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Assignment Text

Thesis Title: Subsea Communication - Implementing and Evaluating Protocols

Background

Within a subsea control system various industrial Ethernet protocols are implemented for pro-

cess data exchange on the link between topside & subsea. Also, different types of instrumenta-

tion networks are used to collect data from sensors & intelligent devices at the seabed. In this

project different protocols & networks shall be evaluated based on criterion from OneSubsea

Processing. As a minimum the following protocols shall be evaluated: Modbus TCP, Ethernet/IP,

and OPC UA for topside - subsea communication. CAN bus (SIIS level II) and IWIS (API 17F)

shall be evaluated for collecting sensor & actuator data to the SCM. The project shall also con-

sist of a practical implementation of industrial protocols.

Work Description

1. Give an introduction and perform an evaluation of the topside protocols and the subsea

instrumentation networks that are mentioned above. Other protocols shall be evaluated

if they are found applicable.

2. Look into the standardization work performed within subsea control systems, and give a

brief theoretical description on how subsea control and communication is performed in

a general subsea project.

3. Implement the Modbus TCP application protocol for message exchange between micro-

controllers.

4. Investigate and find a suitable OPC UA solution for a subsea communication network.

Implement this OPC UA solution on an micro-controller/computer.

Start date: January 11, 2016 Due date: June 06, 2016

Supervisor: Tor Onshus

Co-advisor: Stian Hjellvik Askeland (OneSubsea Processing)
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Preface

This master thesis is a result of my work in TTK4900 at the Department of Engineering Cyber-

netics during the spring semester of 2016. The master thesis is a compulsory part of the 2-year

program for achieving a Master of Science (MSc) degree in Cybernetics and Robotics at NTNU.

This master thesis is not a direct continuation on previous thesis/project work, all work related

to this project started up in the middle of January 2016. The project is carried out in co-operation

with OneSubsea Processing in Bergen. The department in Bergen is a provider of subsea pro-

duction systems by use of equipment such as meters, pumps, and wet gas compressors. They

also engineer swivels. Their main goal is to provide lift and boosting of hydrocarbons. The idea

of the master thesis was brought up by myself, Øyvind Reksten, and Frank Midtveit at OneSub-

sea Processing.

This master thesis has been quite informative, and given me the possibility of learning more

about a topic I find very interesting. Especially, the insight into subsea standardization work

has been quite valuable. Its made me able to understand why system solutions we have today

exists. The theoretical work has consisted of reading and understanding communication stan-

dards, recommended practices, user manuals, and research papers. The practical part has con-

sisted of implementing two different communication protocols that can be used for the same

purpose. The first task was reading and interpreting the official Modbus TCP specification and

implementing this for message exchange between two microcontrollers. The second task in-

volved implementation of OPC UA by use of a software development kit.

My experience of reading standards is that many of them leaves room for interpretation, and

a recommended practice is quite helpful for understanding the practical concepts and details.

This master thesis is intended for readers that are familiar with Ethernet, subsea control sys-

tems, and different types of communication protocols.

Trondheim, 2016-06-03

Sondre Kyrkjeteig
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Sammendrag og konklusjon

Interessen for å gjennomføre dette prosjektet er for å evaluere de ulike protokollene og instru-

menteringsnettverkene som ofte brukes i undervannskontrollsystem. Dette arbeidet skal utfø-

res ved å peke ut hovedforskjeller, illustrere prinsipper, og sammenligne ytelse & den praktiske

implementasjonserfaring av relevante protokoller. Modbus TCP og Ethernet/IP er to globalt an-

erkjente og åpne protokoller som blir brukt for å utveksle prosessdata mellom plattformen og

undervannsutstyret. OPC UA derimot er en relativ ny kommunikasjonsprotokoll som vanligvis

blir brukt for å utveksle prosessdata mellom systemer fra ulike leverandører. UA er inkludert i

dette prosjektet som et forslag til å utføre fremtidig datautveksling mellom plattformen og un-

dervannsutstyret. Dette arbeidet blir gjort ved å foreta en teoretisk evaluering og praktisk imple-

mentasjon av UA. Den praktiske implementasjonen utforsker muligheten for å implementere

en fremtidig OPC UA løsning i et kommunikasjonsnettverk for undervannssystem. Målet er at

resultatet fra denne masteroppgaven kan brukes for å argumentere hvilke industriell Ethernet

protokoll som er best egnet for linken mellom plattformen og undervannsutstyret basert på de

tekniske egenskapene.

Ett av de opprinnelige målene til masteroppgaven var å implementere de spesifikke protokolle-

ne fra oppgaveteksten på identisk maskinvare og nettverk. Deretter skulle en utføre en detaljert

ytelsessammenligning for å støtte opp under eventuelle ulikheter som ble avdekket i den teore-

tiske sammenligningen. På grunn av urimelig høy kostnad for to stk FPGA utviklingsverktøy som

inkluderte de nødvendige protokollene og programvaren så ble falt dette målet bort. Målene til

masteroppgaven ble derfor endret til å involvere en praktisk del som gikk ut på å finne passende

maskinvare, beskrive, sammenligne, og utføre den praktiske implementasjon av to ulike proto-

koller. Den teoretiske biten har bestått i å forklare undervannskommunikasjon, og trekke frem

hovedforskjellene mellom de industrielle Ethernet protokollene som er nevnt i oppgaveteksten.

En evaluering av de ulike standardene for utveksling av sensor & aktuator data på havbunnen er

også en del av omfanget i denne master oppgaven.

Den teoretiske delen av denne rapporten evaluerer og sammenligner Modbus TCP, Ethernet/IP
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og OPC UA protokollene basert på egenskaper og studier om ytelsen. Evalueringen konkluderer

med at kommunikasjonsprotokoller som er basert på standard TCP/IP og Ethernet er for løst

definert til å kunne spesifisere ytelsen. Ytelsen vil rett og slett variere for mye i hvert enkelt tilfel-

le i forhold til å kunne tallfeste spesifikke ytelsesverdier. Maskinvare, nettverk, og effektiviteten

på meldingsutvekslingene i applikasjonslaget vil påvirke ytelsesverdiene i stor grad. Ethernet/IP

er den eneste av av de tre protokollene som spesifiserer oppnåelige tallfestede ytelsesverdier i

offisielle standarder. Studier avslører at Modbus TCP ikke har en passende kommunikasjons-

modell for å utveksle sanntidsdata, og er heller ikke ment å ha spesifiserte ytelsesverdier oppgitt

i standarder pga. sitt brede bruksområder. Det er ikke mulig å tallfeste ytelsen til OPC UA pga.

at det er en teknologiuavhengig protokoll (kun definert for de øvre lagene) med et rikt utvalg av

service mekanismer som kan aktiveres/deaktiveres. Uansett så er beskrivelser av artikler som ser

nærmere på ytelsespåvirkningen av: sikkerhetsmekanismer, aktive servicer, nettverkstrafikk, ut-

viklingsverktøy, og et økende antall klienter for OPC UA en del av denne masteroppgaven. Sam-

menligningen mellom Modbus TCP og Ethernet/IP konkluderer med at Ethernet/IP har bedre

sanntidsegenskaper, bedre multisending, og bedre støtte i forhold til egenskaper som tidssyn-

kronisering & sikkerhetsprotokoll. Men Modbus TCP garanterer for data integriteten siden den

bruker TCP som transport protokoll, i motsetning til Ethernet/IP som bruker UDP. OPC UA er

betraktet som et interessant valg for fremtidig implementering pga. solid støtte for å modellere

kompleks arkitektur, og det rike utvalget av service mekanismer som er beskrevet i UA spesifika-

sjonen. Derimot så er ikke OPC UA en sanntidsprotokoll, og er ikke egnet for sikkerhetskritiske

system.

Introduksjonen og evalueringen av CAN (SIIS level II) og IWIS for å utveksle data på sensornivå

konkluderer med at en direkte sammenligning mellom de to ulike prinsippene er utfordren-

de pga. at de er konstruert for to ulike formål. CAN standarden beskriver hvordan instrumen-

teringsnettverket som blir brukt for å utveksle data mellom undervannsutstyr på havbunnen

skal konstrueres. IWIS definerer et grensesnitt som kan brukes av intelligent måleutstyr som er

levert av en tredjepart. Ved å bruke IWIS grensesnittet så kan deres utstyr koble seg opp mot

undervannskontrollsystemet. Undervannskontrollsystemet vil da fungere som en transparent

transport funksjon mellom havbunnen og plattformen. Evalueringsseksjonen for denne delen
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diskuterer relevansen av å bruke andre sensornettverk enn CAN, utfordringer relatert til has-

tigheten og det fysiske laget til IWIS grensesnittet, og trekker frem implementeringserfaring fra

industrien.

Den praktiske delen av prosjektet bestod av en implementering av to ulike kommunikasjons-

protokoller som kan bli brukt til det samme oppsettet i et kommunikasjonsnettverk for under-

vannssystemer. Løsningene er diskutert, og sammenlignet basert på den praktiske erfaringen

som ble oppnådd ved implementasjon. Den første praktiske implementasjonen bestod i å stu-

dere og tolke Modbus TCP spesifikasjonen, og implementere protokollfunksjonene i et appli-

kasjonslag. Et brukerlag ble så senere lagt til for å demonstrere meldingsutvekslingen mellom

to mikrokontrollere. Den andre delen bestod i en praktisk implementasjon av OPC UA kom-

munikasjonsprotokollen på en mikrodatamaskin (Raspberry Pi). Denne implementasjonen ble

gjennomført ved å bruke et programvareutviklingsverktøy som tilbyr UA servicer iht. den offisi-

elle OPC UA spesifikasjonen.

Den praktiske delen har resultert i to fungerende implementasjoner som er vedlagt denne mas-

teroppgaven. Implementasjonen av Modbus TCP applikasjonslaget er operativt for meldings-

utveksling mellom to mikrokontrollere, en klient og en server. Modbus TCP implementasjonen

gikk forholdsvis greit ettersom Modbus spesifikasjonen er oversiktlig og detaljert. Det er lett å

forstå hvorfor bruken av Modbus TCP er så utbredt i industrien. Men Modbus TCP er en for-

bindelsesbasert forespørsel/reaksjons-protokoll som ikke innehar de beste sanntidsegenskaper.

En annen ulempe med Modbus TCP sammenlignet med Ethernet/IP og OPC UA er manglende

støtte for objekt-modellering. Rent praktisk vil dette bety at klienten må vite registeradressene

til den respektive serveren når den skal sende forespørsel til serveren(e). OPC UA løsningen i

denne masteroppgaven fremstår som et eksempel på en fremtidig implementasjon av OPC UA

i et kommunikasjonsnettverk for undervannsutstyr. Løsningen demonstrerer hvordan en skal

implementere sensor & aktuator data i adresseområdet til en UA server ved å definere objekt-

modeller som representerer fysisk data. Hele den praktiske OPC UA implementasjonen er utført

ganske så ulikt Modbus implementasjonen. OPC UA spesifikasjonen beskriver metoder og servi-

cer for å modellere kompleks arkitektur, den spesifiserer ikke hvilke teknologi en skal bruke. En
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OPC UA implementasjon er vanligvis utført vha. et omfattende programvareutviklingsverktøy

som støtter tjenestene i den offisielle UA spesifikasjonen som er definert av OPC Foundation.

Implementasjonsutfordringen for OPC UA var å definere objekt-modeller ved å bruke riktig UA

terminologi & modelleringsverktøy, og bruke riktig type services & managers i programvareut-

viklingsverktøyet.OPC UA løsningen er implementert med støtte for Data Access (DA), Histori-

cal Data Access (HDA), og Alarms & Conditions (AC) for å demonstrere skalerbarheten til OPC

UA. Sammenlignet med Modbus TCP så er OPC UA kommunikasjonen mer abstrakt, den tren-

ger mer ressurser, og den har dårligst effektivitet blant de to. Men den støtter forskjellige typer

meldingsutveksling (forespørsel/reaksjon, Subscription (abonnement), server-server). OPC UA

løsningen er også mer kompleks, og det trengs mer arbeid for førstegangsimplementasjon av

teknologien. UA er derimot mye mer fleksibel når grunnstammen er på plass. De fleste para-

metere kan da endres, og flere OPC UA variabler kan da enkelt legges til. Den største ulikheten

mellom de to praktiske implementasjonene var detaljnivået. Ved implementasjonen av Modbus

TCP var fokuset på å få bits & bytes"i meldingsstrukturen riktig, mens for OPC UA var utford-

ringen å definere objekt-modeller og implementere disse i utviklingsverktøyet ved å bruke de

riktige forhåndsdefinerte servicene.
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Summary and Conclusion

The interest for carrying out this project is to evaluate the various protocols & instrumentation

networks used in subsea control systems. This work shall be performed by pointing out the main

differences, illustrate principles, and compare the performance & practical implementation ex-

perience of subsea relevant protocols. Modbus TCP and Ethernet/IP are two globally accepted

and open protocols used for process data exchange between topside and subsea. OPC UA is on

the other hand a relatively new communication protocol which is typically used for exchanging

process data between systems from different vendors. UA is included in this project as a sug-

gestion to perform prospective data exchange between topside and subsea. Thus, a theoretical

evaluation and practical implementation of UA is performed. The practical implementation in-

vestigates the possibility of implementing a prospective OPC UA solution in a subsea network.

The aim is that results from this thesis can be used to argue which industrial Ethernet protocol

is best suited for topside communication based on the technical properties.

One of the initial objectives in this project was to implement the specific protocols from the

assignment text on the same hardware & network, and then perform a detailed benchmark

comparison to back potential dissimilarities from the theoretical analysis. However, due to un-

reasonable cost for two FPGA development kits including all necessary protocols and software

this was omitted. The objectives of the master thesis therefore shifted focus towards a practi-

cal part that involved finding suitable hardware, describe, compare, and carry out the practical

implementation of two different protocols. The theoretical part has consisted of explaining the

subsea communication, and describe & highlight the differences between industrial Ethernet

protocols used for topside communication. Also, an evaluation of the various standards for ex-

changing sensor & actuator data at the seabed are within the scope of this thesis.

The theoretical part of this thesis evaluates and compares the Modbus TCP, Ethernet/IP, and

OPC UA protocols based on features, and performance studies. The theoretical evaluation con-

cludes that communication protocols based on the TCP/IP communication stack and Ethernet

standard are to loosely defined in order to specify their performance. The performance will
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simply vary to much in each single case in order to quantify specific performance indicators.

Hardware, network type, and the actual exchange management efficiency in the application

layer will influence the performance quantities in great extent. Ethernet/IP is the only protocol

of the three that quantifies indicators for obtainable performance in official standards. Stud-

ies reveals that Modbus TCP does not have a suited communication model for real-time data

exchange, and its not supposed to have performance indicators due to its wide range of ap-

plication. The performance quantification of OPC UA is impossible because its a technology

independent protocol (only defined at higher layers) with a wide selection of service mecha-

nisms that can be enabled/disabled. However, further details explaining the research studies on

performance impact of: the security mechanisms, enabled services, network traffic, software

development kits, and the increasing number of clients for OPC UA are described in this master

thesis. The comparison of Modbus TCP and Ethernet/IP concludes that, Ethernet/IP has bet-

ter real-time properties, better multicast performance, and better support for features like time

synchronization & safety protocol. However, Modbus TCP guarantees for the data integrity due

to the use of TCP as transport protocol in contrast with Ethernet/IP which uses UDP. OPC UA

is considered to be an interesting choice for prospective implementation due to its support for

modeling complex architecture, and its wide choice of service mechanisms as defined in the UA

specification. OPC UA however is not a real-time protocol and its not suited for safety critical

systems.

The introduction and evaluation of CAN bus (SIIS level II) & IWIS for data exchange at sensor

level, concludes that a direct comparison of the two principles are challenging because they

are engineered for two different purposes. The CAN bus (SIIS level II) describes the extensive

subsea standard for instrumentation network used to exchange data with sensor and actuators

at the seabed. IWIS defines an interface that third-party intelligent well equipment (downhole

measurement tools) uses to integrate into a subsea production control system. The subsea con-

trol system will then provide a transparent transport function between subsea and topside. The

evaluation section discusses the relevance of using another type of sensor network than CAN

bus, challenges related to to the baud-rate and physical layer of the IWIS interface, and high-

lights the implementation experience from the industry.
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The practical part of this thesis consisted of implementing two different communication proto-

cols that can be used for the same setup in a subsea communication network. The solutions are

discussed, and compared based on the practical experience gained by the implementation. The

first practical implementation was to study and interpret the Modbus TCP specification, and

implement the protocol functions in an application layer. A user-defined layer was later added

to demonstrate the exchange of message functions between two microcontrollers. The second

part was a practical implementation of the OPC UA communication protocol on a microcom-

puter (Raspberry Pi). This implementation was performed using a software development kit

that provides the official UA services as defined in the OPC UA specification.

The practical part has resulted in two fully operational implementations that are attached to this

master thesis as appendices. The Modbus TCP application-layer implementation is fully oper-

ational for message exchange between two microcontrollers, one client and one server. Due

to a clear and detailed specification, the Modbus TCP implementation experience was quite

positive. Its easy to understand why its usage is so widespread in the industry. However, its

a connection-based request/response protocol that does not hold the best real-time proper-

ties. Also, a disadvantage of Modbus TCP compared to Ethernet/IP and OPC UA is the lack of

support for object modelling. This means the client must know the register addresses at the

server(s) in order to request the correct data. The OPC UA solution in this thesis serves as an

example for prospective implementation of OPC UA in a subsea communication network. The

solution demonstrates how to implement sensor & actuator data in the address space on an UA

server by defining object models that represent real-world data. The practical OPC UA imple-

mentation is performed quite different than for Modbus. The OPC UA specification describes

methods & services to model complex architecture, it does not specify what type of technology

to use. An OPC UA implementation is normally based on a comprehensive software develop-

ment kit that supports the services in the official UA specification defined by the OPC Foun-

dation. The implementation challenge for OPC UA has involved defining object models by use

of correct UA terminology & modelling tools, and also use the correct services & managers in

the software development kit. The solution is implemented with support for Data Access (DA),

Historical Data Access (HDA), and Alarms & Conditions (AC) to demonstrate the scalability of
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OPC UA. Compared to Modbus TCP, the OPC UA communication is more abstract, it requires

more resources, and it has the worst efficiency of the two protocols. However, it supports var-

ious types of message exchange (request-response, subscription, server-server). The OPC UA

solution is more complex, and the initial implementation of the technology demands more ef-

forts. On the other hand OPC UA is much more flexible when the basic framework is in place.

