
Visualization of large scale Netflow data

Nicolai H Eeg-Larsen

Master of Science in Communication Technology

Supervisor: Otto Wittner, ITEM
Co-supervisor: Arne Øslebø, ITEM

Department of Telematics

Submission date: June 2016

Norwegian University of Science and Technology

Title: Visualization of large scale Netflow data
Student: Nicolai Eeg-Larsen

Problem description:

UNINETT is the national research IP network operator in Norway. UNINETT
provides universities, university colleges and research institutions with access to the
global internet as well as access to a range of online services. UNINETT also o�ers
counselling and acts as secretary and coordinator in collaborative activities between
the institutions interconnected by UNINETT. Netflow data provides the network
operators, like UNINETT, with detailed information about how the network is being
used. It is possible to look at things like who is generating the most tra�c, who is the
target of DoS attacks, who is sending out spam etc. Netflow is also commonly used
for automatic anomaly detection. The challenge here is that the amount of Netflow
data collected in a typical backbone network is so large that even the best of anomaly
detection algorithms fails by either not detecting the anomalies or by providing too
many false positives. Another alternative approach to processing Netflow data with
anomaly algorithms is to use visual analytics, i.e. present large amounts of data as
pictures and animations such that humans may detect anomalies by visual inspection.
This project’s main objective will be to survey existing methods and tools for doing
advanced visualization of Netflow data, and suggest and test a novel combination of
these on data from the UNINETT network.

Responsible professor: Otto J. Wittner, ITEM
Supervisor: Arne Øslebø, UNINETT

Abstract

Networks are forwarding more and more data every year, thus its
harder to reveal malicious tra�c among all of it. Current systems might
not be capable of keeping up with the rapid pace of the growth, and
might not be able to separate ill-willed from harmless tra�c, or point out
to many false positives and not be of much use.

Cisco�s NetFlow standard is used to monitor networks, and due to
its versatility it can be used to reveal several interesting things about a
network, such as Distributed Denial of Service (DDoS)-attacks or port
scans.

In this work I will compare the current solution up against a visual
solution developed for this thesis. Carefully choosing di�erent visual
elements to represent NetFlow data as clear as possible using the D3.js
framework. Using nfdump it is possible to extract specific information
and export it into files readable by D3.js code.

The solution was tested with large amounts of data to test if it served
its purpose. It was possible to see clear patterns in the data showing
the network behavior was repeating itself. It was able to point out
abnormalities where single Internet Protocol (IP)-addresses suddenly
receives atypical amounts of tra�c either distributed across thousands of
ports or just to one single one. Since the data is anonymized it is hard to
point out what the reason for the peaks in tra�c, but shows the solution
serves its purpose to separate the irregular from the harmless tra�c.

Through further testing it was concluded that the solution has great
purpose, but cannot serve as a stand alone solution due to its limitations
for going into very specific details while still being intuitive and easy to
use. But its functionality complements a command-line-based solution
very well by removing a lot of the resource and time consuming commands
that would be done in the command-line.

Sammendrag

Nettverk behandler stadig mer og mer data hvert år, og dermed er
det vanskeligere å avsløre ondsinnet trafikk i blant denne. Nåværende
systemer er ikke i stand til å holde tritt med den raske veksten, og er
nødvendigvis ikke i stand til å skille ondsinnet fra ufarlig trafikk, eller vil
peke ut for mange falske positiver og ikke være til nytte.

Cisco sin NetFlow standard brukes til å overvåke nettverk, og på
grunn av sin allsidighet kan den brukes til å avsløre flere interessante ting
om et nettverk, for eksempel DDoS-angrep eller port skanning.

I denne oppgaven vil jeg sammenligne dagens løsning opp mot en
visuell løsning utviklet spesifikt for denne oppgaven. Jeg har nøye valgt
visuelle elementer til å illustrere NetFlow data så klart som mulig ved å
bruke D3.js rammeverket. Ved å bruke nfdump er det mulig å hente ut
spesifikk informasjon og eksportere den til filer som kan leses av D3.js
kode.

Løsningen ble testet med store mengder data for å teste om det tjente
sin hensikt. Det var mulig å se tydelige mønstre i dataen som viser
at oppførselen til nettverket gjentar seg. Den var i stand til å peke ut
anomalier hvor en enkelt Internet Protocol (IP) -adresse plutselig får
unormale mengder trafikk enten fordelt på tusenvis av porter eller bare
til en eneste en. Siden dataene er anonymiserte er det vanskelig å peke ut
hva årsaken til avvikene i trafikken stammer fra, men viser at løsningen
tjener sin hensikt ved å skille uregelmessig fra harmløs trafikk.

Gjennom videre testing ble det konkludert med at løsningen tjener sin
hensikt, men kan ikke fungere som en frittstående løsning på grunn av
begrensninger for å gå inn i svært spesifikke detaljer, samtidig som den er
intuitiv og lett å bruke. Funksjonaliteten komplementerer en tekst basert
løsning veldig godt ved å fjerne mange tid og ressurskrevende oppgaver
fra kommando-linjen.

