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Summary

The interplay of heat flow and electrification phenomena at solid/fluid interfaces gives origin

to intriguing effects such as Peltier’s and Seebeck’s, which is of great interest for applica-

tions such as production of electricity from waste heat, and represents a source of fascinating

problems in statistical mechanics of non-equilibrium systems.

My Master thesis is devoted to the computational investigation by molecular dynamic

(MD) simulation of the Seebeck effect, consisting in the creation of an electrostatic poten-

tial difference between two electrodes kept at different temperature and immersed into a

conducting (electrolyte solution or molten salt) fluid.

Preliminary results of simulations based on idealised models show that MD is (barely)

able to capture the essential feature of this effect, and thus provides a microscopic view of this

phenomenon that could ease its understanding. More realistic models are being developed

and tested aiming at the investigation of the Seebeck effect in organic conducting compounds

that are fluid at relatively low temperature.

Two different models for ionic liquids have been investigated in this thesis. The first

model consist of rigid ion particles, generalised to fit a variety of systems. The dependence

of temperature, size- and charge-assymetry on the interfacial dipole were investigated. The

second model was designed to be more realistic, and focuses on alkali carbonates.

In this report we present computations of transport properties for the alkali carbonates

Li2CO3, Na2CO3 and K2CO3 at temperatures between 1200 K and 1500 K. This includes

thermal and electrical conductivity, in addition to the diffusion coefficient for cations and

anions. For these same compounds in between planar walls, an investigation of the interfacial

dipole were carried out. The results provide important information to interpret data acquired

in real life experiments.
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Sammendrag

Samspillet mellom varmestrøm og elektrifiseringsfenomener ved faststoff/fluid grensesnitt gir

opphav til spennende effekter som Peltiers og Seebecks, som er av stor interesse for ulike

bruksomr̊ader slik som produksjon av elektrisitet fra spillvarme, og gir opphav til fascinerende

problemer i statistisk mekanikk for systemer ut av likevekt.

Min masteroppgave er viet til datasimuleringer med molekylærdynamikk (MD) av See-

beck effekten, som best̊ar av dannelsen av en elektrostatisk potensialforskjell mellom to

elektroder holdt ved forskjellige temperaturer og nedsenket i et ledende (elektrolyttløsning

eller smeltet salt) fluid.

Foreløpige resultater fra simuleringene basert p̊a idealiserte modeller viser at MD er (s̊a

vidt) i stand til å fange de essensielle trekkene av denne effekten, og derfor gir et mikroskopisk

syn p̊a dette fenomenet som kan gjøre det lettere å forst̊a. Mer realistiske modeller er under

utvikling og testes med mål om å undersøke Seebeck effekten i elektrisk ledende organiske

forbindelser som er fluider ved relativt lave temperaturer.

To forskjellige modeller for ioniske væsker har blitt undersøkt i denne avhandlingen. Den

første modellen best̊ar av harde ionepartikler, generalisert til å passe en mengde ulike syste-

mer. Avhengigheten av temperatur, størrelse- og ladningsasymmetri p̊a grensesnittsdipolen

ble undersøkt. Den andre modellen var designet for å være mer realistisk, og fokuserer p̊a

alkalikarbonater.

I denne rapporten presenterer vi beregninger av transportegenskaper for alkalikarbon-

atene Li2CO3, Na2CO3 og K2CO3 ved temperaturer mellom 1200 K og 1500 K. Dette inklud-

erer termisk og elektrisk konduktivitet, i tillegg til diffusjonskoeffisienten for kationer og

anioner. For de samme forbindelsene mellom plane vegger ble det utført en granskning av

grensesnittsdipolen. Resultatene gir viktig informasjon for å tolke data anskaffet i virkelige

eksperimenter.
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List of symbols

Notation Description
D Interfacial dipole
Dx Total dipole
E Electric field
fi Forces derived from the potential energy
fSR Switch function
kB Boltzmann’s constant
lx Separation between the walls
Lα Periodicity in α-direction
m Mass
Ni Number of particles of type i
Rij Distance between particle i and j
Ri Position vector for particle i
t Time
ta Autocorrelation time
t1 Average temperature of neutral particles in the left wall
t2 Average temperature of neutral particles in the right wall
T Target temperature
T0 Temperature of both walls

Tl, T1 Target temperature of left wall
Tr, T2 Target temperature of right wall
U Lennard-Jones interaction potential
vij Interaction between particle i and j
wl Parabolic potential of left wall
wr Parabolic potential of right wall

x, y, z Cartesian coordinate
Xl Limit for left wall potential
Xr Limit for right wall potential
Zi Charge of particles of type i
βi Random forces
δ Dirac delta function
δQ Net charge
η Friction coefficient
ρ Density

ρ× σ3
++ Dimensionless density

ρtot Total number density
ρQ Charge density
σij Collision diameter between particle i and j
φ Electrostatic potential
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Notation Description Unit
A Cross-sectional area [Å2]
b Weight of the Born-Mayer-Huggins interaction [kcal/mol]
d Dimensionality of the system
D Interfacial dipole [D/nm2]
Di Diffusion coefficient of specie i [cm2/s]
E Electric field [V/Å]
F Faraday’s constant [C/mol]

Fspring Force from the spring [kcal mol−1 Å−1]
gij Radial distribution function between atom i and j
Jq Heat flux [J s−1 m−2]
j Electric current density [C s−1 m−2]
k Wavenumber [Å−1]
kB Boltzmann’s constant [kcal mol−1 K−1]
ke Coulomb’s constant [V Å e−1]
Kr Force field constant for bond stretching [kcal mol−1 Å−2]

Kspring Spring constant [kcal mol−1 Å−2]
Kθ Force field constant for angle bending [kcal mol−1 rad−2]
Kφ Force field constant for improper torsion [kcal mol−1 rad−2]
Lα Length of simulation box/periodicity in α-direction [Å]
Mw Molar mass [g/mol]
ni Number of electrons in the outer shell of atom i
nij Coordination number between atoms of type i and j
Ni Number of atoms of type i
P Pressure [kbar]
r Radius [Å]
rij Distance between atom i and j [Å]
r0 Equilibrium distance in the stretching potential [Å]
r Position vector in mean square displacement [Å]
rd Diplacement vector [Å]
R Universal gas constant [J K−1 mol−1]
SNN Number-number structure factor
SZZ Charge-charge structure factor
t Time [fs]
T Temperature [K]
Tm Melting point [K]
Tb Boiling point [K]
Upot Born-Oppenheimer potential energy surface
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Notation Description
v Velocity [m/s]
V Volume [Å3]

Vbending Potential energy due to angle bending [kcal/mol]
VBMH Born-Mayer-Huggins potential [kcal/mol]
VLJ Lennard-Jones potential [kcal/mol]

Vimproper Potential energy due to improper torsion [kcal/mol]
Vstretching Potential energy due to bond stretching [kcal/mol]

zi Valence of atom i [e]
α Steepness of Born-Mayer-Huggins interaction [Å−1]
ε Depth of the potential well in the Lennard-Jones potential [kcal/mol]
ε0 Vacuum permittivity [e Å−1 V−1]
λ Thermal conductivity [W m−1 K−1]
κ Electrical conductivity [S/cm]
κNE Electrical conductivity from the Nernst-Einstein relation [S/cm]
κ′NE Modified Nernst-Einstein electrical conductivity [S/cm]
ρ Density [g/cm3]
ρi Number density of specie i [Å−3]
ρQ Charge density [e/Å3]
ν+ Number of cations per formula unit of electrolyte
ν− Number of anions per formula unit of electrolyte
νi Vibrational frequency of mode i [cm−1]
σi Ionic radius of atom i [Å]
σw Surface charge density of the wall [e/Å2]
φ(z) Electrostatic potential in z-direction [V]
φ Improper torsion angle [◦]
φ0 Equilibrium improper torsion angle [◦]
θ Bending angle [◦]
θ0 Equilibrium bending angle [◦]
χT Isothermal compressibility
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Subscripts

Notation Description
Coul, Hartree Coulombic

+, 1 Cations
−, 2 Anions
n Neutral particles
i, j Atom type
Li Lithium
Na Sodium
K Potassium
O Oxygen
C Carbon

CO3 Carbonate
Q,Z Charge
w Wall
w, i Wall, inside
w, o Wall, outside
x, y, z Cartesian coordinate
ν, µ Component
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Chapter 1

Introduction

1.1 History

Thermoelectricity was first discovered by Alessandro Volta around 1794-1795 [1, 2] while

frying a frog [3]. A sketch of his experiment can be seen in Figure 1.1, which is taken from

Ref. [1].

Figure 1.1: Sketch of Volta’s experiment. A metal wire (A) is submerged in glasses of water
(B), in which the hind legs is placed in one (C) and the back/spine in the other (D). The
figure is taken from Ref. [1].

Volta observed in his experiment that if he heated one end of the iron wire before putting

it into the water, the frog would convulse, giving reason to believe a current is passing

through. This happened many years before the experiments by Seebeck in 1821. It is
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therefore a science that is over 200 year old, but our knowledge about it is still lacking.

1.2 Motivation and outline of the thesis

The direct conversion of heat into electric power is a subject of obvious interest, but is poorly

understood. It might become practically and economically relevant if we could tap into the

vast amount of waste heat released by industrial processes at temperatures below around

200 ◦C, where power production from steam is unlikely. A promising way to implement the

direct conversion of heat into electric power is through the Seebeck effect, that corresponds

to the generation of an electrostatic potential drop whenever a conductor is subjected to a

temperature gradient.

To achieve this goal requires the development of new materials, able to turn temperature

differences into an electrostatic potential difference, at a rate and efficiency sufficient to make

the process competitive with other means to produce electric power. The most common ma-

terials used so far are semiconductors, having small energy conversion efficiencies.

Thermodynamic and statistical mechanics considerations show that the most important

quantity underlying the Seebeck effect is entropy, and transported entropy in particular

[4]. Any theoretical analysis, therefore has to cover this crucial aspect, making computer

simulation particularly suitable for the task.

The idea of this thesis is to explore the potential of a new class of materials in this con-

text, namely ionic liquids, and room temperature ionic liquids in particular [5, 6]. Like their

counterparts, semiconductors, they are equally well conducting, and can be used at relatively

low temperatures, but they have larger Seebeck coefficients. But the origin of their Seebeck

coefficient, more particularly the transported entropy of the ions is poorly understood.

The development stage could be cut and optimised, provided we understand the many

microscopic mechanisms that underlie this complex energy transformation. This thesis is
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devoted to the investigation of an important portion of these microscopic aspects, namely

the role of the electrolyte in the generation of an electrostatic potential energy difference

between two electrodes kept at different temperature (Seebeck effect).

The systems were studied using molecular dynamics simulations, which were divided into

two main stages. In the first stage (chapter 3), the system was made of rigid ion particles

interacting with isotropic pair potentials confined between walls made of neutral particles.

The system as a whole is electroneutral. In this stage two distinct series of simulations

were done. The first series consisted of equilibrium simulations covering a wide temperature

range. The second series consisted of stationary but non-equilibrium conditions with a

thermal gradient across the fluid phase.

In both simulations series, the surface dipole were enhanced by looking at asymmetric

ions, asymmetric wall-particle interactions and different valence of cations and anions.

In the second stage (chapter 4) the model is made more realistic by using a parametrised

force field for alkali carbonates, considering both homogeneous and inhomogeneous systems

made of a liquid confined in between neutral walls that represents electrodes.

Results from the microscopic simulations can later be interpreted in terms of thermody-

namic functions , and possibly analysed by the Small System Method (SSM) [7], in which

fluctuations from small systems and appropriate scaling can be used to find the values at

the thermodynamic limit [8].

This will set a basis for extensions which studies more complex ions, both flexible and

polarisable, in order to be able to compare with experimental results obtained by Dr. M. T.

Børset in the group of non-equilibrium thermodynamics at NTNU.
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1.3 Background

Thermoelectric energy converters are already considered for use in cars, see review of Ze-

barjadi et al. [9] or in the Norwegian silicon industry [10]. Consider the simple converter in

Figure 1.2 made by n- and p-type semiconductors. The unit is kept between a heat source

at temperature TH and a heat sink at temperature TL, and produces an electric potential

difference, ∆φ, proportional to the temperature difference

∆φ = αS(TH − TL)−RΩj (1.3.1)

The last term in this equation is the ohmic potential drop, where RΩ is the electric

resistance and j is the electric current density. The electric resistance is related the electrical

conductivity κ as RΩ = 1/κ. The Seebeck coefficient, αS, gives the thermoelectric potential

and the maximum power output

Pmax = (∆φ)j = αS(TH − TL)2κ

4 (1.3.2)

The power variation is illustrated in Figure 1.2. The efficiency of the converter is often

expressed in terms of the figure of merit

ZT = κ(αS)2T

λ
(1.3.3)

where λ is the thermal conductivity.
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Figure 1.2: a) A connected pair of n- and p-type semiconductors in a basic unit of a common
thermoelectric energy converter. An electric potential arises when the unit is placed between
a heat source and a sink. b) The maximum power depend on Seebeck coefficient, αS, and
resistance, RΩ.

In general, the coefficient αS is a function of thermodynamic entropies as well as trans-

ported entropies in the system:

αS =
(
dφ

dT

)
j=0

= f(Si, S∗i ) (1.3.4)

For semiconductors, αS contains only the transported entropy of the n- and p-conductors.

The exact relation (1.3.4) can be derived from non-equilibrium thermodynamics theory. Solid

state semiconductor devices are attractive because they are maintenance-free, reliable, silent,

dynamic and adaptable to a variety of temperature ranges. Their drawback is their low

efficiency with values around 5 %. The Seebeck coefficients of these materials are typically

in the order of a few hundred microvolts per Kelvin, e.g. around 240 · 10−6 V/K for a BiTe-

based device. The effort to increase the conversion efficiency of thermoelectric converters

was recently reviewed [9].

The low efficiency of the thermoelectric devices based on semiconductors is the main

reason for the investigation of new materials to be used in this context. As ionic liquids has

much higher Seebeck coefficients, it is desirable to understand why this is the case and to

find which factors are important in this matter.
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Chapter 2

Theoretical and computational background

2.1 Basic definitions

2.1.1 Born-Oppenheimer approximation and potential energy sur-

face

Condensed matter consists of atomic nuclei and electrons, forming atoms and molecules.

This gives origin to a variety of structures and phases. The ratio between the electron

and the nuclei masses is me/mH ∼ 1/1800 at most. At the conditions prevalent in our

environment, that we characterise as being of moderate temperature and pressure, this low

ratio implies that electrons relax to their ground state much faster than typical time scales

of nuclear motion. As a result, the relevant dynamical variables are primarily the nuclear

coordinates {RI , I = 1, ..., N}, while the electron ground state energy as a function of these

coordinates provides the Born-Oppenheimer potential energy surface Upot[{RI , I = 1, ..., N}]

that determines the atomic dynamics.

2.1.2 Pair potentials

The meaningful simulation of systems made of many atoms and molecules requires a good

description of the interaction potential between the particles, as this will be used to calculate

the forces acting between them. As a first approximation, we can assume that atoms interact
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in pairs giving origin to the so-called pair potential approximation:

Upot[{RI , I = 1, ..., N}] = 1
2

N∑
i 6=j

V (|RI −RJ |) (2.1.1)

where it has been assumed that the function V (r) is isotropic, and therefore depends only

on the inter-atomic distance.

The most important feature of such a potential is the short-range repulsion, which origi-

nates from the overlap of outer electron shells. Such a potential should also include long-range

attractive forces, which vary more smoothly with distance between the atoms and molecules

and the short-range interaction.

A paradigmatic pair potential is the Lennard-Jones (LJ) 12-6 potential:

VLJ(r) = 4ε
[(
σ

r

)12
−
(
σ

r

)6
]

(2.1.2)

Where σ is the collision diameter and ε is the potential well depth. The r−12 term is

the repulsive term, and describes Pauli repulsion at short range. The r−6 term is the long-

range attraction, which models the van der Waals or dispersion force. Another important

interaction is represented by Coulomb forces, whose corresponding potential energy is:

UHartree = 1
2
∑
i 6=j

ke
qiqj
rij

(2.1.3)

In compounds bound by covalent bonds, and in most covalent molecules in particular,

atoms interact with each other through directional forces. In such a case, we attribute a

conventional energy E0 to the ground state structure of each molecule, and approximate the

energy change in deforming the molecular geometry as the sum of the energy required to

stretch, bend and twist bonds:

Vcovalent = Vstretching + Vbending + Vimproper (2.1.4)

More details will be given in the following chapters.
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2.1.3 Radial distribution functions

The radial distribution function (RDF), g(r), gives valuable information about the local

structure of a fluid, for example how packed the system is. It gives the conditional proba-

bility of finding an atom a distance r away from another atom compared to the ideal gas

distribution [11]. Therefore, g(r) is dimensionless, and, for homogeneous liquid samples

should reach unity for larger values of r.

From the RDF, the running coordination numbers nij can be found, see e.g. [12]. The

coordination number of interest is usually found from the first coordination shell. This gives

information about how many atoms of type j surrounds each atom of type i on average.

Coordination numbers often suggests the type of (approximate) symmetry for the local

coordination of atoms. More detail on this in section 4.2.4.

2.1.4 Structure factor

While the radial distribution functions are the usual simulation output concerning structure,

comparison with experiments requires the computation of structure factors, since this is what

is given from X-ray and neutron scattering experiments.

In a multicomponent system made of n species, we defined n(n− 1)/2 partial structure

functions, each computed as

Sµν(k) = 1
N
〈ρ̃∗µ(k)ρ̃ν(k)〉 (2.1.5)

where ρ̃α(k) = ∑
i∈α e

iRik. Ri are the ion coordinates.

Partial structure factors, however, are not very informative when there are more than two

components. The structural information usually is coded into a number-number structure

factor:

SNN(k) =
∑
ν

∑
µ

Sνµ(k) (2.1.6)
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and into a charge-charge structure factor:

SZZ(k) =
∑
ν

∑
µ

zνzµSνµ(k) (2.1.7)

The first function (SNN(k)) describes the correlations in the fluctuations of the ion density

irrespective of the ion type. The second function (SZZ(k)) instead describes correlations in

the charge fluctuations.

2.2 Ionic liquids

The theory of ionic liquids is gathered from the book by Hansen and McDonald [13].