Most of the parameters can then be changed, and several OPC UA tags can easily be added. The

greatest dissimilarity of the two practical implementations were the degree of details. The im-

plementation of Modbus TCP for an embedded system focused on getting the "bits & bytes" of

the message structure correct. While for OPC UA the challenge was defining object models and

implementing these in the SDK using the predefined services.
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Abbreviations

ADU Application Data Unit

CAN Controller Area Network

CiA CAN in Automation

CIP Common Industrial Protocol

DCS Distributed Control System

FPGA Field-Programmable Gate Array

FPSO Floating Production, Storage and Offloading unit

ICSS Integrated Control and Safety System

IWE Intelligent Well Equipment

IWIS Intelligent Well Interface Standard

JIP Joint Industry Project

MBAP Modbus Application Protocol

MCS Master Control System

PDU Protocol Data Unit

RPi Raspberry Pi

RTE Real Time Ethernet

SCM Subsea Control Module

SDK Software Development Kit

SEM Subsea Electronic Module

SIIS Subsea Instrumentation Interface Standardization

SPCU Subsea Power and Communication Unit
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Terminology

Address space Collection of information an OPC UA server makes visible to its clients [28]

Bandwidth A measure on how fast data can potentially be sent over between nodes

Cycle time The communication time required by the controller to both collect and update

the data memories of all sensors and actuators [36]

Determinism The ability of the communication protocol to guarantee that a message is sent

or received in a finite and predictable amount of time [2]

Multicast Describes a one-to-many communication scenario, e.g. one client and several

servers

Octet A sequence of eight bits (a byte)

Payload A measure on how much of the message data that is actually useful for the user,

when you exclude headers and checksums

Real-time The ability of a system to provide required data in a bounded time

Throughput A measure on the actual amount of transmitted data between nodes
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Chapter 1

Introduction

1.1 Background

The assignment text for this master thesis was composed in co-operation with OneSubsea Pro-

cessing. They support a wide range of industrial communication protocols for their control

systems, the criterion for selecting a specific communication protocol is not necessarily always

performed from a technical perspective. The reference manual [9] claims that the choice of in-

dustrial protocol(s) typically are based on which protocols a specific controller supports, and

what the supplier can deliver of equipment & provide technical support for. Customer require-

ments, historical, economical, and personal (experience, training) reasons could play just an

important role as the best match from a theoretical perspective. Regardless, the interest for per-

forming this thesis is to provide technical theoretical knowledge about subsea communication

by illustrate principles, highlight differences, compare the industrial Ethernet protocols, and

look into differences for subsea instrumentation networks. Hopefully can the result of this mas-

ter thesis provide basic introduction to subsea communication systems, and recommend best

suited protocols from a technical perspective. The thesis will also review some of the work per-

formed on subsea standardization.

This thesis also looks into concepts such as event/time-triggered communication, and the re-

quirements for a safety protocol. A subsea control system that is implemented outside the plat-

form’s distributed control system, and does not have safety functions can avoid strict require-

1
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ments for usage of a safety protocol. Further details regarding regulations and the mechanisms

to achieve a safety protocols is discussed in Section 3.5.3. However, in this thesis its assumed

that during normal operation the only data exchange between topside and subsea is related to

process control messages. Some subsea suppliers enables solutions with prioritization of ser-

vice messages and production control messages, so that service/updates can be performed in

parallel with the production of hydrocarbons. The possibility of message prioritization is com-

mented in the section related to topside communication.

Over the years, the oil & gas industry has steered towards the use of an industrial Ethernet proto-

col on the link between topside and subsea, and today this has more or less become the standard

solution. Industrial Ethernet is well suited for this purpose since its physical layer supports both

twisted pair cables and fiber optics. The distance tends to be ten’s of kilometers, and the pro-

cess data exchange therefore benefits from using a protocol that supports high data rate. At the

seabed, sensor-level communication is implemented to allow frequent exchange of small data

packets between subsea instruments or intelligent well devices. Within subsea control systems

there are mainly two specifications for this purpose, the CAN bus (SIIS level II) and IWIS. Both

of these specifications are introduced and evaluated in Section 4.

Detailed information regarding the Ethernet standard, the TCP/IP communication stack, the

CANopen standard or the subsea standard (ISO-13628) is not within the scope of this thesis.

Complementary information is cited if its found relevant. The requirements for communica-

tion protocols used in a subsea control system is specified in the ISO-13628 (explained in more

details later). The main focus in this thesis will be to sort out differences between the given pro-

tocols, and not suggest the usage of other protocols.

This project contains two independent practical implementations of communication protocols.

First Modbus TCP is implemented for message exchange on two microcontrollers. Compared

to a subsea communication network, one of the microcontrollers represents the client (topside

controller) and the other microcontroller represents the server (embedded system installed at

the seabed). The other implementation is the scalable OPC UA protocol. OPC UA is imple-
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mented to illustrate how a prospective implementation of OPC UA can be performed in a subsea

communication network. The solution demonstrates how to implement subsea instrumenta-

tion data in the UA address space by defining object models that represent real world data. The

UA implementation represents the same server-client communication model as Modbus TCP. A

Raspberry Pi represents the server, and a host computer represents the client. The implementa-

tion of OPC UA on a microcomputer is an interesting topic not only to subsea control systems,

but also for use in Internet of Things (IoT).

1.2 Literature Survey

There are several articles discussing the various types of industrial/real-time Ethernet protocols.

Some examples are the industry prospective on real-time Ethernet [16], and the minimum cy-

cle time analysis of Ethernet-based real-time protocols [36]. Detailed performance studies on

industrial/real-time Ethernet protocols executed by an independent third-party has however

been challenging to find.

Several articles related to the OPC UA performance has been published. The relevant articles

considers the performance influence for the CPU load and network traffic due to increasing

number of clients & monitored items [17]. The performance impact due to the security mech-

anisms are discussed in [11], and the performance impact of the subscription mechanism &

transport protocols are discussed in [10]. OPC UA is a relatively new communication protocol

where several articles are related to how an OPC UA implementation should be performed for

various communication scenarios, and what type of service mechanisms should be exploited.

The article discussing OPC UA based solutions for offshore integrated operations [37] is relevant

for this thesis. It debates whether or not OPC UA has secure communication, secure information

sources and standardized information exchange. The article [37] also refers to research related

to implementation of OPC UA in field equipment for process automation.
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Information related to IWIS and SIIS has mainly been found in standards [4, 20] and recom-

mended practices [30, 31]. The article [13] describing the experience from implementation of

IWIS and SIIS in subsea control systems are also relevant.

1.3 Objectives

The main objectives of this Master’s project are

1. Give an introduction and perform an evaluation of Modbus TCP & Ethernet/IP for top-

side - subsea communication. Look into the possibilities of using OPC UA for prospective

topside - subsea communication.

2. Give a brief description on how subsea control and communication is performed in a

general subsea production system. Explain some of the standardization work performed

within subsea control systems. Briefly discuss the differences on event-triggered and time-

triggered communication.

3. Give an introduction and evaluate the CAN bus (SIIS level II) and IWIS for collecting sub-

sea instrumentation data.

4. Implement the Modbus TCP application protocol for message exchange between micro-

controllers.

5. Investigate and find a suitable OPC UA solution for a subsea communication network.

Implement this OPC UA solution on a micro-controller/computer.
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1.4 Structure of the Report

Chapter 2: Provides a brief introduction: to the main subsea components, relevant standards,

reasons for using industrial Ethernet protocols for topside communication, and the

principles of event/time-triggered communication.

Chapter 3: Theory related to the various industrial Ethernet protocols used for topside com-

munication are presented in this chapter.

Chapter 4: Describes and evaluates the specifications for subsea sensors & intelligent well de-

vices.

Chapter 5: Documents the practical implementation of the Modbus TCP application layer pro-

tocol for message exchange between microcontrollers, and an OPC UA server on a

microcomputer.

Chapter 6: The final chapter contains the discussion and provides recommendations for fur-

ther work.





Chapter 2

Subsea Introduction

2.1 Intro

The subsea control system is part of the infrastructure to control the production of oil & gas. It

operates valves & chokes, and collects process data regarding temperature, pressure, flow, sand

detection, etc. The systems ranges in complexity from a single well linked to a fixed platform,

FPSO, or onshore refinery, to several wells clustered with help of a manifold. This thesis focuses

primarily on topside communication and subsea instrumentation network, but a brief introduc-

tion of the most relevant equipment is given in this chapter. The subsea control module (SCM)

and the subsea electronic module (SEM) are considered to be highly relevant and therefore given

a more detailed explanation. More specific details regarding subsea production system princi-

ples, advantages, disadvantages, limitations, and characteristics are found at [7, 20, 4].

Figure 2.1 is an overview example of a subsea production system. At topside there are systems

providing power, hydraulic, communication signals & logic, and chemicals. Power, hydraulic,

chemicals, and communication signals are transported via the umbilical from topside to the

subsea equipment located at the seabed. Communication signals are normally transferred by

use of fiber optics, but a copper link may also be used. Before the introduction of fiber link,

powerline communication was the main method to transfer binary data via the power signals.

The umbilical is terminated and connected to subsea equipment, such as subsea trees, pumps,

and compressor. Figure 2.2 illustrates a more direct & simplified overview of a subsea control

7
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Figure 2.1: Subsea production system overview [7, Ch. 7]

system which is relevant for this project. This master thesis discusses protocols used for col-

lecting subsea instrumentation data at the SEM, and industrial Ethernet protocols used for data

exchange between the MCS and the SEM. Two key components in the control system are the

master control station (MCS) and distributed control station (DCS). The master control station

is the unit that control and monitor the subsea production system [20]. The distributed con-

trol system is the platform’s decentralized control system. The subsea power and control unit

(SPCU) connects to the subsea control modules (SCMs) and provides electrical power to sub-

sea control equipment. The SPCU is also used to obtain communication between topside and

subsea by use fiber modems. Filters, and adjustable power are also requirements for the SPCU

[7].

2.2 Subsea Control Module

The subsea control module (SCM) is a independently retrievable unit used to provide well func-

tions during the production phase of subsea oil and gas production. The module is normally

installed directly onto the equipment to be controlled, such as the subsea tree, pump, or com-

pressor. The SCM is designed to be installed or retrieved by using a single lift wire and some
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Figure 2.2: Subsea control system flow overview

remotely operated vehicle (ROV) assistance. The SCM receives the hydraulics, electrical power,

and communication signals from topside. Typical SCM functions are

• To communicate with and transfer data between the topside controller and the subsea

instrumentation

• Monitoring of the system (pressure, temperature, flow, sand detection)

• Actuation of fail-safe return at production tree actuators and downhole safety valves.

• General valve operations as requested by the topside controller

A short distance between the SCM and the subsea production results in benefits like quicker

valve response, better valve control (less risk), continuous situation report of the system, and

reduces umbilical weight & costs. The physical external SCM housing has hydraulic and elec-

trical connectors, ROV handled connectors, and a stab plate for connectors. The inside consist
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of a hydraulic system (including accumulators), a lock down mechanism, one or several sub-

sea electronic modules (SEM), ambient pressure measurement, and water leak detection. The

SCM housing is normally filled with a dielectric fluid and pressure compensated to provide a

secondary barrier to ingress from sea water [7, 20, 4].

2.3 Subsea Electronic Module

The subsea electronic module (SEM) is the module that collects subsea process data & controls

subsea actuators. The SEM is mounted inside the SCM, and is connected to the power and com-

munication coming from topside. The SEM is implemented to allow control and monitoring of

subsea instrumentation. A SEM tends to consist of the follow items:

• Subsea control electronics and data storage

• I/O and communication modules

• Subsea signal modem

• Power supply module with power management system

• Electrical connectors/penetrators and cables

The SEM is a embedded system which acts as a local control unit, a temporary storage device,

and a gateway between the industrial Ethernet network (topside communication) and the sub-

sea process data which are available through 4-20 mA, CAN bus, or Ethernet. The SEM software

must be implemented with support for housekeeping data (temperature, humidity, pressure,

voltage & current, auxiliary attributes) [7, 20, 4].

2.4 Subsea Control Systems Standard

ISO 13628 is the standard for design and operation of subsea production systems within the

petroleum industry. Part 6 of the standard regards the subsea production control systems. This

part is applicable to the architecture, design, fabrication, installation, testing, and operation
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of subsea production control systems. Part 6 is also essential for the general functionality of

subsea control systems, and in particular the execution of subsea communication. Further re-

quirements for the SCM and the SEM are specified in the standard.

For communication between topside and subsea the ISO 13628-6 does not specify which com-

munication protocol that must be used. Some of the requirements are high reliability and suffi-

cient capacity to handle the required traffic in all foreseeable situations. Its also a requirement

that the communication is based on proven design or an industry standard. More information

on suitable communication protocols for subsea is found at [20, 7.4.6]. More information on

why Ethernet is a match can be found in Section 2.6. Two various solutions for collecting subsea

instrumentation data are standardized in the ISO 13628-6: CAN bus (SIIS level II) and IWIS, both

of these solutions are presented later in Chapter 4.

2.5 OSI Reference Model

The open system interconnect (OSI) reference model is used as a common reference for de-

velopment of data communication standards. It works as a structural aid to understand how

the information from a software application in one node moves through a network medium to

a software application in another node. The model was developed in 1984 by ISO, and is today

considered as the primary architectural model for intercomputer communications. The OSI ref-

erence model defines a framework for implementing network protocols into seven layers. The

seven layers can again be coarsely divided into lower layers (1-4) which focus on data transport,

and upper layers (5-7) which focus on the application [2, 12].

7. Application: Specifies the access to lower layer functions and services. Provides functions

to the user interface.

6. Presentation: Specifies the representation of data, coding type, compression, and defines

used characters.

5. Session: Specifies mechanisms for establishing, managing, and ending connections be-

tween two nodes. Dialing control and synchronization of session connection.
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4. Transport: Specifies how to ensure reliable data transport. Sequencing of application data,

controls start/stop of transmission, sequencing, provides error detection, correction, end-

to-end recovery, and clearing. Software flow control between networks.

3. Network: Specifies packet format and routing. Establishes/maintains connections over a

network & provides addressing, routing, and delivery of packets to host.

2. Data link: Specifies frame organization and transmittal. Data frame, error detection &

correction, sequence control, and flow control.

1. Physical: Specifies the basic network hardware. Definition of the electrical & mechanical

functions, and procedural attributes used to access, and send a binary data stream over a

physical medium.

2.6 Why use Industrial Ethernet?

Industrial Ethernet is based on the Ethernet technology covered in the IEEE 802.3 specification

which is implemented in the ISO/IEC 8802-3 standard. Using Ethernet for industrial communi-

cation benefits from the general properties of Ethernet [12, 43, 46]:

• Support for unicast, multicast, and broadcast

• Standardized infrastructure

• Flexible physical layer - can use optical fiber or twisted-pair cables.

• Theoretical possibility of using one network type from enterprise-level to plant-floor

• High bandwidth (10/100/1000 Mbit/s)

• Support for redundant paths between network devices

• Cost savings (equipment is being mass produced)

• A mature technology - thoroughly tested, and a globally approved standard
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The last two properties are perhaps the most important within the oil & gas industry. The oil

& gas industry is well-known to be conservative and choose reliable, secure, and long time

proven technologies. The interoperability and interchangeability qualities are also a great ben-

efit. An Ethernet-based solution using TCP will ensure high reliability, with several error detec-

tion mechanisms, but the transmission time will be regarded as less critical. TCP guarantees for

the data integrity [43, Ch. 61]. An Ethernet-based solution using UDP is suitable for applica-

tions that require fast and efficient transmission, but compromises with fewer error detection

mechanisms. The data integrity cannot be guaranteed [43, Ch. 60]. The weakness of Ethernet

is the non-deterministic behaviour due to the media access method called the carrier sense,

multiple access with collision detection (CSMA/CD). The CSMA/CD challenge excludes hard

real-time behaviour for Ethernet control applications, for more details see [46, Ch. 17]. Eth-

ernet is only non-deterministic if collisions can occur. There exists several solutions both in

hardware and software to make it deterministic, for hardware a possible method of eliminating

collisions is full-duplex switched Ethernet. This setup suppresses the CSMA/CD routine, and

data can be exchanged with no chance of collision. The cost is a small latency by introducing

switches. Three other techniques for achieving real-time properties are either to modify the

Ethernet standard, the TCP/IP communication stack, or the application layer [46, Ch. 17]. The

Ethernet standard (ISO/IEC 8802-3) can be modified by use of the standard specifications such

as VLAN tags, prioritization of critical messages, rapid spanning tree, and full duplex operations.

Performing modification at the Ethernet standard can however cause interoperability problems.

Using the original Ethernet & TCP/IP communication stack, and rather perform modifications

at the application layer benefits from being able to use cheap conventional of-the-shelf com-

ponents. Both Modbus TCP and Ethernet/IP are examples on application layer protocols where

the modifications are performed at higher layers.

The ISO 13628-6 standard as mentioned above, specifies requirements for the communication

protocol between topside and subsea in section 7.4.6 -Communication protocol [20]. Some of

the requirements states that the protocol must be have high reliability & be suitable, it must

have sufficient data capacity, withstand normal noise and disturbances, it must support mes-

sage "time-out", reception of corrupted messages and "time-out" shall result in retransmission
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of the message, the messages must have cyclic redundancy check (CRC), and it must be able to

use it for loading new software to the SEM. This does not explicitly state that Industrial Ethernet

shall be used, but industrial Ethernet supports all the requirements listed in the standard. An

industrial Ethernet implementation has more or less become the standard for topside commu-

nication.

2.7 Standardizing Subsea Solutions

The oil & gas industry has several group organizations working towards finding standardized

solutions within subsea. The purpose for this effort is finding common standards that will lead

to cost reductions, improved reliability, and generate product solutions that will eventually re-

move custom made systems. Also, the uncertainty factor for interfaces will be removed. Some

of the group organizations are [42]:

• IWIS (Intelligent Well Interface Standard)

• SIIS (Subsea Instrument Interface Standarization)

• SEAFOM (Subsea Fiber Optical Monitoring)

• MDIS (MCS-DCS Interface Standarization)

• SWiG (Subsea Wireless Group)

IWIS, SIIS, and in a sense MDIS as well are relevant for this thesis. IWIS is described in more

details in Section 4.2, and SIIS is described below. MDIS is working towards defining and es-

tablishing a common interface between the master control systems (MCS) which is delivered

by subsea vendors, and the distributed control system (DCS) on the platform. The relationship

between MCS and DCS can be seen in Figure 2.2. In 2013, MDIS chose OPC UA as the unified

platform and has since continued the work developing a MDIS standard. MDIS has designed

software objects describing major pieces of the subsea equipment. By use of OPC UA, software

object has been developed and implementation tests has been performed. In 2015 MDIS held
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an interoperability test, giving the subsea and DCS vendors a possibility of testing their under-

standing of the MDIS standard on their products [42, 18].

