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Abstract 
Up-scaling of reservoir model is required to save computational time and costs in the industry. 

Due to numerical dispersion caused by enlarged grid size and reduced reservoir heterogeneity 

during up-scaling, the simulation accuracy is reduced. This means that the simulation results 

on the coarse grid models cannot correctly represent the performance of polymer flooding. 

Although many up-scaling methods can be applied to reproduce fine grid simulation results 

on coarse grid models for water/oil flow, few studies take polymer flooding into account. 

Based on previous studies [1], it is found that the performance of polymer flooding is highly 

dependent on polymer solution viscosity and adsorption. In consideration of the effect of 

numerical dispersion on these two polymer properties, up-scaling factors of the polymer 

solution viscosity function (𝑓𝑣) and of the polymer adsorption function (𝑓𝑎𝑑) are introduced in 

this thesis to tune coarse grid simulation results for polymer flooding. The aim of this study is 

to investigate the impact of up-scaling the polymer solution viscosity function and the 

polymer adsorption function on coarse grid simulation results in order to provide a simple up-

scaling method for polymer flooding, and to investigate the impacts of flow dimension and 

heterogeneity on up-scaling. 1D, 2D and 3D, homogeneous and heterogeneous reservoir 

models are built and run in ECLIPSE in order to investigate how the values of 𝑓𝑣 and of 𝑓𝑎𝑑 

are affected by grid size and heterogeneity. Simulation results are summarized and analyzed 

in this thesis. 

The main conclusions in this study are concluded as follows: (1) the mismatches between fine 

and coarse grid simulation results of polymer flooding may be reduced by up-scaling the 

polymer solution viscosity function and the polymer adsorption function, (2) different from 

water/oil flow, the simulated history of oil recovery can be tuned without touching the relative 

permeability curves by up-scaling the polymer solution viscosity function and this may be an 

advantage, (3) the accuracy of predicting polymer loss by doing simulation on a coarse model 

for a polymer flooding project may be improved by simply up-scaling the polymer adsorption 

function, (4) increases of flow dimension and of heterogeneity affect significantly up-scaling 

of the polymer solution viscosity and the polymer adsorption functions, (5) some limitations 

of this up-scaling method are found and one of them is that too high injector WBHP may 

appear in some particular cases, and (6) the up-scaling method introduced in this thesis is not 

a robust method and many other affecting factors have to be consider in further studies.  
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Preface 
Polymer flooding is an effective Enhanced Oil Recovery (EOR) method for viscous oil and/or 

heterogeneous reservoirs. Polymers in solution act as a mobility control agent by increasing 

the water phase viscosity and/or reducing the water phase permeability. In order to evaluate a 

project of injecting polymers and to predict the behavior of polymer flooding, numerical 

simulations are necessary. Sometimes the simulations are required to be done on an up-

scaled/coarse grid model to save computational time and cost. Due to numerical dispersion, 

the accuracy of predicting the behavior of polymer flooding is always lowered by doing 

simulations on a coarse grid model compared to a fine grid model. Therefore, a solution to 

reduce or eliminate the mismatches between the fine grid results and the coarse grid results is 

essential. However, there are a few articles which give general methods of up-scaling polymer 

flooding. 

In the summer of 2013, I worked as an intern in Statoil Research Centre at Rotvoll, 

Trondheim, Norway. My tasks were to do some sensitivity analyses for polymer flooding. 

Important results are summarized in the report [1] of preparation work for this thesis. From 

the sensitivity analyses, I found that the behavior of polymer flooding is very sensitive to the 

relative permeability curves, the polymer solution viscosity function and the polymer 

adsorption function. Lee in his thesis [2] investigated the impacts of using pseudo relative 

permeabilities and up-scaling the polymer adsorption function on up-scaling polymer flooding. 

Although the pseudo relative permeability method does eliminate the mismatch caused by 

numerical dispersion, there may be some practical problems and difficulties to generate these 

pseudo relative permeabilies in some particular cases. Therefore, I decided to investigate the 

impacts of up-scaling the polymer solution viscosity function and the adsorption function 

without touching the relative permeabilities. 

All the original simulation models and input data were obtained from Statoil. Some small 

modifications were made. The simulation models were synthetic. A set of 3D Generic models 

was built to mimic a real field case. The simulations were run by ECLIPSE 100 simulator and 

done in the period of February to May 2014. The license of ECLIPSE was provided by 

NTNU and Statoil. 

This thesis is supervised by Professor Jon Kleppe at NTNU and Researcher Vegard Kippe in 

Statoil, and is submitted to Department of Petroleum Engineering and Applied Geophysics at 
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NTNU in partial fulfilment of the requirements for the Master’s Degree in Petroleum 

Engineering. 

A simple method of up-scaling polymer flooding is introduced in this thesis. Some important 

concepts of polymer flooding related to this study are presented in Section 2. The up-scaling 

methodology is described in Section 3. ECLIPSE input data for simulation of polymer 

flooding are summarized in Section 4. Section 5 introduces the progress in the study work 

being done. 1D, 2D and 3D homogeneous and heterogeneous cases and their corresponding 

models are described in Section 6, and the figures of models can be found in Appendix B: 

Figures of Simulation Models. Simulation results for all the cases are analyzed in Section 7 

and the plots of simulation results for oil recovery, polymer adsorption, polymer production, 

water cut and injector WBHP are attached in Appendix C: Simulation Results. The results are 

discussed and suggestions for further studies are made in Section 8. Conclusions are 

concluded in Section 9. In Appendix A: Literature Review, important reviewed literatures and 

their contribution to this thesis are listed. Examples of input Data- and Include-files in 

ECLIPSE are attached in Appendix D: Example of Input Files in ECLIPSE. An additional 

study is done to investigate the impact of the shape of the up-scaled polymer solution 

viscosity function on up-scaling polymer flooding, and that study is presented in Appendix E 

(Page 87). 
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Nomenclature 
 

Latin 
𝑎𝑝, 𝑎𝑝1, 𝑎𝑝2  Parameters in Langmuir isotherm (Eq. 2.2-1) 
𝑏𝑝  Parameter in Langmuir isotherm (Eq. 2.1-1) 
𝐶𝑎𝑑  Polymer adsorbed concentration 
𝐶𝑎𝑑�   Up-scaled polymer adsorbed concentration 
𝐶𝑝  Polymer concentration in the aqueous phase 
𝐶𝑝,𝑚𝑎𝑥  Maximum polymer concentration in the aqueous phase 
𝐶𝑝𝑠  Polymer concentration on the rock phases 
𝐶𝑠𝑒  Effective salinity for polymer 
𝐷𝑝  Retardation factor 
𝑓𝑎𝑑  Up-scaling factor for polymer adsorption function (Eq. 3.2-1) 
𝑓𝑖  Fractional flow of phase 𝑖 
𝑓𝑣  Up-scaling factor for polymer solution viscosity function (Eq. 3.1-1) 
𝑓𝑤1  Water fractional flow at the oil bank 
𝑓𝑤𝑓  Water fractional flow the water flooding front 
𝑓𝑤𝑖  Initial water fractional flow at 𝑆𝑤𝑖 
𝑓𝑤𝑝  Water fractional flow at the polymer shock front 
ℎ  Layer thickness 
ℎ𝑖  Thickness of layer 𝑖 
𝑘  Absolute permeability 
𝑘𝑖  Absolute permeability of layer 𝑖 
𝑘𝑟𝑒𝑓  Reference permeability in Langmuir isotherm 
𝑘𝑟𝑖  Relative permeability of phase 𝑖 
𝑘𝑟𝑖′   End point relative permeability of phase 𝑖 
𝑘∗  Up-scaled/averaged absolute permeability 
𝑀  End point mobility ratio 
𝑀𝑠  Shock mobility ratio 
𝑀𝑣  Viscosity multiplier 
𝑀𝑣�   Up-scaled viscosity multiplier 
𝑚, 𝑛 Exponents in Langmuir isotherm (Eq. 2.2-1) 
𝑆𝑖  Saturation of phase 𝑖 
𝑆𝑜𝑖  Initial oil saturation 
𝑆𝑜𝑟𝑤  Residual oil saturation 
𝑆𝑤1  Water saturation at the oil bank 
𝑆𝑤𝑓  Water saturation at the water flooding front 
𝑆𝑤𝑖  Initial water saturation 
𝑆𝑤𝑝  Water saturation at the polymer shock front 
𝑣𝐶𝑝  Specific velocity of polymer concentration 
𝑣𝑜𝑏  Specific velocity of the front of the oil bank 
𝑣𝑤𝑏  Specific velocity of boundary between the denuded water and the initial water 
𝑥𝐷  Distance of displacing 
𝑥𝑤𝑏  Distance of boundary between the denuded water and the initial water 
𝑥𝑤𝑝  Distance of the polymer shock front 
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Greek 
𝜆𝑇  Total mobility 
𝜆𝑇0  Total mobility before the displacing (shock) front 
𝜆𝑇𝑠  Total mobility at 𝑆𝑤 equal to water saturation at the displacing (shock) front 
𝜇𝑖  Viscosity of phase 𝑖 
𝜇𝑚  Viscosity of fully mixed polymer solution 
𝜇𝑝  Viscosity of polymer solution at maximum polymer concentration 
𝜇𝑝,𝑒𝑓𝑓  Effective polymer viscosity 
𝜇𝑤,𝑒  Partially mixed water viscosity 
𝜇𝑤,𝑒𝑓𝑓  Effective water viscosity 
∅  Bulk porosity 
∅𝑒  ≡ ∅𝐼𝑃𝑉 ∅⁄   
∅𝐼𝑃𝑉  Inaccessible pore volume / Dead pore space 
𝜔  Todd-Longstaff mixing parameter 
  

Subscript 
𝑜  Oil phase 
𝑝  Polymer solution 
𝑤  Water or brine phase 
𝑥  x-coordinate direction 
𝑦  y-coordinate direction 
𝑧  z-coordinate direction 
  

Abbreviation 
1D One-Dimensional 
2D Two-Dimensional 
3D Three-Dimensional 
EOR Enhanced Oil Recovery 
Eq. Equation 
IPV Inaccessible Pore Volume / Dead Pore Space 
NTNU Norwegian University of Science and Technology 
PermX Permeability in x-direction 
WBHP Well Bottom-Hole Pressure 
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1 Introduction 
Polymer flooding is one of the chemical enhanced oil recovery (EOR) methods. It has 

successfully improved the oil recoveries in a number of oil fields such as Daqing Oilfield [3] 

and Pelican Lake Field [4]. Polymers in water solution act as a mobility control agent by 

increasing the water phase viscosity (and decrease the effective permeability), providing 

stable displacing front and better volumetric sweep efficiency. Compared to other chemical 

EOR methods, polymer flooding can perform well for a wide range of reservoir conditions at 

low risk, especially for reservoirs with viscous oil and/or high heterogeneity. Therefore, many 

polymer flooding projects are ongoing world-widely. In order to evaluate a polymer flooding 

project and correctly predict the performance of polymer flooding, accurate simulations of 

polymer flooding are required. 

In the industry, a coarse grid model is usually used instead of a fine grid model to save 

computationally time and costs for project planning. The process of converting the fine grid 

model to the coarse grid model is called up-scaling. During up-scaling, two very important 

factors are changed, grid size and heterogeneity. On one hand, increased grid size after up-

scaling can lead to numerical dispersion under simulations. Numerical dispersion due to finite 

difference approximation of differential equations causes a smearing effect on the displacing 

shock front and makes the polymer performance incorrectly interpreted on a coarse grid 

model. Fortunately, the numerical dispersion problem can be solved in some degree by 

standard up-scaling (single-phase and multi-phase up-scaling) methods. However, these 

standard up-scaling methods are limited to oil/water flow because they do not account for 

important effects of polymers such as adsorption and permeability reduction. On the other 

hand, reduced reservoir heterogeneity after up-scaling can also affect the prediction of the 

performance of polymer flooding by reservoir simulation on a coarse grid model. Therefore, 

there will be a mismatch between the simulation results on a fine grid model and on its up-

scaled model (a coarse model). It is essential to find an up-scaling method for polymer 

flooding which can reproduce the fine grid results on the coarse grid model. However, 

researches on up-scaling polymer flooding are still few and a robust up-scaling method for 

polymer flooding is still missing. The general challenge of up-scaling polymer flooding can 

therefore considered as quite open. 

Although Lee in his thesis [2] has proved that a combination of using pseudo relative 

permeability method and up-scaling the polymer adsorption isotherm by a factor may improve 
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the accuracy of the coarse grid results, the way to generate the pseudo relative permeability 

curves is actually very computational time consuming and can lead to a lot of problems in 

some practice cases [5]. From the preparation work [1] for this thesis, it is found that 

simulation result for polymer flooding is also very sensitive to the polymer solution viscosity 

function in addition to relative permeabilities. Naturally, an idea pops up; is it possible to 

reproduce the fine grid simulation results on a coarse grid by simply up-scaling the polymer 

solution viscosity function and the polymer adsorption function without doing any changes on 

the relative permeability curves? If this method works, the effort to up-scale polymer flooding 

will be much less than Lee’s method.  