Ionic liquids, i.e. a liquid where the particles carry an electric charge, have several features

which is not found in fluids of neutral particles. Many of these properties are due to the

longe-range Coulomb interactions.

A tendency towards electrical charge neutrality is an crucial feature. Not only can this

be seen at a macroscopic level, but it is important at the microscopic level as well in terms of

screening. If an external charge is introduced into an ionic liquid, it will cause a rearrange-

ment, or polarisation, of the surrounding charge density. This will be done in such a way

that electrostatic potential due to the external charge decays much faster than the Coulomb

potential. Any ion in the fluid an be regarded as having an external charge, which makes

this such an important feature. Due to the competition between packing and screening, a

charge ordering of the ions occur at high density. Molten salts are examples of ionic liquids

at high density and with high correlation.

The long-range Coulomb interaction heavily influences the static properties of ionic liq-

uids. A thorough description of long-range correlations in molecular fluids can be seen in

Ref. [14]

The simplest class of ionic liquids is molten salts, which is also the main focus of this

thesis. Molten salts are characterised by having large cohesive energies. Due to the rela-

tively high melting point, molten salts are usually associated with high temperatures. The
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electrical conductivities of such liquids are usually in the order of 1 S/cm.

Historically, Coulombic fluids are some of the first liquids to be studied by simulation.

Moreover, the hypernetted-chain equation [13] acts as a good approximation for these kind

of liquids.

The total potential for a idealised ionic liquid can be written as:

VN(rN) = V S
N (rN) + V C

N (rN) =
N∑
i=1

N∑
j>i

Aij exp (rij/ρij) + zizje
2

ε|rj − ri|
(2.2.1)

The first term is the pair potential by Tosi and Fumi, and the second term is the Coulomb

interaction.

The Coulomb term is often replaced with the Fourier transform of it. Because of its

simple analytical form, the Coulomb energy is easily computed also in reciprocal space. The

charge density in Fourier space can be represented as:

ρZk =
∑
ν

zνρ
ν
k (2.2.2)

which is a complex function.

The Fourier transform of the Coulomb potential between two elementary charges is given

as

v̂(k) = 4π e
2

k2 (2.2.3)

The limit k → 0 gives an important characteristic of Coulomb systems, namely the k−2

singularity. The Coulomb energy is given as:

UHartree =
∑

k
4πe2ρkρ

∗
k

k2 (2.2.4)
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2.2.1 Electrical double layer

In an ionic liquid, a layering of the ions occur if a planar electrode is introduced. The ions

with the opposite charge of the electrode will be closest to the electrode, followed by a layer

of ions with a charge of same sign as the electrode. This constitutes an electrical double

layer. The reason why this layering does not continue is because of the tendency for the ions

to spread out in the bulk, in order to maximise the entropy. This layering can also be seen

if the the electrode is replaced with a neutral wall, if the ions are of different size. Then the

smaller ions (typically cations) will be closest to the wall, while the outer layer will consist

of the larger ions (typically anions).

2.3 Molecular dynamics

The following theory is gathered from Hansen and McDonald [13]. In a system with N

particles, the dynamical state is described by 3N coordinates r and 3N momenta p. These

6N variables defines a phase point in a 6N -dimensional phase space. Properties like pressure

and internal energy can be written as averages of functions of r and p of the particles.

These properties should be independent of time when equilibrium is achieved, but they will

fluctuate around a mean value. Given the coordinates and momenta of the particles at one

instance of time, their values at subsequent times can be found by the method of Molecular

Dynamics.

In a Molecular Dynamics (MD) simulation, the idea is to try to mimic the movement

of atoms and molecules by solving Newton’s equation of motion mr̈i = Fi, where m is the

particle mass, r̈i is the second time derivative of the atom coordinates and Fi is the force

acting on particle i.

2.3.1 Periodic boundary conditions

Usually, it is the bulk properties of the system that is of interest, meaning we are not

interested in surface effects. Therefore, it is usual to use periodic boundary conditions (PBC),
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meaning that if a particle were to exit the simulation box on one side, it would reappear on

the other side. This also has the benefit of requering less particles in the simulation in order

to get good statistics, speeding up the simulation.

2.3.2 Velocity Verlet

In a molecular dynamics simulation, it is crucial that the equations of motion are integrated

with a stable integrator. Otherwise, problems like energy drift can occur. An algorithm for

a good integration scheme should be both time reversible and area preserving [15]. It should

also be sufficiently efficient, as the equations of motions needs to be integrated millions

of times in a simulation. The velocity Verlet integrator scheme is an example of such an

algorithm, and will be used in this thesis.

This can be written as the combination of a predicator step:

ri(t+ ∆t) = ri(t) + ṙi(t)∆t+ 1
2 r̈i(t)∆t2 (2.3.1)

ṙi(t+ ∆t) = ṙi(t) + r̈i(t)∆t (2.3.2)

followed by the computation of r̈i(t+ ∆t) at position ri(t+ ∆t), and by the corrector step

ṙi(t+ ∆t) = ṙi(t+ ∆t) + 1
2∆t [r̈i(t+ ∆t)− r̈i(t)] (2.3.3)

2.3.3 Ewald summation

Techniques for computing the Coulombic interactions of an extended, periodic system at a

low cost are important in molecular dynamics, due to the long-range nature of such interac-

tions. One such method is the Ewald summation.

Using Ewald sums, the Coulombic potential VCoul can be written as [15]:

VCoul = 1
2

N∑
i 6=j

qiqjerfc(rij
√
α)

rij
+ 1

2V
∑
k 6=0

4π
k2 |ρ(k)|2 exp

(
−k2

4α

)
−
√

(α/π)
N∑
i=1

q2
i (2.3.4)
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where k are reciprocal lattice vectors, included up to a cufoff k2 ≤ k2
cutoff . This equation

contains both a part in real space and a part in Fourier space. The reason for this is because

some terms converges fast in real space, while other terms converges fast in Fourier space.
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Chapter 3

A simple, idealised model: Rigid ion

particles

3.0 Introduction

Charge separation and the presence of sizeable electric fields in close proximity of interfaces

are ubiquitous phenomena that greatly affect the stability and rheology of inhomogeneous

systems [16]. Such electrification phenomena are particularly important at solid/liquid in-

terfaces, since the charge separation is eased by the mobility of ions or by the reorientation

of polar molecules. At thermal equilibrium, electrification phenomena at planar or nearly

planar interfaces take the form of localised electrostatic double layers [17], leading to an

electrostatic potential difference and interface capacitance, without long wavelength electric

fields beyond a microscopic distance from the interface. This harmonious picture may be

drastically perturbed under non-equilibrium conditions, even when restricted to time invari-

ant stationary states [14].

Electrification phenomena and electrostatic double layers at solid/fluid interfaces have

been and still are extensively investigated by experimental means, including cyclic voltam-

metry, a variety of spectroscopies, as well as recent near field approaches. The theoretical

community took an early interest in these systems and phenomena, as documented in the

seminal papers by Gouy [18] and Chapman [19], anticipating the Debye and Hückel theory for

screening of individual ions in homogeneous electrolyte solutions [20]. The pioneering stage

ended with the systematic analysis by integral equations and classical density functional

theory [21].
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Computer simulation has progressively taken over as the standard method to investigate

electrified interfaces [22, 23]. Most of the simulations concerned low density systems, of

interest for electrolyte solutions, often represented in the implicit solvent picture. Until

recently, only a few studies concerned packing and coupling regimes typical of molten salts.

This area of investigation is being revived by the current interest in room temperature

ionic liquids [5], that bring strong coupling to the ambient conditions range. In the case

of simple liquids, the results of simulation and integral equation theories agree fairly well.

The comparison of results from either approaches with experimental data is far less clear,

partly because crucial ingredients of real systems such as the atomistic structure of the solid

side of the interface, or the polar or apolar solvent are neglected or severely approximated.

Perhaps more importantly, almost without exceptions the computational and theoretical

analysis concerns systems in thermal equilibrium. Both electrochemistry experiments, and

especially applications concern primarily systems in stationary (i.e., time independent) but

out of equilibrium conditions, in which energy and charge flow throughout the system.

All these studies concern systems at equilibrium.

As extensively discussed in Ref. [16], a separation of charge will take place at the solid/liq-

uid interface whenever cations and anions are not perfectly equivalent, and/or whenever their

interaction with the solid boundaries is not the same. Upon formation of the double layer,

each interface is like a planar capacitor, and, apart a numerical factor 4π, the electrostatic

potential drop at each interface is measured by the dipole per unit surface of the charge

density distribution.

Let us assume that cations and anions are not symmetric, but interact in the same

way with the left and right boundary. At equilibrium (T1 = T2), the potential drop on

the right interface will cancel the potential drop at the left interface by symmetry. Any

chemical difference between the two solid boundaries, or a different temperature at the two

sides (T1 6= T2) will break the specular symmetry in the simulation cell, giving origin to

a net electrostatic potential drop across the simulation cell. If the asymmetry is due to a

temperature imbalance, the electrostatic potential energy difference can be maintained even

15



is the two electrodes are joined by an electron conductor, provided the temperature difference

is kept constant by thermal contact with two different reservoirs at temperatures T1 and T2.

Since the target parameter to be optimised is ∆φ across the interface, the first approach

could be to search for interfaces having a large surface dipole, with a strong dependence on

temperature. As a side question, we could ask ourselves what is the largest surface dipole

that could be sustained by a given fluid.

We address these questions by two distinct series of simulations, the first series considering

stationary but non-equilibrium conditions with a thermal gradient across the fluid phase; the

second series instead consists of equilibrium simulations covering a wide temperature range.

In both series of simulations, we enhanced the surface dipole by considering: (i) asymmetric

ions, with 1.2 ≤ σ22/σ11 ≤ 2; (ii) asymmetric wall particle interactions; (iii) different valence

of cations and anions, with 1 ≤ |Z1/Z2| ≤ 3.

Both series of simulations have been carried out for relatively small systems, but test

computations have been performed on significantly larger samples.

A subtle question that we cannot overlook: under non-equilibrium conditions, the surface

dipole cannot be the only source of ∆φ, there must be also a net surface charge, that in turn

implies long-range correlations in the system.

To enhance our understanding of electrostatic double layers, we carry out computer sim-

ulations for rigid ion model fluids confined between planar surfaces. We explore in particular

the effect of size and charge asymmetry. The investigation of the temperature dependence

of the electrostatic potential drop at each interface suggests a simple model for the Seebeck

coefficient of electrolyte/electrode interfaces.

Following the standard practice in computations and in theory (as opposed to experi-

ments), in presenting my results I will introduce dimensionless quantities, dividing the quan-

tities that is computed by a natural scale of the same physical dimensions. This will make

the results suitable to fit a wide variety of different systems. The conversion to standard

units can be carried out afterwards, multiplying each quantity again by a scale of the same
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dimensionality, this time measured in fixed units.

3.1 Models and methods

We investigate systems made of neutral and rigid ion particles, interacting with pair poten-

tials. Each simulation sample, in particular, consists of a number of cations N+ of charge

Z+, a number of anions N− of charge Z−, and a number of neutral particles Nn confined in

between two planar walls perpendicular to the x direction. Their mutual interaction vij is

given by:

vij(| Ri −Rj |) = ZiZj
| Ri −Rj |

+
(

σij
| Ri −Rj |

)12

fSR(| Ri −Rj |) (3.1.1)

where Rij =| Ri −Rj | is the distance between particle i and j, σij is the collision diameter

between particle i and j and fSR(R) is a switch function that over the Rc ≤ R ≤ Rc + ∆

smoothly extinguishes the inverse power potential together with its first derivative:

fSR(R) =


1 R ≤ Rc

cos
[
π (R−Rc)

∆

]
Rc ≤ R ≤ Rc + ∆

0 R ≥ Rc + ∆

(3.1.2)

where Rc is a distance that depends on the species of particles i, j and ∆ is a parameter that

decides the length of the smoothing.

The confining walls are represented by parabolic potentials, w, given, on the right, by:

wr(x) =

 0 x ≤ Xr

1
2 (x−Xr)2 x > Xr

(3.1.3)

and on the left:

wl(x) =


1
2 (Xl − x)2 x < Xl

0 x ≥ Xl

(3.1.4)
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where Xr, Xl are limits to how far the potential last in the x-direction for the right and left

wall, respectively. The system is periodic along the y and z directions, with periodicity Ly

and Lz, respectively. To account for Coulomb forces by the 3D version of the Ewald method,

we make our system periodic also along the x direction, with a periodicity Lz longer than

the separation ∆X of the confining potentials.

Neutral particles that are used to make a wall for the system are included primarily to

thermalise the ions at temperature Tl, Tr in proximity of the left and right confining walls,

respectively. To this aim, part (or the whole) of the neutral population is confined by a

one body potential, linking particles to fixed positions on a regular lattice. Moreover, all

particles follow Newton’s equations of motion, while neutral particles evolve according to

Langevin dynamics:

mR̈i = fi (3.1.5)

mR̈i = fi − ηṘi + βi(t) (3.1.6)

where the dots represents time derivatives, fi are the forces derived from the potential energy,

η is the friction coefficient, while βi are random forces, satisfying the relations:

〈βi(t)〉 = 0 (3.1.7)

〈βi(t) · βj(t′)〉 = 6ηkBTδi,jδ(t− t′) (3.1.8)

In these last relations, kB is the Boltzmann constant, δ is the Dirac delta function and T is

the target temperature of the simulation. In our code, we faithfully implemented Eq. (18),

and Eq. (21) to Eq. (23) of Ref. [24], slightly modifying the velocity Verlet algorithm used

in the η = 0 case. The equations from the reference is also given here:

rn+1 = rn + bdtvn + bdt2

2m fn + bdt

2mβn+1 (3.1.9)

vn+1 = avn + dt

2m(afn + fn+1) + b

m
βn+1 (3.1.10)
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with a and b defined as

a =
1− ηdt

2m
1 + ηdt

2m
(3.1.11)

b = 1
1 + ηdt

2m
(3.1.12)

Figure 3.1: Simulation snapshot of system consisting of 600 cations (red particles) and 600
anions (yellow particles) of charge ±1, confined by soft walls (not shown) and in contact
with two thin layers of neutral particles (dark blue particles) providing thermal contact with
reservoirs at Tl, Tr.
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Table 3.1: List of systems extensively simulated in the present study. Limited computations
have been carried out also for other systems. In all cases, σ++ = 1, the number of neutral
particle in the system (two walls) is Nn = 468, σnn = 1.2, the separation of the two walls
(see text) is lx = 13.732, while the periodicity of the simulation box is Lx × Ly × Lz =
19.617×15.600×18.706. The number of MD steps refers to the non-equilibrium simulations
discussed in the text.

Sample # σ+− σ−− σ+n σ−n MD steps/106

Z+ = 1 Z− = −1 N+ = N− = 600
1 1.1 1.2 1.5 1.5 39
2 1.2 1.4 1.5 1.5 45
3 1.3 1.6 1.5 1.5 45
4 1.4 1.8 1.5 1.5 45
5 1.5 2.0 1.5 1.5 48
6 1.3 1.6 1.4 1.6 30
7 1.3 1.6 1.45 1.55 30
8 1.3 1.6 1.55 1.45 30
9 1.3 1.6 1.6 1.4 30

Z+ = 2 Z− = −1 N+ = 400 N− = 800
10 1.1 1.2 1.5 1.5 30

Z+ = 3 Z− = −1 N+ = 300 N− = 900
11 1.1 1.2 1.5 1.5 30

Z+ = 1.4 Z− = −1 N+ = 500 N− = 700
12 1.1 1.2 1.5 1.5 30

Z+ = 1.5 Z− = −1 N+ = 480 N− = 720
13 1.1 1.2 1.5 1.5 30
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3.2 Results and discussion

3.2.1 Equilibrium simulation results

Equilibrium molecular dynamics simulations have been carried out for the systems listed in

Table 3.1. This stage of simulations has been performed in the canonical (NVT) ensemble

upon disconnecting the system from the Langevin thermostats after equilibration at the

target temperature. The micro-canonical ensemble (NVE) was used in the production run

after equilibration. In all cases, the runs to obtain equilibrium exceeded 3×103 time units to

ensure that equilibrium was reached, while production simulations covered at least 18× 103

time units. The determination of the mean square displacement of cation and anions as a

function of time, as well as visual analysis of simulation snapshots show that our samples

are liquid-like at all temperatures 0.8 ≤ T ≤ 3.0.

A representative example of the dimensionless density profile ρ(x)×σ3
++ of cations, anions

and neutral particles is shown in Figure 3.2.
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Figure 3.2: Dimensionless density profile of ions across the simulation box and of neutral
particles that the walls are made of. σ+− = 1.3, σ−− = 1.6, σ+n = σ−n = 1.5, at T = 1. Red
line: cations; blue line: anions; green line: neutral particles. Neutral particles are confined
by an harmonic potential to fixed positions distributed on a regular 2D lattice. The inset
provides a magnified view of the contact region between the Coulombic fluid and the wall.

The two peaks that can be seen for the neutral wall is due to the vibration of the spring.

The particles will be displaced from their lattice position according to the harmonic potential,

and the particles will have more space if they move opposite to each in x-direction rather

than staying in the lattice or moving in the same direction.

The repulsive interaction of ions and neutral particles is reflected by a gap between the

wall and the fluid densities, as shown by the dimensionless total (number) density distribu-

tion, ρtot × σ3
++, displayed in Figure 3.3.
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Figure 3.3: Number density profile of all particles, irrespective of their charge. Sample with
σ−−/σ++ = 1.6, T = 1.0.

This observation will become relevant in discussing the temperature gradient across the

system when the temperatures on the two neutral walls differ (see next section).

From Figure 3.3, the peak to the right of the gap is dominated by anions, the next by

cations. This constitutes the origin of a double layer.

The aim of the equilibrium simulations is to analyse the electrostatic double layer in our

samples, and to determine its dependence on model parameters such as the ion size and

valence, and on thermodynamic conditions such as temperature. The electrostatic double

layer is defined from the dimensionless charge density profile, ρQ × σ3
++.

