
System for Self-Navigating Autonomous
Robots

Thor Eivind Svergja
Andersen
Mats Gjerset Rødseth

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2016

Norwegian University of Science and Technology

Summary

The purpose of the thesis was to build an Arduino-based robot, whose intended use was

to map unknown areas, as well as to develop a server application that controls several

robots and uses the gathered information to form a map of the area. Additionally, the

wireless communication in the existing solution was to be updated using state-of-the-art

technology.

An Arduino-robot was designed and built using materials acquired from Sparkfun, Elfa

Distrelec and the Cybernetic Workshops at NTNU. The robot provides the same functional-

ity as existing robots, but due to an encoder that got broken during the final week of the

thesis, the position estimates does not work.

The communication protocol was updated from Bluetooth to Bluetooth Smart, using

nRF51-dongles developed by Nordic Semiconductor. The software running on the server-

dongle was developed in the C programming language.

By studying the existing server application, written in MATLAB, the group got an insight

into the system functionality. Most of the same functionality was implemented in a new

server application using the Java programming language. The system architecture was

designed using modules that took care of one area of responsibility each.

The group developed a Graphical User Interface (GUI) for the system during a design

process. Using well-known principles and guidelines during the design phase led to a

GUI that has the human perception in mind. The user interface was developed using the

intuitive GUI-builder in NetBeans, and the goal was to inherit most of the functionality

from the existing solution but provide the information in a more user-friendly way.

i

ii

Sammendrag

Prosjektets gjennomføring var delt inn i tre temaer. En Arduino-basert robot skulle bygges

for bruk i kartlegging av ukjente områder. Videre skulle en serverapplikasjon utvikles

med mulighet for å kontrollere flere roboter i sanntid, samt å kunne bruke informasjo-

nen robotene samlet til å danne et felles kart av dataene. I tillegg skulle den trådløse

kommunikasjonen fra den eksisterende løsningen oppdateres til å bruke nyere teknologi.

En Arduino-robot ble designet og bygd ved å bruke materialer og deler fra SparkFun, Elfa

Distrelec og de kybernetiske vekstedene ved NTNU. Roboten tilbyr den samme funksjon-

aliteten som de eksisterende robotene, men da den ene hjul-enkoderen ble ødelagt iløpet

av den siste uken av prosjektet, fungerer ikke posisjonsestimering i roboten.

Kommunikasjonsstandarden ble oppdatert fra Bluetooth til Bluetooth Smart, ved å bruke

nRF51-dongler utviklet av Nordic Semiconductor. Programvaren som kjører på serverdon-

gelen ble utviklet i programmeringsspråket C.

Ved å studere den eksisterende serverapplikasjonen, skrevet i MATLAB, tilegnet gruppen

seg en innsikt i systemets funksjonalitet. Mesteparten av den samme funksjonaliteten ble

implementert i en ny serverapplikasjon utviklet i Java. Systemarkitekturen ble designet

ved hjelp av moduler, og hver modul hadde hvert sitt unike ansvarsområde.

Gruppen foretok en omfattende designprosess for å utvikle det grafiske brukergrensesnittet

til systemet. Ved å bruke velkjente prinsipper og retningslinjer under utformingen, ble

brukergrensesnittet designet med menneskets oppfattelsesevne i fokus. Brukergrensesnittet

ble utviklet ved hjelp av en GUI-builder i utviklingsverktøyet NetBeans, og målet var å

implementere all funksjonaliteten fra den eksisterende løsningen, men presentere denne

på en mer brukervennlig måte.

iii

iv

Conclusion

During the Master Thesis, the group has developed a server application and a Graphical

User Interface in Java, software for an nRF51-dongle in C, as well as built an Arduino-

robot. The different parts of the project seems to be good solutions to the problem

description the group made at project start.

Choosing Java as programming platform facilitated a clear structure of the code and

provided functionality for dividing the system into modules. The server application is

developed in terms of the guidelines in “Code Complete”, and is structured in a way

that makes it easy for future projects to understand and further develop the software by

adding new functionality. The code is generalised, so that it is possible to add robots with

different specifications than the ones already existing, e.g. a robot with more than four

infrared sensors. The server application inherits most of the functionality implemented

in previous solutions, however, in our implementation the system is processing data and

controlling the connected robots in real-time.

The user interface is developed during a design process where the human perception

has been in focus. The process has helped the group focus on the aspects that are

important when designing a graphical user interface, and the final product inherits most

of the functionality provided in the previous solutions, but presents them in a more

user-friendly way.

Choosing Bluetooth Smart as communication protocol enabled fast, short-range and

low power consuming communication. The protocol was not known to the groups at

beforehand, but by studying the standard, the groups managed to implement it into the

system. The server-dongle receives and processes five messages per second from each

robot connected, and delivers update and status messages to the robot dependent on

the server application state. The communication range suited for the system is less than

15 meters between the server and the connected robots, this to ensure that all messages

are received.

The group has built a new robot, increasing the existing collection of robots. The robot

uses an Arduino as the microcomputer and it is built using the same wheels, gears,

infrared sensors, tower and intertial measurement unit as the AVR-robot. Using AVR-

dude enabled the Arduino-robot to use the same real-time operating system as running

on the AVR-robot, without having to rewrite too much of the code. One of the wheel

v

encoders got damaged during the last week of the project, and therefore it cannot

estimate its position at this point in time. Other than the broken encoder, the robot

works as intended and is therefore successfully built and implemented.

During the project period, the group has gained useful experience regarding project

management and implementation. As “System for Self-Navigating Autonomous Robots”

is a part of a system consisting of three dependent projects, the key to success has been

communication and cooperation. Regular conversations and meetings with both the

employer and the other groups working with the system have enabled effective solving

of any changes to the project tasks. Using Git as version control tool for the developing

of the software made it possible for several groups to work on the same application.

Compared to the scope of the project, the group is pleased with the technical result. The

solution meets all the requirements of technical functionality and the solution seems

to be a modernised solution compared to the prior implementations of the system.

Updating the communication standard from Bluetooth to Bluetooth Smart, rebuilding

the server application from MATLAB to Java, and building a new robot based on an

Arduino microcomputer can all be said to extend the system in a provident way.

vi

Acknowledgements

This master thesis ends a two-year Master’s degree programme for Cybernetics and

Robotics at The Norwegian University of Science and Technology, Trondheim. The

thesis constitutes the basis for evaluation of the subject “TTK4900 Teknisk Kybernetikk,

Masteroppgave”, and it counts 30p for each student.

A special thanks to our supervisor and employer Tor Engebret Onshus, professor at

The Department of Engineering Cybernetics. Onshus has facilitated a good dialogue

throughout the project period and has laid a solid foundation for the implementation of

this project.

The group would like to thank the two other cooperating parties, Erlend Ese and Eirik

Thon, for great teamwork. Without our close cooperation during the project period, the

resulting product would not have been as good as it became.

Further, a thank goes out to the guys at both the Cybernetics Mechanical Workshop

and the Cybernetics Electronic Workshop. The Mechanical Workshop has provided us

with mechanical parts, while the Electronic Workshop has provided a safe environment

for building and soldering the robot, as well as electronic parts needed throughout the

project period.

Finally we would like to thank the guys at office B117, for providing a social and engaging

working environment.

“Do not seek to follow in the footsteps of others, instead, seek what they

sought.”

- Matsuo Basho

. .

Mats Gjerset Rødseth Thor Eivind Svergja Andersen

matsroedseth@hotmail.no te@svergja.com

vii

viii

Contents

Summary i

Conclusion v

Acknowledgements vii

I INTRODUCTION AND THEORETICAL BASIS 1

1 Introduction 3

1.1 Background Information . 3

1.2 Objective . 4

1.3 Content of the Report . 5

1.4 Previous work . 6

2 Theoretical Basis 7

2.1 Physical . 7

2.1.1 Electronics . 7

2.1.2 Microcomputers . 9

2.1.3 Inertial Measuring Unit . 10

2.2 Communication . 11

2.2.1 Serial Communication . 11

2.2.2 Wireless Communication . 12

2.3 Programming Platforms . 13

2.3.1 Java . 13

2.3.2 Arduino . 14

2.3.3 C . 14

2.3.4 MATLAB . 15

2.4 Human-Computer Interaction . 15

2.4.1 Design Process . 15

2.4.2 The Gestalt Principles . 16

2.4.3 Schneidermans 8 Golden Rules . 17

2.5 System Architecture . 19

2.5.1 Concurrent Programming . 19

2.5.2 Code Complete . 20

ix

II MATERIAL, METHODS AND RESULTS 23

3 Material 25

3.1 Software . 25

3.2 Hardware . 27

4 Project Management 31

5 Arduino-Robot 33

5.1 Designing the Robot . 33

5.1.1 Acquiring Materials . 33

5.1.2 Assembly . 34

5.1.3 Wiring . 35

5.2 Programming the Arduino-Robot . 36

5.2.1 Requirements . 37

5.2.2 Configuring Software . 38

5.3 Improving the Robot . 40

5.3.1 Designing the Motor and Axle Plastic Housings 40

5.3.2 Designing the Printed Circuit Board 41

5.4 The Final Product . 43

6 Wireless Communication 45

6.1 Programming the nRF51-dongle . 45

6.2 Developing the nRF51-server Software . 46

6.3 Creating the Message Protocol . 47

6.4 Distance and Integrity Tests . 49

7 Server Application 53

7.1 Designing the System Architecture . 53

7.2 Designing the Real-Time System Flow . 55

7.3 Structure . 55

7.4 System Flow . 57

7.5 Functionality . 59

7.6 Limitations . 60

8 Graphical User Interface 61

8.1 Design Process . 61

8.1.1 Sense the Gap . 61

8.1.2 Understand and Refine the Problem 61

x

8.1.3 Explore . 62

8.1.4 Evaluation and Feedback . 65

8.1.5 Select Plan . 66

8.2 Programming the Graphical User Interface 66

8.3 The Final Product . 66

9 Testing the System 71

III DISCUSSION, CONCLUSION AND FUTURE WORK 73

10 Discussion 75

10.1 Arduino-Robot . 75

10.2 Using Bluetooth as Communication Protocol 75

10.3 Using nRF51 as Communication Unit . 76

10.4 The Message Protocol . 77

10.5 Graphical User Interface . 77

10.6 Selecting the Programming Platform . 78

11 Conclusion 81

12 Future Work 83

Acronyms 85

Bibliography 87

Appendices 93

xi

xii

List of Figures

1.1 The three theses that form the system . 5

2.1 Infrared triangulation [40] . 8

2.2 Arduino Mega 2560 pin diagram [4] . 9

2.3 Simplified UART Interface [18] . 11

2.4 SPI Interface [19] . 12

2.5 Java compiling process [38] . 14

2.6 The four main steps in a design process [56] 16

2.7 Activities that form software construction [33] 20

2.8 The five levels of design in a program [33] . 22

3.1 Arduino Mega 2560 [17] . 27

3.2 Motorcontroller [17] . 27

3.3 IMU [17] . 27

3.4 Infrared Sensor [17] . 28

3.5 nRF51-dongle [49] . 28

3.6 Robot Chassis [17] . 28

3.7 Motor and encoder kit [17] . 29

5.1 Bottom part of the robot (prototype) . 35

5.2 Top part of the robot (prototype) . 35

5.3 Wiring diagram for the Arduino-robot, as built 36

5.4 Blinking led example in C . 40

5.5 Wheels leaning towards the chassis before improvements 41

5.6 Eagle Schematic drawing . 42

5.7 Eagle Board drawing . 43

5.8 The finished Arduino-robot . 44

6.1 Flow of the different message types between robot and server 49

7.1 Dividing the system into subsystems and packages during project planning

phase . 54

7.2 Structure of the system modules . 56

7.3 Simple class diagram of the Java application 58

xiii

8.1 Graphical User Interface, suggestion 1 . 63

8.2 Graphical User Interface, suggestion 2 . 64

8.3 Graphical User Interface, suggestion 3 . 65

8.4 GUI, Main window . 67

8.5 GUI Flow . 69

9.1 Maze used during the testing of the system 71

9.2 Four map plots of the same maze . 72

10.1 Start-Stop panel from GUI, Main window . 78

xiv

List of Tables

3.1 Extra Material . 30

6.1 Sketched list over messages from the Robot 48

6.2 Sketched list over messages from the Server 48

6.3 Message Integrity Test in Corridor . 50

6.4 Message Integrity Test in Open Landscape 51

8.1 Criteria for functionality in the GUI . 63

8.2 User feedback regarding GUI Design . 65

xv

xvi

PART I:
INTRODUCTION AND THEORETICAL BASIS

1 | Introduction

1.1 Background Information

It has always been important for human to record their surroundings, and the history

of mapping can be traced back to more than 3000 years B.C. The first maps consisted

of trade routes, hunting grounds and small areas that included places of interest. The

maps were not very accurate, with bad relationships and few details included, but the

maker was able to show the features that the maker wished to record [54].

The Greeks and the Romans redefined the art of mapping, and when Claudius Ptole-

maeus published his work “Geographia” in year 150 A.D, the European geographic

thinking was revolutionised [54]. As the years have passed, modern technology has

expanded the ways people can map areas, from sundials and compass to the present

GPS.

Today’s technology enables humans to automate the way areas are mapped, using

swarms of cooperating robots that use sensors to “perceive” their surroundings. In

situations where massive destructions have happened due to natural disasters, it is

crucial to track survivors soon after the incident. Rescue teams cannot look further

than 18-20 feet into a destroyed building using traditional probes and boroscopes [44],

but modern technology allows search & rescue teams to send in several cooperating

autonomous robots that can localise the survivors, and let the rescue team understand

the areas based on the robot’s recordings [48]. The use of robots in search & rescue is not

limited to natural disasters, but can also be applicable in man-made situations such as

warfare areas and factory explosions.

Mapping unknown areas using cooperating robots has been studied and implemented

through projects at NTNU during the last 12 years. In some projects the students have

built robots that use different kinds of sensors, while others have designed/improved

server software that exploits the data gathered by the robots. An important aspect of the

projects has been to exploit the functionality of cheap parts to do advanced tasks, and

this has also been the focus of this thesis.

3

CHAPTER 1. INTRODUCTION

1.2 Objective

The objective of this thesis is to re-implement the functionality of the existing solution in

a new server application using a more suitable programming language, to build a robot

based on a new type of microcomputer, as well as to update the wireless communication

between the robots and the server using state-of-the-art technology.