Preface

This master’s thesis is submitted to the Norwegian University of Sci-
ence and Technology (NTNU) as the final report in the course TTM4905,
and in the final part of a five-year Master of Science in Communication
Technology program at the Department of Telematics (ITEM).

I would like to thank Professor Yuming Jiang for giving me the
opportunity to write this thesis.

Secondly I want to thank my supervisors at UNINETT, Arne Øslebø
and Otto J. Wittner for being a valuable part of the process and helping
me along the way with everything from the structure of the thesis to
helping with the development of the proposed solution.

Additionally I would like to thank my fellow students sharing an
o�ce with me for providing immediate support and being great sparring
partners in discussing the challenges I faced.

Promise me you’ll always remember: You’re braver than you believe,
and stronger than you seem, and smarter than you think.

by A. A. Milne

Contents

List of Figures xi

Listings xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Objectives . 1

1.2.1 Scope . 1
1.2.2 Objectives . 2

1.3 Outline . 2
1.4 Methodology . 3
1.5 Deviation from problem description 3

2 Background 5
2.1 NetFlow . 5

2.1.1 How does it work? . 5
2.1.2 Main components . 7
2.1.3 nfdump . 7

2.2 Data visualization . 10
2.2.1 Characteristics . 11
2.2.2 Visual perception . 11
2.2.3 Data presentation architecture 11

2.3 D3.js . 13
2.3.1 How does it work? . 13
2.3.2 Scalable Vector Graphics (SVG) files 16

3 Research 17
3.1 Related work . 17
3.2 Alternatives to D3.js . 18

ix

3.3 Initial research . 19
3.4 Traits of a DDoS attack . 19

3.4.1 Raw NetFlow format . 22

4 D3.js and NetFlow 23
4.1 Using D3.js . 23

4.1.1 Scope . 23
4.2 Number of flows to a certain host and port 26

4.2.1 Scope in D3.js . 27
4.2.2 Pros and cons . 29

5 Discussion 31
5.1 Interviews . 31
5.2 Discussion topics . 32

5.2.1 Potential in visual solution 32
5.2.2 Patterns . 32

5.3 Real data in the proposed solution 33

6 Challenges 41
6.1 Large data sets . 41

6.1.1 IP-spectrum . 41
6.1.2 Increasing number of flows 41

6.2 Live updates . 42
6.3 Areas of use . 42

7 Concluding Remarks and Future Work 45
7.1 Recommendations for Future Work 45

7.1.1 Further testing . 45
7.1.2 Customized searches . 46
7.1.3 Expand visual elements . 46

References 49

Appendices

A Appendix A 51

B Appendix B 61

C Appendix C 67
C.1 Template . 67
C.2 Key results . 68

List of Figures

2.1 Creating a flow in the NetFlow cache [1] 6
2.2 Simple NetFlow architecture . 7
2.3 NetFlow collection process . 8
2.4 Processing of collected NetFlow data . 8
2.5 Output from the nfdump command in 2.1 9
2.6 Example of the interface in NfSen . 10
2.7 Example of dataset of random numbers where no pre-attentive processing

is done . 12
2.8 Example of a dataset of random numbers where pre-attentive processing

has been used to distinguish the occurrences of the number five 12
2.9 Output from the HTML code in 2.4 . 16

3.1 Interface in NVisionIP [2] . 18
3.2 Botnet used in a DDoS attack . 20
3.3 Structure of a DDoS attack using cloud providers 20
3.4 How a DrDoS uses victims to attacks their primary target [3] 21
3.5 How a DoS attack looks in raw format [4] 22

4.1 The files with the highest amount of flows from the provided files 24
4.2 The files with the lowest amount of flows from the provided files 24
4.3 Top ten used destination addresses within the timeframe 1300-1400, 18th

of January . 25
4.4 Top ten source addresses within the timeframe 1300-1400, 18th of January 25
4.5 Top 10 most popular destination ports and the amount of flows 25
4.6 Top 10 most popular source ports and the amount of flows 26
4.7 Top 10 most popular source ports and the amount of flows sent to IP-

address 192.239.62.2 . 26
4.8 Proposed visual element showing statistics for an entire year 27
4.9 Proposed visual element showing statistics for IP and port combinations 28
4.10 24-hour chart showing the behavior on one single IP and port combination 28

5.1 Monthly view with real data from UNINETT 33

xi

5.2 Heatmap showing di�erent combinations of IPs and ports 34
5.3 Comparison of the pattern between two weekdays on one IP and port

combination . 35
5.4 Chart showing the tra�c on the 18th of January, 2012 36
5.5 Charts displaying the tra�c between the 17th and 20th of January for

the IP, 79.36.247.140 on port 80 . 37
5.6 nfdump screenshot showing source ports and IPs to 79.36.247.140 on the