The subsea instrumentation interface standardization (SIIS) is a joint industry project (JIP) where

the aim is to standardize the interface between subsea sensors and the subsea control module

(SCM) [31]. The SIIS industry group was established in 2003 after the IWIS industry group (de-

scribed later in Section 4.2). The SIIS industry group developed a specification describing the

mechanical & electrical properties, and helped to establish a communication protocol (CiA 443)

for subsea sensors & actuators. The whole specification has been submitted to the ISO 13628-6

standard.

An important aspect of SIIS is the definition of three various device levels, or communication

methods between the SCM and the subsea instrumentation [30, 13, 38]. The three different

device levels are:

• Level 1 - Analogue Devices (4-20 mA): Simple 2-wire loop powered analogue output sens-

ing devices.

• Level 2 - Digital Serial Devices: Relatively complex sensors or actuators that are connected

to the control system in a star topology. These devices are configurable and downloadable.

The communication network is CAN bus based on a fault tolerant physical layer using

CANopen (CiA 301), and the device profile CiA 443.

• Level 3 - Ethernet TCP/IP (industrial protocol) Devices: Intelligent devices where direct

communication access is required between the seabed and the application(s) at topside.

This device interface may also be used for sensors requiring bulk data transfer. The com-

munication protocol is TCP/IP over Ethernet. An example is a multiphase flow meter

where one would like to stream the data topside.

For more information regarding general device requirements, redundant sensors, EMC and test-

ing requirements defined by the SIIS group see [31].
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2.8 Event or Time-Triggered Communication

2.8.1 Time-Triggered Communication

Time-triggered communication is performed when data is collected through periodic exchange

of messages. This architecture offers predictability, and high dependability (missing messages

are detected immediately). Compared to the event-triggered solution it tends to use the most

network traffic for exchanging data, and result in the most expensive solution. The reason for

the latter is mainly the careful planning during the design phase. For an embedded system an

analytical scheduling test is necessary to perform in advance. The analytical test is a system-

atic & constructive test that is used for constructing appropriate execution schedules. In order

to perform the analytical test you need to know all the environmental situations, all task pa-

rameters, and all system parameters. However, human errors may occur and situations may be

overlooked. These situations will not be handled at all. A disadvantage of the time-triggered

communication is that it tends to offer very little flexibility [21, 46, 39].

2.8.2 Event-Triggered Communication

Event-triggered communication is a processing activity that is initiated by the sending device as

a consequence of the occurrence of a significant event. The signalling of event can be realized by

use of interrupt mechanisms or polling. The event-triggered communication does not require

a detailed planning phase with an analytical schedulability test, but a response time analysis

must be performed. However, the communication setup must be tested extensively. Especially

peak load scenarios where all activities are initiated at exactly the same time. Event-triggered is

not so constraint as time-triggered, its in fact quite flexible and easy to modify an operative task

or add a new task to an existing node. The event-triggered communication is also well suited for

sporadic messages. A possible disadvantage of using event-triggered communication is when

a device(s) generates a message storm. This could lead to problems for the communication

system if certain protective measures are not taken. [21, 46, 39].
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2.8.3 Discussion

To summarize, time-triggered communication is most suited for systems with a need for deter-

ministic behaviour, and periodic update rate. Time-triggered communication is the preferred

system architecture for safety-critical systems [46]. Event-triggered communication is suited for

transferring event information in systems that needs to offer flexibility and must handle spo-

radic message sending. The usage of the two obviously depends on the system, and some buses

such as the time-triggered CAN (TTCAN) tries to combine the advantage of both concepts [46].

The topside controller in a subsea control system will benefit from a periodical update of data

by use of time-triggered communication, while both an event and time-triggered solution could

be implemented to handle the sensor data management at the SEM. Since process data related

to oil & gas production is sometimes implemented with a safety function, the predictability &

dependability of time-triggered communication is highly advantageous.

There exists time-triggered protocols (TTP) designed for embedded real-time control applica-

tions. The various protocols are engineered to achieve soft or hard real-time. The great benefit

is that they have redundant communication channels, where one of the channels is allowed to

fail without affecting the time-triggered communication services. Thus, it offers fault tolerance.

More documentation regarding event and time-triggered communication see [21, 46, 39].





Chapter 3

Topside Communication

3.1 Intro

Modbus TCP and Ethernet/IP are two globally accepted industrial Ethernet protocols frequently

used within various industries, including the oil & gas industry. OPC UA is added to this section

as a suggestion from OneSubsea Processing as a possible way of performing prospective data

exchange. As mentioned in Section 2.7 OPC UA is chosen by MDIS as the standard between the

MCS and DCS. Using OPC UA longer down the hierarchy should (in theory) provide a solution

that are more flexible and easier to integrate.

This chapter starts of with an introduction & evaluation of Modbus TCP, Ethernet/IP, and OPC

UA for data exchange on the topside - subsea link. At the end of this section there is a compari-

son of the industrial protocols based on some of the relevant criterion from OneSubsea Process-

ing.

19
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3.2 Modbus TCP

3.2.1 Introduction

Modbus is an application-layer protocol which means it only defines rules for organizing and in-

terpreting data as a message structure, its independent of the data transmission medium. Since

first developed by Modicon in 1979, Modbus has become an industry standard for transfer of

discrete I/O information and register data. The data is organized in 16 bit unsigned registers

or as single bits. Within the Modbus family there exists three various protocol types: Modbus

RTU, Modbus ASCII and Modbus TCP. The Modbus protocol was originally intended for serial

transfer but, Modbus TCP was designed to allow industrial equipment to communicate on a

Ethernet based network. Modbus TCP embeds a Modbus frame into a TCP frame. This results

in a connection-oriented transaction where every request expects a response. The function of

the transmission control protocol (TCP) is to make sure all data packets are received correct,

while the Internet protocol (IP) performs correct addressing and routing for messages [25].

The Modbus protocol uses the term client (e.g. PLC, host computer) and server (e.g. SEM, valve)

between nodes connected to an TCP/IP network. Only the client can initiate transactions. The

client sends a request to the server telling it to transfer information or perform a command. The

server responds by supplying the requested data, or by execute the command given by the client

and then send a echo reply. Due to the transport protocol (TCP) acknowledgment messages are

sent back to the client when the message is received by the server. The client - server model

is based on four types of messages, as illustrated in Figure 3.1. An explanation of the message

types is found in Table 3.1.

Figure 3.1: The client-server communication model [46, Ch. 10].

Modbus is a request/reply protocol which is considered to be easy to understand, and relatively

simple to implement. Its possible to only implement the required message types which will



3.2. MODBUS TCP 21

Modbus
Message Type

Description

Request
A message sent onto the network by
the client to initiate a transaction

Indication The request message received on the server side
Response A response message sent from the server side
Confirmation The response message received on the client side

Table 3.1: The four basic message types in Modbus

reduce the complexity, and the footprint. This can be crucial for an embedded system where the

resources is limited. Modbus is quite scalable and can be implemented at embedded systems

and computer systems. The Modbus specification [25] is open and does not require any license

fees.

3.2.2 Protocol Description

The basis of the Modbus protocol is the definition of the protocol data unit (PDU). The PDU

exists of a function code and a data value. The Modbus function code is a one byte data unit,

where value codes are given in the range of 1 to 255. The function code in the message sent from

the client to the server informs the server what kind of service to perform. Examples on opera-

tions performed by use of the function code are read & write of bits or registers, and diagnostic.

The data field of a message sent from a client to a server contains additional information that

the server uses to perform the action defined by the function code.

Modbus TCP also encapsulates a Modbus application protocol (MBAP) header which is used

to identify the Modbus application data unit (ADU). A graphical representation of the Modbus

message structure is illustrated in Figure 3.2. The MBAP header is 7 bytes long and contains the

four data fields specified in Table 3.2.

Figure 3.3 illustrates how an ADU packet is passed down the different layers according to the

OSI reference model. In order to include the functionality at each layer, the different layers adds

its own header to the front of the packet and thereby increasing the overall data size. The ADU

is first wrapped into a TCP packet and then a IP packet. The Ethernet functionality is included

in layer 1 & 2.
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Figure 3.2: Modbus message structure [24].

Length
(bytes)

Data-
field

Description

2
Transaction
Identifier

Used for transaction pairing when multiple messages are
sent along the same TCP connection without waiting for prior response.
This is performed by inserting a TCP sequence number in order to create
unique identifiers for each TCP request.

2
Protocol
Identifier

This field is used for intra-system multiplexing.
The ID for Modbus services is 0.

2 Length
This field contains the length of the rest of the packet.
This is found by taking the size of the PDU and adding
the Unit Identifier byte.

1
Unit
Identifier

Used to identify a remote server located on a non TCP/IP network.
But, by use of Modbus TCP the server is addressed by use of its IP address.
The ID value is set to 0x00 or 0xFF and ignored.

Table 3.2: Description of the MBAP header data fields. Adapted from [24] and [46].

More Details

For an in-depth study of Modbus TCP its recommended to use the Modbus application proto-

col [25], and the Modbus messaging on TCP/IP implementation guide [24]. However, for a more

practicable approach, see the implementation of the Modbus TCP application layer on embed-

ded microcontrollers in Section 5.1.2.
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Figure 3.3: Modbus encapsulation according to the OSI model [2].

3.3 Ethernet/IP

3.3.1 Introduction

Ethernet/IP (IP stands for Industrial Protocol) is an application-layer protocol which transfer

common industrial protocol (CIP) messages inside a UDP/IP packet by use of Ethernet. CIP

is a versatile object-oriented protocol used by several industrial protocols such as Ethernet/IP,

DeviceNet, ControlNet and CompoNet. CIP defines objects for the messaging application and

objects that describes the devices [43]. Figure 3.4 illustrates the organization of the library of

the CIP network specification. By using the CIP Sync profile tight time synchronization in all

network equipment can be achieved. This tight time synchronization by use of background

messages between the clock master and clock slaves provides high accuracy, and enables Eth-

ernet/IP to be used in applications with strict real-time requirements [26]. The CIP enables an

upper layer functional security application called CIP Safety (See Figure 3.4). CIP Safety im-

plements integrity mechanisms to achieve fail-safe communication between nodes and safety-

components. CIP Safety is certified as a safety application for use in applications in systems

needing to meet the requirement of safety integrity level (SIL) 3 in accordance with IEC 61508.



24 CHAPTER 3. TOPSIDE COMMUNICATION

The CIP allow users to integrate messages and service operations on Ethernet supported net-

works. The CIP defines layers 5-7 according to the OSI reference model described in Section 2.5.

Figure 3.4: Network adaptions of the common industrial protocol (CIP) [27].

The CIP defines a producer - consumer model architecture and not the traditional client - server

model as described in Section 3.2.1. The producer - consumer communication model can in

several cases make the information exchange more effective. The producer (sending device)

broadcast messages on the network for consumption by one or several consumers (receiving

devices). Consumers determine it they should receive data in a message based on the identifi-

cation (ID) field in the packet. Producers can be setup to generate data at pre-established rates,

making it unnecessary to issue a request message each time [46].
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3.3.2 Protocol Description

As mentioned above, data in Ethernet/IP is represented using objects, and each node in the

network is said to be a collection of objects. This abstract object modeling is used to describe

communication services, the external visual behaviour of a CIP node, and a common means

where information within CIP products is accessed and exchanged [46]. Within CIP there is

a large collection of pre-defined object types where each object is assigned an object-ID. The

main object types are required objects (e.g, identity, parameter), application-specific (e.g, dig-

ital/analog input, motor data), and vendor-specific (e.g, TCP/IP interface, parallel redundancy

protocol). Figure 3.5 illustrates the relationship between class, instance, and attributes for a CIP

network. Node ID #4 consists of two object classes (#5 and #7), for object class #5 there are two

instances (#1 and #2). The data available at instance #2 can be found in attribute #2.

Figure 3.5: Object Addressing in the common industrial protocol (CIP) [46, Ch. 9].

CIP is a connection based protocol coarsely categorized into two types of message types [46]:

• Explicit - Simple point-to-point connections message between nodes, typically used for

request/response transactions by use of TCP. The data in the request message explicitly

defines what service and objects that are being requested. The data is typically not time-

critical information, such as initialization and configuration data.
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• Implicit - Special purpose communication between a producing application and one or

several consuming applications (producer-consumer transactions) by use of UDP. Con-

suming nodes determines the usage based on the connection identification. Implicit mes-

sage is typically real-time specific messages used for exchange of variables such as I/O

data and heartbeat signal.

Implicit messaging by use of UDP includes very little overhead and is considered to be more

efficient and have better performance. It also uses less resources compared to the explicit mes-

sage type. Message addressing between nodes are performed by using the components in Table

3.3 which are the same components as in Figure 3.5.

Component Description

Node
Address

An Integer ID that is assigned to
each node on the network.
The node address is the IP address
when implemented on Ethernet/IP.

Class
Identifier

An Integer ID value assigned to
each object class accessible from
the network.

Instance
Identifier

An Integer ID used to identify
an object among all instances of the
same class.

Attribute
Identifier

An Integer ID assigned to a
class or instance attribute

Service
Code

An Integer ID which denotes an action
request for a particular object instance
or object class.

Table 3.3: Components used for message exchange
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3.4 OPC UA

3.4.1 Introduction

OPC unified architecture (UA) is the newest industrial communication standard from the OPC

Foundation. OPC technology is well known in the industry to provide flow of information among

systems from various vendors. The OPC UA application layer is based on a service oriented ar-

chitecture (SOA) where clients and servers implements sets of services used for handling com-

munication and exchanging process data [17]. OPC UA is specified in 13 parts in the IEC 62541

standard. Part 3 and 4 can be described as the most important as they describe how to model

and access information. The UA standard was released in 2008 and replaced the older OPC Clas-

sic specification. The background for developing a new standard was mainly the dependency

towards the not so flexible Microsoft DCOM/COM platform, but the factors mentioned below

also played a significant role [22]:

• Lack of security mechanisms against threats such as viruses

• Not suitable for use on the Internet (firewall challenges)

• Insufficient data models (lacks the ability to represent the data, information and relation-

ship between data items and systems)

• No configurable time-outs

OPC UA and OPC Classic both provides interoperability between systems from several suppliers.

OPC UA however offers certain benefits compared to OPC Classic, such as [22]:

• Scalability! The OPC UA specification offers a comprehensive set of capabilities, and servers

may implement a subset of these capabilities in order to cover its need. This makes it pos-

sible to implement OPC UA at devices from embedded level to enterprise level.

• Platform independent

• A flexible information model architecture, which supports complex modelling of informa-

tion in the UA address space.
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• Internet/Firewall friendly

• Reliability (robust, fault tolerant and redundant)

• Secure communication with access control

• All previous specifications (data access, alarms & events, historical data access) put to-

gether into one

• OPC UA is backward compatible which means existing data exposed by OPC COM servers

can easily be mapped and exposed via OPC UA.

OPC UA sends messages in a client - server communication model as illustrated in Figure 3.6.

The system architecture models clients and servers as interacting partners. An application may

combine servers and clients components to allow interaction with other servers and clients. An

example of this can be seen at the intermediate level between the enterprise and operations net-

work, or between the operations and the plant floor networks in Figure 3.6. An intermediate UA

client extract and process data from lower level UA servers, this data can then be re-modelled

and integrated into the intermediate UA server’s address space [43, Ch. 57]. OPC is an example

of a protocol that offers the technology for crossing the line between the plant floor network and

the enterprise network.

Figure 3.6: OPC UA network of clients and servers [43, Ch. 57]
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The OPC UA specification is layered to isolated the core design from the underlying computing

technology and network transport. It does not define how servers should acquire data and how

clients may use the received data [17]. By only defining the upper layers of the OSI model, it will

support mapping to future technologies without modifications to the basic design. Part 4 of the

UA specification describing services represent OSI layer 7 - application. Part 6 which describes

transport mapping of UA services to network protocols and data encoding match OSI layer 5 and

6 information. Data encoding is performed by UA binary structures or XML text documents. For

transport mapping - UA provides two options, either TCP or SOAP Web services or HTTP [19,

Part 1]. An analysis of the OPC UA performance is executed in the article [11]. This research

article presents performance evaluation on various scenarios, where the respective scenarios

are related to different levels of security and bandwidths. The test results shows that transport

mapping using TCP performs better than SOAP at all of the tested security levels.

Figure 3.7: OPC UA client architecture [43, Ch. 57]

3.4.2 UA Client Architecture

The client application in Figure 3.7 is the function that represents an UA client. The UA Client

is depending on the OPC UA client application programming interface (API) which provides

service mechanisms according to the UA specification to use for send and receive of request/re-
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sponse messages. The article [17] discusses the performance effects on the CPU load & server/-

client update times due to increasing number of UA clients.

3.4.3 UA Server Architecture

Figure 3.8: OPC UA server architecture [43, Ch. 57]

An OPC UA server is used to model data, information, processes, and systems as objects. By

adding objects to an address space, the content can be represented to a client as a set of nodes

connected by references [28]. The central elements of the OPC UA server can be seen in Figure

3.8. The server application implements the necessary functionality to act as an OPC UA server.

The OPC UA server uses the API to send and receive OPC UA messages from/to the OPC UA

client application [28].

The concept and usage of the address space is essential in OPC UA. An object model defining

objects in terms of variables and methods, as illustrated in Figure 3.9 is used for documenting

the elements in the address space. The Nodes in the address space are instances of objects as de-
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Figure 3.9: OPC UA object model [43, Ch. 57]

fined in the object model. As illustrated in Figure 3.8, the Nodes in the address space represents

real objects (physical or software objects). Such a node consists of attributes and references as

shown in Figure 3.10. Attributes are available for specific node classes and are used to describe

node-IDs, values, data types, display/browse names, etc. The references is used to relate Nodes

to each other, they decide the visibility for the UA client. Access to the Nodes is performed using

the OPC UA services.

