was constant for all the experiments. This value was set to 50 000 evaluations and the
population size to 100, i.e. the MOEA evolves 500 generations with 100 individuals per
second of tmain. Since tmain varies for each experiment, we have calculated the evalua-
tions per time step based on Equation 3.3.

The two parts of this experiments differed in which of the time variables that were in-
vestigated. The first part focused on tmain and the second used the results of part 1 to
investigate different values of tsim.

The intersection states in these experiments were the same for each of the time steps.
We have created 15 different scenarios (scenario creation is explained in section 3.1.3)
populated with different amounts of cars. 5 with low traffic (10-11 cars), 5 with medium
traffic (20-22 cars) and 5 with high traffic (40-43 cars). Three example scenarios are
presented in appendix A.

No cars were spawned during the simulation, to make the different runs as similar as
possible, ensuring a fair comparison of time step values. An example starting state is
available in figure 4.1. The MET values reported in this section were sometimes below
the stated minimum of 13.12s. This is because the MET here was measured from the
start of the scenario. This means that some vehicles have already traversed a significant
portion of the intersection when their MET counter starts. MET can therefore here only
be used to measure differences between time step values, and not as an indicator of overall
performance. Section 4.2 explores overall performance.

Part 1

Goal

The intention of this experiment was to find in which range tmain gives the best
performance with regards to the performance metrics defined in 3.3.1, with the main
focus on minimising collisions in the intersection. This experiment should also
find a reasonable tmain that could be used in the later experiments presented in
this chapter. Finding a reasonable tmain is important because it allows for less
uncertainty when determining reasons for different observed behaviours. Knowing
how the IM behaves with different values for tmain would also give valuable insight
towards research question 1.

Hypothesis

We expected that the lower time steps would give better control over the vehicles,
and therefore less collisions. MET is expected to follow the same behaviour, where
a lower tmain equals a lower MET. Since the IM will have more opportunities to

38

4.1 Experiment 1: Looking at time steps

Figure 4.1: A sample starting point for a simulation in experiment 1.

change the speed of each vehicle, we expected that each vehicle will use more energy
to increase the overall score of the chosen individual solution at the expense of total
kinetic energy lost.

Given that we have set an upper boundary for the evaluations, we expected to find
that some values of tmain, especially the smaller ones, did not get enough evalua-
tions to avoid collisions.

Methodology

In this experiment we tested different values for tmain. tevaluate was calculated
from equation 4.1. The specific values for this experiment are showed in table 4.1.
The results were generated by running the IM on each scenario 5 times (a total of
75 runs per tmain), and computing an average.

39

Chapter 4. Results and Discussion

tevaluate = tmain + 2.0 (4.1)

As can be seen from equation 4.1 and table 4.1 tsim is here set to 2.0 seconds. Some
preliminary testing indicated that a tsim value of 2.0s gives the internal simulator
enough of a margin to avoid collisions. As this experiment did not focus on the
value of tevaluate and tsim we wanted to make sure the value set did not interfere
with the IMs ability to avoid collisions.

Table 4.1: The time step values, in seconds, used in Experiment 1 Part 1. Each column represents
the values used for one configuration.

tmain 0.1 0.2 0.5 1.0 1.5 2.0 5.0 10.0 15.0
tsim 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
tevaluate 2.1 2.2 2.5 3.0 3.5 4.0 7.0 12.0 17.0

Results

The results are displayed in three graphs. One for the total number of collisions
and one for each of the performance metrics total kinetic energy lost and MET,
respectively. The graphs display the average of each of these three values per time
step. Considering the number of runs performed, the average value for each time
step is based on 75 scenarios. The results for throughput are not displayed, as every
vehicle was evacuated in all scenarios.

As can be seen in figure 4.3, the average amount of collisions dropped around 0.5s,
stayed low until 2.0s and then rose slightly. The difference between averages when
tmain > 2.0s are not likely to be significant. However, there was a clear trend of
collisions for small values of tmain.

Manually inspecting a high traffic scenario with collisions for tmain = 0.1s, showed
that the IM constantly changed what vehicles it prioritised for intersection traversal.
This lead to a deadlock, shown in figure 4.2. This deadlock resulted in a collision.

The MET was at its lowest when tmain was 2.0s, as can be seen in figure 4.4. How-
ever, the difference was negligible from that of 1.5s and 1.0s. The MET increased
as tmain increased past 5.0s.

Figure 4.5 shows how varying tmain affected the total kinetic energy lost. The total
kinetic energy lost rose when the time step size decreased, this is again most likely
because the IM has more control in lower time steps. The more often the IM can
update the speed for each vehicle, the higher the chance of braking becomes. It
is interesting to note that at around time step size 1.5s there was a change in the
difference in total kinetic energy lost between time steps. Given a time step size of
1.5s, the gain from using a larger time step size was a lot less for total kinetic energy
lost compared to below 1.5s. Because the gain in terms of energy was low when
increasing tmain further beyond 1.5s, this value is seen as a good compromise in
relation to other objectives.

40

4.1 Experiment 1: Looking at time steps

Figure 4.2: A deadlock from running a high-traffic scenario with tmain = 0.1. The vehicles can
not move out of the inner intersection without passing through each other.

Because all vehicles being evacuated was used as the stopping condition for these
experiments all runs produced the maximum throughput.

Part 2

Goal

The goal of this experiment was to optimise the value of tsim with regards to the per-
formance metrics. In addition, the results should give insight to which combinations

0 2 4 6 8 10 12 14
0

1

2

tmain [s]

C
hr

as
he

d
ve

hi
cl

es

Figure 4.3: A plot showing how the number of collisions in the intersection changes based on
different values of tmain.

41

Chapter 4. Results and Discussion

0 2 4 6 8 10 12 14
10

12

14

tmain [s]

M
E

T
[s
]

Figure 4.4: A plot showing how MET changes based on different values of tmain.

0 2 4 6 8 10 12 14
0

2

4

·104

tmain [s]

To
ta

lk
in

et
ic

en
er

gy
lo

st
[J
]

Figure 4.5: A plot showing how total kinetic energy lost changes based on different values of tmain.

of tmain and tevaluate result in an appropriate behaviour in the IM. When examin-
ing time step values the constraint for collisions was prioritised over the other per-
formance metrics. This was necessary because collisions in the intersection might
positively affect the other objectives by breaking the rules of our physical world
(section 3.3.2 explains how the simulator deals with collisions).

Hypothesis

We expected that the lower values of tsim will result in more collisions in the in-
tersection. This was because we expected that the EP would not be able to avoid
unsolvable states. The higher values might be able to avoid collisions, but at the
expense of the objectives. Therefore, we expected to find a range of time step sizes
where there are few collisions while still maintaining comparatively good objective
scores.

Methodology

Using the same method as for testing values for tmain, we tested different values
of tsim coupled with the most promising values for tmain. Because tsim was set
to a previously decided value, and there is no proof that different tmain values did

42

4.1 Experiment 1: Looking at time steps

not have different optimal values for tsim, it was decided to use the time step values
between 0.2 seconds and 1.5 seconds for the next experiment. 0.2s was included in
order to show whether its performance could be improved by finding a better tsim.
0.1s was excluded because the reasons for its poor performance are closely related
to the reasons for the poor performance of 0.2s. If 0.2s then continued to perform
badly in the next experiment, it can be assumed that 0.1s also would. 2.0s was
excluded because it was very similar to 1.5s, a difference not considered significant.

