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Problem Description 
 
 
Heading: Ultimate strength and capacity assessment of ice class vessel operating in ice 

  

1.       A review of ice properties and alternative methods for representing ice should be carried 

out. A material model implemented by a previous MSc student in cooperation with DNV GL 

in 2013 may be used as basis for the review.  

2.       A brief study on non-linear structural analysis and its application on ultimate capacity 

strength assessments of frame structures in ships should be carried out. 

3.       Establish a finite element model of a part of the bow section of a selected ice-strengthened 

vessel. The structural model should extend longitudinally between two bulkheads and 

vertically between the tank top and the main deck. The model will be used for linear and non-

linear structural analysis using ABAQUS. The student may take advantage of previous 

models developed by DNV GL. 

4.       A parameter study should be carried out to evaluate the response in the hull structure when 

subject to a given load patch. The structural model developed in item 3 is to be used as basis 

for the work. Parameters to be varied may be the size of the patch (length and height) and the 

applied position on the hull structure.  

5.       Based on a relevant impact scenario, a quasi-static non-linear analysis is to be carried out of 

the hull structure under extreme ice loading (loading and unloading). The ultimate capacity of 

the structure is to be evaluated in terms of yielding, permanent sets and plastic straining. 

Design loads from ice class rules may also be looked into.  
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Abstract

In an ongoing project between DNV GL and a customer, the ultimate strength and
damage on a ship exposed to ice loading are to be assessed. The vessel has the DNV
GL class notation Ice(1A*), but is now considered for operation in more severe ice
conditions than it initially was designed for. The purpose of the thesis is to analyze
the response of a hull model subjected to different loads and to determine the residual
capacities after first yield. Ice properties and numerical models will also be reviewed.

Ice as a material is complex because its properties are strongly dependent on param-
eters such as strain, strain rate, porosity, salinity, crystal structure and stress-state.
Moreover, the load distribution exerted by ice on impacting structures is highly irreg-
ular due to brittle failure, including fracturing, crushing and spalling. These prop-
erties make ice difficult to model. The developed numerical models all have their
flaws and there are currently no ”verified” material models for ice, despite decades
of research. The main issue seems to be their ability to reproduce the irregular load
distributions.

Class rules use a simplified approach where it is assumed that all energy will be
dissipated by the ice, implying crushing of ice. When exceeding design load level,
the hull will start to deform plastically and the residual capacity will be utilized.
Ice class vessels are actually expected to experience loads somewhat larger than the
design loads, and some deformation is accepted. The rules do, however, only have a
single design point at first yield and there are no further requirements on the residual
strength of the hull.

A finite element model of a part of the bow was considered. Rectangular, uniform
pressure patches of different sizes were applied at different locations of the model.
Linear response analyses were executed and the capacity with respect to first yield
was determined. The highest stress levels occurred in the stiffeners, and loads cen-
tered the farthest away from the bulkheads were found to be the most critical. Linear
capacities ranged between 1.3 MPa and 3.7 MPa. It was also found that the rule
design loads are similar to the first yield capacities calculated.

The residual capacities were determined by doing nonlinear finite element analyses.
A user defined ultimate strength criterion based on maximum allowable permanent
deformations was made. Permanent lateral deformation at stiffener midspan of 0.5
% or 1.0 % of the stiffener length was set as a criterion. The idea was to allow
deformations that can be regarded as acceptable, and the strain levels were found
to be well below material capacity using these criteria. The hull showed to exhibit
ultimate strengths in the range of 1.5 to 3.6 times the linear capacity, depending
on the load distribution. Two boundary conditions were considered, and they gave
equal results.

Even though the hull exhibits large residual capacities after first yield, it is questioned
whether this alone can be used as leverage for allowing the vessel to operate in more
severe ice conditions than it was designed for. Ice loads larger than design loads are
expected in the first place, so some of this residual strength is taken into account by
the class notations. Numerous damages on ice class vessels have been reported, so it
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is clear that the simplified method used in class notations has its weaknesses.

For future work it is recommended to do analyses with nonuniform pressure patches,
which is more realistic and more conservative. Doing long-term full scale measure-
ments is also recommended. A distribution function can be fit to the the measured
loads and from this a new design load can be determined using a probabilistic ap-
proach. Using the capacities calculated in this thesis, it can be determined whether
the vessel can operate in harsher ice conditions than it was initially designed for or
not.
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Sammendrag

I et p̊ag̊aende prosjekt mellom DNV GL og en kunde skal maksimal skrogstyrke og
skader p̊a et skipsskrog utsatt for islaster vurderes. Fartøyet har DNV GLs klasseno-
tasjon Ice(1A *), men det vurderes n̊a om det er forsvarlig å la skipet operere i verre
isforhold enn skipet er designet for. Formålet med oppgaven er å analysere respon-
sen n̊ar skroget utsettes for ulike laster og å bestemme reststyrke etter første flyt.
Isegenskaper og numeriske modeller for is skal ogs̊a bli gjennomg̊att.

Is som materiale er komplekst ettersom egenskapene er sterkt avhengige av parametre
som tøyning, tøyningshastighet, porøsitet, salinitet, krystallstruktur og spenningstil-
stand. Lastfordelingen under sammenstøt er høyst ujevn p̊a grunn av isens sprø
egenskaper som resulterer i sprekkdannelser, knusing og at biter knekker av. Disse
egenskapene gjør at is er svært vanskelig å modellere. Eksisterende materialmodeller
for is er mangelfulle, og det finnes ingen ”verifisert” materialmodell p̊a tross av flere
ti̊ar med forskning. Hovedproblemet med modellene er evnen deres til å reprodusere
de ujevne trykkfordelingene som oppst̊ar under sammenstøt.

Klasseregler bruker en forenklet metode hvor det antas at all energi absorberes av
isen, noe som betyr at isen knuses. Ved en overskridelse av dette lastniv̊aet vil
skroget deformeres plastisk, og noe av reststyrken utnyttes. For fartøy med isklasse
forventes det faktisk at laster større enn designlastene oppst̊ar under seiling, ettersom
permanente deformasjoner er akseptert. Reglene bruker likevel er bare ett enkelt
designpunkt, som er første flyt, og det er ingen ytterligere krav til reststyrke.

Beregninger ble utført p̊a en elementmetodemodell av en del av baugen. Modellen
ble lastet med nesten-rektangulære, jevnt fordelte trykk i ulike størrelser, sentrert p̊a
forskjellige steder av modellen. Lineære responsanalyser ble utført og last ved første
flyt ble beregnet. De høyeste spenningsniv̊aene forekom i stiverne og laster sentrert
lengst bort fra skottene viste seg å være mest kritisk. De lineære lastkapasitetene
er mellom 1,3 MPa og 3,7 MPa. Regellastene var tilsvarende kapasitetene som ble
beregnet fra de lineære analysene.

Restkapasitet ble beregnet ved å utføre ikke-lineære elementmetodeanalyser. Det ble
laget et maksimalstyrkekriterie der permanent deformasjon midt p̊a en stiver maksi-
malt kan være 0,5 % eller 1,0 % av stiverlengden. Ideen var å tillate deformasjoner
som kan anses som akseptable og tøyningsniv̊aet var ved bruk av dette kriteriet
være langt under materialkapasiteten. Skroget viste seg å ha en maksimalstyrke i
omr̊adet fra 1,5 til 3,6 ganger lasten ved første flyt, avhengig av lastfordeling. To
grensebetingelser ble anvendt og de ga relativt like resultater.

Selv om skroget har stor restkapasitet etter første flyt, stilles det spørsm̊al ved om
dette alene er nok for å tillate operasjon i tyngre isforhold enn det skipet var designet
for. Islaster større enn designlastene er forventet, s̊a noe av restkapasiteten er allerede
tatt med i beregningene av klassereglene. Det rapporteres jevnlig om skader p̊a fartøy
med isklasse, s̊a den forenklede metoden som brukes i klasseregler har sine svakheter.

For videre arbeid anbefaler forfatteren å gjøre analyser med laster med ujevn trykkfordel-
ing, hvilket er mer realistisk og konservativt. Det anbefales ogs̊a å gjøre langtids full-
skalam̊alinger. En fordelingsfunksjon kan tilpasses m̊aledataene og en ny designlast
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kan bestemmes ut fra en sannsynlighetstilnærming. Kapasitetene beregnet i denne
oppgaven kan da sammenlignes med den nye designlasten og det kan avgjøres om
fartøyet kan operere i tyngre isforhold enn det var konstruert for.
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1 Introduction

Winter navigation started in the 19th century when the first ships got steam and
diesel propulsion systems. In the beginning, ice strengthened ships and ice breakers
were only able to extend the summer season, but as the technology evolved and
experience was gained all year operation became a reality. With increased winter
navigation came the need for regulations for the structures and for operations. These
regulations have been revised over and over again as insight and experience on loading
and damages have been gained (Riska & Kämäräinen, 2011). Ice loading can be
severe and there are numerous examples of structures critically damaged due to ice
loading (Marchenko, 2014). Design rule requirements have been made to prevent
such damages, but at the same time there is a trade off between safety and costs.
Class notations only use a single design point at first yield, and limited information on
post-yielding response and ultimate strength of hulls is therefore available. Damages
are at the same time accepted to some extent, and that is a challenge. Marine
operation in ice infested waters is expected to increase and the frequency of reported
damages is already high, so information on the post-yielding response of ship hulls
exposed to ice loading is of interest for ship owners and classification societies.

1.1 Background and Motivation

In an ongoing project between DNV GL and a customer is the goal to assess whether
a given vessel can operate in more severe ice conditions than it was initially designed
for. Many factors have to be looked into in such an assessment, and among them
are the hull strength and ice loads during operation. Full scale measurements using
strain gauges are scheduled for the upcoming winter season, and to be able to use
this data it is crucial to know the hull response during different loading scenarios.
Information of the loads experienced by the hull can in this way be traced back from
the strain data.

The philosophy behind the structural design of ships and offshore structures is often
based on limit state design (NORSOK, 2004a). Different structural functions are
required to be fulfilled in different scenarios. For a scenario with high probability of
occurrence, high functionality of the structure is demanded, while for events with a
low possibility of occurrence only the most fundamental functions of the structure are
to be fulfilled. As an example, the Serviceability Limit State (SLS) would require that
an oil-rig should be able to continue production at normal rate for weather conditions
experienced ”on daily basis”. In an Accidental Limit State (ALS) scenario, which
has an annual probability of exceedance of 10−4, the only requirement would be that
a catastrophic failure should not occur. Permanent deformations, heavy vibrations
and large displacements of the structure would then be allowed. Because of a weather
dependency, these requirements are location specific for offshore structures.

For ships, however, ALS is not explicitly implemented in the design requirements
for the structural resistance. There are requirements for double hull and watertight
compartments, instead of requirements linked to events such as groundings or colli-
sions. An Ultimate Limit State (ULS) design philosophy is implemented and ships
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operating in open water are typically designed to withstand a North Atlantic 25-year
wave1, no matter where the ship is operating (for DNV GL class rules). Even though
a ship operates in an area with smaller loads and waves statistically, the require-
ments would be the same as for a ship operating in harsh conditions all year around.
For ice going vessels, however, the structural requirements depend on the location
of planned operation, the ice conditions during operation and on travel time in ice
(DNV GL rules for classification: Ships (RU-SHIP), 2016). This means that ships
operating in ice on daily basis have other requirements than ships operating in the
same ice conditions only once a year. It is the responsibility of the vessel operator
to ensure that ice conditions are according to the class notation, and that is by no
means an easy task. There are few ways of knowing the ice thickness without doing
measurements. Snow on top of the ice can hide features, and deep ice ridges can
be present with only minor changes on the surface, not to mention the varying ice
strength. Even if conditions are found to be too harsh, it is not necessarily easy to
just ”drive away”. Another factor which can increase the risk of misjudgments is lack
of experience in winter navigation among operators and crew. Numerous examples
of damages on ice class vessel have been reported, even though they apparently have
been operated in conditions according to its class notations (Kujala & Ehlers, 2013;
Storheim, 2016). Also ice breakers, which are designed to withstand repeated ice
loading of the worst kind, have been prone to severe damages (Marchenko, 2014).

It is evident that the probability of experiencing loads exceeding the design values is
higher for vessels operating in ice than for vessels operating in open water. Still, there
is no requirement on residual strength after yielding. What will be the consequences
if a vessel operator misjudges the ice conditions? Will a catastrophic failure occur,
or can the ship take the additional loading? These questions are rarely assessed in
design of an ice class vessel, in spite of the relatively high probability of exceeding
design loads. It is therefore of great interest for DNV GL to get an insight in the
response of a ship hull loaded above the design load and to determine the residual
strength.

1.2 Scope and Limitations

The structural response of a DNV GL classified ship exposed to different loads will
be assessed in this thesis.

In order to get an understanding of the behavior of ice and what happens when a
structure and ice interact, detailed information on the material properties of ice will
be introduced to begin with. Numerical models and analysis methods relevant for
assessing ship-ice interactions will be presented, even though there will not be time
to implement one of these methods in the analyses. Ice class rules philosophy and
design loads will be introduced.

Some parts of the underlying theory behind the finite element method will be pre-
sented. Different types of nonlinearities will be explained, and relevant solution
schemes, elements and material models used in the finite element method will be in-

1A 25-year wave is a wave with a return period of 25 years.
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troduced. The finite element model of the hull used in the analyses will be presented.
Local loads will be assessed so only a part of the starboard bow will be analyzed.

Procedures and loads used in the different analyses and the results obtained will be
presented. Different loads and boundary conditions shall be assessed and rule design
loads shall also be calculated. As time is limited, only uniform loads will be looked
into. Both linear and quasi-static nonlinear analyses will be done, and the ultimate
strength for different load cases based on a self made criterion shall be obtained.
Results and procedures, along with applied boundary conditions shall be discussed.

Conclusions and recommendations for further work will be made at the end of the
thesis. Scripts and other non-essential information shall be included in the appen-
dices.

Readers are expected to have knowledge within the field of structural engineering on
graduate level, and having knowledge within marine engineering is an advantage.

Note

The identity of the ship is kept confidential upon request by DNV GL. No drawings
or ship documents will be presented for that reason. The Abaqus .cae-file could
not be distributed, but the finite element models used are attached electronically
through Abaqus input files (Job-LoadPatch-W0-H0-nonames.inp) (Appendix D).
Sensitive names have been changed so that the scripts attached (Appendix A) may
not work with the given input-files.

Note

The author wrote a project thesis on material properties for ice and on numerical
models for representing ice last autumn (Mork, 2015). At that time, the topic of
the master thesis was planned to be on ship-iceberg impacts and the project thesis
was written with that in mind. Later the intended supervisor at DNV GL quit,
and the topic for this master thesis had to be changed. In spite of this, parts of the
project thesis are still relevant. Section 2 and 4 have been taken from the project
thesis (Mork, 2015), but minor changes, removals and additions have been made
where necessary.
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2 Properties of Ice

2.1 Ice Features

It is common to divide ice into different classes such as first year, second year and
multiyear ice, sea ice, freshwater ice and iceberg ice (MANICE., 2005). Iceberg ice is
glacial ice that has drifted off to sea and its properties are somewhat different from
those of sea ice. Glacier ice is formed when snow is compressed under its own weight
over long periods of time. Sintering and creep gradually solidify the snow, such that
polycrystalline, granular ice is formed. The crystals’ c-axis is for ”young” glacial ice
orienting in random directions, making the ice isotropic (G. Timco & Weeks, 2010).
However, the structure changes over time, and some preferential orientation of the c-
axis develop (Schulson & Duval, 2009, p. 30). Still, iceberg ice was by T. J. Sanderson
(1988) considered as an isotropic material, and this simplifying consideration have
been adopted by others (Ferrari et al., 2015; Liu et al., 2011). More on glacial ice
formation can be found in Creep and Fracture of Ice (Schulson & Duval, 2009, ch. 3).

Sea ice is formed when the temperature is sufficiently low for a long period of time
and there is limited movement in the sea. The top layer consists of smaller crys-
tals orienting in random directions. For further growth, the crystals’ c-axis will be
aligned, making the ice anisotropic. Due to movement of the ice sheet, ice ridges may
be formed. As two layers of ice are pushed towards another, the ice sheet will break
in smaller parts and pile up in a so-called ice rubble. An example of an ice ridge seen
from above is found in Figure 2.1. The keel depth of ice ridges have been measured
up 50 meters (Høyland, 2015). Still, the sail height usually is only a fraction of the
depth, making them hard to detect. When the ice rubble freezes, a consolidated
layer is formed. This layer may be several times thicker than the surrounding ice
(Høyland, 2015). Passing heavy ice ridges may require repeated ramming, and even
ice breakers do in special cases need to keep on ramming for hours at a time only to
advance a ship length (Sawhill, n.d.). Ice hammocks are ridges localized around a
point instead of an line, making them less of a problem to avoid if detected. Rafted
ice is level ice that is pushed on top of another layer of level ice. Though ice ridges
can be more severe, operating in rafted ice will in general increase loads and friction
resistance significantly.

Iceberg size varies from thousands of square kilometers to smaller ones covering only
some square meters (MANICE., 2005). When calved off from a glacier, they can take
on many different shapes (Figure 2.2). Sharp edges and irregular shapes are common,
and melting, turning and breaking make the icebergs change shape during their
lifetime. Icebergs are in general inhomogeneous with respect to mechanical properties
(Storheim et al., 2012). The temperature distribution in icebergs is characterized by
a temperature gradient from the surface to a thickness of approximately 3 meters
while central parts hold a more or less constant temperature (Løset, 1993). Impurities
may be present in the ice, also affecting the inhomogenousity.
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Figure 2.1: Example of a first-year sea ice ridge in the Barents Sea 2005 (Høyland,
2015).

2.2 Mechanical Properties of Ice

Since the behavior of ice is dependent on many parameters, it is not straight forward
to state its mechanical properties. An attempt to present some of the more important
properties and dependencies with respect to engineering problems follows.

The density of iceberg ice varies between 600 kg
m3 for firn to about 920 kg

m3 (Schulson
& Duval, 2009, p. 25). Sea ice is filled with saltwater pockets and may therefore have
a higher density. For freshwater ice, brine pockets or channels will not be present,
but air pockets will (Schulson & Duval, 2009, ch. 3). As Figure 2.3 and 2.4 illustrate,
the strength and Young’s modulus decrease with increasing porosity (G. Timco &
Weeks, 2010; Schulson & Duval, 2009). To be on the conservative side, it may be
argued that properties of low porosity, high density ice should be used for design
purposes if other information is not available. In that case the Young’s modulus will
be in the range 9-10 GPa and the density approximately 900 kg

m3 . Sea water ice will
in general be somewhat denser and have a slightly smaller Youngs’s modulus. These
properties depend on other parameters as well, so care should be taken when stating
general values.

Ice behaves elastically, plastically and viscously. Arakawa and Maeno (1997) mea-
sured the maximum tangent modulus of fresh-water ice deformed with a strain rate
of 10−4s−1 to be only a seventh of the Young’s modulus, which illustrates how big
the influence of viscosity is. Mechanical properties such as tensile and compres-
sion strength are strongly dependent on the strain rate (Schulson & Duval, 2009;
G. Timco & Weeks, 2010; Gold & of Building Research, 1977). Figure 2.5 and 2.6
show that the compressive strength is a strong function of the strain rate, and that
ice exhibits strain rate hardening. For a strain rate, ε̇, larger than approximately
10−3s−1, a slight strain rate softening is reported (Figure 2.5) (Schulson & Duval,
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Figure 2.2: Iceberg shapes (MANICE., 2005).

Figure 2.3: Experimental data showing a decrease in strength for increasing poros-
ity (G. W. Timco & Frederking, 1986).
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Figure 2.4: Experimental data showing a decrease in Young’s modulus for increas-
ing porosity (Langleben & Pounder, 1961).

2009, ch. 11.3). However, other data imply that there is continuous strain rate hard-
ening also for high strain rates (Schulson & Duval, 2009, ch. 11.5), see Figure 2.8.