Server Application

The new server application should provide real-time features in addition to being able to

control several robots at the same time. Further, the application should:

• Implement the functionality from the existing solution.

• Have a system structure that is formed by modules, thus facilitating future work.

• Include a Graphical User Interface that presents the system’s functionality in a

more user-friendly way.

Robot

The new robot should add to the existing collection of robots, and should implement the

following:

• The same sensors as existing robots.

• Arduino as microcomputer.

• Ese (2016) real-time Operating System (OS).

• The new wireless communication standard.

Wireless communication

In addition to developing a new server application and building a new robot, the group

will select a new standard for the system’s wireless communication, and develop the

server-side software for the new communication.

4

1.3 CONTENT OF THE REPORT

1.3 Content of the Report

Figure 1.1: The three theses that form the system

This thesis covers the process of re-implementing the server application in the Java

programming language, building an Arduino-based robot, designing and developing a

Graphical User Interface (GUI), as well as updating the wireless communication using

Bluetooth Smart and developing software for the server’s communication unit. The

thesis is a part of a threefold system, and together with two other theses it forms the

“System for Self-Navigating Autonomous Robots (SSNAR)”.

Thon (2016) covers the development of the system’s simulator, the navigation and path

planning, as well as the mapping of discovered area. Ese (2016) provides information

about improving the physical robots, developing of the robot’s communication unit, as

well as developing of the robot’s real-time OS, with all of its features.

This thesis consists of three parts. The first part, “Introduction and Theoretical Basis”,

provides information about background history, previous work, the objectives of the

report and relevant theory for the thesis. Part two, “Material, Methods and Results”,

includes a list over used material (both software and hardware), and is further divided

into chapters that cover both methods and results for the different parts of the system.

The final part, “Discussion, Conclusion and Future Work”, discusses and concludes over

the results, and provides some suggestions for future work based on the findings in this

thesis.

5

CHAPTER 1. INTRODUCTION

1.4 Previous work

When this thesis was started, a server control system developed in MATLAB existed. The

server could connect to one robot with the use of a Bluetooth-dongle. If the user wanted

to connect to several robots, several instances of the MATLAB server application had to

be started. This meant that one instance of MATLAB per robot was needed. The different

MATLAB instances, running on the same computer, communicated with each other via

TCP/IP. The approach required a lot of computer resources and scaled badly when more

than one robot was connected.

The MATLAB software relied on a third-party toolbox “Centre for Autonomous System

Toolbox” first introduced in a project done by Syvertsen in 2005, and in the following

years the server software and the robots were extended and modified several times.

Please refer to Homestad (2013) for an extended elaboration about the content of the

earlier reports.

During the project and master thesis of Halvorsen (2013 & 2014) cooperation between

robots were introduced. The work with the NXT-robot, server application and the

implemented simulator was continued.

The lack of the real-time aspect in the system laid the foundation for Ese (2015). During

his project, the work with a real-time OS was started. In addition, the NXT-robot was

re-built such that the sensors mounted on the robot were the same as on the AVR-robot,

but the NXT-robot was not able to map autonomously. It could only produce simple

maps, and the reason behind this was not investigated. The developed real-time OS

was implemented on the AVR-robot during the project. Ese described the current state

of the server application as full of bugs. The simulator worked but crashed sporadic,

the application printed error messages during start-up leading to forced restart of the

software, the collaboration did not work, and the GUI presented buttons that did not

have any function.

6

2 | Theoretical Basis

This chapter provides necessary theory to understand principles and methods used in the

thesis. It provides background information about the physical components in Section 2.1,

the different types of communication used in Section 2.2 and the various programming

languages used in Section 2.3. This chapter also contains background information about

Human-Computer Interaction (HCI) in Section 2.4 and System Architecture in Section 2.5.

2.1 Physical

This section contains backgrund information about some of the physical components used

in this thesis.

2.1.1 Electronics

Capacitor

Capacitors can be found in different sizes and materials, the most popular being elec-

trolytic capacitors for values greater than 1µF, and ceramic capacitors for lower values.

In this thesis there were mainly two applications areas for capacitors, these are further

explained below.

If a component has a sudden high demand for power, the demand can be enough to

drop the voltage in the circuit and other components can start to misbehave. By adding

a high-value capacitor between ground and VCC, the capacitor will act as a reservoir of

electricity, so that the component will draw the charge from both the supply and the

capacitor. A typical component where this is needed is a servo motor that draws a lot of

power as the motor is starting. A good default value for a servo motor is 430µF, depending

on the application [36].

The capacitor also has another great feature; in a DC circuit, it can filter out high-

frequency AC noise. Not all components need pure DC signal, but some components,

such as logic chips, may start to operate incorrectly if the voltages swing to much. By

placing a capacitor between ground and VCC, the capacitor acts as a bypass capacitor

and shorts the AC signal which removes any AC noise on the DC voltage. Typically this

7

CHAPTER 2. THEORETICAL BASIS

kind of capacitor is smaller in size than the first described one; a good default value is

100nF ceramic capacitor [46].

For both type of capacitors, it is important to put it as close to the component as possible.

Infrared Sensor

Infrared (IR) sensors work by emitting an infrared light and then detecting if the light

gets reflected back to the sensor. There are two types of IR sensors, one who only detects

if an object is in close proximity and one that can determine how far away an object is.

Since the sensor work by emitting and analysing infrared light, it can be affected by other

infrared sources like sunlight [45].

The sensors are an affordable alternative compared to other range sensors. They mea-

sure at a narrow beam width which can result in a more detailed representation of the

environment [45].

The distance to an object is measured by triangulation. When light returns, it comes at

an angle dependent on the distance of the reflecting object, which Figure 2.1 illustrates.

The distance can then be calculated from the angle. Light does not reflect the same way

off every surface and the sensor reading will be different for different surfaces and/or

colours even if the range is the same [45].

Figure 2.1: Infrared triangulation [40]

8

2.1 PHYSICAL

2.1.2 Microcomputers

Arduino Mega 2560

There are many different versions of Arduino boards, providing different physical sizes,

processors and number of Input/Output (I/O) [3].

The Mega 2560 is based on the ATmega2560 and it is an improved update to the Arduino

Mega. It provides 54 digital I/O pins and 16 analogue input pins. Figure 2.2 illustrates

the mapping between the Arduino pins and ATmega2560 ports [2].

Figure 2.2: Arduino Mega 2560 pin diagram [4]

9

CHAPTER 2. THEORETICAL BASIS

nRF51

The nRF51-series supports several different protocol stacks, including Bluetooth Smart

(Bluetooth low energy), ANT and proprietary 2.4GHz protocols.

The nRF51-dongle is a low-cost USB development dongle; it has six General-purpose

input/output (GPIO) pins and can be used as a peripheral between computers and

robots [49].

2.1.3 Inertial Measuring Unit

Inertial Measurement Unit (IMU) is a single unit which collects angular velocity, linear

acceleration and sometimes magnetic field data. An IMU consists of accelerometer,

gyroscope and sometimes a magnetometer [58].

Accelerometer

There are several different types of accelerometers, and the most commonly used in

inertial navigation systems are the closed loop pendulous accelerometers, which can be

implemented in Microelectromechanical systems (MEMS). A mass is maintained in its

null position by an electromagnetic device, the magnitude of the electric current in the

coils change when there is a change of movement on the accelerometer [58].

Gyroscope

In the same manner as accelerometers, there are several types of gyroscopes. The most

common for low and medium cost applications are the vibratory gyroscopes which

can be implemented in MEMS. These gyros use the law of Coriolis to measure angular

velocity, and are typically designed as an electronically driven resonator fabricated out

of a single piece of quartz or silicon.The Coriolis force can then be measured capacitively

in a silicon instrument or piezoelectrically in a quartz instrument [58].

10

2.2 COMMUNICATION

2.2 Communication

Both serial and wireless communication are used in this thesis. This section provides

background information about the different communication protocols.

2.2.1 Serial Communication

Universal Asynchronous Receiver/Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) is a bus that acts as a con-

verter between parallel and serial interfaces. It enables a computer that uses an RS-232

interface to communicate with peripherals that use two-wired Serial RX-TX (see Figure

2.3) [31]. UARTs are responsible for sending and receiving serial data. On the transmit

side, a data packet is created and sent to the TX line, while on the receiving end, the

UART has to sample the RX line at the expected baud rate [18].

Figure 2.3: Simplified UART Interface [18]

11

CHAPTER 2. THEORETICAL BASIS

Serial Peripheral Interface

Serial Peripheral Interface (SPI) was developed by Motorola to provide short-distance

communication, primarily for use in embedded systems [11]. The standard provides full-

duplex synchronous serial communication over a four-wired interface with the following

signals [21]:

• MOSI - Master-out, Slave-in

• MISO - Master-in, Slave-out

• SCLK - Serial clock

• SS - Slave Select

Figure 2.4: SPI Interface [19]

SPI is a single master-multiple slave protocol (see Figure 2.4), and the master send-

s/requests information to/from the slaves by pulling the SS low at the specific slave,

activating the clock signal and generating information onto MOSI while it samples the

MISO line [52]. For further reading and as an introduction to the practical use of SPI, see

the “Serial Peripheral Interface (SPI)”-tutorial at SparkFun [19].

2.2.2 Wireless Communication

Bluetooth

Bluetooth is a low energy, short-range technology created in 1994 [28]. It was developed

by Bluetooth Special Interest Group (SIG) and named after the viking king Harald Blåtand.

12

2.3 PROGRAMMING PLATFORMS

The intention of Bluetooth was to allow wireless connectivity and collaboration between

products [27].

Bluetooth technology ensures that devices are capable of communicating with each

other regardless of the manufacturer of the device [14].

Specifications

The different Bluetooth versions have different specifications, but as the newer versions

are backwards compatible [41] they cover the older versions. As Bluetooth Smart is used

in this thesis, specifications for that standard are listed below:

• Theoretical maximum data rate is 260 kbps.

• Power consumption is ª100 µAh per day.

• In 3ms, a device can connect, send and acknowledge data.

• Bluetooth Smart advertises on 2402, 2426 and 2480 MHz, and thus avoids interfer-

ence with Wi-Fi traffic [13].

2.3 Programming Platforms

There are four different programming languages used in this thesis. The server application

is programmed in Java, the communication dongle is programmed in C, the old program

was programmed in MATLAB and testing were done on the robot with Arduino IDE. This

section provides basic theory about these four programming languages.

2.3.1 Java

Java is an object-oriented programming language mainly developed by James Gosling

and other developers at Sun Microsystems. The language is based on the “WORA” princi-

ple [59], “Write Once, Run Anywhere”. This means that Java does not compile to machine

code, but instead is compiled and run by Java Virtual Machine (JVM). In this way one

can run Java applications on all systems where there is a JVM [39].

All source code is written in plain text using the “.java” file format. The files are compiled

to “.class” format that contains bytecode which JVM uses to run the application. The

process is illustrated in Figure 2.5.

13

CHAPTER 2. THEORETICAL BASIS

Figure 2.5: Java compiling process [38]

The Java Application Programming Interface (API) is a big collection of ready-made

software components that are grouped in libraries that consist of classes and interfaces

that are related to each other.

Java requires a software platform to run compiled applications, and one of the official

platforms are “Java SE” [39].

2.3.2 Arduino

Arduino is an open-source platform based on easy-to-use hardware and software, devel-

oped at Ivrea Interaction Design Institute [5]. Its Integrated Development Environment

(IDE) is cross-platform, and the programming environment is easy to use both for inex-

perienced and experienced programmers.

Arduino programmes may be written in any programming language with a compiler that

produces binary machine code, such as C and C++ [22]. Its core libraries are written in

C and C++ and is compiled using avr-gcc and AVR Libc [1].

2.3.3 C

The C programming language was developed by Dennis M. Ritchie and Bell Labs in the

early 1970s [37]. The language provides low-level access to memory, making it suitable

for programming embedded systems consisting of microcomputers. C is not tied to any

particular hardware or system, it is cross-platform. Thus, the programmes will run on

any machine that supports C.

C provides a variety of data types and high-level statements such as if-else, switch,

while and for. Even though it enables access to memory, it does not provide read/write

statements for input and output [8].

14

2.4 HUMAN-COMPUTER INTERACTION

2.3.4 MATLAB

MATLAB is a high-level language and interactive environment for numerical computa-

tion, visualisation and programming. MATLAB makes it easy to analyse data and develop

algorithms for a range of applications including signal processing. MATLAB is developed

by Mathworks [32].

2.4 Human-Computer Interaction

“Design is conceiving and giving form to artefacts that solve problems”

- Karl T.Ulrich

2.4.1 Design Process

In the process of making an artefact, four main steps are defined (see Figure 2.6) :

1. “Sense gap”: Design begins with a gap in the user experience. Without a gap in the

user experience, there is no need for design.

2. “Define problem”: The gap has to be explained. At this stage of the design process

the user-needs have to be identified, and in the identification phase, there is a

possibility that the basis for the design process becomes wrong. The user is often

not certain in what he wants, and what he explains can be perceived wrongly by

the designer. It is important that the “perfect system” is described as thoroughly

as possible.

3. “Explore alternatives”: In this step, the designer tries to explore several alternative

ways to find different solutions to the problem. Involving the user in user-testing,

including contacting people that have an understanding of the problem, can give

an idea of the right approach, thus the designer can provide multiple solutions.

4. “Select plan”: The exploration usually provides several solutions to the problem,

and therefore the selection of the plan is an important stage of the design process.

Through conversations with the user, the designer can narrow down the results of

the previous phase to the best solution.

It is common to iterate through steps 1-3 several times before the best option is found

[56].

15

CHAPTER 2. THEORETICAL BASIS

Figure 2.6: The four main steps in a design process [56]

2.4.2 The Gestalt Principles

The Gestalt Principles is a framework describing how users experience and perceive

visual interaction with a user interface. Humans are “programmed” in a way that they

should perceive their surroundings as whole objects, and they search for structure and

contexts instead of accepting discontinuous lines and figures. There are several Gestalt

Principles, the most relevant for this thesis being [30]:

1. Proximity

2. Similarity

3. Continuity

4. Figure/Ground

Proximity

The distance between objects influences the user perception of whether the objects

are organised in groups or not. Objects close to each other are perceived as connected

and thus are influenced by each other. The Proximity Principle affects a Graphical

User Interface (GUI) in a way that if the GUI is separated in groups, the user will easier

understand the system [30].

