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Summary and conclusion

In this thesis software modules for mapping and exploration using mobile
robots have been developed, and a simulator of the robots has been
created.

Simulation: The work on the simulator started with a study of the
behavior of the robots. The behavior was implemented step by step into
what finally became a simulator. When the full system was completed
the accuracy of the simulator was tested by running the program with
both real robots and the simulator and comparing the results.

The tests gave very similar results both in robot behavior and the finished
map. Additionally both the mapping module and navigation module were
developed using the simulator, and did not have to be modified when
first testing with the real robots. Based on this it was concluded that
both the design and implementation of the simulator were successful and
that it can be used as a tool for future development of the mapping and
control program.

Mapping: Mapping can become quite difficult if the pose is unknown.
A part of this thesis was to study existing methods that are able to deal
with errors in the estimated pose. A couple of methods were found but
there was not enough time to implement any of them. Instead a much
simpler design that is not able to correct the pose was implemented.

Tests have shown that the mapping module works adequately if the
environment is small and only one robot is used. Otherwise there are two
problems:

– The position error of the robot grows over time so in a large envi-
ronment it becomes so significant that the resulting map is becomes
unusable.

– When several robots are used the map becomes unusable very quickly
even in small environments, because their position-errors tend to
grow in different directions.

The use of multiple robot is a key element of the project and it is necessary
that the mapping module is able to generate consistent maps. Either the
robots must become better at estimating their own pose (for example
through more accurate sensors) or the mapping-module must be switched
for a decent SLAM-algorithm.
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Navigation: There was a number of challenges that had to be solved
during the creation of the navigation-module. An utility function was
created to select new target points for idle robots. A search-algorithm
called A* was used fo find paths through the map. A system for controlling
robots along a path using way points was developed. And finally a separate
systems for detecting and handling possible collisions between a robot
and an obstacle in the map or between two robots were created.

Testing with the real robots showed that the navigation-module was able
to control a robot through the environment and efficiently explore it based
on the map generated by the mapping-module. The only issue when
testing was that the system did not have much time to react if the robot
was on collision course with an obstacle. A change in the design of the
collision-detection system might be needed to improve this. Unfortunately
one of the robots had a damaged encoder, so it was not possible to test
how the navigation-module handled multiple moving robots in that test.

Testing on bigger maps in the simulator showed that the time it took
to explore an area was dramatically reduced when using more robots,
however the utilization of the robots was not optimal. For even better
performance it might be necessary to use a more advanced target-selection
method than a utility-function. The multi robot tests also showed that
the robots occasionally collided with each other, and there was some
reason to believe that the detection system for collisions between robots
was not working exactly as it should.
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Oppsummering og konklusjon

Simulering: Arbeidet med simulatoren startet med å studere oppførselen
til robotene. Oppførselen ble brukt som mal for å designe og implementere
simulatore. Når resten av systemet var ferdig ble simulatoren testet ved
å kjøre serverprogrammet med de virkelige robotene og simulatoren of
sammenligne resultatene.

Testene ga svært like resultater både i oppførsel og det ferdige kartet.
I tillegg hadde både kartleggingsmodulen og navigasjonsmodulen blitt
utviklet ved å teste med simulatoren, og det var ikke nødvendig å gjøre
endringer når de skulle brukes sammen med de virkelige robotene. Basert
på dette ble det konkludert med at både designet og implementasjonen
av simulatoren var vellykket.

Kartlegging Kartlegging kan bli vanskelig hvis robotes positur (eng.
pose) er ukjent. en del av denne master oppgaven bestod i å undersøke
metoder som er i stand til å håndtere feil i den estimerte posituren. Er
par metoder ble funnet, men det var ikke nok tid til å implementere de.
I stedet ble en mye enklere løsning designed som ikke retter opp feil i
posituren.

Testing har vist at kertleggingsmodulen produserer et brukbart resultet
for små områder når kun en robot brukes. Hvis flere roboter brukes eller
et større område skal kartlegges oppstar det problemer.

– Positurfeilen vokser over tid så i store områder vil feilen bi så stor
at kartet ikke lenger kan brukes.

– Når flere roboter brukes kan kartet bli dårlig selv i små områder
fordi feilen hos de forskjellige robotene vokser i ulik retning.

Bruk av flere roboter er en viktig del av oppgaven så resultatene var
ikke helt tifredsstillende. Enten må robotene bli bedre til å estimere sin
egen positur (for eksemple ved at de får bedre sensorer) ellers så må
kartleggings-modulen byttes ut med en SLAM-algoritme.

Navigasjon Det var flere utfordringer som måtte overkommes under
utviklingen av navigasjonsmodulen. For å velge nye mål for robotene ble
det laget og brukt en utility-funksjon. Søkealgoritmen A* ble brukt for å
finne en vei i kartet mellom robotens posisjon of målet. The ble utviklet et
system for å styre robotene langs stien ved bruk av veipunkt. Til slutt ble
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det laget systemer for å detektere og håndtere mulige kollisjoner mellom
en robot og en hindring i kartet eller mellom to roboter.

Testing med de virkelige robotene viste at navigasjonsmodulen var i stand
til å styre en robot og utforske området ved bruk av kartet som ble laget
av kartleggingsmodulen. Det ble funnet at systemet hadde liten tid til å
reagere hvis en robot var på kollisjonskurs med en hindring. Det vil kanskje
være nødvendig å endre litt på designet av kollisjonsdetesjonssytemet
for å forbedre dette. Desverre hadde en av robotene en feil på en av
enkoderene så det var ikke mulig å teste navigasjonsmodulen med mer
enn en bevegelig robot.

Videre testing med større kart i simulatoren viste at tiden det tok å
utforske et område sank dramatisk hvis det ble brukt flere roboter, men
det virket ikke som robotene ble utnyttet til det maksimale likevel. For å
øke ytelsen til systemet vil det kanskje være nødvendig å bruke en mer
avansert metode enn en utility-funksjon for å velge nye mål for robotene.
Testingen viste også robotene av og til kolliderte med hverandre og det var
grunn til å tro at systemet for å detectere kollisjoner mellom to roboter
ikke fungerte helt slik det var designet.
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Chapter1Introduction

1.1 Project vision

Exploration using multiple robots has been an important part of the robotics field
for many years. Multiple robots can potentially cover an area much faster than just
one if the work together. To make the robots cooperate and generate an accurate
map requires both timing and precision. Several existing system can do this using
laser-scanning technology and GPS, but is it possible to create such a system using
only cheap and simple technology? This thesis is part of a project with the goal of
creating such a system.
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1.2 Project overview

The LEGO-robot project has been going on since 2004. At the start of this semester
it consisted of a couple of robots, a robot simulator and a program for mapping the
environment and controlling the robots. The robots uses IR-sensors to measure the
distance to nearby obstacles and reports the measurements to a computer running
the mapping program (hereafter referred to as the server). The program uses the
IR-measurements to create a map of the environment and navigate the robots to
unexplored parts of the environment.