A limited exploration of different ion/neutral walls interaction has been carried out as

well. In these investigations, the primary role is played by the dimensionless charge density

distribution, ρQ×σ3
++, across the interfaces and its temperature dependence for a system of

asymmetric ions of the same valence (Z1 = −Z2), see Figure 3.4.
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Figure 3.4: Temperature dependence of the charge density profile. σ−−/σ++ = 1.6. All the
curves, except the bottom one, have been shifted for readability.

As can be seen, the charge density ρQ almost vanishes in the central portion of the

simulation box (−2.5 ≤ x ≤ 2.5), that we identify with the bulk phase in our samples. This

is expected due to the homogeneity in this region. Moreover, ρQ oscillates close to each

interface, and the amplitude of the oscillations increases with decreasing temperature. This

can be explained in that decreasing T increases exponentially the importance of correlation

among particles. Nevertheless, the dipole of each interface, defined as:

D =
∫ Lx/2

0
xρQ(x)dx (3.2.1)
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increases with increasing T . As seen from Figure 3.4, ρQ reaches zero earlier in the low

temperature case compared to the higher. Since the dipole is found by integrating xρQ(x),

this means that the higher temperature case has a contribution with high magnitude of

x that the low temperature do not. This would explain that even though the amplitude

of the oscillations are smaller in the high temperature case, the dipole is larger due to

the contribution at large values of x. The fact that the dipole increases with T reflects

the decreasing ability of the fluid phase to screen the effect of the two walls. This effect

is documented in Figure 3.5, which also provides the basis for our discussion of the non-

equilibrium results.

0 1 2 3

0.0

0.1

0.2

0.3

T

D
(T
)

 

σ
--

 = 1.8

σ
--

 = 1.6

σ
--

 = 1.4

σ
--

 = 1.2

Figure 3.5: Temperature dependence of the interfacial dipole.

The temperature variation of D is apparently larger for systems of larger asymmetry

between anions and cations, but it might be worth to point out that the relative temperature

variation (1/D)dD/dT is nearly the same, around 0.1, for all systems over the entire 0.8 ≤

T ≤ 3 temperature range explored by our simulations.

25



The charge density profile depends sensitively on the cation/anion asymmetry, as shown

in Figure 3.6.
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Figure 3.6: Dependence of the charge density profile on the size asymmetry of cations and
anions. Equilibrium simulations at T = 1.0. All the curves, except the bottom one, have
been shifted for readability.

Not surprisingly, the amplitude of the ρQ oscillations close to the wall, in particular,

increases with increasing asymmetry. We remind, however, that because of the NVE con-

ditions of our simulations, samples of different σ−−/σ++ are subject to different pressure,

and increases with increasing σ−−. The pressure in each box is constant, but this constant

pressure is different for dissimilar samples
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As a further piece of information, we show in Figure 3.7 the charge density profile for

three choices of the cation valence. It is apparent that with increasing valence difference,

the amplitude of the charge density oscillations at the interface tends to increase.
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Figure 3.7: Charge density profile for samples of different cation valence. Each sample
contained the same number of ions (N+ + N− = 1200), subdivided between cations and
anions in such a way to ensure charge neutrality. Hence, N+ = N− = 600 for Z1 = −Z2
case, N+ = 400, N− = 800 for Z1 = −2Z2, and N+ = 300, N− = 900 in the Z1 = −3Z2. All
the curves, except the bottom one, have been shifted for readability.

The charge density distribution allows us to compute the electrostatic potential φ(x). By
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using using Gauss’ theorem, the electric field E can be related to the charge density by

E(x) = 4π
∫ x

0
ρQ(x′)dx′ (3.2.2)

using that E(x) = −dφ(x)/dx, and an interchange of integration ordering, one can write:

φ(x) = φ(0)− 4π
∫ x

0
ρQ(x′)(x− x′)dx′ (3.2.3)

The charge density distribution also allows us to explore the temperature dependence

of φ(x) (see Figure 3.8), its sensitivity on the cation-anion asymmetry (see Figure 3.9) and

dependence on cation valence (see Figure 3.10).

28



0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

x / σ
++

φ
(x

) 

 

T = 1.0

T = 0.8

T = 1.6

T = 2.4

σ --  / σ++  = 1.6

Figure 3.8: Electrostatic potential across the interface. Sample with σ−−/σ++ = 1.6 at four
different temperatures. With increasing T , the change from non-monotonic to monotonic
electrostatic potential profile takes place at T = 1.4.

29



0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x / σ
++

φ
(x

) 

 

T = 1.0

σ
--

 / σ
++

 = 1.2

σ
--

 / σ
++

 = 1.4

σ
--

 / σ
++

 = 1.6

σ
--

 / σ
++

 = 1.8

σ
--

 / σ
++

 = 2.0

Figure 3.9: Dependence of the electrostatic potential profile on the asymmetry of cations
and anions. Equilibrium simulations at T = 1.0.
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Figure 3.10: Dependence of the electrostatic potential profile on charge asymmetry. Equi-
librium simulations at T = 1.0.

Elementary electrostatic considerations show that the interface dipole D and the electro-

static potential drop are related. This relation can be found from Eq. (3.2.3), where zero

of the electrostatic potential φ(x) is chosen in such a way that φ(Lx/2) = 0. We then get,

using the definition of the dipole from Eq. (4.2.21):

φ(Lx/2) = 0 = φ(0) + 4π
∫ Lx/2

0
xρQ(x)dx = φ(0) + 4πD (3.2.4)
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This gives φ(0) = −4πD =⇒ |D| = | − φ(0)/4π|.

The reason for the choice of integration limits 0 and Lx/2 is because half of the box is a

good place to set φ(Lx/2) = 0, due to symmetry. As the charge density is essentially zero in

the bulk, is does not really matter where one set the end of the integration limit, as long as

it is a sufficient distance from the interface. Lx/2 is therefore a convenient choice.

We did not analyse in detail the role of the ion/neutral particle pair potential. A limited

exploration has been performed by changing the σ+n and σ−n lengths, retaining, however, the

repulsive form (inverse power) of the pair potentials. The results (see Figure 3.11) confirm

that tuning the ion/wall interparticle potential as a direct, predictable and sizeable effect on

the dipole and electrostatic potential drop at the solid/fluid interface.
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Figure 3.11: Dependence of the electrostatic potential on the interaction between ions and
neutral particles on the walls.

3.2.2 Non-equilibrium simulation results

The simulation of the systems listed in Table 3.1 has been extended to non-equilibrium,

steady state conditions by imposing two different temperatures T1 and T2 to the Langevin

thermostats coupled to the left and to the right wall, respectively. More precisely, we carried

out simulations for all systems upon setting T1 = 1.12 and T2 = 0.88. The reason for this

choice is because the temperature difference cannot be too low due to the errorbar of the
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computed dipoles. Neither can it be too large since it would require temperature correction

due to the average temperature being too different from the temperature of each wall. Ions

in the fluid phase are not directly coupled to a thermostat. The contact of the two walls

with the ionic fluid, and the resulting flow of heat from left to right, cause a deviation of the

average wall temperature from the target temperature of the thermostat, as apparent from

the results listed in Table 3.2.

Table 3.2: Average temperature of the left- (〈t1〉) and right- (〈t2〉) wall during non-equilibrium
simulations. The two walls are connected to a Langevin thermostat at T1 = 1.12 (left) and
T2 = 0.88 (right), respectively. The gradient ∇T (x) of the local temperature has been
estimated by linear interpolation of the simulation data for −4 ≤ x ≤ 4.

Sample # 1 2 3 4 5 6 7
〈t1〉 1.065 1.055 1.046 1.036 1.031 1.045 1.045
〈t2〉 0.929 0.937 0.948 0.955 0.960 0.948 0.948

−103 ×∇T (x) 9.168 6.959 5.843 4.918 4.395 5.983 5.751
Sample # 8 9 10 11 12 13
〈t1〉 1.046 1.047 1.063 1.062 1.064 1.064
〈t2〉 0.947 0.947 0.931 0.932 0.931 0.931

−103 ×∇T (x) 5.933 6.100 10.266 2.429 9.023 7.972

The contact with the two walls at different temperatures gives origin to a dependence on

position x of the local temperature T (x) in the ionic fluid phase (see Figure 3.12).
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Figure 3.12: Local temperature distribution T (x) in the non-equilibrium, steady state simu-
lations. T1 and T2 are the target temperature of the Langevin thermostat on the left and on
the right wall, respectively. t1 and t2 are the average temperature of neutral particles, again
on the left and on the right wall, respectively.

Here the local temperature T (x) is defined simply in terms of the average kinetic energy of

particles whose x′ coordinate satisfies x− Lx/201
2 ≤ x′ ≤ x+ Lx/201

2 . As shown in Figure 3.12,

the dependence of T on x is linear over most of the ionic liquid range. A remarkable anomaly

(a drop) from T1, T2 to t1, t2, reminiscent of the Kapitza resistance of quantum fluids (see

Ref. [25] for a discussion of the Kapitza resistance in the context of classical fluids), is

apparent at the two fluid/wall interfaces. These spikes correspond to the narrow layers over

which ions feel the repulsive potential of the neutral particles, raising their average potential

energy, and decreasing their kinetic energy. This observation emphasises the drawbacks of

interpreting the average kinetic energy in terms of temperature in a inhomogeneous system.

On the other hand, outside the range of the neutral/ion repulsion, average kinetic energy

can be used to measure temperature. The linear interpolation of the simulation results for

−4 ≤ x ≤ 4 allows us to assign a temperature gradient to each samples, whose value is listed

in Table 3.2. The values estimated for different samples are very close to each other, but still
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differ by more than their error bar, reflecting the different thermal resistance of the ionic

fluid subject to different external pressure.

The aim of this stage of computation is the identification of the asymmetry in the elec-

trostatic potential due to a different temperature of the two neutral, planar and parallel

electrodes that confine the fluid phase (see Figure 3.1). The primary result of these simu-

lations, therefore, is the total dipole across the simulation box, whose average value 〈Dx〉 is

reported in Table 3.3. This quantity results from the near compensation of the interfacial

dipoles at the two opposite interfaces, and, for this reason, its computational estimate is

affected by a large statistical error bar. To allow for an independent assessment of the accu-

racy of the dipole computation, we report in Table 3.3 also the (large) standard deviation,

and the autocorrelation time ta of the fluctuating dipole, the total simulation time being

listed in Table 3.1.

Table 3.3: Average dipole 〈Dx〉 of samples simulated under the non-equilibrium, steady state
conditions described in the text. The standard deviation and the autocorrelation time of the
fluctuations D(t) are reported as well.

Sample # 1 2 3 4 5 6 7
〈Dx〉 0.30± 0.07 0.39± 0.08 0.34± 0.10 0.10± 0.15 3.2± 0.2 0.28± 0.14 0.80± 0.13

st. dev. 23 23 23 23 23 24 24
〈ta〉 4 6 9 22 62 11 9

104 × δQ 2.40
Sample # 8 9 10 11 12 13
〈Dx〉 0.37± 0.13 0.27± 0.13 0.12± 0.06 0.04± 0.05 0.06± 0.07 0.24± 0.06

st. dev. 23 23 24 24 23 23
〈ta〉 10 11 2 1 2 2

104 × δQ

Admittedly, the error bar is still large with respect to the estimated values, but several

internal consistency checks confirm the global reliability of the picture provided by simu-

lation. First of all the sign of 〈Dx〉 is consistent with the observation that D(T ) grows

with increasing T . Moreover, the size of 〈Dx〉 is consistent with a rough estimate based on

〈Dx〉 ∼ [D(T1) − D(T2)]. To support this view, we computed the temperature derivative

dD(T )/dT from the results displayed in Figure 3.5. Then, we compared the total dipole

of each simulated sample with the linear estimate (T1 − T2)dD(T )/dT . The comparison,
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reported in Table 3.4, shows an agreement of computed and predicted dipoles that, although

far from quantitative, is at least qualitatively correct.

Table 3.4: Comparison of the total dipole Dx measured in the non-equilibrium simulations
with the linearised estimate (T1 − T2)dD(T )/dT , where the derivative is computed at T =
[T1 − T2]/2.

Sample # 1 2 3 4 5
〈Dx〉 0.30± 0.07 0.39± 0.08 0.34± 0.10 0.10± 0.15 3.2± 0.2

(T1 − T2)dD(T )/dT 0.38 0.47 0.32 0.62 2.3

The major deviation, observed for sample #4, is likely to be due to an anomaly of

dD(T )/dT that could be seen in our data at T ∼ 1. The qualitative prediction of such

a complex behaviour by a simple relation is a remarkable result, that opens the way to a

deeper understanding of the Seebeck effect.

Finally, the average dipole is also consistent with the average distribution of charge across

the interfaces that is illustrated in the following figures.

The net dipole 〈Dx〉 has to result from an asymmetry of charge distribution with respect

to the centre of the simulation box. This is confirmed by the plot of the skew-symmetric

component of ρQ(x), whose average over time is shown in Figure 3.13. It is apparent from

the figure that each interface is not strictly neutral. In other word, we observe that:

δQ =
∫ 0

−∞
ρQ(x)dx = −

∫ ∞
0

ρQ(x)dx 6= 0 (3.2.5)

while at equilibrium the vanishing of δQ is strictly imposed by exact conditions [17]. The δQ

charges are listed in Table 3.3. The build-up of a net charge at each interface, that has to be

compensated at the opposite interface, could be seen as a remarkable example of long-range

correlation due to non-equilibrium conditions [14]. The net charges give origin to a weak

electric field across the bulk fluid phase that is needed to prevent the ionic conduction that,

according to Onsager relations, should complement the flow of heat.

The argument pointing to (T1 − T2)dD(T )/dT as a simple approximation for the dipole

moment of samples simulated under non-equilibrium conditions has a counterpart in terms
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of the charge density distribution. In this case, the skew-symmetric component of the charge

density has to be approximated by (T1 − T2)dρQ(x)/dT . The comparison of this prediction

with the results of non-equilibrium simulations is shown in Figure 3.13. Also in this case, the

agreement is not quantitative, but nevertheless remarkable for such a simple approximation.
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Figure 3.13: Full line, red: skew-symmetric component of the charge density distribution
in a sample simulated under non-equilibrium, steady state conditions. Dash line, green:
prediction of the skew-symmetric component of the charge density by (T2 − T1)dρQ/dT .
The temperature derivative dρQ/dT has been computed from the results of equilibrium
simulations.
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Properties at the surface

Excess properties at the surface are of great interest with respect to thermodynamics, see

e.g. Kjelstrup and Bedeaux [4]. In order to investigate these properties, a Gibbs dividing

surface has to be defined.

Instead of intergrating throughout half of the box, the integration limits are changed.

The starting limit is defined as the point to the left where the density is 5% of the bulk

value. This is chosen as the Gibbs dividing surface. The point where the integration ends is

defined from the first point the density deviates 5% from the bulk value, starting from the

middle of the box and going to the left. This will constitute the interfacial region, and this

represents the integration limits to get the excess values.

The temperature in this interfacial region was found by by averaging the kinetic energy

of the particles in the surface layer. The surface temperatures can be seen in Table 3.5.

Table 3.5: Average temperature of the left- (T s1 ) and right- (T s2 ) interfacial region during
non-equilibrium simulations. The surface layer is next to a wall which is connected to a
Langevin thermostat at T1 = 1.12 (left) and T2 = 0.88 (right), respectively.

Sample # 1 2 3 4
T s1 1.036 1.031 1.024 1.019
T s2 0.962 0.966 0.971 0.973

Not surprisingly, the temperature in the surface layer is lower for the left layer and higher

for the right layer, compared to the average temperature of the walls given in Table 3.2. This

temperature drop is due to the Kapitza resistance.

With the assumption of local equilibrium, these surface temperatures can be used to find

the surface dipole, Ds, from the plot of the interfacial dipole as a function of temperature

computed at equilibrium, which is shown in Figure 3.5. The surface dipole found at each

interface, Ds(T s1 ) and Ds(T s2 ), as well as the total dipole Ds
x can be seen in Table 3.6.

The values for the total surface dipole are the same order of magnitude as the ones for

the average total dipole shown in Table 3.3. However, the values in Table 3.6 has an errorbar

that causes the errorbar of Ds
x to comparable than the signal, due to the small temperature

difference between T s1 and T s2 .
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Table 3.6: Surface dipole of the left- (Ds(T s1 )) and right- (Ds(T s2 )) interfacial region. The
surface temperature is computed from non-equilibrium simulations, while the interfacial
dipole was found from equilibrium simulations with the assumption of local equilibrium.

Sample # 1 2 3 4
|Ds(T s1 )| 6.17 18.07 36.91 59.17
|Ds(T s2 )| 6.09 17.91 36.70 58.87
Ds
x 0.08 0.15 0.21 0.31

3.2.3 Doubling the system size

The scaling of thermodynamic properties as a function of the separation between the walls

is a crucial aspect whose analysis will clarify many of the microscopic mechanisms of the

Seebeck effect.

For this reason, computations have been carried out for systems whose size Lx has been

doubled, consisting of twice as many ion pair (N+, N− = 1200 instead of 600). The visual

comparison of the two simulated systems is shown in Figure 3.14

Figure 3.14: Comparison of the simulation snapshots for the regular system with N+, N− =
600 (to the left) and the larger system with N+, N− = 1200 (to the right).

The temperature difference (nominal temperature at the walls: T1 = 1.12, T2 = 0.88)

has been kept constant, implying that the gradient has been decreased by a factor of 1/2 in

going from the regular system to the enlarged system.
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The temperature dependence of the dimensionless charge density profile for the enlarged

system can be seen in Figure 3.15
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Figure 3.15: Temperature dependence of the charge density profile. σ−−/σ++ = 1.6. All the
curves, except the bottom one, have been shifted for readability. Double-size system.

Note the extended bulk region compared to Figure 3.4. The comparison between the

dipoles for the regular and enlarged system can be seen in Figure 3.16
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Figure 3.16: Temperature dependence for the interfacial dipole. σ−−/σ++ = 1.6.

As can be seen, there is a systematic difference between the dipoles. However, one has to

note that the pressure is not strictly conserved upon doubling the box, which could explain

some of the deviation.

The electrostatic potential profile can be seen for different temepratures in Figure 3.17.
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Figure 3.17: Electrostatic potential across the interface. Sample with σ−−/σ++ = 1.6 at three
different temperatures. With increasing T , the change from non-monotonic to monotonic
electrostatic potential profile takes place at T = 1.4. Double-size system.