The values used for tsim can be seen in table 4.2. The values for tevaluate were
calculated using equation 3.1 by inserting the values 0.2s, 0.5s, 1.0s and 1.5s for
tmain. Each scenario was evaluated once for every configuration of tsim and tmain.

Table 4.2: The time step values, in seconds, used in Experiment 1 Part 2.

tsim 0.1 0.2 0.5 1.0 1.5 2.0 5.0 10.0 15.0

Results

The results for this experiment are presented in three figures (figure 4.6, 4.7 and
4.8), where each figure contains one of the performance metrics for four different
tmain values.

0 2 4 6 8 10 12 14
0

5

10

tsim [s]

C
hr

as
he

d
ve

hi
cl

es

tmain = 0.2s tmain = 0.5s tmain = 1.0s tmain = 1.5s

Figure 4.6: Four plots showing how the number of collisions in the intersection changed based on
different values of tsim. The four plots differ in which tmain is used for the simulations.

The throughput in this experiment is the same as in part 1. All vehicles got out of
the intersection and because of this there was not any information when comparing
the throughput of different tsim values.

From figure 4.6 it was clear that when tsim was low, the vehicles collided. This
is as expected because the evaluation of the speed vector does not consider what
happens after tmain has passed. As such, the solutions chosen in each step created

43

Chapter 4. Results and Discussion

0 2 4 6 8 10 12 14
10

12

14

tsim [s]

M
E

T
[s
]

tmain = 0.2s tmain = 0.5s tmain = 1.0s tmain = 1.5s

Figure 4.7: Four plots showing how MET changed based on different values of tsim. The four plots
differ in which tmain is used for the simulations.

unsolvable states in the next step. The number of collisions decreased until tsim
equalled either 1.5 or 2.0 seconds, depending on which of the graphs we look at.

0 2 4 6 8 10 12 14
0

2

4

·104

tsim [s]

To
ta

lk
in

et
ic

en
er

gy
lo

st
[J
]

tmain = 0.2s tmain = 0.5s tmain = 1.0s tmain = 1.5s

Figure 4.8: Four plots showing how total kinetic energy lost changed based on different values of
tsim. The four plots differ in which tmain is used for the simulations.

The MET had a slight increase for all tmain values after a certain point. The values
before this point are not considered because there were a lot of collisions. Based on
MET the tsim should be as low as possible, as long as collisions can be avoided.

The total kinetic energy lost behaved similarly to MET in that the value increased
with a higher tsim, but the most interesting part about these graphs is that the 1.5
seconds tmain graph was consistently lower than other values of tmain for every

44

4.2 Experiment 2: Continuous traffic

tsim.

Based on these observations we found that the value 1.5s for tmain would perform
reasonably. Considering the values for the number of collisions and MET again,
with this specific graph in mind, we found that a value of 1.5s for tsim in combi-
nation with 1.5s for tmain should give the IM a good balance between security and
efficiency.

4.2 Experiment 2: Continuous traffic

Goal

The goal of this experiment was to better understand how dividing the intersection man-
agement problem into smaller time steps behaves based on the amount of cars in the inter-
section.

Hypothesis

We expected that the IM would perform worse as the amount of cars increased. This should
result in a higher MET and loss of kinetic energy as the spawn rates increase. It is known
that the system fails to avoid collisions in some states with a high amount of vehicles. It is
much more likely to get those states as the amount of cars increase. Therefore increasing
the spawn rate should also increase the number of observed collisions. In addition, as the
amount of cars increases, it is expected to pass the limit where it is physically impossible
to deal with all the cars without creating a queue.

Methodology

This experiment compared the performance metric scores of the IM (these scores are ex-
plained in 3.3) for different spawn rates. The real world simulator ran in a continuous
mode. This involved spawning cars probabilistically with a spawn rate (spawn rates are
explained in section 3.1.3). Every spawn rate between 0 and 1 was tested in increments
of 0.1. No scenarios were used in this experiment. Each simulation was ran for a total
of 300s and did not terminate before the time ran out. Each spawn rate was tested five
times.

As the previous experiment found reasonable values for tmain and tsim these were set to
the following values.

• tmain = 1.5s

• tsim = 1.5s

• tevaluate = 3.0s

Results

The results are presented in their entirety in table 4.3. In addition two graphs have been
included to illustrate the non-linear relationships between spawn rates and total kinetic
energy lost, and MET. The table displays throughput, here meaning the total amount of

45

Chapter 4. Results and Discussion

cars that have evacuated the intersection in the given 300s. MET, collisions, throughput
and total kinetic energy lost are averages over the 5 runs. Collisions (%) is the percentage
of the runs that collided, i.e. a value of 100 meaning that all 5 runs had vehicles colliding
in them. A collision is available in appendix C.

Table 4.3: IM performance metrics for different levels of traffic in experiment 2. MET, Throughput
and Total Kinetic Energy Lost all increased as the spawn rate increased. The vehicles started to
collide when the spawn rate was above 0.6, shown by Collisions and Collisions(%).

Spawn
Rate Runs MET

(s) Collisions Collisions
(%) Throughput

Total kinetic
energy lost
(J)

0.1 5 13.37 0.00 0.00 236.20 4539.93

0.2 5 13.37 0.00 0.00 417.60 16923.33

0.3 5 13.44 0.00 0.00 578.60 54323.80

0.4 5 13.46 0.00 0.00 712.60 126729.28

0.5 5 13.64 0.00 0.00 820.40 343614.86

0.6 5 13.89 0.40 20.00 926.80 768865.80

0.7 5 14.17 0.80 20.00 1025.80 1641376.12

0.8 5 17.59 68.80 100.00 1042.60 4810951.97

0.9 5 25.08 189.20 100.00 943.00 9604215.88

1.0 5 28.08 204.00 100.00 943.60 11658489.02

No collisions occurred in the intersection before the spawn rate was 0.6, where the col-
lisions in both 0.6 and 0.7 can be traced to a single run for each with 2 and 4 collisions
respectively. This is in line with the observations from the previous experiments where
collisions could only be observed in scenarios with high amounts of traffic. The exact
mechanism that caused cars to collide is hard to pinpoint, but manual observation of the
runs did not witness of states where collisions were unavoidable, but rather occurring in
complex scenarios with many cars.

The measured throughput for lower spawn rates is not very interesting, but simply showed
that increasing the spawn rate does in fact increase the amount of cars that had to be routed
through the intersection in the given time. The non-linear relationship between throughput
and spawn rate is explained in 3.1.3. For higher spawn rates throughput stopped increas-
ing; it went slightly down. This occurred at the same spawn rates that produced queueing
and congestion in the inner intersection. As expected, when the queue of vehicles reached
back to the spawning zones, no new vehicles would spawn. This was also a contributing
factor to the decreasing amount of throughput observed.