Similarity

The similarity between objects causes the objects to feel grouped, and objects that are

not in close proximity to each other can still be perceived as having relevance to each

other [30].

16

2.4 HUMAN-COMPUTER INTERACTION

Continuity

The human mind is “programmed” to see continuity and hence it fills in information to

perceive discontinuous shapes as continuous [30].

Figure/Ground

The visual system structures information perceiving that objects in the foreground have

a greater importance than objects in the background. Smaller objects placed on bigger

objects are perceived as a figure while the larger objects are perceived as the ground

beneath the figure. Using the principle of figure/ground can enable the GUI to present

valuable information in the foreground [30].

2.4.3 Schneidermans 8 Golden Rules

The eight golden rules of Schneiderman are guidelines for GUI development. The

principles were developed based on experience gained by perceptual and cognitive

psychology in an attempt to improve the design of interactive systems. According to

Schneiderman [7], the guidelines needs to be validated and adapted to specific design

domains. A list like this will never be complete, but it has been received as a useful guide

for students and designers.

1. Strive for consistency

Actions should be consistent in similar scenarios. This means that the colour, layout

and font selection should be consistent, menus and help screens should use the same

terminology, and so on [7].

2. Cater to universal usability

Frequent users want to minimise the number of interactions to increase the pace of

interaction. Abbreviations, function keys and hidden commands suits the expert user,

while explanations and features for novices suits the inexperienced user [7].

3. Offer informative feedback

Every user action should provide a system feedback. Frequent and minor actions should

provide a modest response while infrequent and major actions should provide a more

substantial response [7].

17

CHAPTER 2. THEORETICAL BASIS

4. Design dialogue to yield closure

Action sequences should have a beginning, a middle, and an end. At the end of the

sequence, the system should provide informative feedback to give the operator the

satisfaction of accomplishment [7].

5. Prevent errors

The system should be designed in a way that the user is unable to make a serious error. If

the user has made an error, the system should offer an easy instruction for recovery [7].

6. Permit easy reversal of actions

Actions done by the user should be reversible. Providing this feature relieves anxiety

since the user knows errors can be undone [7].

7. Support internal locus of control

Experienced users should experience that they are in charge of the interface. They want

the interface to respond to their actions without surprises. If the user is forced to fill in

large amounts of data, has difficulties to get the required information, and has difficulties

to perform actions, his satisfaction will decrease and stress increase [7]

18

2.5 SYSTEM ARCHITECTURE

2.5 System Architecture

2.5.1 Concurrent Programming

A concurrent program consists of several streams of operations that may execute concur-

rently. The program is built in a way that the streams execute at the same time and they

can communicate with one another [43].

Threading

Each stream of instruction in a program is called a thread. If a multi-threaded applica-

tion is running, one of the threads may override the others in a way that blocks them

from running. This is called starving. To prevent starving (the Java language does not

guarantee this), most JVM provides fairness allowing all of the threads to execute their

tasks [43].

Shared Objects

According to “The little book of semaphores”[16], objects and variables that are accessed

by several threads are called “shared objects/variables”. The use of shared objects is a way

to make threads interact with one another, but it is also a way to introduce concurrency

problems to the application. Some of the problems and solutions are further explained

below.

Race Conditions

Race conditions happens when several threads tries writing to/reading from the same

variable or object at the same time. The resulting outcome depends on the order of

execution, and in worst case, the result may be erroneous [53].

Synchronization

The main preventing action in Java to avoid race conditions is object locking. By syn-

chronizing a block of code or a whole method, the object lock-key will be acquired by

the first thread that enters the code block, while the other threads will have to wait. This

way one can prevent that several threads access variables at the same time [43].

19

CHAPTER 2. THEORETICAL BASIS

Deadlock

Deadlock is the ultimate form for starvation (see Section 2.5.1). Deadlock happens

when two or more threads are waiting on a condition that cannot be satisfied [35]. The

most classic problem to illustrate how deadlock happens is “The Dining Philosophers

Problem”[42]. In the philosophers problem, no philosopher can eat unless he has two

forks, and since there are not enough forks at the table for them to acquire, all of the

philosophers starves to death.

2.5.2 Code Complete

Software Construction

Developing software is a complicated process, and there are several activities that form

the software construction. Topics like “Problem definition”, “Software architecture”, “Inte-

gration” and “System testing” are central in the process of constructing a well functioning

application (see Figure 2.7).

Figure 2.7: Activities that form software construction [33]

When designing software, it is important to minimise the complexity. Make the system

easy to understand, without making designs that are “clever” inside your head. The

system should be self-explanatory in the means that it should be easy to understand if

someone in the future would want to do some maintenance to it. It is important that

20

2.5 SYSTEM ARCHITECTURE

the connection between different parts of the program follow the principles of “High

cohesion” and “Loose coupling”:

• Cohesion - Cohesion refers to how the classes in the system are defined to take

care of one responsibility, and how the different classes use methods and such

from one another [9].

• Coupling - Good abstractions, encapsulation and information hiding makes the

number of interconnections as low as possible, and thus leads to loose coupling

[9].

Extensibility and re-usability results in easier maintenance and implementation as well,

and should therefore be taken into account.

Levels of Design

When starting the design of a software application, Steven McConnell mentions the five

levels of design. The five levels of design, shown in Figure 2.8, describes the levels of

detail in a software system and how the system developer should approach the problem

[33]:

• Software system - Describe the entire system and how it should work.

• Division into subsystems/packages - Describe how the system should be built

up by subsystems that take care of different areas of responsibility, and how the

subsystems should use each other.

• Division into classes within packages - Identify the classes in the system and

describe how the classes interact with the rest of the system.

• Division into data and routines within classes - Describe the class routines in

detail. This will lead to a better understanding of the class’ interface.

• Internal routine design - Describe the detailed functionality of the routines (e.g.

using pseudocode).

Naming Conventions

It is important to choose good, describing names when programming a complex software

system. The routine-name should describe the behaviour and the output of the routine,

and in that way, it is clear what the routine should be used to do. The routines should

not be differentiated by number, but by functionality. The variables should also have

describing names, and be differentiated from the types using lower case on the first

letter: TypeName variabelName

21

CHAPTER 2. THEORETICAL BASIS

Figure 2.8: The five levels of design in a program [33]

The different programming languages have different conventions. Some of the Java-

specific conventions are [33]:

• Class names capitalise the first letter of each word.

• i and j are integer indexes.

• get and set are used for accessor methods.

22

PART II:
MATERIAL, METHODS AND RESULTS

3 | Material

The following sections provides a list and describes the software and hardware components

used in this project.

3.1 Software

• Arduino IDE, described in Section 2.3.2.

• Atmel Studio (version 7) is an integrated development platform for developing

Atmel-based microcontroller applications, by Atmel Corporation. The environ-

ment provides write, build and debug functionality for an application written in

C/C++ or assembly code. Windows is the supported operating system [12].

• Eagle (version 7.5), Easy Applicable Graphical Layout Editor, is a Printed Circuit

Board (PCB) design software. It provides three modules, where the user can design

the schematics, edit the board layout and route the wires manually/automatically.

The software is cross-platform and is available both for Windows, Linux and Mac

[57].

• Keil µVison 5 combines source code editing, program debugging, project manage-

ment and build facilities in one environment. The software provides functionality

for building and programming device peripherals [24]. µVision can only be in-

stalled on Windows.

• MATLAB (version R2015a), described in Section 2.3.4.

• Microsoft Project is a project management tool for Windows that let the users plan

their project progress in detail. It provides information about scheduled workloads

for all the participants and helps to keep progress in the project. Through the

software, the team can generate useful illustrations like Gantt diagrams to get a

clear presentation of the project development [34].

• MicroStation is a Computer-Aided Design (CAD) software for producing drawings

and documentation, developed by Bentley. The software can e.g. be used to make

wiring diagrams for embedded systems [26]. Version 8.11 is used in this thesis.

MicroStation can only be installed on a Windows computer.

25

CHAPTER 3. MATERIAL

• NetBeans is a tool for software development. Installing different plugins let the

user write programs in Java, JavaScript, HTML5, C/C++ and more. The software is

cross-platform and is available for Windows, Linux and Mac and the latest version

available is NetBeans IDE 8.1 [10].

• nrfGoStudio is a Windows application, developed by Nordic Semiconductor,

which eases development when using the nRFgo Development kit. The soft-

ware provides a visual editor and functionality for configuring and programming

nRF51-devices [51].

• SolidWorks is a modelling CAD software, developed by Dassault Systèmes. It pro-

vides functionality for design, simulation and publishing of 3D-modelled figures.

Windows is the supported operating system [55].

• Source Tree is a free client for Git and Mercurial projects. It provides a straightfor-

ward graphical user interface and makes it easy to manage projects [6]. It can be

installed on both Mac and Windows.

26

3.2 HARDWARE

3.2 Hardware

Arduino Mega 2560 R3

Figure 3.1: Arduino Mega
2560 [17]

• ATmega2560 microcontroller

• Input voltage - 7-12V

• 54 Digital I/O pins (14 Pulse-Width Modulation

(PWM) outputs)

• 16 Analog inputs

• 256k Flash memory

• 16Mhz Clock speed

• Bought from SparkFun

• 45.95 USD

Dual Motor Driver

Figure 3.2: Motorcontroller
[17]

• Dual bidirectional motor driver

• On-board user-accessible 5V regulator

• Enable and direction control pins

• Bought from SparkFun

• 34.95 USD

IMU, 6 Degrees of Freedom

Figure 3.3: IMU [17]

• Low power consumption

• Smart FIFO up to 8 kB buffer

• Featuring both I 2C and SPI

• 3.3V device

• Bought from SparkFun

• 19.95 USD

27

CHAPTER 3. MATERIAL

Infrared Proximity Sensor - Sharp

Figure 3.4: Infrared Sensor
[17]

• 4x Infrared (IR) sensors

• Range: 10-80 cm

• Bought from SparkFun

• 13.25 USD each

Nordic Semiconductor nRF51-dongle

Figure 3.5: nRF51-dongle
[49]

• Supports Bluetooth Smart, ANT and 2.4GHz

• Virtual COM port interface through UART

• 6 solder pads for GPIO/interface connections

• Bought from Omega Verksted, NTNU

• 150 NOK

Shadow Chassis

Figure 3.6: Robot Chassis
[17]

• Light weight ABS plastic.

• 196mm Length

• 126mm Width

• 44mm Height

• Bought from SparkFun

• 12.95 USD

28

3.2 HARDWARE

Wheels, motors & encoders

Figure 3.7: Motor and en-
coder kit [17]

• 2x 65mm Wheels

• 2x DG02S Mini DC gear motor

• 2x Neodymium 8-pole magnets

• 2x Hall effect sensor

• Bought from SparkFun

• 19.95 USD

In addition, the following parts (see Table 3.1) have been used during this project.

Please refer to Appendix 1 for datasheets regarding the hardware.

29

CHAPTER 3. MATERIAL

Table
3.1:Extra

M
aterial

P
art

A
m

ou
n

t
D

escrip
tion

A
qu

ired
From

C
ost

3D
p

rin
ted

m
aterials

4
M

otor
h

olders
an

d
axle

h
olders

M
W

a
-

B
allcaster

1
3/8"

m
etalballcaster

Sp
arkFu

n
2.95

U
SD

B
attery

1
11,1V

4600m
A

h
lith

iu
m

battery
E

lfa
D

istrelec
938

N
O

K
B

readboard
1

For
p

rototyp
in

g
EW

b
-

C
ap

acitors
2

220
µF

before
th

e
m

icro
servo,100n

F
before

n
R

F51
EW

-
C

h
argin

g
tow

ers
2

Plastic
tow

er
th

atfi
ts

th
e

ch
argin

g
station

M
W

-
C

om
p

ass
1

For
better

p
osition

estim
ates

E
rlen

d
E

se
-

G
lass

fu
se

1
To

p
rotectth

e
robot’s

circu
it

EW
-

LE
D

s
3

Statu
s

LE
D

s,red,green
an

d
oran

ge
colou

rs
EW

-
Lego

bricks
6

Variou
s

size
an

d
form

,u
sed

on
IR

tow
er

an
d

gears
Tor

O
n

sh
u

s
-

Lego
gears

8
G

ear
dow

n
th

e
w

h
eels

Tor
O

n
sh

u
s

-
Logic

levelcon
verters

3
B

i-D
irection

al,5V
to

3.3V
an

d
3.3V

to
5V

Sp
arkFu

n
2.95

U
SD

each
M

etallic
p

arts
5

For
IR

tow
er,m

otors
an

d
ballcaster

M
W

-
N

u
ts

20
D

ifferen
tsizes

M
W

-
PC

B
sh

ield
3

Prin
ted

atE
lp

roLab,soldered
atEW

E
lp

rolab
-

R
esistors

3
To

lim
itth

e
cu

rren
tin

th
e

LE
D

s
EW

-
Skrew

s
20

D
ifferen

tsizes
M

W
-

Sp
rin

gs
4

x
4cm

C
on

du
ctive

sp
rin

gs
for

th
e

ch
argin

g
tow

ers
M

W
-

Strip
s

15
EW

-
Sw

itch
es

2
O

n
/O

ffsw
itch

es
for

p
ow

er
an

d
ch

argin
g

EW
-

W
h

eels
2

N
ew

softer
w

h
eels,81,25cm

diam
eter

E
rlen

d
E

se
-

W
ires

-
Variou

s
w

ires
u

sed
to

con
n

ectcom
p

on
en

ts
EW

-

aM
ech

an
icalW

orksh
op

bE
lectron

ic
W

orksh
op

30

4 | Project Management

Using Microsoft Project (described in Section 3.1) as project management tool, has

enabled the group to get useful insight in the project progress. Tools like MS Project is

letting the user plan every part of a project in detail, which is necessary and valuable

both for small and large projects (e.g. a Master Thesis).

MS Project has provided information about how the project has progressed and made

it possible to adjust the workload according to the planned progress. The adjustments

provided a chance to stick with the schedule and made the group able to complete the

project within the deadline. Appendix 9 contains Gantt diagrams from each month.

Throughout the project, the team has logged all that has been done, and this has proven

to be an useful resource during the writing of the thesis. The log contains how many

hours each group member has worked, and which tasks the members has been working

with at the given time. The log has contributed to a general insight in what the other

member has been working with. Each month the group documented their progress with

a progress report, these are written in Norwegian and can be viewed in Appendix 8.