Figure 3.10: OPC UA AddressSpace node model [43, Ch. 57]

The object has definitions (e.g. physical units) and references to each other. Part 3 of the UA

specification describes the OPC UA address space [28]. An OPC UA client can access the Nodes

in the address space using UA services (interfaces and methods) as described in Part 4 of the

UA specification [43, Ch. 57]. Among the diversity of helpful services in Part 4, several com-

munication exchange patterns are specified. This includes request/response, Subscription, and

server-server services.
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OPC UA offers an elegant functionality called Subscription which can be enabled using the Pub-

lisher services. An OPC UA client can use the Subscription concept to establish a periodical

function that will inform about specific attributes of OPC UA tags provided by the UA server.

The client can modify the periodical publish interval in order to decide when it wants to receive

repetitive information from the UA server regarding the OPC UA tags. This way of exchanging

information is very predictable as the information will arrive periodically, and a transmission

error ending in a lost message will be easy to detected. The timestamp and quality markers will

be update when messages are received.

The Monitored items in Figure 3.8 is a queue where items of interest are added. These items are

given a user-defined sampling rate for when the real items are checked for alarms, events, data

changes, aggregates, etc. In case of an occurrence, a notification is generated and put into the

Subscription queue. The Subscription will transfer a message regarding this item when the pub-

lishing interval elapses. A variety of choices for the sample and publishing interval can be con-

figured, more information can be found in Part 4 of the UA specification [28]. The implemen-

tation of the Subscription functionality can reduce the amount of transferred data immensely,

especially if the data changes infrequently. When the publish interval for the UA tag elapses and

there is nothing to report, a KeepAlive notification will be sent to the UA client, to indicate that

no data has changed and the server is still running. The server can then hold the same value, but

it will update the timestamp for the specific OPC UA tag [43, Ch. 57]. The article [17] discusses

the performance impact for increasing number of Monitored items.

For an in-depth study of OPC UA, its recommended to use the OPC UA book [22] or the specifi-

cation from the OPC Foundation Web site [28]. The OPC Foundation web site also offers a lot of

information regarding implementation and product availability.
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3.5 Evaluation - Comparison and Discussion

Another relevant protocol for communication between topside & subsea is the FMC 722 subsea

automation protocol. This is a proprietary protocol developed by FMC Technologies which is

the leading provider of subsea systems. FMC Technologies typically deliver systems (e.g sub-

sea trees) that are more integrated into the platform DCS and has more strict requirements for

safety critical functions. Due to difficulties of finding, and being allowed to publish technical

information of this proprietary protocol, further details are omitted in this thesis. This section

starts of with discussions related to central evaluation points for performance & features, before

ending with a conclusion of a recommended topside communication protocol. OPC UA is not

relevant for all of the topics, and is therefore excluded in some of the discussion topics.

3.5.1 Theoretical Performance

All industrial communication networks are described in the IEC 61158, and the companion IEC

61784 describes how to build a specific communication network using the IEC 61158 [27]. The

IEC 61784-2 profiles for industrial communication network is based on the ISO/IEC 8802-3 (Eth-

ernet). The Ethernet standard can provide functionality such as VLAN tags, prioritization for

critical messages, rapid spanning tree (relevant for fault tolerant architecture), and full duplex

operations (collision free message exchange) to ensure real-time properties for Ethernet based

networks. These functions eliminates delays due to the CSMA/CD function as described in Sec-

tion 2.6. Several of the profiles in IEC 61784 are given performance indicators. The performance

indicators are meant to specify the capabilities of a RTE communication network and RTE end

devices [19]. Some of the indicators are delivery time, number of switches or end stations, and

throughput RTE. Rest of the performance indicators can be seen in Table 3.4. The performance

indicators provides the possibility for users of the RTE network to set requirements for their dif-

ferent applications. Complementary information on performance indicators can be found in

[46, Ch. 17].

The Modbus TCP as default using the server-client communication model has poor real-time re-

sponse. However, the IEC 61784 standard which specifies profiles for industrial communication
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networks describes a real-time extension for Modbus by enabling the Real-Time Publisher Sub-

scriber (RTPS) protocol. More details on RTPS can be found in IEC 61784-2 [19, Comm. Profile

15/2], a complementary description can also be found in [46, Ch. 17]. The article [16, p. 1122]

however states that the RTPS protocol is not used very much in practical industrial applications

today, and therefore it is not known exactly what sort of performance this protocol really has to

offer. Modbus TCP is one of the profiles in the IEC 61784 where the performance indicators are

not quantified. The reason for this is given in the Modbus messaging on TCP/IP implementa-

tion guide [24, Ch. 4.4.1.4] which states that There is deliberately NO specification of required

response time for a transaction over Modbus TCP. This is because Modbus TCP is expected to be

used in the widest possible variety of communication situations, from I/O scanners expecting sub-

milliseconds timing to long distance radio links with delays of several seconds. Hence, Modbus is

too dependent on the network type, topology, hardware and the actual exchange management

in the application layer implementation in order to quantify performance indicators [35, 19, 36].

Performance indicator Profile 2/2 Profile 2/2.1

Delivery time 130 µs - 20.4 ms 130 - 190 µs
Number of end-stations 2 - 1024 2 - 90
Number of switches
between end stations

1 - 1024 1 - 4

Throughput RTE 0 - 3.44 M octets/s 0 - 3.44 M octets/s
Non-RTE bandwidth 0 - 100 % 0 - 100 %
Time synchronization accuracy − ≤ 1 µs
Non-time-based synchronization
accuracy

− −
Redundancy recovery time − −

Table 3.4: Performance indicators for default Ethernet/IP (Profile 2/2) and Ethernet/IP with CIP-
Sync (Profile 2/2.1) as specified in IEC 61784-2.

The Ethernet/IP protocol as described in IEC 61784, has the capability of achieving good RT

properties. Of course, also Ethernet/IP is dependent on the topology, hardware, and efficiency of

implementation. However, Ethernet/IP has quantified performance indicators in the IEC 61784.

The performance indicators for default Ethernet/IP can be found in Table 3.4 in the column for

Profile 2/2. By enabling the CIP Sync profile specified in IEC 61784-3 (Profile 2/2.1) its possible

to achieve even stricter time constraints. CIP Sync enables clock synchronization, and as illus-



3.5. EVALUATION - COMPARISON AND DISCUSSION 35

trated in Table 3.4 it can achieve a delivery time in the range of 130 - 190 µs [19, Comm. Profile

2/2.1]. This makes it highly desirable for drives, motion and robotics usage.

The OPC UA specification does not specify communication parameters such as performance

indicators. As mentioned in Section 3.4, OPC UA is a higher layer protocol where the OPC UA

communication stack is not linked to any specific technology. OPC UA consists of a diversity of

services and mechanisms which can be enabled/disabled based on the available resources [10].

All of these services also makes it difficult to determine any form of normative performance

indicators for OPC UA.

3.5.2 Studies of the Performance

As mentioned in the section above, the Modbus TCP protocol deliberately does not have any

specification of required performance for a transaction. The reason for this is the diversity of

the protocol. Modbus TCP is expected to be used in a vast numbers of communication situa-

tions from embedded systems with milliseconds demands, to radio links with response within

seconds.

A theoretical study of the Ethernet/IP and Modbus TCP performance in multicast (one-to-many)

communication is performed in the research article [36]. The article derives simple communi-

cation scenarios where expressions for the theoretical minimum cycle time are found for the

major industrial Ethernet protocols available on the market (Ethercat, Profinet, Ethernet/IP and

Modbus TCP). The communication scenarios is setup to consist of one controller (client) that

exchanges data with several nodes (servers). By illustrating a space-time diagram a relationship

between the transmission delay, the network device latency, the propagation delay, the link ca-

pacity, the payload, and number of servers are found. The combination of these parameters

expresses the minimum cycle time, which is the communication time required by the controller

to collect and update the data memories of all sensors and actuators. The main interest in the

article in regards to this thesis are the comparison of respectively Modbus TCP and Ethernet/IP.

The expression for theoretical minimum cycle time for Modbus TCP is given in Equation 3.1a,

and the expression for minimum cycle time for Ethernet/IP is found in Equation 3.1b. Both
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Equations are given in [36, Section 2.4-2.5].

ΓModbusT C P = n

(
8

181+x

C
+2(2δ+ l )

)
(3.1a)

ΓEther net/I P = 2δ+ l +8n
84+x

C
(3.1b)

Where n is the number of network devices (servers), x is the payload (bytes), C is the link capacity

(bits/sec), δ is the propogation delay (sec), l is the network device latency (sec). The Ethernet

capacity/bandwidth is typical C = 10 or 100 Mbit/sec, and a typical packet consists of x = 100

bytes (payload). The packet size usually varies, but for comparison the size is regarded as con-

stant. The network device latency represents a delay due to components in the network, e.g. a

switch, router or hub. This value is typically found in data sheets. The article [36] uses the val-

ues: lModbus TC P = 1µs, and lEther net/I P = 3µs at an link capacity of 100 Mbit/sec. The minimum

cycle time for Modbus TCP and Ethernet/IP expressed in Equations 3.1a and 3.1b are plotted in

Figure 3.11. From the figure we see that Modbus TCP is the slowest Industrial Ethernet protocol

of the two, at both 10 Mbit/sec and 100 Mbit/sec.

The article [36] concludes that Modbus TCP is not suited for multicast communication (one-

to-many) due to the server-client communication model and use of TCP as transport protocol.

Sending response/request messages with TCP generates a lot of "unnecessary" acknowledge-

ment response. Ethernet/IP however supports the producer/consumer communication model

by use of UDP as transport protocol. By using UDP, Ethernet/IP achieves fast & efficient data

transfer, but it lacks some error detection mechanisms. Modbus using TCP guarantees the data

integrity, but generates a lot of message overhead and acknowledgement messages.

In general OPC UA lacks literature documenting the performance specifications. As mentioned

in the previous section the UA specification does not state any performance parameters be-

cause of the diversity of implementations, and due to the fact that its technology independent

[17]. Due to the large selection of services and mechanisms provides by the UA specification it

can be implemented on embedded systems and enterprise solutions. Some studies have been

performed on how these services and mechanisms impacts the parameters of performance.
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Figure 3.11: Comparison of minimum cycle time for Modbus TCP and Ethernet/IP

Examples are:

• Performance impact on the transport protocols (TCP and SOAP) at different security levels

are discussed in article [11].

• Performance impact on the CPU load, and the server/client update time due to increasing

number of clients [17]. Also, the amount of network traffic due to increasing number of

Monitored items & clients are considered in article [17].

• Performance impact on the bandwidth and delays due to variations in the publish interval

at the Subscription mechanism is considered in article [10].

The article [17] contains an interesting conclusion regarding the use of a Java based OPC UA SDK
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on a standard 100 Mbit/sec Ethernet network. The network load only reached approximately 2

Mbit/sec which is a bandwidth utilization of only 2.5%. The article assumes that the bottleneck

is not the network, but the internal architecture of the OPC UA SDK server and the utilization of

hardware resources [17].

3.5.3 Safety Protocol

The requirement for whether or not to implement a safety protocol is decided based on laws &

regulations. For petroleum activities at the Norwegian continental shelf, this is based on regu-

lations set by the The management regulations [33] (NO: Styringsforskriften) published by the

Petroleum Safety Authority Norway. A safety protocol will operate as a barrier and reduce the

possibility of failures, hazard and accident situations occurring and developing. [33, §5 Barriers].

A safety protocol consists of defend measures to protect against predefined communication er-

rors such as corruption, unintended repetition, incorrect sequence, loss of data, unacceptable

delay, insertion, masquerade, and addressing. The safety protocol is realised by adding an ad-

ditional layer (safety layer) on top of the application layer. A safety protocol does not assume

anything about the integrity of the existing network connection, it consider it a black channel.

The black channel is independent of the transmission system characteristics such as communi-

cation stack and network devices [43, Ch. 46].

IEC 61784-3 [19] specifies various commercial industrial safety protocols, and all the defend

measures like sequence numbering, time stamp, time expectation, connection authentication,

feedback message, data integrity assurance, redundancy with cross checking, and different data

integrity assurance systems. The combination of these defend measures achieves a safety pro-

tocol which is certified for a given safety integrity level (SIL). Insertion of safety related data into

the data frames will cause a reduction of the payload.

A safety protocol can in theory be implemented onto all communication protocols, since its an

additional layer on top of the application layer. Ethernet/IP however supports the predefined

CIP Safety profile which fulfills the requirements for SIL 3. The CIP Safety profile will therefore

most likely result in a easier implementation compared to a safety protocol solutions for Mod-
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bus TCP. Modbus TCP does not have any predefined safety protocols.

3.5.4 Diagnostics

Another discussion topic is related to diagnostic functions. Is there any predefined specifica-

tions supporting diagnostic data for troubleshooting such as link status, utilisation of capacity,

collision data, message count, communication error, etc. ? This is typically regarded as impor-

tant status information to the developers for checking that data packets are arriving correctly.

The Modbus application protocol [25] specifies function code 0x08 with several sub-codes as di-

agnostic information. It can be used for checking the communication system and various inter-

nal error conditions within a server. However, the diagnostic function code is only applicable for

serial line devices. Hence, Modbus TCP does not have any predefined diagnostic information.

Ethernet/IP offers extensive diagnostic information in the Ethernet/IP specification (volume 2,

chapter 9) [27]. It also has predefined specifications regarding device type, vendor code, revision

number, status and state information.

OPC UA is probably the protocol supporting most diagnostic information. The diagnostic in-

formation is split into information per server, per session, and per subscription [22, Ch. 4.4].

Appendix A in the OPC UA specification [28] - part 5 explains the design decisions regarding the

modeling of diagnostics information.

3.5.5 Redundancy

The oil & gas industry has strict requirements for availability and reliability. Redundant hard-

ware is a popular method to achieve these qualities. The topside controller and SEM are some

example on the redundant hardware in a subsea project. Also, the communication link between

topside and subsea is normally based on fiber optics but in some projects, a redundant copper

link may also be implemented. As long Modbus TCP, Ethernet/IP and OPC UA are all based on

standard Ethernet, they all support redundant paths. The Ethernet standard implements the

(rapid) spanning tree protocol, this protocol uses some seconds to perform a network reconfig-
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uration to another active alternative path [43].

OPC UA supports redundancy based on the existence of duplicate client or server applications.

These client or servers can be achieved by using data structures and services (modes, roles at

initial connection, failover criteria) specified in the UA specification [28, 22]. The redundant

server or clients can also be used for load balancing. The specification for Modbus TCP and

Ethernet/IP does not include any redundancy mechanisms. The redundant controllers must

use vendor specific mechanisms to perform this operation for Ethernet/IP and Modbus TCP.

3.5.6 Availability

Ethernet/IP was originally developed by Rockwell, but is controlled by the ODVA organization

today. Regardless, its still backed by Rockwell/Allen-Bradley and has a strong political advantage

[23]. Vendors must become members of ODVA, and pay an annular membership fee for the CIP

& Ethernet/IP specifications. The Modbus TCP protocol however is quite independent of market

forces, and is open & freely available on the Modbus Organization website [25, 24]. Access to the

OPC UA specification is given to members of the OPC Foundation. Similarly as for ODVA, an

annular fee must be paid to the OPC Foundation. A membership in the OPC Foundation also

includes access to the official OPC UA communication stack, compliance test tools, software

development kits (SDK), and other helpful tools 1.

3.5.7 Conclusion

The performance of topside communication will in general depend on main factors such as the

network topology, hardware, and efficiency of the application layer implementation. Research

articles reveals that the best OPC UA performance will be achieved by using TCP as transport

protocol. The performance will considerably depend on the number of clients, efficiency of the

SDK, number of Monitored items, and the enabled number of service mechanisms. As men-

tioned above, Ethernet/IP quantifies performance indicators that describes the capabilities of a

RTE communication network and RTE devices. The performance indicators are only normative,

and is supposed to indicate the achievable performance in a Ethernet/IP network. Modbus TCP

1https://opcfoundation.org/membership/benefits/

https://opcfoundation.org/membership/benefits/
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does deliberately not specify performance indicators due to its wide variety of implementation

situations.

By summarizing the introduction and discussion topics for topside communication protocols,

its clear that Ethernet/IP has better real-time properties compared to Modbus TCP. Modbus TCP

uses a client-server communication model based on request/response messages, and accord-

ing to Article [14] this is not a suited real-time communication model. The same article recom-

mends the publish-subscribe or the producer-consumer model as communication models for

real-time communication. Ethernet/IP supports the producer-consumer model, and OPC UA

supports publish-subscribe.

Figure 3.11 illustrates a noticeable difference in performance between Modbus TCP and Eth-

ernet/IP for multicast (one-to-many) communication. At 10 Mbit/sec Ethernet/IP is superior

compared to Modbus TCP, as illustrated in Figure 3.11. At 100 Mbit/sec the baud-rate and mar-

gins is ten times greater for the transport protocol to handle most of the acknowledgement re-

sponse, and the difference in cycle time is not so significant. A trade off between the fast &

efficient data exchange of an UDP based communication protocol, and the guaranteed data in-

tegrity properties of TCP would have yield the best overall result.

All of the protocols can address the same number of nodes since this is determined by the con-

figured IP-subnet. Ethernet/IP benefits from being able to offer more features such as data syn-

chronization in the CIP Sync profile, and the safety protocol - CIP Safety profile. Meaning the

Ethernet/IP protocol can be used for implementation of SIL 3 safety applications and time crit-

ical applications. While Modbus TCP really is just an implementation of serial Modbus on an

Ethernet network. Seen from the developer side, Modbus TCP is thought to be simple to inte-

grate and easy to use for data transfer.

OPC UA was added to this thesis with the purpose of highlighting some of its features for prospec-

tive implementation. OPC is well known in the industry for being an interface offering interop-

erability by allowing process data sharing between systems from different vendors [22]. This is
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still an important requirement for OPC UA. However, OPC UA offers much more than the pre-

vious OPC Classic standard. UA provides an information model architecture which can be used

to model complex information [28]. This flexible model architecture is of great interest for mod-

eling detailed information such as complex data types and diagnostic information for subsea

components. As mentioned in Section 2.7 MDIS has chosen OPC UA as the unified architecture

between DCS & MCS and have already designed software objects describing major pieces of

subsea components. Perhaps this is a step towards a complete vertical communication network

starting at the subsea instrumentation to the DCS by using only one communication protocol?