The purposes of this study is to investigate the impact of up-scaling two important polymer 

properties, polymer solution viscosity and adsorption, by a simple method on the contrast 

between fine and coarse grid results, and to investigate the impacts of flow dimension and 

heterogeneity on up-scaling. 
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2 Basic Concept of Polymer Flooding 
A thorough literature review of concepts of polymer flooding has been done in previous study 

[1]. Basic concepts of polymer flooding and equations introduced in following sections are 

essential for this study. There are many other aspects of polymer flooding that are not 

considered in this thesis. For example, the aqueous permeability may be reduced due to 

polymer retention, which is called permeability reduction; polymer solution may behave like a 

non-Newtonian fluid, which causes a non-Newtonian effect; polymer properties may depend 

on salinity, which is named salinity dependency. All these aspects should be considered in 

further studies. 

2.1 Viscosity Relations 
According to previous researches [6], the polymer solution viscosity can be treated as 

proportional to the water/brine viscosity at a certain polymer concentration as Eq. 2.1-1 [7] 

shows. 

Eq. 2.1-1 𝜇𝑚 = 𝑀𝑣(𝐶𝑝) ∙ 𝜇𝑤  

The polymer solution viscosity function which interprets the relation between the viscosity 

multiplier 𝑀𝑣  and the polymer concentration 𝐶𝑝  must be specified for modeling polymer 

flooding. 

Some commercial simulators like ECLIPSE attempt to capture segregation between the water 

and the polymer solution in each grid block by applying Todd-Longstaff technique for 

calculating effective viscosities. The effective polymer viscosity 𝜇𝑝,𝑒𝑓𝑓  and the partially 

mixed water viscosity 𝜇𝑤,𝑒 are defined as [7] 

Eq. 2.1-2 𝜇𝑝,𝑒𝑓𝑓 = 𝜇𝑚𝜔𝜇𝑝1−𝜔,  

Eq. 2.1-3 𝜇𝑤,𝑒 = 𝜇𝑚𝜔𝜇𝑤1−𝜔.  

Then, the effective water viscosity 𝜇𝑤,𝑒𝑓𝑓 is computed by [7] 

Eq. 2.1-4 𝜇𝑤,𝑒𝑓𝑓 = (1−𝐶𝑝 𝐶𝑝,𝑚𝑎𝑥⁄
𝜇𝑤,𝑒

+ 𝐶𝑝 𝐶𝑝,𝑚𝑎𝑥⁄
𝜇𝑝,𝑒𝑓𝑓

)−1.  

 



Up-scaling of Polymer Flooding with regards to Geologic Heterogeneities  Aojie Hong 

4 
 

2.2 Adsorption and Desorption 
When polymer particles travel in porous media, some of them are adsorbed onto solid 

surfaces or trapped within small pores. This phenomenon is called polymer retention. The 

degree of retention depends on the properties of the polymer and of the rock surface. The 

range of retention is between 7 and 150 µg polymer/cm3 of bulk volume according to field 

measurement [8]. Retention leads to loss of polymer concentration in the solution, and thus 

reduces the effect of polymer flooding. A Langmuir-type isotherm, which is shown as 

equation below, is usually used to quantitatively describe polymer adsorption [2, 8, 9]. 

Eq. 2.2-1 𝐶𝑝𝑠 = 𝑎𝑝𝐶𝑝𝑚

1+𝑏𝑝𝐶𝑝
  

where 𝑎𝑝 = (𝑎𝑝1 + 𝑎𝑝2𝐶𝑠𝑒)(𝑘𝑟𝑒𝑓
𝑘

)𝑛 

Instead of using equation above, the polymer adsorption isotherm is specified as a look-up 

table of polymer adsorption as a function of polymer concentration in this study. It is an 

ECLIPSE feature to use this kind of table. This table disables the adsorption dependencies on 

the salinity and rock permeability. [7] 

In addition to adsorption, desorption has also to be considered. Desorption means that the 

polymer concentration on the rock phases can change as the polymer concentration in the 

aqueous changes with time. If there is only adsorption but no desorption, the polymer 

concentration on the rock phases can never decrease with time. The case without desorption is 

also called irreversible case, and the case with desorption is reversible case. 

2.3 Fractional Flow in Polymer Flooding 
The fractional flow theory in polymer flooding is often called extended fractional flow theory 

[10] and is based on the Buckley-Leverett (1942) theory [11, 12]. In a two-phase flow 

situation, two phases (aqueous and oleic) and three components (water/brine, oil and 

polymers) are considered. We assume that polymers stay only in aqueous phase (i.e. only oil 

in oleic phase while water/brine and polymers in aqueous phase), there is a uniform initial 

water saturation 𝑆𝑤𝑖, initial polymer concentration is 0 and injection polymer concentration is 

𝐶𝑝. The polymer-oil fractional flow curve is then constructed as shown in Figure 1 for the 

situation with 𝑆𝑤1 < 𝑆𝑤𝑖 . Figure 2 illustrates the water saturation profile corresponding to 

Figure 1. 
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Figure 1: Graphical Construction of Polymer Fractional 

Flow1 

 
Figure 2: Corresponding Water Saturation Profile2 

The specific velocity of polymer front (polymer concentration shock) 𝑣𝐶𝑝 , the specific 

velocity of boundary between the denuded water and the initial water 𝑣𝑤𝑏, and the specific 

velocity of the front of the oil bank 𝑣𝑜𝑏 are computed by [8-10] 

Eq. 2.3-1 𝑣𝐶𝑝 = 𝑓𝑤𝑝
𝑆𝑤𝑝+𝐷𝑝−∅𝑒

= 𝑓𝑤𝑝−𝑓𝑤1
𝑆𝑤𝑝−𝑆𝑤1

,  

Eq. 2.3-2 𝑣𝑤𝑏 = 𝑓𝑤1
𝑆𝑤1

,  

Eq. 2.3-3 𝑣𝑜𝑏 = 𝑓𝑤𝑖−𝑓𝑤1
𝑆𝑤𝑖−𝑆𝑤1

.  

2.4 Fingering and Stable Displacing Front 
Due to higher mobility of the water phase and geologic perturbation, unstable displacing front 

in the form of viscous fingers will form in reservoirs with viscous oil and/or high 

heterogeneity, resulting in reduced volumetric sweep efficiency. Therefore, the displacing 

front has to be stabilized to improve oil recovery. 

The end point mobility ratio 𝑀, the total mobility 𝜆𝑇  and the shock mobility ratio 𝑀𝑠  are 

defined as [13] 

Eq. 2.4-1 𝑀 = 𝜇𝑜𝑘𝑟𝑤′

𝜇𝑤𝑘𝑟𝑜′
,  

                                                 
1 Reedited figure based on the figure from source: 9. Sheng, J., Modern Chemical Enhanced Oil 
Recovery: Theory and Practice. 2010: Gulf Professional Publishing. 
2 Source: 9. Ibid. 
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Eq. 2.4-2 𝜆𝑇 = 𝑀𝑘𝑟𝑤 + 𝑘𝑟𝑜,  

Eq. 2.4-3 𝑀𝑠 = 𝜆𝑇𝑠
𝜆𝑇0

.  

And the criteria for a stable displacing front is 𝑀𝑠<1.0. In this thesis, for simplification, the 

criteria for maximum displacement efficiency, 𝑀<1.0 [2], is used instead of the criteria above. 
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3 Up-scaling Methodology 
The idea to up-scale the polymer solution viscosity function and the polymer adsorption 

function is based on the fact that the viscosity and adsorption of polymer solution at the 

polymer shock front drop as the concentration of polymer at the polymer shock front drops 

due to numerical dispersion. By multiplying factors on these two functions, polymer 

volumetric sweep efficiency and adsorption may be correctly interpreted on a coarse model. 

3.1 Up-scaling Polymer Solution Viscosity Function 
The polymer solution viscosity function is up-scaled by introducing a viscosity up-scaling 

factor 𝑓𝑣. Because the first entry of viscosity multipliers should always be 1.0 corresponding 

to no polymer injected by using PLYVISC keyword in ECLIPSE, the relation between the 

original viscosity multiplier 𝑀𝑣 and the up-scaled viscosity multiplier 𝑀𝑣�  is simply defined as 

Eq. 3.1-1 𝑀𝑣� = 𝑓𝑣(𝑀𝑣 − 1) + 1.  

Figure 3 illustrates the effect of changing the value of 𝑓𝑣. 

3.2 Up-scaling Polymer Adsorption Function 
The way to up-scale polymer adsorption has been discussed in Lee’s thesis [2]. Lee 

introduced a multiplication factor into Eq. 2.2-1 by changing the value of 𝑎𝑝1 in ECLIPSE 

keyword ADSORP. Similar to what Lee did, an adsorption up-scaling factor 𝑓𝑎𝑑 is introduced 

to up-scale the polymer adsorption function. The up-scaled concentration of adsorbed 

polymer 𝐶𝑎𝑑�  is then computed by 

Eq. 3.2-1 𝐶𝑎𝑑� = 𝑓𝑎𝑑𝐶𝑎𝑑.  

Curves with different values of 𝑓𝑎𝑑 are illustrated in Figure 4. 
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Figure 3: Original and Up-scaled Polymer Solution 

Viscosity Functions 

 
Figure 4: Original and Up-scaled Polymer 

Adsorption Functions 
 

3.3 Tuning and Matching 
Two simulation results, Oil Recovery vs. Time and Total Polymer Adsorbed vs. Time, are the 

most important for this study. Because of change of grid size, we cannot reproduce the whole 

histories of oil recovery and of total polymer adsorbed simulated on the fine grid model, on 

the coarse grid model. It is therefore only possible to tune the coarse grid results of ultimate 

oil recovery and of ultimate total polymer adsorbed to match the fine grid results by testing 

different combinations of 𝑓𝑣 and 𝑓𝑎𝑑 values. Matching of ultimate oil recovery and ultimate 

polymer adsorption is performed by manual, so some errors should be expected, but these 

errors are small enough to be ignored. Other simulation results like Water Cut vs. Time, 

Polymer Production vs. Time and Injector WBHP vs. Time are plotted in order to show how 

well this method can reduce the mismatches between the fine and coarse grid results. 
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4 Polymer Flooding in ECLIPSE Simulator 
Following properties for modeling polymer flooding in ECLIPSE provided by Vegard Kippe, 

Principal Researcher in Statoil, are used in this study. 

• The dead pore space or inaccessible pore volume (IPV) is set to 0.1 which is a 

moderate value [2]. This means that 10% of the total pore volume cannot be occupied 

by polymers. In some rock types, the dead pore space can be as high as 30% [8, 14]. 

• The value of the residual resistance factor is set to 1.0. The residual resistance factor 

describes how much the rock permeability to the aqueous phase will decrease if 

polymer adsorption has reached its maximum value [7]. A value of 1.0 represents that 

polymer adsorption does not cause any permeability reductions, so the effect of 

permeability reduction is ignored in this study. 

• Both irreversible and reversible cases are investigated for each simulation case. An 

irreversible case means that desorption of polymers is disabled so that the adsorbed 

polymer concentration cannot decrease again when the local polymer concentration 

has decreased. If the desorption of polymer is enabled, which means that the adsorbed 

polymer concentration changes as the local polymer concentration changes, it is then a 

reversible case. 

• The Todd-Longstaff mixing parameter 𝜔 describes the degree of segregation between 

the water and the polymer solution. In this study, the value of 𝜔 is assumed to be 1.0. 

This assumption represents that the water and the polymer solution are fully mixed in 

each, so the effective polymer viscosity is equal to the polymer solution viscosity. 

• For the given polymer solution viscosity function (Figure 5), the polymer 

concentration of 1.5 kg/sm3 at injection is enough to give a favorable mobility ratio 

between the polymer solution mobility and the oil mobility. 

• The polymer solution viscosity function as shown in Figure 5 is input by using 

ECLIPSE keyword PLYVISC. The polymer solution viscosity at injection is 6.75 cp. 

Thus, the mobility ratio at injection equals to 1.0. Figure 6 shows the mobility ratio as 

a function of polymer concentration. 

• The polymer adsorption function as shown in Figure 7 is input by using ECLIPSE 

keyword ADSORP. The maximum adsorption is 0.00003 kg/kg, namely 79.5 µg/cm3 

as the rock density is set to 2650 kg/m3. Here it is assumed that the polymer 

adsorption is independent on salinity. 
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• The polymer solution is assumed to be Newtonian. Therefore, non-Newtonian 

behavior of polymer solution is not investigated in this thesis. 

• For all the cases, polymer is firstly injected and then followed by water injection until 

the field economic limit (90% water cut) is reached. This corresponds to what is often 

referred to secondary mode polymer injection (polymer injection from the start). For 

different reservoir models, different polymer slug sizes are used in order to keep the 

polymer flooding being the dominant displacing mechanism. 

Table 1 lists all the important properties for modeling polymer flooding in ECLIPSE. 

Table 1: Important Properties of Polymer Flooding Input in ECLIPSE 
Dead pore space (IPV) 0.1 

Residual resistance factor 1.0 
Desorption No or Yes 

Todd-Longstaff mixing parameter 1.0 
Polymer Concentration at Injection 1.5 kg/sm3 

Injection Scheme 

For 1D and 2D homogeneous and layered models: 
1000 day’s polymer injection followed by water injection 

 
For 2D areal and 3D homogeneous models: 
2000 day’s polymer injection followed by water injection 

 
For 3D layered models: 
1500 day’s polymer injection followed by water injection 

 
For 3D generic models: 
4000 day’s polymer injection followed by water injection 

 

 
Figure 5: Input Polymer Solution Viscosity Function 

 
Figure 6: Mobility Ratio vs. Polymer 

Concentration 
 



Up-scaling of Polymer Flooding with regards to Geologic Heterogeneities  Aojie Hong 

11 
 

 
Figure 7: Input Polymer Adsorption Function 
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5 Study Workflow 
A number of 1D, 2D and 3D models are built in order to investigate the impact of up-scaling 

the polymer solution viscosity function and the polymer adsorption function. The procedure 

of this study is described below. 