When looking at the graph comparing MET to spawn rate it is apparent that as long as
the spawn rates were low enough, vehicles could be routed through the intersection with-

46

4.3 Experiment 3: Scalability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15

20

25

Spawn rate

M
E

T
[s
]

Figure 4.9: A plot showing how MET varies in regards to spawn rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

·107

Spawn rate

To
ta

lk
in

et
ic

en
er

gy
lo

st
[J
]

Figure 4.10: A plot showing how total kinetic energy lost varies in regards to spawn rate.

out much delay. A higher MET showed that the IM had reduced the speed of some cars.
Unfortunately, as mentioned in 3.3.2, measured MET is not correct when collisions occur.
However, it should only be skewed in the negative direction, and the difference is still
positive as spawn rate rises. We could therefore conclude that the IM was able to slow
vehicles significantly to allow the passage of new cars. Manual observation of the inter-
section also supported this. Looking at figure 4.11 it is apparent that the IM was slowing
the whole group of cars arriving from south(here represented in red) in order to speed up
another group of cars arriving from west(speeding cars are coloured green).

4.3 Experiment 3: Scalability

Goal

The goal of this experiment was to investigate how solving individual states of the inter-
section scales in regards to the amount of traffic when considering collision avoidance.
This was in order to help answer research question 2, and to give some insight as to why
we could see collisions for high traffic levels in section 4.2.

47

Chapter 4. Results and Discussion

Figure 4.11: Demonstration of how the IM decides to slow down the vehicles arriving from south
so that the vehicles arriving from the west can pass. Cars slowing down or stopped are displayed in
red. Cars speeding up are shown in green.

Hypothesis

When more vehicles are present in the intersection the EP should, on average, need more
evaluations to find a solution that involves no collisions. Knowing that the search space
of the EP increases by a dimension when one more vehicle is introduced, it should be
expected that the amount of evaluations needed would increase faster than linearly.

Methodology

This experiment was similar to experiment 2 in parameters. By running the IM over 300s
for each of the spawn rates in experiment 2, we recorded the amount of cars in the in-
tersection and the number of evaluations needed before a solution without collisions was
found. If the EP was unable to find a solution without a collision, nothing was recorded.
In other words, only states that could be solved in the given amount of evaluations were
considered. Because the evaluations of individuals were done in parallel the granularity of
the results were constrained to within one generation; 100 evaluations.

The amount of recorded states containing a given amount of cars varied widely. In order to

48

4.4 Experiment 4: Objectives

avoid drawing conclusions from statistical outliers, data points were ignored unless there
existed at least ten measurements for the given amount of cars.

Results

The result from this experiment can be seen in figure 4.12. It was clear that the EP
found a solution within the first generation when a small amount of cars (< 35) were
present. However, once more than 35 cars are present the amount of evaluations needed
rose rapidly.

When considering the amount of evaluations needed to avoid collisions in terms of spawn
rate, as displayed in figure 4.16, it was apparent that the amount of evaluations needed rose
sharply when the spawn rate was greater than 0.6.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

·104

Vehicles

E
va

lu
at

io
ns

Figure 4.12: A plot showing the number of evaluations needed to avoid collisions based on the
number of vehicles in the intersection.

4.4 Experiment 4: Objectives

Goal

The goal of this experiment was to investigate the effects of each objective on the overall
performance of the system. This was done by removing each objective from the evaluation
in four separate runs. This directly related to research question 3. The objectives are
described in detail in section 3.2.1.

Hypothesis

When removing each objective, we expected the following behaviour:

• Removing total kinetic energy lost

Minimising total kinetic energy lost should, on average, reduce the amount of kinetic
energy lost over the course of a run. No matter what spawn rate is used. Therefore
it was expected that not including this objective would consistently produce results
that wasted more energy.

49

Chapter 4. Results and Discussion

• Removing starvation

The starvation objective was implemented to avoid single lane starvation. The be-
haviour of the continuous IM in section 4.2 showed no signs of starvation. It is hard
to say exactly why, but it should be noted that maximising the distance travelled
also keeps vehicles from standing still. Therefore we could not predict whether star-
vation would be observed when removing this objective, but the results would still
point to whether this objective is important for the function of the IM or not.

• Removing tiny throughput

Evacuating vehicles from the inner intersection as fast as possible should be impor-
tant to avoid congestion and opening conflicting lanes of traffic more. Therefore
we expected that disregarding this objective would lead to more queueing, higher
MET, more vehicles in the intersection, more complex states and more collisions.
However, this objective should only be important when the amount of cars is high,
as maximising the distance travelled would evacuate a lot of cars in itself.

• Removing distance travelled

The main thought behind maximising distance travelled was to make sure the ve-
hicles travelled as far/fast as possible in every time step. Removing this objective
should have an adverse effect on MET.

Methodology

In order to test the effect of each objective, the IM was tested with the absence of each
objective. The performance, in terms of the overall performance metrics defined in sec-
tion 3.3, could then be compared across different configurations of active objectives. For
this experiment, the investigation in regards to MET and total kinetic energy lost was con-
strained to spawn rates below 0.7, as the physics surrounding collisions make comparisons
harder when they occur.

Results

The results are presented based on performance metrics. Figure 4.13 shows the relation-
ship between the different objective configurations and MET. Results with a spawn rate
above 0.7 have been omitted as they include collisions. The graph shows a clear trend:
not optimising for distance travelled produced a significantly higher MET. As long as dis-
tance travelled was included there was no significant change from the baseline acquired in
section 4.2.

Interestingly, ignoring distance travelled was also the one that stood out when measuring
the total kinetic energy lost (see figure 4.14). Removing the objective specifically designed
for minimising this loss had an almost negligible effect, even scoring slightly better for
values above 0.3.

No statistically significant results were found when comparing for collisions. Nor did
the results show any deviation from the baseline when removing the tiny throughput or
starvation objectives.

50

4.4 Experiment 4: Objectives

0.1 0.2 0.3 0.4 0.5 0.6 0.7
13

13.5

14

14.5

Spawn rate

M
E

T
[s
]

not Distance Travelled not Total Kinetic Energy Lost not Tiny throughput
not Starvation All objectives

Figure 4.13: Figure showing how MET was affected by removing each of the objectives in the
MOEA at different spawn rates. There are four plots, each showing the MET value when one of the
objectives were not evaluated. The last plot shows the default behaviour when all objectives were
evaluated.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

104

105

106

Spawn rate

To
ta

lk
in

et
ic

en
er

gy
lo

st
[J
]

not Distance Travelled not Total Kinetic Energy Lost not Tiny throughput
not Starvation All objectives

Figure 4.14: Figure showing how total kinetic energy lost was affected by removing each of the
objectives in the MOEA at different spawn rates. There are four plots, each showing the total kinetic
energy lost value when one of the objectives were not evaluated. The last plot shows the default
behaviour when all objectives were evaluated.

51

Chapter 4. Results and Discussion

4.5 Experiment 5: Conflicting objectives

Goal

The goal of this experiment was to better understand how the optimisation objectives (ex-
plained in section 3.2.1) conflict in both complex and non-complex scenarios.

Hypothesis

We expected that the EP would be able to find close to optimal solutions when provided
with a simple scenario, where there are few vehicles. When the scenario becomes more
complex, it was expected that the EP would struggle to find one dominating solution. This
would result in a Pareto-set where each solution was considered equally good, without any
further specification of which objectives are more important.

Methodology

This experiment looked at results from the EP when provided with different scenarios. The
scenarios used should reflect the intersection both when there are few cars and when the
intersection is crowded. This should ensure that the results show how the chosen objectives
conflict in the varying situations the IM encounter when run continuously.