This concept of converging all network levels is illustrated in Figure 3.6. OPC UA is however not

a real-time protocol, and there are hardly any safety critical systems based on OPC UA. Situa-

tions where data is not be delivered within a bounded time may occur. This situation is handled

by providing timestamps and quality markers which may be used to identify the data that is not

up-to-date [17]. An adoption of OPC UA is still predicted to continue within the oil & gas indus-

try [42]. Otherwise, OPC UA provides an elegant functionality called the Subscription concept

which is used by the UA client to subscribe for relevant information from the UA server. As men-

tioned above, this is a recommended real-time communication model. OPC UA also has exten-

sive support for IT security and is engineered to be Internet and firewall friendly. Ethernet/IP

and Modbus TCP does not support any higher layer security mechanisms. More information

about security measures, see part 2 of the OPC UA specification [28].



Chapter 4

Subsea Sensors & Intelligent Well Devices

4.1 CAN bus (SIIS Level II)

Controller Area Network (CAN) is a bus system initially developed to replace point-to-point ca-

bles in the automotive industry. The reason for introducing CAN were the increasing costs, com-

plexity, and weight of the electrical and electronic systems. From a communication point of view

- serial CAN bus is a half duplex, message-oriented transmission protocol. It has a producer-

consumer communication model where each message is assigned a priority. When two or sev-

eral nodes starts transmitting at the same time, the message with the highest priority wins the

arbitration and can continue the transmission. The other node(s) backs off until the transmit-

ting node is finished. This is called non-destructive bit-wise arbitration and gives CAN real-time

properties. It also avoids message collisions. The CAN bus is regarded as having a high level of

reliability & robustness. The two main reasons for this are the setup consisting of few compo-

nents, and the fact that data at the physical layer is represented by differential voltage between

two bus lines. The differential voltage results in good noise immunity. CAN has also support for

higher layer protocols describing specific devices (meters, encoders, HVAC), it can be setup to

be fault tolerant (maintains the functionality although there is one error on the bus) and many

error detection mechanisms (CRC, frame check, ACK errors, transmission monitoring). Related

to the OSI model, the CAN bus is defined at layer 1 and 2. The protocol is specified in the ISO

11898 standard. Where part 1 describes the data link layer, and part 2 & 3 of the standard speci-

fies the high-speed & the fault tolerant (low-speed) physical layers [8, 43, 15].

43
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Eventually when a certain number of nodes, messages, and network variables are involved, a

higher-layer protocol needs to be used in order to structure the data, and provide extended func-

tionality. For instance, handling transmission of data blocks larger then 8 bytes (the data link

layer specifies a maximum payload of 8 bytes), and coordinate initialisation of nodes. The sys-

tem designer needs to specify which identifiers are used for various purposes, and the contents

(data types, byte order) to complete the higher-layer protocol. A mature and flexible protocol

for this purpose is the CANopen (CiA 301) specification owned by the CAN in Automation (CiA)

organization. CANopen describes the exchange of data in a CANopen network with regards to

communication services, network management services, the functionality of communicating

with specialized devices (device profile), and the application parameters (e.g. process, configu-

ration and diagnostic data). CANopen defines how the CAN message frames consisting of a 11

bit identifier and 8 byte data are interpreted [8, 41, 15] .

CANopen provides a large number of services, these can be divided into four application layer

entities [15, Ch.3]:

• CAN-based Message Specification (CMS) - An object-oriented environment for designing

user applications.

• Network management (NMT) - specifies a NMT master which is used for initialising, error

handling, and supervising of other NMT slaves. If nodes goes offline, sets off an alarm,

or sends an emergency message, the NMT must perform a recovery or a shutdown proce-

dure. The NMT uses a heartbeat message to supervise the operation of the nodes.

• Distributor (DBT) - Handles the allocation of message identifiers (COBs). As mentioned

above, the identifier determines the priority in a message. The DBT master can be used to

change the identifier of the other DBT slaves.

• Layer Management (LMT) - A LMT master can be used to change the settings of certain

layer parameters (address, bit-timing, baud-rate) in other LMT slaves.

CANopen implements an object dictionary (OD) which is a table containing configuration and

process data with a 16-bit index and a 8 bit-subindex. By using the index and subindex in de-
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Index Range Description

0000h Reserved
0001h-0F F F h Data types
1000h-1F F F h Communication entries
2000h-5F F F h Manufacturer specific

6000h-9F F F h
Device profile parameters
(E.g. CiA 443)

A000h-F F F F h Reserved

Table 4.1: Index range for the object dictionary (OD), adapted from [8, Table 41].

fined CAN messages, its possible to read and write information from or to the OD. The OD for

instance can be used for configuration of communication parameters, setting correct data types

for variable exchange, heartbeat, identification of nodes (vendor ID, product code, serial no., rev.

no.), errors and more. Table 4.1 illustrates the 16-bit index as defined in the CiA 301. The defini-

tion of data types (INT, UINT, REAL, BOOL) used in variable exchange are set in the index range

of 0001h-0F F F h , while read and write of variables are typically performed through the commu-

nication entry [8, 41, 15].

Access of the available data in the object dictionary is performed by using either service data ob-

jects (SDO) or process data objects (PDO). The SDO is based on request and response messages

by use of a peer-to-peer communication. SDO messages generates a lot of protocol overhead be-

cause it sends messages in a segmented structure. The SDO messages carries high volume data

with low priority, such as configuration data to nodes. The PDO message type is used to transfer

real-time data onto the network, and is a more effective message type compared to SDO. Data

is transferred with low volume but with high priority. Several dictionary entries (process values)

can be mapped into one PDO. The PDO message type operates in a producer-consumer model,

therefore it can send the same data to several nodes in one transmission. Also, the PDO does not

generate protocol overhead with its maximum 8-bytes length. The structure of a CANopen de-

vice can be seen in Figure 4.1. The application uses the data in the object dictionary to perform

its function.
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Figure 4.1: The structure of a CANopen device [43, Figure 31.2].

Figure 4.2: Device profile for subsea measurement systems. Figure from [45].

The CiA 301 - CANopen acts as the base of the network by defining an application layer [15], and

offers a framework for developing device profiles that provides interoperability between devices

from various manufacturers. Specifically for subsea the CiA 443 - CANopen profile for SIIS level-2

devices is implemented on top of the CiA 301 - CANopen, as illustrated in Table 4.2. A simplified
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illustration of the CANopen manager controlling the subsea sensor & actuator network is shown

in Figure 4.2. The CiA 443 device profile was developed by the SIIS group (mentioned in Section

2.7) together with the CiA.

OSI-model layer Description

7 - Application
Device profile (CiA 443)
CANopen (CiA 301)

6 - Presentation −
5 - Session −
4 - Transport −
3 - Network −
2 - Data link ISO 11898-1

1 - Physical
ISO 11898-3: Fault Tolerant,
ISO 11898-2: High speed

Table 4.2: CAN bus used for subsea instruments in reference to the OSI model.

The CiA 443 is a device profile which specifies process data types for measured values, com-

mands, configuration parameters, and diagnostic information. This is data types used for sensor

& actuators in a subsea measurement systems such as temperature, pressure, multiphase me-

ters, corrosion/erosion, sand, vibration and pig detectors, injection & control valves, etc. The

CiA 443 device profile assumes that devices are implemented with a fault tolerant (ISO 11898-3)

physical layer which supports the default bit-rate of 50 kbit/sec, and also 125 kbit/sec. Option-

ally, it also supports the high speed ISO 11898-2 standard. For more information regarding the

CiA 301 and CiA 443 see [8]. Also, [15] is useful complementary reading material.
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4.2 IWIS

Introduction

Intelligent well interface (IWIS) is a joint industry project between oil & gas operators, service

companies, and downhole equipment manufacturers that evolved in 1995. The initial objective

of the IWIS work group was to establish standards for interface of printed circuit boards (PCB)

because the selection of downhole gauge vendor was performed a long time after selection of

the SCM vendor. This tended to give compatibility problems [13]. At the time there was almost

no standardization for subsea equipment, and the scope was therefore expanded to evolve stan-

dardisation of physical, electrical, communication and hydraulic interface between intelligent

well devices and subsea production control systems [29, 4]. The idea is that a common industrial

standard for this purpose will [30]:

• Reduce lead times for hardware (a subsea infrastructure becomes easier to define)

• Reduce direct and indirect cost (easier definitions, wider choice of suppliers, and easier

implementation of subsea infrastructure)

• Reduce technical risk (less complexity, minimizing the number of unique interfaces per

project)

• Increase flexibility of compatible systems

IWIS also include details for installation of the SEM in regards to mechanical mounting, connec-

tors, electrical limits, redundancy, etc. IWIS specifies requirements for implementing fail-safe

functionality by use of hydraulic systems [3].

The IWIS specification was in 2003 submitted to ISO in order to be included as an appendix

in the ISO 13628-6. IWIS has contributed to defining physical interfaces such as communica-

tion, hydraulic power, control of directional control valve (DCV), electromagnetic compatibility

(EMC), tubing hanger feedthroughs & penetrations and procedures for equipment testing. IWIS

has also been implemented as an appendix in the American petroleum institute (API) 17F which

is the American oil & gas standard for subsea production control systems [4]. Its the communi-
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cation protocol called IWIS PPP as specified in ISO 13628-6 and in API 17F that will be discussed

in this section.

The IWIS Interface

As mentioned above, the joint industry project in 1995 lead to a common industrial standard

for interfacing intelligent well equipment (IWE) into a subsea control system. The intelligent

well equipment is advance downhole measurement technology which can be used for obtain-

ing real-time process data. The IWIS specification as submitted to the ISO specifies communi-

cation, hardware, and power requirements for three different physical options based on where

the intelligent well controller (IWC) equipment is physically installed. A communication sys-

tem architecture of IWIS is illustrated in Figure 4.3. The IWIS interface specification applies

to the link between the IWE (both the IWC equipment and sensors & actuators) and the SEM.

IWIS also specifies an interface at the surface between the intelligent well control system (IWCS)

applications and the subsea production control system (SPCS) by use of TCP/IP and Ethernet.

The main idea is that the infrastructure of the subsea production control system (SPCS) from a

communication point of view - only provides a transparent transport function between the IWE

located subsea, and the IWCS applications at topside [30].

The IWIS PPP communication protocol as described in the standards [4, 20] and the recom-

mended practice [30] specifies the interface between the intelligent well equipment and the

SEM. This point-to-point protocol (PPP) is specified according to the OSI reference model as

given in Table 4.3. At layer 1 the IWIS PPP is implemented with RS-422 at full duplex, no hard-

ware handshake, and with a default baud rate at 9600 bit/sec [4]. The baud rate should be able

to change, but all devices are required to support the default rate at 9600 bit/sec. Omitting to

specify application layer details (message structure & formats), and only specify the lower layers

of the communication protocol leaves the practical message exchange implementation open &

flexible to the vendors of the IWCS. The subsea control system does not require any knowledge

about the application protocol used by at the end points (IWCS application and IWE) [4, Section

7.4.4].
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Figure 4.3: Overview of the production control system & the IWIS. Modernized from [30, Ch. 5]

OSI-model layer Description

7 - Application
6 - Presentation
5 - Session
4 - Transport TCP
3 - Network IP
2 - Data link Point-to-point protocol (PPP)
1 - Physical RS-422

Table 4.3: IWIS PPP according to the OSI reference model.
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The downhole vendor application located topside, connects via an network access point (NAT)

in order to exchange messages between the IWCS applications and the IWE. This makes the

whole subsea network operate as a transparent transport function between the downhole ven-

dor application and the IWE [30], as illustrated in Figure 4.4. Its not unusual for the SEM to

support multiple IWIS PPP channels, i.e. several downhole controller cards.

Figure 4.4: The IWIS communication architecture. Modernized from [30, Ch. 7]

Properties of the RS-422

As specified in Table 4.3 RS-422 is chosen at the physical layer of the IWIS interface. RS-422

is a serial, balanced, and differential communication bus. It supports a four wire full-duplex

network consisting of one line driver (transmitter) and up to 10 line receivers. However, since

the data link layer consist of a point-to-point protocol only one transmitter and one receiver is

used. The maximum theoretical length is 1200 meters, and data rates up to 10 Mbit/sec [32, Ch.

3.9]. Similarly as the above mentioned CAN bus it benefits from good noise immunity due to

differential voltages.
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The great benefit of RS-422 compared to Ethernet as a physical layer is that the RS-422 specifi-

cation 1 does not define connectors, pin assignments, and functions. It only defines electrical

signals for representation of data. As the IWIS specification defines three physical ways of in-

stalling the IWC equipment in Figure 4.3, RS-422 is a quite flexible transport media for this pur-

pose. It will support multiple installation methods such as local backplane installation in the

SEM, installation within the SCM housing, or an external installation outside the SCM housing.

PPP Operation & Performance

The point-to-point protocol (PPP) as specified in Internet RFC 16612 is originally designed as an

encapsulation protocol for transporting IP traffic over peer-to-peer connections. The detailed

PPP procedure for establish, configure, maintain, and terminate the peer-to-peer connection is

given in [30].

As mentioned, IWIS consider the subsea network as a transparent transport function. IWIS does

not specify that the link between topside and subsea must use TCP/IP. This may lead to ques-

tions regarding timing demands or performance. However, in API 17F [4, F.4.1] a timing require-

ment for the system response time is set to less than 1 second during normal operation. This

shall be performed by carry out a ping-command in the IWCS application.

4.3 Evaluation - Comparison and Discussion

First of all, CAN bus (SIIS level II) is the subsea standard for instrument network. The network

is based on a fault tolerant physical layer which uses CANopen, and the device profile CiA 443.

IWIS specifies a common industrial interface for connecting third-party intelligent well devices

to the subsea production control system. One might ask the question: is there other relevant

subsea sensor networks? - That answer could be found by study the thorough decision process

behind the standardization of the subsea instrument network.

1http://ftp.tiaonline.org/tr-30/TR-30.2/Public/2005%20Meetings/2005-06%20Arlington/For%
20Review/TIA-EIA-422-B-Scanned.pdf

2https://www.rfc-editor.org/rfc/rfc1661.txt

http://ftp.tiaonline.org/tr-30/TR-30.2/Public/2005%20Meetings/2005-06%20Arlington/For%20Review/TIA-EIA-422-B-Scanned.pdf
http://ftp.tiaonline.org/tr-30/TR-30.2/Public/2005%20Meetings/2005-06%20Arlington/For%20Review/TIA-EIA-422-B-Scanned.pdf
https://www.rfc-editor.org/rfc/rfc1661.txt
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As mentioned in Section 2.7, SIIS is a industry group consisting of oil & gas operators, ser-

vice companies, and equipment manufacturers working on standardizing the interface between

subsea instrumentation and the SCM. The article [38] describes some of the historical decision

process behind choosing a common industrial protocol for subsea instrumentation. A sum-

mary of this article follows. The work group started with evolving a reduced list where well

understood and established fieldbus standards were considered as sensor & actuator networks

based on factors such as:

• Technical suitability

• Acceptability to SIIS members ("cost of ownership")

• Support

• Specification management

This work resulted in a list consisting of three well known standards: CAN, Profibus DP, and

Foundation Fieldbus. The work continued with considering other parameters such as the cost

of hardware & software for development tools, production licensing, and specific component

cost [38]. The SIIS group concluded that CAN was most suited as a subsea instrument network

due to several factors including the widely supported physical layer, mass production of com-

ponents to several types of industries, and its the standard with lowest ownership costs. Also,

the CAN bus profited from having a potential fault tolerant feature. Its recommended to read

the whole decision process at [38] for understanding why CAN bus is the chosen subsea sensor

network with use of the CiA 443 device profile on top of CANopen. Based on the thoroughly

decision process performed by the SIIS industry group, I would argue that there are currently

not any other subsea instrumentation networks worth mentioning. The CAN bus (SIIS level II)

is changing the way subsea instrumentation networks are performed by moving from custom

made to more product-based solutions. The CAN bus has gained grounds on the market, and

the standard solutions is reducing costs in subsea projects.

As default the IWIS PPP interface has a baud-rate of 9600 bit/sec between the IWE and the

subsea production control system. A project specific baud-rate can be agreed, but all devices
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should support the default baud-rate. The RS-422 transport media is limited to data rates up

to 10 Mbit/sec. Subsea control systems tends to operate at 100 Mbit/sec Ethernet on the link

between topside and subsea. A default baud-rate at 9600 bit/sec could possible lead the IWIS

PPP interface to represent a bottleneck if data exchange between the downhole controller card

and the downhole tools (Figure 4.4) is also performed at higher baud rates. However, if acous-

tic is used at the physical layer between the downhole controller card and the downhole tools,

the 9600 bit/sec baud-rate is probably sufficient. Regardless, the potential scale of the bottle-

neck situation is difficult to estimate, more thorough tests must be performed to determine the

extent. An advantageous property of the CAN bus is the detailed documentation of the appli-

cation layer with the possibility of adding device profiles. An article [13] from FMC regarding

implementation experience concludes that the RS-422 interface used for IWIS will probably be

replaced by CAN or Ethernet sometime in the future. Replacing the RS-422 physical interface

to CAN would make the system more reliable as it decreases the needed hardware components.

However, the RS-422 benefits from only specifying the electric characteristics, and are therefore

more flexible towards the three different ways to install the intelligent well equipment. This is

described in Section 4.2. Only specifying the lower layers of the IWIS PPP allows IWE vendors

to engineer proprietary application protocols for message exchange between topside and sub-

sea. The subsea control system does not require any details regarding the application layer, the

existing control system infrastructure shall only provide a transparent transport function.

A pure comparison between IWIS PPP and CAN bus (SIIS level II) is challenging because they

are engineered for two different purposes. A more realistic scenario would be to compare the

instrumentation network used between the downhole controller card and the downhole tools

as illustrated in Figure 4.4. This sensor network is typically vendor specific, and is not part of the

IWIS scope. However, the instrumentation network for downhole tools are not suited as a CAN

bus. The physical layer on CAN bus is based on 2-wires with limited distance & bit-rate between

devices. Downhole tools tends to be used inside wells that can be several kilometers long. A

communication protocol supporting the use of either acoustic or fiber optical at the physical

layer is therefore more practical. Some downhole tools will due to the data amount favour a

network with higher bandwidth such as an industrial Ethernet protocol.
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CAN bus with its non-destructive bit-wise arbitration gives CAN real-time properties, and offer

robust noise immunity due to differential voltages. It has a detailed application layer supporting

several device profiles, it has no message collision, and is a low-cost implementation. Experi-

ence from test and implementation at FMC Technologies shows that suppliers without CAN

experience find the CAN-documentation descriptive and clear. But FMC experiences that they

need some coaching for the practical implementation [13]. IWIS is used to connect downhole

measurement tools to the subsea production control system. It uses a point-to-point proto-

col, and a flexible RS-422 transport media. It has a relatively low default baud-rate between the

downhole equipment and the SEM. IWIS does not specify how the application-layer for mes-

sage exchange between topside and subsea should be performed, this can be determined by the

individual IWE vendors. Both IWIS PPP and CAN bus (SIIS level II) is a result of joint indus-

try projects (JIP) and serves as an example on the willingness to achieve standardization within

subsea. The introduction of both these standards is resulting in reduced lead time, increased

interoperability, and steps towards achieving plug and play solutions.