1. To do sensitivity analysis for grid size on 1D models to check the effect of changing 

grid size on oil recovery and on polymer adsorption for both irreversible and 

reversible cases; 

2. To find the values of up-scaling factors, 𝑓𝑣  and 𝑓𝑎𝑑 , for different grid sizes on 1D 

models to investigate their dependencies of grid size; 

3. To compare the 1D simulation results before and after applying the up-scaling factors  

to see if the mismatches between the fine and the coarse grid results are reduced; 

4. To find the up-scaling factors for more complex 2D and 3D, homogeneous and 

heterogeneous cases; 

5. For the heterogeneous cases, the effects of heterogeneity and of grid size are 

investigate separately and then together; 

6. To summarize all the values of the up-scaling factors found for each case and to 

analyze these values by comparing relative cases. 

All the simulations are run in the ECLIPSE 100 black oil simulator. Examples of ECLIPSE 

input DATA-files as well as their INCLUDE-files which contain the polymer properties, are 

attached in Appendix D: Example of Input Files in ECLIPSE. These files correspond to the 

1D Homogeneous Irreversible Case described in Section 6.1. 
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6 Description of Cases and Models 
General properties of the models are listed in Table 2 and Table 3. 

Table 2: General Properties of Models for All Cases 

 Homogeneous and Layered 
Cases 3D Generic Case  

Phases Water and Oil  
Porosity 0.2 0.13~0.28  

Permeability 

Homogeneous Cases: 
𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 500 

 
Layered Cases: 

𝑘𝑥1 = 𝑘𝑦1 = 250 
𝑘𝑥2 = 𝑘𝑦2 = 500 
𝑘𝑧 𝑘𝑥⁄ = 0.1 

𝑘𝑥 = 𝑘𝑦 = 7~5600 
𝑘𝑧 = 2.8~2240 

md 

Oil Density 800 kg/sm3 
Water Density 1000 kg/sm3 
Rock Density 2650 kg/sm3 

Oil Compressibility 6.65 ∙ 10−5 bars-1 
Water Compressibility 4.28 ∙ 10−5 bars-1 

Oil Viscosity 6.4 cp 
Water Viscosity 0.5 cp 

Initial Water Saturation 0.0 0.1~1.0  
Initial Reservoir 

Pressure 234 barsa 

Field Economic Limit 0.9 (Water Cut)  
 

Table 3: Well Controls 

 

Production Well 
Control 

Injection Well 
Control 

Liquid Rate 
(sm3/day) 

WBHP 
(barsa) 

Injection Rate 
(sm3/day) 

1D and 2D Homogeneous and 2D Layered 
Cases - 200 

200 

2D Areal and 3D Homogeneous and 3D 
Layered cases 1000 

3D Generic Case 1600  85 1600 
 

  



Up-scaling of Polymer Flooding with regards to Geologic Heterogeneities  Aojie Hong 

14 
 

Table below summarizes the information of reservoir size, fine grid block size and its 

corresponding coarse grid block size, and distance between wells for all the cases in this 

thesis. More detailed description of each case is in following sections. All the figures of 

simulation models are attached in Appendix B: Figures of Simulation Models. 

Table 4: Reservoir Sizes, Grid Block Sizes and Distance between Wells 

Case Reservoir Size 
Fine Grid Block 

Size 
(No. of Grid Blocks) 

Coarse (Up-scaled) 
Grid Block Size 

(No. of Grid Blocks) 

Distance 
between 

Injector and 
Producer 

1D 
Homogeneous 

Case 
940m*100m*40m 20m*100m*40m 

(47*1*1) 
180m*100m*40m 

(7*1*1) 920m 

2D 
Homogeneous 

Case 
940m*100m*40m 20m*100m*2m 

(47*1*20) 
180m*100m*2m 

(7*1*20) 920m 

2D Layered 
Case 940m*100m*40m 20m*100m*2m 

(47*1*20) 
180m*100m*20m 

(7*1*20) 920m 

2D Areal Case 940m*940m*40m 20m*20m*40m 
(47*47*1) 

180m*180m*40m 
(7*7*1) 1301m 

3D 
Homogeneous 

Case 
940m*940m*40m 20m*20m*2m 

(47*47*20) 
180m*180m*2m 

(7*7*20) 1301m 

3D Layered 
Case 900m*900m*40m 20m*20m*2m 

(45*45*20) 
180m*180m*20m 

(5*5*2) 1018m 

3D Generic 
Case  

20m*20m 
(219*108*91) 

180m*180m 
(24*12*91) 900m 

 

 

6.1 1D Homogeneous Case 
The dimension of the reservoir model is 940 m × 100 m × 40 m with grid size 20 m × 100 m 

× 40 m for the fine grid model and 180 m × 100 m × 40 m for the up-scaled coarse grid model 

 
Figure 8: Relative Permeability Curves for Homogeneous and Layered Cases 
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as show in Figure 26. The reservoir is homogeneous and isotropic. Injection well and 

production well are perforated in the first block and in the last block, respectively.  In order to 

keep the well locations the same before and after up-scaling, the block sizes of the first block 

and of the last block are not changed during up-scaling. The reservoir parameters are 

summarized in Table 2 and Table 3. The relative permeability curves for oil and water are 

shown in Figure 8. The original input polymer solution viscosity function and the polymer 

adsorption function are illustrated in Figure 5 and Figure 7. Polymer/rock properties are listed 

in Table 1. 

6.2 2D Homogeneous Case 
The 2D homogeneous models are generated by dividing the 1D homogeneous models into 20 

layers, so the block size of fine grid model is 20 m × 100 m × 2 m and 180 m × 100 m × 2 m 

for the coarse grid model as shown in Figure 27. All the reservoir parameters, fluid properties 

and polymer properties used in this case are the same as those used in the 1D Homogeneous 

Case. Injection well and production well are perforated in the first and the last block column, 

respectively.  In order to keep the well locations the same before and after up-scaling, the 

bock sizes of the first column and of the last column do not change during up-scaling. 

Comparing the 2D Homogeneous Case to the 1D Homogeneous Case, we can investigate the 

effects of gravity and of vertical flow. 

6.3 2D Layered Case 
The fine model used in the 2D Homogeneous Case is divided into 3 permeability zones. The 

upper and the lower zones are 16 m thick, and the middle zone is 8 m thick. Permeabilities of 

the upper and the lower zones equal to 250 md in x- and y-directions and 25 md in z-direction, 

while permeability of the middle zone is set to 500 md in x- and y-direction and 50 md in z-

direction. Because the only difference among these layers is permeability, only permeability 

is up-scaled for up-scaling. The up-scaled permeabilities are computed by power average [15] 

Eq. 6.3-1 𝑘𝑗∗ = ∑ (ℎ𝑖
ℎ
𝑘𝑗,𝑖)𝑛

𝑖=1 , 𝑗 = 𝑥 𝑜𝑟 𝑦,  

Eq. 6.3-2 𝑘𝑧∗ = ℎ
∑ (ℎ𝑖 𝑘𝑧,𝑖⁄ )𝑛
𝑖=1

.  

Permeabilities in the direction parallel to the flow direction are computed by arithmetic 

averaging (Eq. 6.3-1), and in the direction perpendicular to the flow direction are computed 

by harmonic averaging (Eq. 6.3-2). Thus, the averaged permeabilities are 300 md in x- and y-
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directions and 27.78 md in z-direction. The up-scaled model and its corresponding 

permeablities are shown in Figure 28. A refined model illustrated in Figure 28 (c) is also 

generated by down-scaling the up-scaled model. Comparing the fine model to the refined 

model, we can investigate the effect of changing heterogeneity; comparing the refined model 

to the up-scaled coarse grid model, we can investigate the effect of changing grid size; and 

comparing the fine model to the up-scaled coarse grid model, we can investigate the effect of 

up-scaling (a combination of effect of changing heterogeneity and effect of changing grid 

size). The relations of grid size effect, heterogeneity effect and up-scaling effect are illustrated 

in Figure 20. 

6.4 2D Areal Homogeneous Case 
2D areal models are built to investigate the up-scaling effect in x- and y-directions. The 

dimension of the reservoir model is 940 m × 940 m × 40 m with grid size 20 m × 20 m × 40 

m for the fine grid model and 180 m × 180 m × 40 m for the up-scaled coarse grid model as 

show in Figure 29. The reservoir is homogeneous and isotropic. Injection well is located at 

one of the corners and production well is located at the opposite corner. In order to keep the 

well locations the same before and after up-scaling, the sizes of blocks along the four edges 

do not change during up-scaling. All the reservoir parameters, fluid properties and polymer 

properties used in this case are the same as those used in the 2D Homogeneous Case. 

6.5 3D Homogeneous Case 
The fine model in 2D Areal Homogeneous Case is refined in z-direction to a 3D 

homogeneous model. Under up-scaling, grid sizes only change in x- and y-directions. 

Comparing the 3D Homogeneous Case to the 2D Areal Homogeneous Case, we can 

investigate the gravity effect and the vertical flow effect. The fine grid model with grid block 

size 20 m × 20 m × 2 m and the coarse grid model with grid block size 180 m × 180 m × 2 m 

are shown in Figure 30. 

6.6 3D Layered Case 
Same as that has been done for the 2D Layered Case, the fine model used in the 3D 

homogeneous is divided into 3 permeability zones with permeabilities 250 md in x- and y-

directions and 25 md in z-direction in the 16 m thick upper and lower zones, and 500 md in x- 

and y-directions and 50 md in z-direction in the 8 m thick middle zone. Up-scaled model and 

refined model are generated as well. The corresponding averaged permeabilities are 300 md 

in x- and y-direction and 27.78 md in z-direction. Injection well located 90 m away from the 
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two nearest edges at a corner and production well located at the opposite corner 90 m away 

from its two nearest edges, which means that the injection well and the production well 

perforate in the blocks of the first column and in the blocks of the last column, respectively, 

on the up-scaled model. The models and their corresponding permeabilities are shown in 

Figure 31. Again, the effect of changing heterogeneity, the effect of changing grid size and 

the effect of up-scaling are investigate in this case. 

6.7 3D Generic Case 
A set of generic models is provided by Ali Mojaddam Zadeh, Senior Researcher in Statoil. A 

219 × 108 × 91 grids model (Model HE_20) with grid size 20 m × 20 m is up-scaled to a 24 × 

12 × 91 grids model (Model 180) with grid size 180 m × 180 m. The Model 180 is than down-

scaled to a 219 × 108 × 91 grids model (Model GE_20) with grid size 20 m × 20 m. Because 

the thickness of the layers is varying, they are kept constant under both up- and down-scaling 

in order to minimize vertical numerical dispersion. Only absolute permeabilities, porosities 

and saturations are averaged under up-scaling. 

Important model parameters and fluid properties are listed in Table 2 and Table 3. Same input 

relative permeability curves as shown in Figure 9 are used for all the 3 different rock types. 

End-point scaling is used for the relative permeability curves. The scaled connate water 

saturation is set to the initial water saturation for each grid block, and its maximum value is 

set to 0.1. The scaled critical water saturation is also set to the initial water saturation for each 

grid block and its maximum value is set to 0.70. The scaled critical oil-in-water saturation is 

set to 0.18. The scaled maximum value of water relative permeability is set to 0.45. Therefore, 

the real relative permeability curves vary from block to block. Unlike the other cases, the 

mobility ratio at injection is around 0.55 (more favorable) in this case because a different set 

of relative permeabilites is used on the 3D Generic models. Polymer properties are the same 

as those listed in Table 1. Viscosity multiplier curve and adsorption curve are also the same as 

those shown in Figure 5 and Figure 7. 
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Both injector and producer are horizontal, 1620 m long and located in Layer 5 for all the 

models. The distance between the injector and the producer is 900 m. Well controls are liquid 

rate 1600 sm3/day and WBHP 85 barsa for the producer and injection rate 1600 sm3/day for 

the injector. Polymer is injected for 4000 days and then followed by water injection until field 

economic limit is reached. The geometry of the model is shown in Figure 32. A side view of 

initial oil saturation is shown in Figure 33. Well locations, initial oil saturation distributions 

and x-direction permeability distributions of Layer 5 are shown in Figure 34. 

  

 
Figure 9: Input Relative Permeability Curves for 3D Generic Case 
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7 Simulation Results 
Selected plots of simulation results are presented in this section. Other plots of simulation 

results can be found in Appendix C: Simulation Results. 

7.1 1D Homogeneous Case 

7.1.1 Sensitivity Analysis for Grid Size 
Sensitivity analyses for grid size are done for both the irreversible and reversible cases. 

Simulation results for varying grid sizes in x-direction (20 m, 30 m, 60 m, 90 m and 180 m) 

are illustrated in Figure 10 and Figure 11. The differences in oil recovery and in polymer 

adsorption are significant. For both irreversible and reversible cases, the ultimate oil recovery 

decreases as grid size increases. The ultimate polymer adsorption decreases as grid size 

increases for the irreversible case, while it increases as grid size increases for the reversible 

case except a slight non-linearity observed between the 20 m model and the 30 m model. 

Between the irreversible case and the reversible case, the difference in oil recovery is quite 

small, but significant difference in polymer adsorption can be observed. 