Erlend Ese, Thor Eivind Svergja Andersen and Mats Gjerset Rødseth have been
working on the project at the same time as I have. The responsibilities were as
follows:

– The server program: Thon (me), Andersen and Rødseth

– The software on the robots: Ese

– The software on the bluetooth chips: Andersen, Rødseth and Ese

– The simulator: Thon

Adiditonally Andersen and Rødseth have built a new robot for the project. The work
of Andersen and Rødseth can be be found in [AR16], and the work of Ese can be
found in [Ese16].

In the beginning of the semester Andersen, Rødseth and I decided that instead of
trying to improve the old server-program it was better to create a new one. This
was because the old system was performing poorly [Ese15] and the code was poorly
maintained and difficult to understand.

It was decided to create the new software system using Java because it is widely
used and well suited for building complex software-systems. This meant that the
simulator would no longer work because it was written in Matlab. The simulator
was not performing well either [Ese15] and it seemed best to remake it as well.



1.3. TASK 5

1.3 Task

Figure 1.1 shows main components of the total system, along with the inner com-
ponents that the soft-ware program needs to operate. The task of this thesis is to
design and implement both the mapping- and the navigation-module, and also create
a new simulator.

Figure 1.1: An overview of the core components of the system. The task in this
thesis is to create the modules that are circled with red

1.3.1 Task 1 - Creating the simulator

The simulator has to be made first as it is needed in order to develop and test both
the navigation- and the mapping-module. It should be designed so that it fulfills the
following criteria:

– It must be able to simulate N-number of robots.

– It should replicate the behavior of the real robots in such a way that one can
feel certain that if the server-system performs well in the simulator it performs
almost equally well with the real robots.
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– Data from the simulator should not have to be handled differently that data
from the real robots.

– The user should be able to see what is going on inside the simulator.

To fulfill these criteria it is necessary to study the behavior of the robots closely, and
to openly discuss details with the other members of the project during the design
process.

1.3.2 Task 2 - Creating the Mapping-Module

The mapping-module has to be created secondly because the map is needed for
testing and developing the navigation-module. The goal of the design is to make the
mapping module do the following:

– Use the data from every robot to create the map.

– Create the map in real-time so that it can be used by the navigation-module.

– Create a map that is consistent with the real environment.

Mapping is a big and quite complex field. A research study will first be conducted in
order to learn about different solutions to the mapping problem. The findings of the
research is covered in chapter 2.

1.3.3 Task 3 - Creating the Navigation-Module

The last task in this thesis is the design and implementation of the navigation module.
The goal of the design is to make the navigation-module do the following:

– Use every robot when exploring.

– Distribute the robots evenly throughout the map to make the exploration as
efficient as possible.

– Make the robot not collide with one another or with the obstacles in the
environment.

Based on this goals a number of different tasks had to be done.

– Design and implement a utility function that can be used for target selection.

– Selecting and implementing a path-finding algorithm.
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– Create a system for controlling a robot along a path.

– Create a system for detecting possible collisions.

– Design and implement routines for avoiding collisions.
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1.4 Report structure

Here is a brief description of the contents of each chapter:

– Chapter 1 - Introduction

– Chapter 2 - Background. Covers both a short description of the system,
along with some of the theory used in the rest of the thesis.

– Chapter 3 - Simulator. Covers the design and behavior of the Simulator,
as well as a brief overview on implementation.

– Chapter 4 - Mapping. Same as for chapter 3 but with regards to the
mapping module

– Chapter 5 - Navigation. This chapter presents main challenges of creating
the navigation module, how each of them were solved separately, and lastly an
overview on implementation.

– Chapter 6 - Results and Discussion. This chapter covers a number of
tests that were used to measure the performance of the simulator, the mapping-
module and the navigation-module, and a discussion of the results.

– Chapter 7 - Conclusion. This chapter covers a separate conclusion on the
performance of the simulator, the mapping-module and the navigation-module.

– Chapter 8 - Further Work. Chis chapter lists a number of things that
could or should be done with the simulator, the mapping-module and the
navigation-module, and in some cases suggestions on how to do it.



Chapter2Background

2.1 System overview

The whole system in this project consists of the robots, a computer (hereafter referred
to as the server) and some environment that the robots can explore. The robots are
more or less brainless agents that are controlled by the server. The robots and server
uses Bluetooth to communicate with each other. An image of the AVR-robot can be
seen in figure 2.1

The robots have 4 IR-sensors mounted on a rotating tower with which they can
measure the distance to nearby obstacles. They also have wheel-encodes, an IMU
and a compass which they use to compute an estimate of their own pose. The robots
periodically reposts the measurements and the estimated pose to the server, and the
server uses this information to construct a map and navigate the robots to unexplored
areas of the map.

The robots can execute simple commands one at a time. The commands must be on
the format [angle, distance]. The the angle tells the robot how much to rotate, and
the distance tells the robot how much to move forward. When a robot has completed
a command it sends an “Arrived”-message to the server.

2.1.1 Project background

In 2004 th LEGO-robot project was started on NTNU. The motivation behind the
project is to create a system that efficiently maps an area using cheap sensors and
simple robots

The first robot was built in 2004 [Skj04] and a second one in 2008 [Bak08]. Both
were using LEGO for construction

[Mag08] created a simulator of a robot in a maze.

[Syv06] created a software-system that was able to do mapping and exploration with
one robot. Both the mapping algorithm and navigation-algorithm were modified and
improved in the following years. [Tus09] and [Hom13] gives a nice overview of the
progress from 2004 to 2012.

9
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Figure 2.1: The AVR-robot in the project

[Hal12] modified the system to include both robots. The mapping algorithm was
modified to merge the maps created from each robot after the completion, while the
navigation algorithm was changed from using left-wall following to an frontier-based
approach.

In the fall of 2015 Erlend Ese was working with the system and discovered a number
of issues regarding both the robots and the server-program [Ese15].
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2.2 SLAM

The mapping problem in this project falls within a category of problems called
SLAM-problems. Therefore a lot of time and effort were put into studying existing
solutions to the SLAM-problem. This section documents much of the information
found. It should be noted that none of this theory or methods were used in this
thesis. The purpose of this section is to document the research, as a part of the work
done in this thesis, and also provide tips and recommendations for further work.

2.2.1 What is the SLAM-problem

SLAM is an acronym for Simultaneous Localization And Mapping. It is the problem
of generating a map when the robots pose is unknown. It only applies to robots who
measure its environment relative to themselves, using for example a range-sensor or
some visual sensor. The difficulty of the problem lies in that the pose is needed to
place the measurements correctly to generate a map, but a map is needed to correctly
compute the robots pose based on its measurements. In order to solve the SLAM-
problem both the map and the pose must be estimated and updated simultaneously.
[ST05] and [Sta16] provides two great sources for introductory SLAM-theory. Both
sources were used extensively in this research.