There is a transition between ductile and brittle behavior (Schulson & Duval, 2009;
Gold & of Building Research, 1977), illustrated in Figure 2.7. At lower strain rates,
creep and ductile behavior govern deformation. Strain-stress curves are smooth, and
the ice experiences some strain softening and/or stress relaxation before failure. For
brittle behavior at higher strain rates, the stress-strain curve is not as smooth and
strain softening is not present before failure. Note that this is valid for unconfined
ice, as confining pressures may cause a brittle to ductile transition (Schulson &
Duval, 2009, p. 242). For high confining pressures, compression-failure will occur
as non-frictional or plastic shear fault, in contrast to the frictional or Coulombic
shear fault occurring for lower confining pressures (Schulson & Duval, 2009, p. 273).
Plastic deformation happens mainly by gliding of dislocations in the basal plane,
yielding greater strength than for Coulombic failure. Details on this can be found
in Creep and Fracture of Ice (Schulson & Duval, 2009, p. 272). This explains why
the compression strength is much higher for confined than for unconfined ice. Also,
the sensitivity to hydrostatic pressure is much higher in the brittle regime than in
the ductile, because high confining pressures may trigger plastic and more ductile
behavior, in spite of high strain rates (Schulson & Duval, 2009).

Brittle behavior will typically dominate in higher speed impacts such as for a ship
operating in ice, due to high strain rates. Fracturing, cracking, spalling, crushing and
extrusion will then occur during deformation. Fracture toughness is an important
factor for determining the amount of energy the ice can absorb. It increases with
increasing density/decreasing porosity, making denser ice stronger. Many parameters
influence the fracture toughness, which is explained in more detail by Schulson and
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Figure 2.5: Experimental data showing compressive strengths for different strain
rates of freshwater ice (Gold & of Building Research, 1977).

Figure 2.6: Strain rate and temperature dependency of compressive strength of
sea ice based on experimental data (G. Timco & Weeks, 2010). The ice surface is
assumed to have the same temperature as the air.

9



2 Properties of Ice

Figure 2.7: Illustration of ductile to brittle transition as a function of strain rates
with schematic stress strain curves(Schulson & Duval, 2009, ch. 11).

Figure 2.8: Increasing compressive strength for increasing strain rate (Schulson &
Duval, 2009, ch. 11).
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Figure 2.9: Brittle compression strength of unconfined
fresh-water ice (Schulson & Duval, 2009, ch. 11).

Duval (2009, ch. 9). Cracking can cause pieces of different sizes to spall off from the
main body. If pieces are not extruded away, further microcracking cause the ice to
crush and powderize, before it eventually will be extruded away by high pressures.
Crushing ice is energy demanding compared to spalling off bigger pieces.

Strength, elastic constants and other properties of ice are temperature dependent.
With a temperature decrease from 0° C to −50° C the stiffness, or any other funda-
mental elastic constant, increases only about 5 % (Schulson & Duval, 2009, p. 56) and
with a temperature decrease from 0° C to −30° C, the tensile strength of columnar-
grained freshwater ice only increases 10 % (Schulson & Duval, 2009, p. 216). The
strength curves in Figure 2.6 also indicate a rather low temperature dependency,
especially when taking into account that salt-water ice exhibits greater thermal sen-
sitivity than fresh-water ice (Weeks, 1962). On the other hand, the experimental data
in Figure 2.9 show a more profound temperature dependency. It is not necessarily
only the temperature at impact that matters, but the temperature history may also
be of importance. Ice made at −50° C may have different properties than ice frozen
at −10° C and then cooled to −50° C right before an experiment. Generally, ice be-
haves more brittle (Erceg, Taylor, Ehlers, & Leira, 2014) and stiffness and strength
increase somewhat with decreasing temperature, but there is some discrepancy on
how big the influence is. The variation with strain rate is, anyways, much greater
(G. Timco & Weeks, 2010).

Another parameter influencing the strength of ice is the confinement level. Note that
”confinement level”, ”confinement pressure” and ”hydrostatic pressure” all have the
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Figure 2.10: Yield stress envelopes for columnar and
granular sea- and freshwater ice in a plane stress state
(G. W. Timco & Frederking, 1984).

same meaning in this thesis. Geometry of both ice and structure during an impact
influence the confining pressure. For ultimate strength tests of unconfined poly-
crystalline freshwater ice with a strain rate of 10−3s−1, typical maximum pressures
measured are in the region of 10 MPa (Schulson & Duval, 2009, ch. 11). For tests
conducted with samples of confined ice, the maximum pressures measured are many
times as large. Local pressures over 70 MPa have been measured during impacts
(I. J. Jordaan, 2001). The reason for this difference is that parts can easily break
off/spall and cracks can propagate in the unconfined tests, but for confined samples
these failure modes are not induced. Instead, plastic deformations, crushing and
recrystallization take place (I. J. Jordaan, 2001), which are modes yielding larger
strengths. Daley, Tuhkuri, and Riska (1998) emphasized the importance of crushed
ice in ice-structure interaction: Both total force and confining pressures increase
with the presence of crushed ice at the interface. The strength of ice is dependent on
the crystal structure. Granular ice, which can be considered isotropic, is in general
weaker than columnar or single crystal ice, which is anisotropic. Examples of differ-
ent yield envelopes are shown in Figure 2.10. Tensile strength of ice is in general only
a fraction of the compressive strength, also seen in the figure. The tensile strength
is typically around 1-2 MPa for granular fresh-water ice and slightly less for sea ice
(Schulson & Duval, 2009, p. 215).

2.3 Pressure Distributions

A ship-ice impact scenario is typically governed by relatively high impact velocities
and thus strain rates. Experiments have shown that the pressure distribution during
an ice-impact is highly nonuniform. Due to spalling and extrusion, some parts of
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(a) Indentation speed: 30 mms−1. (b) Indentation speed: 3 mms−1.

Figure 2.11: Pressure contours showing spatial variation at interface during in-
dentation of sea ice (Sodhi et al., 1998).

the projected contact area do not come in contact with the ice at all. Other areas,
so-called high pressure zones, are subjected to very high local pressures which can
reach over 70 MPa due to the high confinement pressures. On the outskirts of these
high pressure zones pressures are significantly lower. Crushed and powderized ice
extrudes through areas of low or zero pressure during impact. The contour of the
high pressure zone for higher speed impacts between ice and a rigid wall typically
forms a ”line-like” load. This have been observed mostly on small to medium scale
tests, but also in full-scale icebreaker measurements (Riska, Rantala, & Joensuu,
1990). The ”line” is constantly changing shape and position as cracks develop, parts
break off and crushing occurs, but will tend to lie near the center of the impact
area where confinement is high (Figure 2.12). Figure 2.13 and 2.11a show typical
line-like pressure distributions. At very low indentation speeds, and thus low strain
rates, the pressure distributes more evenly because of ductile and creep behavior.
This is shown in the difference in load patterns in Figure 2.11, where the indentor
is moving at different speeds. The higher the strain rate, the more nonuniform and
the more concentrated the high pressure zone will be, which experimental data in
Figure 2.14 indicate: The contact ratio decreases for increasing strain rates. Another
phenomenon occurring during medium strain rate indentation tests, is a surprisingly
regular load fluctuation. As fracturing and flaking happens, load is relieved before
building up again, producing a sawtooth-like force-time curve (I. J. Jordaan, 2001).
For higher strain rates, on the other hand, there is evidence for a more continuous
crushing with less sign of an oscillating load (I. J. Jordaan, 2001).

Several icebreakers have been equipped with pressure sensors or strain gauges on
their hull, obtaining valuable data regarding the pressure versus contact area relation

13



2 Properties of Ice

Figure 2.12: Reproduction on surface profile after indentation
test. The ”line”-profile is clearly visible (Tuhkuri, 1995).

Figure 2.13: Example of line-load experienced during indentation, red indicating
high pressure and white zero (Erceg et al., 2015).

Figure 2.14: Contact ratio versus strain rate (Takeuchi
et al., 2000).
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Figure 2.15: Wide interaction area seen from side (I. J. Jordaan, 2001).

during ramming (I. Jordaan, Li, Sudom, Stuckey, & Ralph, 2005). The data show
that the average pressure is decreasing with increasing nominal contact area and this
relation has been found in a variety of full-scale measurements. Nominal pressure
is the total force divided by projected area. The Weibull-effect can to some extent
be used to explain the decrease in strength for bigger areas: the bigger the contact
area, the bigger the chance of a ”weak link” (T. Sanderson, 1986). Design curves
on the form P = CaD have been fitted to the data (T. J. Sanderson, 1988). P is
global average pressure, a is global area and D and C are fitting-parameters. Ice
class rule design pressures are often based on equations on this form. G. Timco and
Sudom (2013) argued that even though this relation mostly holds true, there are
cases where it does not, and other factors such ice properties or failure mode are
more important. It should be emphasized that these curves do not take into account
the spatial variations of the pressure, but is the average over an area. The full-scale
data showed little dependence on ramming speed, except at very low impact speeds
(I. J. Jordaan, 2001; Ritch et al., 2008). For large ice features, the high pressure
zones may appear more as separate patches, in contrast to the line-like load already
described. An illustration of this pressure distribution is presented in Figure 2.15
and 2.16. As with smaller ice features, there are low pressure zones and areas not
loaded at all. The icebreaker CCGS Terry Fox was equipped with strain gauges to
measure localized pressures during impacts with icebergs (Ritch et al., 2008). Figure
2.17 shows a highly nonuniform pressure distribution measured during ramming of
a 1900 t bergy bit. It was assumed that the pressure distributions within the loaded
cells are uniform, which is not true. The true maximum pressure is thus larger than
the approximately 11 MPa seen in the figure.

Some important parameters/characteristics influencing the behavior of ice, relevant
for ship impact scenarios, are summed up in Table 1. A comment is given and the
importance is rated from high to low.
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Figure 2.16: Wide interaction area seen on impacted area (I. J. Jordaan, 2001).

Figure 2.17: Pressure distribution on icebreaker hull dur-
ing impact with bergy bit of 1900t. The size is approxi-
mately 2.4 m × 2.0 m (Ritch et al., 2008).
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Table 1: Key properties of ice relevant for ship-ice impacts.

Parameter/
Character-
istic:

Comment: Importance:

Strain rate Profound impact on strength, increasing strength with in-
creasing strain rate in general.

High

Hydrostatic
pressure

Increasing strength with increasing hydrostatic pressure.
Coulombic failure for low and plastic failure for higher pres-
sure.

High

Temperature Increasing strength and more brittle behavior with lower
temperatures. There are some discrepancies in the data,
but temperature dependency seems to be rather low.

Medium to
low

Pressure
distribution

Highly nonuniform, with localized high pressure zones expe-
riencing pressures many times the average. High degree of
temporal and spatial variation.

High

Ductile
to brittle
transition

Brittle behavior most relevant for high-speed impacts. In
high pressure zones, however, more ductile tendencies may
be observed.

Low

Structure of
ice

Affects both strength and isotropy. Stronger and anisotropic
for singe crystal ice.

Medium

Failure
mode

Chaotic cracking pattern. Greater strength and more energy
is dissipated through crushing, than trough spalling off big-
ger pieces. Governed by, among others, confining pressure.

High
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3 Ice Class Rules

Operation in ice infested waters exposes structures to loads they otherwise would
not experience and classification societies have therefore developed specific class no-
tations for winter navigation. Ice loading on structures have not been fully un-
derstood, so rules and standards are to some extent based on empiricism (Kim &
Amdahl, 2016). One of the first rules developed was the The Finish-Swedish Ice Class
Rules (FSICR). DNV GL has made rules equivalent to these, which are applicable
for ships operating in the northern Baltic in winter time. The vessel assessed in this
thesis is assigned with the DNV GL class notation Ice(1A*), equivalent to 1A super
in FSICR.

The philosophy behind most ice class rule design loads (including DNV GL) is that
all energy is dissipated by the ice. It is assumed that when structure and ice interact,
crushing of ice occurs with only elastic deformation of the structure. Design pressures
are based on empirical data (Section 2.3). This is a very simple approach where the
complex modeling of ice is avoided. The design loads for DNV GL class notation
Ice(1A*) can be calculated according to the procedure in the following paragraph
(DNV GL rules for classification: Ships (RU-SHIP), 2016, Part 6, Chapter 6, Sec-
tion 2).

A design ice height (h), which is smaller than the level ice height (h0), is assumed
to be in contact with the hull. For the class notation Ice(1A*) h and h0 are 0.35 m
and 1.00 m, respectively. A nominal ice pressure of 5600 MPa is used as basis when
calculating the design pressure, P , according to Equation (3.1).

P = 5600 · cd · c1 · ca (3.1)

cd is a factor that takes into account the influence of the size and engine output of
the ship, and is calculated as:

cd =
a1 · k1 + b1

1000
(3.2)

where:

k1 =

√
∆fPmin

1000
(3.3)

• a1 and b1 may take on different values, but will for the ship looked into be
6.0 and 518, respectively (see the rules (DNV GL rules for classification: Ships
(RU-SHIP), 2016, Part 6, Chapter 6, Section 2, 7.3) and Table 3 for ship data).

• ∆f is the displacement of the vessel in tonnes.

• Pmin is the engine output2 in kW.

• c1 is a factor which takes account of the probability that the design ice pressure
occurs in a certain region of the hull for the ice class in question. For the bow
region, which will be looked into in this thesis, it takes the value of 1.0.

2Pmin can be calculated according to the rules (DNV GL rules for classification: Ships (RU-
SHIP), 2016) or can be taken as the actual engine output of the vessel (Nyseth, n.d.).
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• ca is a factor which takes account of the probability that the full length of the
area under consideration will be under pressure at the same time. It is defined
as in Equation (3.4) and has a maximum and minimum value of 1.0 and 0.35,
respectively. When designing, `a shall in general be taken as the stiffener span,
but can be used as a variable (Nyseth, n.d.; DNV GL rules for classification:
Ships (RU-SHIP), 2016, Part 6, Chapter 6, Section 2, 4.1.4).

ca =

√
`0
`a
, `0 = 0.6 m (3.4)

For direct analyses the pressure to be applied shall have a value of 1.8 · P , and
the pressure patch shall have dimensions of h · `a. The acceptance criterion is that
the combined effects from shear and bending using the von Mises criterion is below
the yield point. The location of the load patch should be chosen such that the
the capacity of the structure is minimized. It is emphasized in the rules that loads
shall be placed at different locations and especially at mid-spans (DNV GL rules for
classification: Ships (RU-SHIP), 2016, Part 6, Chapter 6, Section 2 4.1.4).

In spite of the design requirements, damages are still expected during service life
for the Baltic ice classes (Storheim, 2016; Riska & Kämäräinen, 2011) and dam-
ages are frequently reported (Hänninen, Merenkulkulaitos, & Sjöfartsverket, 2005;
Marchenko, 2014). The philosophy behind this is an optimization between repair
costs, reduced building costs and increased payload capacity, as discussed by Kujala
and Ehlers (2013). Small damages such as dents in frames and plates will in gen-
eral not be a safety issue, so ULS may still be satisfied (Storheim, 2016). It is still
difficult to define requirements on maximum allowable permanent deformations as
this may differ between vessels. The research by Kujala and Ehlers (2013) actually
indicates that it would be more economic to increase the design loads: A case study
done on the bulk carrier MV Kemira showed that using design loads more than 100
% higher than the Baltic ice class design loads would have been best in an economic
point of view. It should also be noted that ”assistance from icebreakers is normally
assumed when navigating in ice bound waters” for ships designed according to the
Baltic rules (DNV GL rules for classification: Ships (RU-SHIP), 2016, Part 6, Chap-
ter 6, Section 2, 4.1.2). This means that vessels with a Baltic ice class notations are
not designed to withstand loads from ramming heavy ice features such as ice ridges
or icebergs.

The assumption that all energy is dissipated in the ice, is no longer valid when larger
deformations occur in the structure. NORSOK (2004b) divides the distribution of
strain energy dissipation for collision between two objects in three domains:

• Strength design domain

• Shared-energy design domain

• Ductility design domain

These domains are distinguished according to Figure 3.1. The ice class rules use a
strength design. For normal operation in level ice it is obvious that there cannot
be continuous energy dissipation in the hull of a vessel. When a structure is loaded
beyond this level, deformations and energy dissipation will be significant also in
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the structure (shared-energy). To assess shared-energy scenarios, accurate methods
for assessing ice loading must be at hand and material models for both ice and
vessel must be used. The third design approach (ductile design) assumes a rigid
ice feature so that all impact energy will be dissipated in the ship. Designing and
building structures based on the ductile design approach will often be costly and
overconservative (Storheim & Amdahl, 2014), making the approach unfavorable in
most cases.

Relative strength - ship/ice

Figure 3.1: Energy dissipation for strength, ductile and shared-energy design (NORSOK,
2004b).

The residual capacity of a hull subjected to ice loading will be looked into in this
thesis, which will be relevant for assessing typical ALS and ULS scenarios. A shared-
energy approach should be applied if such scenarios are to be modelled properly
(since both bodies will deform) which would require implementation of a material
model for ice. Even though a material model for ice will not be implemented in the
later analyses, a literature study on some available methods for modeling ice will be
presented in the following section.
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4 Numerical Models Representing Ice

Materials such as steels have been heavily studied and its behavior is well understood
for ”normal” temperatures (ISSC, 2015). For ice, however, this is not the case. Con-
siderable research has been done on making models for ice, yet there is not agreement
on a material model that captures the physical effects involved good enough to be
used in impact analyses. In the following will some material models for representing
ice be presented.

4.1 Plasticity Based Material Model for Ice

Liu et al. (2011) proposed a material model where ice is described as an elastic-
perfectly plastic material. For the elastic behavior, the only input parameters needed
are the Young’s modulus, E, and the Poisson’s ratio, ν. An associated flow rule is
used for plastic deformations. The Tsai-Wu yielding surface formulated for isotropic
materials is used, and this yielding surface is dependent on the hydrostatic pressure.
The yielding function, f , can be given as one of the two following expressions:

f(p, J2) = J2 − (a0 + a1p+ a2p
2) (4.1)

f(p, σeq) = σeq −
√
a0 + a1p+ a2p2 (4.2)

where:

• J2 = 1
2
σ′ij · σ′ij is the second invariant of the deviatoric stress tensor, σ′.

– σ′ij = σij − 1
3
σkkδij are components of the deviatoric stress tensor.

– δij is the Kroenecker delta.

– σij is a component of the stress tensor, σ.

• a0, a1 and a2 are empirical parameters.

• p is the hydrostatic pressure given as p = −1
3
σii.

• σeq =
√

3
2
σ′ij · σ′ij is the equivalent (deviatoric) stress.

Einstein’s summation convention is used. Yielding will only occur when the yielding
function is equal to zero.

The yielding surface will under certain conditions form an ellipsoid in the 3D space of
the principal stresses (Ferrari et al., 2015), with its centerline being the hydrostatic
axis. The point where the hydrostatic axis crosses the yielding surface in compression
defines the pressure causing the ice to melt, and the other crossing point where the
ice flows in tension. However, due to difficulties in fitting the yielding surface to
experimental data (Ferrari et al., 2015), a cut-off pressure, pcut, is introduced for
tension-loads to prevent overestimation of the tensile strength.

The model uses an element deletion/erosion technique. This means that elements
that satisfy the failure criterion will instantly be removed from the body. The pro-
posed failure criterion is based on a plastic failure strain, εf , which is purely empirical.
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Figure 4.1: Failure strain as a function of hydrostatic
pressure (Liu et al., 2011).

It has the form:

εf = ε0 +

(
p

p2
− 0.5

)2

(4.3)

where:

• p2 represents the melting pressure and is the largest root of the yielding function
on the form f(J2, p) = 0.

• ε0 is initial failure strain, and is an empirical value.

The idea behind Equation (4.3) is to model the transition between brittle Coulom-
bic failure and plastic failure. For low confining pressures, Coulombic faults occur.
At these pressures, crushed ice will not easily be extruded, which is modeled as a
high failure strain. As the pressure increases, more and more crushed ice will be
extruded, modeled as decreasing εf . Even higher hydrostatic pressure changes the
failure mode to plastic fault and stiffens the ice, which is modeled by again increasing
εf . This failure criterion forms an U-shaped strain versus pressure failure curve, and
an example is seen in Figure 4.1. Equivalent plastic strain, εpeq, is given as:

εpeq =

√
2

3
εpij · ε

p
ij (4.4)

• εpij are components of the plastic strain tensor, εp.

Element deletion is activated when the equivalent plastic strain exceeds failure strain,
the tension pressure is smaller than the cut-off pressure or when the pressure is greater
than the melting pressure, summed up below:

(εpeq > εf ) ∪ (p < pcut) ∪ (p > p2)⇒ Deletion (4.5)
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Table 2: Input parameters for yield surfaces.