The differences in the simulation results for models with different grid size are caused by 

numerical dispersion which leads to a so-called smearing effect. Figure 12 - Figure 15 show 

the smearing effect on polymer solution viscosity and polymer adsorption at 2000 days after 

production. The polymer solution viscosity smears out on a coarse model resulting in a 

smaller peak polymer solution viscosity than that on a fine model. This leads to a reduced 

polymer sweep efficiency and smaller oil recovery on a coarse model. Same for polymer 

adsorption, a fine grid model has higher peak polymer adsorption than a coarse grid model. 

For the irreversible case, higher peak polymer adsorption will lead to a higher ultimate 

polymer adsorption because the adsorbed polymer concentration can never decrease. However, 

for the reversible case, a very clear trend is observed that the peak polymer adsorption 

increases as grid size increases, but this kind of very clear trend doesn’t exist for the ultimate 

polymer adsorption; the reason is because complications arise in late stages due to the 

smearing effect on polymer solution shock fronts [2]. 
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(a) Oil Recovery vs. Time 

 
(b) Polymer Adsorption vs. Time 

Figure 10: Sensitivity Analysis for Grid Size, Irreversible Case, 1D Case 

 
(a) Oil Recovery vs. Time 

 
(b) Polymer Adsorption vs. Time 

Figure 11: Sensitivity Analysis for Grid Size, Reversible Case, 1D Case 
 

 
Figure 12: Smearing Effect on Polymer Solution Viscosity, Irreversible Case, 1D Case 
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Figure 13: Smearing Effect on Polymer Adsorption, Irreversible Case, 1D Case 

 

 
Figure 14: Smearing Effect on Polymer Solution Viscosity, Reversible Case, 1D Case 

 

 
Figure 15: Smearing Effect on Polymer Adsorption, Reversible Case, 1D Case 
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7.1.2 Polymer Solution Viscosity and Adsorption Up-scaling 
The finest grid model (20 m model) is chosen to be the base model. By tuning the simulation 

results of coarse grid models to match those of the base model, up-scaling factors of polymer 

solution viscosity and polymer adsorption are obtained for each coarse grid model. Tuned 

simulation results can be found in Figure 35 and Figure 36. Values of 𝑓𝑣 and 𝑓𝑎𝑑 are plotted in 

Figure 16 and Figure 17. The figures show that different up-scaling factors should be used for 

the irreversible case and for the reversible case. It is clear that 𝑓𝑣  is larger than 1.0 and 

increases almost linearly as grid size increases for both cases. For 𝑓𝑎𝑑, it is larger than 1.0 and 

increases as grid size increases for the irreversible case, but it is smaller than 1.0 and 

decreases as grid size increases for the reversible case except the 30 m model. 

 
(a) Irreversible Case 

 
(b) Reversible Case 

Figure 16: Values of f_v for Irreversible and Reversible Cases, 1D Case 
 

 
(a) Irreversible Case 

 
(b) Reversible Case 

Figure 17: Values of f_ad for Irreversible and Reversible Cases, 1D Case 
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7.1.3 Results before and after Up-scaling 
Figure 18 and Figure 19 show the simulation results on the fine grid model (20 m model) and 

the coarse grid model (180 m model) as well as the up-scaled (tuned) results. The up-scaled 

results are obtained by applying up-scaling factors (𝑓𝑣 = 10 and 𝑓𝑎𝑑 = 1.65 for the irreversible 

case; 𝑓𝑣 = 6 and 𝑓𝑎𝑑 = 0.92 for the reversible case) on the coarse grid model.  

Figure 18: Simulation Results, 1D Irreversible Case 
 

 
(a) Oil Recovery 

 
(b) Polymer Adsorption 

 

 
(c) Polymer Production 

 

 
(d) Water Cut 

 

 
(e) Injector Well Bottom-Hole Pressure 
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Figure 19: Simulation Results, 1D Reversible Case 
 

Although the whole histories of oil recover and of polymer adsorption cannot be reproduced 

on the coarse grid model by using this up-scaling methodology, the ultimate oil recovery and 

the ultimate polymer production can be reproduced accurately on the coarse grid model for 

both irreversible and reversible cases. Moreover, the mismatches in water break-through time 

and in ultimate polymer production are reduced after tuning. However, drawbacks of applying 

this up-scaling methodology are that a good match in time when the economic limit (90% 

 
(a) Oil Recovery 

 
(b) Polymer Adsorption 

 

 
(c) Polymer Production 

 

 
(d) Water Cut 

 

 
(e) Injector Well Bottom-Hole Pressure 
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water cut) is reached, is not obtained, and that the injector well bottom-hole pressure becomes 

much higher after tuning because of increased polymer solution viscosity. 

These simulation results in the 1D Homogeneous Case indicate that the up-scaling methods 

for polymer solution viscosity and for polymer adsorption can generate good matches in most 

simulation results except unacceptably high injector WBHP. More tests have to be done on 

the more complex 2D and 3D models in order to check the applicability of this up-scaling 

method. 

7.2 2D Homogeneous Case 
The impacts of gravity and of vertical flow which are not involved in the 1D Homogeneous 

Case, is investigate in this case. Because of density difference between oil and water, injected 

polymer solution and water sink and travel faster at the bottom of the reservoir, resulting in 

lower oil recovery for both irreversible and reversible cases, lower ultimate polymer 

adsorption for the irreversible case and larger ultimate polymer adsorption for the reversible 

case, compared to the 1D Homogeneous Case. Fine grid and coarse grid results as well as up-

scaled results are attached in Appendix C: Simulation Results. The values of 𝑓𝑣 and 𝑓𝑎𝑑 are 

found to be 4 and 1.1, respectively, for the irreversible case, and 3 and 1.07, respectively, for 

the reversible case. Compared to the up-scaling factors found in the 1D Homogeneous Case, 

𝑓𝑣  becomes smaller for both irreversible and reversible case, 𝑓𝑎𝑑  becomes smaller for the 

irreversible case and larger for the reversible case. Smaller value of 𝑓𝑣 leads to a lower up-

scaled injector WBHP as expected. Same as those in the previous case, the mismatches in 

water break-through time and ultimate polymer production are reduced. 

7.3 2D Layered Case 
The impact of heterogeneity is investigated in this case. Because there are both changes of 

heterogeneity and of grid size under up-scaling process, the heterogeneity effect and the grid 

size effect are investigated separately and then together. For the heterogeneity effect, the 

values of 𝑓𝑣,𝐻𝐸 and 𝑓𝑎𝑑,𝐻𝐸 are found by tuning the results on the refined model to match the 

fine grid results; for the grid size effect, the values of up-scaling factors, 𝑓𝑣,𝐺𝐸 and 𝑓𝑎𝑑,𝐺𝐸, are 

found by tuning the simulation results on the coarse grid model to match the results on the 

refined model. The values of up-scaling factors for the heterogeneity effect, for the grid size 

effect and for up-scaling are listed in Table 6. The values of 𝑓𝑣,𝐺𝐸 are larger than 1.0, which 

agrees with the fact found in the previous cases. The values of 𝑓𝑣,𝐻𝐸  are smaller than 1.0, 

which means that introducing heterogeneity may reduce the up-scaling factor of polymer 
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solution viscosity, 𝑓𝑣. The reason is that the coarse grid model becomes less heterogeneous 

due to averaging of reservoir properties under up-scaling process, resulting in higher sweep 

efficiency and higher oil recovery. For polymer adsorption, 𝑓𝑎𝑑,𝐻𝐸 is smaller than 1.0 for the 

irreversible case while larger than 1.0 for the reversible case, and 𝑓𝑎𝑑,𝐺𝐸 is larger than 1.0 for 

the irreversible case while smaller than 1.0 for the reversible case. This means that the 

impacts on ultimate polymer adsorption are opposite for the irreversible case and for the 

reversible case.  

Because up-scaling effect is a combination of the heterogeneity effect and the grid size effect, 

the relations of up-scaling factors for these three effects should be like that illustrated in 

Figure 20. However, the simulation results show that 𝑓𝑎𝑑 is indeed smaller than 𝑓𝑎𝑑,𝐻𝐸 ∙ 𝑓𝑎𝑑,𝐺𝐸 

for the irreversible case, and 𝑓𝑣  is smaller than 𝑓𝑣,𝐻𝐸 ∙ 𝑓𝑣,𝐺𝐸  and 𝑓𝑎𝑑  is larger than 𝑓𝑎𝑑,𝐻𝐸 ∙

𝑓𝑎𝑑,𝐺𝐸  for the reversible case. Plots of the simulation results for this case can be found in 

Appendix C: Simulation Results. Same as those observed in previous case, the mismatches in 

water break-through time and ultimate polymer production are reduced while the mismatch in 

injector WBHP is enlarged after tuning. 

 
Figure 20: Relations of Heterogeneity Effect, Grid Size Effect and Up-scaling Effect 

 

7.4 2D Areal Homogeneous Case 
In this case, the impact of areal flow is investigated. Simulation results and tuned results are 

attached in Appendix C: Simulation Results. After tuning, the mismatch in ultimate polymer 

production is reduced for both the irreversible and reversible cases, and the accuracy in water 
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break-through time is improved only for the irreversible case. Extremely high tuned injector 

WBHP is still a problem. 

The values of up-scaling factors are found to be 𝑓𝑣 = 5.5 and 𝑓𝑎𝑑 = 1.35 for the irreversible 

case, and 𝑓𝑣 = 5 and 𝑓𝑎𝑑 = 0.94 for the reversible case. Compared to the 1D Homogeneous 

Case, the values of 𝑓𝑣 for both irreversible and reversible cases become smaller; the value of 

𝑓𝑎𝑑 becomes smaller for the irreversible case and larger for the reversible case. The possible 

explanation for the differences is as follows.  

On the fine model, the polymer concentration is high in the middle of the displacing front, but 

it is very low at the sides. However, on the coarse model, the contrast between the polymer 

concentration in the middle and at the sides of the displacing front is not as high as that on the 

fine model as shown in Figure 21. Therefore, compared to the 1D Homogeneous Case, the 

drop in the sweep area/efficiency is larger on the fine model than on the coarse model. This 

leads to a smaller difference in oil recovery between the fine model and the coarse model in 

this case. For the polymer adsorption, due to larger drop in sweep area on the fine model, the 

drop in the polymer adsorption is also larger on the fine model for the irreversible case. The 

impact on the polymer adsorption for the reversible case is opposite to that for the irreversible 

case. 

 
(a) Fine Grid Model 

 
(b) Coarse Grid Model 

 
Figure 21: Polymer Concentration at 4000 Days, Irreversible Case, 2D Areal Homogeneous Case 
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7.5 3D Homogeneous Case 
The impacts of gravity and of vertical flow are again investigated in this case. The values of 

up-scaling factors are listed in Table 5. Comparing this case to the 2D Areal Homogeneous 

Case, we can get the same conclusion as that we get from comparison between the 2D 

Homogeneous Case and the 1D Homogeneous Case. Again, when gravity and vertical flow 

are involved, 𝑓𝑣  becomes smaller for both irreversible and reversible case, 𝑓𝑎𝑑  becomes 

smaller for the irreversible case and larger for the reversible case. 

Figure 47 and Figure 48 show the plots of simulation results. For both the irreversible and 

reversible case, the accuracies in water break-through time and in ultimate polymer 

production are improved in some degrees after tuning. However, the tuned injector WBHP is 

still too high. 

7.6 3D Layered Case 
Same as that has been done in the 2D Layered Case, the heterogeneity effect and the grid size 

effect are investigated separately. The values of up-scaling factors are listed in Table 6. Again, 

the values of 𝑓𝑣,𝐻𝐸 are found to be smaller than 1.0, which indicates that the value of 𝑓𝑣 will 

decrease when heterogeneity is introduced into a model. And the values of 𝑓𝑣,𝐺𝐸 are larger 

than 1.0 as we found in the previous cases. The values of 𝑓𝑣 found by history matching are 

smaller than 𝑓𝑣,𝐻𝐸 ∙ 𝑓𝑣,𝐺𝐸  for both irreversible and reversible cases. The value of 𝑓𝑎𝑑 is smaller 

than 𝑓𝑎𝑑,𝐻𝐸 ∙ 𝑓𝑎𝑑,𝐺𝐸 for the irreversible case. 

Figure 49 - Figure 54 show the simulation results. We can see that the mismatches in water 

break-through time and in ultimate polymer production are not reduced as we expected. This 

is probably due to the location of the injector. Because the injector is no longer at the very 

corner, some injected polymers don’t travel in the direction to the producer on the fine grid 

model; some of them are stuck in area between the injector and the corner, and some of them 

travels along the sides as shown in Figure 22. However, this phenomenon does not exist on 

the coarse grid model. Thus, this difference affects the tuned results. The case here shows that 

the grid size effect which can cause a change of boundary condition, sometimes play a more 

important role than the heterogeneity effect, and the applicability of this up-scaling method 

can be affected by the change of boundary conditions when the fine grid model is up-scaled. 
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(a) Fine Grid Model 

 

 
(b) Coarse Grid Model 

 

 
Figure 22: Polymer Concentration at 5000 Days, Irreversible Case, 3D Layered Case 

 

7.7 3D Generic Case 
The heterogeneity effect, the grid size effect and the up-scaling effect are investigated in this 

highly heterogeneous case. The values of the up-scaling factors for all the three effects are 

listed in Table 6. Same as before, the values of 𝑓𝑣,𝐻𝐸 are smaller than 1.0 and the values of 

𝑓𝑣,𝐺𝐸 are larger than 1.0. For the irreversible case, the value of 𝑓𝑣 found by history matching is 

smaller than 𝑓𝑣,𝐻𝐸 ∙ 𝑓𝑣,𝐺𝐸  and the value of 𝑓𝑎𝑑 is larger than 𝑓𝑎𝑑,𝐻𝐸 ∙ 𝑓𝑎𝑑,𝐺𝐸. For the reversible 

case, the values of 𝑓𝑣 and of 𝑓𝑎𝑑 found by history matching are very close to 𝑓𝑣,𝐻𝐸 ∙ 𝑓𝑣,𝐺𝐸  and 

𝑓𝑎𝑑,𝐻𝐸 ∙ 𝑓𝑎𝑑,𝐺𝐸, respectively. 