2.2.2 Map representation

In all solutions to the SLAM-problem that were found during research one out of two
types of map-representations were used. The first is feature based maps. The slam
algorithm relies on ectraxting visible landmarks form the measured data, identifying
those and placing them in the map. The other type is occupancy grid-maps, where
the map is divided into a grid and each cell represents the binary state of free or
occupied. Both have certain advantages and disadvantages:

Landmark based mapping:

– Is well suited when the environment contains easily recognizable features.

– Low data usage as the map consists only of a set of coordinates for each feature.

– One of the biggest challenges is to distinguish new landmarks from previously
observed landmarks.

Occupancy-grid based mapping:

– Well suited if the robot uses range sensors.
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– Easy to perform path-planning and navigation.

– A big problem is data-usage. Each cell in the map require a binary variable to
say if its occupied or not. A map that is 100x100 meters with a resolution of
1cm would require 100 Mega-bit to represent, even if it was completely empty.

2.2.3 Short overview of different methods

There are 3 paradigms in solutions to the SLAM problem. Solutions using an
extended Kalman-filter (EKF), solutions using a particle filter (PF) and graph-based
methods. Graph-based methods originally only solves the full-SLAM problem, but
methods exists that uses a sparse extended information filter (SEIF) to solve the
on-line slam problem. Of all these methods the SEIF-method is the most modern
and according to [? ] well suited for multi-robot handling. However the underlying
math is a bit more complicated compared to EKF and PF.

2.2.4 Existing implementations

cg mrslam cg mrslam [mrs16] is a graph-based solution to the on-line multi-robot
SLAM-problem. [Laz13] is a paper documenting the theory behind the algorithm.

GMapping GMapping is a single-robot, off-line algorithm using a Rao-Blackwellized
particle-filter. The algorithm was developed by, among others, the author of [ST05].
It is used by the slam_gmapping-method which is part of ROS [ros16]

HectorSLAM A less advanced single-robot SLAMmethod that uses scan-matching
to correct errors in the robot pose, but is unable to do loop-closing [hec16].
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2.3 A*

A* (pronounced a-star) is a search-algorithm that utilizes the principle of best-first.
It is similar to Dijkstra’s algorithm in several ways. The algorithm uses an open set
and a closed set and new nodes are inserted into the open set if they are not seen
before. The algorithm computes a cost for each node and at each iteration it selects
the node with lowest cost from the open-set. The cost is the sum of a traversed cost
and a heuristic cost.

The traversed cost of a node is the accumulated edge-cost of traveling along the
shortest path from the start-node to the node. The heuristic cost is an estimate
of the unknown cost of traveling from the node to the target. The heuristic cost
must be designed by the programmer, and if well designed the algorithm will search
through the graph in the direction of the target node.

Figure 2.2: One iteration of the A* algorithm

Figure 2.2 illustrates one iteration of the A* algorithm on a problem of finding the
best path through a grid. The blue line illustrates the traversed cost and the yellow
line illustrates the heuristic cost. The total cost is the combined distance of both
lines. For this example the heuristic cost has been chosen as the distance along a
direct line to the target cell. The figure shows that B gets selected because it has
the lowest total cost.

For the A* algorithm to find an optimal solution in a graph the heuristic cost must
be consistent. That means that the estimated cost of reaching the target node from
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a node n, should be shorter or equal to the heuristic cost of any neighbor n′ plus the
traversed distance between n and n′. Or formally: h(n) ≤ c(n, n′) + h(n′).

Source: [SR14].
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2.4 Utility Theory

Utility theory is a much used concept for simple decision-making systems. In such
systems utility is used to describe what the agent wants. In most cases the agent
should select the action that maximizes its expected utility.

2.4.1 Utility Function

The utility function is a function that puts a value on each of the agent’s possible
actions. The difficult bit is to design the utility function so that the best action gets
the highest value. Often in more complex environments a successful utility function
consists of several weighted attributes that maps to different parts of the state of the
environment (Multi-attribute Utility Function).

Source: [SR14].





Chapter3Simulator

3.1 Approach

The idea behind the simulator was to create a virtual version of the robot environment.
This was achieved by creating virtual robots that behave in the same way as the
real robots and are able to communicate with the application (see section 2.1 for
robot behavior). The virtual robots operate in an environment that has obstacles.
The robots can measure the distance to both nearby obstacles and other robots in 4
directions. The server can give commands to the simulated robots through the API
of the simulator. When a robot receives a command it executes it the same way as
the real robots by first rotation and then moving.

Figure 3.1: The interface of the simulator

The virtual environment is simply a coordinate system. The environment contains
obstacles that are represented as a line between two points. The robots can move
freely around in this environment, but can not go through obstacles or each other.

17
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An interface was created for the simulator to allow user to interact with the simulator
to some degree. The interface can be seen in figure 3.1. The main component of the
interface is the display. Here the environment in the simulator is drawn in real-time
like an animation. This enables the user to see the actual positions of the robots and
walls and see what is going on in the simulator.

Some simulation options were added to make the simulator a more valuable developing
tool for the project. These options can be adjusted through the interface. A slider
lets the user adjust the simulation speed from 1-1000% of normal speed, and two
check-boxes lets the user turn on and of noise.

A manual has been made for the simulator on how to use it. It can be found in the
appendix.
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3.2 How measurements are made

The simulator does not have a clear representation of the real IR-sensors. Instead it
represents the direction of the measurement tower as an angle and uses the angle to
compute where the line of sight for each sensor should be. A measurement is created
by finding the nearest intersection point between the line of sight and any of the
other objects in the environment, and returning the distance from the robot to this
point. This is illustrated in figure 3.2

Figure 3.2: This figure illustrates where a simulated robot makes measurements.
The red lines represent the line of sight og each sensor, and the blue X’s represents
the position of each measurement.

The intersection points are found mathematically. The intersection between the
sensor’s line of sight and a wall can be written as:

p1 + tv1 = p2 + sv2.

p1 and p2 represent the starting point of the line of sight and the wall respectively. v1
and v2 represent unit-vectors in the direction of the line of sight and wall respectively.
t and s are scalars. t represents the distance from the robot to the intersection point
and is used as a value for the measurement. The equation set was solved and the
explicit solution for t is used in the simulator for generating measurements of walls.
This method was found on an on-line forum [lin16].