Parameter data 1
Riska and
Frederking
(1987)

data 2
Riska and
Frederking
(1987)

Kierkegaard
(1993)

Derradji-
Aouat
(2000)

a0 1.60 3.1 2.588 22.93
a1 4.26 9.20 8.63 2.06
a2 -0.62 -0.83 -0.163 -0.023

Figure 4.2: Representation of yield surfaces for different
parameters(Liu et al., 2011).

The parameters a0, a1 and a2 should be fit to experimental data. Some research has
been done on this using data from triaxial stress tests and the resulting parameters
are shown in Table 2. Yield surfaces turn out quite different for the different param-
eters, as seen in Figure 4.2. An obvious reason for the difference is that the sets of
parameters result from different experiments, with different strain rates and temper-
atures and possibly also structure, grain size, temperature history, density etc.. The
influence of such variables can only be included implicitly through the yield surface,
failure criterion, elastic constants and cut-off pressure. With sufficient experimental
data, parameters as a function of the variables of interest could be made, looking
like:

ε0(x1, x2, ...);E(x1, x2, ...); a0(x1, x2, ...); a1(x1, x2, ...); a2(x1, x2, ...) (4.6)

where (x1, x2, ...) are the variables of interest. Elements in the body can then be
assigned different material properties to model spatial variations, such as Liu et al.
(2011) have done with a temperature gradient.

Liu et al. (2011) analyzed a conical shaped iceberg model impacting a rigid wall
(Figure 4.5) using the different data sets. Recorded maximum pressure versus con-
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Figure 4.3: Recorded maximum pressures for different set of
parameters (Table 2) (Liu et al., 2011).

tact area obtained for the different sets of parameters are presented in Figure 4.3,
together with the recommended ISO3 design curve (ISO, 2011). Liu et al. (2011) rec-
ommended using the parameters proposed by Derradji-Aouat (2000) for considering
local deformation of ship structures. These parameters give p2 ≈ 100 MPa, which is
consistent with the phase diagram for freshwater ice at -11°C (Ferrari et al., 2015).
However, the resulting tensile strength of more than 7 MPa is not in agreement with
experimental values, and thus the cut-off pressure, pcut, was set to -2 MPa.

The Pond Inlet tests are experiments that were done by indenting a rigid hemispher-
ical indentor into iceberg ice and measuring the pressures (Daley, 1994). Liu et al.
(2011) numerically replicated the Pond Inlet indentation tests using the proposed
material model. Derradji-Aouat (2000)’ parameters were used for the numerical sim-
ulation and the other parameters were E =9.5 GPa, ν = 0.3, ρ = 900 kg

m3 and ε0 was
by trial and error set to 1 %. The nominal pressure versus contact area is presented
in Figure 4.4. For small contact areas the curve does not match the experimental
data, but it is improving for larger contact areas.

Ferrari et al. (2015) analyzed a spherical iceberg impacting a rigid wall (Figure 4.7)
using the proposed material model. The pressure distribution at initial impact is
seen in Figure 4.8. As expected, the pressure distribution is mesh-dependent. When
the central elements are deleted, contours of a circle are visible, since these are the
next elements to come in contact with the wall. The force fluctuates as elements are
deleted, which can be unfavorable if doing dynamic analyses. The amplitude of the
force fluctuation decreases and the frequency increases as the element size decreases.
Figure 4.9 shows the iceberg model at the end of the analysis where it is seen that
the rigid planar impact surface makes the iceberg model have a more or less planar
side itself, due to erosion. The replicated Pond Inlet tests from (Liu et al., 2011)
show the same tendency: A sphere cap is ”cut out” of the ice body due to erosion of
elements. During the impact of the conical iceberg model (Figure 4.5) some cracking

3International Organization for Standardization.

26



H̊akon Mork

Figure 4.4: Pressure versus nominal area relation for numerical
results versus experimental data (Liu et al., 2011).

took place for elements near the contact area. Whether or not this simulates ”real”
cracking is not verified. An example of recorded contact pressure is displayed in
Figure 4.6, where a high local maximum of 81 MPa can be observed. Storheim et
al. (2012) analyzed a spherical iceberg of diameter of 2 m impacting a rigid wall at
1 m

s
. The pressure distribution, though right after massive erosion (Storheim et al.,

2012), is displayed in Figure 4.10. Note the circles of higher pressure, similar to the
ones in Figure 4.8.

4.2 Other Models

Gagnon (2007) introduced a crushable foam model for ice. A user defined volumetric4

strain versus volumetric stress curve describes how the foam responds to deforma-
tion. Large nonrecoverable strains can develop at a constant pressure of 0.1 MPa
up to a fractional volumetric strain of 0.065. From there on, steep hardening at a
rate of 4.7 GPa occurs for further deformations, until a volumetric strain of 1.0 is
reached. This model does not allow much energy absorption after initial straining
because of the steep hardening. To overcome this problem, cut-off values for the
stress were later introduced: one for a soft layer and one for a hard layer, at 10
and 50 MPa respectively (Gagnon, 2011). Further straining will happen at constant
stress, making the model less rigid.

This crushable foam model has been criticized for not having any physical explana-
tion, which results obtained using this material model support. Some results obtained
by Storheim et al. (2012) are displayed in Figure 4.11, 4.12 and 4.13. The model
called ”Gagnon2011” used (0.0 0.0, 0.015 25, 0.5 50, 1.0 50) as volumetric stress ver-

4”Volumetric” means the component that contributes to changing the volume. Volumetric stress
is the same as hydrostatic stress or pressure.
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Figure 4.5: Numerical simulation of conical shaped iceberg im-
pacting wall (Liu et al., 2011).

Figure 4.6: Example of pressure distribution on wall during
impact with conical shaped iceberg (Liu et al., 2011).
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Figure 4.7: FEM model of iceberg impacting rigid wall (Ferrari
et al., 2015).

Figure 4.8: Contact pressures from initial contact (Ferrari et
al., 2015).
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Figure 4.9: Eroded iceberg at end of impact analysis (Ferrari et
al., 2015).

Figure 4.10: Pressure contour of iceberg colliding with rigid
wall, Liu’s material model. Units are mm and MPa. (Storheim
et al., 2012).
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Figure 4.11: Pressure area relation of two of Gagnon’s crushable
foam models and the plasticity based model by Liu (Storheim
et al., 2012).

sus strain curve on the form (strain[-] stress [MPa], ...), whereas ”Gagnon2007” used
the volumetric stress strain relation defined in the above paragraph. Nominal pres-
sure increases for increasing nominal area, contrary to what is found in experiments.
Pressure contours do reproduce to high pressure zones and the spatial variations
seen from experiments. Also, the ice deformation shows a mismatch between what is
physically expected since the ice is bending significantly at the sharp corner (Figure
4.13).

Daley (1991) developed an idealized 2D model to describe the flaking process of ice
sheet indenting a flat structure. Flaking is initiated when the average shear stress
on a straight plane from the middle of the contact zone exceeds the Coulomb failure
criterion. Only half the contact area is left after flaking, and crushing will occur
until the next Coulomb failure criterion is reached. The model achieved good results
compared to experimental data (Daley et al., 1998). However, visco-elastic effects are
only included implicitly and adhesive behavior is ignored (Riska, 1995). The model
was developed to model level ice versus structure interaction and is more applicable
for assessing ice induced vibrations in ice flow, than accidental ice feature impacts.

Gürtner, Bjerk̊as, Kühnlein, Jochmann, and Konuk (2009) used numerical methods
developed by Gürtner, Konuk, and Løset (2008) and Konuk, Gürtner, and Yu (2009)
to model ice actions on a fixed lighthouse. Ice is modeled as a combination of bulk
elements and cohesive elements. Rectangular bulk elements make up the mass and
the ice itself, whereas cohesive elements have negligible mass and volume. Bulk
elements are divided by the cohesive elements, which allows for crack propagation
along the bulk elements. Cohesive elements can be assigned different properties to
simulate anisotropy and different cohesive properties. Since the ice sheet can be
divided by several layers of bulk elements through the thickness, this combination

31



4 Numerical Models Representing Ice

Figure 4.12: Pressure contour of iceberg colliding with rigid
wall, Gagnon’s 2011 model. Units are mm and MPa (Storheim
et al., 2012).

Figure 4.13: Deformation plot of impact between iceberg and
deformable vessel. Gagnon’s two models are on the left, Liu’s
on the right (Storheim et al., 2012).
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of elements can be used to model crushing. Bulk elements are not deleted as the ice
is crushed and there is frictional contact between them, so that pile up formations
can be modeled. The model was developed to assess lower speed level ice versus
structure interaction, so its application lies within modeling continuous ice crushing,
crack propagation and pile up. Strain rate effects are not taken into account explicitly
and the line-load pressure contour is not replicated, but the load pattern produced is
nonuniform. Cracks can only propagate along element borders since elements cannot
be divided, which is limiting. A numerical model where cracks have the ability to
propagate through elements exists, making crack propagation unbiased with respect
to the mesh (Belytschko & Black, 1999), but this is not dug into in this thesis.

Kwak, Choi, Park, and Woo (2009) analyzed collision between an arctic tanker and
sea ice. Their approach was very different from the others described. Instead of
trying to replicate physical behavior of sea ice, their material model was calibrated
to match the IACS5 Polar Rule loads. An interesting feature is that solid elements
were connected through truss elements in order to simulate flexural failure. However,
since this model is developed to reproduce rule-based loads and not necessarily to
model real ice properties, no further attention is given to this model.

Daley and Kim (2010) introduced an analytical approach to assess loading in ship
versus iceberg collisions. These methods are, however, more applicable for well de-
fined contact areas, and are thus not suited for ALS assessments including possible
large deformations.

Another possibility of assessing ship-ice interaction avoids the difficulties with making
a material model for ice. Available data from full- and medium-scale experiments
can instead be used directly. Measured pressure distributions can be painted directly
on the structure, possibly including temporal and spatial variation. The size and
type of the painted pressure patch must be adjusted to the impact event of interest.
If the local shape of the ice feature at initial contact yields a small contact area,
pressure distributions for medium-scale tests could be used. The contours from
full-scale measurements should be used for larger contact areas. Ice and/or ship
will deform during impact and the contact area will in most cases increase. Pressure
contours could to some extent be scaled up and/or additional patches could be added.
For severe damages involving deep penetration and rupture of the hull, it can be
problematic modeling the load-transfer to parts such as girders. However, it may
be argued that what happens after severe rupture is of less significance, since the
question of interest in most cases is whether rupture happens or not.

This method of using pressure painting and impulse considerations have not, by
the author’s knowledge, been applied for ship-iceberg impact analysis. However,
Quinton, Daley, Gagnon, et al. (2012) have already developed a method for ap-
plying pressures on a structure. Pressures varying in both 3D space and time can
be applied to structure surfaces, and the method is thus called ”4D Ice pressure
loading method”. Discrete pressure patches, uniform and nonuniform loads being
either stationary or time-dependent, can be applied, making the method very flex-
ible. If the resolution of experimental pressure-data is not satisfying, interpolation
schemes are proposed for refinement, so that for example a more conservative inter-

5International Association of Classification Societies.
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polation scheme can be used for design purposes. Painting predetermined pressure-
distributions will in general not take into account interaction effects that may occur
during deformation of the structure, since the ice feature is bodyless. This is a
shortcoming of the method. One of the findings was that moving loads yield larger
damages to structures than stationary loads, so it is important to include this in
design (Quinton et al., 2012). Also, a similar approach has been done by Erceg et al.
(2014), but without the time-variation of the pressure distribution. A stiffened panel
was loaded with a nonuniform line load, and compared to the same panel loaded
uniformly according to polar class rules (FSICR/IACS). The damage obtained by
painting real pressure contours were more severe compared to the damage obtained
using rule-based uniform loads, which again is emphasizing the importance of using
nonuniform loading for design purposes.

4.3 Remarks on Material Models

Ice deformation is a highly complex process. There are so many factors affecting
the properties and the failure modes of ice, making it troublesome to make material
models for ice capturing all necessary physical effects. The model proposed by Liu et
al. (2011) is simple, computational efficient and yield somewhat good results for larges
contact areas. Pressure distributions, however, are not similar to observed ones. To
better include spatial and temporal variations occurring in ice during deformation
would demand many different sets of input parameters, which is not feasible. Using a
conservative set of parameters makes the model somewhat applicable, but extensive
verification and testing must in that case be done. The other numerical models that
have been shortly introduced, also have trade-offs making them less suited for ship
versus ice feature collision assessment. A general problem is that many models are
tailor made to model certain aspects of ice behavior. There are so many complex
processes involved in an ALS scenario (i.e. ship-ice impact) and no model seems to
include the different aspects of ice deformation in a satisfactory manner.

Simply painting known pressure distributions on the hull structure (Quinton et al.,
2012) has the great advantage of not relying on any material model for ice. Also,
computational costly calculations of iceberg deformations are avoided. There are
some issues regarding interaction of load and structure and how to choose loading
pattern. Still, this method should be looked into since it might be easier to overcome
these shortcomings than to make a trustworthy material model for ice.

A more detailed discussion of the material models can be found in (Mork, 2015).
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5 Finite Element Analysis

The Finite Element Method (FEM) is a powerful tool usable for solving complex
engineering problems within flux, thermo, electrical, structural analysis and other
fields. The development of FEM started in the middle of the 20th century and
the method is today widely used. FEM is applicable for solving boundary value
problems, which are problems that can be formulated by a set of partial differential
equations and associated boundary conditions (Hopperstad & Børvik, 2014). The
method is based on the Principle of Virtual Work (PVW). In the ship industry, FEM
is used mostly for stress and response analyses in structural engineering. The great
power of FEM is that constitutive and kinematic relations for single elements can
be determined in a simple manner and then be assembled to a system valid over
the whole structure. Problems not solvable with analytical solutions can in this way
be solved. For more in depth information on FEM, readers are referred to other
literature (Wriggers, 2008; Hopperstad & Børvik, 2014; Fish & Belytschko, 2007).
Some of the underlying theory will be introduced in the following, based on the
lecture notes by Hopperstad and Børvik (2014, ch. 4.5). Bold symbols denote vectors,
matrices or tensors and italic, non-bold symbols denote scalar valued quantities.

A continuous problem can be divided into a finite number of elements. Elements
consist of and are connected through nodes. An illustration of this can be found in
Figure 5.1. Displacements are only given at nodes, so elemental interpolation func-
tions are used to interpolate displacements within elements. The displacement field,
u(x, t), is obtained by multiplying the matrix of elemental interpolation functions,
Ne(x), by the element nodal displacement vector, ve(t):

u(x, t) = Ne(x)ve(t), x ∈ Ve (5.1)

A relation between displacements at discrete nodal points and the continuous dis-
placement field through the domain of an element is by this established. x is the
position vector and must be within the volume of the element, Ve. The subscript e
denotes the element number and t is the time. Time can refer to a given state of
deformation/loading, and is not necessarily actual time.

The relation between nodal (ve(t)) and global (r(t)) displacements is found through
the connectivity matrix, ae, defined so that:

ve(t) = ae(t)r(t) (5.2)

The global displacement field is calculated from Equation (5.3) which is valid over
the volume of the whole structure, V . Continuity requirements must be fulfilled
for the shape functions, but for more information readers are referred to the lecture
notes by Mathiesen (2014).

u(x, t) =
∑
e

Ne(x)ve(t) =

[∑
e

Ne(x)ae

]
r(t) = N(x)r(t), x ∈ V (5.3)
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Figure 5.1: A continuous mechanical problem discretisized into finite elements and nodes.
Element numbers are in parentheses. Global system with global node numbers is depicted
in the upper right part. Local degree of freedoms are seen for element (3) in the bottom
part (Hopperstad & Børvik, 2014).
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N(x) is a matrix containing the shape functions for all elements.

ε is the strain tensor on vector form and can be calculated according to Equation
(5.4) where ∆ is a differential operator.

ε = ∆u, x ∈ V (5.4)

The strain-displacement matrix, B(x), in Equation (5.5) is defined so that the global
strain field can be calculated based on global nodal displacements, Equation (5.6).

B(x) = ∆N(x) (5.5)

ε(x, t) = B(x)r(t), x ∈ V (5.6)

Virtual displacements, strains and global nodal displacements are introduced as
δu(x, t), δε and δr(t), so that:

δε = ∆δu = Bδr, x ∈ V (5.7)

The same interpolation functions as for the real displacements are used.

σ, b and t are the stress tensor, body forces and traction forces, respectively, on
vector form. PVW requires that the increase in virtual strain energy must be equal
the virtual work done by traction and body forces. In other words: the internal and
external virtual work must be equal (Equation (5.8)).∫

V

δεTσdV =

∫
V

δuTbdV +

∫
S

δuT tdS (5.8)

S is the surface of the body.

By rewriting Equation (5.8) and extracting the global virtual nodal displacements
from the integrals (as they are dependent only on t), the following equation is ob-
tained:

δrT

∫
V

BTσdV −
∫
V

NTbdV −
∫
S

NT tdS

 = 0 (5.9)

For the nodes without prescribed displacements, the following relation holds:∫
V

BTσdV −
∫
V

NTbdV −
∫
S

NT tdS = 0 (5.10)

These are nodal forces and can be separated as external and internal nodal forces
(Equation (5.11)).

Rint =

∫
V

BTσdV, Rext =

∫
V

NTbdV +

∫
S

NT tdS (5.11)
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Using a constitutive relation, for example on the form σ = Cε = CBr (where C is
the elasticity matrix), the internal forces can be written on the well known form:

Rint = Kr (5.12)

where K is the global stiffness matrix which in this case is given as K =
∫
V

BTCBdV .

5.1 Linear Finite Element Analysis

The system of equations to be solved can in general be written as in Equation (5.13).

Mr̈ + Cṙ + Kr = R (5.13)

M, C and K are the mass6-, damping- and stiffness matrices. R is the vector of
external forces (excluding damping and inertia forces) and r̈, ṙ and r are vectors of
acceleration, velocity and displacement, respectively. Nodal values for all Degrees Of
Freedom (DOFs) are included in R, r̈, ṙ and r.

Problems can be divided into static and dynamic problems. In the case that the
loading frequency is far away from one of the natural frequencies of a structure
there is no risk of resonance. Furthermore, if inertia forces and damping forces are
assumed to be negligible, transient terms can be disregarded (assuming non-viscous
material behavior). Analyses done under these assumptions are called quasi-static.
The equation of motion (Equation (5.13)) can then be reduced to the last two term
as shown in Equation (5.14).

R = Kr (5.14)

When deformations are assumed small and material behavior is linear elastic, linear
FEM is applicable. K will then be treated as constant and Equation (5.14) forms
a system of linear equations. Only one increment of Equation (5.14) needs to be
solved to obtain all information with respect to load versus response. Theoretically,
any load magnitude can be withstood by a structure and failure will not occur. The
principle of superposition holds because loading history is insignificant. Stresses,
displacements and strains etc. can be scaled linearly with the initial load to obtain
responses for different load magnitudes. Linear Finite Element Analysis (FEA) is
widely used in structural engineering due to its simplicity and low computational
cost. When assessing operational loads and fatigue, linear FEA will in most cases be
the preferred technique since these typically yield small deformations in the linear
range of the material. The method is also useful when assessing onset of permanent
deformations (yielding).

6See for example the book by Wriggers (2008) for information on establishing the mass matrix,
M.
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5.2 Nonlinear Structural Analysis

Other solution methods must be applied to simulate the structural behavior in a
correct manner when nonlinear effects are influential. Different nonlinearities can
take place and they are typically divided into three main categories (Wriggers, 2008;
Falzon & Hitchings, 2006):

• Material nonlinearity

• Geometrical nonlinearity

• Boundary nonlinearity (contact)

Material Nonlinearity

Materials deform according to Hooke’s Law in the linear elastic domain, implying a
linear relation between stresses and strains (Figure 5.2a). Hooke’s law in its simplest
form is defined as σ = Eε where σ is the stress, E is the Young’s modulus and ε is the
strain. For nonlinear material behavior the stiffness of the material (tangent modulus
Et) varies. This is called material nonlinearity and is illustrated in Figure 5.2b. The
tangent modulus will then be a function of the parameters changing the stiffness,
Et(a, b, c, ...). Plastic behavior and yielding is one of the most common nonlinearities
included in material models, especially for steels. Note that also elastic materials
can exhibit nonlinear behavior. Apart from strain, parameters such as temperature,
hydrostatic pressure and strain rate could influence the tangent modulus (strain rate-
dependency implies viscous behavior and would require dynamic analysis). These
parameters will in most cases be a function of displacements so that the system
stiffness matrix will be given as K(r).