A plot of the skew-symmetric component of ρQ(x) for the double-size system can be seen

in Figure 3.18.
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Figure 3.18: Full line, red: skew-symmetric component of the charge density distribution in
a sample simulated under non-equilibrium, steady state conditions. Double-size system.

Also in this case, there is a net charge δQ on each interface which are equal in magnitude,

but of opposite sign. This net charge gives rise to the Seebeck effect.

The results from this stage of our simulations (N+, N− = 1200) are consistent with those

of the previous stage (N+, N− = 600). The analysis of scaling, however, is still underway.

3.3 Conclusion and summary

Extensive molecular dynamics simulations have been carried out for an idealised model of

a Coulombic fluid confined in between two parallel walls made of neutral particles, whose

interaction with the fluid ions is the same for the two walls. All particles follow Newton’s
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equations of motion, while wall particles obey a Langevin dynamics at a target temperature

T , that can be different for the two confining walls.

Two sets of simulations have been performed: The first at equilibrium conditions, with

the Langevin thermostats of the two walls set at the same temperature T0. The second at

non-equilibrium conditions, with the two walls kept at different temperatures T1 6= T2, thus

giving origin to a steady flow of heat. Both sets were analyzed in this report.

The first set of simulation provides a microscopic view of electrification at solid/liquid

interfaces, complementing the picture offered by previous simulation studies [21, 22, 23].

We explore, in particular, the dependence of the dipole at each interface on the size and/or

charge asymmetry of cation and anions, and also on the interparticle potential between

wall and the ions in the fluid phase. The temperature dependence D(T ) of the interfacial

dipole was computed, and the dipole was found to be increasing with increasing temperature.

The electrostatic potential, which is related to the dipole by a factor 4π, was found to be

increasing with increasing anion/cation asymmetry, and well as with increasing interaction

between the cations and the neutral particles in the wall. It was also found to be increasing

with larger cation valence compared to anion valence. These variations are expected.

The results from the non-equilibrium simulations show that the asymmetry between the

two walls is reflected in the imbalance of the surface dipole at the two interfaces, resulting

in a net dipole moment of the whole simulated sample.

With the chosen boundary conditions, the difference D(T1) −D(T2) provides a qualita-

tively correct prediction of the total dipole in the simulation cell, pointing to a local descrip-

tion of thermo-electric phenomena at each interface, at least for systems under steady state

non-equilibrium conditions, and provided the temperature gradient is not exceedingly large.

An interesting feature emerging from the simulation is that under non-equilibrium condi-

tions the electrification of the two opposite interfaces is not limited to a dipole, but includes

a net charge δQ. The global neutrality of the system is ensured by the fact that the charges

at the two interfaces exactly compensate each other, but the non-vanishing average value

of δQ represents a major novelty with respect to the equilibrium conditions, in which the
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exponential screening of charge is established by exact statistical mechanics results.

Admittedly, the net charge ±δQ at each interface is tiny (see Table 3.3), but it provides

the electric field across the entire system that is required to prevent flow of charge that,

according to Onsager relations, should accompany the heat flow. In addition, the pair of

±δQ represents an example of correlation across macroscopic distances (from one interface to

the opposite one) whose relevance in non-equilibrium systems under steady state conditions

is discussed [14].

This is a very interesting problem, worthy of deeper understanding and more analysis.

The size dependency of the dipole moment is one of the things worthy of more investigation,

as well as more analysis on the thermodynamics related to excess properties and entropy

production, using the methods described in [4]. Further work related to this problem involves

using more chemically detailed and more quantitative models of molten salts in contact

with metal electrodes for the exploration of electrification and transport in heterogeneous

(solid/fluid) systems.
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Chapter 4

More realistic models: Alkali carbon-

ates

4.0 Motivation

4.0.1 Recent experiments

The idealised model has been useful as a general prototype of Coulomb fluids in a steady

state thermal gradient. To compare with experiments, however, we need more realistic

models that in our case aim at reproducing primarily the properties of Li2CO3, but also

Na2CO3 and K2CO3, all belonging to the alkali carbonate family.

The motivation for this choice is the recent experiments done by Børset et al. [26] in

the non-equilibrium thermodynamics group of Prof. S. Kjelstrup, in which they report the

Seebeck coefficient for molten lithium carbonate. They found it to be around 0.88 mV/K.

This is higher than the usual values from the traditional thermoelectric devices based on

semiconductors, which is typically 0.2 mV/K. More complex compounds of ionic liquids

have also been investigated by other authors. The room temperature organic ionic liquids

[5] studied by Abraham et al. [6] gives even larger Seebeck coefficients of 1.5-2.2 mV/K.

Because of the well recognized relation of the Seebeck effect and entropy, the apparent good

performance of molecular ionic liquids might be attributed to the enhanced role of entropy

in molecular species of increasing size and complexity. Being liquid at room temperature is

crucial, as it enables them to be used for energy harvest at low temperature.

Focusing on a molecular ionic system of intermediate complexity, the computational in-
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vestigation of lithium carbonate could give better insight on why ionic liquids, and molten

salts in particular, gives such large Seebeck coefficients. This could lead to novel design of

thermoelectric devices with better efficiency, which can be used to generate more electric-

ity from e.g. waste heat in the metallurgy industry and consequently increase the global

efficiency these energy-intensive industrial processes.

4.0.2 Properties and applications of carbonates

In its simplest meaning the term “carbonate” identifies salts of the carbonic acid, H2CO3.

Carbonate salts consist of inorganic and organic ions, giving origin to a large family of

compounds. Our discussion concerns primarily the simplest case of these molecules, arguably

presented by alkali carbonates, M2CO3 for short.

Thermoelectric devices are not the only applications of interest for alkali carbonates. It is

also interesting to look at the properties of molten carbonates due to their application in fuel

cells, see e.g. Dicks [27]. As he discusses, a combination of lithium and sodium carbonates

seems to be preferred as electrolyte compared to either pure components. Studies have

previously addressed the performance of Li2CO3/Na2CO3 electrolyte compared to the older

Li/K carbonate mixture [28]. Not only have there been done experiments regarding the

properties of these carbonates, but also simulations [29] have been carried out in order to try

to give valuable insight on the molecular structure and on dynamical properties like diffusion

and electric conductivity.

The formation of Li2CO3 is also important for battery technology based on lithium [30].

Lithium carbonate not only has applications related to energy technologies. It has also

been used successfully as a medication in treating bipolar disorder [31], reducing in particular

the high suicide risk. This is a benefit currently not seen with other medications [32].

However, the biochemical mechanism on how the compound stabilises the mood is still

unknown [33].

A study of the properties of lithium carbonate can apparently not only be useful for

designing electrochemical and fuel cells, but also for drug design with the objective to treat
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mental illness. Na2CO3 and K2CO3 have also other uses than electrochemistry. Na2CO3,

commonly known as soda ash, is used to make glass and in washing powder to soften the

water (i.e. precipitate calcium and magnesium ions) [34]. K2CO3, also known as potash, is

used as a fertiliser [35].

Carbonates of monovalent metals are not the only carbonates worthy of attention; car-

bonates of divalent metals, like MgCO3 and CaCO3, are important minerals in geochemistry

[36].

Uncovering more knowledge about these compounds is therefore of great interest.

4.1 Previous simulations of molten alkali carbonates

The main empirical model for studying alkali carbonates with molecular dynamics simula-

tions has arguably been the force field made by Janssen and Tissen [37, 12], which is based

on a Coulomb term with a Born-type repulsive part. As noted by Janssen and Tissen: “This

form of potential was originally developed for the alkali halides with the rock salt structure

[38] and is widely used for simulations of molten salts [39, 40]”. The model was made by

parameterisation of ab-initio computations based on the Hartree-Fock (HF) method. The

Janssen-Tissen (JT) model has been used by several authors, e.g. by Koishi et al. [41] and

quite recently by Ottochian et al. [29]. The functional form belongs to the OPLS force field

[42], which is implemented in most major molecular dynamics packages.

Investigation of molten carbonates, especially the structure of Na2CO3, has been done

by Wilding et al. [43] As they note: “...molten carbonates are important in development

of molten carbonate fuel cells and as battery electrolytes [27]. Despite their recognized

importance the structure of these liquids is not well-known.” In their study they used “high

energy X-ray diffraction, containerless techniques and computer simulation to provide insight

into the liquid structure.” Their computer simulation is based on the JT model, where they

use a harmonic spring for the C−O bond rather than a rigid CO3
2– ion.

The structure of pure molten Li2CO3 and K2CO3 has already been studied by X-ray

diffraction, Raman spectroscopy, infrared spectroscopy and molecular dynamics simulation
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by Koura et al. [44] However, Kohara et al. [45] mentions that the detailed structures of

these melts are not yet fully known. Due to the inaccuracy of using X-ray techniques when

dealing with light atoms such as lithium, they motivate the need for neutron diffraction

measurements which they perform in their study. They found the average C−O distance to be

approximately 1.31 Å, which is larger than the one found by X-ray of around 1.27 Å. However,

it is worth noting that neutron diffraction is not easy to do with molecular species, especially

with elements other than hydrogen1, which means that these results should be taken with a

pinch of salt. Still, the distance of 1.31 Å between carbon and oxygen corresponds very well

to the bond lengths obtained from DFT computations in this work, shown in Table 4.3. In

addition, using X-rays to find the structure requires a form factor to describe the shape of

the electron cloud of the atom. This is not needed for neutron diffraction [46].

Another force field for molten Li2CO3 and Na2CO3 has been developed by Habasaki [47],

where a different form of the potential is used. However, this model is not as widely used as

the JT model, and is therefore not as thoroughly tested.

Studies has also been done for carbonates of divalent metals, e.g. the development of a

force field for CaCO3 by Jackson and Price [48] and more recently by Raiteri et al. [36] for

the application of studying growth of calcium carbonate from aqueous solution.

An important factor that most of these models does not take into account is that the

carbonate structure changes based on the proximity of cations. In Figure 4.1, the ground

state geometry for a carbonate ion and a single Li2CO3 unit computed by ab-initio with the

PBE functional can be seen2.
1Hydrogen plays a crucial role in neutron scattering measurements, because of its large cross-section,

especially for incoherent scattering. However, the large difference in cross-section between hydrogen and
deuterium makes it possible to exploit isotopic systems.

2Geomtry optimisation and computation of harmonic vibrational frequencies by CPMD, see section 4.2
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(a) CO3
2– (PBE) (b) Li2CO3 (PBE)

Figure 4.1: Ground state geometry computed for CO3
2– (a) and Li2CO3 (b) using the PBE

functional.

In the carbonate ion, seen in Figure 4.1a, there is an equal distance between the carbon

and the three oxygen atoms. The structure is also planar, and a rotation 180◦ around each

C−O axis will leave it unchanged. We say that the carbonate ion has a D3h symmetry,

meaning it fulfills all the symmetry operations of the D3h point group.

Lithium carbonate, however, belongs to the point group C2v. With the placement of the

lithium ions as shown in Figure 4.1b, the bond length between C and O1 will lengthen and

the C−O2 and C−O3 bond will become shorter, compared to the carbonate ion. The fact

that the symmetry of CO3
2– is different from Li2CO3 has usually been ignored in the previous

simulations, where the bond length between carbon and oxygen is the same regardless of the

position of the lithium ions. This feature, conceptually important, fortunately has little

influence on the properties computed by MD of large samples at liquid-like conditions.

Research has been done regarding intra-molecular potentials for carbonate in other struc-

tures. In a study by Masia et al. [49], a new intra-molecular force field was developed for the

electrolyte system ethylene carbonate−Li+. In their research, geometry optimazation and

vibrational analysis of a single ethylene carbonate molecule and the ethylene carbonate−Li+

complex was performed with Møller-Plesset pertubation of second order (MP2). MP2 is an

ab-initio method that is believed to be more accurate than Hartree-Fock. Their new force
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field were successful in describing the low frequency modes, which is relevant for liquid dy-

namics, more accurately than the existing AMBER force field. They also investigate how

the coordination of lithium ions induces shift in these frequencies. The force field by Masia

et al. has been applied by Jorn et al. [50] to investigate Li-carbonate/electrode interface

relevant for Li-ion energy storage systems.

There is another aspect worth noting regarding the previous simulation. Due to compu-

tational cost, the polarisation has usually been ignored although polarisation is expected to

play an important role because of the oxygen anions. This could also lead to inaccuracies in

the model. An example of polarisable force field used to simulate molten carbonates is given

in the paper by Borodin et al. [51]

As far as we know, there has not yet been done any ab-initio simulations of alkali car-

bonates, only computations for a few molecules. It is feasible with today’s technology to

simulate a system of several thousand particles, but it is quite costly in terms of computa-

tional time3. The reason why it might not yet have been done could be because the possible

gain from such a large simulation does not seem to justify the cost.

4.1.1 A few remarks on force fields

One might ask why the JT model is still being used in 2015/2016 [29, 43], although it

was developed over 25 year ago based on Hartree-Fock (HF) computations. Since then,

the ab-initio methods available on the market has greatly improved. Especially the density

functional theory (DFT) has been shown to give accurate results at low cost. It is also worth

noting that the computers are much faster now than 25 years ago, giving the possibility of

using even more precise quantum chemistry calculations. One would think that it should be

fairly easy to develop a new, improved force field with today’s technology that surpasses the

JT model from the previous century. Still, the JT model or a modification of it seems to be

mainly used in the majority of communities doing molecular dynamics on alkali carbonates.

There are several explanations that could be the reason for this. One of them is the
3See the paper by Jorn et al. [50] for an example of ab-initio simulations for relatively simple organic

carbonates.
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robustness of the model, illustrated by the relative insensitivity of the results even on the

choice of atomic charge. Most simulations uses a charge of 1.54 e for carbon and -1.18 e for

oxygen [12], resulting in -2 e in total for the carbonate ion. However, other distribution of

charges has also been used which gives fairly similar results, as long as the total charge of

the ion is -2 e and the M2CO3 molecule is neutral. A model that is not too sensitive to this

is beneficial, as the charge distribution in the carbonate ion could be different depending on

the location of lithium with respect to the carbonate ion.

A restriction that may also have hindered the development of a new force field concerns

the functional form. In standard molecular dynamics packages, a collection of functional

forms are implemented that one can choose between. One of them is the Born-Mayer-

Huggins (BMH) potential that is used in the JT model. One could instead write one’s own

MD code, but to parallelise it efficiently would require much work and profound knowledge on

the communication of nodes in the parallel machine it is going to be used on. The standard

packages, however, has already been optimized for use on parallel computers, giving fast

codes with little or no knowledge about parallel computations.

4.2 Models and methods

4.2.1 Models: Homogeneous vs. non-homogeneous, equilibrium

vs. steady state

All our simulations for carbonate systems were carried out at thermodynamic equilibrium,

meaning there is no net macroscopic flow of matter or energy. The simulations were deemed

to have been run long enough for equilibration to occur, meaning that there is no time

evolution of the physical properties.

“A homogeneous thermodynamic system is defined as the one whose chemical composition

and physical properties are the same in all parts of the system, or change continuously from

one point to another.” [52] Our motivation to simulate a homogeneous system is to determine

structure and transport properties. In the homogeneous case, the system was made up
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consisting solely of Li2CO3, Na2CO3 or K2CO3 molecules. The initial configuration was

made using Packmol [53]. This is a program which can be used to place molecules randomly

in a confined space, while avoiding close contacts between atoms. This confined space is

defined by our simulation box. Periodic boundary conditions were enforced, meaning that

is a particle were to leave the box at one end, it would reappear in the other end. This

was done in order to better mimic bulk properties without the need for many thousands of

molecules, since each particle sees an infinite number of periodic images of itself and the

other particles. Computing all the pair interactions becomes very expensive, so a truncation

can be used. This means that beyond a specific distance (typically 10 Å), the contribution is

ignored. However, as discussed by Frenkel and Smit [15], for long-range interactions such as

the Coulomb interaction a truncation could lead to large errors. Let us assume one chooses

to truncate the potential at a distance rc. The contribution of the tail in the potential V (r)

is

V tail ∝
∫ ∞
rc

V (r)r2dr (4.2.1)

which will diverge unless V (r) decays faster than r−3, which is not the case for Coulomb

interactions. One therefore has to employ techniques that can calculate long-range inter-

actions at low cost. Ewald summation is one of those. The idea behind this method is to

divide the interaction into a short-range contribution and a long-range contribution. The

short-range contribution converges fast in real-space, while Fourier analysis is used on the

long-range contribution, since this will converge fast in Fourier space. Even though Ewald

summation can correctly describe the long-range interaction, it scales as N3/2 where N is

the number of particles in the system [15]. For large systems, it is therefore desirable to use

a more efficient method. By using the particle-particle particle-mesh method (pppm) [54],

the atom charges are mapped to a 3D mesh. The 3D fast Fourier transform (FFT) is used

to solve Poisson’s equation on the mesh, and then the electric field is interpolated back to

the atoms. This method scales as N log (N), and is therefore almost always a faster choice

[55].

The model for alkali carbonate employs a force field due to Janssen and Tissen, which is
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described in section 4.1.1.

A heterogeneous system, on the other hand, is defined as one consisting of two or more

homogeneous bodies [52]. Heterogeneous is the same as saying non-homogeneous or inho-

mogeneous, and these words are being used interchangeably in the literature.

In our non-homogeneous case, the system was made up of Li2CO3, Na2CO3 or K2CO3

molecules (or an equimolar mixture of Li2CO3 and Na2CO3) confined between two layers

of neutral atoms oriented along the x- and y-directions, giving a simple model of the ionic

liquid between two electrodes. The system consists for that reason of two homogeneous

subsystem; the neutral wall and the alkali carbonate in the bulk. An interface, or boundary,

perpendicular to z separates these two systems, in which the chemical properties are not like

those in the bulk and neither those in the wall.

The hexagonal structure of the (111) surface of gold was used to make the layers of neutral

atoms. These atoms were fixed to the lattice positions with a harmonic spring, so that the

force on each atom would be Fspring = −Kspringrd, where Kspring is the spring constant and

rd is the displacement from the equilibrium position given by the lattice positions.