The solutions found in the EP served as examples of how the objectives may conflict,
as there was no guarantee that the EP would find the same results when provided with the
same scenario several times. This experiment would still be interesting to better understand
how the EP makes compromises on one objective to improve another.

The experiment ran the EP on three different scenarios (figures available in appendix B).
All scenarios were created by running the setup from experiment 2, differing only on
spawn rate. The first scenario was generated with a spawn rate of 0.4, had few cars in the
inner intersection and avoiding collisions was easy. The second scenario was generated
with a spawn rate of 0.8, had a lot of vehicles in the intersection and the EP, with the
settings from experiment 2, would struggle to avoid collisions. The third scenario was
generated with a spawn rate of 0.9, had a lot of cars arriving in the intersection and the
problem of avoiding collisions was similar to the second scenario. The spawn rate only
mattered when generating the scenarios, as no vehicles would spawn while this experiment
ran, since the EP only calculated one solution.

Results

The results by running the EP on a simple scenario is presented in table 4.4. Given that the
optimal solution for distance travelled and tiny throughput is -1.0 and 0.0 for starvation
and total kinetic energy lost, it is clear that all objectives were either optimal or close to
optimal. As the EP did not have to struggle to avoid collisions by braking several vehicles,
the result depended only on the MOEA being able to evolve a speed vector where each
value was the speed limit. This problem is similar to the well known one-max problem,
and is a lot simpler than the more complex scenarios in this experiment.

Table 4.5 presents the Pareto-set found by running the EP on the complex scenario gener-
ated with a spawn rate of 0.8. It should be noted that while these values seem a lot worse

52

4.5 Experiment 5: Conflicting objectives

Table 4.4: Table showing the Pareto-set found by the EP when run on a simple scenario generated
with a spawn rate of 0.4.

Distance travelled Total kinetic
energy lost Starvation Tiny throughput

-0.9998 9.0464× 10−5 0.000 -1.000

than in the first scenario, it may still be close to optimal when considering that the EP
should avoid collisions.

Table 4.5: Table showing the Pareto-set found by the EP when run on a complex scenario generated
with a spawn rate of 0.8.

Distance travelled Total kinetic
energy lost Starvation Tiny throughput

-0.8935 0.0478 0.0000 -0.7500

-0.8962 0.0488 0.0000 -0.7500

-0.8948 0.0483 0.0000 -0.7500

-0.8916 0.0464 0.0000 -0.7500

-0.8895 0.0442 0.0120 -0.7500

An interesting value to note in the table is the last individual. Both starvation and dis-
tance travelled were worse than its peers, but total kinetic energy lost was improved. One
explanation for this result is that the last solution chose to starve one car in order to not
having to brake another. The reason that distance travelled is lower in that solution, might
be because the starved car had the opportunity to travel further than the favoured car if it
were not starved.

The Pareto-set found when running the EP on the complex scenario generated with a spawn
rate of 0.9 is presented in table 4.6. Since it was hard to avoid collisions in this scenario, it
is likely that the reason for a bigger Pareto-set was that the optimisation of the objectives
had less generations to evolve and the search space was larger than in the other scenar-
ios.

There are two possible reasons for why there are several non-dominated solutions in the
two complex scenarios. Either the EP has to compromise on one objective to improve
another, i.e. the objectives are conflicting and when choosing a solution we have to decide
what objectives are more important, or, because of the complexity in the scenario, the EP
struggles to find the single dominating solution while still avoiding the collision constraint
with the given amount of evaluations.

53

Chapter 4. Results and Discussion

Table 4.6: Table showing the Pareto-set found by the EP when run on a complex scenario generated
with a spawn rate of 0.9.

Distance travelled Total kinetic
energy lost Starvation Tiny throughput

-0.7942 0.1816 0.0000 -0.6471

-0.7855 0.1799 0.0000 -0.6471

-0.7702 0.1714 0.0148 -0.6471

-0.7775 0.1762 0.0148 -0.6471

-0.7850 0.1713 0.0281 -0.6471

-0.7695 0.1609 0.0428 -0.6471

-0.7790 0.1804 0.0000 -0.7059

-0.7849 0.1826 0.0000 -0.7059

-0.7859 0.1904 0.0000 -0.7059

-0.7770 0.1772 0.0134 -0.7059

-0.7755 0.1771 0.0151 -0.7059

-0.7644 0.1663 0.0281 -0.7059

-0.7656 0.1690 0.0281 -0.7059

-0.7714 0.1758 0.0281 -0.7059

4.6 Discussion

This section discusses the findings of this chapter in relation to the overall research goals
set in the introduction.

4.6.1 Independent time step modelling

When splitting the large and continuous problem of intersection management into smaller
time steps, it is clear that the two time variables tmain and tsim had a large impact on the
performance of the IM. Small values for both variables caused a large amount of collisions,
but for different reasons. A small tsim has the obvious drawback that the IM does not
evaluate far enough into the future to avoid collisions in the next time step. Looking at
the vehicle behaviour from the results of section 4.1 when varying tsim it is clear that a
lot of the collisions at smaller values were caused by this effect. An example scenario is
presented in figure 4.15. Here it is clear that the circled car will not have time to stop
before crashing into the parked car. The collision of vehicles affects the other performance
metrics, but should only affect them positively. This means that MET and total kinetic

54

4.6 Discussion

energy lost should both decrease as opposed to the solution where a collision is avoided.
The reasoning behind this is available in section 3.3.

Figure 4.15: Unsolvable state; vehicle 2 and 3 will crash because vehicle 2 is moving too fast to
stop for vehicle 3 within the given tsim = 0.2s. Vehicle 1 is also on a collision course with vehicle
2.

Smaller values of tmain also produces an increased amount of collisions, but the reason is
not as obvious. Because the IM makes no effort to avoid vehicles from conflicting trajec-
tories occupying the intersection at the same time, the setup can be subject to deadlocks,
here meaning a state where collisions are avoidable in the next tevaluate, but evacuating
all the cars from the inner intersection has become impossible. Figure 4.2 shows an exam-
ple deadlock from the tmain = 0.1 tests. As the cars move slowly into this deadlock the
amount of solutions in the search space that do not involve a collision slowly decreases to
the point where the cars are locked very close to each other and any acceleration of any
car will result in a collision. As a result the EP then, for an infinite amount of time, has to
come up with a solution that involves holding all vehicles still. It then seems reasonable
that, as the EP is limited by both computation time and the converging nature of MOEAs,
it eventually fails to find a solution that creates no collisions, resulting in vehicles crashing.
This problem is exacerbated by smaller values of tmain because the cars move a very small
amount each time, and will therefore more evenly distribute which of the cars is favoured
to move. As tmain grows larger the IM will favour a smaller subset of the cars for a longer
amount of time, largely avoiding deadlocks.

It was decided to keep the amount of evaluations per second of real time consistent between
different configurations of the IM; as tmain becomes smaller the available time for the EP

55

Chapter 4. Results and Discussion

to find a solution decreases. This is explained in section 3.1.4. Therefore, some of the
loss of performance when lowering tmain also has to be attributed to the lower amount of
evaluations available to the EP.

There are also drawbacks to using larger values for tsim and tmain. When using larger
values for tevaluate (remember that tevaluate = tmain+ tsim) the IM has to find a solution
that is applicable for a very long time. Therefore, once complex situations arise, it can be
hard to find a solution that has high enough speeds to get a reasonable MET where the high
speeds can also be used for a long amount of time. Figure 4.4 shows a clear relationship
between high values of tmain and a rise in MET.