As well as logging the work, the group held meetings with both the employer and the

other teams that have been working on other parts of the system. Doing so, has enabled

the teams to cooperate the best way possible, and made them able to finish the project

in time. The group has logged all meetings with the employer as “Minutes of Meeting”

and they can be viewed in Appendix 5.

During the development of the software application, Git was used to ensure proper

version control, and thus enabled the groups to cooperate writing code on the same

application. Future projects can access a shared repository which will be updated after

project end, and to prevent misunderstandings, the repository that was used during this

project will not be available. This is because this project has more than 100 commits

alone, and if every project were on the same repository, it would get messy fast. The

thesis was also written using version control with Git.

In addition to version control, the teams used a shared document in Microsoft OneNote

to share thoughts and ideas throughout the project period. Dropbox was also used to

share relevant documents.

31

CHAPTER 4. PROJECT MANAGEMENT

32

5 | Arduino-Robot

This chapter describes the whole process making the Arduino-robot, from designing and

building, to programming and testing. Section 5.1 provides information about how

the robot parts were acquired and connected, Section 5.2 describes how to program the

Arduino, Section 5.3 explains how the robot was improved, while Section 5.4 presents the

final robot and its functionalities.

5.1 Designing the Robot

The robot design was draughted during the first week of the project. During that week,

the group discussed which parts were necessary to build a robot that met our goal. The

entire robot was planned out before ordering any parts to make sure that there were no

unnecessary purchases. It was important to order all parts as soon as possible as the

shipping time can be significant when ordering from the US.

5.1.1 Acquiring Materials

The chassis and most of the electronic parts of the Arduino-robot were ordered from

SparkFun [17] early in the second week. As the project progressed, some additional parts

were needed and the group ordered metallic parts and the two charging towers at the

Cybernetics Mechanical Workshop at NTNU.

The robot should be able to charge its battery, and as there is only one charger that

all of the robots shares, the robot should be able to use that one. Because of this, the

Arduino-robot has an 11.1V lithium battery which suits the named charger. The battery

was bought from a Norwegian vendor called Elfa Distrelec[15], since the price of lithium

batteries was the same as ordering from outside Norway.

Ese (2016) bought five nRF5-dongles from Omega Verksted NTNU for communication

use, and one of these was mounted on the Arduino-robot.

The PCB was designed in Eagle, see Section 3.1, and printed by Elprolab[20] at NTNU.

The plastic housings around the motors were designed in SolidWorks and 3D printed by

the Cybernetics Mechanical Workshop.

33

CHAPTER 5. ARDUINO-ROBOT

The switches, LEDs, resistors, capacitors and wires were all acquired from the Cybernetics

Electronic Workshop at NTNU.

5.1.2 Assembly

The robot chassis consists of two parts that can be separated into top and bottom.

Additionally, small plastic pillars were installed all around the robot to connect and

support the two parts, as well as the charging towers were designed to add an extra

connection between the two.

Bottom

The driving wheels were initially mounted in the center on the bottom plate; this makes

the robot turn radius as small as possible. The IMU was placed between the two wheels

at the exact center of the robot, which makes the IMU output as precise as possible. The

wheels and IMU were moved at a later stage of the project, this is further explained in

Section 5.3. The metal casting ball was mounted in the center back of the car, and a thin

metal plate was cut to make sure the casting ball was at the correct height so that the

bottom plate were parallel to the ground. The battery, which is the heaviest component

of the car, was placed right above the casting ball, making sure the robot was tail heavy.

As there was only a small space left in the front of the bottom plate, the breadboard was

placed there. Figure 5.1 shows the bottom part of the robot.

Top

The servo and the IR tower was placed in such order that the tower rotates at the center

of the robot. The tower itself was made out of Lego bricks, the same way as the IR

tower on the other robots. It is easy to take off and switch the sensors if needed. The

motor controller is placed right behind the IR tower, and in front of the tower is the

Arduino mounted. Next to the motor controller there are two switches, one for powering

the robot and one for enabling the charging towers. A switch on the charging tower is

something the other robots do not have, but the group decided that it was necessary

since driving with the charging towers enabled is a hazard. E.g. if the robot moves around

and makes the charging tower hit something that can conduct electricity, the switch will

eliminate the danger of short-circuiting the battery. The switches are marked with clear

symbols to reduce user failure. Additionally, there is installed a glass fuse to protect the

Arduino. The motor controller, IR tower and the Arduino is elevated so that wires can

run beneath them. Connected to the top plate but facing towards the bottom plate is the

wheel encoders. The encoders are placed in such order that they match with the motors

34

5.1 DESIGNING THE ROBOT

mounted on the bottom plate, with about 2mm distance from the magnet rings on the

motors. Figure 5.2 shows the top part of the robot.

There are several pictures and videos of the robot in Appendix 3.

Figure 5.1: Bottom part of the robot (prototype) Figure 5.2: Top part of the robot (prototype)

5.1.3 Wiring

Before the components were connected, a wiring diagram was created. The diagram

was updated whenever an improvement on the design was made, and Figure 5.3 shows

the newest version. The diagram ensured that all connections were done correctly and

made it easier for maintenance/troubleshooting. Standard colouring conventions were

used, with red as positive power, black as ground, while signal cables used other colours

depending on the component. When the prototype first was created, all wires were

connected to a breadboard. This made it easy to test if all components were correctly

connected and if they worked as intended. At a later stage in the project, the breadboard

was replaced by a PCB that acts as an Arduino shield, further explained in Section 5.3.

Connections between components were made with self-made jumper wires, which

makes it more straightforward to troubleshoot than many single wires on the same

board. Soldering was used to connect wires to the two switches and the charging tower

springs. All the soldering work was done in the Cybernetics Electronic Workshop since

the workshop provides a safe environment with sufficient ventilation.

As seen in Figure 5.3 the 5V was taken from the voltage regulator on the motor controller

35

CHAPTER 5. ARDUINO-ROBOT

[Academic use only]

Figure 5.3: Wiring diagram for the Arduino-robot, as built

and not from the Arduino, this because the voltage regulator on the Arduino could not

supply enough power. The IMU and the six GPIO pins on the nRF51-dongle require 3.3V

power, so these wires go via the Logic Level Converters. For communication, nRF51 uses

UART (Section 2.2.1) and the IMU uses SPI (Section 2.2.1).

As explained in Section 2.1.1, a capacitor is often used to prevent voltage level drop when

components draw too much power. When the servo motor starts it demands a lot of

power, so a capacitor is placed right next to it. Also, a ceramic capacitor is placed next to

the nRF51-dongle to remove AC noise on the DC voltage.

5.2 Programming the Arduino-Robot

It was important to make the Arduino-robot able to use the same software as the other

robots; this would save work and help the robots always having the newest software. The

existing robots are programmed in C and since the Arduino language is a set of C/C++

functions it is possible to copy the code directly and use it on the Arduino Mega. It is also

36

5.2 PROGRAMMING THE ARDUINO-ROBOT

possible to set-up a computer to directly compile and upload C code to the ATMEGA2560

chip on the Arduino. There are several steps to this, but once everything is installed and

properly configured it is quick and easy to make changes and upload new programs. By

doing so, the same program can run on all the robots from the different projects, and if

there is an improvement in the code in the future, it can easily be installed on all of the

robots.

The software that runs on the Arduino-robot is the same as the one on the AVR-robot,

for more information about the software see Ese (2016). The next subsections will focus

on how to program C code on the Arduino.

5.2.1 Requirements

AtmelStudio 6.2

It is possible to configure external tools such as AVRdude, to run straight from AtmelStu-

dio 6.2 (described in Section 3.1). This makes it easy to edit and upload new programs to

the Arduino.

AVRdude

As mentioned above, AVRdude is used to program the Arduino board. AVRdude is a

command-line program and by passing the correct arguments, it is possible to program

an Arduino board. The easiest way to find the right arguments is by showing verbose

output during an upload from Arduino IDE.

AVRdude comes with a normal Arduino IDE installation and can be found in “Arduino/hard-

ware/tools/avr/bin/avrdude.exe”. It is also possible to build AVRdude from source files,

but this is a process much more complex, so it is recommended to download and install

Arduino IDE.

Arduino IDE

Described in Section 2.3.2.

37

CHAPTER 5. ARDUINO-ROBOT

5.2.2 Configuring Software

There are several steps to configure AtmelStudio to work with AVRdude and Arduino.

First, we need to generate the correct command-line parameters for AVRdude, then

implement them into AtmelStudio. The process is explained below.

Create command-line parameters for AVRdude

1. Start Arduino IDE and plug in your Arduino board.

2. Press Tools -> Board, and find the correct board. In our case:

Arduino/Genuino Mega or Mega 2560

3. Press Tools -> Processor and find the correct processor. In our case:

ATmega2560 (Mega 2560)

4. Press Tools -> Port and set the right COM-port. If everything is configured properly,

the board will be listed behind the COM-port name.

5. Press File -> Preferences and enable verbose on upload.

6. Upload a minimal example project. If everything is configured properly AVRdude

will print out some red text.

7. Copy and paste the last white line of text into a text editor e.g. Notepad. In our

case the line is as follows:

C: / Arduino/hardware/ tools / avr /bin/avrdude °CC: / Arduino/hardware/ tools / avr /

etc /avrdude . conf °v °patmega2560 °cwiring °PCOM6 °b115200 °D °Uflash :w

:C: / Users/ teanders /AppData/ Local /Temp/

build219bee5ee35bdb906c90832b67c0fe23 . tmp/ t e s t e . ino . hex : i

This is the arguments AtmelStudio needs to use to upload a project.

Configure AtmelStudio

1. Start Atmel Studio 6.2.

2. Press File -> New -> Project -> GCC C Executable Project -> choose the correct

processor, in our case:

ATmega2560

38

5.2 PROGRAMMING THE ARDUINO-ROBOT

3. Create a minimal example code, or copy paste the blinking led example in Figure

5.4.

4. Press Tools -> External Tools...

5. Change the Title to:

&Deploy code

6. Change Command to the first part of the text that is copied from AVRdude and

then append “.exe”. In our case:

C: / Arduino/hardware/ tools / avr /bin/avrdude . exe

7. Change arguments to “-F ” + the parameters from the text copied from AVRdude.

In our case:

°F °v °patmega2560 °cwiring °PCOM6 °b115200 °D

The path in Uflash needs to be a variable in order to get the correct path from

AtmelStudio. To manage this, change “-Uflash....hex” to:

°Uflash :w: "$ (ProjectDir)Debug/$ (ItemFileName) . hex" : i

Last add the path for AVRdude config file, in our case:

°CC: / Arduino/hardware/ tools / avr / etc /avrdude . conf

The total argument field is in our case:

°F °v °patmega2560 °cwiring °PCOM6 °b115200 °D °Uflash :w: "$ (ProjectDir)

Debug/$ (ItemFileName) . hex" : i °CC: / Arduino/hardware/ tools / avr / etc /

avrdude . conf

8. Toggle “Use Output window” on.

9. If everything is configured properly it is now possible to upload C code directly to

the Arduino board by pressing Tools -> Deploy code.

NB! Quotes are needed before and after the file structure if the file structure contains

spaces, e.g.

°C"C: / Program F i l e s (x86) /Arduino/hardware/ tools / avr / etc /avrdude . conf "

39

CHAPTER 5. ARDUINO-ROBOT

/ *
* Blinking led

*
* Created : 19.02.2016 10:15:22

* Author : teanders

* /

#include <avr / io . h>
#include < u t i l / delay . h>

int main(void)
{

DDRB = (1<<PB7) ;
while (1)
{

PORTB = (1<<PB7) ;
_delay_ms (100) ;
PORTB = 0 ;
_delay_ms (100) ;

}
}

Figure 5.4: Blinking led example in C

5.3 Improving the Robot

After the robot had been built according to Section 5.1, the robot had a few flaws. Since

the group was a few days ahead of the schedule, some improvements to the initial design

were made.

5.3.1 Designing the Motor and Axle Plastic Housings

The assembled robot was too heavy in the center, and this led the wheels leaning to-

wards the chassis. This can be seen in Figure 5.5. As this would have influenced the

performance of the robot while driving, the group decided to improve the assembled

robot to neutralise the maldistribution of weight. It was decided to design and 3D-print

a motor holder that prevents the wheel angulation.

There was some problematics with PWM velocity regulation using the original wheel and

motor; please refer to Ese(2016) for elaboration. The groups decided to gear down the

rotation speed from the motor instead, but when doing so, the original axle got broken.

As it now was needed to fix the motor by making a new shaft, it was possible to build a

new gearing system using the same parts as used on the AVR-robot. Using different Lego

parts to gear down the rotation presented the need for an axle housing to hold the new

40

5.3 IMPROVING THE ROBOT

wheel axle in place.

As SolidWorks, see Section 3.1, is a modelling software, it was suited to use for this task.

Measuring the physical robot gave an accurate basis for designing the motor and axle

housing, taking screws and nuts mounted to the chassis into account. The measurements

and shapes obtained from the physical robot were modelled in SolidWorks and was 3D-

printed at the Cybernetic Mechanical Workshop at NTNU. Detailed schematics for the

parts can be found in Appendix 6 “Modelled Parts”.

Figure 5.5: Wheels leaning towards the chassis before improvements

5.3.2 Designing the Printed Circuit Board

Connecting wires using a breadboard suits a prototype, but a finished product should

have a PCB that connects the different components together. When all components

were tested and the wiring was confirmed to be correct a PCB was designed in Eagle. The

following five steps explains the process:

1. The wiring diagram created in Microstation, see Figure 5.3, was converted to a

schematic in Eagle. The schematic determines how the different components are

connected to each other, as can be seen in Figure 5.6. The Eagle-file and a full-scale

picture can be found in Appendix 16 “Wiring Diagrams”.

41

CHAPTER 5. ARDUINO-ROBOT

Figure 5.6: Eagle Schematic drawing

2. From the schematic, the board is created in Eagle. The board file determines the

layout and how the different components and wires should be printed on the finished

PCB. The board was designed in such order that it could be placed right on top of the

Arduino. Figure 5.7 illustrates the board design. The Eagle file and a full-scale picture

can be found in Appendix 16.

3. When the PCB design was finished in Eagle, the Eagle-files was converted to Gerber-

files. The Gerber-files gives instructions to the PCB printer for how the board should

be printed.