The use of periodic boundary conditions along x- and y-direction ensured that the wall

would be continuous in terms of the hexagonal structure. This boundary condition was not

only enforced in the direction parallel to the wall, but also in the direction perpendicular to

the wall (z-direction). The reasoning for this is the same as in the idealised system; to be

able to use the 3D version of the Ewald summation. To be precise, approaches enforcing

periodicity along one plane and even along a single direction are known [56, 57, 58]. but

computationally inefficient.

In our computations the periodicity was longer than the separation between the wall, to

give a volume of empty space outside the walls. The first obvious reason for this is because the

neutral particles on the wall are able to move with the attachment of the spring, and without

the empty space the particles from one wall would collide with the ones from the other. The

most important reason for the empty space, however, is to avoid spurious interactions and
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correlations in the motion of ions across the walls. This behaviour is something we want to

avoid, thus the motive for having the extra empty space.

z

x
y

Figure 4.2: Snapshot of the system with 2048 Li2CO3 molecules between neutral walls,
visualised in Jmol [59]. The black, red and purple spheres represents carbon, oxygen and
lithium, respectively. The golden spheres represents the wall.

In the case of neutral walls, an empty layer of a few nanometers is sufficient to ensure

the decoupling of opposite interfaces. The picture is different and more challenging in the

case of charged walls.

Charged wall

A case was also studied in which a charge was put on the atoms constituting the walls. Both

walls had the same magnitude of charge, but of opposite sign compared to each other. In

this way the simulation box is globally neutral.

The inhomogeneity due to the confining walls, and the electrostatic forces due to a charge

on the walls can, in principle, cause a local separation of the positive and negative charge

on the fluid side, giving origin to the so-called double layer that accompanies the formation

of every surface and interface [16], even those nominally neutral and insulating.

Basic statistical mechanics theories [17] however, state that at equilibrium the amplitude

of the charge separation decays exponentially moving away from each wall, and in a con-

ducting fluid each interface is strictly neutral. In the ideal case, since the wall/fluid/wall

composite layer sits in an otherwise empty space, the computation of electrostatic forces is

simple. By symmetry the particle and charge distribution depend only on the coordinate
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z perpendicular to the wall, and the problem reduces to solving Poisson’s equation in 1D,

with boundary conditions:

lim
z→±∞

φ(z) = 0 (4.2.2)

lim
z→±∞

Ez(z) = 0 (4.2.3)

Let us assume that we have a wall of surface charge σwA at z = zlw and another one of

surface charge −σwA at z = zrw, zlw being as far from the left end of the simulation box as

zrw from the right end. In order to find the electrostatic potential φ resulting from having

charges of opposite sign on each wall, the electric field E is found from the charge density

distribution by the use of Gauss’s law. This law can be written in differential form as:

∇ · E = ρQ
ε0

= 4πkeρQ (4.2.4)

where E is the electric field vector, ρQ is the charge density, ε0 is the vacuum permittivity

and ke is Coulomb’s constant. In cartesian coordinates, ∇·E = dEx/dx+dEy/dy+dEz/dz.

Looking along the z-direction (and letting E denote Ez), we get:

E(z) =



0 if z < zlw

4πke
∫ z
zlw
ρQ(z′)dz′ if zlw ≤ z ≤ zrw

0 if z > zrw

(4.2.5)

since E(z) = −dφ(z)/dz, one can get the electrostatic potential by integration:

φ(z) =



0 if z < zlw

−
∫ z
zlw
E(z′)dz′ if zlw ≤ z ≤ zrw

0 if z > zrw

(4.2.6)

We emphasize that these results hold for a single isolated slab. The picture is different if

we use periodic boundary conditions also along the z-direction, which is perpendicular to the
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interface. In this way, the wall(σwA)/fluid(0)/wall(-σwA) sandwitch is periodically repeated

in space. This changes the boundary contitions for Poisson’s equation (∇2φ = −4πkeρQ), and

this effect has to be considered to compare our computations to the results of experiments

on isolated macroscopic interfaces.

A plot of the charge density, electric field and electrostatic potential across the interface

computed during one of our simulations with periodic boundary condictions is shown in

Figure 4.3.
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Figure 4.3: Charge density profile for Li2CO3 between planar walls in the case of having a
charge on each wall. The upper and lower insets are the profiles for the electric field and
electrostatic potential, respectively, across the simulation box.

The influence of periodic boundary conditions on the solution of Poisson’s equation is

apparent if one checks the validity of the perfect screening theorem. A naive point of view
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is that the net charge on each interface should be equal to zero, since the ions are free to

move [17]. However, using PBC we find that there is a net positive and negative charge on

the left and right interface, respectively. In other words, the charge on the walls are larger in

magnitude that the one in the fluid. The net charge was observed to decrease in magnitude

when the empty space outside the walls increased. This is because periodicity and symmetry

impose a non-vanishing electric field in the empty region between two periodic repetitions.

Since the molten salt is an electrical conductor, the electric field has to be zero in the bulk.

More on detail due to the system being periodic, φ(Lz) has to be equal to φ(0) in order

for φ(z) to be a continuous function throughout all the periodic images. Thus E(0) is not

necessarily equal to 0 outside the walls, as it would have been in an ordinary capacitor. E(0)

is therefore set to a value such that φ(Lz) = φ(0), and this is required to make the electric

field between the walls vanish in the periodic arrangement. The field on the exterior region

of the slab depends on the system periodicity.

The value of the exterior field (see Figure 4.3) is computed as follows: Let us assume

that the periodicity is Lz. A simple sketch of the system can be seen in Figure 4.4.

zlw
z

Lz

Ew,i Ew,o

- w

zrw0

Ew,o

w

Figure 4.4: A simple sketch of the simulation box with two walls.

Ew,o denotes the electric field outside and Ew,i denotes the field inside (between the walls).

In z-direction, the electrostatic potential φ(z) can be found for different regions. If the walls
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were to have zero width, one will get (setting φ(0) = 0):

φ(z) =



−Ew,oz if 0 ≤ z < zlw

−Ew,oz − Ew,i(z − zlw) if zlw ≤ z < zrw

−Ew,oz − Ew,i(zrw − zlw)− Ew,o(z − zrw) if zrw ≤ z < Lz

(4.2.7)

where zlw and zrw is the anchor points of the particles that constitues the left and right

wall, respectively. The periodicity in z-direction, Lz, is such that it is equal to zrw + zlw.

From Gauss’ law and (4.2.7), we get:

Ew,i = Ew,o + 4πkeσw (4.2.8)

Ew,o = −4πkeσwLi
Lz

(4.2.9)

where Li = zrw − zlw. Inserting eq. (4.2.9) into eq. (4.2.8), we get

Ew,i = 4πkeσw
(

1− Li
Lz

)
(4.2.10)

If the periodicity Lz → ∞, we are back to the Ew,i = 4πkeσw relation of elementary

(non-periodic) capacitors. If the system is periodic, the solution violates now this simple

prediction, but the deviation is early predictable using eq. (4.2.10). Ions in the fluid react

to the electric field on the wall, and accumulate at the interface in order to screen Ew,i.

Therefore, if we impose boundary conditions, or if we change the periodicity of boundary

conditions, we need to compare systems of equal Ew,i and different σw. As a test of this

statement, we simulated two systems. In the first system, σwA = 11.7 e and Lz = 150 Å.

In the second system, Lz = 166 Å. σw thus had to be decreased according to eq. (4.2.10) in

order for the electric field between the walls to remain constant. The charge density profile

for both cases can be seen for a 0.2 ns (2 × 105 steps) simulation in Figure 4.5.
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Figure 4.5: Charge density profile for Li2CO3 confined between two planar neutral walls for
two different periodicities.

As can be seen, the two plots are more or less superimposed. The deviation is most likely

due to noise, or the fact that eq. (4.2.10) is not precisely correct, since the walls do have a

width in our simulations.

Improvement of the model for the wall; adding image charges

In our model, each wall is treated as having a homogeneous distribution of surface charge.

More precisely, each particle on the wall have the same charge, that in most of our simulations

corresponds to zero charge. However, even in the case of a neutral wall, the assumption of

uniform charge distribution is generally not valid for metal electrodes, since polarisation and

the equalisation of the electrostatic potential on the metal side imply the formation of the
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so-called image charges, that, in the ideal metal case, fully compensate the net charge of the

ions on the fluid side.

This aspect has been neglected in most of the few simulations of metal/electrolyte in-

terfaces that are available in the literature. Valuable exceptions are listed and commented

upon by Shelley et al. [60]. Because of this scarcity of explicit modelling, the role of image

charges in real interfaces is still under debate.

Since image charges arise from the divergence of the dielectric response function of metals

in the limit of zero frequency and long wavelengths (ε → ∞), Iori et al. [61] proposed to

associate a Drude oscillator (in the original point-charge or in a new rod-like representation)

to each particle on the metal side. The dielectric constant of this system does not diverge,

but it might be made large by a suitable choice of the model parameters. This model has

been parametrised and used to simulate gold electrodes, and is known as the GolP force field.

Although intriguing, the model has many limitations, the most important being represented

by the fact that metal atoms (Au atoms, in this case) cannot move, but are constrained to

a fixed crystal structure.

To overcome the GolP limitations, we: (i) introduced an explicit many-body force field

for the metal particles; (ii) improved on the “high ε” approximation of Iori et al., introducing

explicit charges instead of dipolar Drude oscillators.

For the many body potential, we resorted to the so-called embedded-atom method (EAM)

[62, 63], that provide a widely accepted, thoroughly tested and easy to use approach. To

improve on the high dielectric constant approximation, we attributed a discrete charge vari-

able to each metal atom. This discrete variable assumes the values {−1, 0, 1} meaning that

the corresponding atom has charge −δ, 0 or +δ. Atoms change their state of charge in a

discontinuous way, and for this reason we replaced molecular dynamics with Monte Carlo.

Changing the charge of atom requires a finite amount of energy, that depends on the local

coordination of atoms. This energy is low for well coordinated metal atoms, and high for

isolated metal atoms. Charge is neither created nor destroyed, but simply moved from one

atom to its nearest neighbour, implying that each metal aggregate conserves its charge, that
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in most cases is globally zero.

The development of the model requires the delicate tuning of the charging energy, and the

precise definition of the rules to displace charge. Preliminary versions of the model provided

encouraging results, since they show that metals screen any external field, while maintaining

global neutrality, and confining charge at their surface. Work is in progress to produce a

quantitative model able to successfully compete with GolP.

4.2.2 Definition of our force field

In the atomistic simulation of a molecular system, we need an accurate and reliable ap-

proximation for the system potential energy as a function of coordinates of the individual

atoms.

This can be done most accurately using ab-initio method, but this is computationally de-

manding. Therefore, empirical force fields are used instead. Here, the zero level of the energy

is represented by the molecular ground state energy. In a system with multiple molecules,

this molecular ground state energy will be multiplied with the number of molecules. A change

in the atom coordinates away from equilibrium results in a change in the energy that can be

represented with bonded (intra-molecular) and non-bonded (inter-molecular) contributions,

each usually modelled with fairly simple, analytical expressions.

The bonded contributions can consist of bond stretching, angle bending and improper

torsion. The latter to reproduce the planarity of π-bonded groups. Non-bonded interactions

can consist of short-range repulsion, medium-range dispersion and Coulomb interactions.

The force field is represented by a functional form in which the parameters can be found

e.g. from ab-initio methods. Using the ground state geometry and vibrational frequencies

from quantum chemistry, one can use this to specify the parameters used in the simple,

analytical expressions for the intra- and inter-molecular interactions.

In this thesis, a somewhat reverse procedure has been followed; validating a force field

model selected from the literature. The force field being used is adopted from the one by

Tissen and Janssen [12], so instead we compare this force fields performance by comparing
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it to results from ab-initio computations. These computations have been carried out using

density functional theory (DFT), with the exchange-correlation functional by Perdew, Burke

and Ernzerhof (PBE) [64], giving a semi-local approximation. Some computations were done

using the B3LYP functional, as a comparison. Two different computer packages were used

to compute the molecular properties with quantum chemistry; CPMD [65] and Gaussian 09

[66]. CPMD expands Kohn-Sham orbitals on a plane wave basis set, while Gaussian 09 is

based on localised basis functions of the Cartesian Gaussian type.

Computations were carried out for an isolated Li2CO3 molecule. These computations

were repeated for a single Na2CO3 molecule and a single K2CO3 molecule. For completeness,

we included H2CO3, i.e., carbonic acid, in our computations. Once these were done, new

computations were conducted where one cation was removed, resulting in MCO3
–1, M being

Li, Na, K or H. The energy of the single cation was also calculated, giving the dissociation

energy. After that, the other cation was removed, resulting in a carbonate ion.

The results for the ground state geometry can be seen in Tables 4.3 and 4.4, while

vibrational frequencies can be seen in Table 4.9. We define atomic charges following the

electrostatic potential fitting (ESP) approach [67], i.e., determining the charge on each atom

of a molecule or molecular ion in such a way to reproduce the electric field around the

molecule. This was computed by ab-initio computations. In our case, ab-initio correspond

to DFT-PBE. Computations have been carried out using CPMD and the result for the

charges of Li2CO3 can be seen in Table 4.6.

Finding suitable force field parameters for this molecule poses some challenges, mainly

due to the delocalisation of electrons in a carbonate ion. Since the bond length between

carbon and oxygen will change dynamically, a force field dependent on the local coordination

should be used in order to model this correctly.

As a first attempt, the carbonate ion is treated as a rigid unit with D3h geometry where

all the bonds and angles were kept constant. This caused a lot of problems, both in terms

of a centre of mass drift and non-uniform heatfluxes in the homogeneous system.

Instead, we used flexible molecular units, where a harmonic potential is used for the
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angles and improper torsions of carbonate, described by the following equations

Vbending = Kθ(θ − θ0)2 (4.2.11)

Vimproper = Kφ(φ− φ0)2 (4.2.12)

where θ are bending angles and φ are torsional angles. The Kθ and Kφ parameters can

be seen in Table 4.1. The parameters for the improper torsion is taken from Masia et al.

[49], and the parameter for the angle bending is loosely based on the same source. The

simulation results are not dependent upon these parameters, provided they are significantly

large to keep CO3
2– rigid-like.

Table 4.1: Force field parameters used to model the harmonic bonds, angles and improper
torsions in CO3

2–.

Parameter value
Kθ [kcal mol−1 rad−2] 100.0
Kφ [kcal mol−1 rad−2] 45.0

θ0 [degrees] 120.0
φ0 [degrees] 180.0

The C−O bond length was constrained to 1.27 Å by use of the SHAKE algorithm [68],

as proposed by Tissen and Janssen [12]. The accuracy tolerance of the SHAKE solution was

set to 10−7, as suggested by Ottochian et al. [29], as they experienced energy drift with the

use of greater tolerances. For the interaction between atoms, a Born-Mayer-Huggins (BMH)

were used together with a Coulomb term:

VBMH(rij) = zizje
2

rij
+ b

(
1 + zi

ni
+ zj
nj

)
exp[α(σi + σj − rij)] (4.2.13)

where rij is the distance between atoms i and j, e is the electric unit of charge, zi is the valence

of atom i, σi can be interpreted as the ionic radius and ni is the number of electrons in the

outer shell of atom i. These parameters can be found in Table 4.2. The constant b = 4.865

kcal/mol determines the weight of the BMH interaction and α = 3.45 Å−1 determines the
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steepness.

Table 4.2: Force field parameters used to model Li2CO3, Na2CO3 and K2CO3 using eq.
(4.2.13) [29].

Atom type z [e] n σ [Å]
C 1.54 2.46 1.10
O -1.18 7.18 1.33
Li 1.0 2.00 0.77
Na 1.0 8.00 1.07
K 1.0 8.00 1.39

In order to describe the long-range interactions, the Ewald method, see e.g. [15], was

used with a relative error in forces of 10−4. The cutoff for inter-molecular interactions was

set to 10 Å, applied both to dispersion and to the real-space part of Ewald.

The reasoning for using this potential with these parameters, is because it has been

studied by several persons, e.g. (from newest to oldest) Ottochian et al. [29], Koishi et al.

[41] and Tissen and Janssen [12]. The study by Ottochian et al. was conducted no more than

a year ago, giving a clear indication that there is currently no better model available on the

market. Since the model has been thoroughly studied, most of its strengths and weaknesses

have been documented, making it more suitable for new applications than a completely new

model that has never been tested.

For the comparison between the force field and the ab-initio computation, a slight modi-

fication of the model had to be carried out. As the C−O bond lengths in our simulations are

constrained, it is not able to give us the frequencies for these modes. Therefore a harmonic

spring was used to model the C−O bonds, described by the following equation:

Vstretching = Kr(r − r0)2 (4.2.14)

where Kr = 500 kcal mol−1 Å−2, which is based on the values from the AMBER force

field given in the paper by Masia et al. [49]
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Figure 4.6: Schematic of M2CO3, where M is either Li, Na, K or H.

Since the model we used is based on Hartree-Fock, we carried out computations to see

how well Hartree-Fock performs compared to density functional theory. We determined the

ground state geometry for M2CO3, MCO3
– and CO3

2–, where M is either Li, Na, K or H.

Two different functionals were used for the DFT computations, namely PBE and B3LYP,

both of which are quite popular in literature. The ground state geometry for Li2CO3 found

from the force field (FF) is also included. The bond lengths can be seen in Table 4.3, while

the angles can be seen in Table 4.4. Some bond lengths and angles are left out of the tables

due to symmetry, e.g. bond length C-O2 is equal to C-O3 and angle O1-C-O2 is equal to

O1-C-O3. Therefore, bond length C-O3 and angle O1-C-O3 are not shown. The naming of

the bonds and angles follows the schematic shown in Figure 4.6.
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Table 4.3: Bond lengths in Å. M=Li,Na,K,H

Type C-O1 C-O2 M1-O2 M1-O1
Li2CO3 (PBE) 1.38 1.28 1.82 1.82

Li2CO3 (B3LYP) 1.37 1.27 1.81 1.82
Li2CO3 (HF) 1.33 1.25 1.79 1.82
Li2CO3 (FF) 1.25 1.24 1.74 2.02

Na2CO3 (PBE) 1.37 1.29 2.15 2.18
Na2CO3 (B3LYP) 1.36 1.28 2.14 2.17

Na2CO3 (HF) 1.32 1.25 2.13 2.17
K2CO3 (PBE) 1.36 1.29 2.41 2.47

K2CO3 (B3LYP) 1.35 1.28 2.42 2.48
K2CO3 (HF) 1.31 1.26 2.44 2.51

H2CO3 (PBE) 1.21 1.35 0.97 2.32
H2CO3 (B3LYP) 1.20 1.34 0.97 2.32

H2CO3 (HF) 1.18 1.31 0.94 2.29
CO3

2– (PBE) 1.32 1.32 - -
CO3

2– (B3LYP) 1.31 1.31 - -
CO3

2– (HF) 1.28 1.28 - -

The bond lengths from the geometry optimization with PBE and B3LYP functional are

close to each other, while HF deviates somewhat more from these values. In general, the

bond lengths from B3LYP are shorter than PBE, and the ones from HF are even shorter.