The plots of simulation results are shown in Figure 23 and Figure 24. After tuning, good 

matches are obtained in oil recovery and ultimate polymer adsorption. Because there is almost 

no mismatch in water break-through time, the water break-through time is not affected after 

applying the up-scaling method. However, applying the up-scaling method indeed affects the 

history of water cut a lot. As Figure 23 (d) and Figure 24 (d) show, the coarse grid result of 
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water cut matches well the fine grid result at the early stages after water break-through and 

the mismatch in the time when the economic limit is reached, is reduced. 

Unexpectedly, the accuracy in ultimate polymer production is reduced. The reason is that 

because the polymer solution viscosity is up-scaled by the factor 𝑓𝑣 after tuning, the front of 

polymer solution travels more slowly and the water bank becomes clearer than that before 

tuning. As we can see from the plot of polymer in solution (Figure 23 (f) and Figure 24 (f)), 

the tuned curve of polymer in solution gets closer to the curve for the fine grid model, 

resulting in good match in polymer production at early stages after polymer break-through; 

after the tuned curve crosses the fine grid model curve, the tuned result of polymer in solution 

becomes larger than that simulated on the fine grid model, so the deviation in polymer 

production becomes larger at late stages. 

Different from previous cases, there is no longer problem of extremely high injector WBHP 

on the coarse grid model and the mismatch in injector WBHP is reduced in this case. The 

reason is that: (1) the injector is far away from the boundaries, (2) the size of the gird blocks 

which is perforated increases on the coarse grid, and (3) the producer WBHP of well control 

is lowered to 85 barsa. Thus, opposite to previous cases, the injector WBHP simulated on 

coarse grid model is actually lower than that of fine grid model as Figure 23 (e) and Figure 24 

(e) show. When the polymer solution viscosity function is up-scaled on coarse grid model, 

increased polymer viscosity makes the injector WBHP higher and closer to the fine grid result. 
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(a) Oil Recovery vs. Time 

 
(b) Polymer Adsorption vs. Time 

 

 
(c) Polymer Production vs. Time 

 

 
(d) Water Cut vs. Time 

 

 
(e) Injector Well Bottom-Hole Pressure vs. Time 

 

 
(f) Polymer in Solution vs. Time 

Figure 23: Simulation Results, Up-scaling Effect, Irreversible Case, 3D Generic Case 
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(a) Oil Recovery vs. Time 

 
(b) Polymer Adsorption vs. Time 

 

 
(c) Polymer Production vs. Time 

 

 
(d) Water Cut vs. Time 

 

 
(e) Injector Well Bottom-Hole Pressure vs. Time 

 

 
(f) Polymer in Solution vs. Time 

Figure 24: Simulation Results, Up-scaling Effect, Reversible Case, 3D Generic Case 
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7.8 Summary of Simulation Results 
Table 5 and Table 6 show all the values of up-scaling factors for all cases. From the tables, we 

can see following characteristics. 

• For all the cases with only grid size enlarged (Grid Size Effect), the values of 𝑓𝑣,𝐺𝐸 are 

larger than 1.0. For the cases where only heterogeneity changes (Heterogeneity Effect), 

the values of 𝑓𝑣,𝐻𝐸 are smaller than 1.0. When both heterogeneity effect and grid size 

effect are involved under up-scaling, the value of 𝑓𝑣 is larger than 1.0 in most cases. 𝑓𝑣 

found by history matching is normally smaller than that calculated by 𝑓𝑣,𝐻𝐸 ∙ 𝑓𝑣,𝐺𝐸 . 

• When only grid size effect is involved, the value of 𝑓𝑎𝑑,𝐺𝐸 is larger than 1.0 in most 

irreversible cases, while it is smaller than 1.0 in most reversible cases.  For 

heterogeneous cases, the value of 𝑓𝑎𝑑,𝐻𝐸 is normally smaller than 1.0 no matter the 

case is reversible or not. However, it is hard to say the value of 𝑓𝑎𝑑 is smaller or larger 

than 1.0 when both heterogeneity effect and grid size effect are involved under up-

scaling. 

• For the homogenous cases, the value of 𝑓𝑣 becomes smaller when a model is refined in 

z-direction (1D Homogeneous Case vs. 2D Homogeneous Case, and 2D Areal 

Homogeneous Case vs. 3D Homogeneous Case) because of gravity and vertical flow. 

This means that a larger value of 𝑓𝑣  should be expected if a fine grid model is 

coarsened in z-direction. For the homogenous cases without desorption, the value of 

𝑓𝑎𝑑 becomes smaller when a model is refined in z-direction. However, the value of 𝑓𝑎𝑑 

becomes larger when a model is refined in z-direction for the homogeneous cases with 

desorption. 

Table 5: Values of Up-scaling Factors for Homogeneous Cases 
    Grid Size Effect 

   
𝒇𝒗 = 𝒇𝒗,𝑮𝑬 𝒇𝒂𝒅 = 𝒇𝒂𝒅,𝑮𝑬 

1D Homogeneous Case irreversible 10 1.65 
reversible 6.0 0.920 

2D Homogeneous Case irreversible 4.0 1.10 
reversible 3.0 1.07 

2D Areal  
Homogeneous Case 

irreversible 5.5 1.35 
reversible 5.0 0.940 

3D Homogeneous Case irreversible 2.7 0.980 
reversible 2.9 0.950 
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Table 6: Values of Up-scaling Factors for Heterogeneous Cases 

 

Heterogeneity 
Effect 

Grid Size 
Effect Up-scaling in theory 

Up-scaling by 
history 

matching 

𝒇𝒗,𝑯𝑬 𝒇𝒂𝒅,𝑯𝑬 𝒇𝒗,𝑮𝑬 𝒇𝒂𝒅,𝑮𝑬 𝒇𝒗
= 𝒇𝒗,𝑯𝑬 ∙ 𝒇𝒗,𝑮𝑬 

𝒇𝒂𝒅
= 𝒇𝒂𝒅,𝑯𝑬 ∙ 𝒇𝒂𝒅,𝑮𝑬 𝒇𝒗 𝒇𝒂𝒅 

2D 
Layered 

Case 

irr. 0.400 0.765 8.00 1.48 3.200 1.132 3.2 1.000 

rev. 0.350 1.16 7.50 0.90 2.625 1.044 2.2 1.130 
3D 

Layered 
Case 

irr. 0.680 0.820 1.50 0.97 1.020 0.9754 0.88 0.8200 

rev. 0.800 0.857 1.45 1.12 1.160 0.9598 0.98 0.9598 
3D 

Generic 
Case 

irr. 0.904 0.820 3.00 1.20 2.712 0.9840 2.2 1.050 

rev. 0.824 0.933 3.00 0.96 2.472 0.8957 2.5 0.8800 
(irr. = irreversible; rev. = reversible) 

 

Table 7 and Table 8 summarize the effect of up-scaling the polymer solution viscosity 

function and the polymer adsorption function on the mismatches between the fine and coarse 

grid results. We can see from the tables that: 

• For almost all the homogeneous cases, the mismatches in water break-through time 

and in ultimate polymer production are reduced as well when the fine grid simulation 

results of ultimate oil recovery and ultimate polymer adsorption are reproduced on the 

coarse grid model.  

• However, the tuned/up-scaled injection WBHP becomes extremely high and the 

mismatch in injector WBHP is enlarged in most cases. The reason is that polymer 

viscosity is increased as the polymer solution viscosity function is up-scaled and the 

no flow boundaries, unchanged size of grid blocks where the injector locates and high 

producer WBHP of well control lead to higher injector WBHP in these cases. As we 

can see from the 3D Generic Cases, the problem of extremely high injector WBHP no 

longer exists and the mismatch in injector WBHP is reduced because except for the 

increased polymer viscosity, other factors which lead to higher injector WBHP no 

longer arise in the 3D Generic Cases. 

• The mismatches in water break-through time and in ultimate polymer production is 

enlarged in some heterogeneous cases, which means that heterogeneity may cause 

difficulties to apply the up-scaling method introduced in this thesis in some cases. 

• Different from other cases, few improvements are made on coarse grid simulation 

results by applying the up-scaling method for 3D Layered Case. The reason has been 

discussed in Section 7.6.  
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• Simulation results for 3D Generic Case show some differences compared to the other 

cases. They have been analyzed in detail in Section 7.7. 

• Generally, to up-scale the polymer solution viscosity function and the adsorption 

function may reduce some mismatches between the fine and coarse grid results caused 

by numerical dispersion. 

 

 

Table 7: Summary of Mismatches between Fine and Coarse Grid Model, Homogeneous Cases 

 
Ultimate Oil 

Recovery 

Ultimate 
Polymer 

Adsorption 

Water 
Break-

Through 
Time 

Ultimate 
Polymer 

Production 

Injector 
WBHP 

1D 
Homogeneous 

Case 

irreversible Match Match Reduced Reduced Enlarged 

reversible Match Match Reduced Reduced Enlarged 
2D 

Homogeneous 
Case 

irreversible Match Match Reduced Reduced Enlarged 

reversible Match Match Reduced Reduced Enlarged 

2D Areal 
Homogeneous 

Case 

irreversible Match Match Reduced Reduced Enlarged 

reversible Match Match - Reduced Enlarged 
3D 

Homogeneous 
Case 

irreversible Match Match Reduced Reduced Enlarged 

reversible Match Match Reduced Reduced Enlarged 
(Reduced = mismatch reduced after tuning; Enlarged = mismatch enlarged after tuning) 
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Table 8: Summary of Mismatches between Fine and Coarse Grid Model, Heterogeneous Cases 

 
2D Layered Case 3D Layered Case 3D Generic Case 

Irreversible Reversible Irreversible Reversible Irreversible Reversible 

H
et

er
og

en
ei

ty
 E

ff
ec

t 

Ultimate Oil 
Recovery Match Match Match Match Match Match 

Ultimate 
Polymer 

Adsorption 
Match Match Match Match Match Match 

Water Break-
Through Time Reduced - Reduced - - - 

Ultimate 
Polymer 

Production 
Enlarged - Reduced Reduced Reduced Reduced 

Injector WBHP Enlarged Enlarged Enlarged Enlarged - - 

G
ri

d 
Si

ze
 E

ff
ec

t 

Ultimate Oil 
Recovery Match Match Match Match Match Match 

Ultimate 
Polymer 

Adsorption 
Match Match Match Match Match Match 

Water Break-
Through Time Reduced Reduced Reduced Reduced - - 

Ultimate 
Polymer 

Production 
Reduced Reduced Reduced Reduced Enlarged Enlarged 

Injector WBHP Enlarged Enlarged Enlarged Enlarged Reduced Reduced 

U
p-

sc
al

in
g 

Ultimate Oil 
Recovery Match Match Match Match Match Match 

Ultimate 
Polymer 

Adsorption 
Match Match Match Match Match Match 

Water Break-
Through Time Reduced Reduced Enlarged - - - 

Ultimate 
Polymer 

Production 
Reduced Reduced Enlarged - Enlarged Enlarged 

Injector WBHP Enlarged Enlarged Reduced - Reduced Reduced 
(Reduced = mismatch reduced after tuning; Enlarged = mismatch enlarged after tuning; - = no big change) 
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8 Discussion and Suggestion for Further Studies 
Because of numerical dispersion, the polymer concentration smears out on an up-scaled 

coarse model, leading to smaller peak value of polymer solution viscosity and peak value of 

polymer adsorption on a coarse model than on a fine model. Therefore, two up-scaling factors 

for the polymer solution viscosity function (𝑓𝑣) and for the polymer adsorption function (𝑓𝑎𝑑) 

are introduced in this study, and the impact of up-scaling these two functions is investigated 

on different reservoir models. 

The simulation results prove that this up-scaling method can reproduces the fine grid 

simulation results of oil recovery and of ultimate polymer adsorption on a coarse model. 

Moreover, the mismatches in water break-through time and in ultimate polymer production 

are also reduced in most cases after these two functions are up-scaled. However, extremely 

high tuned injector WBHP in most cases is a problem for this method. Factors like no flow 

boundaries, unchanged size of grid block where injector locates and high producer WBHP of 

well control can lead to this kind of high WBHP after up-scaling. As we can see in the 3D 

generic case, high tuned injector WBHP no longer exists on the real field size model. Some 

methods such as local grid refinement can be used to treat high WBHP caused by up-scaling, 

but they are not involved in this study and should be considered in further studies. 