Chapter 5

Practical

5.1 Modbus TCP Implementation

5.1.1 Hardware

The Arduino Due Microcontroller Board

The Arduino Due microcontroller board was chosen as the base hardware for implementation

of the Modbus TCP application protocol on Ethernet controllers. The reason for this was mainly

due to its easy accessibility, and not the demand for such a powerful microcontroller. The Ar-

duino Due board is based on the Atmel SAM3X8E ARM Cortex-M3 CPU which is a 32-bit ARM

core microcontroller. It has extensive support for peripherals including 54 digital I/O pins, 12

analog inputs, 4 UARTs, 2 digital-to-analog outputs, a SPI header, a JTAG header, and CAN-bus

interface (CAN TX/RX).

A 32-bit core enables operations on 4 bytes wide data within a single CPU clock. The CPU clock

on the Arduino Due operates on 84 MHz, making it relatively powerful compared to other Ar-

duino microcontroller boards such as the Arduino Uno which operates at 16 MHz. The Arduino

Due has 96 kB of SRAM (two banks of respectively 64 kB and 32 kB), and a flash memory of 512

kB (2 blocks of 256 kB) which is available for user applications [5]. The Arduino Due micro-

controller board contains a reduced instruction set computer (RISC) based microcontroller, an

ATmega16U2 which is used as a USB-to-Serial converter. Its used to setup a virtual COM port

in the software so that a computer can connect to the USB micro programming port. Figure 5.1

57
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depicts the Arduino Due microcontroller board, and illustrates the location of the programming

port. An unofficial pinout diagram of the Arduino Due showing the possible interfaces can be

found in Appendix B.1. More hardware related information for the Arduino Due microcontroller

board can be found at [5].

Figure 5.1: The Arduino Due microcontroller board [5].

The Arduino Ethernet Shield

An Arduino microcontroller board can be connected to a Ethernet network by a module called

Arduino Ethernet Shield. The Arduino Ethernet Shield contains a Wiznet W5100 Ethernet Con-

troller for embedded systems with a 16 kB data communication buffer. This Ethernet Controller

implements the TCP/IP communication stack, and integrates Ethernet according to OSI refer-

ence layer 1 & 2. It also supports UDP, IPV4, ICMP, ARP, IGMP, and PPPoE. The Ethernet Con-

troller supports 10/100 Mbit/sec, auto-negotiation at full & half duplex, and auto-MDI/MDIX.

Auto-MDI/MDIX is used to detect if the connection requires a crossover (Physically and elec-

trical connected as TX-TX & RX-RX, changes it internally to TX-RX, and RX-TX). It’s possible to

run four socket connections simultaneous by using this shield [44]. The Arduino Ethernet shield

also contains a micro-SD card slot, which can be used to store files for serving over the network.

Both the Wiznet W5100 and the SD card connects to the Arduino microcontroller board by us-

ing the SPI bus. The Arduino Ethernet Shield is depicted in Figure 5.2. The module also includes

LED outputs which signals for TX, RX, full/half duplex, collision, link establishment and speed

(10/100 Mbit/sec). Table 5.1 shows the IO-data mapping from the physical pins to the data reg-

ister of the Arduino Due microcontroller board in this project.
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Figure 5.2: The Arduino Ethernet Shield [6].

Physical
pin value 1

I/O
type

Memory block type
Register
address

Start
address

Access
level

Comments

54 AI 0 Input register 0 0 Read-only 10-bit ADC
55 AI 1 Input register 1 1 Read-only 10-bit ADC
56 AI 2 Input register 2 2 Read-only 10-bit ADC
57 AI 3 Input register 3 3 Read-only 10-bit ADC
58 AI 4 Input register 4 4 Read-only 10-bit ADC
59 AI 5 Input register 5 5 Read-only 10-bit ADC
60 AI 6 Input register 6 6 Read-only 10-bit ADC
61 AI 7 Input register 7 7 Read-only 10-bit ADC
62 AI 8 Input register 8 8 Read-only 10-bit ADC
63 AI 9 Input register 9 9 Read-only 10-bit ADC
64 AI 10 Input register 10 10 Read-only 10-bit ADC
65 AI 11 Input register 11 11 Read-only 10-bit ADC

Holding register 12 12 Read/write
Watchdog
counter

67 AO 1 Holding register 13 13 Read/write 12-bit DAC
15 - 0 DI Discrete inputs 14 224 Read-only
21 - 16 DI Discrete inputs 15 240 Read-only
37 - 22 DO Discrete outputs (coils) 16 256 Read/write
53 - 38 DO Discrete outputs (coils) 17 272 Read/write

Table 5.1: IO-data mapping for the Modbus TCP server in this project. Note! Physical pin 0, 1, 4,
10 & 13 are preconfigured by Arduino and are therefore omitted as inputs in the software.

1The physical pin values refers to the pinout diagram in Appendix B.1.
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5.1.2 Software

The Modbus Application Layer

This part of the project comprises of implementing an embedded communication system with

use of the Modbus TCP protocol. As seen in Table 5.2, the Modbus TCP protocol is defined at

layer 1-4 & layer 7 according to the OSI reference model. The Arduino Ethernet Shield integrates

the TCP/IP communication stack and provides an Ethernet interface. This reduces the practical

assignment to integrate layer 7 - the Modbus application protocol. The application layer is in

general terms the layer that user programs and processes access to communicate over the net-

work. It is usually the only access point to users. For a subsea system that uses Modbus TCP

communication between topside and subsea, it could be necessary to implement the Modbus

application layer at the embedded system located inside the SEM.

Layer Description

7 - Application Modbus
6 - Presentation -
5 - Session -
4 - Transport TCP
3 - Network IP
2 - Data link Ethernet
1 - Physical Ethernet

Table 5.2: Modbus TCP related to the OSI model

The implementation of communication, terminology, message format, and general structure of

the Modbus application protocol was performed according to the Modbus application protocol

specification [25] and the Modbus messaging on TCP/IP implementation guide [24]. The Mod-

bus application protocol specification describes all (approx. 20) of the public Modbus function

codes which are applicable for Modbus on serial line. Not all of them are relevant for Modbus

TCP. The function codes are related to read/write of single bits and registers (16 bits), diagnos-

tic, exceptions, read/write of file records, CANopen interface, and reading device information

(serial. ID, rev. ID). It was decided to implement the relevant functions codes for exchanging

process data between the topside controller and the embedded system in the SEM. More specif-

ically, this means function codes in class 0 and 1 [35]. Class 0 refers to the minimum useful
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Function
Codes

Physical Discrete
Inputs

Read Discrete Inputs 0x02

Read Coils 0x01
Write Single Coil 0x05

Bit
access

Internal Bits
Or

Physical coils Write Multiple Coils 0x0F
Physical Input

Registers
Read Input Registers 0x04

Read Holding Registers 0x03
Write Single Register 0x06
Write Multiple Register 0x10
Read/Write Multiple Registers 0x17
Mask Write Register 0x16

16 bits
access

Internal Registers
Or

Physical Output
Registers

Read FIFO queue 0x18
Read File record 0x14

Data
Access

File Record Access
Write File record 0x15

Diagnostics Read device identification 0x2B

Table 5.3: Public Function Codes (FC) for Modbus TCP.

set of functions, while class 1 is related to functions that are commonly implemented to ensure

interoperability. The implemented function codes are marked grey in Table 5.3. The function

codes related to file record access, reading device identification, and reading FIFO queues were

omitted (belongs to class 2). Terminology, message format such as client/server, PDU, ADU,

and MBAP as described in the introduction of Modbus TCP in Section 3.2.1 are all applied in

the software. Further details regarding connection establishments (initiate, maintain and close

connections), parametrization, and the MBAP header for Modbus TCP see the Modbus messag-

ing on TCP/IP implementation guide [24].

Design Considerations

Below is a list of design considerations that were found relevant for the software implementation

of the Modbus application protocol:

• Message addressing between nodes are executed by use of IP-addresses, and port 502

which is reserved for Modbus communication. Both the client and server listens for in-

coming messages at port 502 [25].
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Figure 5.3: Two possible memory block implementation concepts. Memory block solution at
the left hand side is called distinct tables because it splits the block into separate sections. The
memory block solution at the right hand side collects all data in one section. The Modbus access
functions is then overlapping. [46, Ch. 10].

• The maximal message size (ADU) is limited by the Modbus PDU (253 bytes) for serial

line communication. This limitation for serial line communication is applicable also for

TCP/IP communication because of the potential gateway to serial line Modbus. Ethernet

can handle messages of larger size. By including the MBAP header (7 bytes), the maximal

ADU for Modbus TCP is limited to 260 bytes.

• The organization of the memory block at the server & client can either be implemented

as 4 four separate sections (shown at the left in Figure 5.3) so that access to the single bits

and registers can be kept separate. Or, it can be implemented as a single block (right hand

side of Figure 5.3) where the same data can be accessed by use of several Modbus function

codes. For this project, a design choice was taken, and it was decided to implement the

memory block as four separate sections. An overview of the memory block sections for

this project can be found in Table 5.1.

• Connection establishments between server & client are performed by use of the TCP/IP

sockets. The software drivers of the Ethernet Controller located on the Arduino Ether-

net Shield offers possibilities of modifying the timeout and number of retransmission.

The default timeout is approximately 32 seconds but for achieving some form of real-time
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constraint this was modified to 2 retransmissions and a 200 ms timeout.

• Validation of function codes, data addresses, and data values are implemented as Modbus

exception response. A deviation from the Modbus exception handling described in the

specification [25] is that exception code 4 is not implemented. This is an exception related

to errors arising during read/write of data to the memory block. The Arduino IDE disables

exception handling so a try-catch implementation wouldn’t work. The reason for omitting

exception handling is the large stack size. Its therefore assumed that when the function

code, data address, and data values are within range that the memory block read/write

operations is successful. The exception response as implemented in the software, can be

seen in Table 5.4. The transaction process when a server first receives a Modbus message is

implemented according to the Modbus transaction state diagrams in [25]. Each function

code has individual boundary limits for data address and data value.

Table 5.5 shows the ADU request message format sent from the client to the server. Table 5.6

shows the different response ADUs sent from the server after receiving a request ADU from the

client. Both the request and response ADU is specified in the Modbus application protocol speci-

fication. Table 5.4 shows the error response sent to the client when the server receives a message

and detects invalid values. The transport protocol (TCP) guarantees that the message sent from

the client is identical to the one delivered to the server. The error response mechanism is meant

to check for logical errors in the message. When a message first is found invalid its rejected,

and not used further. An error response with the structure shown in the table is sent back to the

client.

Description Function code Exception code
Function code (FC)
invalid

FC + 0x80 0x01

Data values
invalid

FC + 0x80 0x03

Data access
invalid

FC + 0x80 0x02

Table 5.4: Error response implemented on the server in the embedded communication system
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Request/Response ADU Usage Example

An example of ADU usage is when the client requests to Read Input Registers (0x04) at the server.

The client would then need to send a request ADU according to Table 5.5. The request ADU will

consist of a MBAP header (more details in Table 3.2), a function code representing the action

to perform (in this case - 0x04), start address of where to find the analog input value (for this

implementation see Table 5.1), and the quantity bytes used to described how many registers to

read in one Modbus message. The server will then receive a Modbus message, it will decode it

and analyze it. If the server does not support the function code, the data values are invalid, or

its denied data access it will send an error response in return. This error message will consist of

a MBAP header and the selected content in Table 5.4. If the Modbus message passes the valida-

tion at the server, it will perform the action in the message, and send a response message. The

response message (Table 5.6) will in this case consist of a MBAP header, function code (0x04), a

byte count value representing the quantity of registers, and the value(s) found in the register(s).

Description MBAP
Function
code

Start/output
Address

Quantity
of:

Count
Value to
write

Read coils 7 bytes
1 byte
(0x01)

2 bytes
2 bytes
(coils)

Read discrete
inputs

7 bytes
1 byte
(0x02)

2 bytes
2 bytes
(inputs)

Read holding
registers

7 bytes
1 byte
(0x03)

2 bytes
2 bytes
(registers)

Read input
registers

7 bytes
1 byte
(0x04)

2 bytes
2 bytes
(registers)

Write single
coil

7 bytes
1 byte
(0x05)

2 bytes
(output)

2 bytes
(Output value)

Write single
registers

7 bytes
1 byte
(0x06)

2 bytes
2 bytes
(Register value)

Write multiple
coils

7 bytes
1 byte
(0x0F)

2 bytes
2 bytes
(outputs)

1 byte
(N∗)1

N∗ x 1 byte 1

(Output value)
Write multiple
registers

7 bytes
1 byte
(0x10)

2 bytes
2 bytes
(registers)

1 byte
(2 x N∗) 1

2 x N+

(Register value)1

Table 5.5: Request ADUs implemented on the client in the embedded communication system

1N∗ = Quantity of coils/registers
8 , if remainder 6= 0 → N∗ = N∗ + 1. N+ = Quantity of registers (1 register = 16 bit)
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Description MBAP
Function
code

Byte
count

Coil
status

Register
value

Read coils 7 bytes
1 byte
(0x01)

1 byte
(N*) 1

n byte
(n = N or n = N+1)

Read discrete
inputs

7 bytes
1 byte
(0x02)

1 byte
(N*) 1

n byte
(n = N or n = N+1)

Read holding
registers

7 bytes
1 byte
(0x03)

1 byte
(2 x N+)1

(2 x N+)1

bytes
Read input
registers

7 bytes
1 byte
(0x04)

1 byte
(2 x N+)1

(2 x N+)1

bytes
Write single
coil

7 bytes
1 byte
(0x05)

2 bytes
(Output address)

2 bytes
(Output value)

Write single
registers

7 bytes
1 byte
(0x06)

2 bytes
(Register address)

2 bytes
(Register value)

Write multiple
coils

7 bytes
1 byte
(0x0F)

2 bytes
(Start address)

2 bytes
(Quantity of outputs)

Write multiple
registers

7 bytes
1 byte
(0x10)

2 bytes
(Start address)

2 bytes
(Quantity of registers)

Table 5.6: Response ADUs implemented on the server in the embedded communication system

5.1.3 Communication Test

Class diagrams illustrating the attributes & methods for the Modbus TCP application layer can

be found in Appendix B.3. The communication setup for the Modbus TCP implementation has

the same architecture as in Figure 3.1. In a subsea project, the architecture would likely consist

of a redundant client at topside exchanging data with one or several SCMs (servers). For demon-

stration purposes a Modbus client using several of the request messages was implemented as

the user defined layer. The client periodically sends: watchdog counter messages, LED on/off

messages, and request message to read an analog input value (input register). The sequence di-

agram showing the operation for both the Modbus client and server can be found in Appendix

B.2. The Modbus user-defined layer and library for both the Modbus TCP client and server can

be found in Appendix C.1.1.

1N∗ = Quantity of coils/registers
8 , if remainder 6= 0 → N∗ = N∗ + 1. N+ = Quantity of registers (1 register = 16 bit)
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Modbus Client

The Modbus client is implemented as a multi-task client with FreeRTOS as an operating system.

Its assumed that the reader is familiar with FreeRTOS basics. The client has three tasks as men-

tioned above, see Figure B.2 in Appendix B.2 for further details. The first task periodically sends

out Write Single Coil (0x05) messages to the client for turning the external LED on/off, and re-

quest the input register value at the server using the Read Input Register (0x03) message. The

second task listens & process incoming confirmation messages from the server. The third task

is the watchdog function. It sends Write Single Register (0x06) messages to the server, waits, and

continues if a correct counter value was received before the next cycle. The idea of the watchdog

is an execution test of the server, if the server is answering correctly on the message - the server

is operating correctly. If the server do not reply or replies with the wrong value, the watchdog

will put the client in a safe state. Both the first and third tasks uses the client send function, to

ensure exclusive access a mutex called sendMutex is used, this can be seen in the class diagram

in Appendix B.3. In a real subsea system the client would probably be a single task controller

while in this task its a multitask system. The reason for choosing a multitask system for this

setup is to achieve a better microcontroller performance, and a more logical software division.

Modbus Server

The Modbus server is also implemented as a multi-task server with FreeRTOS as an operating

system. The Modbus server has two tasks, see Figure B.3 in Appendix B.2. The first task periodi-

cally reads and writes IO data from physical pins to the server data registers. The same task also

sets two LEDs on the Arduino Due microcontroller board on/off during this period for control

check purposes. The second task listens for incoming Modbus messages, processes them, and

replies to the client. Both of the tasks reads and writes data to the server register data so a mutex

(rwMutex) is used to avoid race condition.

In a real subsea system its not improbable that the server is a multitask system, where one task

handles communication & processing, and another task handles mapping of IO into the mem-

ory block. These task tends to run with various time periods.
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5.2 OPC UA Implementation

5.2.1 Hardware

The Raspberry Pi 2 Model B

The initial plan for the OPC UA implementation in this project was to use the same hardware as

for the implementation of the Modbus TCP protocol, the Arduino Due microcontroller board.

However, after reaching out to OPC software developers it became clear that they did not cur-

rently support the CPU architecture for the Arduino Due microcontroller board, the ARM Cor-

tex M3. It was recommended to use a Raspberry Pi (RPi) as hardware for the implementation

of either an UA server, an UA client, or an UA server/client as an architectural model. Software

developers tends to support the Raspberry Pi since its a quite popular developer tool for their

OPC UA software development kits. For this part of the project the Raspberry Pi 2 model B is

used. This is the second generation Raspberry Pi microcomputer. The technical specification

for the Raspberry Pi 2 model B can be found in Table 5.7. Figure 5.4 depicts the Raspberry Pi 2

model B.