Considering total kinetic energy lost, it is apparent that the IM will waste more energy
the smaller values are used for tmain. This can be seen by the strictly decreasing graph
in figure 4.5. This is most likely closely related to the reasoning behind the high amount
of collisions for a small tmain. The less amount of time the IM deploys each solution the
more often the speed of each vehicle is likely to change within one scenario. The exact
reason why the EP does not keep favouring speeding up the same vehicles and braking
others across multiple time steps is difficult to pinpoint. While the objective for minimising
total kinetic energy lost should keep favouring the same cars (it is more expensive to brake
a fast car than a slow one), the EP is limited by computation time and the nature of MOEAs.
Therefore it does not always produce perfect results, which should result in higher loss of
energy on smaller values of tmain. Interestingly, varying tsim shows a less significant
inverse relationship to what was found with tmain. Figure 4.8 shows a clear, but small,
rise in total kinetic energy lost as tsim rises. This is most likely caused by the decrease
in the available amount of solutions that do not violate the constraints as tevaluate grows
larger, which in turn leaves the EP with less choices for solutions that improve total kinetic
energy lost.

Perhaps the most important observation from the testing of different time step values is
the fact that there is no set of values that performs best in all scenarios. Therefore, for
the later usage of the IM, one must find a compromise between the available objective
scores. In this project the values of tmain = 1.5s and tsim = 1.5s were chosen. This was
because they displayed the most promising results in terms of collision avoidance, while
maintaining what was considered acceptable values in other objective scores1.

Examining the behaviour of the IM over a continuous time period showed that there def-
initely exists some amount of cars where the EP is unable to solve the problem (fast
enough); causing collisions. According to table 4.3 it is clear that there is no hard limit, but
rather an increasing probability of collisions as the amount of vehicles increases. There
are many physical scenarios that lead to collisions, but a high amount of cars seems to be a
common occurrence in states that lead to a collision. The relationship between the amount
of cars present in the intersection and the complexity of each state is explored further in
section 4.6.2.

The IM shows an ability to form queues over time. Not necessary orderly queues like
the ones seen in normal traffic, but it clearly displays an ability to slow multiple vehicles

1Acceptable here meaning in relation to other time step values, not necessarily acceptable in general.

56

4.6 Discussion

travelling the same trajectory for a longer amount of time. This also translates across
different time steps. Figure 4.11 shows that the cars arriving from the south are braking in
unison for the eastbound vehicles.

Reading the MET values from table 4.3 and comparing them to the best case MET of
13.12s (found in 3.3.1) it is apparent that as long as the amount of vehicles is manageable
the IM demonstrates an ability to route vehicles through the intersection with an MET
close to optimal. The difference between the optimal value and the one demonstrated by
the IM is caused by two things. Firstly, because the IM tries to avoid collisions, when
two cars travelling at the speed limit are going to crash one has to be slowed. Secondly,
because the cars are out of the scope of the IM once they move out of the intersection,
there is no incentive, in terms of distance travelled, to hold the full speed until the end of
the intersection in the last tmain. The distance travelled will be the same. This problem
should be mitigated by optimising for total kinetic energy lost, but an explanation for why
that sometimes fails is available in 4.6.3.

There exists a theoretical limit to how many cars can be routed through the intersection
in a given amount of time. Such a limit must exist, as vehicles cannot occupy the same
space at the same time without colliding, and there is a limit to how fast each vehicle can
traverse the inner intersection. Finding that exact limit for this system is impossible given
a realistic amount of time, as it would involve finding the optimal solution for every time
step dependent on each other. This limit is likely a largely contributing reason to why the
MET rises sharply when the spawn rate is above 0.7.

Perhaps the biggest drawback, but also the most interesting part, of solving one state at a
time is that there is no direct relation between the objectives being optimised for and the
performance metrics used to measure how the system behaves. The difficulties shown at
smaller values of tmain bear witness to the difficulties of solving single states indepen-
dently. While a single state can be optimised very well in relation to its objectives, it is
apparent from the emergent deadlocks and complicated states that this does not always
translate into a good solution when considering the continuous problem.

Single lane starvation is a problem that several of the related works in chapter 2 dealt
with. Problematic starvation was never observed for this system. It happened that cars
would stop completely, but never for too long. The spawn rate used in these experiments
was symmetric, meaning that vehicles arrived from all directions with the same frequency.
Asymmetric spawn rates could have been used to attempt to cause scenarios where starva-
tion was more likely.

4.6.2 Scaling

The results shown in figure 4.12 clearly demonstrated that the EP uses more evaluations
to find a solution without collisions as the amount of vehicles in the intersection increases.
There are two main reasons to expect a result similar to this. We imagine the non constraint
violating part of the search space as the full set of paths that can be travelled by all the
cars in the next tevaluate without causing a collision. Introducing another car anywhere
in the intersection will make the amount of valid paths of travel for the already present

57

Chapter 4. Results and Discussion

vehicles decrease or stay equal. Therefore, the amount of valid solutions in the search
space decreases or stays equal. In addition, introducing one more vehicle also adds a
dimension to the search space, drastically increasing the size of the search space as a
whole. These effects together makes each state harder to solve for the EP when increasing
the amount of vehicles.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

·104

Spawn rate

E
va

lu
at

io
ns

Figure 4.16: A plot showing the number of evaluations needed to avoid collisions based on spawn
rates.

Looking at the same data, just ordered by spawn rate (figure 4.16), tells a very similar story.
Higher spawn rates means more cars, which in turn should increase the average complexity
of each state. This is in line with the previous observation that higher spawn rates cause
more collisions. In addition, the queueing behaviour discussed in 4.6.1 rapidly increases
the amount of cars present in the intersection. This further exacerbates the exponential
increase in complexity we would expect based just on the knowledge that more vehicles
leads to increased complexity. The higher amount of evaluations needed simply to avoid
violating the constraint of collisions also negatively impacts the amount of evaluations
available to the MOEA to better the score for other objectives. As a result, the IM will
more often fail to evacuate vehicles as fast as possible, further increasing the amount of
vehicles in the intersection. This is supported by the observation that the rise in evaluations
needed clearly correlates with the worse performance metrics observed in figures 4.10 and
4.9, based on spawn rate.

If the IM proposed in this work is to be applicable for real world use it has to able to ac-
commodate a large amount of vehicles while avoiding collisions. As it stands, the current
IM struggles to find a valid solution for a large amount of vehicles, within the computa-
tional constraints used in these experiments. Therefore, the current IM can not be deployed
in the real world, without some restriction on the amount of cars entering the intersection.
In addition, CSGs and FGs, presented in chapter 2, have been used to effectively combat
complexity issues in intersections.

58

4.6 Discussion

4.6.3 The objectives

Maximising the distance travelled in each time step has a large effect on the overall per-
formance of the IM. Looking at the results for MET (figure 4.13) and total kinetic energy
lost (figure 4.14) it is clear that the IM performs considerably worse when this objective is
ignored. This effect is most noticeable at lower spawn rates. At the same time, some of the
more adverse behaviour, such as deadlocks and gridlocks, present at higher spawn-rates
can be attributed to this objective. When the IM is holding off some cars to allow the pas-
sage of others it will move those slightly forward and into the inner intersection. There is
no incentive to make sure the passing lanes are open to traffic in the next time step.