Unfortunately, to the best of our knowledge, no detailed experimental information with

small enough errorbar is available to check the accuracy of these results. On the basis of

experience, we expect the DFT-PBE results to be rather accurate.
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Table 4.4: Angles in degrees. M=Li,Na,K,H

Type O1-C-O2 O2-C-O3 M1-O2-C
Li2CO3 (PBE) 117 127 85

Li2CO3 (B3LYP) 116 127 85
Li2CO3 (HF) 116 127 86
Li2CO3 (FF) 114 132 96

Na2CO3 (PBE) 118 124 91
Na2CO3 (B3LYP) 118 124 91

Na2CO3 (HF) 118 124 92
K2CO3 (PBE) 118 123 95

K2CO3 (B3LYP) 118 124 96
K2CO3 (HF) 118 123 97

H2CO3 (PBE) 126 108 105
H2CO3 (B3LYP) 126 109 107

H2CO3 (HF) 125 110 108
CO3

2– (PBE) 120 120 -
CO3

2– (B3LYP) 120 120 -
CO3

2– (HF) 120 120 -

It is worth noting that the average C-O bond length and average O-C-O angle does not

differ much between M2CO3 and CO3
2–, as shown in Table 4.5

Table 4.5: Average bond length in Å and average angles in degrees.

Type C-O O-C-O
Li2CO3 (PBE) 1.31 120

Li2CO3 (B3LYP) 1.30 120
Li2CO3 (HF) 1.27 120
CO3

2– (PBE) 1.32 120
CO3

2– (B3LYP) 1.31 120
CO3

2– (HF) 1.28 120

It can be seen that the average bond lengths of C-O for Li2CO3 are only slightly shorter

than for CO3
2– within the same ab-initio method, and that the average bond angles of O-

C-O are practically equal. This would mean it is not such a bad approximation to use the

structure of the carbonate ion in simulation of alkali carbonate, in regards of average bond

lengths and angles. It would also mean that treating C-O bond lengths as being independent
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on the proximity of the cation should not give too large errors. Depending on the position of

the cations, the C-O1, C-O2 or C-O3 will elongate and the other two will shorten. However,

one can assume that the simulation is run long enough so that on average the cations spend

an equal amount of time between each oxygen atom. This would mean that even if we

enabled the possibility for the bond length to change according to the distance between the

anion and the cation, the bond length between carbon and oxygen would be approximately

equal on average.

The improper torsion angle between O1-C-O2-O3 was 180.0◦ and was 0.0◦ between O1-

C-O2-M1 for all cases. This means that having a cation close to carbonate does not change

the ground state geometry with respect to out-of-planarity; a fact that further strengthens

the credibility of our model.

A comparison of the atomic charges for Li2CO3 computed from DFT-PBE and the ones

used in our force field can be seen in Table 4.6

Table 4.6: Comparison of atomic charges from the force field and ab-initio for Li2CO3.

Type zC [e] zO1 [e] zO2 [e] zLi [e]
Li2CO3 (PBE) 1.343 -0.681 -1.149 0.818
Li2CO3 (FF) 1.54 -1.18 -1.18 1.0

Note the difference between the atomic charges on oxygen with a single bond and oxygen

with a double bond for the DFT-PBE computation. This is not seen for the force field, as

the carbonate ion is treated as an average with respect to the C−O bonds.

A comparison of the energy required to remove a cation in order to create an ion (here

termed dissociation energy) is given for the different molecules and ab-initio methods in

Table 4.7.
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Table 4.7: Comparison of dissociation energies for different molecules and ab-initio methods.

Type First dissociation energy [eV] Second dissociation energy [eV]
Li2CO3 (PBE) 7.85 12.66

Li2CO3 (B3LYP) 7.91 12.73
Li2CO3 (HF) 7.97 12.78

Na2CO3 (PBE) 6.93 11.06
Na2CO3 (B3LYP) 7.02 11.03

Na2CO3 (HF) 7.07 10.94
K2CO3 (PBE) 6.20 10.16

K2CO3 (B3LYP) 6.29 10.00
K2CO3 (HF) 6.29 9.79

H2CO3 (PBE) 14.85 21.22
H2CO3 (B3LYP) 14.92 21.31

H2CO3 (HF) 15.28 21.68

The ionization energy decreases both for the first and second ionization as the size of

the cation increases. This is reasonable, as the bond lengths shown in Table 4.3 between

the cation and oxygen also increases, so the cation will be more loosely bound. Another

observation is that the second dissociation energy is larger than the first dissociation energy

for all cases, meaning that the single cation is more strongly bound, as expected.

In order to investigate the frequency modes and compare them, symmetry labels from

the C2v point group were used. The reason for doing this is because many of the modes

have coupling between bond stretching and angle bending in the carbonate group, making

it difficult to describe them with words alone. The character table for this point group is

given in Table 4.8.

Table 4.8: Character table for C2v

C2v E C2 σv (xz) σ′v(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

In Table 4.9, the frequency modes for the alkali carbonates can be seen, comparing the
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DFT and force field results as well as comparing the frequency modes for Li2CO3, Na2CO3

and K2CO3 for the PBE functional.

Table 4.9: Vibrational frequencies in cm−1

Symmetry label Li2CO3 (PBE) Li2CO3 (FF) Na2CO3 (PBE) K2CO3 (PBE)
ν1 B2 1569 1688 1489 1473
ν2 A1 1264 1608 1243 1248
ν3 A1 937 876 942 960
ν4 B1 807 864 811 817
ν5 B2 770 681 705 675
ν6 A1 705 729 672 663
ν7 B2 579 626 362 292
ν8 A1 579 606 335 259
ν9 B2 516 245 359 289
ν10 A1 407 236 198 127
ν11 B1 171 176 109 80
ν12 A2 170 214 108 72

The frequencies from the force field was calculated by diagonalizing the Hessian matrix

H, which is a matrix containing the second order derivative of the energy with respect to

Cartesian coordinates. This was done by displacing atoms from the ground state geometry

by a small distance δ, so that the second order derivative could be calculated numerically

according to the following scheme derived from Taylor expansion:

∂2E

∂αiβj
≈ 1

4δ2 [E(αi + δ, βj + δ)− E(αi + δ, βj − δ)− E(αi − δ, βj + δ) + E(αi − δ, βj − δ)]

(4.2.15)

where α and β are Cartesian coordinates, i.e. α, β ∈ {x, y, z}, and i, j are the atoms. This

square matrix can then be written in terms of a diagonal matrix D containing eigenvalues

and a matrix of eigenvectors P such that H = PDP−1. The eigenvalues given on the

diagonal of D give the frequencies, while the eigenvectors in P give the modes. As shown in

Table 4.9, these frequencies correspond decently with the ones from ab-initio, which agree

with the ones found for Li2CO3 by Ramondo and Bencivenni [69].

Several observations are worth noting. First of all is the large separation between the
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largest and second largest frequency in the ab-initio computation. As can be seen from

Figure 4.7, the two highest frequency modes contains a coupling of bond stretching and

angle bending in carbonate.

(a) ν1 = 1569 cm−1 (b) ν2 = 1264cm−1

Figure 4.7: Frequency modes represented by arrows corresponding to the highest (a) and
second highest (b) frequency for Li2CO3 computed with the PBE functional

Secondly the modes with large frequencies contain little or no vibration with respect to

the cation. For example is the vibrational frequency from the ab-initio computation for the

out-of-plane torsion of CO3 within 10 cm−1 of each other for Li2CO3, Na2CO3 and K2CO3.

An important note: One has to bear in mind that many of the frequency modes has the

same symmetry label, and these can be difficult to separate from each other. This means

that e.g. ν3 for Li2CO3 might correspond to ν6 for K2CO3.

Non-homogeneous system

In the non-homogeneous system the Lennard-Jones (LJ) potential, given as

VLJ(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 (4.2.16)

was used for the neutral wall particles, in which the parameters were taken from the GolP

potential [61], presented in Table 4.10. The interaction between the neutral wall and confined
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particles were modelled using the Lennard-Jones potential, with the parameters for Li, K,

Na, C and O taken from the OPLS-AA (Optimized Potentials for Liquid Simulations-All

Atom) force field [42], which can also be seen in Table 4.10.

Table 4.10: Parameters used to model the neutral wall and its interaction with the alkali
carbonates

Atom type σ [Å] ε [kcal/mol]
Au 2.9 0.3137
C 3.75 0.105
O 2.96 0.21
Li 2.87 0.0005
Na 4.07 0.0005
K 5.17 0.0005

Whenever i 6= j, the Lorentz-Berthelot mixing rules were used:

σij = σii + σjj
2 (4.2.17)

εij = √εiiεjj (4.2.18)

The reason why the LJ potential was chosen over the BMH potential for the interaction

between the wall and the fluid was because of the desire to have an attractive and repulsive

term in the potential, which is not feasible with the BMH potential since the wall particles

are neutral

4.2.3 MD algorithm

The molecular dynamics package LAMMPS [70] (the 10 Aug 2015 version) was used to

model the alkali carbonates. This is because of the requirement to have a parallel code,

in order to run on multiple processors, speeding up the simulation manyfold. Simulations

were done in the isothermal-isobaric (NPT), canonical (NVT) and microcanonical (NVE)

ensemble; a description which can be found e.g. in the book by Frenkel and Smit [15]. For all

ensembles, Nosé-Hoover style non-Hamiltonian equations of motions were time integrated.

74



The equations of motions used are those of Shinoda et al. [71], which combine the hydrostatic

equations of Martyna et al. [72] with the strain energy proposed by Parrinello and Rahman

[73]. The time integration scheme follows the time-reverisble measure-preserving Verlet

derived by Tuckerman et al. [74].

In the homogeneous case, the isothermal-isobaric (NPT) ensemble was first used for equi-

libration. Here the temperature, pressure and number of particles are kept constant. To do

this a Nosé-Hoover thermo- and barostat were used, which were achieved by adding dynamic

variables which are coupled to the particle velocities and simulation domain dimensions. Af-

ter finding the equilibrated density, the canonical (NVT) ensemble was used by disconnecting

the barostat. Now the number of particles, volume and temperature are kept constant, with

the density acquired from the previous step. This was done to get an equilibrated sample at

this specific density.

After the equilibration the microcanonical (NVE) ensemble was used for production,

where the number of particles, volume and energy were kept constant. From this run, the

temperature, pressure and energy was outputted and the observables discussed in section

4.2.4 were computed.

In the non-homogeneous case, both the equilibration and production were done in the

NVT ensemble.

4.2.4 Computation of observables

Radial distribution function

The radial distribution function (RDF), g(r), between atom type i and j can be computed

using the following equation [12]:

gij(r + 1
2δr) = ∆nij(r, r + δr)V

4π(r + 1
2δr)2δrNiNj

(4.2.19)

where ∆nij(r, r + δr) is the number of atom pair i, j that can be found in the distance

between r and δr. Ni and Nj is the number of atoms of type i and j, respectively, in the
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simulation box of volume V . From the RDF, the running coordination numbers nij can be

found [12]:

nij(r) = Nj

V

∫ r

0
gij(r′)4πr′2dr′ (4.2.20)

The coordination number of interest is usually found from the first coordination shell, where

the integration lasts until gij has its first minima after the first peak, or until the second

time gij reaches unity. In this thesis, the first criteria will be used.

Diffusion coefficient

There is mainly two ways of calculating the diffusion coefficient from a molecular dynam-

ics simulation; from the velocity autocorrelation function (Green-Kubo) or from the mean

square displacement (Einstein) of each specie. As discussed by Tuckerman [75], the velocity

autocorrelation function has a long-time tail that is slow to converge, and it is also influenced

by finite-size effects. Therefore, the latter approach will be used in this thesis. The mean

square displacement (MSD) can be calculated from the particle trajectories outputted by

the simulation. After an initial startup, the MSD should behave linearly with time as the

particles are free to diffuse. For a d-dimensional system, the diffusion coefficient for specie

i, Di, is given by the Einstein relation [75]

Di = 1
2d lim

t→∞

d

dt
〈|r(t)− r(0)|2〉 (4.2.21)

where 〈|r(t)− r(0)|2〉 is the mean square displacement at time t. The brackets represents

an ensemble average over the initial state. This can be compared with the literature value,

e.g. from Janz and Bansal [76], to see if the system behaves like a liquid.

Electrical conductivity

The electric current density j is calculated each timestep as

j =
∑N
i zivi
V

(4.2.22)
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where zi is the charge of atom i, vi is the velocity vector for atom i and N is the total

number of atoms in the system. The electrical conductivity κ is computed using a Green-

Kubo relation (see e.g. [15]):

κ = V

3kBT

∫ ∞
0
〈j(t) · j(0)〉dt (4.2.23)

where the brackets denote that an ensemble average is taken of the autocorrelation of

the electric current density. Like diffusion, the electrical conductivity can be computed with

an Einstein-like expression. We did not use this route, and for this reason we do not further

discuss it. The electrical conductivity can also be estimated from the Nernst-Einstein (NE)

relation [77]:

κNE = F 2

RT

ρ

Mw

(ν+z
2
+D+ + ν−z

2
−D−) (4.2.24)

where ν+ and ν− are the number of cations and anions per formula unit of electrolyte,

respectively, z+ and z− are the valences of the cation and anion, respectively, and D+ and

D− are the diffusion coefficients of the cation and anion, respectively. ρ is the simulated

density of the salt, and Mw is the molar mass of the salt. F is Faraday’s constant and R is

the universal gas constant. This simple relation is based on the assumption that each ion

diffuses independently from every other ion.

κNE can be multiplied by a correction factor (1 −∆) that takes into account the cross-

correlation due to Coulomb interaction [29], giving the modified Nernst-Einstein equation:

κ′NE = κNE(1−∆) (4.2.25)

Thermal conductivity

The heat flux Jq is calculated each timestep as

Jq = 1
V

[
N∑
i=1

eivi −
N∑
i=1

Sivi
]

(4.2.26)

where ei is the per-atom energy (kinetic and potential) and Si is the per-atom stress tensor.

77



The thermal conductivity λ is computed using a Green-Kubo relation:

λ = V

3kBT 2

∫ ∞
0
〈Jq(t) · Jq(0)〉dt (4.2.27)

where an ensemble average is taken of the autocorrelation function of the heat flux.

Ideally, the thermal conductivity could also be calculated with a method based on non-

equilibrium molecular dynamics (NEMD) as well. For example the thermostatting method

proposed by Ikeshoji and Hafskjold [78], where two regions are set at different temperatures

and the energy added and subtracted are monitored. This should be done in order to compare

to the conductivity obtained by the Green-Kubo, since the autocorrelation is quite slow,

meaning it has a very long “tail” that is integrated over. This requires that the simulation

is run for a long time in order to get good enough statistics.

However, since we use the SHAKE algorithm, degrees-of-freedom are removed from the

C−O bonds. LAMMPS correct for this in temperature and pressure computations, but not

in the case of thermostatting regions. As a consequence LAMMPS will give wrong values

for the energy needed to add and subtract to keep the target temperature. Therefore, it

is not suitable for NEMD calculation of the thermal conductivity without modification of

LAMMPS, which is why we only use GK in this thesis.

4.3 Results

4.3.1 Homogeneous system

In the homogeneous case, the system consisted of 512 M2CO3 molecules, where M is either

Li, Na or K. This was deemed to be a large enough number for our simulations, since the

boundary condition is of the periodic type. The pressure of the simulation was for all systems

P ≈ 15 kbar, in order to get a density close to the experimental density [79]. As described

by Ottochian et al.: “It is worth to notice that the simulation pressure is not necessarily

comparable to the real one since its absolute value depends on the chosen cutoffs for the
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long- and short-range parts of the potential and if long tail corrections are considered or not.

Thus, the only reasonable procedure to closely simulate the experimental system is to find

the numerical pressure inducing the experimentally-obtained density.” [29]

The initial configuration was run for 105 steps in the isothermal-isobaric (NPT) ensemble

using a Nosé-Hoover thermo- and barostat with a timestep of 1 fs. The temperature was

relaxed in a timespan of 100 time units (fs), while the pressure was relaxed in a timespan of

1000 time units. This was done in order to find the equilibrium density. After 100 ps, the

barostat was disconnected and the simulation was run for another 105 steps using the same

timestep at the canonical (NVT) ensemble, using the density acquired after the previous

step, to get an equilibrated sample at this density.

Finally, a 5 × 106 steps production run was done in the microcanonical (NVE) ensemble.

From this run, the temperature, pressure and energy were outputted every 100 steps. In

addition, the positions and velocity vector of each atom were printed at these timesteps.

For most systems, the simulations were done for the temperatures 1200, 1300, 1400 and

1500 K. The reason for the large temperature was because we wanted to be well above the

melting point of each sample, so we do not get any problem with crystallisation. The melting

point, Tm, and boiling point, Tb, for each salt can be seen in table 4.11.

Table 4.11: Melting and boiling point for Li2CO3, Na2CO3 and K2CO3.

Molecule Tm [K] Tb [K]
Li2CO3 996 [80] 1615 [81]
Na2CO3 1124 [82] 1873 [83]
K2CO3 1164 [84] Decomposes [84]

Structural properties

A plot of the radial distribution function for M2CO3, M being Li, Na or K, at T = 1200 K

and P = 15 kbar can be seen in Figure 4.8, in which the distributions for C-C, C-M, O-M

and M-M are plotted.
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g
(r

)

O-Li

C-C

C-Li

Li-Li

(a) Li2CO3

0 2 4 6 8 100

1

2

3

4

5

6

r [Å]
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Figure 4.8: Radial distribution function for Li2CO3 (a), Na2CO3 (b) and K2CO3 (c) at
T = 1200 K, P = 15 kbar. All the curves, except the bottom one, have been shifted for
readability.