The impact of increasing flow dimension is investigated. When a dimension is added in z-

direction, the effects of gravity and of vertical flow are involved. When a dimension is added 

in y-direction, the effect of areal flow is involved. For both of these changes, increasing 

dimension makes the value of 𝑓𝑣 smaller for both irreversible and reversible cases, the value 

of 𝑓𝑎𝑑  smaller for the irreversible case and larger for the reversible case. This means that 

increasing dimension will normally reduce the contrasts in oil recovery and in polymer 

adsorption between the fine grid model and the coarse grid model. 

In order to investigate the impact of heterogeneity, the heterogeneity effect and the grid size 

effect are considered separately in this study. All 𝑓𝑣,𝐻𝐸 are found to be smaller than 1.0 and all 

𝑓𝑣,𝐺𝐸 larger than 1.0. This indicates that the heterogeneity effect acts opposite to the grid size 

effect and introducing heterogeneity into a model will reduce the oil recovery contrast 

between the fine and the coarse models. However, the heterogeneity effect on the polymer 

adsorption contrast varies from case to case, so it is still unclear how the heterogeneity will 

affect the polymer adsorption contrast. Polymer adsorption is highly dependent on the rock 

type. More polymers will travel in a high permeable and high porous rock and polymer 
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adsorption will be consequently high in this kind of rock. Thus, different polymer adsorption 

up-scaling factors, 𝑓𝑎𝑑, should be subjected to different rock types. This is beyond the scope 

of this thesis and should be considered in further studies. 

In this thesis, the polymer solution viscosity function and the polymer adsorption function are 

simply up-scaled by factors 𝑓𝑣 and 𝑓𝑎𝑑, respectively, but according to Figure 12 - Figure 15, 

the up-scaled polymer solution viscosity should be lower than the original one at low 

concentration and higher at high concentration; the up-scaled polymer adsorption should be 

higher than the original one at low concentration and lower at high concentration for the 

irreversible case; the up-scaled polymer adsorption should be lower than the original one at 

low concentration and higher at high concentration for the reversible case. Therefore, more 

advanced functions shown in Figure 25 should be used in further studies. As the shape of the 

up-scaled function changes, more coefficients have to be determined by history matching or 

by equations. A method to determine the shape of the polymer solution viscosity function is 

introduced in an additional study attached in Appendix E: Impact of Shape of Up-scaled 

Polymer Solution Viscosity Function on Up-scaling Polymer Flooding. 

As the simulation results for the 3D layered case show, almost none of the accuracies in water 

break-through time, in ultimate polymer production and in injector WBHP is improved after 

up-scaling the polymer solution viscosity and the adsorption functions. The reason may be 

because of different boundary conditions between the fine and the coarse grid models. This 

case shows that the impact of up-scaling the two functions can easily be affected by other 

factors such as near well conditions. 

The main aim of this thesis is to show that the polymer solution viscosity function and the 

polymer adsorption function need to be up-scaled for polymer flooding under up-scaling 

process and that these two functions can be up-scaled by a simple method. For this aim, this 

thesis has successfully proved that to up-scale these two functions may generally reduce the 

mismatch between the fine and coarse grid results caused by numerical dispersion. One thing 

which should be noticed is that this up-scaling methodology can only improve the polymer 

results on the coarse models when the dominant displacing mechanism is polymer flooding, 

because only polymer properties are up-scaled in this study. When the dominant displacing 

mechanism is water flooding, to up-scale polymer solution viscosity and adsorption will make 

no significant improvement on the coarse grid results. 
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Polymer properties considered in this thesis are limited in two functions. Other properties like 

Non-Newtonian effects and permeability reduction are not involved in this thesis. They may 

affect the values of 𝑓𝑣 and 𝑓𝑎𝑑 . Besides, different polymer solution viscosity functions and 

adsorption functions may lead to different polymer behaviors and may produce different 

results. Moreover, the oil viscosity is only 6.4 cp which is far lower than that for a heavy oil 

case where the oil viscosity can be over 100 cp. Different from the favorable mobility ratio 

used in this thesis, the mobility ratio may not be favorable in a real heavy oil reservoir. 

Unfavorable mobility ratio may have an impact on up-scaling polymer properties. None of 

these factors mentioned above is investigated in this thesis and they should be considered in a 

thorough study in the future. 

All the models used in this study are synthetic and simple. However, a real field model is 

much more complex in terms of geology such as faults, fractures and sealed layers. Therefore, 

tests of applying this up-scaling method should be done on one or more real field models in 

further studies. 

 
(a) Polymer Solution Viscosity Functions 

 
(b) Polymer Adsorption Functions 

Figure 25: Examples of Possible Shapes of Advanced Functions 
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9 Conclusion 
This study provides a method and summarizes the simulation results for up-scaling the 

polymer solution viscosity function and the polymer adsorption function for polymer flooding. 

Although the method used here is not a robust solution to reproduce fine grid results on a 

coarse grid model, the study proves the idea that the mismatches between fine and coarse grid 

results may be reduced by up-scaling the polymer solution viscosity function and the polymer 

adsorption function. 

By up-scaling the polymer solution viscosity function, the simulated history of oil recovery 

can be tuned without touching the relative permeability curves. For oil/water flow, the relative 

permeability curves have to be up-scaled during up-scaling and sometimes pseudo relative 

permeabilities need to be generated. To up-scale the relative permeability curves will cause a 

lot of complexities and computational efforts. Therefore, it is an advantage that the relative 

permeability curves are not changed by the method introduced in this thesis. As the 

simulation results show, the values of 𝑓𝑣 are found to be larger than 1.0 for most cases. It 

indicates that ultimate oil recovery is generally underestimated on a coarse model without up-

scaled polymer solution viscosity, so larger viscosity multipliers should be applied on the 

coarse grid model in order to increase the accuracy of predicting the behavior of polymer 

flooding. 

Because the mismatch in polymer adsorption is still large after only polymer solution 

viscosity function up-scaled, the polymer adsorption function has also to be up-scaled as Lee 

[2] did. As the simulation results show, the mismatches in ultimate polymer adsorption and 

production are reduced using this up-scaling method. Thus, the accuracy of predicting 

polymer loss by doing simulation on a coarse model for a polymer flooding project may be 

improved by simply up-scaling the polymer adsorption function. However, the values of 𝑓𝑎𝑑 

vary from case to case. It, therefore, is hard to predict the polymer adsorption is over- or 

underestimated on a coarse model without up-scaling the polymer viscosity and adsorption 

functions, and it is still unclear that larger or smaller polymer adsorption concentration should 

be applied on coarse grid model for up-scaling. 

When the flow dimension of a reservoir model is increased, the contrasts in oil recovery and 

in polymer adsorption between the fine grid model and the coarse grid model will normally be 

reduced. 
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An increase in heterogeneity may reduce the contrast in oil recovery, but its impact on the 

contrast in polymer adsorption is not clear. High heterogeneity may bring difficulties to up-

scaling those two functions mentioned in this thesis and lead to wrong prediction of polymer 

behavior. Thus, more advanced up-scaling methods, as discussed in Section 8, should be 

applied for highly heterogeneous reservoir models. 

Some limitations of using the up-scaling method introduced in this thesis are summarized as 

follows. 

1. Extremely high injector WBHP caused by up-scaled polymer solution viscosity may 

appear in some particular cases, but his problem may be solved by carefully up-scaling 

near well area. 

2. A change of boundary condition caused by a change of grid size during up-scaling 

process may make the up-scaling method inapplicable. 

3. High heterogeneity may cause difficulties to apply the up-scaling method. 

The applicability of up-scaling the polymer solution viscosity function and the polymer 

adsorption function in a real project of up-scaling polymer flooding will remain uncertain 

until it is tested in thorough study which includes all the aspect of polymer properties (Non-

Newtonian effect, permeability reduction …) and all the other affecting factors (well locations, 

boundary conditions, local grid refinement …). In addition, the tests should be done on real 

field models instead of synthetic models. 
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Appendices 

Appendix A: Literature Review 
Table 9: List of Literature Review 

Year Title Author(s) Type Contribution to this thesis 
1942 Mechanism of fluid 

displacement in sand 
Buckley, S.E. 
Leverett, M. 

Journal 
Article 

Concept of Buckley-Leverett 
theory for fractional flow 

1972 Inaccessible Pore Volume 
in Polymer Flooding 

DAWSON, R. 
LANTZ, R.B. 

Journal 
Article 

Concept of inaccessible pore 
volume, and its effect 

1989 Enhanced oil recovery Lake, L.W. Book Overview of concept of 
polymer flooding, polymer 
properties, fractional flow 
theory for polymer flooding 

1999 An analysis of dynamic 
pseudo-relative 

permeability methods for 
oil-water flows 

Barker, J.W 
Dupouy, P. 

Journal 
Article 

Properties and limitations of 
six widely used dynamic 
pseudo-relative permeability 
methods: Kyte and Berry’s, 
Pore Volume Weighted, 
Stone’s, Total Mobility, Quasi-
Steady State, and Weighted 
Relative Permeability Methods 

2006 Influence of relative 
permeability on the 

stability characteristics of 
immiscible flow in porous 

media 

Riaz, A. 
Tchelepi, H.A. 

Journal 
Article 

Definitions of end point 
mobility ratio, total mobility 
and shock mobility ratio; 
criteria for stable displacing 
front 

2007 Modelling of multiscale 
structures in flow 

simulations for petroleum 
reservoirs 

Aarnes, J.E 
Kippe, V. 
Lie, K.-A. 

Rustad, A.B. 

Book 
Section 

Different model scales, usage 
of up-scaling, and approaches 
of single- and multi-phase up-
scaling 

2010 Modern Chemical 
Enhanced Oil Recovery: 

Theory and Practice 

Sheng, J. Book Overview of concept of 
polymer flooding, polymer 
properties, fractional flow 
theory for polymer flooding 

2012 Viscous 
Fingering/Unstable 

Displacement 

Kippe, V. 
Zadeh, A.M. 

Memo the criteria of stable displacing 
front, the effect of grid size on 
the displacing front, some 
samples of unstable displacing 
front simulated in 2D model 

2013 Upscaling polymer 
flooding in heterogeneous 

reservoirs 

Lee, J. MSc Thesis Up-scaling polymer flooding 
by the pore volume weighted 
method for pseudo functions 
and the multiplication factor 
method for adsorption. 
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Appendix B: Figures of Simulation Models 
 

 
(a) Fine Grid Model (Grid Block Size = 20m*100m*40m) 

 

 
(b) Coarse Grid Model (Grid Block Size = 180m*100m*40m) 

Figure 26: Simulation Models for 1D Homogeneous Case 
 

 
(a) Fine Grid Model (Grid Block Size = 20m*100m*2m) 

 

 
(b) Coarse Grid Model (Grid Block Size = 180m*100m*2m) 
Figure 27: Simulation Models for 2D Homogeneous Case 
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(a) Fine Grid Model (Grid Block Size = 20m*100m*2m) 

 

 
(b) Up-scaled/Coarse Grid Model (Grid Block Size = 180m*100m*20m) 

 

 
(c) Down-scaled/Refined Model (Grid Block Size = 20m*100m*2m) 

Figure 28: Simulation Models for 2D Layered Case 
 

 
(a) Fine Grid Model (Grid Block Size = 20m*20m*40m) 

 

 
(b) Coarse Grid Model (Grid Block Size = 180m*180m*40m) 

Figure 29: Simulation Models for 2D Areal Homogeneous Case 
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(a) Fine Grid Model (Grid Block Size = 20m*20m*2m) 

 

 
(b) Coarse Grid Model (Grid Block Size = 180m*180m*2m) 
Figure 30: Simulation Models for 3D Homogeneous Case 
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(a) Fine Grid Model (Grid Block Size = 20m*20m*2m) 

 

 
(b) Up-scaled/Coarse Grid Model (Grid Block Size = 180m*180m*20m) 

 

 
(c) Down-scaled/Refined Model (Grid Block Size = 20m*20m*2m) 

Figure 31: Simulation Models for 3D Layered Case 
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Figure 32: Geometry of Models for 3D Generic Case 

 

 

 
Figure 33: Initial Oil Saturation (Side View), Fine Grid Model, 3D Generic Case 
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Fine Grid Model (Model HE_20) (20m*20m) 

 

 

 

 
Up-scaled/Coarse Grid Model (Model 180) (180m*180m) 

 

 

 

 
Down-scaled/Refined Model (Model GE_20) (20m*20m) 

 

 
(a) Permeability in x-direction (PermX) (b) Initial Oil Saturation (Soi) 

Figure 34: PermX and Soi Distributions, Layer 5, 3D Generic Case 
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Appendix C: Simulation Results 
 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 
Figure 35: Tuned Simulation Results, Irreversible Case, 1D Homogeneous Case 