Geometrical Nonlinearity

When deformations are sufficiently large, loads and resistance can change due to a
geometry change of the problem. This phenomenon is known as geometrical non-
linearity. It has nothing to do with the constitutive model of the material and can
happen for elastic as well as plastic materials. For problems exhibiting geometrical
nonlinearity, it is necessary to use formulations that include the exact geometry of
the problem. Figure 5.3 shows some examples of geometrical nonlinearity. If a plat-
form with a heavy top side structure is displaced horizontally, an ”extra” moment
from the lateral load is added. This is called the P-delta effect, and is illustrated
in Figure 5.3a. A second example is a beam freely supported at both ends with
a centered point load, P. An elastic-perfectly plastic material model is assumed.
The response is linear until onset of yielding, from where the stiffness will decrease.
The load bearing capacity increases slightly as more and more of the cross section
yields. Membrane effects will start to dominate for further loading, increasing the
load bearing capacity and stiffness significantly. This is illustrated in Figure 5.3b.
Another example of geometrical nonlinearity is the snap-through problem in which
both stiffness and load may be negative, illustrated in Figure 5.4. For more examples
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(a) Linear material - Et is constant.
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(b) Nonlinear material - Et varies.

Figure 5.2: Material nonlinearity.

and other types (snap-back, bifurcation, follower load etc.) readers are referred to
the books by Wriggers (2008, Ch. 2) and Falzon and Hitchings (2006). Geometrical
nonlinearity makes loads and stiffness dependent on the state of deformation, so that
they can be given on the forms R(r) and K(r), respectively.

Boundary Nonlinearity

A third source of nonlinearity is boundary conditions and contact. When a body
comes in contact with either itself or the surroundings, the stiffness can change. A
simple illustration of this can be found in Figure 5.5, where it is apparent that the
stiffness changes as the right end of the elastic bar comes in contact with the wall.
Another example of this type of nonlinearity is when a structure comes in contact
with itself during deformation.

Collisions and explosions, or large elastic deformation of for instance slender struc-
tures such as pipelines, are typical scenarios where nonlinear effects are profound.
Nonlinear Finite Element Analysis (NLFEA) will in these cases be required. Re-
sponses are in general history-dependent so the principle of super position does not
hold. Solution schemes for NLFEA are in general complex and computationally ex-
pensive. The use of NLFEA is therefore limited compared to that of linear FEA, but
as computer power is becoming cheaper the use of NLFEA is increasing. Structures
often have large residual capacities after onset of permanent deformations. With
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(a) P-delta effect: The weight of structure causes a moment of magnitude Pδ and will influence
the response for large displacements, which is seen in the right figure.
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(b) Laterally loaded beam at different stages of deformation and the nonlinear load deflection
curve. Elastic-perfectly plastic material model is assumed.

Figure 5.3: Geometrical nonlinearity.
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Figure 5.4: Geometrical nonlinearity. Snap-through: Instability occurs as the
limit point is passed and the stiffness becomes negative. Stability is reached after
”snapping through”, and there is a following change from compression to tension
in the rods.
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Figure 5.5: Nonlinearity due to boundary conditions and contact. When the
right part of bar comes in contact with the wall, the stiffness increases. Load
deformation curve is seen to the right.
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NLFEA this can be taken into account when designing, allowing lighter and cheaper
structures to be built.

5.2.1 Solution Schemes

The set of equations to be solved for nonlinear, quasi-static problems can in general
be written on the form found in Equation (5.15). This equation cannot generally
be solved directly, so incremental solution procedures must be used. Many different
schemes have been developed, and each have its pros and cons (Wriggers, 2008;
Falzon & Hitchings, 2006).

R(r) = K(r)r (5.15)

There are two ways of applying loads: Load control means changing the load incre-
mentally, while displacement control means changing the displacements incremen-
tally. Which method is used, depends on the nature of problem that is looked into
and on the solution method that is used for solving Equation (5.15). Because of non-
linear behavior, the load (or displacements) must in general be split up and applied
incrementally. For each increment, numbered by n, the stiffness matrix is updated
before applying next load (or displacement) increment. Nonlinear problems are in
other words solved by approximating the nonlinear solution path with a set of smaller
linear solution increments.

In an explicit solution scheme, unknown information is calculated directly from al-
ready known information. In practice, this means that when a new load increment
(∆Rn+1) is applied, the stiffness at the previous increment (K(rn)) is used when
calculating current displacement increment (∆rn+1), see Equation (5.16), (5.17) and
(5.18).

Rn+1 = Rn + ∆Rn+1 (5.16)

rn+1 = rn + ∆rn+1 (5.17)

∆rn+1 =
∆R(rn+1)

K(rn)
(5.18)

The advantage of such a procedure is that iterations and equation solving are not
required for each increment, making it computationally inexpensive and appropriate
for models with a large number of DOFs. A drawback of the procedure is that
it is only conditionally stable. If the increment size is too large, the solution will
drift off from the correct solution path since there are no convergence requirements.
However, when increments are small enough, the calculated solution will be close
to the actual true solution. Increment size must therefore be chosen with care.
Explicit solution schemes are applicable when highly nonlinear behavior is expected
(buckling, material failure etc.) and is often used for dynamic analyses of explosions
and collisions. Small time increments are often required when simulating high speed
impacts, making long duration analyses computationally expensive. Note that when
talking about time, rn refers to the displacement at time tn, rn = r(tn), so that
actual time is not needed.
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In contrast to an explicit scheme, an implicit solution procedure ensures that inter-
nal and external forces are (almost) equal after each increment. If this criterion is
not fulfilled, iterations are done until the required accuracy is reached (convergence).
This procedure is therefore unconditionally stable, and much larger increments can
be used. Implicit solutions schemes calculate the response based on the current
time/increment (n + 1), and this has to be done iteratively. The advantage of the
implicit method is that much larger increments size can be used, but more calcula-
tions have to be done for each increment. It is ideal for problems where nonlinearities
are smooth, such as plasticity dominated problems.

A common implicit solution scheme is the Newton-Raphson method (called Static,

General in Abaqus) and a brief explanation based on lecture notes by Hopperstad
and Børvik (2014) is presented in the following. The residual nodal force vector is
defined as:

G = Rint −Rext (5.19)

and is equal to zero when a structure is in equilibrium with external forces. G is in
general not equal to zero after a load increment due to nonlinearities. It is assumed
equilibrium has been found Gn = 0 at a previous increment, n. The residual at the
next increment (n+ 1) will then be:

Gi+1
n+1 = Rint(ri+1

n+1)−Rext
n+1 (5.20)

The superscript i denotes the iteration counter. Linearizing Equation (5.20) using
Taylor expansion yields:

Gi+1
n+1 ≈ Gi

n+1 +
∂Gi

n+1

∂rin+1

∆ri+1
n+1 = 0 (5.21)

The external forces are not a function of displacement, so the tangent stiffness matrix
can be defined as:

∂Gi
n+1

∂rin+1

=
∂Rint(rin+1)

∂rin+1

= Kt(rin+1) (5.22)

Equation (5.21) can then be rewritten to:

Gi+1
n+1 ≈ Gi

n+1 + Kt(rin+1)(r
i+1
n+1 − rin+1) = 0 (5.23)

Using Equation (5.11), the tangent stiffness matrix can be written as:

Kt(rin+1) =

∫
V

BT ∂σ(rin+1)

∂rin+1

dV (5.24)

The consistent tangent operator, Calg
n+1, can be defined as:

Calg
n+1 =

∂σn+1

∂εn+1

(5.25)

so that effects of the material nonlinearity is included in the tangent stiffness matrix
the following way:

Kt
n+1 =

∫
V

BTCalg
n+1BdV (5.26)
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Figure 5.6: Illustration of the Newton-Raphson method (Hopperstad & Børvik, 2014).

Necessary terms are now known so that ri+1
n+1 can be calculated from Equation (5.23).

The iterations are stopped when convergence is reached, that is when the residual
forces become below a certain limit, ε.

ε ≥
√

(Gi
n+1)

TGi
n+1 (5.27)

When convergence is satisfied, a new load increment can then be applied. If the
tolerance (ε) is too large, the numerical results can drift off from the actual solution.
In fact, by setting ε very large, iterations will not be executed and this procedure
behaves as an explicit solver.

Figure 5.6 illustrates the Newton-Raphson method. Since the tangent stiffness matrix
is updated at every iteration, this method is in general computational expensive. The
convergence rate is, however, very high. There are other versions of this procedure
where the stiffness matrix is not updated at every iteration, or not at all, in order
to save computational power. These schemes will not be utilized in this thesis, so
readers are referred to the book by Wriggers (2008, Ch. 5.1.2) for more information.

The Newton-Raphson method has some limitations. The tangent stiffness matrix will
be singular at limit points, so there will either be problems with converging, or the
solution can jump to another point on the equilibrium path. Softening behavior will
not be captured. Using load control may circumvent this limitation, or alternatively
use of stabilization (will not be introduced in this thesis). Snap back behavior cannot
be simulated any case.
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Figure 5.7: Illustration of the modified Riks method (Memon & Su, 2004).

Another type of solution schemes are the so-called arc length methods, where both
load and displacement are incremented simultaneously. The great advantage of an
arc length method is that all types of load deformation curves can be simulated, be-
cause decreasing displacement and/or load can be simulated (negative increments).
This makes the methods suitable for analyses where highly nonlinear responses are
expected, including snap-through and snap-back behavior. There are different types
of arc length methods (Mathiesen, 2015; Wriggers, 2008), and Abaqus uses the mod-
ified Riks method (called Static, RIKS in Abaqus). Increment sizes are determined
from a given arc length (user specified or calculated by Abaqus). By using the stiff-
ness at last equilibrium point, load and displacement increments are calculated from
a second order polynomial. An iterative algorithm corrects the solution onto the
equilibrium path in a plane orthogonal to the linear load-displacement curve from
the last increment, until convergence is reached. The Newton method is still the
basic algorithm. This method is illustrated in Figure 5.7, but detailed explanation
of symbols and algorithm will not be presented in this thesis and readers are referred
to the Abaqus Theory Guide (Systémes, 2016, Ch. 2.3.2) for this.

Since the incremental arc length is calculated from a second order polynomial, the
wrong (negative) root may in special cases be chosen. Points on an equilibrium path
where sudden change of stiffness occur (high curvature and bifurcation) are typical lo-
cations where the method will have problems with finding the correct solution. Either
the equilibrium path will be followed ”backwards”, or no further equilibrium point
will be found. Another disadvantage is that the method is relatively computational
expensive, making the Newton-Raphson method preferred for simpler problems.
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Figure 5.8: A body in undeformed (B) and current (ϕ(B)) configuration (Wriggers, 2008).

5.2.2 Tensor Analysis

The formulations for nonlinear analyses differ from those of a linear problem. In
nonlinear analyses one must separate the undeformed (or reference or material)
configuration of a body, from the deformed (or current) configuration. These are also
denoted Lagrangian and Eulerian descriptions, respectively. Figure 5.8 shows a body
in the undeformed, B, and in the current, ϕ(B), configuration. Tensors referring to
material configuration are written with capital letters and tensors referring to current
configuration are written with lower case letters. From the same figure it is seen that
a material point in the material configuration with coordinate X has coordinates
x(X, t) at a later time, t. u is the displacement vector, so that:

x(X, t) = X + u(X, t) (5.28)

Different formulations for strains and stresses have to be used in finite strain theory
(large deformation theory) than what is used in small strain theory. A brief example
to illustrate this will be given here.

The deformation gradient, F, is given as:

F = Grad[x] = Grad[ϕ(X, t)] =
∂x

∂X
=

∂

∂X
[X + u] = I + H (5.29)

where I is an identity tensor and H is the displacement gradient. By looking at the
change of the square of line elements in material and current configuration, a strain
measure called the Green-Lagrange strain tensor, E, can be derived:

E =
1

2
(FTF− I) =

1

2
(H + HT + HTH) (5.30)

The displacement gradient is small for small deformations, making the last second
order term in Equation (5.30) negligible. The infinitesimal strain tensor, ε, will then
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E1, e1

E2, e2

Figure 5.9: Body transformation according to Equation (5.32). The undeformed body is
marked with the continuous blue line and the current configuration in blue dashed line. Ei
and ei are axes in material and current configuration.

be a good measure of strain:

(E ≈)ε =
1

2
(H + HT ) (5.31)

In a simple 2D-example, the displacement field of a square is defined as:

u(X) =

[
u1(X)
u2(X)

]
=

[
−X2

X1

]
(5.32)

The material and current configuration of the body is seen in Figure 5.9. It can be
found from easy hand calculations that the infinitesimal strain tensor will be the zero
matrix, even though it is apparent from the figure that there is straining. Similarly,
ε, will not be the zero matrix for a rigid body rotation, even though actual strains
are zero. The Green-Lagrange strain tensor will, on the other hand, represent the
strains correctly. From this example the need for other formulations than those of
small strain theory comes clear. This applies to stresses as well as strains. Various
formulations exist and each has its purpose, typically relating stresses and strains
between different configurations. More details on finite strain tensor analysis are,
however, not covered in this thesis. For more in depth information on the topic, see
for example Nonlinear Finite Element Methods by Wriggers (2008, Ch. 4).

Formulations for finite strain theory are implemented in Abaqus when NLGEOM is
turned on.
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Table 3: Overview of vessel’s main characteristics.

Parameter Value
Length (LPP) 75.6 [m]
Beam (B) 16.2 [m]
Draught (T) 5.0 [m]
Engine power (P) 6600 [kW]
Displacement (∆f ) 5000 [tonnes]

Table 4: Scantling data (see Figure 5.12 and 5.13 for explanations).

Parameter Value
Skin thickness (tskin) 16 [mm]
Stiffener spacing (approximate) (hstiffener) 315-322 [mm]
Stiffener spacing in x-direction (hx,stiffener) 300 [mm]
Web thickness (tweb) 10 [mm]
Web height (tweb) 260 [mm]
Flange thickness (tflange) 27 [mm]
Flange width (wflange) 47 [mm]
Stiffener length (`stiffener) 3350 [mm]

5.3 Finite Element Model of Ship Hull

An .IGES-file which contains detailed hull geometry was used as a basis when de-
veloping the Finite Element (FE) model. Hull shape and curvature of the skin was
obtained from this file, while other features, such as stiffeners and thicknesses, were
obtained using hull drawings. It can be tricky to model and mesh double-curved
surfaces in Abaqus, which are typical for ship hulls. A model previously developed
by DNV GL was therefore provided. The model used in this thesis is based on this,
but changes and fixes were done when necessary.

Some relevant information of the vessel is found in Table 3. Only local loads were
to be assessed in this work, so only a small the FE model was needed. The part lies
in the water line area in the bow, more specifically on the starboard side between
the tween deck and the main deck. Geometry and main dimensions can be found
in Figure 5.10 and an overview of the model’s location on the ship can be found in
Figure 5.11. Outer skin, stringers7, a transverse bulkhead and parts of the decks are
included. Stringers have a length of approximately 3.35 m (Figure 5.12) and HP-
profiles are represented as L-profiles in the model. Detailed geometry can be seen in
Figure 5.13. Each stiffener is named according to Figure 5.10a and these names will
be frequently used throughout this thesis.

Material

The hull is made of AH-36 and NV-NS steel, and the material data can be found
in Table 5. Both are high tensile steels, and the class notation requirements for the

7”Stringer”, ”stiffener” and ”frame” are used interchangeably throughout this thesis.
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(a) Name of stiffeners along with the model’s extension
in x- (longitudinal) and z-direction.

(b) Geometry of model.

Figure 5.10: Overview of FE model.
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Figure 5.11: The gray box marks the location of the FE model. Outline is based on hull
drawings.
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Figure 5.12: Approximate length of stiffeners, taken as the distance between the midpoint
of the web at both ends.
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Figure 5.13: Cross section of stiffeners and hull skin. Dimensions corresponding to this
figure are found in Table 4.
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materials indicate that the values used are conservative (DNV Ships / High Speed,
Light Craft and Naval Surface Craft , 2011): Actual required ultimate tensile strength
is minimum 490 MPa and minimum elongation (strain) is 0.16 for the relevant plate
thicknesses and at a temperature of zero degrees.

The von Mises flow rule is used, where yielding occurs as the yield function, f , is
equal to zero:

f(σ) =
√

3J2 − σY =

√
3

2
σ′ijσ

′
ij − σY = 0 (5.33)

σY is the yield stress and σ′ij is a component of the deviatoric stress tensor, and
Einstein’s summing convention is used. The von Mises flow criterion is pressure
invariant, unlike the flow rule introduced in Section 4.1, and forms a circular cylinder
along the hydrostatic axis in the principle stress space. It is commonly used for
modeling flow of metals.

Linear isotropic hardening was added. It is defined in terms of plastic strain, εp, see
Table 6. The yield function will then be on the form:

f(σ) =
√

3J2 − (σY +H(εacc)) = 0 (5.34)

where the hardening variable, H, is a function of the accumulated plastic strain,
εacc. The material behaves perfectly plastic for plastic strains larger than 0.05. An
illustration of the rheological model of the materials is seen in Figure 5.14, along
with an explanatory stress-strain curve. No material failure criterion is implemented
in the model, because tearing, rupture, fracturing etc. are not assessed. The load
levels and damages that will be looked into will be well below those kind of loads.
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Table 5: Material constants.

Material name Young’s modulus [GPa] Yield stress [MPa] Poisson’s ratio [-]
AH-36 206 355 0.3
NV-NS 206 355 0.3

Table 6: Hardening rule.

Yield stress [MPa] εp [-]
355 0
405 0.05

ε [-]

σ [MPa]

355
405

εY

0.05

(a) Linear elastic - plastic with linear hardening - per-
fect plastic behavior. True stress and strain.

405 MPa

355 MPa

206 GPa

(b) Rheological model consisting of friction ele-
ments and linear springs (not valid for unload-
ing).

Figure 5.14: Material model for AH-36 and NV-NS steels.
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5.3.1 Elements

There are many element formulations available, and each has its pros and cons.
Membrane elements are used when the bending action is negligible, i.e. when mod-
eling an air balloon. Plate formulations account for the bending resistance in plates.
Elements combining both membrane and bending action, are called shell elements.
They are applicable when the thickness of a structural component is much smaller
compared to its extension in the two other dimensions. Stiffened panels are typical
structural components where shell elements are applicable. Linear four-node quadri-
lateral conventional shell elements are used in the FE model of the hull8. These
are called S4R in Abaqus, where the S stands for shell, 4 is the number of nodes
and the R for reduced integration. ”S4R is a robust, general-purpose element that
is suitable for a wide range of applications” as stated in the Abaqus user manual
(Systémes, 2016, Ch. 29.6.2), and they are applicable for both thick and thin shells.
In later analyses, Simpson’s rule with 5 integration points will be used when integrat-
ing over the element thickness, which is sufficient for normal nonlinear applications
(Systémes, 2016, Ch. 29.6.5). Using Simpson’s rule will give more accurate results
at the element surfaces compared to when using a Gauss quadrature.

Locking is a phenomena resulting in elements behaving too stiff. For linear quadri-
lateral shell elements this is a problem when exposed to bending, and it is called
shear locking. A four noded quadrilateral element cannot represent bending accord-
ing to beam theory due to development of spurious shear strains. These shear strains
demand energy and result in that the element becomes too stiff and ”locks”. A way
of preventing this is to use reduced integration. When numerically integrating over a
four noded element, a Gaussion quadrature rule with four integration points is used
for what is called full integration. For reduced integration the quadrature order is
reduced by one, resulting in only one integration point for 2D elements, located in
the center of the element where shear strains are zero. This, in fact, increases the
accuracy and performance in many cases, and at the same time reduces the compu-
tational cost of the calculations. However, another problem that may occur when
using reduced integration is so-called zero energy modes (also called hourglassing
and spurious modes). Since the (reduced) integration point is located at the center
for the four noded quadrilateral element, no energy is recorded in pure bending and
energy-free straining can occur. Elements deform and become distorted and this can
propagate through the mesh. Zero energy modes tend to be a bigger problem for
point loads than for distributed loads, but visual inspection should in any ways be
done to ensure that potential hourglassing is within acceptable limits. Commercial
FE codes often have built-in algorithms to handle hourglassing, and default hour-
glassing control will be used when doing analyses in Abaqus.