17th of January . 38
5.7 Heatmap displaying tra�c across multiple ports on a single IP-address . 39
5.8 nfdump screenshot showing source ports and IPs to 161.220.58.184 on the

15th of January . 40

7.1 Example of the potential of a visual solution 47

Listings

2.1 nfdump example . 9
2.2 HTML example [5] . 13
2.3 D3.js example [5] . 13
2.4 Example of use of the D3.js framework [6] 13
A.1 HTML and scripts to create the proposed solution 51
B.1 Creates .csv files for every nfcapd file in a day 61
B.2 Total amount of flows for each day 61
B.3 Top 10 used IP-adresses for each day 62
B.4 Top10 ports based in IP-addresses 62
B.5 Number of flows for each port and IP-address combination 63
B.6 Create .csv files for each port and IP-address combination 65

xiii

List of Tables

4.1 Pros and cons of a visual solution . 29
4.2 Pros and cons of a command line solution 30

6.1 IPv4 vs. IPv6 . 42

xv

List of Acronyms

API Application Programming Interface.

AS Autonomnous Systems.

AVC Application Visibility and Control.

BGP Border Gateway Protocol.

CSS Cascading Style Sheets.

CSV Comma Separated Value.

DDoS Distributed Denial of Service.

DoS Denial of Service.

DPA Data Presentation Architecture.

GB Gigabyte.

HTML HyperText Markup Language.

IETF Internet Engineering Task Force.

IP Internet Protocol.

IPFIX IP Flow Information eXport.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

ITEM Department of Telematics.

NTNU Norwegian University of Science and Technology.

xvii

SVG Scalable Vector Graphics.

TPC Transmission Control Protocol.

XML Extensible Markup Language.

Chapter1Introduction

1.1 Motivation

Network security, monitoring and Big Data are becoming major pillars in the network
industry. Data tra�c is growing at an alarming rate[7], and is not showing any signs
of slowing down. A majority of this tra�c is harmless and not in the interest for
network monitoring systems. As the amount of tra�c increases, separating malicious
from another activity is becoming more di�cult. Today network monitoring can be
achieved trough using Cisco’s NetFlow standard along with tools as nfdump. The
visual presentation in such tools are limited, and is not very interactive or intuitive.

Theory on how data is best presented visually dates back decades. The term
’visual presentation’ is used to refer to the actual presentation of information through a
visible medium such as text or images [8]. It ranges from simple text to body-language,
and a good visual communication design is evaluated based on the comprehension
by the audience.

Using visualization to represent NetFlow data has not been common, and was
first published as a solution after the 2004 ACM Workshop on Visualization and data
mining for computer security [2]. In this paper NVisionIP, a java based solution, is
proposed. Capable of providing the system state, and possibly with further work,
find patterns or attacks on the network.

1.2 Scope and Objectives

1.2.1 Scope

This thesis will cover the basics in how NetFlow data is generated and collected, and
also the tools used to manipulate the raw data. As well as showing theory behind
general visualization and how to present data such as NetFlow. D3.js is used to
create examples using real NetFlow data provided by UNINETT.

1

2 1. INTRODUCTION

Connecting the basics mentioned earlier in this section to a simple solution using
real anonymous data and allowing volunteers, with experience using nfdump and
existing tools, to provide feedback(see 1.2.2).

1.2.2 Objectives

O.1: Processing anonymous data

UNINETT provided one month of data, which is hundreds of Gigabyte (GB). A
large part of the process is analysing and perform queries using nfdump to be able to
extract the exact information needed, as well as sorting it and creating files readable
by the D3.js framework.

O.2: Developing working solution

Objective two concerns the development of a simple visual solution using D3.js. One
of the primary objectives is to use as much of the theory covered in 2.2 e�ectively.

O.3 Evaluate solution

In objective three the main objective is discussing if the solution created in O.2 display
enough potential to be able to use visualization as a tool in network monitoring.

1.3 Outline

– Chapter 2 covers the basic knowledge of how the NetFlow files are captured,
processed and presented. How the di�erent tools used to extract the requested
data, and how it works today. Basic visualization theory is presented, along
with more specifics about how to present data in the best way possible. The
D3.js framework is presented as well.

– Chapter 3 describes the related works done in this field before, and how it
is used today. It depicts how di�erent attacks would look using the NetFlow
packets, and how the di�erent attacks work.

– Chapter 4 shows how the D3.js framework was used to create a working
solution and the choices behind each visual element. It also goes into more
detail surrounding how certain information is found using nfdump. This chapter
is the novel contribution in this work.

– Chapter 5 discusses the use of the solution after interviews completed with
UNINETT-sta�. It incorporates real data into the proposed solution, and
display how the data looks, and the findings from this.

1.4. METHODOLOGY 3

– Chapter 6 presents challenges encountered during the work in this paper and
expected obstacles in eventual future development.

– Chapter 7 includes my concluding remarks along with recommendations for
future action.