As can be seen in figure 4.14, minimising the total kinetic energy lost in each time step
does not attribute to a lower overall loss of kinetic energy. For spawn rates lower than 0.7
there is no significant trend that shows that removing this objective has any effect at all.
This has two immediate explanations. First, the weighting used by the DM to choose a
solution from the Pareto-set only favours optimising for minimising total wasted kinetic
energy when the difference is large compared to the worst case scenario. The score for
this objective when comparing it to others is:

αek
E

Eworst
(4.2)

,where αek is the weight for this objective, E is the kinetic energy lost in this solution and
Eworst is the kinetic energy lost when evaluating a solution that slows every car as much
as possible. This value then lies somewhere in the range of [0, αek]. If Eworst is a high
number the difference between two solutions becomes very small. Therefore, the effects
of this objective gets smaller as the amount of stoppable energy in the intersection gets
higher. Second, optimising for energy loss in single time steps can have an adverse effect
when looking at a continuous time scale. If two cars are heading toward the intersection
at the speed limit on conflicting trajectories one has to be slowed to allow passage of the
other. The closer the cars are to each other the harder one has to brake. Increasing the size
of tevaluate allows the vehicles to see this collision occur earlier, resulting in a smaller
change in speed and a smaller amount of energy lost.

No significant changes were observed when not optimising for tiny throughput and star-
vation. Some small trends were observed for the amount of collisions and how often
collisions occurred, but no statistically significant relationship could be established. This
could be because no such relationship exists, or because the results are counted over longer
periods of continuous simulation. As seen in section 4.5 the effects of the objectives, and
how they conflict amongst themselves, will vary greatly depending on the specific state
that the IM is considering. Looking at the combined data from many such states, and their
respective solutions, instead of single states can lead to obfuscating the true relationship
between the objectives and the performance metrics.

When looking at the results from section 4.5 it is clear that when there are few vehicles in
the intersection the objectives do not conflict much. This makes sense, as when no vehicles
are on a colliding path the collision constraint can not be violated, and the objectives
themselves do not conflict. The best way to minimise the loss of kinetic energy, travel the

59

Chapter 4. Results and Discussion

furthest distance, get as many cars through the inner intersection and avoid starvation is to
maximise the speed of each vehicle.

It was also shown that the objectives may conflict when the amount of vehicles in the
intersection is high, or the state is complex. The data in table 4.6 shows that the EP finds a
more diverse Pareto-set for a high-complexity intersection state. However, no conclusion
can be made about whether an optimal solution without conflicts exists, or if conflicts can
occur in every such state. Answering those questions would involve searching through the
whole search space (after deciding on some discrete step-values as the genetic encoding
in this project uses continuous variables), a process which is unfeasible for a large amount
of vehicles.

4.6.4 Real world application

In order to use this system in the real world autonomous vehicles, and the intersections
surrounding them, need the following supporting infrastructure.

Generating states

As described in chapter 3 the IM is dependent on generating a correct state of the current
world in the intersection. This means that it needs to know the exact position of all vehi-
cles, their respective speeds and all other physical stateful attributes. The states should also
contain information regarding the environment. Therefore there is also a need for sensors
in the intersection or on the vehicles to collect the relevant environmental data.

Predicting behaviour

In order to trust that a deployed solution will perform as expected the behaviour of the
vehicles has to be predictable. One of the limitations of this thesis is the lack of realism in
the simulator. A lot of things have been simplified in order to ensure predictability, such
as the vehicles having strictly linear acceleration and deceleration profiles and not having
to slow down for sharp turns. However, as long as the IM, given a set target speed, can
accurately predict the position of a car in the future the realism of the mechanism that
allows it to do that only has to match the world the IM is acting upon. In this project that
reality was a simulator. The requirement of vehicles being able to predict their own future
position can be found in other real time autonomous intersection management applications,
such as FCFS [8].

Communication

Because the IM architecture in this project is based on a central IM with total control, loss
of communication can be disastrous. The safety is in part guaranteed by the IMs ability to
accurately, and timely, get the information it needs from the vehicles to generate a scenario.
It also has to be able to relay the target speeds back to the vehicles on time. Therefore,
unless some workaround not discussed in this thesis is available, perfect communication
is a prerequisite for implementing this solution in the real world. Vehicle ad hoc networks
[20] could be used instead of the V2I infrastructure chosen in this project. This would

60

4.6 Discussion

then include choosing a leader amongst the vehicles that is responsible for acting as the
IM.

61

Chapter 4. Results and Discussion

62

Chapter 5
Conclusion

This thesis has evaluated the field of intersection management. After an evaluation of the
current fields of study a hybrid approach (explained in chapter 3) of related methods has
been suggested, implemented and evaluated. This chapter serves as a conclusion of the
whole thesis.

The background chapter (chapter 2) gave a review of the current state of intersection man-
agement. We decided that it would be interesting and useful to investigate the properties
of an IM that was created from joining two promising parts of the field. In addition this
chapter explained the relevant theory behind MOEAs for this thesis.

Chapter 3 describes the overall methodology of the experiments. As a part of that method-
ology the proposed IM was described in detail.

In order to answer the research questions the system was tested with several experiments.
These experiments, including their specific methodology and results, were described in
chapter 4. In addition, that chapter provided a discussion of the findings.

5.1 Goal evaluation

The goal of this project was to ” investigate the real time use of a Multiobjective Evolu-
tionary Algorithm to manage traffic through an intersection.”

In order to achieve this we created an IM, divided into two logical parts. One that could
control the vehicles in the intersection by modulating their speed, here known as the IM.
The other part, the EP, could analyse a state of the intersection and, using an MOEA,
find a speed for each vehicle in the given state. A simulator was implemented in order to
simulate the real world that the IM would act upon, and to run simulations for evaluating
objective scores in the EP. The project showed that an MOEA could be used in real time to

63

Chapter 5. Conclusion

control the intersection. However, exploring the performance of the IM showed that there
are limitations to this kind of intersection management.

The research questions, posed in section 1.2, defined the specific parts of the system that
this thesis wanted to explore. The system was evaluated under the performance metrics
defined in section 3.3.1.

Research question 1: ”What are the effects of using independent time step modelling
to determine actions for the system, when looking at effects at an infinite time hori-
zon?”

The performance of the system was shown to be very dependent on the time step parame-
ters. Using smaller values for tmain (the variable that determines how long each solution
is deployed) lowered the amount of time each solution is used. When this variable is very
low the IM is constantly deploying new solutions. Frequently reevaluating what speed
the cars should hold allows the IM to behave more erratically, frequently changing what
vehicles should be favoured for intersection traversal. Smaller values (tmain ≤ 0.2s) sig-
nificantly increased both the MET and the total kinetic energy lost. The IM was observed
not consistently prioritising the movement of the same vehicles, leading to more vehicles
being stuck in the inner intersection, leading to deadlocks. Using higher values for tmain

stabilised the behaviour of the IM. However, deploying a solution for too long increased
the amount of time a solution has to be valid for, in turn increasing MET.