8Triangular elements are also used in a limited number by automatic mesh generation in Abaqus
(see Appendix B for examples). These are called S3R and only have one integration point (triangular
elements have one integration point for full integration, and cannot be reduced).
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5.3.2 Mesh Convergence Study

It has been mathematically proven that FEM converges to the exact solution to
given partial differential equations as the mesh is refined (Fish & Belytschko, 2007).
However, if the mesh is too coarse or in other ways poor, results can be far from
reliable. It is therefore of great importance to ensure that the mesh refinement level
is adequate. When the element size is such that additional refinement does not
significantly change the results, mesh convergence is said to be achieved. Any fur-
ther refinement will then have little influence and will in most cases be a waste of
computational power. In general, a mesh that just fulfills the convergence criterion
is therefore preferable in order to make analyses as efficient as possible. For spe-
cial purposes, however, there can be cases where additional mesh refinement after
convergence is beneficial.

The most common way to conduct a mesh convergence study is to simply solve the
problem at hand repeatedly with increasing number of elements. Mesh refinement
can be done either for the whole model or only locally where stresses are large.
The size and complexity of the problem looked into will affect which option is more
beneficial. If accurate stresses only need to be simulated in certain regions, it is
sufficient to do local mesh refinement while elements can be considerably larger in
other regions (NAFEMS, 2016a). High efficiency will then be ensured. Similarly, if
the structure consists of almost identical components subjected to similar loads, it
will be sufficient to perform a mesh convergence study at one of these specific com-
ponents (NAFEMS, 2016a, 2016b). An alternative to decreasing the element size is
to increase the elemental order and keeping the mesh. This method can be advan-
tageous for complex problems where remeshing is tedious, but for simple problems
reducing element size is in general more efficient (COMSOL, 2016). There are also
solution procedures that do not allow the use of higher order elements, making mesh
refinement the only possibility. It is important to use loads and magnitudes in the
mesh convergence study similar to the ones that will be used for the actual analyses.
If convergence is achieved for one load magnitude, it does not necessarily make the
mesh convergent for an increased load.

For the current model, the highest stress levels occurred in the stiffeners. Since the
loads on the different stiffeners are similar, an FE model of a single stiffener includ-
ing plate flange was considered in the mesh sensitivity study. Scantlings are equal to
those found in Table 4 and Figure 5.13, and the material model from Figure 5.14a
was used. The subtle curvature of the stiffeners was not included and ends were
cut ”straight”. Ends were fixed (translational DOFs are set to zero: U1=U2=U3=0)
and the plate flange sides were constrained from translating in the direction of the
plate and from rotating around the axis in stiffener direction because of symmetry
(U1=U5=0). A pressure patch of 33 cm height was applied at the center of the plate,
as this will be similar9 to the cases that will be looked into later. The FE model
including the loaded surface can be seen in Figure 5.15. The Static, general so-
lution procedure (Newton-Raphson method) was used, as it is efficient and suitable

9The heights of the patches used in the later analyses are somewhat larger (409cm and 818cm),
but one could argue that a finer mesh is needed for a more concentrated load. Mesh convergence is
thus assumed to be valid for later analyses.
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5 Finite Element Analysis

Figure 5.15: FE model used for mesh convergence study. The loaded surface is marked in
red. Three elements over the web height are used in this example.

for NLFEA without unloading (for load control) or negative displacements (for dis-
placement control). Two load magnitudes were assessed, based on trial and error.
A load of 5 MPa barely resulted in yielding, while a load of 6.25 MPa resulted in
formation of a plastic hinge and larger deformations. Convergence was checked for
stresses and displacements. Stresses were evaluated at the midspan in the top of
the web. Displacements were evaluated at the midspan of the stiffener in the joint
between plate and web, in the direction perpendicular to the plate. See Figure 5.15
for an illustration. Convergence was assessed for the linear quadrilateral elements S4
and S4R (Section 5.3.1).

Figure 5.17 and 5.18 display results for 5 MPa and 6.25 MPa loads, respectively.
Already with two elements over the web height the stress has converged for S4R for
the 5 MPa load, whereas S4 converges at five elements, approximately. Displacements
converged a little slower, in contrast to what was expected since displacements have
a higher convergence rate (Mathiesen, 2014, Ch. 12). S4R performed better than
S4 since convergence was faster and the stress field obtained using S4 was more
uneven and stress gradients were larger. S4R was used in all later analyses due to
its high performance and convergence rate. For the higher load level and larger
deformations, convergence was slower since more nonlinear effects took place. 10
elements over the web height was sufficient to give good results, but the results had
completely converged when more than 20 elements were used. The models used in
later analyses have 21 elements over the web height. The element size in other parts
of the model varies and is larger in regions where large deformations and stresses
were not expected or observed. Some of these mesh details can be seen in Appendix
B. The mesh is regular in the plate and the stiffeners, with a few exceptions. A
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z

Figure 5.16: FE model used for mesh convergence study. The yellow ellipse marks the
location where stresses were extracted and the white ellipse marks the location where
displacements were extracted (in direction of z).

coarser mesh is used in the top and bottom deck, and more elements are distorted.
Distorted elements are in general unfavorable, but since strains and stresses will not
be looked into in these regions it will be of less importance. Mesh convergence was
not assessed for the plate (skin) because stress levels were smaller than in the frames.
The refinement was about the same as for the frames, which in any way is finer than
what is normal for laterally loaded plates.
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(a) Maximum von Mises stress at midspan.

(b) Maximum lateral displacement in joint between web and
plate at midspan.

Figure 5.17: Mesh convergence with a 5 MPa load. S4R and S4 elements were assessed.
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(a) Maximum von Mises stress at midspan.

(b) Maximum lateral displacement in joint between web and
plate at midspan.

Figure 5.18: Mesh convergence with a 6.25 MPa load. S4R elements were assessed.
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6 Analyses and Results

In this section the analysis-procedures and results will be explained in detail. Vari-
ous load cases with different solution procedures were to be assessed in this thesis.
Python-scripting was therefore used extensively and Abaqus analyses were mostly
done in batch mode to efficiently be able to generate a lot of analyses and data. The
scripts that have been developed are attached in Appendix A.

Loads

One of the goals with this thesis was to analyze uniform pressure loads of different
widths and heights, and at different locations. A script was made to isolate the hull
skin from the transverse frames and to create an element surface (Appendix A.1). In
this way rectangular10 patches of arbitrary sizes, located at arbitrary positions could
easily be easily made. These surfaces were loaded with an uniform pressure (load
control). The elements subjected to an uniform load patch will not deform uniformly,
so it would not have been feasible to use displacement control. Furthermore, by
deciding step sizes for width and height, input files for multiple load cases could
be generated. All job-files were named with, as an example, ”(...)-W2-H0” at the
end. The number behind W and H denotes the number of step widths/heights that
is added to the ”default” width. These names will be used when presenting results
later on. The initial values and step sizes used throughout this thesis are found in
Table 7. Thus, the width and height in the example above will be 0.94 m and 0.41
m, respectively. Figure 6.1 shows how load width is increased.

Table 7: Load patch dimensions

Initial value [m] Step value [m]
W 0.312 0.312
H 0.409 0.409

Boundary Conditions

Ideally, the Boundary Conditions (BCs) of the model should have been a combination
of springs with different stiffnesses along the model’s boundary, in order to represent
the surrounding structures exactly. This was not feasible since detailed analyses of
the whole hull would have had to be done in order to determine these stiffnesses.
An alternative would have been to extend the model in all directions and make, for
example, fixed BCs at the outer boundaries. The longer the relative distance from the
BCs, the smaller the influence of the BCs will be, which is known as the St. Venant’s
principle (Timoshenko, 1934; Love, 2013). It would, however, not be feasible to take
such measures because modeling is time consuming and the computational costs of

10Since the box is defined by two corners in the global x,y,z-space, it is only the projection of the
patch onto the y,z-plane that is rectangular. Because the ship side in the bow area is inclined, the
actual shape of the load patch differs some from that of a perfect rectangle
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(a) W0H0 (b) W1H0

(c) W2H0 (d) W3H0

(e) W4H0

Figure 6.1: Examples of resulting deformations for increasing load patch width, obtained
from linear analyses and presented with a large deformation scale factor. Load patches are
marked in red. More stiffeners are activated as the load patch width increases.
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the analyses would increase. Stress data have not been extracted directly at the
boundaries of the model in order to reduce the influence of the BCs. Furthermore,
two different BCs have been evaluated.

Because the hull has extra ice strengthening in the waterline area, half of the trans-
verse stiffeners do not continue to the deck above. To compensate for an otherwise low
moment bearing capacity at the top ends of these stiffeners, brackets are connected
to the deck stringers making the hull stiffeners capable of transferring moments at
the top end. These brackets can be seen in the top right region of Figure 6.9. All
stiffeners continue through the deck below and they can therefore transfer moments
to some extent at the bottom ends. Shear forces in stiffeners will mainly be trans-
ferred to the deck through brackets at the top and through lug plates at the bottom
ends of the stiffeners.

The first set of BCs is called ”all fixed”. All outer edges, in addition to the lower stiff-
ener ends, are fixed in translational and rotational DOFs (U1=U2=U3=U4=U5=U6=0).
Figure 6.2 shows these BCs.

Since only the outer edges are fixed on the top, moments will mainly be transferred
to the top deck through the brackets. The top ends of the stiffeners therefore exhibit
more rotational flexibility than the bottom ends. The top ends of the stiffeners which
continue to the deck above will with these BCs be more free to rotate than in reality.
This will result in that more load is carried by the bottom half of the stiffener,
which is a conservative assumption. What is more concerning are the fixed lower
ends of the frames. In reality the shear forces from the stiffeners are transmitted
to the lower deck through the lug plates connecting them. This is not simulated
with the current BCs. Surrounding structure will provide some rotational stiffness
at the boundaries of the skin, but fixed is somewhat unconservative. However, only
limited extra rotational stiffness is given because it is only the nodes along the outer
edges that are restrained from rotating. Bulkheads in front and back will carry a
very limited part of the load on the plates. Stringers therefore carry the main part,
especially when the loads are located at the center of the plate. The rotational BCs
at the skin edges will therefore not have a big influence on the capacity.

The second set of BCs is called ”partly fixed”. BCs are shown in Figure 6.3 and
explained in the following list.

• No rotational BCs are introduced.

• The lower ends of the stiffeners are free to move in the transverse direction (y-
direction), ensuring that shear forces will mainly11 be transferred to the bottom
deck (U1=U3=0).

• The top and bottom edges of the skin are only fixed in the global z-direction
(U3=0).

• The fore and aft edge of the skin, along with fore and aft deck edges, are fixed
in all three translational DOFs to represent the bulkheads (U1=U2=U3=0).

11Because of the ship side’s inclination, a component of the stiffeners’ shear forces will still be
carried by the BCs.
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(a) ”All fixed” boundary conditions seen from aft.

(b) ”All fixed” boundary conditions at lower ends
of stiffeners.

Figure 6.2: ”All fixed” boundary conditions. Orange arrowheads indicate that transla-
tional DOFs are fixed in the direction of the arrow; blue double arrowheads indicate that
rotational DOFs are fixed around the axis of the arrow.
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(a) ”Partly fixed” boundary conditions seen on the ”half
model”.

(b) ”Partly fixed” boundary conditions at lower ends of stiffen-
ers.

Figure 6.3: ”Partly fixed” boundary conditions. Orange arrowheads indicate that transla-
tional DOFs are fixed in the direction of the arrow.
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• Lines in the bottom (tween) deck at the location of deck stiffeners are fixed in
z-direction (U3=0) (Figure 6.3a).

• The inner edges of the decks are free to translate in the longitudinal direction
of the ship (U2=U3=0).

The idea was to mimic the stiffness from the surrounding structure in a more re-
alistic manner. These are more conservative since not all DOFs are fixed, because
moments will be ”moved” to the center of the plate field. One should be aware that
moving moments may increase shear load in some elements because of load carrying
redistribution.

Reduced FE Model

Storage space limitations turned out to be a problem when conducting the analy-
ses. Measures had to be taken and resulted in an FE model of reduced size. Only
loads centered between the rear two bulkheads were to be assessed for the nonlinear
analyses, so the front region, including the bulkhead, was removed. This reduced FE
model is referred to as the ”half model”, because of it spanning half the length of
the original model in the longitudinal direction. The original FE model is referred to
as ”whole model” in the following results. For the linear analyses, storage space and
computational time was not an issue, so the ”whole model” was used exclusively.

The ”whole model” consists of approximately 180 000 elements and nodes, while the
”half model” consists of approximately 80 000 elements and nodes. The analyses
were run on NTNU’s ”immtmal09” remote server. More than 30 nonlinear analyses
were executed. Multiple CPUs (10) were used (for nonlinear analyses), and the run
time for each job was in the ballpark of three hours. Some of the scripts used for
post-processing were equally time consuming, so running time was an issue.

6.1 Linear Analyses

Linear FE analyses were conducted to calculate the load at first yield. The set of
BCs named ”all fixed” was used for all the linear analyses. Since a linear elastic
material model is used, only the Young’s modulus, E, and the Poisson’s ratio, ν,
from Table 5 were needed to define the material. Uniform loads with a magnitude
of 1 MPa were used. Stresses in the the whole model were looked into at first, both
in top, middle and bottom section points of the elements. The stress levels in the
plates and in other regions were in general smaller than stress levels in the stiffeners.
Because of this, yielding in stiffeners was used as capacity criterion for first yield.

For laterally loaded beams, first yield will occur either at the center of load or at
the supports. Since a load centered in the midspan of a stiffener will result in the
largest (bending) stresses, load patches are centered at stiffener midspan for all load
cases (see Figure 6.1 for an illustration of the location of the loads). The longitudinal
(x-direction) position of the load patches were applied at three different locations:
either centered on the middle frame aft of the bulkhead, the frame fore of that or the
frame in the middle, fore of the bulkhead. These frames are named L2, L3 and L5,
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Figure 6.4: Illustration of stress distribution in a stiffener at midspan. Higher stress values
are marked in red and it is seen that the web covers the regions with the highest values.

respectively, according to Figure 5.10a. The frames will yield due to shear, bending
or a combination of these. The most critical regions are at the supports and at
the center of the load, where plastic hinges would occur with excessive loading (not
assessed in linear analyses).

Onset of tripping12 of the stiffeners tends to move the stresses towards the junction
between web and flange, making the web cover the regions of the stiffeners with
highest stress values. This was confirmed by visual inspection in the post-processor
of Abaqus (see Figure 6.4) and it was therefore concluded that stresses only need to
be evaluated in the web to find the maximum values. Local coordinate systems were
made near the top and bottom ends of each stiffener, aligned such that the x,y-plane
is the web and the y-axis is perpendicular to the plate. A path in Abaqus is a user
defined line aligned with element edges, from which different data outputs can be
made. Such paths were made through the height of the webs, aligned with the y-axes
of the local coordinate systems. Local coordinate systems and a path can be seen
in Figure 6.5. An additional path and coordinate system was made at the midspan
of the middle girder, L2. This is the stringer subjected to the most severe stresses
since it is farthest away from the bulkheads. A total of 21 paths were assessed. One
of the reasons why the mesh had to be regular in the web was to be able to make
straight paths.

The normal stress (S11), shear stress (S12) and von Mises stress (Mises) were ex-
tracted from these paths. The von Mises stress is invariant to coordinate transfor-

12Tripping is a phenomenon where stiffeners rotate about the plate junction, and is a form of
lateral torsional buckling. See for example the deformation modes of the stiffeners in Figure 6.1.
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Figure 6.5: Local coordinate systems are marked in yellow and the upper path for stress
extraction on stiffener L1 is marked in red.

mation and could be extracted directly, while coordinate transformations had to be
done for obtaining the other two components with correct values. Plots of stress
distribution as a function of the web height were made to confirm that stresses de-
veloped as expected. A quadratic distribution was observed for the shear stresses
and a linear distribution for the axial stresses, which can be seen in Figure C.1 in
Appendix C.1. This was also a reason for why 21 elements were used over the web
height in the FE model. With fewer elements, curves would not have been as smooth,
especially not using linear elements. The reason for looking into the different compo-
nents was partly because it was interesting to see which stress component dominates
(i.e. if failure occurs due to bending or to shear). Another factor is that full scale
ice load measurements are scheduled for the vessel in the winter of 2017. The strain
gauges cannot measure von Mises stress directly, so preparing scripts and analyses
data for looking into separate stress components makes the work of this thesis more
applicable for later use.

”Local” bending action in the web causes stresses at the two sides to have different
values, illustrated in Figure 6.6. A single check was done for the W0H0 load distribu-
tion at the location of the highest stresses, and a difference in von Mises stress of 7 %
between the two sides was found. For the planned full scale measurements this must
be taken into account, for example by using strain gauges on both sides and taking
the average. Stresses at the mid-section point will be used in later analyses, in order
to exclude the effect of local bending. The reason for this is that the local bending
can be seen as a secondary effect which will not affect the load bearing capacity of
the stiffener. Figure 6.7 illustrates how the bending contribution can be excluded by
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Compression side
Tensile side

Figure 6.6: Local bending action in web due to lateral deformation of stiffeners.

= +

σtotal σbendingσmembrane

telement

Figure 6.7: Shell element with rendered thickness (telement). Section integration points
are marked width blue crosses, and the dashed crosses indicate that data for these section
points were not written to the result files. Using value at mid-section point will exclude
the bending contribution σbending, leaving only the membrane stress, σmembrane.

using the mid-section integration point. Note that the membrane stress in Figure
6.7 represents the bending stress (S11) for the stiffener.

The maximum values of stress components over each path were evaluated. A script
was made to do the following (found in Appendix A.2):

• Open .odb-files (Abaqus result files).

• Create paths and local coordinate systems.

• Change coordinate system and create data output.

• Evaluate the maximum value of the respective stress components over the cross
section.

• Write data to a .csv-file.

The utilization with respect to yielding, ηY , was determined as follows:

ηY =
σmax
σY

(For shear: ηY =
τmax
σY√
3

=
τmax
τY

) (6.1)

The capacity with respect to yielding, CY , was determined as follows:

CY =
σY
ηY

(For shear: CY =
τY
ηY

) (6.2)

τmax is the maximum measured shear stress (S12), σmax is the maximum measured
stress (Mises or S11), σY is the yield stress and τY is the yield stress for pure shear.
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Figure 6.8: Load capacity as a function of load patch width. First yield is used as failure
criterion.

Results from Linear FEA

Microsoft Excel was used for post-processing the obtained maximum values and an
illustrative Excel document organizing the data was made. Since the Excel format is
not ideal for presenting in paper, only the most important results will be presented
her, but the Excel sheet is also electronically attached, see Appendix D.

In all, the response for 30 different load distributions was analyzed. Five load patch
widths (W0-W4), two heights (H0-H1) and three load-locations (L2, L3 and L5) were
used. Loads located farthest away from the bulkheads yielded the lowest capacities
and for that reason, only the loads centered at the L2-stiffener will be analyzed,
assessed and discussed further in the thesis. Capacity curves obtained from the linear
analyses are presented in Figure 6.8, and the capacities were calculated according to
Equation (6.2).

It comes clear from the curves that bending stresses will be dimensioning and de-
termine the overall capacity. Bending stresses were most critical in the midspan of
the L2 stiffener, and the shear stresses were largest at the lower end. Note that the
shear force in the stiffener is more or less constant below and above the load patch.
The maximum capacity was 3.7 MPa and the pressure curve converges to 1.3 MPa
as the width of the load increases.
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6.2 Nonlinear Analyses

In order to determine the ultimate strength of the hull, NLFEA was executed. One
of the goals with this thesis was to estimate the residual strength after onset of
yielding. Only load patches centered at the L2-stiffener were assessed, with the
same patch sizes used for the linear analyses (Section 6.1). Analyses for other load
locations were conducted, but they yielded larger capacities and were therefore not of
interest. Both the ”whole model” (used in linear analyses) and the ”half model” were
utilized. Due to tripping of the stiffeners, a reduction of strength was experienced for
some load cases. Since the Static, General procedure (Newton-Raphson method)
cannot simulate unloading using load control, the arc length method RIKS was used.
1 MPa was used as a reference load as it was seen from the linear analyses that
the capacities were well above this level for all load cases looked into. Strains,
stresses, reaction forces and more were requested as field and history outputs from
the analyses. For more detailed analysis-data, see the input files in the electronic
attachments (Appendix D). The material model used is the one described in Section
5.3 and material data can be found in Table 5. Input files for analyses were generated
using of the script found in Appendix A.3. To see how the BCs influence the results,
both ”partly fixed” and ”all fixed” were utilized. Note that if not explicitly stated in
figures and results, ”all fixed” BCs have been used. Additional results that have not
been presented in the thesis can be found in the electronic attachments (Appendix
D).