1.4 Methodology

Approaching the problems and objectives defined in this thesis I went through a
process taking decisions to select what framework was to be used in the development,
how the solution should look like, and how it should be tested. Using basic knowledge
within data visualization I made a working solution with D3.js. In order to test the
solution I performed qualitative interviews with experts.

1.5 Deviation from problem description

The problem description states two main objectives; the first one is to survey existing
methods, and the second is to suggest and test a novel combination of these in data
from the UNINETT network. In my research, I found that there was a lack of modern
and recent solutions specially made for NetFlow data, and focused on the second
objective in this work. Due to this, I chose to use the D3.js framework and create a
visual presentation and test how it could represent NetFlow data in the best way
possible.

Chapter2Background

2.1 NetFlow

Cisco IOS NetFlow standard creates an environment that includes tools to understand
who, what, when, where and how network tra�c is flowing. NetFlow makes it easier
for administrators to utilize the network optimally. One can determine the source
and destination of tra�c and use this information to reveal for example DDoS-attacks
or spam mail. [9]

2.1.1 How does it work?

Every packet that is forwarded within a router/switch is examined for a set of Internet
Protocol (IP) packet attributes. With these attributes, one can determine if the
packet is unique, or similar to other packets.

The attributes used by NetFlow are:

– IP source address

– IP destination address

– Source port

– Destination port

– Layer 3 protocol type

– Class of service

– Router/Switch interface

To group packets into a flow, one compares source/destination IP address,
source/destination ports, protocol interface, and class of service. Then the packets

5

6 2. BACKGROUND

and bytes are tallied. This method is scalable because a large amount of network
information is condensed into a database of NetFlow information called the NetFlow
cache, shown in Figure 2.1.

When the NetFlow cache is created one can use this to understand the network
behavior. The di�erent attributes generate di�erent knowledge about a certain
network and combined they can paint a detailed picture of how the network is
working. For example, the ports show what application is utilizing the tra�c, while
the tallied packets and bytes show the amount of tra�c. [1] [10]

Figure 2.1: Creating a flow in the NetFlow cache [1]

– Source address allows the understanding of who is originating the tra�c

– Destination address tells who is receiving the tra�c

– Ports characterize the application utilizing the tra�c

– Class of service examines the priority of the tra�c

– The device interface tells how the network device is utilizing the tra�c

– Tallied packets and bytes show the amount of tra�c

Additional information added to a flow includes:

– Flow timestamps to understand the life of a flow; timestamps are useful for
calculating packets and bytes per second

– Next hop IP addresses including Border Gateway Protocol (BGP) routing
Autonomnous Systems (AS)

– Subnet mask for the source and destination addresses to calculate prefixes

2.1. NETFLOW 7

– flags to examine Transmission Control Protocol (TPC) handshakes

[1]

2.1.2 Main components

A typical set-up using NetFlow consists of three main components:

– Flow Exporter: aggregates packets into flows and exports flow records to-
wards one or more flow collectors.

– Flow collector: is responsible for reception, storage and pre-processing of
flow data received from a flow exporter.

– Analysis application: an application that analyses the received flow data in
di�erent contexts, such as intrusion or tra�c profiling.

Figure 2.2: Simple NetFlow architecture

2.1.3 nfdump

nfdump collect and process NetFlow data on the command line. It stores NetFlow
data in time sliced files. The files are binary, and this provides the possibility of
either returning the output from nfdump in the same binary form, or as readable
text. nfdump has four output formats, raw, line, long and extended. The challenge
of representing Internet Protocol version 6 (IPv6) addresses is handled by shrinking
them in the regular output. In Figure 2.3 the collection process is depicted, and in
Figure 2.4 the processing of collected NetFlow data is shown.[11]

8 2. BACKGROUND

Figure 2.3: NetFlow collection process

Figure 2.4: Processing of collected NetFlow data

v5,v9 and IPfix

– v5: NetFlow v5 is the most popular version of Cisco Netflow. It is fixed,
meaning it always stays the same and makes for a simpler deciphering.

– v9: v9 is, opposite of its predecessor, dynamic. The collector will need to
know the format of incoming NetFlow v9 flows, which means v9 templates
periodically needs to be sent to the collector to inform of the format in which
the flows are being exported. It was made to support technologies as Multi-cast,
IPSec and Multi Protocol Label Switching (MPLS). IPv6 support was added
as well. [12]

– IPFIX: Based on the design of NetFlow v9, IP Flow Information eXport

2.1. NETFLOW 9

(IPFIX) added support for variable length strings, making it possible for
Application Visibility and Control (AVC) exports in the future[13]. The IPFIX
is a Internet Engineering Task Force (IETF)[14] standard as of RFC 3917[15].