When varying tsim (the variable that determines the amount of time each solution is eval-
uated beyond tmain) it was shown that collisions could be avoided for medium amounts
of traffic, as long as tsim was large enough. Using too small values for tsim was shown
to cause a large amount of collisions because the IM would not have enough time to stop
cars in the next state. As was shown for tmain, large values of tsim also caused a slight
increase in MET.

When using the chosen values for tmain and tsim, the IM was consistently able to avoid
collisions for spawn rates below 0.6. In addition, the MET was close to the optimal val-
ues calculated when ignoring collisions. Observing the behaviour of the vehicles clearly
showed that the IM kept a close to maximum speed for the vehicles, only significantly
slowing them down to avoid collisions in the inner intersection. When the amount of cars
was increased, and the inner intersection became congested, the IM displayed behaviour
where it would slow a group of cars in order to allow the passage of another group. This
closely resembled the explicit behaviour found in related works. Single lane starvation
was never observed.

Research question 2: ”How does the complexity of solving independent time steps scale
with the amount of cars present in the intersection?”

In order to understand why the IM behaved differently when presented with different
amounts of cars we wanted to investigate how the complexity of each state grows as more
cars are introduced. As the amount of cars in the intersection grew, so did the search space
that the EP had to traverse.

It was shown that the average amount of evaluations needed by the MOEA, before a so-

64

5.2 Contributions

lution without collisions was present in the population, rises faster than linearly. At the
most, the average was close to half the amount of available evaluations, when only con-
sidering scenarios where the EP was able to avoid collisions. This indicated that the rising
complexity of each state was one of the contributing reasons why the IM was not always
able to avoid collisions. Because collision avoidance is an important part of intersection
management, the rising complexity is a limiting factor for real world usage of the proposed
IM.

Research question 3: ”How do the chosen objective functions contribute to the effective-
ness of the intersection manager?”

The contribution of the chosen optimisation objectives was measured by comparing the
performance of the IM with, and without, optimising for each objective. It was shown that,
for smaller spawn rates where collisions do not occur, optimising for distance travelled was
very important. Not optimising for distance travelled caused a large upward shift from the
MET obtained when optimising for all objectives. No other objectives had any effect
here.

It was hypothesised that not optimising for the total kinetic energy lost would have a sim-
ilar effect on the performance metric pertaining to the total kinetic energy lost. However,
no such effect was observed. This was most likely caused by two factors. First, there is
no guarantee that optimising for the loss of kinetic energy in every time step translates to
a good performance score. Simply because avoiding slightly slowing down a vehicle may
lead to having to slow it down a lot more in a subsequent time step. Second, the DM used
in this project is a very simplistic one; using only a weighted sum of the objective scores
for each Pareto-optimal solution to determine a winner.

The conducted experiments did not show any deviation from the norm when looking at the
starvation and the tiny throughput objectives. Those objectives were designed to be most
effective when the amount of traffic is high and there is a large amount of congestion in the
inner intersection. Under those circumstances there is also a high probability of collisions,
at which point the measured MET and total kinetic energy lost are not good for making
comparisons.

When looking at how objectives conflict in differing scenarios it was shown that when
there are few vehicles in the intersection the objectives do not often conflict. In a scenario
with low amounts of traffic the MOEA was shown to find a single good solution. How-
ever, the EP was shown to find several Pareto-optimal solutions for two complex scenarios
involving many vehicles in the intersection.

5.2 Contributions

The current research in intersection management, as presented in chapter 2, has found
many different ways of managing intersections. Some explicit methods that support con-
tinuous control of the intersection, and some that use optimisation techniques to optimise

65

Chapter 5. Conclusion

single scenarios. This thesis suggests, implements and tests an IM that finds new ground
in the field by combining those methods.

It was found that the IM proposed in this project was able to efficiently route vehicles
through the intersection safely, with only small deviations from the measured optimal MET
for small to medium amounts of vehicles. However, the IM proposed was also shown to be
sensitive to both its own internal parameters and the complexity of the intersection states it
had to solve. This thesis found the effects of the most important parameters, and identified
the primary reasons why collisions occur at higher levels of traffic.

5.3 Further study

This section contains our suggestions for further research.

Avoiding congestion in the inner intersection

It is apparent from the results in chapter 4 that congestion of the inner intersection is a big
contributing factor to the problems of the IM approach described in this thesis. It would
be interesting to evaluate how the IM performs when more direct methods are used for
avoiding congestion.

In order to reduce the congestion a method inspired by related work could be applied. Yan
et al. [25] used the notion of Compatible Stream Groups to avoid collisions in the intersec-
tion. Compatible Stream Groups are covered in section 2.2. This could be implemented
by forcing the IM to only consider vehicles in trajectories that do not conflict. However,
determining which Compatible Stream Groups should be active in a given state is not an
easy problem.

A more indirect approach is to add another optimisation objective that seeks to avoid con-
gestion by limiting the amount of cars present in the inner intersection. This would be
closely related to the current objective of tiny throughput; evacuating cars from the inner
intersection as fast as possible, but focus on keeping them out. Ideally, this could also lead
to more specific queueing behaviour. An investigation of this objective would also involve
finding a good compromise when selecting a solution, as some cars have to occupy the
inner intersection in order to be evacuated from the intersection as a whole.

Deadlocks (described and observed in section 4.6.1) are not only a result of congestion in
the inner intersection, but also a confounding factor. When the inner intersection is blocked
by a deadlock it follows that, as new vehicles move into the inner intersection, they are
stuck, making the problem worse. In order to avoid this form of congestion deadlocks have
to be avoided. More explicit methods for deadlock detection would be interesting.

66

5.3 Further study

Complexity reduction

Because it was shown that the complexity of each state is one of the reasons why collisions
occur in the current system we think it would be interesting to see how it behaves when
efforts are made to reduce this complexity. This could also give more insight toward
research question 2. Yan et al. [25] introduced the concept of Fundamental mini-groups.
They are groups of adjacent vehicles that follow the same trajectory. This allows the
intersection manager to treat the group of cars as a single entity. The same concept could
be applied here, reducing the search space significantly. Reducing the amount of cars in the
intersection by some external mechanism should also be explored. Such as the traffic lights
limiting the amount of cars merging into a highway, commonly found in the USA.

Asymmetric spawn rates

One of the limitations of the research conducted in this thesis is that we only examined
spawn rates symmetrical between directions. This may have been a contributing factor to
why single lane starvation was never observed over large periods of time. For instance, if
the amount of cars from the east was significantly larger than what came from the north it
is plausible that the EP would favour the eastern cars and stop the northern ones.

67

Chapter 5. Conclusion

68

Bibliography

[1] AIM, 2016. The aim4 simulator v1.0.3. http://www.cs.utexas.edu/

˜aim/, accessed: 2016-01-20.

[2] AIMSUN, 2016. http://www.aimsun.com/wp/, accessed: 2016-05-12.

[3] CORSIM, 2016. http://mctrans.ce.ufl.edu/mct/, accessed: 2016-05-
12.

[4] David, H., 2015. Moea framework user guide. version 2.6. http://www.
moeaframework.org/, accessed: 2015-12-6.

[5] Deb, K., 2001. Multi-objective optimization using evolutionary algorithms. Vol. 16.
John Wiley & Sons.

[6] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., Apr. 2002. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation
6 (2), 182–197.

[7] Dresner, K., Stone, P., 2004. Multiagent traffic management: A reservation-based in-
tersection control mechanism. In: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems-Volume 2. IEEE Computer
Society, pp. 530–537.