The method for finding intersections with other robots was inspired by the first
method. The other robots are represented as a circle :

(x − xc)2 + (y − yc)2 = r2,
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where [xc, yc] is the position of the other robot. The intersection with the sensor’s
line-of-sight was found by constraining the x- and y-values of the circle to position
along a straight line. This led to the equation:

(px + tvx − xc)2 + (py + tvy − yc)2 = r2,

where [px, py] represents the starting point of the line, and [vx, vy] represents the
direction vector of the line. The explicit solution for t was found using the quadratic
formula. t can have 0, 1 or 2 real solutions and if a solution exists it represents the
distance from the center of the measuring robot to the point where the ray intersected
with the other robot. The solution with the lowest value is therefore selected as
measurement.

3.3 How noise is simulated

The biggest challenge of generating a map in this project is noise. Measurement noise
can distort the map, while errors in the pose-estimate may make the map completely
inconsistent. Because this is such a central problem for the project, noise is also
added to the simulator.

The simulator can add noise to the values computed by finding intersection points
(see the previous section). This is done by drawing a random variable from a Gaussian
distribution (See fig 3.3) and directly adding it to the measurement. The distribution
has a mean value of 0, value and the variance was tuned so that it approximately
matches the variance of the sensors.

Figure 3.3: The Gaussian distribution was used for generating noise in the simulator

The simulated robots has both a real pose and an estimated pose. Both poses are
updated almost exactly the same during movement, however a small Gaussian value is
added to the estimated pose at each simulation step. This makes the estimated pose
randomly diverge from the real pose during movement. When the robot measures
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obstacles it uses the real pose for reference, however when it sends the measurements
to the server it sends the estimated pose. This causes a growing mismatch between
the measured position of an obstacle versus its actual position in the simulator.
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3.4 Implementation

3.4.1 From the outside

From the outside the simulator can be seen as a black box. Although it is a part of
the server-program’s source files it should be viewed as a completely different module
(See fig 3.4).

Figure 3.4: The relationship of the simulator to the other parts of the project

Figure 3.5 shows exactly what parts of the total system that is simulated. It was
designed this way to avoid having to use serial communication to send messages
to the simulator. In practice the line in figure 3.5 marks the API of the simulator.
The API of the simulator contains the same functions as the “serial send”-module of
the server. This makes it easy for the programmer to make the application switch
between the real robots and the simulator.

Figure 3.5: The figure illustrates the boundary of the simulator. The simulator
simulates everything on the right side of the dotted line.
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3.4.2 On the inside

Figure 3.6 shows the internal structure of the simulator. The virtual robots are
objects contained in a world object. Each robot has a thread that can access the robot
and control its behavior. The display of the simulator has access to the simulated
world and through it also the robot. The display uses this access to acquire the
necessary information to draw the simulated environment.

Figure 3.6: The internal structure of the simulator

The virtual robots are simply a set of variables representing the real pose, the
estimated pose and the tower angle. The thread controlling them operates according
to algorithm 3.1.
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Algorithm 3.1 The robot-behavior algorithm

counter = 0
while thread is not interrupted {

sleep(10 ms);
if robot is paused {

continue;
}
robot.move();
counter++;
if counter is greater than 19 { // 200 ms has passed

counter = 0;
robot.turnSensorTower();
robot.makeIrMeasurement();
message = robot.makeUpdateMessage();
inbox.addUpdate(message);

}
}

A short note about the different functions:

– robot.move() moves the robot a little bit according to its current command.
For example if the robot is not done rotating the function rotates the robot a
little bit. A simple if-based controller regulates this behavior. The estimated
pose is updated similarly but with noise added.

– robot.turnSensorTower() increases/decreases the sensor-tower-angle by 5
degrees. The angle stays within 0-90 degrees.

– robot.makeIrMeasurement() calculates the measurements according to the
section 3.2 and stores the values.

– robot.makeUpdateMessage() returns a string containing values of the esti-
mated pose, sensor tower angle, and the last IR-measurements in the format
used for robot updates.
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4.1 Design

The initial idea for how to make the mapping module was to find and implement
a suitable SLAM-method (See section 2.2 on SLAM). However it became apparent
through research that SLAM methods are to complicated for one without experience
to implement within a few months. Another option was to use an existing implemen-
tation. Some implementations were found however the all required some modification
to fit into this project. After having spent much time on research and study it was
simply not enough time left to modify one of the existing implementation, and so a
much simpler solution had to be designed.

The idea behind the mapping module is simply to plot the IR-measurements directly
into a map using the estimated pose of the robots. No adjustments are made to
the pose-estimate and no information about surrounding obstacles is extracted from
the measurements. For map representation a grid-map is used because it suits the
problem in this project nicely for several reasons (cf. chapter 2.2 for theory on the
grid-map):

– The real environment is fairly small (the pre-built labyrinth is only 1.5x1.5
meters), so the grid-map will not have the problem of using a lot of data.

– No advanced path-planning method or map-processing is needed for navigation.

– The other option is to use a feature-based approach, however this approach
is somewhat ill suited because the environment contains mostly straight walls
and it is hard to locate the position of a wall based on a small number of
IR-measurements.

4.2 Behavior overview

The robots initially sets their estimated position and heading to just zeros. In order
to use the estimate to locate a robot in the map, the mapping algorithm needs
to know the robots initial pose relative to the map. This must be typed into the
program by the user. When the program is running the mapping-controller uses the
initial pose to translate and rotate the estimated pose of the robots.

25
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Using the robots estimated pose int the map, and the rotation angle of the measure-
ment tower, the mapping controller can compute the location of each IR measurement.
The map is created by finding the cell in the map that corresponds to the location of
the measurement and setting its occupied status to true. The mapping controller
also finds each cell along a straight line between the robots position and the position
of the measurement and marks them free. This is to indicate that the sensor had a
free line of sight to the point where the measurement was made. A 40 cm free line
of sight is created if the sensor did not measure anything or if the measurement is
above 40 cm. The cells along the line are found using Bresenham’s algorithm [bre16].
The threshold of 40 cm was chosen because at higher distances the variance of the
sensors becomes to big for the measurements to be valuable. An example of how this
process looks is shown in figure 4.1.

Figure 4.1: In the figure one can see a robot and an obstacle. The red X illustrates
where the sensors are pointing. The obstacle has been observed by two of the sensors,
while the other sensors measured nothing. The figure illustrates how the grid map
would be updated according to these measurements.

Some features of the mapping:

– Filling inn unexplored area. The rotation of the sensor-tower leaves small
unexplored gap between in the sensor lines from two consecutive measurements.
The robot environment in this project does not contain small obstacles, so it is
fairly safe to assume that the gap is actually free of obstacles. Therefore the
mapping-module periodically searches for small unexplored areas and fills them
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inn by updating each cell. This makes the mapping process look smoother,
and also simplifies exploration because such small areas could potentially be
selected as targets for the robots (See section 5.3 for how target points are
selected).

– The mapping controller adds more space to the map of measurements are
located outside it. This makes it so that it is not necessary for the user of the
program to know the size of the environment when mapping.