Example of use

An example of a nfdump command used in this project is the extraction of the
number of flows each day to find the 10 most used destination IP-addresses:

1 nfdump ≠R / data / net f l ow /oslo_gw /2012/01/01/ nfcapd .201201010000 : nfcapd
.201201012355 ≠n 10 ≠s d s t i p ≠o csv > example . csv

Listing 2.1: nfdump example

Such a request iterates over many files due to the -R command. In this case, it
is all captures between 00:00 until 23:55 on the first of January 2012. It is limited
to the 10 most popular destination IP addresses. All of this is stored in a .Comma
Separated Value (CSV)-file which is optimal for use with the D3.js framework.

The nfdump-command in 2.1 return the output shown in Figure 2.5.

Figure 2.5: Output from the nfdump command in 2.1

NfSen

NfSen is a graphical web-based front end for the nfdump NetFlow tools. It allows
the user to navigate through the NetFlow data, and shows a simple graphic of the
data. An example of the interface is shown in Figure 2.6.

10 2. BACKGROUND

Figure 2.6: Example of the interface in NfSen

2.2 Data visualization

Data visualization refers to the techniques used to communicate data or information
by encoding it as visual objects. Meaning that information is represented by any
visual element such as graphs and plots, but may also take any other visual form.
Visualization helps users analyze and interact with data in a whole new way. It
makes complex data more accessible, understandable and usable.[16]

In recent years, the rate of which data is generated has increased rapidly, and
the need for information to be available and comprehensible is growing. All these
new sources of data have created what we refer to as "Big Data" [17]. Without
visual presentation, such data is often too big to understand under human inspection.
This is one of the major reasons data visualization is such an emerging technique to
interpret Big Data.

Combining several parameters through visualization could reveal something
automated systems might ignore or don’t pick up.

The greatest value of a picture is
when it forces us to notice what
we never expected to see.

John Tukey

2.2. DATA VISUALIZATION 11

2.2.1 Characteristics

In his book from 1983, The Visual Display of Quantitative Information[18], Edward
Tufte states that characteristics of an e�ective graphical representation should:

– show the data

– induce the viewer to think about the substance rather than about methodology,
graphic design, the technology of graphic production or something else

– avoid distorting what the data has to say

– present many numbers in a small space

– make large data sets coherent

– encourage the eye to compare di�erent pieces of data

– reveal the data at several levels of detail, from a broad overview to the fine
structure

– serve a reasonably clear purpose: description, exploration, tabulation or deco-
ration

– be closely integrated with the statistical and verbal descriptions of a data set.

2.2.2 Visual perception

In this work the correlation between e�ective visual communication and how it is per-
ceived upon human inspection is important. A human’s ability to distinguish between
di�erences in length, shape and color is referred to as "pre-attentive attributes".

A good example of this is imagining finding the number of a certain character in
a series of characters. This requires significant time and e�ort, but if the character
were to stand out by being a di�erent size, color or orientation this could be done
through pre-attentive processing quickly. Good data visualization takes all of this
into consideration and uses pre-attentive processing. In the example, shown in Figure
2.7 and 2.8, it is easy to see how pre-attentive processing is used to distinguish how
many occurrences of the number 5 is in a larger set of random numbers.
znaps.net

2.2.3 Data presentation architecture

The purpose with Data Presentation Architecture (DPA) is to identify, locate,
manipulate, format and present data in such a way as to optimally communicate
meaning and pro�er knowledge[19]. This has become an important tool in Business
Intelligence, the art of transforming raw data into something useful.

12 2. BACKGROUND

Figure 2.7: Example of dataset of random numbers where no pre-attentive process-
ing is done

Figure 2.8: Example of a dataset of random numbers where pre-attentive processing
has been used to distinguish the occurrences of the number five

Objectives

DPA has two main objectives, which is the following:

– To use data to provide knowledge in the most e�cient manner possible (minimize
noise, complexity, and unnecessary data or detail given each audience’s needs
and roles)

– To use data to provide knowledge in the most e�ective manner possible (provide
relevant, timely and complete data to each audience member in a clear and
understandable manner that conveys important meaning, is actionable and can
a�ect understanding, behaviour and decisions)

Scope

The actual work of DPA consist of:

– Creating e�ective delivery mechanisms

– Define relevant knowledge needed by each viewer

2.3. D3.JS 13

– Determine how often the data should be updated

– Determine how often and when the user needs to see the data

– Finding the right data

– Utilizing the best visualizations and presentation formats

2.3 D3.js

In this work D3.js [5] is chosen as the framework to create examples of e�ective
data visualizations due to its dynamical and interactive properties. D3 stands for
Data-Driven Documents, and is a Javascript library. D3.js allows users to bind
arbitrary data to a Document Object Model. It uses widely implemented SVG,
Cascading Style Sheets (CSS) and HyperText Markup Language (HTML)5 standards.
D3 is unique in the way it creates SVG objects from large datasets using simple D3.js
functions to generate rich text/graphic charts and diagrams.