The figures are in good agreement with the ones by Tissen and Janssen [12]. In order

to see how many oxygen surround the cation, the coordination number of the first shell was

found using equation (4.2.20). The result is given in Table 4.12.

Table 4.12: Coordination number between the cation and oxygen at different target temper-
atures.

Type T = 1200 K T = 1300 K T = 1400 K T = 1500 K
nOLi 4.0 3.9 3.9 3.9
nCLi 3.9 3.9 3.9 3.9
nONa 5.1 5.1 5.0 5.0
nCNa 4.3 4.3 4.3 4.3
nOK 6.2 6.2 6.1 6.0
nCK 4.5 4.5 4.5 4.5

The coordination number for oxygen is found to be four in Li2CO3, meaning that each

lithium ion is on average surrounded by four oxygen atoms. In K2CO3, however, the coordi-

nation number seems to be six. Perhaps more importantly, a four-fold coordination points

to a tetrahedral local symmetry, while six points to an octahedral local geometry of oxygen

80



around the metal ion. The same coordination numbers were also found from simulation by

Koishi et al. [41]. In their paper, they present figures showing the coordination number in

lithium and potassium carbonate. These figures are presented in Figure 4.9.

(a) Li2CO3 (b) K2CO3

Figure 4.9: Typical coordination in Li2CO3 (a) and K2CO3 (b) taken from Ref. [41].

The coordination number for oxygen in Na2CO3 appear to be five, which corresponds

with the value from Wilding et al. [43] obtained from simulation at T = 1750 K. No simple

geometry has five-fold coordination, and we expect that this number is the average of four-

fold and six-fold coordinated metal sites.

As can be seen from Table 4.12, the coordination number changes very little with tem-

perature in the temperature range between 1200 and 1500 K. This means that the cation

environment with respect to oxygen changes very little over this range. A drastic change

could mean that the fluid starts to crystallise, which gives reason to believe that crystallisa-

tion does not occur even at the lowest temperature of T = 1200 K, at least during the short

time covered by our simulations.

From the coordination number there is reason to believe that each metal ion is surrounded
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by four carbonate ions for Li2CO3. The coordination number for carbon increases a bit for

Na2CO3 and K2CO3, but this increase is less than the increase in coordination number for

oxygen. This would mean that around the same number of carbonate ions surround each

cation, while for the heavier cations the carbonate ions are oriented so that more oxygens are

within the first coordination shell. This can be explained as the heavier cations are larger,

giving more surface area and therefore more space for the oxygens around it.

Structure factor

In order to be able to compare with experiments; we calculated from the trajectory the

number-number structure factor SNN(k) as a function of wavenumber k. The result for

Li2CO3 and Na2CO3 can be seen in Figure 4.10.
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Figure 4.10: Number structure factor as a function of wavenumber for Li2CO3 (a) and
Na2CO3 (b) at T = 1200 K, P = 15 kbar.

Several observations are worth noting. As shown by Hansen and McDonald [13], the

isothermal compressibility χT is proportional to the value of the number-number structure

factor as k goes to 0, i.e.

lim
k→0

SNN(k) = ρkBTχT (4.3.1)
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where kB is Boltzmann’s constant and ρ is the density. In our case, it can be seen that

the compressibility is close to zero. This agrees with the fact that we are close to the triple

point in our simulations.

The shoulder at k ∼ 1.8 Å−1 apparent in the lithium SNN and absent in the Na2CO3

case is an important feature.

If one is to compare with the literature, e.g. the neutron scattering experiments by

Kohara et al. [45], one would find the highest peak for Li2CO3 at 1013 K to be ∼ 3 and

located around k = 2 Å−1, while in our case the peak is below 2 and located around k = 2.5

Å−1. The difference is likely to be due to the different temperatures of the samples. Still, as

explained in section 4.1, getting accurate results from neutron scattering on other elements

than hydrogen is difficult, so these values have sizeable error bars.

Ohata et al. [85] calculates the structure factors from denstiy functional theory (DFT)

computation for a Li2CO3 tetramer. The values from this paper are very similar to the ones

by Kohara et al. However, calculating the structure factor from the periodic replication of as

little as four molecules is not very accurate, so this result is to be taken with some skepticism.

The charge structure factor SZZ(k) was also calculated as a function of k for the same

systems, and can be seen in Figure 4.11.
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k [Å−1]

S
Z
Z

(k
)

(b) Na2CO3

Figure 4.11: Charge structure factor as a function of wavenumber for Li2CO3 (a) and Na2CO3
(b) at T = 1200 K, P = 15 kbar.

Comparing this figure to Figure 4.10, one can observe that the peak for SZZ is higher

than for SNN . It is worth noting that in ionic liquids, charges are more ordered than density

[13].

Transport properties

In Figure 4.12, the mean square displacement for Li2CO3 at T = 1200 K and P = 15 kbar

is shown for up to 1 ns.
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Figure 4.12: Mean square displacement for Li2CO3 at T = 1200 K, P = 15 kbar.

As can be seen, the MSD is quite linear for both the cation and anion, giving reason to

believe that the system is in a liquid state and has not crystallised. If this had been the

case, the MSD would have reached a plateau as the ions would be confined to their lattice

positions.

In Table 4.13, the computed transport properties for Li2CO3 can be seen.

Table 4.13: Transport properties for Li2CO3.

T [K] ρ [g/cm3] λ [W m−1K−1] κ [S/cm] κNE [S/cm] DLi [cm2/s] DCO3 [cm2/s]
1207 1.609 3.74 ± 0.10 4.17 ± 0.13 3.31 6.3 × 10−5 9.4 × 10−6

1295 1.577 3.58 ± 0.15 4.64 ± 0.17 3.91 8.0 × 10−5 1.3 × 10−5

1406 1.572 3.69 ± 0.10 5.6 ± 0.2 4.43 9.8 × 10−5 1.7 × 10−5

1492 1.540 3.73 ± 0.14 5.6 ± 0.2 5.16 1.2 × 10−4 2.3 × 10−5

From Janz and Lorenz [79], the electrical conductivity at T = 1118 K is κ = 4.959 S/cm.

This is the highest temperature where they did the measurements for Li2CO3. Since κ has
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a positive correlation with respect to temperature, both in my simulations and in the mea-

surements by Janz and Lorenz, κ at T ≈ 1200 K should be higher than the value Janz and

Lorenz found at T = 1118 K. Ottochian et al., which also uses the force field by Janssen

and Tissen [37], uses a scaling factor of ∼ 1.7 on the electrical conductivity to better repro-

duce the experimental values. In the model made by Janssen and Tissen, the Hartree-Fock

(HF) method was used, which does not reproduce the interaction energy correctly, due to

an unprecise description of the electronic correlation [29]. Ottochian et al. also comment

on that a transfer from a quantum mechanical model to a classical model often produces a

greater activation energy Ea, and also that a steeper energy profile can explain the need of

this scaling factor.

The literature values for the thermal conductivity λ are scarce and with large error, due

to the difficulty of measuring this property accurately at temperatures exceeding 103 K,

as discussed by Nunes et al. [86]. This makes simulation particularly useful. Gillis et al.

[87] presents the thermal conductivity of molten Li2CO3 measured using forced Rayleigh

scattering with a CO2 laser. In the temperature region 1070-1355 K, λ is more or less

constant ≈ 1 W m−1 K−1. However, the accuracy of these measurements are ∼ 20%. If

there is a temperature dependence, it is smaller than this error bar. The lack of temperature

dependence can also be seen with my results, but my values are larger by a factor ∼ 3-4.

However, in Ref. [87] the work by Egorov and Revyakin is presented, where the steady

state concentric cylinder method was used to find the thermal conductivity for molten

Li2CO3. Here, λ ≈ 2 W m−1 K−1 at 1000 K and λ ≈ 3 W m−1 K−1 at 1300 K. How-

ever, Gills et al. believes that the Rayleigh scattering technique is superior when it comes

to measurement of thermal diffusivity of high temperature molten salts, so the values from

that method can be believed to be most accurate.
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Table 4.14: Transport properties for Na2CO3.

T [K] ρ [g/cm3] λ [W m−1K−1] κ [S/cm] κNE [S/cm] DNa [cm2/s] DCO3 [cm2/s]
1192 1.937 0.94 ± 0.03 2.24 ± 0.08 2.03 4.0 × 10−5 9.8 × 10−6

1320 1.916 0.93 ± 0.03 2.85 ± 0.11 2.35 5.1 × 10−5 1.3 × 10−5

1390 1.884 0.95 ± 0.03 2.90 ± 0.16 2.66 5.9 × 10−5 1.7 × 10−5

1494 1.866 0.93 ± 0.03 3.31 ± 0.13 2.99 7.2 × 10−5 2.1 × 10−5

The diffusion coefficient for the cation is fairly similar to the values obtained by simulation

from Ottochian et al. However, this is not the case when compared to experiments. The

diffusion coefficients found from our simulations are the same order of magnitude, but smaller

than diffusion coefficients obtained from tracer-diffusion by Spedding and Mills [88].

Tissen and Janssen [12] suggest that the lack of polarisability is one of the reasons for

the slower diffusion. However, Wilding et al. [43] uses the JT model with a harmonic spring

instead of a rigid bond between carbon and oxygen for Na2CO3. They show that a stiffening

of the intramolecular bonds results in a systematically smaller diffusion coefficient for the

sodium ion. Since in our case the bonds are forced to be at the equilibrium length, that

might explain the smaller diffusion coefficient observed for the cation.

Numes et al. estimate that at 1173 K, λ = 0.822 W m−1 K−1 for Na2CO3, but discuss

that the difference between different authors can be as large as 50%. Therefore, the values

I get for the thermal conductivity might very well be correct for Na2CO3.

Table 4.15: Transport properties K2CO3.

T [K] ρ [g/cm3] λ [W m−1 K−1] κ [S/cm] κNE [S/cm] DK [cm2/s] DCO3 [cm2/s]
1191 1.836 0.98 ± 0.04 1.24 ± 0.07 1.06 2.7 × 10−5 7.9 × 10−6

1302 1.835 0.84 ± 0.04 1.35 ± 0.06 1.29 3.5 × 10−5 1.1 × 10−5

1397 1.808 0.91 ± 0.04 1.61 ± 0.06 1.49 4.3 × 10−5 1.4 × 10−5

1494 1.766 0.94 ± 0.03 2.17 ± 0.06 1.77 5.4 × 10−5 1.9 × 10−5

The electrical conductivity can be seen to decrease as the cation goes down the period
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of the alkali metals. This can also be seen in the measurements by Janz and Lorenz [79].

Thermal conductivity for pure molten K2CO3 is, as of this time, lacking. However,

Zhang and Fujii [89] reports thermal conductivity for a 70/30 mol% mixture of molten

Li2CO3−K2CO3. At T = 922 K, λ = 0.829 W m−1K−1. Therefore, it is reasonable that the

values I get for the thermal conductivity of pure molten K2CO3 are within the correct order

of magnitude.

It is worth noting that the electrical conductivity we estimated by the Nernst-Einstein

equation, eq. (4.2.24), is lower than the one computed with the Green-Kubo relation, eq.

(4.2.23), for all systems at all temperatures. In order to get the GK values by the modified

Nernst-Einstein relation, eq. (4.2.25), ∆ would have to be around −0.2. However, ∆ is

expected to be positive, and in alkali halides it has a value of ∼ 0.26 [29]. As Hansen

and McDonald explain [13]: “The positive value of ∆ corresponds physically to the fact

that motion in the same direction by a pair of oppositely charged ions contributes to self-

diffusion but not to electrical conduction.” However, it is not required that ∆ has to be

positive. Armstrong and Ballone [90] have shown by simulation that for simple 2:1 ionic

liquids, ∆ can be negative. As they also mention, negative values for ∆ has been previously

reported for molten salts close to their triple point [91, 92, 93]. The explanation could be

due to “out of phase” correlation, similar to backflow in many-electronic systems [94].

Still, if one is to calculate ∆ from the experimental data for Na2CO3 (taking the values

for diffusion coefficient by Spedding and Mills [88] and the density and electrical conductivity

by Janz and Lorenz [79]), one would find that ∆ ∼ 0.3. The explanation why in our case we

found that ∆ is negative could be because of the underestimation of the diffusion coefficients,

especially DCO3. z− = −2 for the carbonate ion, meaning that a small change in DCO3 will

have a large impact on κNE, since the valences are squared in equation (4.2.24).
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4.3.2 Non-homogeneous system

For the non-homogeneous system, most of the simulations were done using 2048 M2CO3

molecules. The reason for this “large” number of molecules is because of the need to have

a bulk phase in the fluid that is far enough away from the wall, so that a clear distinction

between the interface and the bulk can be made. One could instead decrease the cross-

sectional area in order to get a longer box, but then edge-effects becomes more prominent,

which is undesirable. The area of each wall in the case of 2048 molecules was 36.047 ×

36.7038 Å2. Test simulations were also done for Li2CO3 at T = 1300 K in which the system

size were doubled and quadrupled by increasing the number of particles and periodicity in

y-direction, hence 4096 molecules in a box with cross-sectional area of 36.047 × 73.41 Å2

and 8192 molecules when the cross-sectional area of the wall were 36.047 × 146.82 Å2, to

see how the results would be affected by this. In theory, increasing the system size should

not affect the results.

The length of the box in z-direction, Lz, was chosen so that the pressure on the particles

confined between the walls would be close to the pressure in the homogeneous case. The

spring constant used in the tethering of the wall atoms was set to Kspring = 50 kcal mol−1

Å−2. The anchor position in z-direction for each wall was 8 Å away from the end of the sim-

ulation box. The reason for this number is because at lower values the walls becomes closer

to each other due to periodicity, and it is desirable to have them far enough apart so that

the particles do not interact with those on the other side of the wall. However, an anchor

point too far from the end of the box would result in much empty space, which we “pay”

for in computational time due to the computation of the long-range interactions (partly) in

reciprocal space. Therefore, 8 Å was chosen as a good tradeoff between not having too much

empty space and having a large enough distance between the walls.

The simulation was done with a timestep of 1 fs in the NVT-ensemble with a Nosé-Hoover

thermostat. The relaxation time for the temperature was the same as in the homogeneous

case, i.e. 100 time units (fs). For each system, the simulation was done in 10 stages, each
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consisting of 105 steps, resulting in 106 steps in total (1 ns). Some of these stages were

used for equilibration. When the system appeared to be equilibrated, the rest of the stages

were used for production. In Figure 4.13, the density profile for anions, cations and neutral

particles can be seen for Li2CO3 at 1300 K.
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Figure 4.13: Density profile for anions, cations and neutral particles from the simulation of
Li2CO3 confined between two planar neutral walls at 1300 K.

One of the goals of the simulations is to investigate the electrostatic double layer (EDL).

From the charge density profile of Li2CO3 in Figure 4.14, a positive peak can be seen close

to each wall.
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Figure 4.14: Charge density profile for Li2CO3 confined between two planar neutral walls.
Full line, blue: T = 1300 K. Dashed line, red: T = 1500 K.

Since the lithium ion is smaller than the carbonate ion, it makes sense that these ions

will dominate the region closest to the wall. The next layer is negative, implying a layer of

anions. However, this layering continues for several more layers, which is different from what

is seen in the idealised model. Also, the charge density oscillates a bit in the bulk, while for

rigid ion particles it was more or less constant equal to zero. One could think this might be

due to crystallisation. The system might be liquid-like in the homogeneous case, but with

the introduction of a wall, crystallisation is a possibility. As the melting point of the model

has not been found in this or previous studies, it is difficult to dismiss that the system might

be in a metastable phase. Therefore, an analysis of the mean square displacement in the

direction parallel to the wall was carried out. It was found that the MSD still increases
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linearly with time in x- and y-direction, meaning that it behaves like a liquid and has not

crystallised.

As can be seen from Figure 4.14, the oscillations are smaller for the high temperature case

than for the low. This is in agreement with Figure 3.4 from the idealised model. However, in

the non-homogeneous simulations of Li2CO3, the distance between the wall does not change

when the temperature changes, meaning that the pressure will be higher at 1500 K compared

to 1300 K, as shown in Table 4.16. Nevertheless, as shown later in Figure 4.16, a decrease

in pressure while keeping the temperature constant (i.e. by expanding the distance between

the walls) will cause a decrease of the amplitude of the charge density profile. This means

that if the simulation at 1500 K were done at the same pressure as the simulation at 1300

K, the charge density profile in the high temperature case would have even less oscillation

than shown in Figure 4.14.

A short simulation was also done with LiNaCO3, to see how the lithium ions position

themselves relatively to the sodium ions. The simulation started from an uniformly dis-

tributed sample. As can be seen from the difference in number density in Figure 4.15, the

lithium ions are closer to the wall than the sodium ions. This is to be expected, as the

lithium ions are smaller. Apart from this adsorbed layer the figure shows a wide-amplitude,

long wavelength fluctuation of the Li+ and Na+ relative composition, hinting at an incipient

segregation of Li2CO3 and Na2CO3 phases.
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Figure 4.15: Difference in number density for lithium and sodium in LiNaCO3.

An investigation was also done regarding the pressure dependence of the charge density

profile, since the simulations were done at quite large pressures (order of 104 bar). In addition,

the simulations of the non-homogeneous systems were not done at the same pressure, but

at pressures shown in Table 4.16. This is due to the inaccessibility of the NPT ensemble in

our simulations, since we have a wall fixed to specific anchor points given in the beginning

of the simulation.
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Table 4.16: Average of the simulated pressure.

System P (1300 K) [kbar] P (1400 K) [kbar] P (1500 K) [kbar]
Li2CO3 11.0 13.7 16.3

Li2CO3 (area × 2) 11.0 - -
Li2CO3 (area × 4) 11.0 - -

LiNaCO3 13.0 - -
Na2CO3 18.2 18.6 -
K2CO3 17.9 14.2 -

In Figure 4.16, the comparison for the charge density profile of Li2CO3 at T = 1300 K

at two different pressures can be seen. The high pressure is around 11 kbar and the low

pressure is approximately 7 kbar. As can be seen, the profiles have the same shape, but

the oscillations are a bit larger in the high pressure case compared to the lower, as can be

expected.
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Figure 4.16: Charge density profile for Li2CO3 at T = 1300 K for P ≈ 7 kbar (dashed line,
blue) and P ≈ 11 kbar (full line, red).