[8] Dresner, K., Stone, P., 2008. A multiagent approach to autonomous intersection man-
agement. Journal of artificial intelligence research, 591–656.

[9] Ferreira, J. C., Fonseca, C. M., Gaspar-Cunha, A., 2007. Methodology to select so-
lutions from the pareto-optimal set: a comparative study. In: Proceedings of the 9th
annual conference on Genetic and evolutionary computation. ACM, pp. 789–796.

[10] Ferreira, M., Fernandes, R., Conceição, H., Viriyasitavat, W., Tonguz, O. K., 2010.
Self-organized traffic control. In: Proceedings of the seventh ACM international
workshop on VehiculAr InterNETworking. ACM, pp. 85–90.

69

http://www.cs.utexas.edu/~aim/
http://www.cs.utexas.edu/~aim/
http://www.aimsun.com/wp/
http://mctrans.ce.ufl.edu/mct/
http://www.moeaframework.org/
http://www.moeaframework.org/

[11] Floreano, D., Mattiussi, C. M., 2008. Bio-inspired artificial intelligence theories,
methods, and technologies. MIT Press, Cambridge, Mass.
URL http://www.amazon.de/dp/0262062712

[12] Holland, J., 1975. Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. University of
Michigan Press.
URL https://books.google.no/books?id=JE5RAAAAMAAJ

[13] Hunt, P., Robertson, D., Bretherton, R., Winton, R., 1981. Scoot-a traffic responsive
method of coordinating signals. Tech. rep.

[14] Jiang, D., Delgrossi, L., 2008. Ieee 802.11 p: Towards an international standard for
wireless access in vehicular environments. In: Vehicular Technology Conference,
2008. VTC Spring 2008. IEEE. IEEE, pp. 2036–2040.

[15] Miettinen, K., 2012. Nonlinear multiobjective optimization. Vol. 12. Springer Sci-
ence & Business Media.

[16] Schaffer, J. D., 1985. Multiple objective optimization with vector evaluated genetic
algorithms. In: Proceedings of the 1st International Conference on Genetic Algo-
rithms, Pittsburgh, PA, USA, July 1985. pp. 93–100.

[17] Sommer, C., Hagenauer, F., Dressler, F., 2014. A networking perspective on self-
organizing intersection management. In: Internet of Things (WF-IoT), 2014 IEEE
World Forum on. IEEE, pp. 230–234.

[18] TO, H. R., Barker, M. M., 2001. White paper european transport policy for 2010:
time to decide.

[19] VISSIM, 2016. http://vision-traffic.ptvgroup.com/en-uk/
home/, accessed: 2016-05-12.

[20] Willke, T. L., Tientrakool, P., Maxemchuk, N. F., 2009. A survey of inter-vehicle
communication protocols and their applications. Communications Surveys & Tuto-
rials, IEEE 11 (2), 3–20.

[21] Wu, J., Abbas-Turki, A., El Moudni, A., 2009. Discrete methods for urban inter-
section traffic controlling. In: Vehicular Technology Conference, 2009. VTC Spring
2009. IEEE 69th. IEEE, pp. 1–5.

[22] Wuthishuwong, C., Traechtler, A., Bruns, T., 2015. Safe trajectory planning for au-
tonomous intersection management by using vehicle to infrastructure communica-
tion. EURASIP Journal on Wireless Communications and Networking 2015 (1), 1–
12.

[23] Yan, F., Dridi, M., El Moudni, A., 2009. A branch and bound algorithm for new
traffic signal control system of an isolated intersection. In: Computers & Industrial
Engineering, 2009. CIE 2009. International Conference on. IEEE, pp. 999–1004.

70

http://www.amazon.de/dp/0262062712
https://books.google.no/books?id=JE5RAAAAMAAJ
http://vision-traffic.ptvgroup.com/en-uk/home/
http://vision-traffic.ptvgroup.com/en-uk/home/

[24] Yan, F., Dridi, M., El-Moudni, A., 2012. New vehicle sequencing algorithms with
vehicular infrastructure integration for an isolated intersection. Telecommunication
Systems 50 (4), 325–337.

[25] Yan, F., Dridi, M., El Moudni, A., 2013. An autonomous vehicle sequencing prob-
lem at intersections: A genetic algorithm approach. International Journal of Applied
Mathematics and Computer Science 23 (1), 183–200.

[26] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., Zhang, Q., 2011. Multi-
objective evolutionary algorithms: A survey of the state of the art. Swarm and Evo-
lutionary Computation 1 (1), 32–49.

71

72

Appendix A
Experiment 1 scenarios

Three sample scenarios: one low-traffic, one medium-traffic and one high-traffic. These
were used in section 4.1. Figures start on the next page.

73

Figure A.1: A sample low-traffic scenario.

74

Figure A.2: A sample medium-traffic scenario.

75

Figure A.3: A sample high-traffic scenario.

76

Appendix B
Experiment 5 scenarios

This appendix contains the scenarios that were used in section 4.5. Figures start on the
next page.

77

Figure B.1: The figure shows the simple scenario used in experiment 5. The scenario was gener-
ated with a spawn rate of 0.4. As there are few vehicles in the intersection and the trajectories are
non-conflicting it is simple to evolve a solution without collisions where all objectives are close to
optimal.

78

Figure B.2: The figure shows the first complex scenario used in experiment 5. The scenario was
generated with a spawn rate of 0.8. As there are a lot of vehicles, especially in the inner intersection,
the objectives are expected to conflict.

79

Figure B.3: The figure shows the first complex scenario used in experiment 5. The scenario was
generated with a spawn rate of 0.9. As there are a lot of vehicles arriving in the intersection the
objectives are expected to conflict.

80

Appendix C
A collision

Figure C.1: A collisions occurring in the inner intersection (circled). The figure is taken from one
run, with a spawn rate of 0.8, from the experiment in 4.2.

81

82

Appendix D
Running the software

Instructions for building or running are available in the readme.txt file. The system has
only been tested on Windows 10, but should work on other operating systems. It requires
Java 8 to run.

83

	Problem description
	Summary
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and motivation
	Research Goal and Questions
	Contributions
	Method
	Overview

	Background
	Intersection management
	Communication
	Virtual traffic lights

	Autonomous Intersection Management
	Vehicle sequencing

	Evolutionary Algorithms
	Multiobjective Optimisation Problems
	Multiobjective Evolutionary Algorithms
	NSGA-II

	Structured literature review
	Traffic Simulators
	Features
	Simulators

	Methodology
	System overview
	The Intersection Manager
	The vehicles
	Spawning vehicles
	Time modelling
	The Simulator
	Observing the IM

	MOEA details
	Objectives
	Genetic encoding
	Variation
	Choosing a solution

	Measuring performance
	Metrics
	Collisions

	Selecting the parameters

	Results and Discussion
	Experiment 1: Looking at time steps
	Experiment 2: Continuous traffic
	Experiment 3: Scalability
	Experiment 4: Objectives
	Experiment 5: Conflicting objectives
	Discussion
	Independent time step modelling
	Scaling
	The objectives
	Real world application

	Conclusion
	Goal evaluation
	Contributions
	Further study

	Bibliography
	Experiment 1 scenarios
	Experiment 5 scenarios
	A collision
	Running the software