2.3.1 How does it work?

The W3C DOM API, often used in today’s web development, is often tiring to use.
An example bit of code from [5] shows how one changes the text color of paragraph
elements:

1
var paragraphs = document . getElementsByTagName (" p ") ;

3 f o r (var i = 0 ; i < paragraphs . l ength ; i++) {
var paragraph = paragraphs . item (i) ;

5 paragraph . s t y l e . s e tProper ty (" c o l o r " , " white " , n u l l) ;
}

Listing 2.2: HTML example [5]

In D3.js this could be solved trough one line of code:

1 d3 . s e l e c t A l l (" p ") . s t y l e (" c o l o r " , " white ") ;

Listing 2.3: D3.js example [5]

D3.js also possess dynamic properties which gives the user a powerful tool to
create advanced graphics with a small amount of code.

This next snippet of code shows how the D3.js framework simply appends to an
existing HTML object. [20]. The output from 2.4 can be seen in Figure 2.9.

1 <!DOCTYPE html>
<meta c h a r s e t=" utf ≠8">

14 2. BACKGROUND

3 <s t y l e> /� s e t the CSS �/

5 body { font : 12px A r i a l ; }

7 path {
s t r o k e : s t e e l b l u e ;

9 s t roke ≠width : 2 ;
f i l l : none ;

11 }

13 . a x i s path ,
. a x i s l i n e {

15 f i l l : none ;
s t r o k e : grey ;

17 s t roke ≠width : 1 ;
shape≠r ender ing : c r i spEdges ;

19 }

21 </ s t y l e>
<body>

23
<!≠≠ load the d3 . j s l i b r a r y ≠≠>

25 <s c r i p t s r c=" http :// d3 j s . org /d3 . v3 . min . j s "></ s c r i p t>

27 <s c r i p t>

29 // Set the dimensions o f the canvas / graph
var margin = { top : 30 , r i g h t : 20 , bottom : 30 , l e f t : 50} ,

31 width = 600 ≠ margin . l e f t ≠ margin . r i ght ,
he ight = 270 ≠ margin . top ≠ margin . bottom ;

33
// Parse the date / time

35 var parseDate = d3 . time . format ("%d≠%b≠%y ") . parse ;

37 // Set the ranges
var x = d3 . time . s c a l e () . range ([0 , width]) ;

39 var y = d3 . s c a l e . l i n e a r () . range ([he ight , 0]) ;

41 // Def ine the axes
var xAxis = d3 . svg . a x i s () . s c a l e (x)

43 . o r i e n t (" bottom ") . t i c k s (5) ;

45 var yAxis = d3 . svg . a x i s () . s c a l e (y)
. o r i e n t (" l e f t ") . t i c k s (5) ;

47
// Def ine the l i n e

49 var v a l u e l i n e = d3 . svg . l i n e ()
. x (f u n c t i o n (d) { re turn x (d . date) ; })

51 . y (f u n c t i o n (d) { re turn y (d . c l o s e) ; }) ;

53 // Adds the svg canvas
var svg = d3 . s e l e c t (" body ")

2.3. D3.JS 15

55 . append (" svg ")
. a t t r (" width " , width + margin . l e f t + margin . r i g h t)

57 . a t t r (" he ight " , he ight + margin . top + margin . bottom)
. append (" g ")

59 . a t t r (" trans form " ,
" t r a n s l a t e (" + margin . l e f t + " , " + margin . top + ") ") ;

61
// Get the data

63 d3 . csv (" data . csv " , f u n c t i o n (e r ro r , data) {
data . forEach (f u n c t i o n (d) {

65 d . date = parseDate (d . date) ;
d . c l o s e = +d . c l o s e ;

67 }) ;

69 // Sca l e the range o f the data
x . domain (d3 . extent (data , f u n c t i o n (d) { re turn d . date ; })) ;

71 y . domain ([0 , d3 . max(data , f u n c t i o n (d) { re turn d . c l o s e ; })]) ;

73 // Add the v a l u e l i n e path .
svg . append (" path ")

75 . a t t r (" c l a s s " , " l i n e ")
. a t t r (" d " , v a l u e l i n e (data)) ;

77
// Add the X Axis

79 svg . append (" g ")
. a t t r (" c l a s s " , " x a x i s ")

81 . a t t r (" trans form " , " t r a n s l a t e (0 , " + he ight + ") ")
. c a l l (xAxis) ;

83
// Add the Y Axis

85 svg . append (" g ")
. a t t r (" c l a s s " , " y a x i s ")

87 . c a l l (yAxis) ;

89 }) ;

91 </ s c r i p t>
</body>

Listing 2.4: Example of use of the D3.js framework [6]

This graph would be appended to the body element of the html and look like this:

In the code in 2.4 the dynamic properties are visible as the x- and y-axis change
its parameters based on the input data. Having the possibility to use several di�erent
data formats lowers the demand to process data before feeding it to the D3.js code.