6.2.1 Load-Displacement Curves

Load versus displacement curves were made and loads are represented as pressure13 or
force. Force was taken as the total reaction force along the boundaries of the model.
Displacement was taken as the lateral displacement of the node located at the center
of the load. A local coordinate system was created at that node and the z-component
of the displacement is used as the displacement in the load-displacement curves. This
can be seen in Figure 6.9, where the local coordinate system is marked in red. A script
which automatically writes the relevant data output for multiple analyses to a file
was written (Appendix A.4). Load-displacement curves are shown in Figure 6.10,
6.11 and 6.12. Note that since failure is not implemented in the material model, load
displacement curves can not be trusted at very large displacements due to excessive
straining.

To be able to see how load is distributed to different stiffeners, shear stresses at
each path were numerically integrated over the web height and thickness. Then,
by summing the shear force in upper and lower path for a stiffener, the total load
carried by the stiffener was obtained. Coordinate transformation had to be done
at every path to get correct values of shear stress. This had to be done for every
increment, which turned out to be computationally costly. For that reason, only the
three central stiffeners (L1, L2 and L3) were evaluated for shear force. The script
developed for this purpose can be found in Appendix A.5 and some resulting load

13LPF is the Load Proportionality Factor. ”LPF” and ”pressure” is used interchangeably in some
of the plots because the two take the same value since the reference load was 1 MPa.
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Figure 6.9: Deformation is measured at the center of the load (origin in the coordinate sys-
tem CSYS-L2-plate-fixed), in the direction of the load (z-axis of CSYS-L2-plate-fixed).
Note the plastic hinges at the midspan and at the lower end of the load, marked in light
gray.
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Figure 6.10: Load-displacement curves for large deformations.

Figure 6.11: Load-displacement curves at onset of yielding. Reaction force on the second
axis.
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Figure 6.12: Load-displacement curves at onset of yielding. Pressure load on the second
axis.
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Figure 6.13: Load-displacement and ”load-load” curves for large deformations.

deformation curves can be seen in Figure 6.13 and 6.14. ”Reaction force” is the total
reaction force on the model’s boundaries, which is the same as the total applied force
on the model. ”ShearLX” is the shear force carried by stiffener LX. ”Sum shear”
is the sum of shear forces carried by the three central stiffeners. In Figure 6.13 it
seen that all the load is carried by the three central stiffeners for small loads. As
plastic hinges are formed in the three stiffeners, other stiffeners are activated and the
”Reaction force” and ”Sum shear” curves split up.

6.2.2 Ultimate Strength

Since material failure was not implemented, an alternative ”failure” criterion had to
be defined. A criterion based on allowable permanent sets was made and is given
as a maximum lateral deformation (δpermanent) of the stiffener midspan. δpermanent
is given in a percentage of the stiffener’s span, and the percentages evaluated are
0.5 % and 1.0 %, corresponding to 16.75 mm and 33.5 mm with a stiffener span
of 3.35 m. These values were agreed upon after a discussion between the author
and the supervisors at DNV GL (Nyseth & Hareide). It was seen from the analyses
that the the equivalent plastic strain, εpeq, was no more than 0.045 at the worst
locations, which is well below the minimum strain requirements (Section 5.3). The
steel material is also assumed to have a steeper hardening than what is used in the
material model, so the criterion is assumed to be on the conservative side. The idea
is that these are deformations that can be acceptable for a ship without having an
urgent need for repair. The deformations are also in line with what was categorized
as ”typical ice-induced damages” by Kujala and Ehlers (2013). Capacities calculated
from these requirements will be referred to as ”ultimate strength”, even though the
true ultimate strengths presumably are larger.

A simple way of simulating unloading is illustrated and described in Figure 6.15. The
initial stiffness (in the linear range) from a load displacement curve is used to make
a tangent line. This line is then parallel shifted so that it crosses the displacement-
axis at wanted allowable deformation (δpermanent). The point where the two curves
intersect defines the capacity, or ultimate strength in this case. It is here assumed
that the unloading curve is linear with the same stiffness as the linear stiffness,
which have been shown to be a good approximation. Curves like the ones seen in
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Figure 6.14: Load-displacement and ”load-load” curves showing load carrying distribution
for the three central stiffeners for an increasing load width.
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Λ

δ

Λ1

δ1

δpermanent

δpermanent

Λcapacity

Figure 6.15: Procedure for obtaining capacities. Λ represents load, δ represents displace-
ment and the dots represent data points.
1. Create a tangent to the load-displacement curve based on the origin and the first data
point (δ1,Λ1).
2. Parallel shift the tangent curve so that it crosses the x-axis at the allowable permanent
deformation (δpermanent).
3. The capacity (Λcapacity) is found from the intersection of the two curves.

Figure 6.16 were made for all nonlinear analyses and can be found in the electronic
attachments, see Appendix D. An excel macro was used to extract the exact location
of the intersections so that the capacities could be determined.

Capacity curves similar to the ones presented for the linear analyses (Section 6.1) can
be found in Figure 6.17, and capacities for both BCs are presented. The obtained
capacities can also be found in Table 8 and 9 in Appendix C.2. The residual capacity
for each load case is illustrated in Figure 6.18, being in the range of 50 % to 260 %
of the linear capacity.

The ”half model” was primarily used with the ”party fixed” BCs. A single analysis
of the ”half model” with the ”all fixed” BCs was done to verify that the results are
comparable to the results obtained using the ”whole model”. The influence of the
BCs is assumed to be greater the wider the load is as explained previously, so the
W4H0-load (Figure 6.1e) was used for this purpose to be on the conservative side.
The ”half model” was slightly stiffer, but the difference was negligible. For allowable
permanent deformation at midspan of 0.5 % and 1.0 % of the stiffener length, the
increase in capacity was 2.2 % and 3.4 %, respectively.

6.3 Rule Design Loads

The rule design loads were calculated for comparison purposes. Procedure and equa-
tions are as presented in Section 3, while relevant input parameters for the ship used
in the calculations can be found in Table 3 (Section 5.3). A script was utilized for the
calculations (Appendix A.6). The design loads are presented in Figure 6.19, along
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Figure 6.16: Example of ”unloading-curves” along with load-displacement curve used for
obtaining capacities.

with the capacity curves for load height H0. Note that the class notations use an ice
height (h) of 0.35 m which is a little less than the ones used for the FE analyses (H0
= 409 cm in global z-direction).
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(a) Load patch height H0.

(b) Load patch height H1.

Figure 6.17: Ultimate and linear capacity a function of load patch width.
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Figure 6.18: Illustration of residual strength, taken as the nonlinear capacity divided by
the linear capacity.
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Figure 6.19: Ultimate capacity, linear capacity and rule design load as a function of load
patch width.
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7 Discussions

In this section the approach, assumptions and results presented will be discussed.

7.1 Finite Element Model

The FE model assessed in this thesis is located on the outskirts of the bow region of
the ship. One would might expect that the most severe loads will be experienced in
the very front of the bow, but there are reasons why that might not be the case. The
class notations for the Baltic ice classes specifies that assistance from ice breakers
is expected, meaning that vessels will mainly interact with ice at the edges of the
open channel. Hull inclination will also be larger at the very front, apart from at
the bulbous bow, which in general tend to reduce the loads due more to initiation
of bending failure modes. It can therefore be assumed that the most severe loading
will occur on the sides of the bow region. Design requirements are in any case the
same for the whole bow region (DNV GL rules for classification: Ships (RU-SHIP),
2016).

From the mesh convergence study it came clear that reasonable results (maximum
stresses and displacements) were obtained if ten or more elements were used over
the web height, and fewer elements were needed for the smaller loads in the linear
range. 21 elements were still used, so it may be argued that a somewhat courser
mesh would have been sufficient, especially for the linear analyses. The main reason
for having such a fine mesh was to acquire a better resolution when plotting stress
distributions over the cross section of the stiffeners. Smooth and detailed curves were
in this way obtained and the simple numerical integration of the shear stress over the
web cross section became more accurate. The use of S4R elements can be justified
by the results from the mesh convergence study: It was seen that the performance
of S4R was somewhat better than that of S4 elements, and S4R is at the same time
less computationally costly. Higher order elements were not checked for convergence,
as reducing element size is in general more efficient than increasing element order.
Hourglassing tendencies was not observed from visual inspection of the mesh. It was
not expected either since loads and BCs were distributed over many nodes and the
default hourglassing control in Abaqus was used, so hourglassing was assumed to not
be a problem. It was also seen from visual inspection of the model that the mesh
looks fine in most regions. A limited number of elements are distorted in certain
areas (Appendix B), but these elements were not critically loaded or deformed, so it
was concluded that this will not be a problem.

Two boundary conditions were evaluated and they are only slightly different: For
”all fixed” there is more moment bearing capacity at the outer edges of the model,
whereas ”partly fixed” is more conservative since moments will be somewhat ”moved”
to the center where the loads are applied. From Figure 6.17 it was seen that the
difference in capacity for the two BCs was limited, but was in general larger when
the load patch was wider. This is because the rotational constraints in the hull
skin will be more influential when loads are applied close the boundaries of the
model. It was not feasible to make more realistic BCs, for instance by expanding
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the model with more bulkheads and decks. This would at the same time have made
the computations more costly. The analyses were already quite computationally
expensive, and together with the fact that extending the model would have been
time consuming itself, this option was discarded. As long as load levels are such that
stresses and strains along the boundaries are small, the BCs used are assumed to
be a reasonable representation of the surrounding structure, as discussed in Section
6. Any of the two will give good indications of the capacities, but ”partly fixed” is
slightly more conservative.

Another reason for introducing the ”partly fixed” BCs was to see how the shear load
will distribute to the bottom deck through the lug plates. It turned out that the
stress level in the lug plates (along with the rest of the deck) was small compared
to the stress levels in other regions. The stiffener ends were constrained in the z-
direction so a part of the shear load was admittedly carried by the BCs (due to the
inclined ship side), but it is assumed that lug-plates would not be critically loaded
in any case.

The ”half model” was introduced to save storage space. It was necessary to verify
that the two models actually are comparable for the load cases looked into. The
comparison of the ”half model” and ”whole model”, with both using ”all fixed” BCs,
showed that the capacities differed only 2-3 % in a load case which was assumed to be
conservative. The use of the ”half model” can therefore be justified, and the results
obtained with the different models are therefore comparable. This can also be used
as argument for saying that increasing the overall model size will not have a great
impact on the calculated capacities: It is unlikely that expanding the ”whole model”
will change the response significantly when reducing the size has little influence.

A challenge with NLFEA is that a failure criterion have to be defined, in contrast
to the case of linear analyses where first yield in most cases can be taken as the
failure criterion. The material model used in the NLFEA has no failure criterion
implemented so infinite strains can in theory be sustained, while tearing and frac-
turing would occur in reality for excessive straining. The criterion that was made
(Section 6.2.2) gives a conservative estimate of the hull strength, as discussed. Since
the vessel assessed is considered for operation on more severe ice conditions than it
was initially designed for, the ultimate capacity obtained using the criterion will thus
not be the true ultimate capacity, but is rather an estimate of a maximum acceptable
load level. The equivalent plastic strains were well below minimum requirements for
the material using this criterion and the magnitude of the allowable deformations
are in line with what engineers at DNV GL with and research say is acceptable. For
operation in extreme cold the steel temperature above the waterline may sink below
freezing, reducing the ductility of the steel. As the utilized strain level is less than
a third of the minimum required material capacity it is assumed that the failure
criterion in any case will be on the safe side.

A material model with slightly steeper hardening could have been used, giving a ulti-
mate stress closer to the material minimum requirement on ultimate tensile strength
of 490 MPa (see Section 5.3). This was not done, however, because DNV GL super-
visors recommended using the model described in Section 5.3. Since plastic strain
levels were small for the loads assessed, it can also be argued that implementing an-
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other hardening rule would be of minor significance. Taking into account that both
the material model used is softer than the minimum material requirements (in the
plastic regime) and that the strain levels were relatively modest, it is safe to assume
that the ultimate capacity criterion used is on the conservative side.

7.2 Loads

Since the model is located in the waterline area, it is assumed that stresses from
hydrostatic pressure will be negligible compared to the loads applied. The same is
assumed for bodyforces due to gravity. Furthermore, the model is located in the
neutral axis of the ship14 so stresses due to global bending of the hull girder will be
small, which is also assumed to hold true for stresses due to global shear forces15.
The assumption of zero prestresses in the model is therefore justifiable.

The ice loading applied on the structure is, however, more questionable. In Section
2.1 an in-depth discussion on ice loading was presented. Ice loading on ship hull is
in general highly nonuniform. High pressure zones experience pressures many times
larger than the surrounding regions, while some regions of the nominal contact area
will not come in contact with the ice at all. This is to some extent taken into account
by the rule loads, since a load patch height of 0.35 m is used which is smaller than the
assumed ice height of 1.0 m. Erceg et al. (2014) showed that damages on a stiffened
panel are more severe when using a realistic nonuniform pressure distribution than
when using uniformly distributed pressures according to polar rules (FSICR/IACS).
Moreover, the load distribution changes significantly during impact as parts of the
ice crush and spall off. It has been shown that this time-varying load distribution
has an influence on the response (Quinton et al., 2012).

The big issue when modeling ice loading is that the deformation processes in ice
are so complex and chaotic of nature, making it almost impossible to model in an
exact manner. As discussed in Section 4, the numerical methods developed for
representing ice all have their shortcomings and none has yet been verified. The
material models have problems reproducing the nonuniform pressure distributions
seen from experiments, in particular. An alternative to using FE models for ice for
applying loads is to simply paint measured pressure distributions on the structure.
It was pointed out in Section 4 that it may be easier to overcome difficulties with
this method of applying loads, than to overcome the problems of making a material
model.

However, these methods were not investigated or utilized in this thesis, due to time
limitations. Uniform pressure patches were used instead. This is a simplified way
of applying ice loading, where it is assumed that the pressure distribution of ice is
smeared out uniformly on a pressure patch. Ideally, other load distributions should
have been assessed as well since it is expected that nonuniform load distributions
will yield larger damages. An advantage of using uniform load distributions, apart
from being simple to apply, is that comparing capacities will be comparable with
the uniform rule design loads. It can also be noted that there will be a frictional

14Information provided by DNV GL supervisors.
15Information provided by DNV GL supervisors.
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component of the ice loading on the hull side because of forward motion of the vessel.
This was not taken into account in the calculations, because the frictional forces are
assumed to be if minor importance.

7.3 Solution Scheme and Procedure

Ice loading on a ship hull will in general be distributed over an area and the loaded
surface will deform differently at different locations. The use of displacement control
in the FE analyses is therefore problematic, so load control was used. Tendencies of
tripping of the stiffeners were observed from the linear analyses. Since tripping can
result in loss of stiffness, the arc length method RIKS was used for the nonlinear anal-
yses. However, it was seen in retrospect that using a load incremental procedure with
Newton-Raphson iterations (Static, General) would have been sufficient. The load
levels looked into in this thesis were reached before limit points were reached and
nonlinearities were smooth and plasticity-based. Computer power and time would
have been saved if the more efficient Newton-Raphson method was used, but results
would of course still have been the same. Some of the load cases looked into did
indeed show softening (Figure 6.10), and for these cases Static, General with load
control16 would not have been able to capture the response following the limit points.
An alternative measure for reducing computational cost would have been to reduce
the maximum number of increments for each analysis. With some experience of how
the problems behaved, a more reasonable number of increments could have been
determined. It was on the other hand interesting to observe that tripping actually
occurred, even though the results for large displacement are less trustworthy because
of large strains.

A quasi-static approach was chosen because the influence of dynamic effects was
assumed to be small, in line with the requirements listed in Section 5.1: There is
no repeated loading. Steels tend to have a rather modest strain rate hardening, so
viscous material behavior was not modelled. Also, a stiffened panel is a relatively
lightweight structure, so the mass forces will be small compared to the ice loads.
If, however, an ice feature were to be numerically modelled, it would have been
important to implement the profound strain rate dependencies of ice discussed in
Section 2. Furthermore, discontinuous nonlinear behavior would have been expected
due to fracturing and cracking of ice, making an explicit dynamic analysis a better
choice.

7.4 Results

The linear analyses showed that the most critical loading location was loads centered
at the central stiffener (L2). This was expected since the support from surround-
ing structure is smaller farther away. The highest stresses were experienced at the
midspan of this stiffener and the bending component dominated. Shear stresses were
largest at the lower ends of the stiffeners, due to the more rigid support. This can

16General static with stabilization would have been able to simulate softening, but stabilization
was not considered in this thesis.
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be confirmed by looking at Figure 6.9 where it is seen that plastic hinges have been
formed at the midspan and at the lower end, but not at the top. Even if loads were
centered closer to the lower end, it is doubted that yielding due to shear stresses will
be more critical than stresses due to bending in the current load case, because of
the large difference seen between the two in Figure 6.8. Loads were for that reason
located at the midspan for all analyses.

The load (pressure) capacity was significantly larger for the narrow loads compared
to the wider ones (not true in terms of force). The capacity curve converges for wide
loads because an increased width will only activate new stiffeners and not increase
the load on stiffeners already activated. This is not the case for narrow loads, where
the load is mainly carried by one stiffener which makes it sensitive to the load width.
The capacities for narrow load patches is therefore high. In Figure 6.1 it is clearly
visible how more stiffeners are activated when the load patch width increases.

The design loads of the vessel were calculated and they were higher than the linear
capacities (Figure 6.19). It may appear as though the vessel has not fulfilled its
design requirements, but this is not necessarily the case. The load cases are not
directly comparable. First of all, the design height used in the class notation is fixed
at 0.35 m, unlike the 0.41 m used for the height denoted H0. Another aspect is that
the widths and heights used in the FE analyses is not the actual width and height,
but rather the longitudinal- and z-component of the load patch. If visualizing a
”capacity surface” in the width- and height-space one would probably find that the
capacities will be in line with the design loads. The most important conclusion to
be taken from the rule design loads is that the values are in the same ballpark as the
linear capacity, which is reassuring.

The nonlinear analyses were conducted to assess the response after yielding. The
curves in Figure 6.14 were made for visualizing the load distributions for the different
load cases looked into. It is seen that the loads carried by the three stiffeners become
more and more equal the wider the load patch is, just as discussed above for the
linear results. Note also that there is a significant difference in the total load and the
load carried by the three stiffeners for the widest load patches, whereas for smaller
load patches all the load is carried by the three central stiffeners as the curves for
”Sum shear” and ”Reaction force” are perfectly aligned. The load-displacement
curves (Figure 6.12) can also be used to verify that the capacities calculated from
the linear analyses (Figure 6.8) were correct, as it is seen that capacities from the
linear analyses coincide with the load levels at the end of the linear regime. The
same can be seen from Figure 6.14, though it is not clear to see where yielding first
occurs in the stiffener.

A significant residual capacity was found for all load cases. For the criterion allowing
0.5 % of the stiffener span in permanent deformation the residual capacities ranged
between 50 % and 160 % of the linear capacity, while ranging between 80 % and
260 % of the linear capacity when allowing 1.0 % of the stiffener span in permanent
deformation (Figure 6.17 and 6.18). The residual strengths for narrow load patches
are many times larger than those of the wide loads. A similar type of argumentation
used above can explain this: For narrow loads, surrounding structural components
will be activated and both their linear and plastic capacity will be ”available”. For
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wide loads, however, the linear capacity of adjacent stiffeners have already been
utilized so that only the ”plastic capacity minus the linear capacity” is remaining,
so to say.