– Omitting robot measurements. If a measurement is within 10 cm of the position
of any robot, the mapping controller does not use it. This was due to a problem
that happened when a robot observes another robot. The problem is illustrated
in fig 4.2. The navigation module is going to make the blue robot back away
due to the measurement made by the green robot.

Figure 4.2: The figure illustrates that the robots observing each other can lead to
problems.
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4.3 Software design

The mapping module has very little functionality and so it’s structure is simple
compared to the other modules in this thesis. Figure 4.3 shows an overview of the
components of the mapping module. The “measurement handler” objects are used
for finding the position of the robots and the IR-measurements in the map. The
mapping thread the uses these positions to plot the measurements in the map. The
“map clean-up”-thread fills in small unexplored gaps in the map.

Figure 4.3: An overview of the components of the mapping module and how they
interact.



Chapter5Navigation

5.1 Overview

In order to make the robots explore the environment in an effective and safe manner
four different tasks needs to be done.

– Selecting the best target for an idle robot.

– Finding a path between the robots position and the target.

– Controlling the robot along the path

– Avoiding collisions with walls and other robots

The navigation module was designed and implemented so that it handles all these
tasks simultaneously for each robot. The following sections of this chapter takes a
closer look on how it does that.

29



30 5. NAVIGATION

5.2 Restricted and weakly restricted cells

Restriction and weak restriction is an idea that was used to make sure that the robot
does not collide with obstacles in the map. This idea affects almost every part of the
navigation module and therefor it makes sense to begin this chapter by explaining
what it is.

Restriction and weak restriction is used to mark an area of the map that is close to an
occupied cell. The work of keeping track of this area is actually done by the mapping
module. The mapping controller makes sure that all cells within a 15 cm radius of
an occupied cell are marked restricted, and all cells within 25 cm are marked weakly
restricted (See fig 5.1).

Figure 5.1: The figure is from a test run. It illustrates the restricted area with red
color and weakly restricted area with yellow color.

The primary idea is that robots should not be allowed to operate in restricted parts
of the map, as they may be in danger of colliding with the obstacle causing the
restriction. If the robots end up in restricted area, special procedures should be
followed to guide the robot out to a free area. To minimize the occurrence of such
events the robots should preferably no be close to the restricted area, as they are
not 100 percent accurate in their movement. An extra layer of weak restriction was
added around the restricted area. The idea of weak restriction is that the robot
should not enter a weakly restricted cell, unless no other option is available.
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5.3 Target-selection

5.3.1 Overview

The target-selection method is used every time a robot is idle to select a target-point
in the map that the robot should drive to. The standard approach in multi-robot
exploration is to find frontier regions in the map and evaluate them according to
some utility-function [Yam98]. In this thesis a somewhat simplified version of this
strategy was used.

The algorithm that was implemented finds all explored, non-restricted cells in the
map (weak restriction is ok) that has an unexplored neighbor-cell. To simplify the
target selection, a big chunk of the cells are filtered out by only selecting frontier-cells
that are 5 cm away from each other. Figure 5.2 shows an example of potential
targets.

Figure 5.2: The figure shows a zoomed-in part of the map to illustrate how potential
targets are selected. Grey is unexplored cells, white is free cells, and red is the cells
selected for potential targets.

Next the utility for each potential target is computed. The method selects the
location with the highest utility and attempts to find a path between the robot and
the location (See section 2.3 for path planning). If a path is found the target-selection
is done. Otherwise the method attempts to find a path to the point with the second
highest utility and so on. If no targets are reachable the robot simply has to wait,
and the navigation-module will try to find a new target later.

5.3.2 The utility-function

Section 2.4 gives a very short description on utility theory. Utility was used because
it is easy to understand and implement, although it requires a little bit of cleverness.
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The goal when designing the utility-function was to make it so that it assigns high
values to locations that the robots ideally should go to to make the exploration more
efficient. To do this several attributes had to be selected for the utility. The plus
and minus denotes how the attribute affects the utility.

– 1. + The unexplored area around the target point. Implemented by finding
the number of unexplored cells around the target and multiplying that with
the area of one cell. Variable: area.

– 2. - The direct distance between the robot and the location. Variable: distance.

– 3. - How near the target is to other target points. The goal of this attribute
was to distribute the robots throughout the map. The following formula was

created to implement this goal:
nRobots∑

1

1
distance , where distance is the distance

between the target point and the target point of the other robot. Variable:
distribution.

– 4. + Whether or not the robot has a free line of sight to the location. The
goal of this was to make the robot avoid selecting targets that are nearby, but
on the other side of an obstacle. Variable: lineOfSight = 1 if there are no
unexplored or restricted cells between the robot and the target, 0 if not.

– 5. - Whether or not the target is inside a weakly restricted area. The goal of
this was to preferably select free targets as opposed to weakly restricted targets.
Variable: weaklyRestricted = 1 if weakly restricted, 0 if not:

– 6. - The angle the robot has to turn to point in the direction of the target point.
The goal of this was to reduce how much the robots have to turn, because
turning negatively affects the pose-estimate. Variable: angle

Each of the attributes was weighted by trial and error. The final result was:

Utillity = 0.2*area-3*distance-40000*ditribution+500*lineOfSight-
2000*weaklyRestricted-angle



5.4. PATH-PLANNING 33

5.4 Path-planning

5.4.1 Using A*

Path planning is used to find a path through the map from the robots current position
to its target-point. For this task the A* algorithm was used. This was because it
is very effective and simple to implement for searching through ha grid. Also the
author was familiar with the algorithm from previous experience. For some short
theory on the A* algorithm see section 2.3.

The algorithm was implemented so that it can traverse both directly and diagonally
in the map. The traversed distance between to cells was set to 1 if they are directly
connected, and 1.415 if they are diagonally connected. The heuristic cost was set
to the direct distance in the map between the cell and the target cell. It should be
noted that the diagonal traversed cost is the square root of two rounded up at the
3rd decimal point. Rounding up was important or else the heuristic cost would not
be consistent.

Restriction and weak restriction is incorporated into the A* algorithm to make the
algorithm avoid generating paths near obstacles. Restricted cells are never added to
the open set. This guarantees that the path will contain no restricted cells. Weakly
restricted cells are added to the open-set, but their traversed cost is 10 times as high
as completely free cells. This ensures that the path will only go through a weakly
restricted area if no other option to reach the target exits, or if the alternative paths
are over 10 times as long.

5.4.2 Testing the A* implementation

Some testing was done to see if the implementation of the A* algorithm was successful.
Figure 5.3 a) illustrates the closed set after a path has has been found between two
points. The figure shows that when the algorithm is unable to explore in the direction
of the target point it searches through the map as a BFS-algorithm would. However
as soon as it rounds the lower corner it searches in a direct line to the target point.
This indicates that the algorithm has been successfully implemented.