16 2. BACKGROUND

Figure 2.9: Output from the HTML code in 2.4

2.3.2 SVG files

SVG is an Extensible Markup Language (XML)-based vector image format for two-
dimensional graphics with support for interactivity and animation. The two latter
are favouring attributes of the SVG-format. A great advantage when using SVG
figures is that they are defined by text files, which means they can be searched,
indexed, scripted and compressed. Being accessible on practically any platform and
scaling on any device makes it an extremely versatile solution.

Chapter3Research

In this chapter I will cover the research found investigating related works, and how
malicious attacks looks from the networks side.

3.1 Related work

In the last decade, the importance of security against attacks on large computer
systems has grown rapidly. In 2004, the ACM workshop on Visualization and data
mining for computer security presented NVisionIP: netflow visualizations of system
state for security situational awareness[2]. This was one of the first tools to visualize
NetFlow data. The visualization was based on either number of bytes transmitted or
the number of flows to or from the hosts on the network. Due to its limitations, it
was not tested further during this work. NVisionIP’s interface can be seen in figure
3.1.

In [21] they discuss the use of NVisionIP to combat di�erent security concerns.
Most of the same attacks covered in this work are relevant today, although in today’s
massive amounts of data, they are harder to discover.

– Worm infection: One of the most basic security functions one might uncover.
Worms usually spread by probing for other hosts. Filtering out hosts transmit-
ting a lot of Flows with a single destination port, one could easily see which
machines are infected and should be taken o�ine.

– Compromised systems: If a host is compromised, the attacker might install
malware that allows the attacker to control the machine. Following this, an
attacker might turn a host into a file server. By detecting large volumes of
tra�c on certain ports one might discover such an attack.

– Misuse: Misuse of computer networks in order with terms of use etc.. An
example is detecting if certain users have abnormal high volumes of tra�c. By

17

18 3. RESEARCH

Figure 3.1: Interface in NVisionIP [2]

inspecting further one can uncover if this is through one single application and
not in accordance with the policies of the organization.

– Port Scans: When a large number of ports are used at a specific host it is
easily identified by NVisionIP.

– Denial of Service (DoS): Denial of Service Attacks will be visible through
spikes in tra�c volume from the host attacking. If a host is attacked the same
pattern is visible through high volumes in receiving tra�c. Thus, peaks in
tra�c are not necessary an attack, but might be a result of a new release or
backup

In [22], a previous masters thesis from NTNU, considers a lot of the same issues
covered in this work. It discusses solutions available at the time, and what patterns
in the tra�c are created when malicious activities takes place.

3.2 Alternatives to D3.js

Along with D3.js, a lot of di�erent frameworks exists that serve the purpose need
in this work. chart.js [23] is a popular and widely used framework used to create

3.3. INITIAL RESEARCH 19

graphs. Compared to D3.js it is easier in use, but lacks the possibilities D3.js possess.
Due to the broader selection in D3.js it was chosen over its competitors to not limit
creativity in the development.

3.3 Initial research

In section 2.1 it was illustrated what the raw format of the NetFlow packets looks
like. In this work I will compare di�erent visual representations of large amounts of
NetFlow packets up against current command-line based representation. How much
more e�ective is visualization compared to the text format?

To understand this, basic knowledge from visualization will be used to create and
test a solution with real NetFlow data. This is where D3.js will come to great use.
It can be used to quickly develop simple interactive graphs that can be used to test
solutions up against each other.

To be able to identify a DDoS attack, one can look at it from two sides. By
finding someone who is attacking, or someone who is being attacked. In this work,
we will look at the second scenario. If someone is a target of a DDoS a sudden peak
in incoming tra�c will appear. Upon further investigation one will look for similar
network behavior among previous data to look for a pattern to disclose if there is an
actual attack.

3.4 Traits of a DDoS attack

In a DDoS attack, there is a large number of hosts performing the attack. In many
cases, a lot of the hosts are not even aware they are a part of an attack. This is
called a botnet, derived from the words robot and network. Using compromised
systems, called zombies, gives the attacker control of a large enough amount of hosts
to perform a volume-based DDoS attack as depicted in figure 3.2.

20 3. RESEARCH

Figure 3.2: Botnet used in a DDoS attack

Another new trend is using large data centres or cloud machines to launch these
attacks. Either trough renting or compromising them. As cloud providers are o�ering
such large amounts of computers, this new platform is not only great for legitimate
use, but also cyber-criminals. Figure 3.3 shows how an attacker can use cloud-based
machines to perform such an attack.

Figure 3.3: Structure of a DDoS attack using cloud providers

3.4. TRAITS OF A DDOS ATTACK 21

Distributed Reflection Denial of Service attacks are becoming more and more
frequent. DrDoS techniques usually involve multiple victim host machines that
unwillingly participate in a DDoS attack on the attackers primary target. Requests
to the victim host machines, are redirected, or reflected, from the victim hosts
to the target. One advantage of the DrDoS attack method is anonymity. In a
DrDoS attack, the primary target appears to be directly attacked by the victim host
servers, not the actual attacker. This approach is called "spoofing" and is illustrated
in figure3.4.Amplification is another advantage of the DrDoS attack method. By
involving multiple victim servers, the attacker’s initial request yields a response that
is larger than what was sent, thus increasing the attack bandwidth[3].