Even though a profound residual strength was found for the various load cases, it
is questionable whether this alone can be used as an argument for allowing the
ship to operate in more severe ice conditions than it was initially designed for. As
discussed in Section 3, the ice class rules take into account that larger loads than
design loads will be encountered. By allowing modest permanent deformations, some
of the residual capacity is therefore already utilized as it is. Damages on ice class
vessels are relatively frequent and the bulk carrier that was analyzed by Kujala and
Ehlers (2013) does actually have the same ice class and similar scantlings as the vessel
looked into in this thesis. There it was found that doubling the design load would
be the best in an economic point of view. It is not unlikely that a similar relation
would be found for the current vessel, taking into account that class notation and
scantlings are similar. Furthermore, the ice conditions described by the class notation
are somewhat vague. Ice thickness of 1.0 m can mean so much in terms of loading
because of the varying properties of ice. As mentioned in the introduction, it is
no simple task for a vessel operator to determine the severity of the ice conditions
as properties, thickness or presence of ice ridges cannot be determined easily by
visual inspection, so the risk for human error is prominent. The above arguments
indicate that one in general should be very careful when allowing for operation in
more severe ice conditions only based on residual capacity of design loads. Note
that also other factors than hull strength must also be taken into account (fatigue,
propeller strength, engine power etc.), but that is outside the scope of this thesis.
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8 Conclusions

The aim of this thesis was to investigate the hull response when subjected to ice
loading. Ice as a material is very complex and difficult to model. Factors such as
strain rate, hydrostatic pressure, crystal structure, salinity etc. influence material
properties such as strength and failure mode. Fracturing, spalling and crushing of
ice make load distributions in general highly nonuniform, and research has shown
that these nonuniform loads invoke more severe damages than uniform ones. It has
therefore been of interest to have a material model for ice usable for FE analyses
for quite some time. As of now no such material model has been verified, since all
seem to have trouble reproducing realistic pressure distributions. An alternative to
using numerical FE models for ice is to directly paint known load distributions onto
structures.

Ice loading was simulated in a simple manner by using uniform pressures for the
analyses done in this thesis. This approach is in general unconservative, but for the
purpose of comparing linear and ultimate capacity the approach is assumed to be
adequate. The load capacities found from the linear analyses range between 1.3 MPa
and 3.7 MPa for the different load cases (Figure 6.8).

A self-made failure criterion was made for use with the nonlinear analyses. The
midspan of stiffeners are allowed to permanently deform 0.5 % or 1.0 % of the stiff-
ener span. Strain levels in the structure were seen to be well within the material
requirements. The choice of this failure criterion was not based on exact calculations,
but was rather an engineering decision based on what is assumed to be acceptable
permanent deformations. These deformations also coincided well with what have
been mentioned by other research.

The hull exhibits additional residual capacities in the range of 50 % to 260 % of
the load at first yield, according the the failure criterion used. These numbers are
assumed to be conservative since the material model used is somewhat softer in
the plastic regime than what is required by the rules, and because the strain levels
were relatively modest. Thus, it can be concluded that the hull exhibits a profound
residual strength for all load cases looked into, and that catastrophic failure will not
occur the moment the load level exceeds the design loads.

It was however questioned whether this alone can justify giving a permission for
operation of the ship in more severe ice conditions than it was initially designed for.
From the discussion in Section 3, it comes clear that loads higher than design load
are expected during winter navigation. Ice class rules assess ice loading in a very
simple manner using uniform pressure patches. Only a single design point at first
yield is used, while small permanent deformations are accepted at the same time. So
even though a large residual capacity was found, it does not necessarily mean that
it is safe to allow the vessel operate in more severe ice conditions.
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9 Recommendations for Future Work

Full scale measurements for the upcoming winter season is already planned and it
is recommended that these are done. As stated repeatedly in the thesis, ice as a
material is so complex that methods available for assessing ice loads are not reliable.
Doing measurements will provide necessary strain data. Experienced loads can be es-
timated by the use of strain gauge data, for example by taking advantage of response
calculations from this thesis. Ideally, a long-term distribution can then be fit to the
load data and a design load corresponding to some sort of ULS requirement can be
determined, similar to what has been done by Kujala and Ehlers (2013). It would
be interesting to compare this with the design load given by the class notations, and
to see how the experienced loads compares to the nonlinear capacities. The calcu-
lated ULS-load can be compared with the nonlinear capacities from this thesis and
a decision on whether the hull strength is sufficient for operation in more severe ice
conditions can be made. Other factors must also be assessed (fatigue, propulsion
etc.) for a general conclusion.

It would also be interesting to do response analyses with nonuniform pressure distri-
butions in a similar manner as done by Erceg et al. (2014) and proposed by Quinton
et al. (2012). One can then get an idea of how these damages compare to damages
obtained using uniform pressures with equal force. It can be investigated whether
a scaling factor can be determined in order to relate different response properties
(stresses, strains, deformations) obtained using uniform pressures to corresponding
values using more realistic ice loading pressure distributions. Such factors may be
useful when assessing response to ice loading in a simplified manner using uniform
load distributions.
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Riska, K., & Kämäräinen, J. (2011). A Review of Ice Loading and the Evolution

of the Finnish-Swedish Ice Class Rules. In Proceedings of the SNAME Annual
Meeting and Expo. November (pp. 16–18).

Riska, K., Rantala, H., & Joensuu, A. (1990). Full scale observations of ship-
ice contact: Results from tests series onboard ib sampo, winter, 1989 (Tech.
Rep.).

Ritch, R., Frederking, R., Johnston, M., Browne, R., & Ralph, F. (2008). Local ice
pressures measured on a strain gauge panel during the ccgs terry fox bergy bit
impact study. Cold Regions Science and Technology , 52 (1), 29–49.

Sanderson, T. (1986). A pressure-area curve for ice. In Proc of the 8th mi symposium
on ice.

Sanderson, T. J. (1988). Ice mechanics and risks to offshore structures.
Sawhill, S. (n.d.). personal communication, 2016-03-01. (Previously worked as chief

officer (captain) at the US Coast Guards’s icebreaker Polar Sea, now employed
at DNV GL)

Schulson, E. M., & Duval, P. (2009). Creep and Fracture of Ice. Cambridge University

95

https://www.nafems.org/join/resources/knowledgebase/001/
https://www.nafems.org/join/resources/knowledgebase/001/
https://www.nafems.org/join/resources/knowledgebase/002/
https://www.nafems.org/join/resources/knowledgebase/002/


References

Press Cambridge.
Sodhi, D. S., Takeuchi, T., Nakazawa, N., Akagawa, S., & Saeki, H. (1998). Medium-

scale indentation tests on sea ice at various speeds. Cold Regions Science and
Technology , 28 (3), 161–182.

Storheim, M. (2016). Structural Response in Ship-Platform and Ship-Ice Collisions.
Storheim, M., & Amdahl, J. (2014). Design of offshore structures against accidental

ship collisions. Marine Structures , 37 , 135–172.
Storheim, M., Kim, E., Amdahl, J., & Ehlers, S. (2012). Iceberg shape sensitivity

in ship impact assessment in view of existing material models. In Asme 2012
31st international conference on ocean, offshore and arctic engineering (pp.
507–517).
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A Python Scripts

All scripts presented in Appendix A are made by the author for the purpose of this
thesis. Some of the variable names, for-loops etc. are, however, based on scripts
made by DNV GL-colleague Ole J. Hareide. Variable names revealing the identity of
the ship have been changed, so scripts may not work with the electronically attached
input files.

A.1 Create Input Files (Linear Analyses)

This script generates input files for linear analyses. For a chosen load location mul-
tiple input files with different load patch sizes will be made.

import shutil, os, sys, string, numpy
from abaqus import *
from abaqusConstants import *

outputFolder='AnalysesL2'

# Create output folder if it does not already exist:
outFolder=os.path.join(os.getcwd(),outputFolder)
if not os.path.exists(outFolder):

os.mkdir(outFolder)

# Batfile for running analyses
batName = 'runme.bat'
fout = open(os.path.join(outFolder, batName), 'w')

#Location of load patch-center
CenterL54=[61.500004,-5.109043,6.016752]
CenterL24=[59.700005,-5.846021,6.015892]
CenterL34=[60.000004,-5.846021,6.015892]
CenterLB=[60.300004,-5.846021,6.015892]
Center=CenterL24

Width=312.122E-03 # initial width load patch (in x-direction) (approx)
StepW=Width/2
Height=409.228E-03 # initial height load patch (in x-direction) (approx

)
StepH=Height/2

oldJobName = mdb.jobs.items()[0][0]
for i in range(0, 5): #number of widths for loads

for j in range(0,2): #number of heights for loads
a = mdb.models['Model-1'].rootAssembly
f1 = a.instances['NONAME-TweenDeckBallast-1'].surfaces['Skin']

# create surface for loadpatch
elements11=f1.elements.getByBoundingBox(Center[0]-(Width/2 +

StepW*i),
-10,Center[2]-(Height/2+StepH*j),Center[0]+(Width/2 + StepW

*i),10,Center[2]+(Height/2+StepH*j))
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a.Surface(side1Elements=elements11, name='LoadPatchTot') #
create element surface for load

#Load (1MPa)
region = a.surfaces['LoadPatchTot']
mdb.models['Model-1'].Pressure(name='Load-LoadPatch',

createStepName='Step-1',
region=region, field='', magnitude=1000000.0)

# create jobs
newJobName = 'Job-LoadPatch-W%s-H%s' % (i, j)
mdb.jobs.changeKey(fromName=oldJobName, toName=newJobName)
mdb.jobs[newJobName].writeInput(consistencyChecking=OFF)
oldJobName = newJobName

# write to .bat-file
fout.write('call abaqus job=%s interactive\n' % newJobName)

#move input-files to outputfolder
currentdir=os.getcwd()
files arr=os.listdir(currentdir)
files arr.sort()
for file in files arr:

if str.endswith(file, ".inp") == 1:
shutil.move(currentdir+"./"+file, outputFolder+"./"+

file)
fout.close()
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A.2 Write Data to File (Linear Analyses)

This script determines the maximum shear-, axial- and von Mises stress over cross
sections of the stiffeners, and writes them to a file.

from abaqus import *
from abaqusConstants import *
from abaqusExceptions import *
import os

def main(): #define function

#region INPUT
instanceName = r'NONAME-TweenDeckBallast-1'.upper()
csvFileName = 'NONAME-Results.csv'
elementLength = 0.01238
elementThickness = 0.01
#endregion

outputFolder='AnalysesL2'

# Create output folder if it does not already exist:
outFolder=os.path.join(os.getcwd(),outputFolder)

#region OPEN ODB
# Find odb files in current folder
odbNames = []
for file in os.listdir(outFolder):

if file.endswith('.odb'):
odbNames.append(file)

# If odb files were found
if len(odbNames) != 0:

try:
fout = open(os.path.join(os.getcwd(), csvFileName), 'w')

except IOError as e:
print 'ERROR in opening ' + csvFileName + ' : ' + e.args[1]
return

printHeader = True
for odbName in odbNames:

filePath = os.path.join(outFolder, odbName)
try:

odb = session.odbs[filePath]
except KeyError:

try:
odb = session.openOdb(filePath)
session.viewports['Viewport: 1'].setValues(

displayedObject=odb)
except OdbError:
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print 'ERROR: No odb-file with the name ' + odbName
+ ' was found in the current folder'

#endregion

#region CREATE VARIABLES
ass = odb.rootAssembly
inst = ass.instances[instanceName]
nSets = inst.nodeSets
#endregion

#region CREATE PATHS
frameNames = ['A', '1', '2', '3', 'B', 'C', '4', '5', '6',

'D']
if len(session.paths) == 0:

print "yes"
session.Path(name='PATH-L2-M', type=NODE LIST,

expression=(('NONAME-TWEENDECKBALLAST-1', (22994,
23000, )), )) #Path at center of L2-load

for i in range(len(frameNames)):
# Lower path
myNode1 = nSets['PATHL%s-L-1' % frameNames[i]].

nodes[0].label
myNode2 = nSets['PATHL%s-L-2' % frameNames[i]].

nodes[0].label
session.Path(name='PATH-L%s-L' % frameNames[i],

type=NODE LIST, expression=((instanceName, (
myNode1, myNode2, )), ))

# Upper path
myNode1 = nSets['PATHL%s-U-1' % frameNames[i]].

nodes[0].label
myNode2 = nSets['PATHL%s-U-2' % frameNames[i]].

nodes[0].label
session.Path(name='PATH-L%s-U' % frameNames[i],

type=NODE LIST, expression=((instanceName, (
myNode1, myNode2, )), ))

#endregion

# CREATE LOCAL CSYS for every path
scratchOdb = session.ScratchOdb(odb)
scratchAss = scratchOdb.rootAssembly

for i in range(len(frameNames)):
# Lower CSYS
csysName = 'CSYS-L%s-L' % frameNames[i]
originNode = nSets['XNODE-L%s-L0' % frameNames[i]].

nodes[0]
node1 = nSets['XNODE-L%s-L1' % frameNames[i]].nodes[0]
node2 = nSets['XNODE-L%s-L2' % frameNames[i]].nodes[0]
scratchAss.DatumCsysByThreeNodes(name=csysName,

coordSysType=CARTESIAN,
origin=

originNode
,
point1
=
node1
,
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point2
=
node2
)

# Upper CSYS
csysName = 'CSYS-L%s-U' % frameNames[i]
originNode = nSets['XNODE-L%s-U0' % frameNames[i]].

nodes[0]
node1 = nSets['XNODE-L%s-U1' % frameNames[i]].nodes[0]
node2 = nSets['XNODE-L%s-U2' % frameNames[i]].nodes[0]
scratchAss.DatumCsysByThreeNodes(name=csysName,

coordSysType=CARTESIAN,
origin=

originNode
,
point1
=
node1
,
point2
=
node2
)

#CSYS for middlepoint of L2 (bending)
csysName = 'CSYS-L2-M'
originNode = inst.nodes[22993]
node1 = inst.nodes[24936]
node2 = inst.nodes[22999]
scratchOdb = session.ScratchOdb(odb)
scratchOdb.rootAssembly.DatumCsysByThreeNodes(name=csysName

, coordSysType=CARTESIAN,
origin=

originNode
,
point1
=
node1
,
point2
=
node2
)

#-----------region CREATE XYOUTPUTS

#Choose S12 OR S11
#session.viewports['Viewport: 1'].odbDisplay.

setPrimaryVariable(variableLabel='S', outputPosition=
INTEGRATION POINT, refinement=(COMPONENT, 'S12'))

session.viewports['Viewport: 1'].odbDisplay.
setPrimaryVariable(variableLabel='S', outputPosition=
INTEGRATION POINT, refinement=(COMPONENT, 'S11'))

# Set to mid-plane section points
session.viewports['Viewport: 1'].odbDisplay.

setPrimarySectionPoint(
sectionPoint={'shell < AH-36 > < 5 section points >':(
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'Mid, (fraction = 0.0)', 'SPOS, (fraction = 1.0)'), '
shell < NV-NS > < 5 section points >':('Mid, (
fraction = 0.0)',

'SPOS, (fraction = 1.0)'),'beam < rectangular > < elset
= ASSEMBLY NONAME-TWEENDECKBALLAST-1 BEAMS-DECK >'
:(

'Bottom Left Corner', 'Bottom Right Corner')})

for path in session.paths.items():
#change to local CSYS
dtm = scratchAss.datumCsyses['CSYS-' + path[0][-4:]]
session.viewports['Viewport: 1'].odbDisplay.

basicOptions.setValues(transformationType=
USER SPECIFIED, datumCsys=dtm)

#create xyData #use only one of the following (S11 or
S12):

#xyName = 'S12-' + path[0] #
#session.XYDataFromPath(name=xyName, path=session.paths

[path[0]], includeIntersections=True,
projectOntoMesh=False,

# pathStyle=UNIFORM SPACING, numIntervals=18,
projectionTolerance=0, shape=UNDEFORMED, labelType=
TRUE DISTANCE)

xyName = 'S11-' + path[0] #
session.XYDataFromPath(name=xyName, path=session.paths[

path[0]], includeIntersections=True, projectOntoMesh
=False,
pathStyle=UNIFORM SPACING, numIntervals=18,

projectionTolerance=0, shape=UNDEFORMED,
labelType=TRUE DISTANCE)

#endregion

#region WRITE TO CSV FILE
xyoutputs = session.xyDataObjects
# print header
if printHeader:

for xyout in xyoutputs.items():
name = xyout[0][-4:]
fout.write(', ' + name)

fout.write('\n')
printHeader = False

fout.write(odbName)
while len(xyoutputs) > 0:

xyout = xyoutputs.items()[0]
data = xyout[1]
#extract largest stress over path
stressMax=abs(data[0][1])
for i in range(len(data)):

if abs(data[i][1]) > stressMax:
stressMax=abs(data[i][1])

fout.write(', ' + str(stressMax))
del xyoutputs[xyout[0]]

odb.close()
fout.write('\n')
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#endregion
fout.close()

# If no odb files were found
else:

print "No ODB-files found in the specified folder"

main() #run function
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A.3 Create Input Files (Nonlinear Analyses)

This script generates input files for nonlinear analyses. For a chosen load location
multiple input files with different load patch sizes will be made.

import shutil, os, sys, string, numpy
from abaqus import *
from abaqusConstants import *

outputFolder='AnalysesL3'

# Create output folder if it does not already exist:
outFolder=os.path.join(os.getcwd(),outputFolder)
if not os.path.exists(outFolder):

os.mkdir(outFolder)

# Batfile for running analyses
batName = 'runme.bat'
fout = open(os.path.join(outFolder, batName), 'w')

#Surface for loading
CenterL54=[61.500004,-5.109043,6.016752]
CenterL24=[59.700005,-5.846021,6.015892]
CenterL34=[60.000004,-5.846021,6.015892]
CenterLB=[60.300004,-5.846021,6.015892]
Center=CenterL34

Width=312.122E-03 # initial width load patch (in x-direction) (approx)
StepW=Width/2
Height=409.228E-03 # initial height load patch (in x-direction) (approx

)
StepH=Height/2

oldJobName = mdb.jobs.items()[0][0]
for i in range(0, 5): #number of widths for loads

for j in range(0,2): #number of heights for loads
a = mdb.models['Model-1'].rootAssembly
f1 = a.instances['NONAME-TweenDeckBallast-1'].surfaces['Skin']

# create surface for loadpatch
elements11=f1.elements.getByBoundingBox(Center[0]-(Width/2 +

StepW*i),
-10,Center[2]-(Height/2+StepH*j),Center[0]+(Width/2 + StepW

*i),10,Center[2]+(Height/2+StepH*j))
a.Surface(side1Elements=elements11, name='LoadPatchTot') #

create element surface for load
a = mdb.models['Model-1'].rootAssembly

#Load (1MPa)
region = a.surfaces['LoadPatchTot']
mdb.models['Model-1'].Pressure(name='Load-LoadPatch',

createStepName='Step-2 staRIKS',
region=region, field='', magnitude=1000000.0)

# create jobs
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newJobName = 'Job-LoadPatch-W%s-H%s' % (i, j)
mdb.jobs.changeKey(fromName=oldJobName, toName=newJobName)
mdb.jobs[newJobName].writeInput(consistencyChecking=OFF)
oldJobName = newJobName

# write to .bat-file
fout.write('call abaqus job=%s interactive\n' % newJobName)

#move input-files to outputfolder
currentdir=os.getcwd()
files arr=os.listdir(currentdir)
files arr.sort()
for file in files arr:

if str.endswith(file, ".inp") == 1:
shutil.move(currentdir+"./"+file, outputFolder+"./"+

file)
fout.close()
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A.4 Write Load-Displacement Data to File (Nonlinear Anal-
yses)

This script extracts LPF (pressure) and lateral displacement at the center of the load
and writes them to a file.

from abaqus import *
from abaqusConstants import *
from abaqusExceptions import *
import os

#region INPUT
instanceName = r'NONAME-TweenDeckBallast-1'.upper()
csvFileName = 'NONAME-Results-LPF delta.csv'
#elementLength = 0.01238
#elementThickness = 0.01
L2span=3.35 #[m]

#outputFolder='AnalysesL2'
outputFolder='AnalysesL3'

# Create output folder if it does not already exist:
outFolder=os.path.join(os.getcwd(),outputFolder)

# Find odb files in current folder
odbNames = []
for file in os.listdir(outFolder):

if file.endswith('.odb'):
odbNames.append(file)