The dipole of each interface, Dleft and Dright, were calculated from the charge density,

ρQ, by the use of the following equations:

Dleft =
∫ 0

−Lz/2
zρQ(z)dz (4.3.2)

Dright =
∫ Lz/2

0
zρQ(z)dz (4.3.3)

Given that the system is at equilibrium, these two values should be equal to each other.

Small deviations due to statistical errors, however, might occur.

As described previously, the simulation was done in stages. Each stage consisted of 105

steps, i.e. 0.1 ns. The first two stages were used for equilibration. The remaining 8 stages
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was divided into 4 blocks, e.g. stage 3 and 4 becomes one block, 5 and 6 another one and so

on. The density profile was averaged for each block.

To get the dipole, for each block an average was taken of |Dleft| and |Dright|. Thus for

each system, four values was acquired for the dipole. These were averaged to give the values

seen in Table 4.17. The error bar was computed as 2 times the standard deviation of the

four values and then divided by
√
N , where N is the number of blocks.

The simulation of Li2CO3 at 1300 K and 1500 K where run up to 1.4 ns, meaning six

blocks were used for production instead of four.

Table 4.17: Interfacial dipole at different temepratures for different systems.

System D (1300 K) [D/nm2] D (1400 K) [D/nm2] D (1500 K) [D/nm2]
Li2CO3 2.56 ± 0.07 2.66 ± 0.08 2.73 ± 0.08

Li2CO3 (area × 2) 2.69 ± 0.06 - -
Li2CO3 (area × 4) 2.72 ± 0.05 - -

LiNaCO3 2.56 ± 0.09 - -
Na2CO3 2.39 ± 0.12 2.42 ± 0.06 -
K2CO3 1.77 ± 0.06 1.84 ± 0.06 -

The trend seems to be that the dipole increases with increasing size asymmetry, as

predicted by the idealised model. However, this is not conclusive in all cases, e.g. from Li

to Na at 1300 K, due to the error bar. Still, at 1400 K, the error bar is sufficiently low

that there is a noticeably change in the dipole from Li2CO3 to Na2CO3. One can therefore

conclude that in general, the dipole becomes smaller as the size of the cation becomes more

similar to the size of the anion.

It also seems that the dipole increases with temperature, but this is not conclusive for all

systems due to the fact that the error bar is larger than this increase. However, in the case

of the dipole for Li2CO3 at 1300 K vs. 1500 K, the error bar is sufficiently low that there is

strong reason to believe the dipole increases with temperature. This was also predicted by

the idealised model in Figure 3.5, giving credibility to this observation.

The information from this simulation is valuable in order to give an estimate of the

simulation time required to get a signal beyond the error bar of the Seebeck coefficient when

96



doing non-equilibrium simulations in which the two walls are at different temperatures. In

the experiments by Børset et al. [26], the temperature difference between the electrodes

were smaller than 20 K in order to avoid temperature corrections in the Seebeck coefficient.

Assuming the blocks of 2 × 105 steps are independent enough from each other to neglect the

correction due to autocorrelation time, the error bar decreases by a factor 1/
√
N . This means

that quadrupling the simulation time will only halve the error bar. This would mean that

in general, longer simulation times are required if the temperature gradient is low compared

to when it is high. Still, with a longer simulation, e.g. close to 1 ms, which is feasible with

today’s technology, the error bar could be small enough to give a reasonable estimate of the

Seebeck coefficient even with a relatively low temperature gradient.

4.4 Summary and outlook concerning alkali carbon-

ates

Equilibrium molecular dynamics simulations have been carried out for an alkali carbonate

model. The simulations were done of homogeneous samples of the alkali carbonates Li2CO3,

Na2CO3 or K2CO3. Simulations were also done of these molecules confined between two

parallel walls made of neutral particles, whose interaction with the fluid ions is the same for

the two walls. All particles follow Newton’s equations of motion.

From the homogeneous systems, structural properties like the structure factor and ra-

dial distribution function were computed, in addition to transport properties like diffusion

coefficient, thermal and electrical conductivity.

The simulations of the heterogeneous systems provides a microscopic view of electrifi-

cation at a solid/liquid interface. We explore, in particular, the dependence of the dipole

at each interface for the different alkali carbonates. The temperature dependence D(T ) of

the interfacial dipole was computed. There is reason to believe that this property increases

with temperature, but because of the large errorbar our results are not conclusive. Longer

simulations would be required to run in order for this to be said with more certainty. Or the
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three carbonates tested, Li2CO3 was found to have the highest interfacial dipole. This was

also the salt with the highest anion/cation size-asymmtry tested.

It is clear that while the model by Janssen and Tissen is able to predict structural

characteristics and give a reasonable estimate of transport properties, there is still room for

improvement. From our ab-initio computation, a new force field can be designed which is

based on more accurate quantum chemical methods.

Our preliminary computations of alkali carbonates between planar walls shows the pos-

sibility to get an estimate of the Seebeck effect using simulation times feasible with today’s

technology. Before extensive and expensive computations are to be done, however, a better

model for the wall should be developed. This is currenctly underway, mainly in the form of

including image charges, using a many-body potential for the metal electrode [95] and using

Monte Carlo to account for the non-Hamiltonian dynamic of the atomic charges.
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Chapter 5

Conclusion

My thesis is devoted to the computational investigation of the microscopic mechanisms

underlying the so-called Seebeck effect in ionic, and thus electrically conducting, classical

fluids. These fluids usually consists of inorganic and organic molten salts, or of electrolyte

solutions.

The Seebeck effect, in turn, consists of the onset of an electrostatic potential difference

across a conducting sample joining two regions at different temperatures, TL and TR (L

and R for left and right, respectively), and thus subject to a temperature gradient. The

electrostatic potential difference ∆φ is proportional to the temperature gradient and to the

length of the sample, or, equivalently, to the temperature difference TL − TR. The ratio:

αS = ∆φ
TL − TR

at zero electric current is the so-called Seebeck coefficient, and summarises all the material-

specific and microscopic properties of the sample.

Thermodynamics and statistical mechanics considerations show that the Seebeck effect

is intimately related to entropy and its transformations in the sample. For this reason, of

all conducting materials, including metals and doped semiconductors, we focus our analysis

on ionic fluids, since we expect entropy to be large for these systems, possibly leading to

large Seebeck coefficients. This expectation is borne out by the results of recent experiments,

showing particularly high Seebeck coefficients for inorganic molten salts [26], and especially

for organic ionic compounds that are liquid at room temperature [6]. The applied interest of

these observations are apparent, because efficient devices based on the Seebeck effect could
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contribute a significant amount of electric power exploiting waste heat made available at

relatively low temperature by natural sources (geothermic, for instance) and by industrial

processes.

In my thesis I used molecular dynamics simulation based on idealised or empirical force

fields to estimate the Seebeck coefficient of classical fluids, considering both a very idealised

model of isotropic rigid ions, as well as chemically detailed models of molecular ionic liquids.

In these simulations, confining electrodes are described in terms of a few layers of isotropic

neutral particles, tethered to fixed positions on a regular hexagonal lattice by harmonic

springs whose spring constant is meant to reproduce the elastic properties of a solid surface.

In the case of the idealised model, the results of our simulations are apparently able to

predict the value of the Seebeck coefficient, despite the challenge of large thermal fluctuations

of this quantity. To the best of our knowledge, this is the first time the Seebeck effect is

reproduced by direct simulation of an ionic conductor under non-equilibrium, steady state

conditions.

The detailed analysis of simulation trajectories shows that the onset of an electrostatic

potential difference under a thermal gradient is accompanied by the formation of a small net

charge at each interface, whose sign is such to ensure the overall charge neutrality of the entire

sample comprising the two interfaces. Their presence violates a well known theorem valid for

interfaces of Coulomb fluids at equilibrium [17] but fully comply with statistical mechanics

results and conjectures on systems at steady state conditions [14, 96]. The net charges

of opposite sign at the two opposite interfaces are also required to provide an “internal”

electric field needed to prevent the flow of charge accompanying the flow of heat, as required

by Onsager’s reciprocal relations.

The extensive set of simulations for the idealised model shows a wealth of details on

the properties of fluids at interfaces, both at equilibrium, and especially at steady state

conditions, that have been very seldom investigated by direct non-equilibrium simulations.

We find, for instance, that the surface dipole at electrified interfaces grows with increasing

temperatures, reflecting the decreased ability of the fluid to screen perturbations, in this
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case represented by the solid-like wall. The results also emphasise the role of ion size and

(absolute) charge asymmetry between anion and cation in the determination of the interfacial

dipole.

The investigation of equilibrium and steady state properties of the idealised ionic fluid

model has been complemented by extensive simulations of a molecular ionic fluid meant to

reproduce the properties of molten alkali carbonates, which are the system investigated by

Prof. S. Kjelstrup using experimental approaches. This relatively simple molecular ionic

system represents a step towards the computational investigation of even more complex

fluids, consisting of organic ionic compounds that are liquid at ambient conditions. Because

of time and computer resource considerations, we limited our exploration of liquid carbonates

to equilibrium conditions, but we analysed both homogeneous and inhomogeneous samples.

The simulations for the homogeneous systems were carried out to obtain thermodynamic

properties, and to estimate linear transport coefficients such as ionic diffusion, electrical

and heat conductivities, that are needed to analyse the Seebeck process. Simulations of

inhomogeneous samples provided a large amount of information on electrified interfaces

described at near-chemical accuracy by empirical force fields. Thus, we computed the number

and charge density distribution perpendicular to the solid/fluid interface, the associated

dipole and electrostatic potential drop, as well as simple dynamical properties such as the

ionic diffusion parallel and perpendicular to the interface.

In summary, my Master Thesis work expands significantly the quantitative information

made available by simulation on electrified interfaces at equilibrium and especially steady

state non-equilibrium conditions. Nevertheless, it represents only a first preliminary state in

the investigation of realistic models of electrified interfaces at non-equilibrium conditions, a

subject that certainly has many surprises in store. The first obvious extension of my work will

be the investigation of room temperature organic ionic liquids. A second direction for further

work is the systematic enhancement of our computational capability, concerning both better

implementations of our programs to simulate ionic systems as well as better force field models.

A third line of development could concern the development and validation of semi-analytical
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models able to predict the Seebeck coefficient for broad classes of homologous materials. The

most likely candidates for this role is the square gradient model, already applied in Ref. [97]

(see also Ref. [98]) to model transport in fluids at steady state conditions.

Side investigations carried out or started during my project included the ab-initio charac-

terisation of molecular systems of interest for my study, and the modelling of image charges

at the fluid/metal interface. The development and results of these additional studies are

briefly described in this thesis.
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Appendix A: Density functional theory

In my project I used density functional theory (DFT) in the Kohn-Sham (KS) formula-

tion [99] to compute the ground state energy and geometry for alkali-carbonate ions and

molecules, as well as vibrational frequencies and atomic charges. For this reason, I collect

here a few definitions and considerations on the theoretical basis of this approach.

Density functional theory is a fundamental approach to compute the ground state energy

of an inhomogeneous many-electron system. It relies on two theorems by Hohenberg and

Kohn, and by Kohn and Sham. It provides, in turn, a formal basis for the determination of

the potential energy surface of many-electron systems in the adiabatic approximation.

Let us consider N electrons in an external potential V (r), which in most cases will

represent the interaction the electrons have with the atomic cores in the system.

The Hohenberg and Kohn theorem [100] concerns the existence and uniqueness of a

functional E[ρ] of the electron density {ρ(r)}, whose minimum value is the ground state

energy E0 of the electron system. The Kohn and Sham theorem [101] has a constructive

character, showing how to build such a functional. More precisely, it shows how to make

approximations to the exact functional, which is unknown.

The true functional, however, has to contain the kinetic energy T (N) of the electrons,

their interaction Uext =
∫
V (r)ρ(r)dr with the external field, and the mean field electron-

electron interaction (Hartree energy) given by:

UHartree = 1
2

∫ ρ(r)ρ(r′)
| r− r′ |

drdr′ (A.1)

More subtle contributions, arising from the Fermi statistics (exchange energy) and from

the collective motion of electrons in the ground state (correlation energy) are collected into

a further term, named exchange and correlation energy. This term is left unspecified, apart

from stating that it is a functional of the electron density.

103



The external potential and Hartree energies are also obvious and explicit functionals of

the density, and the crucial step is now to provide a viable approximation for the kinetic

energy. Such approximations have been proposed already in the early stages of quantum

mechanics (Thomas and Fermi), but have never been successful, despite several refinements,

for instance by Dirac. The crucial contributions by Kohn and Sham has been to introduce

auxiliary functions {ψi(r), i = 1, ..., N} (Kohn-Sham orbitals), playing the role of single

electron orbitals, entering the computation of the electron density according to:

ρ(r) =
N∑
i=1
| ψ(r) |2 (A.2)

The kinetic energy Ts of these orbitals:

Ts[{ψi(r)}] = −1
2

∫ {
N∑
i=1

ψ∗i (r)∇2ψi(r)
}
dr (A.3)

provides an approximation to the true kinetic energy far better than any previous recipe.

Nevertheless, Ts should never be identified with the true kinetic energy, and a (hopefully

small) kinetic energy term T − Ts is now included into the exchange-correlation terms.

The Kohn-Sham functional therefore reads:

EKS[ρ] = −1
2

∫ {
N∑
i=1

ψ∗i (r)∇2ψi(r)
}
dr+

∫
V (r)ρ(r)dr+ 1

2

∫ ρ(r)ρ(r′)
| r− r′ |

drdr′+UXC [ρ] (A.4)

Only the last term, i.e. UXC , needs to be approximated. To simplify the task, this term

is usually expressed as the integral of an exchange-correlation energy per particle εXC :

UXC =
∫
ρ(r)εXC [ρ, r]dr (A.5)

where the XC-energy density ρ(r)ε[ρ, r] is a functional of the density over the entire system.

Fair approximations for the exchange energy as a function of the density have been

known for a long time (Slater), and are exemplified by the simple (and rather inaccurate)
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local expression:

εX [ρ(r)] ∝ ρ(r)(1/3) (A.6)

leaving the correlation energy UC [ρ] to be approximated.

At this point, given a suitable approximation for the exchange-correlation energy density,

the determination of the ground state energy of the electron system requires the minimisation

of the Kohn-Sham functional with respect to the electron density. Since, however, the density

itself is written in terms of Kohn-Sham orbitals (see eq. (A.2)), the variational principle is

applied to the individual Kohn-Sham orbitals, whose orthogonality and normalisation will

be imposed by a set of Lagrange multipliers λij. In full analogy with the Hartree-Fock case,

the set of N ×N Lagrange multipliers λij can be diagonalised into a set of N multipliers, as

specified below.

The functional derivative is:

1
2
δEKS[ρ]
δψi(r) = −1

2∇
2ψ(r) +

[
Vext(r) +

∫ ρ(r′)
| r− r′ |

dr′ + δUXC [ρ]
δρ(r)

]
ψi(r) (A.7)

and the minimum conditions are given by the well known set of Kohn-Sham equations:

− 1
2∇

2ψ(r) +
[
Vext(r) +

∫ ρ(r′)
| r− r′ |

dr′ + δUXC [ρ]
δρ(r)

]
ψi(r) = λiψi(r) (A.8)

where the diagonal Lagrange multipliers have the physical dimensions of an energy, and

are known as Kohn-Sham eigenvalues. The operator applied to the orbitals (Kohn-Sham

Hamiltonian) depends on the solution (i.e. the ground state density), and therefore these

equations need to be solved self-consistently.

The explicit solution of these equations requires the detailed specification of an exhange-

correlation approximation, and a practical way to solve the Kohn-Sham equations.

Many approximations for UXC are available [99]. From the simple local density approxi-

mation, to gradient corrected functionals and hybrid functionals. Most of our computations

relied on the PBE approximation, that represents an accepted standard for this type of com-

putations. Test computations, however, have been done also with other approaches, from
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Hartree-Fock to a standard hybrid functional (B3LYP).

The solution of the Kohn-Sham equations requires the expansion of the orbitals on a finite

basis, represented by plane waves or by localised atomic-like functions (Gaussian functions,

in our case). Once this is done, the set of coupled equations can be expressed in a finite

matrix form, and diagonalised by a standard routine such as those available in LAPACK.

The basis sets of practical interest, however, are very large (up to many million coefficients).

This prevents the full diagonalisation of the KS matrix, not even to say the full solution of

the problem involving the iterative part.

An alternative and far more efficient way, still relying on a finite expansion of orbitals

on a basis, relies on the explicit inclusion of this expansion into the KS functional. This

replacement transforms the functional into a function of the multitude of expansion co-

efficient. Focusing now on the minimum property of the KS orbitals, we determine the

electronic ground state at fixed geometry of the nuclei by direct minimisation of the func-

tional. Several methods are available to carry out the task of minimising a function of many

independent variables, and we selected a conjugate gradient method as implemented in the

CPMD package.

The state of the art in this type of computational approaches is described in Ref. [102].
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Appendix B: Dimensionless variables

Following the standard practice in computations and in theory (as opposed to experiments),

in presenting my results I will introduce dimensionless quantities, dividing the quantities

that are computed by a natural scale of the same physical dimensions. This will make

the results suitable to fit a wide variety of different systems. The conversion to standard

units can be carried out afterwards, multiplying each quantity again by a scale of the same

dimensionality, this time measured in fixed units.

The following reduced units, denoted by superscript *, will be used in this thesis:

T ∗ = T
kB
ε

(B.1)

ρ∗ = ρσ3 (B.2)

P ∗ = P
σ3

ε
(B.3)

x∗ = x/σ (B.4)

t∗ = t
(

ε

mσ2

)1/2
(B.5)

q∗ = q√
4πε0σε

(B.6)

E∗ = E
√

4πε0σε (B.7)

D∗ = D√
4πε0σ3ε

(B.8)

These dimensionless units will be used in Chapter 3, but the superscript * will be dropped.

In places where σ is used in equation for the reduced variables, σ++ will be used.
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[91] J. Trullas, J. A. Padró, Physical Review B 55(18), 12210 (1997).
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