 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 
Figure 36: Tuned Simulation Results, Reversible Case, 1D Homogeneous Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 37: Simulation Results, Irreversible Case, 2D Homogeneous Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 38: Simulation Results, Reversible Case, 2D Homogeneous Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 39: Simulation Results, Heterogeneity Effect, Irreversible Case, 2D Layered Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 40: Simulation Results, Grid Size Effect, Irreversible Case, 2D Layered Case 
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Up-scaling Effect (Fine Grid Model vs. Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 41: Simulation Results, Up-scaling Effect, Irreversible Case, 2D Layered Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 42: Simulation Results, Heterogeneity Effect, Reversible Case, 2D Layered Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 43: Simulation Results, Grid Size Effect, Reversible Case, 2D Layered Case 
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Up-scaling Effect (Fine Grid Model vs. Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 44: Simulation Results, Up-scaling Effect, Reversible Case, 2D Layered Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 45: Simulation Results, Irreversible Case, 2D Areal Homogeneous Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 46: Simulation Results, Reversible Case, 2D Areal Homogeneous Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 47: Simulation Results, Irreversible Case, 3D Homogeneous Case 
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(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 48: Simulation Results, Reversible Case, 3D Homogeneous Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 49: Simulation Results, Heterogeneity Effect, Irreversible Case, 3D Layered Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 50: Simulation Results, Grid Size Effect, Irreversible Case, 3D Layered Case 
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Up-scaling Effect (Fine Grid Model vs. Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 51: Simulation Results, Up-scaling Effect, Irreversible Case, 3D Layered Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 52: Simulation Results, Heterogeneity Effect, Reversible Case, 3D Layered Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 53: Simulation Results, Grid Size Effect, Reversible Case, 3D Layered Case 
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Up-scaling Effect (Fine Grid Model vs. Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 54: Simulation Results, Up-scaling Effect, Reversible Case, 3D Layered Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 55: Simulation Results, Heterogeneity Effect, Irreversible Case, 3D Generics Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 56: Simulation Results, Grid Size Effect, Irreversible Case, 3D Generics Case 
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Heterogeneity Effect (Fine Grid Model vs. Down-scaled/Refined Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 57: Simulation Results, Heterogeneity Effect, Reversible Case, 3D Generics Case 
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Grid Size Effect (Down-scaled/Refined Model vs. Up-scaled/Coarse Grid Model) 

 
(a) Oil Recovery vs. Time (days) 

 
(b) Polymer Adsorption (kg) vs. Time (days) 

 

 
(c) Polymer Production (kg) vs. Time (days) 

 

 
(d) Water Cut vs. Time (days) 

 

 
(e) Injector WBHP (barsa) vs. Time (days) 

 

Figure 58: Simulation Results, Grid Size Effect, Reversible Case, 3D Generics Case 
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Appendix D: Example of Input Files in ECLIPSE 
ECLIPSE DATA-File: Fine Grid Model, Irreversible Case, 1D Homogeneous Case 
-- 1D model (20m*100m*40m and (45+2) Blocks), Polymer Flooding Study 
-- Irreversible Case (No Desorption) 
-- Sw,initial (initial water saturation) = 0 
-- Model made by Ali Mojaddam Zadeh, Modified by Aojie Hong 
==================================================================== 
NOECHO 
==================================================================== 
RUNSPEC 
==================================================================== 
  
TITLE 
 1D model (20m*100m*40m and (45+2) Blocks), Polymer Flooding Study 
  
--Model dimensions  
DIMENS 
-- NX  NY  NZ 
   47  1   1  /   
  
-- Phases present 
OIL 
POLYMER 
WATER 
 
ENDSCALE  
/  
  
-- Units 
METRIC 
 
NSTACK  
100 
/   
 
-- unified and ascii-formatted files in&out 
UNIFIN  
UNIFOUT  
--FMTOUT 
--FMTIN 
 
-- Run start date 
START 
--  DAY   MONTH  YEAR 
    01 'Jan' 2014   / 
 
----------------------------------------------------- 
-- Dimensions 
----------------------------------------------------- 
  
TABDIMS 
-- NTS  NTPVT  NSS  NPPVT  NTFIP 
    1    1     100   40    1  / 
  
REGDIMS 
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-- NTFIP  NMFIPR  NRFREG  NTFREG 
     1     1       0       0  / 
  
-- Well dimensions 
WELLDIMS 
-- NWMAXZ  NCWMAX  NGMAXZ  NWGMAX 
     2      156      2     1  / 
 
WSEGDIMS 
-- NSWLMX   NSEGMX   NLBRMX 
    1        240      135   / 
 
----------------------------------- 
-- Run control settings 
----------------------------------- 
 
--NOSIM 
 
==================================================================== 
--   GRID SECTION 
==================================================================== 
GRID  
 
NOECHO 
 
--Grid size in x-direction 
DXV 
20 45*20 20 
/  
 
--Grid size in y-direction 
DYV 
 100 
/ 
 
--Grid size in z-direction 
DZ  
 47*40 
/  
 
EQUALS 
      'PORO'    0.2       /     
      'TOPS'    2240    1 47  1 1 1 1    / 
      'PERMX'   500    1 47  1 1 1  1 / 
/  
 
COPY 
 'PERMX'  'PERMY'   / 
 'PERMX'  'PERMZ'   / 
/ 
 
INIT 
  
GRIDFILE  
  0 1 /  
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RPTGRID 
 22*0 / 
 
==================================================================== 
--           EDIT SECTION 
==================================================================== 
EDIT 
 
==================================================================== 
--    PROPS SECTION 
==================================================================== 
PROPS 
 
DENSITY  
 800  1000  0.824 /   
 
PVCDO  
-- Pref     FVFo      Coil      Viso     Visco  
--(bara)  (rb/stb)  (1/bara)    (cp)   (1/bara)  
    234    1.06541   6.65e-5     6.4    192.e-5    /  
  
RSCONSTT  
  0.00  43.8 /  
  
PVTW  
 234  1.012  4.28e-5  0.5 /  
 
INCLUDE 
'relperm.inc'  /   
 
-- Pref     Cr 
ROCK 
   234    1E-8 / 
 
PCW  
47*73 /  
 
RPTPROPS  
PCW /  
 
--Polymer properties  
INCLUDE 
'POL_ND.INC'  /  
 
==================================================================== 
-- REGIONS SECTION 
====================================================================
REGIONS 
 
==================================================================== 
-- SOLUTION SECTION 
==================================================================== 
SOLUTION 
 
 
MESSAGES  
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12*9999999 / 
--6* 2* 2*200 2* / 
 
--EQUIL   
-- DATUM   DATUM   OWC   OWC    GOC   GOC   RSVD   RVVD   SOLN  
-- DEPTH   PRESS  DEPTH  PCOW  DEPTH  PCOG  TABLE  TABLE  METH  
--  2240    234   99999   5*                        0 /   
 
PRESSURE  
47*234 /  
 
SWAT 
47*0 /  
 
-- INITIAL RESTART FILE 
RPTSOL  
 RESTART=2  FIP=3  FIPRESV SWATINIT /  
 
==================================================================== 
--     SUMMARY SECTION 
==================================================================== 
SUMMARY 
 
INCLUDE 
'summary.inc'  /    
 
==================================================================== 
--  SCHEDULE SECTION 
==================================================================== 
SCHEDULE 
 
RPTRST         Controls on output to the RESTART file 
-- Controls output of .UNRST file  
-- BASIC=4 => Restart file is written every 3. year  
   BASIC=1    FREQ=1    FIP=3    ALLPROPS  PCOW WELLS    /   
   
--RPTSCHED 
-- 'NEWTON=1'      -- linear eq summary for each time step to prt-
file (=1) 
-- 'SUMMARY=1'     -- solution summary for each time step to prt-
file (=1) 
-- 'WELSPECS' 
--/ 
 
-- Basic tuning  
TUNING 
-- Record 1: Time stepping controls 
-- TSINIT TSMAXZ TSMINZ TSMCHP TSFMAX TSFMIN TSFCNV TFDIFF 
    0.5    30.0  0.0001 0.00015  2*           0.3    1.25  / 
-- Record 2: Time truncation and convergence controls 
--TRGTTE TRGCNV TRGLCV 3XTTE 3XCNV 3XMBE 3XLCV 3XWFL TRGFIP 
    0.5   0.01  1.0E-6 5.0E-4 10    0.01 1.0E-4 0.001 0.01 0.1 / 
--Record 3 
-- NEWTMX  NEWTMN  LITMAX  LITMIN   MXWSIT 
      10     1       50       1        30      8   / 
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WELSPECS  
INJ   WELL1   1  1  1*  WATER 2* SHUT YES  1*  AVG 0 /  
PROD  WELL2   47  1  1*  OIL   2* SHUT YES  1*  AVG 0 /   
/ 
 
COMPDAT 
INJ     1  1  1  1  OPEN  1*  1*  0.177  1*  2*  Z  1*    /  
PROD    47  1  1  1  OPEN  1*  1*  0.177  1*  2*  Z  1*    /  
/ 
 
WCONPROD 
PROD   OPEN    BHP  5*  200  / 
/ 
 
WCONINJE  
--INJ     WATER  OPEN BHP 2* 500  / 
INJ    WATER  OPEN  RATE  200  / 
/ 
 
GECON 
--        Water Cut 
FIELD  2*     0.9     2*  WELL   YES  / 
/ 
 
-- Volume of injected polymer solution 
INCLUDE 
 'PVI.INC'  /  
  
END 
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ECLIPSE DATA-File: Coarse Grid Model, Irreversible Case, 1D Homogeneous Case 
-- 1D model (180m*100m*40m and (5+2) Blocks), Polymer Flooding Study 
-- Irreversible Case (No Desorption) 
-- Sw,initial (initial water saturation)= 0 
-- Model made by Ali Mojaddam Zadeh, Modified by Aojie Hong 
==================================================================== 
NOECHO 
==================================================================== 
RUNSPEC 
==================================================================== 
 
TITLE 
 1D model (180m*100m*40m and (5+2) Blocks), Polymer Flooding Study 
 
--Model dimensions  
DIMENS 
-- NX  NY  NZ 
   7    1   1  /   
 
-- Phases present 
OIL 
POLYMER 
WATER 
 
ENDSCALE  
/  
 
-- Units 
METRIC 
 
NSTACK  
100 
/ 
 
-- unified and ascii-formatted files in&out 
UNIFIN  
UNIFOUT  
--FMTOUT 
--FMTIN 
 
-- Run start date 
START 
--  DAY   MONTH  YEAR 
    01 'Jan' 2014   / 
 
----------------------------------------------------- 
-- Dimensions 
----------------------------------------------------- 
TABDIMS 
-- NTS  NTPVT  NSS  NPPVT  NTFIP 
    1    1     100   40    1  / 
  
REGDIMS 
-- NTFIP  NMFIPR  NRFREG  NTFREG 
     1     1       0       0  / 
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-- Well dimensions 
WELLDIMS 
-- NWMAXZ  NCWMAX  NGMAXZ  NWGMAX 
     2      156      2     1  / 
 
WSEGDIMS 
-- NSWLMX   NSEGMX   NLBRMX 
    1        240      135   / 
 
----------------------------------- 
-- Run control settings 
----------------------------------- 
 
--NOSIM 
 
==================================================================== 
--          GRID SECTION 
==================================================================== 
GRID  
 
NOECHO 
 
--Grid size in x-direction 
DXV 
20 5*180 20 
/ 
 
--Grid size in y-direction 
DYV 
 100 
/ 
 
--Grid size in z-direction 
DZ  
 7*40 
/  
 
EQUALS 
      'PORO'    0.2       /     
      'TOPS'    2240    1 7  1 1 1 1    / 
      'PERMX'   500    1 7  1 1 1  1 / 
/  
 
COPY 
 'PERMX'  'PERMY'   / 
 'PERMX'  'PERMZ'   / 
/ 
 
INIT 
  
GRIDFILE  
  0 1 /  
 
RPTGRID 
 22*0 / 
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==================================================================== 
--            EDIT SECTION 
--
==================================================================== 
EDIT 
 
==================================================================== 
--            PROPS SECTION 
==================================================================== 
PROPS 
 
DENSITY  
 800  1000  0.824 /   
 
PVCDO  
-- Pref     FVFo      Coil      Viso     Visco  
--(bara)  (rb/stb)  (1/bara)    (cp)   (1/bara)  
    234     1.06541   6.65e-5    6.4    192.e-5    /  
 
RSCONSTT  
  0.00  43.8 /  
 
PVTW  
 234  1.012  4.28e-5  0.5 /  
 
INCLUDE 
'relperm.inc'  /   
 
-- Pref     Cr 
ROCK 
   234    1E-8 / 
 
PCW  
7*73 /  
 
RPTPROPS  
PCW /  
 
--Polymer properties  
INCLUDE 
'POL_ND.INC'  /  
 
==================================================================== 
-- REGIONS SECTION 
==================================================================== 
REGIONS 
 
==================================================================== 
-- SOLUTION SECTION 
==================================================================== 
SOLUTION 
 
MESSAGES  
12*9999999 / 
--6* 2* 2*200 2* / 
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--EQUIL   
-- DATUM   DATUM   OWC  OWC    GOC   GOC  RSVD  RVVD  SOLN  
-- DEPTH   PRESS  DEPTH  PCOW  DEPTH  PCOG  TABLE  TABLE  METH  
--   2240      234    99999   5* 0 /   
 
PRESSURE  
7*234 /  
 
SWAT 
7*0 /  
 
-- INITIAL RESTART FILE 
RPTSOL  
 RESTART=2  FIP=3  FIPRESV SWATINIT /  
 
==================================================================== 
--     SUMMARY SECTION 
==================================================================== 
SUMMARY 
 
INCLUDE 
'summary.inc'  /    
 
==================================================================== 
--  SCHEDULE SECTION 
==================================================================== 
SCHEDULE 
 
RPTRST         Controls on output to the RESTART file 
-- Controls output of .UNRST file  
-- BASIC=4 => Restart file is written every 3. year  
   BASIC=1    FREQ=1    FIP=3    ALLPROPS  PCOW WELLS    /   
   
--RPTSCHED 
-- 'NEWTON=1'      -- linear eq summary for each time step to prt-
file (=1) 
-- 'SUMMARY=1'     -- solution summary for each time step to prt-
file (=1) 
-- 'WELSPECS' 
--/ 
 