# If odb files were found
if len(odbNames) != 0:

try:
fout = open(os.path.join(os.getcwd(), csvFileName), 'w')
fout.write(outputFolder + '\n' + ',stiffenerspan [mm],allowed

permanent deformation1[-]'
+',allowed permanent deformation1[mm]'
+',allowed permanent deformation2[-]'
+',allowed permanent deformation2[mm]'
+ '\n' + ',' + str(L2span*1000) + ',0.01,'+str(L2span

*1000*0.01)+
',0.005,' + str(L2span*1000*0.005) + '\n \n \n \n')

except IOError as e:
print 'ERROR in opening ' + csvFileName + ' : ' + e.args[1]
#return

printHeader = True
for odbName in odbNames:

filePath = os.path.join(outFolder, odbName)
try:

odb = session.odbs[filePath]
except KeyError:

try:
odb = session.openOdb(filePath)
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session.viewports['Viewport: 1'].setValues(
displayedObject=odb)

except OdbError:
print 'ERROR: No odb-file with the name ' + odbName + '

was found in the current folder'
#endregion

#region CREATE VARIABLES
ass = odb.rootAssembly
inst = ass.instances[instanceName]
nSets = inst.nodeSets

#-----------create local CSYS (fixed at center of load)
-----------------------------------------

if outputFolder == 'AnalysesL2':
scratchOdb = session.ScratchOdb(odb)
CSYSname='CSYS-L2-plate-fixed'
scratchOdb.rootAssembly.DatumCsysByThreePoints(name=

CSYSname,
coordSysType=CARTESIAN, origin=(59.7000045776367,

-5.85721302032471,
6.03801012039185), point1=(59.6012954711914,

-5.88619947433472,
6.02173376083374), point2=(59.7000045776367,

-5.90748834609985,
6.13758754730225))

elif outputFolder == 'AnalysesL3':
scratchOdb = session.ScratchOdb(odb)
CSYSname='CSYS-L3-plate-fixed'
scratchOdb.rootAssembly.DatumCsysByThreePoints(name=

CSYSname,
coordSysType=CARTESIAN, origin=(60.0000038146973,

-5.73804092407227,
6.03168249130249), point1=(59.8423728942871,

-5.78571701049805,
6.00562000274658), point2=(60.0000038146973,

-5.81309080123901,
6.17571496963501))

#------------change to local fixed coord
scratchAss = scratchOdb.rootAssembly
dtm = scratchAss.datumCsyses[CSYSname]
session.viewports['Viewport: 1'].odbDisplay.basicOptions.

setValues(
transformationType=USER SPECIFIED, datumCsys=dtm,

transformOnDeformed=False)

#-------------- create xy data
#delete old xydata:
for i in range(len(session.xyDataObjects.items())):

xydataname=session.xyDataObjects.items()[0][0] #delete
first in list for each loop

del session.xyDataObjects[xydataname]
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#displacement at center of load
if outputFolder == 'AnalysesL2':

session.xyDataListFromField(odb=odb, outputPosition=NODAL,
variable=(('U',
NODAL, ((COMPONENT, 'U3'), )), ), nodeLabels=((
'NONAME-TWEENDECKBALLAST-1', ('22994', )), ))

session.xyDataObjects.changeKey(
fromName='U:U3 (UNDEF:CSYS-L2-plate-fixed) PI: NONAME-

TWEENDECKBALLAST-1 N: 22994',
toName="deltaL2")

elif outputFolder == 'AnalysesL3':
session.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=(('U',
NODAL, ((COMPONENT, 'U3'), )), ), nodeLabels=((
'NONAME-TWEENDECKBALLAST-1', ('30817', )), ))

session.xyDataObjects.changeKey(
fromName='U:U3 (UNDEF:CSYS-L3-plate-fixed) PI: NONAME-

TWEENDECKBALLAST-1 N: 30817',
toName="deltaL3")

#LPF for whole model
session.XYDataFromHistory(name='LPF', odb=odb,

outputVariableName='Load proportionality factor: LPF for
Whole Model',

steps=('Step-2 staRIKS', ), )

#---------- write to CSV-file
fout.write(odbName + ',' + '\n')
num inc=len(session.xyDataObjects['LPF'])

if outputFolder == 'AnalysesL2':
fout.write('displacement loadcenter (L2) [mm]' + ',')
for i in range(num inc):

fout.write(str(session.xyDataObjects['deltaL2'][i
][1]*1000) + ',')

fout.write('\n')
elif outputFolder == 'AnalysesL3':

fout.write('displacement loadcenter (L3) [mm]' + ',')
for i in range(num inc):

fout.write(str(session.xyDataObjects['deltaL3'][i
][1]*1000) + ',')

fout.write('\n')
fout.write('Pressure load (LPF) [MPa]' + ',')
for i in range(num inc):

fout.write(str(session.xyDataObjects['LPF'][i][1]) + ',')

#get space between data sets:
fout.write('\n')
fout.write('\n')
fout.write('\n \n \n \n \n \n') #to fit new layout
odb.close()

fout.close()
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# If no odb files were found
else:

print "No ODB-files found in the specified folder"
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A.5 Write Detailed Load-Displacement and Shear Data to
File (Nonlinear Analyses)

This script extracts data from the result files where the load patch is centered at
the L2 stiffener. LPF (pressure), lateral displacement at the center of the load, total
reaction force, shear forces in stiffeners (L1, L2 and L3) and the sum of these are
written to a file.

from abaqus import *
from abaqusConstants import *
from abaqusExceptions import *
import os
import displayGroupOdbToolset as dgo

#region INPUT
instanceName = r'NONAME-TweenDeckBallast-1'.upper()
csvFileName = 'NONAME-Results-LPF delta shear.csv'
elementLength = 0.01238
elementThickness = 0.01 #stiffener web

L2span=3.35 #[m]

outputFolder='AnalysesL2'

# Create output folder if it does not already exist:
outFolder=os.path.join(os.getcwd(),outputFolder)

#region OPEN ODB
# Find odb files in current folder
odbNames = []
for file in os.listdir(outFolder):

if file.endswith('.odb'):
odbNames.append(file)

# If odb files were found
if len(odbNames) != 0:

try:
fout = open(os.path.join(os.getcwd(), csvFileName), 'w')
# write relevant info on top:
fout.write(outputFolder + '\n' + ',stiffenerspan [mm],allowed

permanent deformation1[-]'
+',allowed permanent deformation1[mm]'
+',allowed permanent deformation2[-]'
+',allowed permanent deformation2[mm]'
+ '\n' + ',' + str(L2span*1000) + ',0.01,'+str(L2span

*1000*0.01)+
',0.005,' + str(L2span*1000*0.005) + '\n \n \n \n')

except IOError as e:
print 'ERROR in opening ' + csvFileName + ' : ' + e.args[1]
#return

printHeader = True
for odbName in odbNames:

filePath = os.path.join(outFolder, odbName)
try:

odb = session.odbs[filePath]
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except KeyError:
try:

odb = session.openOdb(filePath)
session.viewports['Viewport: 1'].setValues(

displayedObject=odb)
except OdbError:

print 'ERROR: No odb-file with the name ' + odbName + '
was found in the current folder'

#endregion

#region CREATE VARIABLES
ass = odb.rootAssembly
inst = ass.instances[instanceName]
nSets = inst.nodeSets

#-----------create local CSYS (fixed at center of load) ------
scratchOdb = session.ScratchOdb(odb)
scratchOdb.rootAssembly.DatumCsysByThreePoints(name='CSYS-L2-

plate-fixed',
coordSysType=CARTESIAN, origin=(59.7000045776367,

-5.85721302032471,
6.03801012039185), point1=(59.6012954711914,

-5.88619947433472,
6.02173376083374), point2=(59.7000045776367,

-5.90748834609985,
6.13758754730225))

#------------change to local fixed coord
scratchOdb = session.ScratchOdb(odb)
scratchAss = scratchOdb.rootAssembly
CSYSname='CSYS-L2-plate-fixed'
dtm = scratchAss.datumCsyses[CSYSname]
session.viewports['Viewport: 1'].odbDisplay.basicOptions.

setValues(
transformationType=USER SPECIFIED, datumCsys=dtm,

transformOnDeformed=False)

#-------------- create xy data, displacement + LPF
#delete old xydata
for i in range(len(session.xyDataObjects.items())):

xydataname=session.xyDataObjects.items()[0][0] #delete
first in list for each loop

del session.xyDataObjects[xydataname]

#displacement at center of load
session.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=(('U',
NODAL, ((COMPONENT, 'U3'), )), ), nodeLabels=((
'NONAME-TWEENDECKBALLAST-1', ('22994', )), ))

session.xyDataObjects.changeKey(
fromName='U:U3 (UNDEF:CSYS-L2-plate-fixed) PI: NONAME-

TWEENDECKBALLAST-1 N: 22994',
toName="deltaL2")

#LPF for whole model
session.XYDataFromHistory(name='LPF', odb=odb,
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outputVariableName='Load proportionality factor: LPF for
Whole Model',

steps=('Step-2 staRIKS', ), )

#--------------------------- region: extract shear in stiffeners
-----------------------

#--------CREATE PATHS----------
frameNames = ['1', '2', '3'] #only for three central stiffeners
if len(session.paths) == 0:

print "yes"
#( remember to create CSYS for every path)
for i in range(len(frameNames)):

# Lower path
myNode1 = nSets['PATHL%s-L-1' % frameNames[i]].nodes

[0].label
myNode2 = nSets['PATHL%s-L-2' % frameNames[i]].nodes

[0].label
session.Path(name='PATH-L%s-L' % frameNames[i], type=

NODE LIST, expression=((instanceName, (myNode1,
myNode2, )), ))

# Upper path
myNode1 = nSets['PATHL%s-U-1' % frameNames[i]].nodes

[0].label
myNode2 = nSets['PATHL%s-U-2' % frameNames[i]].nodes

[0].label
session.Path(name='PATH-L%s-U' % frameNames[i], type=

NODE LIST, expression=((instanceName, (myNode1,
myNode2, )), ))

#--------- CREATE LOCAL CSYS------------
scratchOdb = session.ScratchOdb(odb)
scratchAss = scratchOdb.rootAssembly
for i in range(len(frameNames)):

# Lower CSYS
csysName = 'CSYS-L%s-L' % frameNames[i]
originNode = nSets['XNODE-L%s-L0' % frameNames[i]].nodes[0]
node1 = nSets['XNODE-L%s-L1' % frameNames[i]].nodes[0]
node2 = nSets['XNODE-L%s-L2' % frameNames[i]].nodes[0]
scratchAss.DatumCsysByThreeNodes(name=csysName,

coordSysType=CARTESIAN,
origin=

originNode
, point1=
node1,
point2=
node2)

# Upper CSYS
csysName = 'CSYS-L%s-U' % frameNames[i]
originNode = nSets['XNODE-L%s-U0' % frameNames[i]].nodes[0]
node1 = nSets['XNODE-L%s-U1' % frameNames[i]].nodes[0]
node2 = nSets['XNODE-L%s-U2' % frameNames[i]].nodes[0]
scratchAss.DatumCsysByThreeNodes(name=csysName,

coordSysType=CARTESIAN,
origin=

originNode
, point1=
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node1,
point2=
node2)

#------- CREATE XYOUTPUTS------

#Choose S12
session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable(

variableLabel='S', outputPosition=INTEGRATION POINT,
refinement=(COMPONENT, 'S12'))

#Set to mid-plane section points
session.viewports['Viewport: 1'].odbDisplay.

setPrimarySectionPoint(
sectionPoint={'shell < AH-36 > < 5 section points >':(
'Mid, (fraction = 0.0)', 'SPOS, (fraction = 1.0)'), 'shell

< NV-NS > < 5 section points >':('Mid, (fraction = 0.0)'
,

'SPOS, (fraction = 1.0)'),'beam < rectangular > < elset =
ASSEMBLY NONAME-TWEENDECKBALLAST-1 BEAMS-DECK >':(

'Bottom Left Corner', 'Bottom Right Corner')})

shearArray=[] #declare array where forces will be stored
for path in session.paths.items(): #counter for paths

#change to local CSYS
dtm = scratchAss.datumCsyses['CSYS-' + path[0][-4:]]
session.viewports['Viewport: 1'].odbDisplay.

basicOptions.setValues(transformationType=
USER SPECIFIED, datumCsys=dtm)

#create xyData sets for each frame
xyName = 'S12-' + path[0]
for f in range(len(session.xyDataObjects['LPF'])): #

counter to include all frames
session.viewports['Viewport: 1'].odbDisplay.

setFrame(step=0, frame=f) #choose frame
session.XYDataFromPath(name=xyName, path=session.

paths[path[0]], includeIntersections=True,
projectOntoMesh=False,
pathStyle=UNIFORM SPACING, numIntervals=18,

projectionTolerance=0, shape=UNDEFORMED,
labelType=TRUE DISTANCE)

data = session.xyDataObjects[xyName]
force = 0.0
# Multiply the shear stress from each element with

the element thickness and length
# to get each element's shear force. Sum up to get

the shear force for the current path
for j in range(len(data)):

if j == 0:
force += data[j][1]*elementLength*

elementThickness*1.5 #[N]
elif j == len(data) - 1:

force += data[j][1]*elementLength*
elementThickness*0.5
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else:
force += data[j][1]*elementLength*

elementThickness
# The first node is not included in the path - so

correct the shear force by adding the first
element

# a second time
shearArray.append(force)

# Declare arrays for each stiffener's force
ShearL1 = [] #[N]
ShearL2 = [] #[N]
ShearL3 = [] #[N]
num inc=len(session.xyDataObjects['LPF'])
for i in range(num inc):

# sum shear force from upper and lower to get total shear
force carried by stiffener

#(-(lower force) + (upper force))
ShearL1.append( -(-shearArray[i] + shearArray[i + num inc])

) # face of elements defined oppositely
ShearL2.append( -shearArray[i +2*num inc] + shearArray[i +

3*num inc] )
ShearL3.append( -shearArray[i +4*num inc] + shearArray[i +

5*num inc] )

#----------------extract total reaction force-----------
#create free body cut at BC-nodes
eLeaf = dgo.LeafFromElementSets(elementSets=(

'NONAME-TWEENDECKBALLAST-1.BOUNDARYEDGES', ))
nLeaf = dgo.LeafFromNodeSets(nodeSets=(

'NONAME-TWEENDECKBALLAST-1.BOUNDARYEDGES', ))
session.FreeBodyFromNodesElements(name='FreeBody-BCnodes',

elements=eLeaf,
nodes=nLeaf, summationLoc=NODAL AVERAGE,

componentResolution=CSYS,
csysName=GLOBAL)

session.viewports['Viewport: 1'].odbDisplay.setValues(
freeBodyNames=(
'FreeBody-BCnodes', ), freeBody=ON)

#create xy data for total reaction force
session.XYDataFromFreeBody(odb=odb, force=ON, moment=OFF,

resultant=ON,
comp1=OFF, comp2=OFF, comp3=OFF)

session.xyDataObjects.changeKey(fromName='FreeBody-BCnodes
force resultant',
toName='totalRF')

#---------- write to CSV-file
fout.write(odbName + ',' + '\n')

fout.write('displacement loadcenter (L2) [mm]' + ',')
for i in range(num inc):
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fout.write(str(session.xyDataObjects['deltaL2'][i][1]*1000)
+ ',')

fout.write('\n')
fout.write('Pressure load (LPF) [MPa]' + ',')
for i in range(num inc):

fout.write(str(session.xyDataObjects['LPF'][i][1]) + ',')
fout.write('\n')
fout.write('Reaction force (total load) [kN]' + ',')
for i in range(num inc):

fout.write(str(session.xyDataObjects['totalRF'][i][1]/1000)
+ ',')

fout.write('\n')

fout.write('ShearL1 [kN]' + ',')
for i in range(num inc):

fout.write(str(ShearL1[i]/1000) + ',')
fout.write('\n')
fout.write('ShearL2 [kN]' + ',')
for i in range(num inc):

fout.write(str(ShearL2[i]/1000) + ',')
fout.write('\n')
fout.write('ShearL3 [kN]' + ',')
for i in range(num inc):

fout.write(str(ShearL3[i]/1000) + ',')
fout.write('\n')
fout.write('Sum shear L1+L2+L3 [kN]' + ',')
for i in range(num inc):

fout.write(str(ShearL3[i]/1000+ShearL1[i]/1000+ShearL2[i
]/1000) + ',')

fout.write('\n')

# add space between data sets:
fout.write('\n')
fout.write('\n')
fout.write('\n \n \n \n \n')
odb.close()

fout.close()

# If no odb files were found
else:

print "No ODB-files found in the specified folder"

#endregion
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A.6 Calculate Rule Design Loads

This script calculates rule design loads according to the DNV GL class notation
Ice(1A*). See Section 3 for explanations.

# -------- Calculate rule loads Ice(1A*)-----

# from DNVGL-RU-SHIP-Pt6Ch6, Section 2

# ----- Load patch 7.2.
h 0=1 #[m] ice thickness
h=0.35 #[m] design ice height

P min=6600 # [kW] actual power, or as defined in [7.1.4]
c 1= 1.0 # Table 12 A factor which takes account of the probability

that the design ice pressure occurs in a certain region of the hull
for the ice class in question

delta f=5000 #[tonnes] displacement

# ------------ calculate c d:
k 1=(sqrt(delta f*P min))/1000
#7.2 Table 11:
if k 1 <= 12: #in bow region

a 1=30; b 1=230
else:

a 1=6; b 1=518

c d=(a 1*k 1+b 1)/1000 #A factor which takes account of the influence
of the size and engine output of the ship. This factor is taken as
maximum cd = 1.

if c d >1:
c d=1

l 0=.6 #[m]
l a=.312 #see table 13, approx 31,2cm for each step

# ------------ calculate design pressure
P=[0,0,0,0,0]
c a=P
P design=P # declaring vector of design pressures
for i in range(1,6):

c a=sqrt(l 0/(l a*i)) #A factor which takes account of the
probability that the full length of the area under consideration
will be under pressure at the same time. It is calculated by

the formula:
if c a > 1:

c a=1
elif c a < .35:

c a=.35
P[i-1]=5600*c d*c 1*c a #[kPa] #7.3.1 The design ice pressure
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P design[i-1]=1.8*5600*c d*c 1*c a #load factor of 1.8 used for
analyses
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B Mesh Details

(a) Top deck mesh seen from below.

(b) Bottom deck mesh seen from above.

Figure B.1: Mesh details, decks.
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B Mesh Details

(a) Mesh at a stiffener’s top end.

(b) Mesh at a stiffener’s bottom end.

Figure B.2: Mesh details, stiffeners.
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C Additional Results

C.1 Verification of Stress Distributions along Paths

Figure C.1: Example of stress distribution along a path (cross section) at the lower end of
a stiffener.
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C Additional Results

C.2 Ultimate Strengths in Numbers

Table 8: Ultimate strengths from nonlinear analyses. ”whole model”, ”all fixed”.

Table 9: Ultimate strengths from nonlinear analyses. ”half model”, ”partly fixed”.
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D Electronic Attachments

The following electronic attachments can be found in the file named electronic attachements.zip:

• Inputfiles for Abaqus analyses.

– One for the ”whole model” and ”all fixed” BCs.

– One for the ”half model” and ”partly fixed” BCs.

• Results in Excel-sheets.

– From linear analyses, see Appendix D.1.

– From nonlinear analyses. Load-deformation curves17 , unloading curves,
and detailed load deformation curves. Both for the ”whole model” and
”all fixed” BCs, and for the ”half model” and ”partly fixed” BCs.

– Combined capacity curves for both linear and nonlinear analyses.

17Be aware that curves are not trustworthy for large displacements/loads since strain levels were
too high.
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D.1 Excel-sheet with Results from Linear Analyses

Each column contain data from a path (cross section). The paths are named accord-
ing to Figure 5.10a, and in addition U, M and L is added to denote ”upper”, ”middle”
and ”lower”, respectively. Maximum values over the cross section of Mises-, S12-
and S11-stress components, utilization and capacity are included. The path data are
organized so that the aft stiffeners are presented to the left, and the fore most at
the right. Color coding makes it very easy to get an overview of the load carrying
distribution, and of which stiffeners that are activated for the different load patches.
Analysis results for five different load patch widths (W0-W4), two different heights
(H0-H1), and for three different load-locations are presented. A screenshot of the
sheet is seen in Figure D.1.

Figure D.1: Snip of the Excel-sheet displaying data from the linear analyses.
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