Figure 5.3 b) shows the resulting path from the search. From the figure it looks like
the algorithm found the optimal path without searching through a large part of the
map. It can be seen that the path goes a little distance away from the restricted area
so the idea of increasing the traversed cost for weakly restricted cells seems to have
worked. It can be seen that the algorithm searches around the target point a bit.
This is because the target point was weakly restricted, as it is close to a restricted
area, so the algorithm hesitates to open the target-node. All in al it seems that the
use of the A*-algorithm has been successful.
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Figure 5.3: A test-run with with the A* star algorithm. a) the map-cells in the
closed set are marked with green color. b) the cells in the resulting path are marked
with green color.

5.4.3 Complexity

In the test it took approximately 14 seconds to find the path. When the area
between the starting point and the target point is completely free the path is found
instantaneously, however if the algorithm has to search through the entire map in
can take a long time.

The implementation has a time complexity of O(n2) where n us the number of
explored reachable cells. With A* the worst-case time complexity is almost never an
issue unless the target is unreachable. The environment in this test was 6x6 meters
(the simulator was used). The cell size was 2x2 cm meaning that the whole map
consists of 90 000 cells. If the whole environment is explored and the target-point is
unreachable, the time for the algorithm to finish is about 6-minutes.

5.4.4 Searching from target to start

In the finished program the path-planning searches for a path from the target to the
robot position as can be seen in figure 5.3. It was experienced through testing that
the robots target points are often not reachable for the A* algorithm. Figure 5.4
illustrates how this happens.

If the algorithm starts from the position of the robot it can not reach the red cell
by only searching through the free white cells. The A* algorithm does not stop
searching until it has checked every cell in the map, so with a large map a lot of time
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Figure 5.4: This figure illustrates how a target point (the red cell in the map) can
easily be obstructed by restricted cell. The brown area represents an obstacle in the
environment which the robot has just observed (the black cell in the map). This
causes all cells within the light gray circle to become restricted.

would be wasted on trying to reach unreachable targets. This problem was solved by
starting the algorithm in the target point, and making it search for a path to the
robots position.
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5.5 Robot control

The goal of the robot-control system is to control a robot along a given path in an
effective manner. The robots only moves in straight lines so the path had to be
divided into straight segments. This is done by selecting and storing way points
along the path.

The behavior of the robot-control is simple. For each of the robots the robot-controller
has stored a queue of way points along the path from the robot to it’s current target.
When a robot has completed a command it sends a special message to the server.
The navigation then checks the robots position and orientation and computes and
sends the correct command needed to reach the next way point.

5.5.1 Selecting way points

The selection of way points had to be done smartly because if the distance between
way points is to long there is a danger of cutting curves in the path, causing the
robot to collide with walls. However if the spacing alway is short the robot ends up
stopping a lot, making it unnecessarily slow.

A special algorithm was designed to avoid these problems. The algorithm works
by computing the fit of a straight line along the path. The line is made longer and
longer until the fit goes below a threshold. The endpoint of the line is then selected
as a new way point and the process is repeated from that point until the algorithm
reaches the last point along the line. The idea is that if the path is fairly straight the
line can become quite long before it no linger fits sufficiently to the path, however if
the path is curved the fit of the line will quickly become bad.

Figure 5.5 illustrates the resulting way points after using this algorithm on a path.
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Figure 5.5: Results from a test run to illustrate how the algorithm performs. The
cell containing the way points have been visibly enhanced with blue color.

5.6 Collision avoidance

If the map is inconsistent a path that is collision-free in the map may not be collision
free in the robot-environment. Also the robots may collide with each other. Therefore
a collision and detection and handling system was created.

5.6.1 Avoiding wall-collisions

To keep the robots from colliding into obstacles that can be measured bu the IR-
sensors the collision-system attempts to keep the robots away from the restricted
area in the map. If a robot is found to be in a restricted cell, a new thread handles
the navigation of that robot until it has escaped the restricted area. First the thread
check if the map-cell that the robot would occupy if it simply reverse 10 cm is also
restricted. If not it orders the robot to reverse 10 cm, as this is the safest thing to
do in most situations when the robot is near a wall. In some cases however that rear
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cell will also be restricted. Then BFS is used to find the nearest unrestricted cell and
a command is sent that makes the robot go to that cell. The BFS-algorithm was
easy to implement because it is simply A* without sorting, and the A* algorithm
was already made. When the selected command is completed the thread checks if
the robot is still in a restricted area. If it is a new command is sent and so on.

At the end of the collision handling all the robots way points are deleted so that it
does not continue on the obstructed path. This causes the navigation module to
select a new target point for the robot.

5.6.2 Avoiding robot-collisions

The collision module continuously check if if robots are about to collide. This is done
by first checking if the distance between any two robots is less than 50 cm, then if
one of the robots is moving, and then if the moving robots current trajectory goes
nearer than 25 cm of the other robots current position. This is done by checking if a
line along the robots between the robots position and its current way point intersects
with a circle with radius 25 cm at the other robot’s position. if an intersection is
found, a new thread is created to handle the robot until it has a free movement path.

Typically typically collision-avoidance is done by pausing the colliding robot until
the other robot has cleared its path. But sometimes the robots may be on collision
course with each other and the other robot may already be waiting for the first robot.
Therefor the collision handler check if the other robot is already in a collision and
with whom. If a mutual collision is found the first robot is ordered to move to the
side. This will cause the other robot to continue moving because its path is no longer
obstructed. When the other robot has passed the first robot can resume operation.
In some narrow areas it might not be possible for the first robot to step aside. In
that case all way points are cleared so that a new target point is selected.

The protocol for robot collision avoidance is very simple, and in a lot of situations
the robots may stay locked. Therefor a timeout is implemented so that if the collision
handling last more than 20 seconds it is aborted and new targets are selected for
both robots.

5.7 Implementation

The navigation module was the most complex module that was created. Figure 5.6
shows an overview of the basic components of the mapping module and how they
interact. Yellow represents basic objects and purple represents threads.
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Figure 5.6: an illustration of the components of the navigation module and their
relations.

5.7.1 Creating a new tasks

Creating a new task means finding a new target and generating way points between
the robot and the target. The navigation controller thread initiates this process if
a robot has no more way points. The process of finding the target and way points
is done in a new thread because searching for a path may take a long time. When
the task-finder thread is done it stores the way points in a special data object for
the specified robot and terminates. The navigation controller has access to the data
object and can extract the new way points. The process of this thread is presented
by algorithm 5.1.