4. The Gerber-files were sent to Elprolab and the PCB was printed.

5. Every component were soldered onto the PCB at the Cybernetics Electronic Workshop.

42

5.4 THE FINAL PRODUCT

Figure 5.7: Eagle Board drawing

5.4 The Final Product

The finished Arduino-robot is pictured in Figure 5.8. In addition to the improvements

described above, some minor improvements were made. Three LEDs (Red, Orange,

Green) were added to help with debugging, and the AVR-robot has the same three LEDs.

To assist the position estimation, Ese (2016) added a compass.

As seen in Figure 5.8 adding the gears described in Section 5.3.1 resulted in moving

the wheels 47mm forward, and the group therefore moved the IMU so that it is still

mounted between the wheels. In addition to moving the wheels, the wheels themselves

was replaced with larger and softer wheels. Softer wheels help with traction, which again

minimise error when estimating the position. The new wheels are 82mm in diameter

and the gear ratio is 12.5:1.

After the PCB was printed, there were discovered a few mistakes on the board and these

were fixed by adding extra wires correcting them. Later in the project period, some pins

were moved to other inputs to optimise the board. The LEDs were also added after the

PCB was made, and these are connected via the breadboard. Since there were several

changes after the PCB was made, a new and updated PCB should be printed. This is

further explained in Future Work, Section 12.

43

CHAPTER 5. ARDUINO-ROBOT

During final testing of the robot, the wheel encoder got damaged, resulting in wrong

position estimates when the robot is driving. This is the only part that does not work

on the robot, and therefore the code that makes the robot perform its commands is

commented out. The robot can still be used in cooperation with other robots as the

communication and IR scanning works, but the robot will not move.

Figure 5.8: The finished Arduino-robot

44

6 | Wireless Communication

This chapter covers the wireless communication between the robot and the server computer.

Section 6.1 and 6.2 provides information about how to program the nRF51-server dongle

and how the software was developed, while Section 6.3 describes how the message protocol

was created. In the end of the chapter, Section 6.4 presents distance and integrity tests.

6.1 Programming the nRF51-dongle

This section covers the programming of the nRF51-server dongle. For information about

the nRF51-peripherals, see Ese (2016).

Dependencies

To program the nRF51-dongles, the following software has to be downloaded and in-

stalled:

• nRF51 SDK10[50]

• nRFgo Studio v1.21[51]

• Keil MDK-ARM v5.20[23]

Drivers for the nRF51-dongle comes with nRFgo Studio, it is recommended to install

the drivers from nRFgo Studio before inserting the nRF51-dongle in your computer.

This because Windows tries to use “Windows Update” to search for the drivers, and as

Windows does not find the correct drivers, it will scan indefinitely.

Setting up the nRF51-dongle

Having installed the software listed above, the following procedure has to be followed to

flash the dongle and prepare it for programming:

1. Plug in the nRF51-dongle to one of the external USB-ports at the computer.

2. Start nRFgo Studio, and choose the desired device in the “Device Manager”-list.

3. Click “Erase all”.

4. Choose the “Program SoftDevice”-pane in the right panel and click “Browse...”.

45

CHAPTER 6. WIRELESS COMMUNICATION

5. Navigate to “[yourDestination]/nrf51_sdk10/components/softdevice/s130/hex”

and choose the “s130_nrf51_x.x.x_softdevice”.

6. Click “Program”.

6.2 Developing the nRF51-server Software

The nRF51-server should be able to communicate with several nRF51-peripherals. It

has to provide functionality for sending messages to the connected peripherals and

receiving messages from other connected peripherals at the same time. Since the server

and peripherals are tightly coupled, the software on the dongles was developed together

with Ese (2016). The nRF51-server source code can be found in Appendix 10.

Nordic Semiconductor, the manufacturer of the dongle, has sample code for communi-

cation between two dongles, but this sample code can not be used when several dongles

are connected to the server at the same time. There is also another sample code with

peripherals and central (server), however in this code, the communication can only

go one way. Marco Russi [47] has modified Nordics “central”-program to enable com-

munication both ways. There was a meeting 12th of February together with Andersen,

Ese and Nordic Semiconductor. The agenda of the meeting was to get a briefing about

how Nordics peripheral- and central-code works, to get more information about the

nRF51-dongle and to do some investigation in Marco Russi’s code.

The finished nRF51-server software is a modified version of Russi’s central-software,

which again is just a modified version of Nordics central software. Whenever the server-

dongle gets a message, it adds an ID to the message before it gets forwarded to the

computers COM-port. The message structure becomes: [robotID]:Message where

“robotID” is the ID the dongle generates for the connected peripheral and “Message” is

the message content received from the peripheral through Bluetooth.

The message content from the peripheral has to be embraced by curly brackets and end

with a linebreak (\n), and the messages cannot contain square brackets. In addition,

each message should start with the robot name then a colon before the content.

Example:

Message from peripheral: Arduino:{U,100,100,90,0,70,65,40,75}\n
Server adds robotID: [1]:Arduino:{U,100,100,90,0,70,65,40,75}\n

Because of a limitation in Bluetooth, there is a cap of 20 bytes per package sent, this

46

6.3 CREATING THE MESSAGE PROTOCOL

means that if a robot sends a message longer than 20 bytes it gets split into several

packages. As of right now, the robot can send messages up to 60 bytes resulting in

maximum three packages per message. If more than one robot tries to send messages at

the same time, it is possible that the packages get intertwined alternately. The following

example illustrates this effect:

Example:

Robot 1 says Hello beautiful World and Robot 2 says Hello , the result read

from the computer’s COM-port could be:

[1]:Robot1:{Hello beautif[2]:Robot2:{Hello}\n[1]:Robot1:ul World}\n

The unravel of the messages happens in the Java applications Communication package,

see Section 7.3.

The biggest limitation in the nRF51-server software is that it is not possible to connect

more than three robots, since the central can maximum hold three Bluetooth connec-

tions at the same time.

6.3 Creating the Message Protocol

When implementing the communication between the physical robots and the server

software, the groups realised the need for a general message protocol. The message

protocol should be complex enough to consist of different message types and parameters,

as well as being simple enough to be easy to understand and implement in software.

The groups sat down and discussed which kind of messages the protocol should imple-

ment, and what the messages should include of parameters. The message types and

parameters were listed as shown in Table 6.1 and Table 6.2.

At first, the group developed a message protocol using JSON-structure. The benefit of

using JSON to structure a message protocol is that it is easy to understand just by reading

the message, as well as the order of the parameters does not have to be specified. The

update message from server in JSON-structure was defined as:

{“Update”:[{“Orientation”:“60”},{“Distance”:“100”}]}

Due to some problems with the nRF51-server software not being able to receive messages

with a size greater than 60 bytes, and the nRF51-peripheral not being able to receive

messages larger than 20 bytes, the group converted the message protocol from JSON to

47

CHAPTER 6. WIRELESS COMMUNICATION

Robot

Message type Parameters
Handshake Message type

Physical robot width and length
Tower offset from center of the robot
Axle offset lengthwise
Sensor offset from tower center
Initial sensor heading

Update Message type
Robot position (x,y)
Orientation
Tower heading
Sensor values

Status Message type
Idle

Table 6.1: Sketched list over messages from the Robot

Server

Message type Parameters
Update Message type

Orientation
Distance

Status Hanshake confirmed
Pause robot
Unpause robot
Robot finished

Table 6.2: Sketched list over messages from the Server

a more compact designed structure. The update message (from server) including the

same values as the JSON-example, was then defined as:

{U,60,100}

The remaining message types were defined in the same manner. Figure 6.1 illustrates a

simple overview of the messages that are sent and received, while Appendix 4 “Message

Protocol” presents all message types and parameters implemented in the message

protocol. The message handler in the server application discards all messages that does

not fit the defined standard (corrupt messages).

48

6.4 DISTANCE AND INTEGRITY TESTS

Figure 6.1: Flow of the different message types between robot and server

6.4 Distance and Integrity Tests

The purpose of the test was to determine how far away the robot could move from server

while delivering sufficient updates.

Corridor

Environment

The environment was a school corridor with no physical obstacles. The walls, roof and

floor was made of concrete, and the size of the corridor was:

• Height: 2.50m

• Width: 2.00m

Data Acquisition

The server computer was placed at the end of the corridor, and the server application

was started. When the communication was established between the server and the

Arduino-robot, one of the group members lifted the robot up and moved it 5 meters

away from the server while the server counted how many messages that contained errors

during 1 minute of testing. The procedure was repeated at every 5 meters until the

message integrity was too bad to continue.

49

CHAPTER 6. WIRELESS COMMUNICATION

Test Result

Environment: Corridor
Distance [meter] Message error [/min] Fault percentage [%]
1 0 0
5 3 1,000
10 7 2,333
15 2 0,066
20 10 3,333
25 - -

Table 6.3: Message Integrity Test in Corridor

Table 6.3 shows the data acquired during the test. The robots sends update messages

every 200ms, which means that the fault percentage is:

No.er r or messag es
5messag es/second §60second s

At 25 meters the robot had problems with sending messages and therefore the test ended.

The robot did not loose the connection to the server, but no messages was received. The

test results implicates that the robot should never be further apart than 20 meters from

the server dongle in a corridor.

50

6.4 DISTANCE AND INTEGRITY TESTS

Open Landscape

Environment

The environment was the open mingling area “Glassgården” at “Elektrobygget” NTNU.

The height and width of the area are so large that it could be counted as open landscape.

Data Acquisition

The same procedure as described in the corridor test was done during this test.

Test Result

Environment: Open landscape
Distance [meter] Message error [/min] Fault percentage [%]
1 0 0
5 5 1,667
10 3 1,000
15 14 4,667
20 - -

Table 6.4: Message Integrity Test in Open Landscape

Table 6.4 shows the data acquired during the test. The robot had more problems in

“Glassgården” than in the corridor. The robot had some problems at 15 meters and at 20

the server did not receive any messages. Likewise as the corridor example the robot did

not loose its connection, but could not send messages. The test results implicates that

the robot should never be further apart than 15 meters from the server dongle in open

landscape.

51

CHAPTER 6. WIRELESS COMMUNICATION

52

7 | Server Application

The following chapter describes the process of making the Server Application: How the

group defined the scope, designed the system architecture and the real-time system flow.

Section 7.3 gives information about the structure of the packages while Section 7.4 de-

scribes the system flow. Finally Section 7.5 explains the functionality and Section 7.6 the

limitations of the system. Please refer to Appendix 11 for application source code and

Appendix 12 for the software program.

7.1 Designing the System Architecture

To start off the system design, the group acquired reports and code from previous

projects. By reading the code, testing the functionality and studying the reports, the

group got insight and understanding of the existing system. It was important to know

the current system before starting to develop the new system, and therefore, the group

used two full weeks studying it.

Initially, the group defined the scope of the new system. The system should:

• Inherit the functionality from the existing system.

• Be stable and not introduce bugs.

• Present mapped data in an easily and understandable way.

• Provide a user-friendly GUI.

• Be easy to understand and improve for future projects.

The list of system goals laid a basis for the system named “System for Self-Navigating

Autonomous Robots”, henceforth referred to as SSNAR.

One of the primary goals was to develop the system in a way that makes it easy to

understand for groups that want to improve the system in future projects. The group

had object-oriented programming in mind in every part of the system design process,

and the system was divided into subsystems and packages that took care of different

areas of responsibility and functionality. Figure 7.1 shows how the group was thinking

during the brainstorming, trying to structure the responsibilities into modules.

53

CHAPTER 7. SERVER APPLICATION

Subsequently, classes were defined in each module. According to the naming conven-

tions in “Code Complete” [33], see Section 2.5.2, the classes were named according to

their responsibilities with self-explanatory names, making them easy to understand

without having to read their code. Furthermore, the classes’ routines were defined. All

of the routines were designed to do one thing and one thing only, for facilitating high

cohesion and low coupling, as described in Section 2.5.2.

Throughout the developing, the group held coordination meetings with both Ese (2016)

and Thon (2016) to make sure the system was designed in the best way possible.

Figure 7.1: Dividing the system into subsystems and packages during project planning phase

54

7.2 DESIGNING THE REAL-TIME SYSTEM FLOW

7.2 Designing the Real-Time System Flow

The purpose of this year’s project was to make the robots able to drive and scan in

real-time, not sequentially drive-stop-scan. Therefore, it was important that the server

application from the first line of code were developed concerning concurrent program-

ming.

The group sat down with the list of modules and decided which modules that should

consist of threads. As seen in Figure 7.1, the modules containing threads are marked

with a curly sign at the left of the module. Defining which modules that should include

thread-handling in the early phase of the development, was contributing to avoid thread-

handling issues like race conditions and deadlocks as described in Section 2.5.1.

In the server application, some of the classes were defined as shared objects. E.g. the

class that should contain all incoming messages had to both provide functionality for

putting messages into the inbox, as well as being read from by a “mailbox reader”. To

prevent race conditions in the shared objects the code blocks were synchronised, such

that only one thread could access them at the time. ConcurrentLinkedQueue is a thread

safe list that was used to store measurements, while JavaFX’s observableList were used

to store robot objects.

7.3 Structure

Seven modules form the system, see Figure 7.2, each taking care of one area of responsibility.

This thesis covers the four modules “Application”, “Communication”, “Robot” and “GUI”.

For information about the three modules “Simulator”, “Mapping” and “Navigation”, please

refer to thesis Thon (2016).

Application

The “Application” module is the main module in the system. The module is the one that

ties the system together by being the main artery for communication and program flow

internally in the program. “Application” instantiates the other modules and connects

the packages in the program.

55

CHAPTER 7. SERVER APPLICATION

Robot

The “Robot” module represents the physical robots that the system uses. When con-

necting to a real-life robot, e.g. the Arduino-robot, an object related to that robot is

instantiated in the module. The object holds information about the associated robot

and contains measurements received from the robot.

Communication

The “Communication” module represents the link between the physical world and the

server application. It takes care of the serial communication with the nRF51-dongle as

well as providing message input and output. The module also provides functionality for

encoding and decoding messages.

GUI

The “GUI” module provides the applications HCI interface. It presents information

about the robots connected to the system and map plotting of the mapped areas, as well

as it provides functionality for connecting/disconnecting and controlling the robots.

Figure 7.2: Structure of the system modules

56

7.4 SYSTEM FLOW

7.4 System Flow

To give better insight in the system, the following cases demonstrates how the system flow

works during runtime, see Figure 7.3 for reference. For more detailed information about

the functionality of the system, please refer to the Javadoc in Appendix 2 and the UML

diagrams in Appendix 14.