Raspberry Pi 2 Model B

System-on-a-chip (SoC)
(CPU, GPU, DSP, SDRAM and
USB port)

Broadcom BCM 2836

Central processing unit (CPU) 900 MHz quad-core ARM Cortex-A7
Graphics processing unit (GPU) VideoCore IV (3D graphics core)
Memory (SDRAM) 1 GB
USB ports 4 USB 2.0

Video & audio output
HDMI & combined 3.5 mm audio-
jack, and composite video

Onboard storage MicroSD card slot
Onboard network 10/100 wired Ethernet port (RJ45)
Low-level peripherals 40 GPIO pins

Other interfaces
Camera Interface (CSI) &
Display interface (DSI)

Size 85 x 56 x 17.0 mm
Power rating Approx. 650 mA (3.0 W)
Weight 45 g

Table 5.7: Raspberry Pi 2 model B specifications [34].
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The general purpose input/output (GPIO) pins on the Raspberry Pi provides a physical interface

between the RPi and other low-level peripherals. It can be used for digital input and outputs,

interrupt sources to the ARM CPU, SPI, I2C, and serial UART. Internal pull-up / pull-down re-

sistors can also be enabled/disabled. A 16 GB class 10 MicroSD memory card was used in this

project.

Figure 5.4: The Raspberry Pi 2 model B [34].

Operating Systems

The Raspberry Pi is delivered without a basic input-output system (BIOS). An operating system

must be flashed onto a micro secure digital (MicroSD) card that is inserted into the card reader

on the RPi. More details regarding the installation of the OS is given below in Section 5.2.3. The

Raspberry Pi Foundation offers the Debian based Raspbian operating system for free download.

There are also several third party operating systems available for the Raspberry Pi. Ubuntu, and

Windows 10 Internet of Things (IoT) core are two of them. An overview of the supported oper-

ating systems can be found at 1.

The OPC UA SDK used for this project only supports the Windows 10 IoT Core operating system.

The Windows 10 IoT Core is a optimized version of the Windows 10 designed for small embed-

ded devices such as the Raspberry Pi. The hardware requirements are a processor running at

400 MHz or faster, can store 2 GB or more, and has minimum 256 MB RAM. The Windows 10 IoT

Core is based on the Universal Windows Platform (UWP) API. More information regarding the

Windows 10 IoT Core and developer samples can be found at 2.

1https://www.raspberrypi.org/downloads/
2https://developer.microsoft.com/en-us/windows/iot

https://www.raspberrypi.org/downloads/
https://developer.microsoft.com/en-us/windows/iot
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5.2.2 Introduction to the OPC UA SDK

The C/C++ OPC UA server/client software development kit (SDK) bundle used in this thesis was

obtained by sending a request to Unified Automation in Germany. They distribute an evaluation

edition of the C/C++ OPC UA SDK supporting embedded systems such as the Raspberry Pi 1 &

2, and the Beagle Bone Black. An evaluation edition means it contains examples & tutorials with

time limited execution. The server SDK or the client SDK will run for one hour and afterwards

it needs a restart to continue the execution. The OPC UA SDK is a C/C++ collection of libraries,

helper functions, security mechanisms, documentation, and sample code that support users in

writing portable OPC UA servers and clients. Both the server and client uses the same base li-

brary which encapsulate the communication stack defined by the OPC Foundation.

The evaluation SDK supports data access, alarms & conditions, and historical data access. The

first lesson in the OPC UA SDK is to setup a basic server console application for connection pur-

poses. The basic console performs a global initialization of the OPC UA stack, start-up and shut-

down commands, and initialization of the standard server object. The tutorials then proceeds

with describing object models that defines the OPC UA address space for real world systems.

The SDK also contains support for adding methods and events. The alarms & conditions and

historical data access functionality can also be implemented. This modular structure illustrates

how scalable the OPC UA is by enabling the programmer to add or remove desired functionality

based on the available resources.

A coarse architectural overview of the OPC UA implementation can be described by functions

divided in three levels. The SDK provides higher level functions such as the OPC UA stack APIs,

base & common UA functionality, helper functions, and security handling. The OPC UA com-

munication stack as defined by the OPC Foundation provides the lower level functions, and are

common to both the client and server. The OPC UA communication stack implements the plat-

form, transport, security, and encoding layers for message exchange between different UA ap-

plications. The client and server applications are an user-case specific layer on top of the SDK.

The application layer is used for application specific logic. This coarse architectural overview is

depicted in Figure 5.5. More OPC information regarding services, layers and OPC UA SDKs can
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Figure 5.5: OPC UA SDK overview [22, Ch. 8.4].

be found in [22]. For more information regarding each respective SDK, see the installed prod-

uct documentation. The documentation for the SDK used in this project is included in the doc

folder in Appendix C.2.1.

5.2.3 Software

Installation

A prerequisite for using the OPC UA SDK from Unified Automation is the use of a Windows

10 host computer with Visual Studio 2015 as build environment (more details in the readme

file in Appendix C.2.1). A setup procedure of the host computer is provided in Appendix A.1.1.

The OPC UA SDK contains CMakeFiles that must be built using the CMake software. Hardware

requirements, and a detailed build & installation guide of CMake, the Windows 10 IoT Core and

the OPC UA SDK on the Raspberry Pi can be found in Appendix A.1.

After building the OPC UA SDK for Raspberry Pi using the CMake software on a host computer,

an ARM cross-tool was used to cross-compile a binary suited for the Raspberry Pi (RPi) in Visual

Studio 2015. Some common library files & binary files were transferred to the RPi using ftp, and

then executed using remote commands from the host computer. Cross-compiling is normally
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performed when the target has limited system resources. The RPi is however relatively powerful

compared to other microcomputers, but it has limited RAM resources (ref. Table 5.7) for man-

aging the build operation, and is slow compared to an average desktop computer. Also, in this

project the great benefit of cross-compiling from a desktop computer is the use of Visual Studio

as development tool.

Powershell is recommended by Unified Automation to be used for executing remote commands

on the RPi. There is however a bug in the Windows 10 IoT core, the bug is related to printouts

in the PowerShell command window during execution. This means the output of the server,

containing Endpoint information including IP-address and port number to connect the OPC

UA client is not available when starting it from PowerShell. Description of this bug is given in

the readme_raspberry2_win10IoT.txt file in Appendix C.2.1. Due to this annoying bug the Putty

software was used as a SSH client instead of PowerShell in order to remote start the server.

Model and Access Information

UaModeler 1 from Unified Automation is a helpful software tool for creating illustrative OPC UA

information models and code generation. The UaModeler provides a graphical design of the

address space (theory explaining address space can be found in Section 3.4). The UaModeler

uses a template for generating code that describes the information model. It can be used for

creating C/C++ and .NET code for both servers and clients.

In this project an OPC UA server representing the embedded system in a SEM was implemented

on the Raspberry Pi. An illustration of the setup is shown in Figure 5.6. The OPC UA server col-

lects process data from subsea sensors and actuators. This is process data that the UA client at

topside can access through the OPC UA server’s address space. An alternative representation is

to implement OPC UA at sensor level, and as mentioned in Section 1.2 research is performed

on this topic. However, for subsea usage an OPC UA server at the SEM appears to be a more

mature & reliable solution. The two object models described below is used to represent the ad-

dress space in the OPC UA server. An derived base object type called ValveType was developed.

1https://www.unified-automation.com/products/development-tools/uamodeler.html

https://www.unified-automation.com/products/development-tools/uamodeler.html
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Figure 5.6: OPC UA Server communication setup

This valve object type is defined in terms of variables such as the state, position and setpoint. It

also includes call methods for start, stop, and an one-argument method which starts the valve

with a given set point. All of the variables and the methods for this valve object type is described

with a "HasComponent" reference. Potential references to other objects, would also have been

described in this object model. Figure 5.7 illustrates a valve object, SubseaValve using this valve

object type. The OPC UA server is also implemented with event functions (blue section) for the

State and ValvePosition. The valve object also supports historical data access (green section) for

the valve position and the valve set point as depicted in the figure. The server will also gener-

ate an alarm if the state is set to zero, representing that the valve is stopped/deactivated. The

ValveSetPoint is the only variable enabled with read & write access, the two others only sup-

port read access. The write access of the set point enables change of the valve opening from the

OPC UA client located topside. From the OPC UA client it will be possible to browse and see

the details regarding the object type (ValveType), and values for the attributes in the valve object

(SubseaValve).
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The second object model describes the rest of the address space which contains four instru-

ments, two temperature and two pressure transmitters, all depicted in Figure 5.8. These trans-

mitters are an AnalogItemType which is a predefined OPC UA SDK type derived from an DataItem-

Type. The AnalogItemType is an object representing analog inputs, it also includes predefined

properties such as engineering ranges and engineering units. The transmitters represents in-

puts to the SEM based at one of the SIIS device levels.

Figure 5.7: Graphical representation of the object model (1 of 2) at the OPC UA server.

Figure 5.8: Graphical representation of the object model (2 of 2) at the OPC UA server.
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Communication Testing

The two object models in Figure 5.7 and 5.8 describes the OPC UA address space for our real

world system using UA terminology. These object models was afterwards implemented into the

OPC UA SDK, and the project file solution can be found in Appendix C.2.2. Figure 5.9 is an UML

diagram illustrating the relationship between the interfaces in the SDK, however some classes

related to the simulation of valve data is not considered relevant and are therefore not present.

The green color represents interfaces for different node classes as defined by the OPC UA spec-

ification, and the yellow color are implementation of these interfaces as found in the SDK. The

classes with white color is user defined and implemented into the SDK as part of this project.

More information regarding the classes and interfaces in the OPC UA SDK can be found in Ap-

pendix C.2.1.

During testing, both the OPC UA server and client were connected in the same local network.

The UaExpert software [40] was used as an OPC UA client on the host computer. The setup of the

OPC UA communication model is comparable to the setup of the Modbus TCP communication

model in Section 5.1 with a server and a client. The RPi represents the embedded server system

in the SEM, and the client represents the topside controller in a subsea communication archi-

tecture. By using the UaExpert as a client the OPC UA server was browsed for objects, variables,

events, alarms and historical trending. Figure 5.10 depicts the implementation result in the Ua-

Expert software, as defined by the object models in Figure 5.7 and 5.8. Note that several subsea

valve objects was declared and instantiated, and contains all the variables, methods, event data,

alarm, and historical data access (HA Configuration) from Figure 5.7. The ValvePosition and

ValveSetPoint samples data each 500 ms into a FIFO-queue holding 2000 elements at the server.

5.3 Experiences, Results and Discussion

Section 5.1 documents the practical implementation of the Modbus TCP application layer on

two microcontrollers using request/response messages in a server-client architecture. The fo-

cus was to implement the main function codes for accessing bits and registers (class 0 and 1).

The implementation was performed according to the Modbus specifications [25, 24]. A multi-
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Figure 5.9: UML diagram illustrating the classes and interfaces in the OPC UA SDK.

task server was setup using FreeRTOS as an operating system with two tasks, one task that read

& write IO data to the memory block, and the other task for communication exchange. The
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Figure 5.10: Successful browsing of the OPC UA server using the UaExpert software as UA client.

project files containing the implementation of the Modbus application layer for both the client

and server can be found in Appendix C.1.1.

Section 5.2 describes the implementation of a platform independent OPC UA SDK solution. This

SDK depends only on the OPC UA Communication stack as specified by the OPC Foundation. As

mentioned in Section 3.4, OPC UA offers extended possibilities for security measures. The SDK

contains tutorials explaining the security mechanisms such as user authentication, message

encryption, and certificates but these has not been given much consideration in this project.

More documentation and tutorials regarding security mechanism in OPC UA can be found in

Appendix C.2.1.

The OPC UA solution serves as an example for how a prospective implementation of OPC UA

can be performed in a subsea communication network. The solution recommends keeping the

CAN bus as sensor network, and not use OPC UA at sensor level. As mentioned in Section 1.2
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some research is performed on the implementation of UA at sensor level. Due to the scalability

of OPC UA such a solution should be theoretically possible, however the technology is not con-

sidered mature enough. Also, Section 3.5 discusses a research study on an OPC UA SDK which

reveals poor network load due to inefficient internal architecture. A CAN network will be ad-

vantageous due to the good real-time and noise immunity properties. Sensor & actuator data

to/from the CAN bus will be modelled in the UA server address space.

For OPC UA, the main focus has been to understand how to model and access information as

defined in the specifications provided by the OPC Foundation [28]. Part 3 of the OPC UA specifi-

cation provides detailed descriptions on how an address space within an OPC UA server is built

and managed. The client uses the sophisticated services defined in Part 4 of the OPC UA spec-

ification to access information provided by the server in the UA address space. This is services

related to access objects with read or write of an attribute, calling a method or receiving events

from the object. The SDK has also made concepts & terms related to OPC UA quite familiar, such

as address space, node model & node classes, references, views, event types, services (discovery,

query, node, method, subscription) and various types of managers (node, event, history).

The practical experience of implementing Modbus TCP and OPC UA has revealed that UA is a

much more complex and abstract communication protocol. However, it represents new possi-

bilities due to its modelling capabilities. The primary focus of the UA implementation was to

define an information model, therefore creating object models such as illustrated in Figure 5.7

and 5.8. Data exchange is performed by sending objects with all its parameters, and not sending

specific value updates (value changes, alarms and events) [37]. The focus during the Modbus

TCP implementation was getting the "bits & bytes" of the message structure in the send and

receive functions correct. This was quite the opposite for OPC UA where predefined services is

used for communication exchange in the SDK. A great disadvantage of Modbus TCP is that it

does not support object oriented modelling. Hence, the Modbus client needs to know exactly

which register addresses the specific data is located at the server. Table 5.1 documents the reg-

ister addresses for the Modbus TCP server in this project. Ethernet/IP and OPC UA supports

object modelling.
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My experience of Modbus TCP based on the practical implementation in this project is that

Modbus is a quite useful approach for data exchange with a specific set of defined function

messages. For applications without any safety- or time critical demands its easy to see why the

usage of Modbus TCP is so widespread and popular! Even though Section 3.5 reveals poor real-

time properties and performance. Modbus does not require any comprehensive SDK, and is

easy to integrate on an embedded system. OPC UA appears to be a more elegant way of ex-

changing data, but for embedded systems where the resources tend to be limited Modbus TCP

seems to a better candidate. Modbus has less message overhead & footprint, its easier to debug,

and probably has the best application layer efficiency. An example on good message efficiency

for Modbus TCP are the function codes for read or write of multiple registers (see Table 5.3),

several register values can be transmitted in one request/response frame. This results in a high

payload.

The extended use of object modelling in OPC UA enables software developers to use object mod-

elling tools such as the UaModeler to develop a graphical overview of complex components,

sub-systems and systems. The development tool will then generate source code for OPC UA

that describes the system. For subsea components it could be possible to develop objects for

pumps, meters, compressors, separators, tree’s, etc in a library. As mentioned in Section 2.7 the

MDIS work group has chosen OPC UA as the unified platform between the DCS and the MCS.

MDIS has also developed subsea objects for this purpose.
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Discussion and Recommendations for

Further Work

6.1 Discussion

A brief introduction to each of the three industrial Ethernet protocols intended for the topside

- subsea link are given in Section 3.2 - 3.4, followed by a theoretical evaluation in Section 3.5.

The evaluation focuses on performance and available features. The evaluation section has only

partly been successful in obtaining relevant quantified comparison data for the industrial Eth-

ernet protocols performed by neutral independent third parties. It seems like comparisons of

industrial protocols are typically performed by coarsely dividing parameters into groups (little -

medium - large) which provides rough estimates. The main reason for this is probably because

the protocols will have far too varying performance based on the hardware, network, and appli-

cation layer implementation efficiency. In particular this is thought to apply for protocols such

as Modbus TCP and OPC UA which are scalable & based on the TCP/IP communication stack

and the Ethernet standard. Performance indicators for Ethernet/IP has been obtained from rel-

evant standards. One of the initial objectives of this thesis was to include a detailed benchmark

comparison by implementing the protocols on the same hardware and network. Due to un-

reasonable costs for two FPGA development kits including all needed protocols and software

this was omitted. This has resulted in lack of test results that could have been used to back the

dissimilarities from the theoretical evaluation in Section 3.5. A benchmark comparison based
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on the two practical implementations performed in this thesis could have been performed, but

such a comparison was not considered relevant due to the large variations in hardware.

The most relevant performance comparison of Modbus TCP and Ethernet/IP collected in this

thesis can be found in Figure 3.11 in the evaluation Section 3.5. The comparison of the mini-

mum cycle-time reveals that Ethernet/IP is superior to Modbus TCP in a multicast communica-

tion setup operating at 10 Mbit/sec, and also in some degree at 100 Mbit/sec. However, as seen

in Figure 3.11 a considerable number of servers (SEMs) must be implemented for any signifi-

cant variations in the performance. Also, notice that the performance difference between Mod-

bus TCP and Ethernet/IP changes considerably from 10 Mbit/sec to 100 Mbit/sec. The topside

- subsea link tends to operate at 100 Mbit/sec Ethernet, but the range of industrial communi-

cation equipment supporting 1 Gbit/sec is expanding. A bandwidth of 1 Gbit/sec will probably

make the performance differences between communication protocols negligible, and the bot-

tleneck will probably turn out to be the processing power of the end devices.

A brief discussion on the principle of time/event-triggered communication is performed in Sec-

tion 2.8. The choice of implementing either time or event-triggered communication will depend

on the specific application. However, the focus was to highlight the main differences. For sub-

sea communication its recommend to use time-triggered communication because of its pre-

dictability, and its characteristic to easily detect missing messages.

Chapter 4 introduces IWIS and the CAN bus (SIIS level II). The initial plan was to compare IWIS

and CAN bus (SIIS level II) based on network criterion such as half/full duplex, bandwidth,

throughput, and general performance. However, the problem is that IWIS only defines an inter-

face that intelligent well equipment uses to integrate into a subsea production control system.

The obtainable performance by using the IWIS interface is too dependent on the vendor specific

intelligent well equipment. The evaluation section thereby concludes that a direct comparison

of these two principles were not relevant as they are engineered for two different purposes. A

more topical comparison would have been to compare the instrumentation network between

the downhole controller card and the downhole tools as illustrated in Figure 4.4 against an-
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other instrumentation networks. However, CAN bus is not suited as instrumentation network

for downhole tools due to its 2-wire physical layer. Regardless, the instrumentation network for

downhole tools is not part of the IWIS specification scope, and is regarded as vendor specific

which means there exists a wide range of solutions. The evaluation part of Section 4.3 therefore

focus on highlight implementation experience from the industry, identify challenges, explaining

the selection process for establishing CAN bus as the standard for subsea instrumentation, and

discuss the physical RS-422 transport media for IWIS. Lack of relevant literature regarding IWIS

and the CAN bus has also partially halted the work, most of the information has been found

in standards and recommended practices. My experience is that the practical information is

still a trade secret, even though both of the principles urges for open standardization. CAN bus

(SIIS level II) is detailed specified at higher and lower layers according to Table 4.2, while IWIS

is only defined at lower layers according to Table 4.3. The IWIS specification does not state how

the message exchange between the IWCS applications and the IWE shall be performed. This

provides IWE vendors the flexibility to select/develop their own application protocols for the

message exchange. Hence, such proprietary solutions makes further evaluation challenging.