-- Basic tuning  
TUNING 
-- Record 1: Time stepping controls 
-- TSINIT TSMAXZ TSMINZ TSMCHP TSFMAX TSFMIN TSFCNV TFDIFF 
    0.5    30.0  0.0001 0.00015  2*            0.3   1.25  / 
-- Record 2: Time truncation and convergence controls 
--TRGTTE TRGCNV TRGLCV 3XTTE 3XCNV 3XMBE 3XLCV 3XWFL TRGFIP 
    0.5   0.01  1.0E-6 5.0E-4  10   0.01 1.0E-4 0.001 0.01   0.1 / 
--Record 3 
-- NEWTMX  NEWTMN  LITMAX  LITMIN   MXWSIT 
      10     1       50       1        30      8   / 
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WELSPECS  
INJ   WELL1   1  1  1*  WATER 2* SHUT YES  1*  AVG 0 /  
PROD  WELL2   7  1  1*  OIL   2* SHUT YES  1*  AVG 0 /   
/ 
 
COMPDAT 
INJ     1  1  1  1  OPEN  1*  1*  0.177  1*  2*  Z  1*    /  
PROD    7  1  1  1  OPEN  1*  1*  0.177  1*  2*  Z  1*    /  
/ 
 
WCONPROD 
PROD   OPEN    BHP  5*  200  / 
/ 
 
WCONINJE  
--INJ     WATER  OPEN BHP 2* 500  / 
INJ    WATER  OPEN  RATE  200  / 
/ 
 
GECON 
--        Water Cut 
FIELD  2*     0.9     2*  WELL   YES  / 
/ 
 
-- Volume of injected polymer solution 
INCLUDE 
 'PVI.INC'  /  
 
END 
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ECLIPSE INCLUDE-File: Polymer Properties 
--Polymer properties  
 
--Polymer solution viscosity function 
--Polymer Concentration vs. Viscosity Multiplier 
PLYVISC 
0.0 1.0 
0.1 1.3 
0.2 1.5 
0.3 1.9 
0.4 2.3 
0.5 2.7 
0.6 3.3 
0.7 4.0 
0.8 4.8 
0.9 5.6 
1.0 6.7 
1.1 7.7 
1.2 9.0 
1.3 10.4 
1.4 11.9 
1.5 13.5 
1.6 15.4 
1.7 17.3 
1.8 19.6 
1.9 21.9 
2.0 24.4 
2.1 27.1 
2.2 30.0 
2.3 33.1 
2.4 36.5 
2.5 40.0 
2.6 43.8 
2.8 52.0 
3.0 61.3 
3.4 83.0 
3.7 102.3 
4.0 124.4 
4.3 149.5 
4.9 209.5 
5.5 283.7 
6.0 357.6 
6.1 373.8 
6.5 443.3 
/ 
 
PLYROCK 
--Dead   Residual    Rock       Max 
--Pore   Resistance  Mass       Polymer 
--Space  Factor      Density    Adsorption 
--                         ?(1=Desorption, 2=No Desorption) 
   0.1     1.0       2650  2    0.000030 / 
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--Polymer adsorption function 
--Local Polymer Concentration vs. Polymer Adsorbed 
PLYADS 
0.00 0.0 
0.25 0.000010 
0.50 0.000018 
0.75 0.000023 
1.00 0.000027 
1.25 0.000029 
1.50 0.000030 
1.75 0.000030 
2.00 0.000030 
3.00 0.000030 / 
 
--Todd-Longstaff mixing parameter 
PLMIXPAR 
1  / 
 
PLYMAX 
 7.7  0  / 
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ECLIPSE INCLUDE-File: Relative Permeability Curves corresponding to Figure 8 
SWOF 
--Sw      Krw       Kro     Pcow 
0.0000    0.0000    1.0000  2.000000    
0.0250    0.0000    0.9269  0.772667  
0.0500    0.0000    0.8574  0.457464  
0.0750    0.0001    0.7915  0.298384  
0.1000    0.0003    0.7290  0.200292  
0.1250    0.0007    0.6699  0.132954  
0.1500    0.0013    0.6141  0.083467  
0.1750    0.0022    0.5615  0.045323  
0.2000    0.0036    0.5120  0.014857  
0.2250    0.0054    0.4655  -0.010161 
0.2500    0.0078    0.4219  -0.031176 
0.2750    0.0109    0.3811  -0.049166 
0.3000    0.0148    0.3430  -0.064821 
0.3250    0.0196    0.3075  -0.078643  
0.3500    0.0254    0.2746  -0.091009   
0.3750    0.0323    0.2441  -0.102209   
0.4000    0.0405    0.2160  -0.112473   
0.4250    0.0500    0.1901  -0.121984   
0.4500    0.0611    0.1664  -0.130897   
0.4750    0.0739    0.1447  -0.139344   
0.5000    0.0884    0.1250  -0.147441   
0.5250    0.1048    0.1072  -0.155293   
0.5500    0.1234    0.0911  -0.163002   
0.5750    0.1442    0.0768  -0.170665   
0.6000    0.1673    0.0640  -0.178388   
0.6250    0.1930    0.0527  -0.186281   
0.6500    0.2214    0.0429  -0.194470   
0.6750    0.2527    0.0343  -0.203108   
0.7000    0.2870    0.0270  -0.212377   
0.7250    0.3245    0.0208  -0.222515   
0.7500    0.3654    0.0156  -0.233837   
0.7750    0.4098    0.0114  -0.246780   
0.8000    0.4579    0.0080  -0.261972   
0.8250    0.5100    0.0054  -0.280363   
0.8500    0.5662    0.0034  -0.303469   
0.8750    0.6267    0.0020  -0.333880   
0.9000    0.6916    0.0010  -0.376441   
0.9250    0.7612    0.0004  -0.441413   
0.9500    0.8357    0.0001  -0.555077   
0.9750    0.9152    0.0000  -0.811342 
1.0000    1.0000    0.0000  -2.000000 
/ 
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ECLIPSE INCLUDE-File: Injection Scheme 
--Injection Scheme for 1D Homogeneous Case 
--1000 day’s polymer flooding followed by water flooding 
 
--1000 day's Polymer Flooding 
WPOLYMER 
--Polymer Concentration at Injection 
INJ  1.5 / 
/  
 
TSTEP 
100*10 
/ 
 
-- Water post-flush until field economic limit reached 
WPOLYMER 
INJ  0.0 / 
/ 
 
TSTEP 
400*10 
/ 
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Appendix E: Impact of Shape of Up-scaled Polymer Solution 
Viscosity Function on Up-scaling Polymer Flooding 

Introduction 
In the main part of this thesis, it is proved that it is possible to reproduce some fine grid 

results, for example ultimate oil recovery, by up-scaling the polymer solution viscosity 

function (viscosity function) for polymer flooding. An up-scaling factor 𝑓𝑣 was introduced to 

up-scale the viscosity function. However, that method didn’t consider the shape of the 

viscosity function. From the plot of polymer solution viscosity at each grid block for different 

grid sizes (Figure 12), it can be seen that a big difference is between the polymer solution 

viscosities for the fine grid model (20m model) and the coarse grid model (180m model) due 

to numerical dispersion. In order to up-scale the coarse grid viscosities to the same level as the 

fine grid viscosities, the up-scaled polymer solution viscosity should be lower than the 

original one at low concentration and higher at high concentration. Different methods have 

been tried to determine the shape of the viscosity function, but only a few is effective. The 

way to determine the shape of the viscosity function and the impact of the shape of the 

viscosity function will be introduced in this additional study. 

Up-scaling Methods 
Method 1 

This method is the one used in the main part of this thesis. The polymer solution viscosity 

function is up-scaled by introducing a viscosity up-scaling factor 𝑓𝑣. Eq. 3.1-1 represents the 

relation between the original viscosity multiplier 𝑀𝑣 and the up-scaled viscosity multiplier 𝑀𝑣� . 

This method doesn’t take the shape of the viscosity function into account. 

Method 2 

The idea is to make the coarse grid model have the same polymer solution viscosity as that 

simulated on fine grid model. However, it is almost impossible because the difference 

between the polymer solution viscosities for fine and coarse grid model changes for each grid 

block and for time. Thus, we only consider the time when the viscosity difference is the 

biggest for each grid block. 

Take the 1D Homogeneous Irreversible Case for example. Detailed description of the case 

and the models can be found in Section 6.1. The coarse grid model has 7 grid blocks 

numbered in Figure 59 (b). The positions of the middle point of these grid blocks correspond 
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to the middle point of the numbered grid blocks on the fine grid model as shown in Figure 59 

(a). After running simulations in ECLIPSE, we can get the simulated histories of fine and 

coarse grid polymer solution viscosities for each of the numbered grid blocks, and the 

simulated history of coarse grid polymer concentration for each of the numbered grid blocks. 

For each coarse grid block, by dividing the fine grid polymer solution viscosities by the 

coarse grid polymer solution viscosities, we can find at what time the difference between fine 

and coarse grid polymer solution viscosities is the biggest. For example for Coarse Grid 

Block No. 4, it is found that the maximum difference happens at 1950 days. Dividing the 

polymer solution viscosity at each numbered fine grid block at 1950 days by water viscosity, 

we get the viscosity multiplier at each numbered fine grid block at 1950 days. Plotting 

viscosity multiplier at each numbered fine grid block at 1950 days vs. polymer concentration 

at each numbered coarse grid block at 1950 days, we can get a curve shown as the blue 

dashed curve in Figure 60. Repeating that for all the coarse grid blocks, we get the dashed 

curves shown in Figure 60. Then, it is needed to combine all these dashed curves into one 

curve. Because the viscosity function must be a monotone increasing function as defined in 

ECLIPSE, the points that don’t satisfy that requirement must be eliminated. And we assume 

that the up-scaled function follows the original function when the polymer concentration is 

higher than that we can get from the output simulation results. Finally, the up-scaled viscosity 

function is shown as the red solid curve in Figure 60. 

Method 3 

As the simulation result shows, up-scaled viscosity function by Method 2 doesn’t make the 

fine grid ultimate oil recovery reproduced on the coarse gird model even though the mismatch 

is reduced. Therefore, the up-scaled function generated by Method 2 needs to be up-scaled 

again by Method 1. The functions generated by these 3 methods are plotted in Figure 61. 
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(a) Fine Grid Model 

 

 
(b) Coarse Grid Model 

Figure 59: 1D Homogeneous Models with Numbered Grid Blocks 
 

 

 
Figure 60: Up-scaling Viscosity Function Using Method 2 
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Figure 61: Up-scaled Viscosity Functions by 3 Methods 

 

Results 
All the simulations are run on a set of 1D homogeneous models (Section 6.1) in ECLIPSE 

100 simulator. Time steps for data output are set to 10 days. The plots of simulation results 

are shown in Figure 62. By applying Method 2, the accuracy of prediction of oil recovery is 

improved; the history of water cut is changed a lot and its shape becomes closer to the fine 

grid water cut; and the maximum injector WBHP is much lower than that generated by 

Method 1 even though it is still higher than the injector WBHP of fine grid model. However, 

the fine grid ultimate oil recovery is not reproduced on coarse grid model only using Method 

2. The function generated by Method 2 has to be up-scaled again by multiplying an up-scaling 

factor as we has discussed for Method 3. 

The up-scaled factor is found to be 2.2 for Method 3, which is smaller than that found for 

Method 1 (𝑓𝑣  = 6). When Method 3 is applied, the fine grid ultimate oil recovery is 

reproduced on the coarse grid model; the accuracy of predicting the water break-through time 

is improved; as expected, the injector WBHP becomes larger than that generated by Method 2 

become the polymer viscosities are enlarged, but the maximum value of injector WBHP is 

still much lower than that generated by Method 1. A lower maximum injector WBHP is due 

to that the up-scaled viscosity multipliers by Method 3 are smaller than those up-scaled by 

Method 1 at high polymer concentrations as Figure 61 shows. 
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From Figure 62 (d), we can see that none of these methods reduces the mismatch in polymer 

adsorption. Therefore, the polymer adsorption function has to be up-scaled also. 

 

 
(a) Oil Recovery vs. Time 

 
(b) Water Cut vs. Time 

 

 
(c) Injector WBHP vs. Time 

 

 
(d) Polymer Adsorption vs. Time 

 
Figure 62: Simulation Results for Different Viscosity Functions 
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Conclusion 
Following points can be concluded from the study on impact of the shape of the polymer 

solution viscosity function on up-scaling polymer flooding: 

• The shape of the up-scaled polymer solution viscosity function can make big impact 

on up-scaling polymer flooding, especially on water cut and injector WBHP; 

• The simulated history of water cut on fine grid model may be reproduced properly on 

coarse grid model if the shape of up-scaled polymer solution viscosity function is 

determined correctly; 

• The problem of extremely high up-scaled injector WBHP caused by simply 

multiplying a viscosity up-scaling factor 𝑓𝑣  (Method 1) can be solved by correctly 

determining the shape of up-scaled polymer solution viscosity function; 

• The impact is investigated only on 1D homogeneous models in this additional study, 

so more complex models should be used to investigate this impact in further studies; 

• The method used to determine the shape of the viscosity function (Method 2) is not a 

robust method and there is other ways to determine the shape of the viscosity function, 

for example base on flow equations. Therefore, different ways to determine the shape 

of the viscosity function should be investigated in further studies. 
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