Case 1: “Update message” received

• When the nRF51-server dongle receives a message from a connected robot, it

writes the message to the connected COM-port.

• The class SerialCommunication reads the in-stream, converts the received bytes

into Strings and forwards them to the Inbox class.

• The Inbox class simply holds a “Received message” list.

• InboxReader retrieves message batches from Inbox and merges them into com-

plete messages. Furthermore, InboxReader uses MessageHandler to parse the

complete message and extracts information about “Sender ID”, “Message type”,

and the message-specific information. Finally, the information retrieved gets

passed into RobotController.

• RobotController adds the update values as Measurements into the related Robot

object.

Case 2: Scanning after robots

• When the user clicks the “Connect robots” button in the GUI, the MainGUI class

creates a ConnectRobotsGUI object which handles the connection routines.

• ConnectRobotsGUI starts a scan through a method call for the Application.startScan().

• Application uses Communication to set the nRF51-server dongle to “command

mode” and sending a “scan” command to the dongle.

• After 1 second the scan is stopped in the same way it was started, and a “list”

command is sent to the dongle.

• When the list of found devices is returned, the in-stream from the nRF51-dongle

at the COM-port is handled by SerialCommunication and Inbox the same way as

described in “Case 1”.

57

CHAPTER 7. SERVER APPLICATION

• InboxReader interprets the message content (robot IDs and robot names) and

passes the found robots to RobotController.

• RobotController adds the discovered devices in an observableArrayList.

• The GUI has a listner on the same list, and when a robot is added to the list it gets

listet in “Found Robots” in the GUI.

Figure 7.3: Simple class diagram of the Java application

58

7.5 FUNCTIONALITY

7.5 Functionality

Cross-platform

The server application in its entirety is written in the Java programming language, which

makes the software able to run on any device that has Java Virtual Machine. Because

Java applications are compiled before runtime, the server application will not be as

demanding as applications that are compiled runtime.

Connecting to N-robots

The software is developed in a way that each robot that is connected to the system has

one object of the class Robot connected to it. This means that as long as the computer

can add another instance of the class Robot, it can connect to more robots.

Real-time mapping and plotting

The robots attached to the system sends update messages every 200ms, and the informa-

tion extracted from the messages is processed and plotted in the map presented in the

GUI, which means that the user will be able to see the mapping progress in real-time. The

system also continuously updates the robots in real-time, which means that the system

is fully exploiting the functionality of Ese(2016) real-time OS running at the connected

robots.

Modular system architecture

The system architecture, as described in Section 7.3, is formed by modules that take care

of one area of responsibility each. If future projects adds more modules, or implements

more functionality to one of the existing modules, it will be easy to do this simply by using

the modules interfaces. The application is already designed to be extended to include

Simultaneous Localization and Mapping (SLAM) and not just mapping, as implemented

in the present version.

59

CHAPTER 7. SERVER APPLICATION

7.6 Limitations

Disconnecting before connecting

Due to an indexing problem in the nRF51-dongle, it was needed to constrain the progress

of connecting to additional robots. Before initializing a scan for new robots, all of the

robots that are attached to the system has to be disconnected. The reason is that when

the nRF51 scans and discovers new unattached robots, it indexes them from 0 and up,

even though there already were robots connected from before the scan. This will lead to

several robots with the same ID (e.g. two robots with ID = 1), which is undesirable.

Connecting to more than three robots in real world, and ten in the simulated world

Even though the server application is designed to be capable of connecting to n-robots, a

constraint regarding the maximum connected robots was implemented. As explained in

Section 6.2, the nRF51-dongle has a limitation of maximum three peripherals connected

at the same time. This resulted in no need for n-robots connected, and therefore the

software is constrained to a maximum of three robots during real world mode, and a

maximum of ten robots during simulated world mode. It is easy to change the limit in

the application, but as of right now the application is limited to checking one digit in the

ID parameter of the messages, as the nRF51 only sends one digit IDs.

60

8 | Graphical User Interface

The following chapter provides information about how the Graphical User Interface was

designed and developed. Section 8.1 covers the design process, Section 8.2 the program-

ming of the GUI, while Section 8.3 presents the final product.

8.1 Design Process

The design process was divided into five phases, and each phase dealt with the various key

elements in a design process, as described in Section 2.4.1.

8.1.1 Sense the Gap

To sense the gap, the group studied earlier projects to get an insight in the previous solu-

tions to the problem. The group discovered several shortcomings in the existing solution

and got an understanding of the gap in the user experience. The group draughted a list

of criteria (see list below) that the final product should meet, and it made the foundation

for further process. The new design should:

• Be reliable.

• Be easy to use.

• Minimise the likelihood of user error.

8.1.2 Understand and Refine the Problem

Further, the group defined the problems of the existing solutions and its shortcomings.

“System for Self-Navigating Autonomous Robots” is a project that has been performed

several times, but the system is no longer working. This year’s thesis’ main objective is to

produce a better solution that will last significantly longer than the previous solutions.

The group explored the existing solution to understand why it did not work as expected

and tried to connect the findings to the three criteria defined in the “Sense the gap”

phase.

61

CHAPTER 8. GRAPHICAL USER INTERFACE

Reliability

The existing solution was not perfect regarding reliability. During testing of the system

the user often experienced that the actions not always led to the expected behaviour.

Many of the button’s functionality had been removed, but the buttons were still present in

the GUI. With this in mind, the group designed an interface that consisted of a minimal

set of functionality that met the requirements for functionality, as well as removing

redundant components.

Usability

The existing solution had a GUI that contained lots of information and functionality.

Many of the buttons were connected without any information about how they were

related, some of the buttons were representing the same actions, and some buttons did

not work at all. The buttons, together with many boxes presenting information, made

the user interface complex and bad in terms of usability. The group used the existing

solution to define guidelines for how the new system should be, considering usability.

Minimise the likelihood of user error

Putting all of the functionality in the same window makes it more likely for the user

to make mistakes. Dividing functionality into sections and making the program as a

sequence of actions prevents user errors, and makes the system appear more usable and

reliable for the user.

8.1.3 Explore

Based on the information in the specification, the exploration phase started. The group

members developed various suggestions for the GUI with the specification as basis,

but also took the Gestalt principles (Section 2.4.2) and Schneiderman’s 8 golden rules

(Section 2.4.3) into account.

Before developing design solutions the group made a list consisting of all the functional-

ity that the GUI should provide (see Table 8.1).

62

8.1 DESIGN PROCESS

Maps World
Robot information Robot name

Position
Orientation
Tower angle

Indicators Simulator on/off
Number of robots connected

Buttons Simulator on/off
Manual drive/Autonomous
Connect to /disconnect robots
Start/Stop

Table 8.1: Criteria for functionality in the GUI

Graphical User Interface, suggestion 1

The suggestion in Figure 8.1, has a start-up screen where the user selects either to run

the simulator or to run the system in the real world. Choosing the mode brings the user

to the main screen. In the main screen, the information about the robot is presented as

well as a local/world map toggled by a radio button group. To add more robots the user

has to click on the plus sign (new pane), and a pop-up window presents available robots.

Figure 8.1: Graphical User Interface, suggestion 1

63

CHAPTER 8. GRAPHICAL USER INTERFACE

Graphical User Interface, suggestion 2

The suggestion illustrated in Figure 8.2 has, like the first one, a start-up screen that

presents two different modes (simulator and real world). Choosing the mode brings

the user to a new dialogue box where the user is presented with another two options:

manual drive or autonomous. Clicking on the desired option brings the user to the main

screen. The main screen consists of a horizontal list of the connected robots and their

information, as well as a map that can switch between different modes. To add, a robot

the user has to click “Add robot”, and he/she is presented available robots in a pop-up.

Figure 8.2: Graphical User Interface, suggestion 2

Graphical User Interface, suggestion 3

The suggestion in Figure 8.3 does not have a start-up screen. The main screen presents

the two different modes in the top left corner, and the rest of the functionality will be

available after selecting a mode and pressing start. Further, the main screen contains a

list of connected robots and a world map. Clicking “connect to more robots” presents a

pop-up similar to the other solutions while clicking “more” (buttons next to connected

robots) opens the robot screen. The robot screen presents information about the specific

robot as well as an opportunity to enter manual drive mode for the robot.

64

8.1 DESIGN PROCESS

Figure 8.3: Graphical User Interface, suggestion 3

8.1.4 Evaluation and Feedback

To evaluate the different suggestions, the group printed the GUI suggestions on sheets

and arranged usability testing to get user-experienced feedback. The different screens

of the interface were covered using sticky notes, but these were removed as the test

person “navigated” through the GUI. The test person was given some pre-defined tasks to

perform, and during the interaction he/she was not receiving any help. After performing

a set of tasks, the person was handed an evaluation sheet, where he/she evaluated the

different parts of the GUI.

The results from the user testing are shown in Table 8.2. In addition to rate the different

suggestions, the test persons got to comment them as well.

Suggestion Comments Rating
1 - A solution using panes to represent each robots gets complex if 2nd

many robots are connected.
- It is tiring having to switch between panes to get info
about different robots.

2 - The main screen presents almost too much information. 3rd
- Choosing modes before entering the main screen can help
prevent user errors.

3 - It is straightforward to present the information about the 1st
respective robots in a separate screen.
- Less is more.

Table 8.2: User feedback regarding GUI Design

65

CHAPTER 8. GRAPHICAL USER INTERFACE

8.1.5 Select Plan

This phase focuses on choosing a plan for the design, based on the results from the

“Evaluation and feedback” phase. The group discussed the results and evaluated the

suggestions based on their experience, before selecting the plan.

The design that was chosen consists of functionality and design parts from all of the

three suggestions. The mode selection from suggestion 1 and 2, see Figure 8.2, was

included to prevent user errors that may have occurred if the selection was present in

the main window. The three window solution in suggestion 3 laid the basis for the design

of the main windows in the application. Some minor changes, such as moving the “Start”

and “Stop” buttons and removing the “Local map”, as well as adding a menu bar at the

top of the main window were made.

8.2 Programming the Graphical User Interface

The GUI was programmed and designed in NetBeans (Section 3.1), since NetBeans offers

a very intuitive GUI builder for Java applications. NetBeans generates a “.form”-file in

addition to the normal “.java”file, and the “.form”-file is encoded in XML which contains

all parameters the GUI-builder needs. When designing a GUI in NetBeans the user

do not need to worry about the “.form”-file, as NetBeans does all the work. NetBeans

will automatically recognise a NetBeans project and then load “.java”- and “.form”-files

together, because of this different users can easily modify an existing project.

The GUI is initialised by calling new MainGUI(this) from the Application class, and

MainGUI has the responsibility of initialising the rest of the GUI. There is a total of nine

Java classes in the GUI package, where eight of them are extending JFrame and one

extending JPanel. Detailed information about the classes can be found in the Javadoc,

see Appendix 2.

8.3 The Final Product

The final product can be viewed in Figure 8.4, which shows the main window of the

application. In this figure, there are two simulated robots (Arduino and Atmel) driving

around in a simulated world. The GUI that controls the simulation can be opened by

66

8.3 THE FINAL PRODUCT

pressing the menu “Window” and then “Simulator”. For more information about the

Simulator GUI, please refer to Thon (2016).

Figure 8.4: GUI, Main window

The main GUI is divided into seven parts as illustrated by Figure 8.4. Objects that have

similar functions are grouped together, and the different groups are separated by borders.

The GUI is created with the Gestalt Principles (Section 2.4.2) and Schneiderman’s 8

golden rules (Section 2.4.3) in mind, and if anything is unclear the user can press the

menu “Help” and then “User manual”, which will open the user manual in the default

PDF viewer. The user manual can be found in Appendix 15, and it provides information

about every function in the user interface.

In the following list, the parts of the main window are described:

1. Menu bar - The menu provides mode-specific functionality, as well as a help menu

where the user manual can be found.

2. Mode title - This panel tells you which mode the program is currently running in.

3. Connected Robots - This panel will be updated with the connected robots. Clicking

the “Info” button will open up the Robot info window.

67

CHAPTER 8. GRAPHICAL USER INTERFACE

4. Connect robots - This button will open up the “Connect Robots” window.

5. Start/Stop - The start and stop buttons will start and stop the application. The

indicator will turn green if the program is running.

6. Map - The map will be painted in real-time as the robots discover new areas.

7. Info - The information panel will display informative text as the mouse cursor

hovers over the different parts of the GUI.

Figure 8.5 illustrates the navigation through the different parts of the final GUI. After

choosing a mode, the mode-specific window opens. Clicking “Connect robots” brings

up the related window, and as the scan finishes, the available robots gets listed. After se-

lecting the desired robot(s) and clicking “Connect”, the communication with the robot(s)

is established the server receives a handshake message from the robot(s) confirming the

connection. Furthermore, the user sets the initial values for the specific robots, and after

the values are set, clicking “Start” will initialise the mapping.

68

8.3 THE FINAL PRODUCT

Figure 8.5: GUI Flow

69

CHAPTER 8. GRAPHICAL USER INTERFACE

70

9 | Testing the System

In addition to the communication tests in Section 6.4, the groups arranged a full-system

test when all parts of the system were finished and implemented. A maze was built, see

Figure 9.1, and both the Arduino and the AVR-robot was placed in it. As it is important

for the application to know how the robots are positioned relative to each other, the

distance between them was measured.

Figure 9.1: Maze used during the testing of the system

As the Arduino-robot’s wheel encoder was broken, as elaborated in 5.4, the robot was

placed in the center of the maze. Even though it could not perform the orders given to it

by the server application, it performed scans and sent update messages during the test.

The groups performed three tests to validate that the system could provide consistent

results.

Figure 9.2 presents the maps created by the three tests, as well as including a fourth

mapping done during the demonstration of the project. As can be seen, the four tests

gave results that are similar, but none of them are exact replicas of the real world maze.

The reason for this is that the position estimation diverges over time. Let’s say that a

robot starts in the top left corner and moves one lap around the maze. The wall that

is first drawn and the wall that is last drawn during the mapping may not be perfectly

aligned, even though they represents the exact same wall in the real world.

Appendix 3 “Media” contains videoes and images from the tests.