Parameters such as protocol overhead and payload efficiency will probably vary between the

different solutions. Also, access to the proprietary specifications could also present a challenge

for further work.

The OPC UA solution illustrated in Figure 5.6 serves as an example for how a prospective im-

plementation of OPC UA can be performed in a subsea communication network. The solution

recommends keeping the CAN bus as sensor network due to its real-time and noise immunity

properties. A solution involving OPC UA at sensor level does not seem suited for this purpose,

and the technology does not seem mature enough to handle it yet. An example is the paper [17]

that reveals poor network load utilization due to inefficient internal architecture for a Java-based

OPC UA SDK. The UA solution demonstrates how subsea instrumentation data is implemented

into the address space on an UA server. The primary focus for OPC UA was to define an informa-

tion model, therefore the object models in Figure 5.7 and 5.8 was implemented in the address

space. The result of this can be seen in Figure 5.10. The data exchange was performed by us-

ing request/response messages, and the subscription mechanism. OPC UA offers extended IT-
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security mechanisms, but these has not been considered in this master thesis. MDIS has chosen

OPC UA as the unified architecture between the MCS and DCS (Section 2.7), and further adop-

tion of OPC UA at lower hierarchy levels is predicted to continue within the oil & gas industry.

OPC UA however is not a real-time protocol and situations where data does not arrive within

a bounded time may occur. Mechanisms such as timestamps and quality markers can be used

to detect link problems or missing messages. OPC UA does not seem suited for safety critical

systems.

The idea behind implementing the two protocols (Modbus TCP and OPC UA) were to process

the practical experience, and use it to compare the practical implementation details. The details

regarding practical experience can be found in Section 5.3. The main differences are related to

how difficult the protocols are to implement, the message exchange types, resource demands,

and efficiency. An OPC UA SDK offers more possibilities, but the large footprint & poor efficiency

represent challenges. Especially, if OPC UA is implemented at sensor-level. The communication

setup of Modbus TCP is identical with the setup for OPC UA. The Modbus TCP solution is how-

ever optimized for message exchange between one client and one server. The OPC UA server

already supports communication with several servers or clients. A real subsea control system

tends to consist of redundant client and servers, and one client tends to communicate with sev-

eral servers. Software changes must however be performed for achieving multicast communica-

tion on the embedded microcontrollers. The Modbus TCP communication is fully operational

for message exchange between the two microcontrollers, but it has not been tested against other

industrial equipment using Modbus TCP. Also, the interpretation of the specification, the im-

plementation, and testing is performed by the same person. This means the same person could

have misunderstood or unintentional omitted details.

As mentioned before, the initial objectives behind this project was to focus on the theoreti-

cal part by studying communication parameters such as bandwidth, payload, throughput, and

send/receive optimization obtained through the benchmark comparisons. But when the two

FPGA development kits were ruled out due to unreasonable cost, the project focus was shifted.

Both student loan and discounts for the equipment was proposed, but in the end it was not pos-
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sible to come to an agreement. The FPGA development kit intended for this project would have

been delivered with all the relevant industrial Ethernet protocols and software development kits,

and change of communication protocols was not supposed to be a time consuming process.

When this evaluation kit was omitted I ended up using much more time on practical implemen-

tations for Modbus TCP and OPC UA. Especially, the estimated implementation time for OCP UA

turned out to be quite optimistic. OPC UA represent something new in several ways compared to

Modbus TCP with its services, modeling capabilities, and terminology. Even the cross-compile

building of the OPC UA SDK turned out to be a time-consuming trial and error challenge. The

detailed tutorials, and examples in the SDK also took some extra time to complete. However, I

feel the implementation of OPC UA and Modbus TCP has been informative and provided valu-

able knowledge about communication, embedded micro-controller/computer systems, oper-

ating systems, and general application layer protocols.
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6.2 Recommendations for Further Work

Suggested extensions related to this master thesis is given below.

• The original objective for the practical implementation was to implement the topside pro-

tocols (Modbus TCP, Ethernet/IP and OPC UA) on the same hardware and perform a de-

tailed benchmark comparison. Due to unreasonable cost for two FPGA development kits

including all the communication protocols and SDKs this was omitted. To obtain actual

comparison data based on the same hardware its recommended to obtain financial fund-

ing and perform this benchmark comparison. Or, find other solutions to implement the

protocols at the same hardware & network.

• As mentioned in Section 5.1.2 only the central function codes related to process data ex-

change between the topside controller and the embedded system in the SEM is imple-

mented. In order to pass a Modbus conformance test and obtain a certification of the

developed server and client it will be necessary to implement the function codes in class

2. The Ethernet controllers is communication and exchanging data with each other cor-

rectly, but neither the client or server is test against other industrial Modbus TCP com-

munication equipment. Therefore, starting testing the client and server against validated

Modbus TCP equipment is recommended.

• The implementation of the OPC UA serves as an example solution for a prospective OPC

UA communication model in a subsea control system. If an OPC UA solution is selected,

further work will include tasks such as: determining robust and reliable hardware, and

select an appropriate OPC UA SDK. Other tasks will be to decide security mechanisms,

develop software objects (perhaps use work from MDIS? - Section 2.7), develop object

models describing specific subsea project data, and perform extensive testing.

• As described in Section 5.2 the UaExpert software was used as an OPC UA client at the

host computer. This thesis demonstrates a solution for the OPC UA server, solutions for

an OPC UA client located topside has not been discussed. In-depth studies for the UA

client solution should be performed.
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• Section 3 only discusses & compares well-known and globally approved protocols used

for topside communication, and not proprietary protocols. There are proprietary proto-

cols for this purpose that are frequently used within subsea communication. A possible

extension of the project could be to include proprietary protocols such as the FMC 722

Automation protocol. This would include contacting the major subsea vendors, and per-

form a survey for revealing other relevant proprietary protocols. An attempt to reach out

to several of the major subsea vendors was performed in this project, but it revealed little

interest of sharing and publish protocol specifications.

• As mentioned in the discussion, performing a direct theoretical comparison between IWIS

and CAN bus (SIIS level II) has been a challenge. An interesting extension to this section

would be to implement an IWIS and CAN bus communication setup and study bench-

mark data, such as: response time, utilized bandwidth, and protocol conversion time. The

practical implementation would also offer an possibility do a performance test which can

reveal if there are any existing bottlenecks (as discussed in Section 4.3) due to the low de-

fault baud-rate of 9600 bit/sec. IWE vendors uses vendor specific protocols between the

downhole tools & the downhole controller card, and for message exchange between the

IWCS applications and IWE. If a benchmark comparison is performed its recommended

to investigate which protocols are most used for the various networks, and implement

those for obtain test results.

• Another idea for a possible extension would be to perform a project specific communica-

tion analysis. By collecting project specific data, such as the network setup (no. of client

and server), type and quantity of IOs, protocol conversion time, protocol types, etc. a

more thorough analysis can be performed. Send and receive optimization of messages

can also be included. As mentioned in Section 5.3 Modbus TCP has several methods for

requesting data from the server. The scope of this project has not covered message send

or receive optimization, its therefore difficult to go into details and describe the best way

of performing this. Ethernet/IP and OPC UA also defines several functions and services

that can be used for data exchange.
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OPC UA Implementation Procedure

A.1 Operating System Installation

A.1.1 Desktop Host

In order to implement OPC UA based on the SDK from Unified Automation a Windows 10 host

computer must be used. The following steps must be performed:

1. Installation of Windows 10 operating system (Version 10.0.10240 or newer)

2. Installation of Visual Studio 2015 Community (Version 14.0.24720.00 Update 1), select the

following add-ons during the custom installation:

– Universal Windows App Development Tools → Tools and Windows SDK

– Windows IoT Core Project Templates (Can also be installed directly from Visual Stu-

dio at the Tools tab → Extensions and Updates → Online → Search: Windows IoT

Core Project Templates)

3. Enable developer mode in Windows 10. Setting the host machine in developer mode

makes it able to install, run and test software (apps) that has not been certified by the

Windows Store. It also enables the possibility of running apps from Visual Studio in debug

mode. Settings → Update & Security → For developers → Choose Developer mode. Click

Yes for the disclaimer message(s).

86
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A.1.2 Raspberry Pi 2

For setup of the Raspberry Pi 2 model B the following hardware prerequisites must be fulfilled

– A HDMI cable and monitor

– Micro SD card reader (for the host computer)

– Ethernet cable

– 5V micro-USB supply (must deliver 1.8 A 1 or more)

– Micro SD Card. Recommended to use a Class 10 SD card with at least 8 GB

Follow these steps to perform the installation of the Windows 10 IoT Core onto the RPi 2.

1. Download the Windows 10 IoT Core Release Image onto the host desktop PC from Mi-

crosoft developer resources 2.

2. When finished downloading. Double click on the downloaded ISO-file. This will cause the

ISO-file to automatically mount itself as a virtual device.

3. Double click the Windows Installer Package (.msi) and follow the installation steps, this

will result in a flash image file (.ffu).

4. Download the "IoT Core Dashboard" from the link 2 for installation and configuring of

Windows 10 IoT core devices. The Windows 10 IoT Core dashboard will allow you to flash

the downloaded image onto your MicroSD card.

5. Insert a compliant MicroSD card into the card reader on the host machine.

6. Run the previous downloaded "IoT Core Dashboard". Click set up a new device → at the

Device type drop down list select Custom. Browse to find the previous generated image

file (.ffu).

7. Accept the software license terms and press Install. After the installation finishes, eject the

memory card from the host computer and insert it into the MicroSD Card in the RPi. This

will boot-up the Windows 10 IoT Core.

1https://www.raspberrypi.org/help/faqs/#powerReqs
2http://ms-iot.github.io/content/en-US/Downloads.htm

https://www.raspberrypi.org/help/faqs/#powerReqs
http://ms-iot.github.io/content/en-US/Downloads.htm
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A.2 Initiate Connection

A basic connection test can be performed when the operating system installations in Appendix

A.1 has been executed. The next step will be to connect the Raspberry Pi (RPi) to the host com-

puter by use of an Ethernet cable. The RPi must also be connected to a HDMI supported monitor

which will yield its IP-address in the Device info tab. Try to Ping this IP-address from the host

computer in order to verify the communication setup.

At successful connection test the next steps will be:

• To remote connect and configure a Windows 10 IoT Core its recommended to use the

Windows 10 built in MS PowerShell. Search for PowerShell ISE in the Windows Start Menu.

Right click and select Run as administrator.

• Initiate a PowerShell (PS) session with the RPi.

– Start the WinRM service to enable remote connections. Use the command:

net start WinRM

– Start a remote session with the RPi with the command given below. Login by enter

the password. The default password of the RPi is p@ssw0rd. The login takes some

time (approx. 30 seconds). Use the same IP-address as during the connection test.

Enter-PSSession -ComputerName <IP-address> -Credential <

IP-address>\Administrator

– Its helpful to set a machine name for the RPi, e.g mypi

setcomputername <machine-name>

– Its required to reboot the device after changing the name. For a shutdown with re-

boot enter:

shutdown /r /t 0

– Create a trust relationship between the host desktop PC and the RPi. The <machine-

name> was selected in the previous steps. Could also enter the IP-address instead of
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the machine name.

Set-Item WSMan:\localhost\Client\TrustedHosts -Value <

machine-name>

– Re-run the command from previous steps but instead of the IP-address, use the new

machine name.

Enter-PSSession -ComputerName <machine-name> -Credential <

machine-name>\Administrator

– The firewall on the RPi will prevent the host to connect to the OPC UA server, the sim-

plest solutions for this demonstration is therefore to deactivate the firewall. Opening

the specific port for OPC UA communication is also a possibility. Commands for

firewall settings:

* Turn firewall off (deactivate)

NetSh Advfirewall set allprofiles state off

* Turn on firewall (activate)

NetSh Advfirewall set allprofiles state on

* Check status of the Windows Firewall

NetSh Advfirewall show allprofiles

• After deactivating the firewall, continue with the next sections describing installation of

the OPC UA SDK, and transferring files.

A.3 Installation & Setup of the OPC UA SDK

The OPC UA SDK contains Visual Studio 2015 C/C++ client and server projects, tutorials and a

precompiled server & client. A good starting point for a simplified test of OPC UA is to use the

included precompiled server for C++. This can be found in the uaservercpp-winIoT-arm-vs2015-

1.5.0-318 zipped folder. Unzip it and transfer the files in the uaservercpp/bin to the RPi. Further
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details on how to transfer and execute files can be found in Appendix A.4. To build and transfer

project files or examples from the OPC UA SDK follow the instruction steps in Section A.3.

The evaluation edition of the OPC UA SDK consists of C++ files and Visual Studio 2015 project

files, all of these can be found in the zipped uasdkcppbundle-bin-EVAL-winIoT-arm-vs2015-

v1.5.0-318 folder. The evaluation edition of the SDK contains CMakeFiles which needs to be

built by using the CMake application software. CMake is a tool used for building cross-platform

software.

• Install the CMake GUI for Windows 10 (version 3.5.0 or newer)

• Unzip the uasdkcppbundle-bin-EVAL-winIoT-arm-vs2015-v1.5.0-318 folder.

• Visual Studio 2015 includes compilers for 32-bit, 64-bit and ARM-based Windows operat-

ing systems that can be used to create apps. By default the Visual Studio uses either the 32

or 64-bit compiler based on the computer architecture. In case of a cross-compile to an

ARM based Windows OS one must specify this by a cross-tool command prompt. Search

and run the VS2015 x86 ARM Cross Tools Command Prompt in the Windows Start Menu.

• In this Cross Tool Command Prompt, use the change directory (cd) command to navigate

to the bin folder of the installed CMake application and start the cmake-gui.exe. By using

this Cross Tool Command Prompt all of the environmental variables are set according to

the ARM-based system.

• When CMake starts up, browse to the unzipped evaluation edition of the UA SDK from

previous steps. Normally, located inside a sdk folder. Set this directory for both the source

code and the path for building the binaries.

• Press Configure and select the generator for this project in the drop down list to be Visual

Studio 14 2015 ARM. Select the Specify toolchain file for cross-compiling radio button.

Press Next, browse to the toolchain file inside the sdk folder - the last part of the directory

path ends with: sdk/toolchains/winIoT/toolchain-windowsIoT-arm.cmake. Press Finish.

CMake will then check for a valid compiler and create Makefiles.

• The final step to generate all of the Visual Studio Project files for the examples is pressing

Generate button in CMake.
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• Navigate to the sdk folder and double click one of the Visual Studio Solutions (.sln) in the

sdk/examples folder.

• Open the project folder under Examples in the Solution Explorer in Visual Studio. Open

the Source Files folder, click the servermain.cpp file.

• Change Debug to Release in the Solution Configurations drop down list. Navigate to the

Build option, and press Build Solution. The executable project file can be found in the

project Release folder.

• Details related to transfer, and remote commands for executing the project file see Ap-

pendix A.4.

A.4 Transfer and Run Executable Files

A.4.1 File Transfer Method

Transfer of project related files can be performed in several ways, e.g putting the Micro SD-card

into the host computer and copy the files onto it, or use a file transfer protocol (ftp) client such

as WinSCP. Its also possible to perform the operation by use of command lines in PowerShell

ISE. However, the simplest solution is thought to be WinSCP. After downloading the WinSCP

software, choose FTP as File Protocol. Host name is the <machine-name> or the IP-address of

the RPi. User name is Administrator and the default password is p@ssw0rd

Create a folder at the RPi to deploy the files from the SDK, e.g call the folder deploy and place it

in the root folder.

A.4.2 Mandatory Common Files

The executable project file released in Visual Studio (as described in Section A.3) and the pre-

compiled server/client depends on common files, such as the OPC UA stack library. All of these

files must always be located in the deploy folder at RPi. All of the common files can be found in

the sdk/bin folder. The common files are listed below.
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• The Animation folder

• ClientConfig.ini (Only used when deploying a client)

• libeay32.dll

• libxml2.dll

• ServerConfig.ini (Only used when deploying a server)

• uanodesetimport.xml

• uastack.dll

A.4.3 Project Dependent File

To run the precompiled-server, transfer the uaservercpp.exe from the sdk/bin folder to the de-

ploy folder on the RPi.

To run one of the tutorials or examples, release a executable file in Visual Studio 2015 (as de-

scribed in Section A.3). Navigate to the Release folder of the specific tutorial/example and trans-

fer the executable (.exe) file to the deploy folder on the RPi.

To start this OPC UA server/client executable file, use the PS session initiated with the RPi in

Appendix A.2. The command cd can be used to navigate to the deploy folder. Start the server

by writing the name of the executable project file .\<project file name>.exe into the PowerShell

command. Due to an PowerShell bug its not possible to see the output from the server during

execution. Its therefore recommended to use another SSH client, such as the Putty software for

starting the server. More information of this bug is found in Section 5.2.3.



Appendix B

Modbus TCP Implementation Diagrams
B.1 Arduino Due Pinout Diagram

Figure B.1: The Arduino Due pinout diagram [1].
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B.2 Modbus Sequence Diagrams

Figure B.2: Modbus TCP client sequence diagram
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Figure B.3: Modbus TCP server sequence diagram
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B.3 Class Diagrams for Modbus TCP

Figure B.4: Class diagram for the Modbus TCP client and server



Appendix C

Description of Appendix

C.1 Modbus TCP

C.1.1 Modbus TCP Server and Client Application

The Modbus TCP application layer for both the server and client microcontroller. Documenta-

tion describing the implementation can be found in Section 5.1.

C.2 OPC UA SDK

C.2.1 OPC UA SDK

A C/C++ OPC UA server/client SDK evaluation edition from Unified Automation. An evaluation

edition is limited to run for only one hour at the time (it needs a simple restart after this). The

appendix contains evaluation editions for Raspberry Pi 1 & 2 and the Beagle Bone Black. For

this thesis the OPC UA SDK bundle uasdkcppbundle-bin-EVAL-winIoT-arm-vs2015-v1.5.0-318

is most relevant. The SDK must be unzipped, and built using CMake. Section A.3 describes the

procedure.
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C.2.2 OPC UA Project File

The Visual Studio 2015 project files for implementation of the OPC UA server as described with

the object models illustrated in Figure 5.7 and 5.8.
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