Algorithm 5.1 The the target selection algorithm

frontier_points = map.getFrontierPoints()
potential_targets = selectSpreadPoints(frontier_points)
assigned = false
while not assigned {

select the target with the highest utility from potential_targets
find a path from robot to the target
if no path was found {

remove the target from the list of potential targets
}
else{

find way points along path
store the waypoints int the navigation robot
assigned = true

}
}





Chapter6Results and discussion

6.1 Testing mapping and navigation with the real robots

The goal of this test is to see how well the mapping module and the navigation
module performs with the real robots. For this purpose an 215 cm by 215 cm test
area was made, and the Arduino- and AVR-robot were used. Unfortunately one
of the wheel encoders on the Arduino was damaged so it was unable to generate
a good estimate of its position. It was therefore decided that the Arduino-robot
would not execute the orders it received from the server. Despite of this issue, it sent
its measurement and was connected to the system in a normal manner. Figure 6.1
shows the initial setup for the test. The system was ran 3 times and both the robots
and the map on the screen were recorded.

Figure 6.1: The set-up for the full system test

6.1.1 Discussion of the mapping-module

Figure 6.2 shows the finished maps from the three tests, plus an extra map that was
created in during the demonstration of the project.

Here are some of the observations discussed in bullet points:
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Figure 6.2: 1-3: The resulting map from each test. 4: The resulting map from one
of the runs from the demonstration.

– Map 2 and 4 has almost the exact same structure as the real environment, while
1 and 3 shows some degree of inconsistency. The inconsistencies are caused
by an error in the robot’s pose estimate. In both test test 1 and 3 the robot
traveled clock-wise around the map. When it reaches the upper left area it
believes that is has rotated more that it actually has which causes the map to
bend inwards. Ese 2016 covers inconsistencies in the estimate in much greater
detail.

– It seems from most of the maps and especially in number 4 that the inner
square is much bigger on the outside than on the inside. This is not an error
from the mapping, but is due to a bias that was found on the sensors, but not
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corrected. The bias makes the measurements shorter which makes walls seem
as if they are closer to the robot than they really are.

– In the first three tests there is an unexplored area near the Arduino-robot.
This was found to be caused by a malfunction on the sensor covering that area.

These results were expected as the mapping module was not designed to make
corrections to the estimated pose. The resulting map was not to bad, but for a larger
environment one would expect the errors to increase further, and the map to become
less accurate.

6.1.2 Discussion of the navigation module

Figure 6.3 illustrates approximately where the path of the robot went in the first
test run. Video real_robots_test_1 shows the movement of the robot in that test.
real_robots_test_2 and -3 documents the other two tests.

Figure 6.3: An approximate plot of the path the robot took in the first test.

Some observations:

– The trajectory of the robot follows the available path in the environment in a
quite efficient manner.
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– The distance between each new target is quite small. This is because the robot
is only ordered to go to areas that are already explored and it can only see 40
cm into the distance.

– The robot collided with a wall in the lower left corner of the figure. This can
be seen in the video.

The last observation requires some discussion. Wall collisions are avoided by checking
if the robot is inside restricted area. The restricted area is 15 cm around each wall,
while the corner of the robot is 11 cm from its center. With the robot moving at
around 15 cm/s the robot must receive a command to stop within 0.27 seconds to
not collide with the walls. Bluetooth-messages may be lost and then retransmitted
so the reaction time of the system may be a bit to slow. More narrow objects can
stay hidden in the sensors blind spots, which may leave zero time to react.

One solution to the problem would be to increase the radius of the restricted area,
but this solution has its problems as shown by figure 6.4. The figure shows 3 corridors
of different width. In a) there is no problem, the robot can follow the path without
any interruptions. In b) there is no completely free area which means that the path
may go arbitrarily close to the restricted area. For the given path in the figure the
robot will often end up slightly within the restricted area and the collision detection
system will trigger, interrupting the robots operation. The rightmost corridor c) is
so narrow that no path will ever be generated through it.

Figure 6.4: The figure illustrates the main problem of using restricted area to avoid
wall collisions. Red is restricted area, yellow is weakly restricted area, and blue is
path.

Already corridors of 30 cm width are completely blocked, and ideally the width should
be over 50 cm. Increasing the restricted area would further limit the movement of
the robots, so it may be better if the method for detecting collisions with obstacles
is modified.
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6.1.3 Earlier testing with two robots.

Some testing was done at an earlier stage in the process before the encoder on the
Arduino-robot was damaged. These tests showed that the system was able to utilize
both robots when exploring the map. Unfortunately there were some issues with the
estimated pose of the Arduino-robot’so the results were not documented.
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6.2 Comparing the simulator with the real robots

This test was performed to see if there is any difference between running the system
with the real robots or on the simulator. A map of the environment from the first
test was made for the simulator. For this test only one robot was used, just to give
it more area to explore. The initial setup for both the real world and the simulator
can be seen in figure 6.5.

Figure 6.5: The initial set-up for the comparison test between the real world and
the simulator.

Figure 6.6 shows the finished result with both the real robot and the simulator.
Video testing_the_accuracy_of_the_simulator shows the full mapping process for
the whole test.

Figure 6.6: The two results from mapping with a real robot versus a simulated
robot
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– The map looks quite similar. The measurements are denser in the map from
the real robot. This is because the simulated robots move a bit faster.

– The error in the map seems to bee of similar magnitude. This indicates that
the simulator is able to quite accurately simulate both measurement noise and
estimate error.

– The simulated robot took a much longer path, than the real robot. This is only
because the simulated robot missed a corner in the map, and had to go back
later. That is expected to happen whether or not simulated robots are used.

– From the video it looks like both robots are behaving almost identically.
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6.3 Testing mapping with multiple robots in the simulator

In the test with the real robots, one of the robots were stationary. The results in
section 6.2 have shown that the simulator can generate quite similar results as the
real robot, so it was used to test how the mapping module performs with multiple
robots. For this test the same simulator-map as can be seen in fig 6.5 was used and
two robots were added.

The test was not recorded as one run with the simulator was already recorded. The
resulting map can be seen in figure 6.7.

Figure 6.7: The result from mapping with two robots

The mapping module has two issues with multiple robots:

1. The pose-estimate-error of the two robots grows in different directions. With
one robot th map may be inconsistent, but with multiple robot the map quickly
becomes completely unusable.

2. The robots can measure each other. In the figure there is a restricted area in
front of the red robot. This actually comes from measurements of the red robot
made by the blue robot. When there is no error in the position of the robot, the
mapping-module is able omit measurements of one robot from another. This is
however no longer possible if the error becomes to great. As the map shows
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this is a problem because it looks to the navigation module like the corridor
between the two robots is blocked, while in reality it is not. When there is no
error in the pose of the robots, the mapping-module eliminates measurements
of other robots, but that is no longer possible when the error grows beyond a
certain limit.