71

CHAPTER 9. TESTING THE SYSTEM

Figure 9.2: Four map plots of the same maze

72

PART III:
DISCUSSION, CONCLUSION AND FUTURE

WORK

10 | Discussion

10.1 Arduino-Robot

The Arduino-robot is built with the same specifications as the AVR-robot; it has the

same wheels, gears, IR sensors, compass, gyroscope and the same charging mechanism.

What differs from the AVR-robot is the wheel encoders, the motor controller, the motors,

the ability to turn off the charging towers and the Arduino microcontroller with the

self-made PCB shield.

Using an Arduino as microcomputer has several benefits, it is easy to connect other

components to its circuit, and by creating a shield it gets even better. This makes the

robot easy to modify if the robot is to be extended, for example, with new sensors in the

years to come. It is also straightforward to upload new C code by following the steps in

Section 5.2.2.

Arduino has a 5V output, but as the output could not provide power to the whole circuit,

the group had to use the 5V from the motor controller instead. The motor controller

can deliver up to 2A at 5V in addition to powering the motors, and therefore it has no

problem powering the entire robot.

At this point, everything but one wheel encoder works on the Arduino-robot. The wheel

encoder got damaged during the last week of the project period. It is very important that

the wheel encoder is placed 2-3 mm away from the magnet, and that it does not touch

the magnet wheel. Due to the wheel encoder not working, the robot can not estimate

its position. The robot has a compass, gyroscope and accelerometer all working, but

the software is not optimised to use input from them. For more information about the

software, see Ese (2016).

10.2 Using Bluetooth as Communication Protocol

In the early phase of the project, the groups discussed which communication protocol to

use. The two protocols WIFI and Bluetooth early excelled as alternatives. The groups had

programming experience with WIFI from previous school projects, but no experience

with Bluetooth. One of the main advantages using WIFI as communication protocol

75

CHAPTER 10. DISCUSSION

is that it is possible to communicate wirelessly without being close to the robot (e.g.

controlling a robot, placed at the school, over Internet while sitting on a computer back

home). The main disadvantage using WIFI was that components such as WIFI-shields

and dongles often have a significant power consumption.

When it comes to Bluetooth, the disadvantage was the lack of experience. Earlier projects

on this topic used Bluetooth as communication, so it was in keeping with tradition to

choose this protocol. As well as the lack of experience, the communication protocol itself

does not provide long-distance communication, as the range is limited. The advantages

using Bluetooth is that it is available on most devices (tablets, computers, phones), it is

suited for short-range on-site communication and it offers the Bluetooth Smart version

that has a very low power consumption.

According to Bluetooth SIG [29] it is planned that Bluetooth is increasing its internet of

things functionality by supporting mesh-networking during 2016. Mesh-network means

that not all of the connected devices has to communicate directly to the server, but all of

the devices talks to each other to share the network connection across a large area [25].

Mesh-networking means that the range can significantly be extended to be greater than

15m (as measured in Section 6.4).

10.3 Using nRF51 as Communication Unit

The nRF51-dongle was chosen as communication unit after choosing Bluetooth as the

communication protocol. The dongle is developed by Nordic Semiconductor; a company

that originated from NTNU.

The nRF51 supports Bluetooth Smart as well as 2.4GHz proprietary applications [49].

Due to the Bluetooth Smart technology, it has a low power consumption which suits the

use in this thesis. As it will support Mesh-networking when Bluetooth supports it, more

functionality can be added to the system in the future. The dongle was relatively cheap

(150 NOK), and was available for the groups at “Omega Verksted” at NTNU.

One of the main advantages with the nRF51-dongle is that the SDK, available at Nordic

Semiconductors website [50], provides several example codes for different use of the

dongle. This made it easier to understand the functionality the device provides. As well

as providing example code, Nordic Semiconductor answered on emails and arranged a

meeting with the groups, which gave the group a better insight in the device.

76

10.4 THE MESSAGE PROTOCOL

Since the software on the nRF51 has a limitation on the capacity of connected devices,

it is only possible to connect to three robots at the same time. At this point, there are

only two robots available, so the limitation does not have any effect. However, if more

robots are to be added in the future, this could introduce a problem. In addition to

the maximum device limitation, the software limits the message size of the message

protocol.

10.4 The Message Protocol

During the project, the teams developed a message protocol that laid the basis for all

communication between the robots and the server. Initially, the message protocol used

JSON-structure, which is an easy-to-read structure. The disadvantage using JSON to

structure the messages in the protocol is that it adds a lot of extra characters to the

message (curly brackets and colons) that works as parameter dividers. Due to the

message length constraint in the nRF51-software, the groups had to move away from

using JSON.

Developing a more compact message protocol made it possible to add more parameters

to a single message, while making sure the message size was as small as possible. The

message protocol provides all the message types required for the system to work, as

well as it lays a basis for how to structure additional messages if future projects want to

add more functionality to the system. One of the drawbacks using a compact message

protocol is that if the user intends to study the messages but does not have the definition

of the message content, it will be difficult to understand what the parameters in the

message means.

10.5 Graphical User Interface

The design process is a vital part of developing a system that involves Human-Computer

Interaction (HCI), and therefore, the group has let the design process form the basis for

developing the Graphical User Interface. Through the process of designing the GUI, the

group has defined problems, explored alternatives and found a solution that the group

believes is the best solution to the initial design problem, see Section 8.1.1 and 8.1.2.

Especially has the Gestalt Principles, Section 2.4.2, and the eight golden rules of Schnei-

derman, Section 2.4.3, been in focus during the design of the layout. With the Gestalt

77

CHAPTER 10. DISCUSSION

Principle “Proximity” in mind, the GUI is designed in a way that objects placed next to

each other are connected, as well as linked to the same functions. Figure 10.1 shows

the “Start - Stop” panel from the final product. The panel demonstrates how proximity

is used as a tool to connect functionality of two buttons as well as an indicator lamp

and a descriptive text. According to the principle “Common Fate”, all of the objects that

are connected are affected when interacting with one of them. Let’s say the stop button

is clicked; The system stops, the clicked button gets disabled, the “Start” button gets

enabled, the indicator lamp turns red as well as the descriptive text changes to “Program

not running”.

Figure 10.1: Start-Stop panel from GUI, Main window

The layout of the main window is similar whether the user chooses to run the “Simulator”

or the “Real World” version of the application. This is a choice made taking Schneider-

man’s rule about “Consistency” into account. The user feels that the user interface is

complete and recognisable, which leads to better usability. According to Schneiderman’s

rule number three, all actions leads to something in the GUI. As tasks are being done,

the application responds by showing progress bars and information in the “Information

Panel”, see panel 7 in Figure 8.4.

As the examples above illustrates, the GUI follows different rules and principles making

the interface more usable for both experienced and new users.

10.6 Selecting the Programming Platform

The group had to choose programming language early in the project period. The mem-

bers had experience with several languages, such as Java, C, Google Go and Python

from earlier school projects. Choosing a suitable programming platform to develop the

system was vital, and the group had to take several factors into account when selecting

one to go forth with.

The existing system was written using MATLAB and Simulink. The program consisted of

several “.m”-files and included different toolboxes, such as CAS 1 for implementation of

1CAS Robot Navigation Toolbox

78

10.6 SELECTING THE PROGRAMMING PLATFORM

SLAM functionality. In addition to requiring a bit of processing power and memory from

the computer, MATLAB is not suited for developing software that should provide GUI

and real-time functionality.

Java, as an object-oriented language, had many features that suited the system devel-

opment. Using packages and classes made it easy to divide the system into modules

with different responsibilities, and this allowed for a clear and neat structure of the

application. As software developed in Java is built and compiled before running, as well

as being able to be run on every computer that has the Java Virtual Machine (JVM), the

software program is cross-platform and lightweight.

79

CHAPTER 10. DISCUSSION

80

11 | Conclusion

During the Master Thesis, the group has developed a server application and a Graphical

User Interface in Java, software for an nRF51-dongle in C, as well as built an Arduino-

robot. The different parts of the project seems to be good solutions to the problem

description the group made at project start.

Choosing Java as programming platform facilitated a clear structure of the code and

provided functionality for dividing the system into modules. The server application is

developed in terms of the guidelines in “Code Complete”, and is structured in a way

that makes it easy for future projects to understand and further develop the software by

adding new functionality. The code is generalised, so that it is possible to add robots with

different specifications than the ones already existing, e.g. a robot with more than four

infrared sensors. The server application inherits most of the functionality implemented

in previous solutions, however, in our implementation the system is processing data and

controlling the connected robots in real-time.

The user interface is developed during a design process where the human perception

has been in focus. The process has helped the group focus on the aspects that are

important when designing a graphical user interface, and the final product inherits most

of the functionality provided in the previous solutions, but presents them in a more

user-friendly way.

Choosing Bluetooth Smart as communication protocol enabled fast, short-range and

low power consuming communication. The protocol was not known to the groups at

beforehand, but by studying the standard, the groups managed to implement it into the

system. The server-dongle receives and processes five messages per second from each

robot connected, and delivers update and status messages to the robot dependent on

the server application state. The communication range suited for the system is less than

15 meters between the server and the connected robots, this to ensure that all messages

are received.

The group has built a new robot, increasing the existing collection of robots. The robot

uses an Arduino as the microcomputer and it is built using the same wheels, gears,

infrared sensors, tower and intertial measurement unit as the AVR-robot. Using AVR-

dude enabled the Arduino-robot to use the same real-time operating system as running

on the AVR-robot, without having to rewrite too much of the code. One of the wheel

81

CHAPTER 11. CONCLUSION

encoders got damaged during the last week of the project, and therefore it cannot

estimate its position at this point in time. Other than the broken encoder, the robot

works as intended and is therefore successfully built and implemented.

During the project period, the group has gained useful experience regarding project

management and implementation. As “System for Self-Navigating Autonomous Robots”

is a part of a system consisting of three dependent projects, the key to success has been

communication and cooperation. Regular conversations and meetings with both the

employer and the other groups working with the system have enabled effective solving

of any changes to the project tasks. Using Git as version control tool for the developing

of the software made it possible for several groups to work on the same application.

Compared to the scope of the project, the group is pleased with the technical result. The

solution meets all the requirements of technical functionality and the solution seems

to be a modernised solution compared to the prior implementations of the system.

Updating the communication standard from Bluetooth to Bluetooth Smart, rebuilding

the server application from MATLAB to Java, and building a new robot based on an

Arduino microcomputer can all be said to extend the system in a provident way.

82

12 | Future Work

Create an Updated PCB Sheild

As described in Section 5.4, there were made some changes to the robot after the PCB

shield was printed. This resulted in that the group had to change some of the wiring on

the robot by manually soldering extra wires onto the board.

Updating the Eagle files in Appendix 16 with the changes done on the shield, printing a

new PCB, and then solder the board is a work that should be done. In Appendix 16 there

is a wiring diagram of the robot as-built, the new Eagle schematic should be updated

with the same connections.

Improving the position estimates

As described in Section 5.4, the Arduino-robot’s wheel encoder got damaged during the

final testing; this is the only part that does not work on the robot. It may be possible to

repair the encoder, but if it is not possible, a new one can be bought from SparkFun[17].

The software code on the robot that reads the encoder should also be looked at, as a better

position estimate can be found if the robot uses both the compass, the accelerometer

and the gyroscope in addition to the wheel encoders.

Communication

As described in Section 10.3, the nRF51-dongle is limited to maximum three connected

robots. If it is desired to extend the robot project with more robots, it is necessary to find

a better solution than the current server and peripheral code.

The message protocol described in Section 6.3 may also be extended to include additional

messages, e.g. “Wall hit” and “Battery low” statuses. If this is desired, the code in the

Communication package in the Java application should be modified to include these

messages.

Java Application

The Java server application is designed to be a solid foundation for future projects. If the

communication gets changed in the future, only the communication package will be

affected. Hence, only classes inside the communication package should be changed.

The application is ready for future improvements like an improved Simulator, Artificial

Intelligence or SLAM.

83

CHAPTER 12. FUTURE WORK

84

Acronyms

AI Artificial Intelligence. 82

API Application Programming Interface. 14, 82

CAD Computer-Aided Design. 25, 26, 82

COM Communication port. 38, 46, 47, 57, 82

GPIO General-purpose input/output. 10, 36, 82

GUI Graphical User Interface. i, v, xiv, xv, 4–6, 16, 17, 53, 57, 58, 62–67, 75–77, 79, 82

HCI Human-Computer Interaction. 7, 56, 75, 82

I/O Input/Output. 9, 82

IDE Integrated Development Environment. 14, 82

IMU Inertial Measurement Unit. v, 10, 34, 36, 43, 79, 82

IR Infrared. v, 8, 28, 34, 44, 73, 79, 82

JVM Java Virtual Machine. 13, 19, 59, 77, 82

LED Light-Emitting Diode. 34, 43, 82

MEMS Microelectromechanical systems. 10, 82

OS Operating System. v, 4–6, 59, 79, 82

PCB Printed Circuit Board. 25, 33, 41–43, 73, 81, 82

PWM Pulse-Width Modulation. 27, 40, 82

SIG Special Interest Group. 12, 74, 82

SLAM Simultaneous Localization and Mapping. 59, 77, 81, 82

SPI Serial Peripheral Interface. 12, 36, 82

SSNAR System for Self-Navigating Autonomous Robots. vi, 5, 53, 61, 80, 82

UART Universal Asynchronous Receiver/Transmitter. 11, 36, 82

UML Unified Modelling Language. 82

85

Acronyms

86

Bibliography

[1] Arduino. Arduino Build Process.

https://www.arduino.cc/en/Hacking/BuildProcess. Apr. 2016.

[2] Arduino. Arduino MEGA 2560.

https://www.arduino.cc/en/Main/ArduinoBoardMega2560. Apr. 2016.

[3] Arduino. Arduino Products. https://www.arduino.cc/en/Main/Products.

Apr. 2016.

[4] Arduino. ATmega2560-Arduino Pin Mapping.

https://www.arduino.cc/en/Hacking/PinMapping2560. Apr. 2016.

[5] Arduino. What is Arduino? http://www.arduino.cc/en/Guide/Introduction.

Apr. 2016.

[6] Atlassian. Source tree app. https://www.sourcetreeapp.com. May 2016.

[7] Catherine Plaisant Ben Schneiderman.

Designing the User Interface: Strategies for Effective Human-Computer Interaction.

first. Addison-Wesley Publishing Company, 2010.

[8] Dennis M. Ritchie Brian W. Kernighan. The C Programming Language. second.

ISBN: 0-13-110370. Prentice Hall, 1988.

[9] Adam Carlson. COUPLING and COHESION. http:

//courses.cs.washington.edu/courses/cse403/96sp/coupling-cohesion.html.

Computer Science & Engineering University of Washington. Apr. 1996.

[10] NetBeans Community. NetBeans IDE. https://netbeans.org/. Apr. 2016.

[11] Corelis. SPI Interface. http://www.corelis.com/education/SPI_Tutorial.htm.

Apr. 2016.

[12] Atmel Corporation. Atmel Studio.

http://www.atmel.com/tools/ATMELSTUDIO.aspx. Apr. 2016.

[13] CSR. Bluetooth Low Energy. https:

//www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=227336.

Mar. 2010.

[14] A. Prathap Reddi C.S.R. Prabhu.

Bluetooth Technology and Its Applications with Java and J2ME. first.

ISBN: 81-203-2443-9. Prentice Hall, 2004.

87

https://www.arduino.cc/en/Hacking/BuildProcess
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Hacking/PinMapping2560
http://www.arduino.cc/en/Guide/Introduction
https://www.sourcetreeapp.com
http://courses.cs.washington.edu/courses/cse403/96sp/coupling-cohesion.html
http://courses.cs.washington.edu/courses/cse403/96sp/coupling-cohesion.html
https://netbeans.org/
http://www.corelis.com/education/SPI_Tutorial.htm
http://www.atmel.com/tools/ATMELSTUDIO.aspx
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=227336
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=227336

BIBLIOGRAPHY

[15] Elfa Distrelec. Litiumbatteri. https://www.elfadistrelec.no/no/litiumbatteri-11-

4600-mah-hy-line-h2b181/p/16901653. Jan. 2016.

[16] Allen B. Downey. The Little Book of Semaphores. second.

The Free Software Foundation, 2008.

[17] SparkFun Electronics. SparkFun. https://www.sparkfun.com/. Apr. 2016.

[18] Sparkfun Electronics. Serial Communication.

https://learn.sparkfun.com/tutorials/serial-communication/uarts. 2016.

[19] Sparkfun Electronics. Serial Peripheral Interface (SPI).

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi. 2016.

[20] Elprolab. Elektronikk og prototypelaboratoriet.

http://intern.iet.ntnu.no/elprolab/index. Apr. 2016.

[21] ePanorama.net. Serial Buses. http://www.epanorama.net/links/serialbus.html.

2011.

[22] Google Code Archive. Arduino. https://code.google.com/archive/p/arduino/.

2016.

[23] ARM Group. ARMKeil Microcontroller Tools.

https://www.keil.com/download/product/. Apr. 2016.

[24] ARM Group. µVision IDE. http://www2.keil.com/mdk5/uvision/. Apr. 2016.

[25] HowStuffWorks. How Wireless Mesh Networks Work.

http://computer.howstuffworks.com/how-wireless-mesh-networks-work.htm.

June 2007.

[26] Bentley Systems Inc. MicroStation.

https://www.bentley.com/en/products/brands/microstation. Apr. 2016.

[27] Bluetooth SIG Inc. Bluetooth.

https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth. 2016.

[28] Bluetooth SIG Inc. Bluetooth Smart(Low Energy) Technology.

https://developer.bluetooth.org/TechnologyOverview/Pages/BLE.aspx.

[29] Bluetooth SIG Inc.

Bluetooth technology to gain longer range faster speed mesh networking in 2016.

https://www.bluetooth.com/news/pressreleases/2015/11/11/bluetooth-

technology-to-gain-longer-range-faster-speed-mesh-networking-in-2016.

Nov. 2015.

88

https://www.elfadistrelec.no/no/litiumbatteri-11-4600-mah-hy-line-h2b181/p/16901653
https://www.elfadistrelec.no/no/litiumbatteri-11-4600-mah-hy-line-h2b181/p/16901653
https://www.sparkfun.com/
https://learn.sparkfun.com/tutorials/serial-communication/uarts
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://intern.iet.ntnu.no/elprolab/index
http://www.epanorama.net/links/serialbus.html
https://code.google.com/archive/p/arduino/
https://www.keil.com/download/product/
http://www2.keil.com/mdk5/uvision/
http://computer.howstuffworks.com/how-wireless-mesh-networks-work.htm
https://www.bentley.com/en/products/brands/microstation
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
https://developer.bluetooth.org/TechnologyOverview/Pages/BLE.aspx
https://www.bluetooth.com/news/pressreleases/2015/11/11/bluetooth-technology-to-gain-longer-range-faster-speed-mesh-networking-in-2016
https://www.bluetooth.com/news/pressreleases/2015/11/11/bluetooth-technology-to-gain-longer-range-faster-speed-mesh-networking-in-2016

BIBLIOGRAPHY

[30] Jeff Johnson. Designing with the Mind in Mind: Simple Guide to Understanding

User Interface Design Rules. first. Morgan Kaufmann, 2010.

[31] Margaret Rouse Ken Conway Michael DeHaan.

UART (Universal Asynchronous Receiver/Transmitter).

http://whatis.techtarget.com/definition/UART-Universal-Asynchronous-

Receiver-Transmitter. Feb. 2011.

[32] Mathworks. MATLAB. http://se.mathworks.com/help/matlab/. Apr. 2016.

[33] Steve McConnell. Code Complete. second. ISBN: 0-7356-1967-0.

Microsoft Press, 2004.

[34] Microsoft. Microsoft Project.

https://products.office.com/nb-no/Project/project-for-office-365. Apr. 2016.

[35] Sun Microsystems. Starvation and Deadlock. http://www.math.uni-

hamburg.de/doc/java/tutorial/essential/threads/deadlock.html. 2005.

[36] Simon Monk. If the Servo Misbehaves. https://learn.adafruit.com/adafruit-

arduino-lesson-14-servo-motors/if-the-servo-misbehaves. May 2015.

[37] Dennis M.Ritchie. The Development of the C Language*.

http://www.bell-labs.com/usr/dmr/www/chist.html. 2003.

[38] Oracle. Compiling Java. "http:

//docs.oracle.com/javase/tutorial/figures/getStarted/getStarted-compiler.gif.

Apr. 2016.

[39] Oracle. The Java Language Environment.

http://www.oracle.com/technetwork/java/intro-141325.html. 2016.

[40] Circuits Planet. Infrared Sensors.

http://circuitsplanet.blogspot.no/2014/12/interfacing-arduino-with-ir-sensor-

and.html. Dec. 2014.

[41] Bluetooth Report.

Bluetooth versions comparison. What’s the difference between the versions?

http://bluetoothreport.com/bluetooth-versions-comparison-whats-the-

difference-between-the-versions/. 2013.

[42] Jr Robert S. Cartwright. Deadlock.

https://www.cs.rice.edu/~cork/book/node98.html. Jan. 2000.

[43] Jr Robert S. Cartwright. What is Concurrent Programming?

https://www.cs.rice.edu/~cork/book/node96.html. Jan. 2000.

89

http://whatis.techtarget.com/definition/UART-Universal-Asynchronous-Receiver-Transmitter
http://whatis.techtarget.com/definition/UART-Universal-Asynchronous-Receiver-Transmitter
http://se.mathworks.com/help/matlab/
https://products.office.com/nb-no/Project/project-for-office-365
http://www.math.uni-hamburg.de/doc/java/tutorial/essential/threads/deadlock.html
http://www.math.uni-hamburg.de/doc/java/tutorial/essential/threads/deadlock.html
https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors/if-the-servo-misbehaves
https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors/if-the-servo-misbehaves
http://www.bell-labs.com/usr/dmr/www/chist.html
http://www.oracle.com/technetwork/java/intro-141325.html
http://circuitsplanet.blogspot.no/2014/12/interfacing-arduino-with-ir-sensor-and.html
http://circuitsplanet.blogspot.no/2014/12/interfacing-arduino-with-ir-sensor-and.html
http://bluetoothreport.com/bluetooth-versions-comparison-whats-the-difference-between-the-versions/
http://bluetoothreport.com/bluetooth-versions-comparison-whats-the-difference-between-the-versions/
https://www.cs.rice.edu/~cork/book/node98.html
https://www.cs.rice.edu/~cork/book/node96.html

BIBLIOGRAPHY

[44] Center for Robot-Assisted Search and Rescue. The Taiwan Rescue: Robots.

http://crasar.org/2016/02/05/the-taiwan-earthquake-robots/. Feb. 2016.

[45] Society of robots. Infrared vs. Ultrasonic.

http://www.societyofrobots.com/member_tutorials/book/export/html/71.

Apr. 2016.

[46] Kevin Ross. Bypass Capacitors.

http://www.seattlerobotics.org/encoder/jun97/basics.html. June 1997.

[47] Marco Russi. nrf51 multi nus central.

https://github.com/marcorussi/nrf51_multi_nus_central. Mar. 2016.

[48] Popular Science. MEET JAPAN’S EARTHQUAKE SEARCH-AND-RESCUE ROBOTS.

http://www.popsci.com/technology/article/2011-03/six-robots-could-shape-

future-earthquake-search-and-rescue. Mar. 2011.

[49] Nordic Semiconductor. nRF51 Dongle.

https://www.nordicsemi.com/eng/Products/nRF51-Dongle. Apr. 2016.

[50] Nordic Semiconductor. nRF51 Software Development Kit 10.0.0.

https://developer.nordicsemi.com/nRF5_SDK/. Apr. 2016.

[51] Nordic Semiconductor. nRFgo Studio.

https://developer.nordicsemi.com/nRF5_SDK/. Apr. 2016.

[52] Byte Paradigm sprl. Introduction to I2C and SPI protocols.

http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-

protocols/?/article/AA-00255/22/Introduction-to-SPI-and-IC-protocols.html.

2016.

[53] Ching-Kuang Shene Steve Carr Jean Mayo. Race Conditions: A Case Study.

Tech. rep. http://www.cs.mtu.edu/~shene/PUBLICATIONS/2001/race.pdf.

Department of Computer Science, Michigan Technological University, 2003.

[54] Intergovernmental Committee on Surveying and Mapping. History of Mapping.

http://www.icsm.gov.au/mapping/history.html. Jan. 2016.

[55] Dassault Systèmes. Solidworks.

http://www.solidworks.com/sw/3d-cad-design-software.htm. Apr. 2016.

[56] Karl T. Ulrich. Design, Creation of Artifacts in Society.

University of Pennsylvania, 2011.

[57] Cadsoft USA. What is Eagle.

http://www.cadsoftusa.com/eagle-pcb-design-software/about-eagle/. Apr. 2016.

90

http://crasar.org/2016/02/05/the-taiwan-earthquake-robots/
http://www.societyofrobots.com/member_tutorials/book/export/html/71
http://www.seattlerobotics.org/encoder/jun97/basics.html
https://github.com/marcorussi/nrf51_multi_nus_central
http://www.popsci.com/technology/article/2011-03/six-robots-could-shape-future-earthquake-search-and-rescue
http://www.popsci.com/technology/article/2011-03/six-robots-could-shape-future-earthquake-search-and-rescue
https://www.nordicsemi.com/eng/Products/nRF51-Dongle
https://developer.nordicsemi.com/nRF5_SDK/
https://developer.nordicsemi.com/nRF5_SDK/
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/?/article/AA-00255/22/Introduction-to-SPI-and-IC-protocols.html
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/?/article/AA-00255/22/Introduction-to-SPI-and-IC-protocols.html
http://www.cs.mtu.edu/~shene/PUBLICATIONS/2001/race.pdf
http://www.icsm.gov.au/mapping/history.html
http://www.solidworks.com/sw/3d-cad-design-software.htm
http://www.cadsoftusa.com/eagle-pcb-design-software/about-eagle/

BIBLIOGRAPHY

[58] Bjørnar Vik. Integrated Satellite and Inertial Navigation Systems.

Norwegian University of Science and Technology, 2014.

[59] Computer Weekly. Write once, run anywhere?

http://www.computerweekly.com/feature/Write-once-run-anywhere. 2002.

91

http://www.computerweekly.com/feature/Write-once-run-anywhere

BIBLIOGRAPHY

92

Appendices

CD

Appendix 1 Datasheets

Appendix 2 Javadoc

Appendix 3 Media

Appendix 4 Message Protocol

Appendix 5 Minutes of Meetings

Appendix 6 Modelled Parts

Appendix 7 Previous Reports

Appendix 8 Progress Reports

Appendix 9 Project Management (Gantt Diagrams)

Appendix 10 Source Code nRF51-server

Appendix 11 Source Code SSNAR

Appendix 12 SSNAR Application

Appendix 13 Student Contracts

Appendix 14 UML Diagrams

Appendix 15 User Manual

Appendix 16 Wiring Diagrams

93

	Summary
	Conclusion
	Acknowledgements
	I Introduction and Theoretical Basis
	Introduction
	Background Information
	Objective
	Content of the Report
	Previous work

	Theoretical Basis
	Physical
	Electronics
	Microcomputers
	Inertial Measuring Unit

	Communication
	Serial Communication
	Wireless Communication

	Programming Platforms
	Java
	Arduino
	C
	MATLAB

	Human-Computer Interaction
	Design Process
	The Gestalt Principles
	Schneidermans 8 Golden Rules

	System Architecture
	Concurrent Programming
	Code Complete

	II Material, Methods and Results
	Material
	Software
	Hardware

	Project Management
	Arduino-Robot
	Designing the Robot
	Acquiring Materials
	Assembly
	Wiring

	Programming the Arduino-Robot
	Requirements
	Configuring Software

	Improving the Robot
	Designing the Motor and Axle Plastic Housings
	Designing the Printed Circuit Board

	The Final Product

	Wireless Communication
	Programming the nRF51-dongle
	Developing the nRF51-server Software
	Creating the Message Protocol
	Distance and Integrity Tests

	Server Application
	Designing the System Architecture
	Designing the Real-Time System Flow
	Structure
	System Flow
	Functionality
	Limitations

	Graphical User Interface
	Design Process
	Sense the Gap
	Understand and Refine the Problem
	Explore
	Evaluation and Feedback
	Select Plan

	Programming the Graphical User Interface
	The Final Product

	Testing the System

	III Discussion, Conclusion and Future Work
	Discussion
	Arduino-Robot
	Using Bluetooth as Communication Protocol
	Using nRF51 as Communication Unit
	The Message Protocol
	Graphical User Interface
	Selecting the Programming Platform

	Conclusion
	Future Work
	Acronyms
	Bibliography
	Appendices