Even though the simulator was used, the same problems should be expected with
the real robots. The only difference is the for example the AVR robot is not able to
measure the Arduino robot as the Arduino robot is not high enough.
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6.4 Testing management of multiple robots without noise in
the simulator

This test is performed to see how well the navigation-module handles a higher number
of robots. The goal is to see if the time it takes to create a map of an environment
improves when adding more robots, and also if the navigation module is able to
make the robots not collide. It may seem questionable to judge the performance of
the navigation module based of a noise free simulation. In the current state of the
system this is true, but if it was possible to remove the error, for example with a
SLAM algorithm, this test would be valid.

Figure 6.8: The figure shows the environment that was used for the multi-robot
test.

This test was done by performing a mapping the same simulator map with an
increasing number of robots from 1 to 6. The map is shown in figure 6.8. It has a
height and width in the simulator of 6 meters. Mapping was done three times with
each number of robots. All the robots were started within the red circle in the figure.
The average mapping time is shown in table 6.1.

The table shows that the time it takes to explore the environment decreases with
the number of robots used. However the decrease is not as consistent as expected.
If the navigation-module was performing optimally one would expect to se an
almost exponential decrease in the mapping-time. The topography of the simulated
environment may be some of the cause for the result. I expect that if a completely
open map was used there would be a different result, but unfortunately it was not
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Table 6.1: The result from testing exploration with multiple robots

Number of robots Average mapping time in minutes
1 21:53
2 11:21
3 9:28
4 9:42
5 7:15
6 6:06

enough time to try that.

It was observed that the robots had to do some back-tracking which took extra time.
The use of an utility function for selecting target points does not give exact control
over the robot behavior, and so it is difficult to use it for optimal exploration.

In some of the runs a couple of robots would collide. The collision avoidance system
was not designed to be foolproof so some collisions should be expected, but it seemed
that the system malfunctioned on one or two occasions and was making errors it
should not have made.

6.4.1 Single test with a high number of robots.

The maximum number of robots that can be connected to the server-program is
10 [AR16]. It was tested to see how the system would perform with the maximum
number of robots. A recording of the test can be seen in video: ten_robots_simulator.

In test went well for a long time, but then both the program and the simulator
started lagging. It was found that the CPU was running at 100% capacity. This
happened when a high number of robots simultaneously started to look for target
points far away. Most likely the CPU usage was due to the path-planning algorithm
being ran parallel for multiple robots.

The time of this mapping was 3:20 minutes and as an interesting side note none of
the robots collided.





Chapter7Conclusion

7.0.1 Simulator

The result from testing shots that the simulator is able to simulate the real robots
quite accurately. Additionally both the mapping module and navigation module were
developed using the simulator and did not have to be modified when first testing with
the real robots. In conclusion both the design and implementation of the simulator
were completely successful.

7.0.2 Mapping

Results have shown that the mapping-module works as intended, but that its simple
design was not sufficient. The mapping module is a able to adequately map small
areas using one robot, but in larger areas or with multiple robots, growing differences
and errors in the estimated poses makes the map unusable. The use of multiple robot
is a key element of the project and it is necessary that the mapping module is able
to generate consistent maps. Either the robots must become better at estimating
their own pose (for example through more accurate sensors) or the mapping-module
must be improved or replaced with a decent SLAM-algorithm.

7.0.3 Navigation

The design and implementation of the navigation-module has for the most parts
been successful, but there were a few flaws. The use of restricted area worked great
for path-planning, but not that great for detecting collision between a robot and a
obstacle in the map. Also the results from the multi-robot testing indicated that
there might have be a slight error in the system for detecting collisions between
robots.

When it came to path-finding and exploration the mapping-module performed much
better. The utilization of the robots was not optimal, but the module demonstrated
that the time it took to explore an area was greatly reduced when more robots were
connected. For even better performance the system may need another method for
target selection, as the utility function does not give the developer absolute control
over the robot behavior.
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It should be said that the performance of the navigation-module relies the map being
consistent. The module will make a best-effort with inconsistent maps, but it can
not guarantee to be able to explore the whole environment.



Chapter8Further Work

8.1 Simulator

– After the simulator had been created, the behavior of the sensor-tower changed
[Ese16]. It now behaves differently based on how the robot moves. The new
behavior should be implemented into the simulator.

If the robot behavior changes in the future the simulator should also be updated.

8.2 Mapping

The error in the estimated pose has a crippling effect on the current system. I
believe that either the robots must be equipped with better sensors, so they can
more accurately estimate their position or a SLAM method must be used.

8.2.1 Using a SLAM method instead of the existing solution

It was a bit difficult to learn anything valuable from the research, because the SLAM-
field is both big and complicated. I would recommend trying to find an existing
solution that is meant for both on-line and multi-robot SLAM. This algorithm [mrs16]
seems like it fills both criterias going by the information on the website, however it
still requires a lot of modification. The web-site says that is uses a LIDAR-system,
and that the robots communicate with each other using an Ad-Hoc network.

8.2.2 Improving the existing solution

Here are some improvements that could be made to the current mapping-module if
it is decided not to use SLAM.

– The offset between the tower and the center of the wheels is not handled. The
robots send this information in the hand shake and the functionality only has
to be implemented into the mapping module.
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– It should be possible to create some algorithm that extracts walls from the
measurements, so that the obstacles does not have to be represented by scattered
dots. The RANSAC-algorithm seems like a promising start [ran16].

– If the cell size is large it would be natural wait until several measurements have
been made of the cell before it becomes occupied. This is not a big issue as it
is possible to have a quite high map-resolution for the small environments that
are currently used.

– Scan-matching can be used to fix the pose error of one robot, and is not
extremely difficult to implement although changes might have to be made to
the map-representation. Using scan-matching might improve the performance
of the mapping module [sca16].

– It would be great if the user did not have to specify the position of each robot
at the start of the mapping. Scan-matching might be a helpful tool for this
problem as well.

8.3 Navigation

– Add a time-out on the path planning so it does not eat up all of the CPU-
resources if no path is found.

– The target selection-method should be modified so that it compares the direct
distance to the target with the length of the actual path before finishing.

– The detection and handling of collisions between two robots must be improved.

– Collision detection with obstacles in the map should be done in a more advance
way. Instead of checking if the robot is inside some area, the detection system
should check if the robot is actually on collision course. This is a bit more
difficult due to the width of the robot.

8.4 Other improvements

The collision detection system suffered a bit from the robots having large blind spots.
I would recommend that the sensors are reorientated so that they all point forward
at evenly distributed angles.
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AppendixAAppendix A

Overview of the contents on the CD:

– javadoc.zip: The dokumentation of the code. Navigate by opening index.html.

– simulatorManual.pdf : A user manual for the simulator.

– SSNAR.zip: The source code of the project. The software developed in this
thesis was the packages: general, map, mapping, navigation, simulator.

– videos: The videos from all the testing.
real_robots_test_1-3 is from the testing in section 6.1.
testing_the_accuracy_of_the_simulator is from the test in section 6.2.
ten_robots_simulator is from the test in section 6.4.

– Thon2016: A copy of this thesis
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