Figure 3.4: How a DrDoS uses victims to attacks their primary target [3]

22 3. RESEARCH

3.4.1 Raw NetFlow format

Figure 3.5: How a DoS attack looks in raw format [4]

In the preceding example, there are multiple flows for UDP port 80 (hex value 0050).
In addition, there are also flows for TCP port 53 (hex value 0035) and TCP port 80
(hex value 0050).

The packets in these flows may be spoofed and may indicate an attempt to perform
these attacks. It is advisable to compare the flows for TCP port 53 (hex value 0035)
and TCP port 80 (hex value 0050) to normal baselines to aid in determining whether
an attack is in progress.[4]

Chapter4D3.js and NetFlow

In this chapter I will document the development of my solution, and how I process
the data to extract what information I want from the captures made available.

4.1 Using D3.js

Earlier in this work I mentioned that D3.js will be used to show examples of e�ective
visualization of NetFlow data. It is assumed that the data has already been processed
before it is made accessible. I was supplied with two months of anonymous data
from UNINETT to get familiar with NetFlow and be able to use real data for my
visualizations. This is anonymized data from January of 2012 from Trondheim and
Oslo NetFlow collectors. Data from these collectors are sampled in the ratio of either
1/100 or 1/1000. Sampling may lead to some deviations in the networks behavior,
but due to the nature of the attacks investigated in this work, sampling should not
be an obstacle. Attacks where only a specific flow is crucial, such a sampling ratio
could exclude these packets, and the attack would go by unnoticed.

4.1.1 Scope

Large amounts of data should be presented with such a scope that is intuitive and easy
to understand. I have chosen to focus on the most popular destination IP-addresses
and ports over di�erent time periods. Going into detail looking at an hour by hour
view of each IP and port. I felt this was the best way to represent the data.

IP spectrum

Choosing the address spectrum as the main focus, one will have to find a way to
represent the entire IPv4 spectrum. This is alone a challenge, and when it comes
to IPv6, it becomes practically impossible due to the range of the addresses. This
means one will have to use pre-processing to separate out the IP-addresses worth
examining closer. In the data provided by UNINETT, it is possible to e.g., list the

23

24 4. D3.JS AND NETFLOW

top 10 files in size, meaning the time slots with the most flows. This query provided
the results in Figure 4.1 when performed on the provided data.

Figure 4.1: The files with the highest amount of flows from the provided files

From this simple preprocessing it is easy to see that in the time period between
1300-1400 on the 18th of January there was a clear peak in the number of flows
claiming all the spots in the top 10. If we compare them to the files with the lowest
amount of flows, shown in Figure 4.2, we see a major span between the files with the
highest and lowest numbers of flows.

Through this command we create a .csv file containing the hour in question. With
this file it is possible to find the most used destination IP-addresses, shown in Figure
4.3.

One particular address is clearly separated from the others. The high numbers
could be a DDoS attack or other abnormalities, but not does not necessary need to
be ill-willed. If we look at the list of top IP-addresses sending packets, we see in
Figure 4.4 that the same IP-address, 192.239.62.2, occurs here as well.

Figure 4.2: The files with the lowest amount of flows from the provided files

4.1. USING D3.JS 25

Figure 4.3: Top ten used destination addresses within the timeframe 1300-1400,
18th of January

Figure 4.4: Top ten source addresses within the timeframe 1300-1400, 18th of
January

Figure 4.5: Top 10 most popular destination ports and the amount of flows

To further investigate the activity on one certain IP-addresses, one can look at
ports, both source and destination. In the case of the mentioned IP-address the flows
are widely spread across thousands of destination ports in Figure 4.6. If we look at
the destination ports in Figure 4.7, we note that 90.8% of the tra�c is originated from
port 80 meaning this is probably someone uploading a large file to our IP-address.

26 4. D3.JS AND NETFLOW

Figure 4.6: Top 10 most popular source ports and the amount of flows

Figure 4.7: Top 10 most popular source ports and the amount of flows sent to
IP-address 192.239.62.2

Time spectrum

From the Netflow packets, it is also possible to look at the time spectrum. Here
one looks at the amounts of flows within one time slot, not separating the di�erent
IP-addresses. With the vast amount of IP-addresses this is not a suitable spectrum
to present the data to find specific attacks etc.. It could, however, be used to monitor
amounts of tra�c over time or which ports are in use at certain times to use the
bandwidth better, etc..

4.2 Number of flows to a certain host and port

In this section, the process of creating a visual interface, and the reasoning behind
the selection of the di�erent visual elements is described.

4.2. NUMBER OF FLOWS TO A CERTAIN HOST AND PORT 27

4.2.1 Scope in D3.js

Three modules of a solution are presented to show di�erent levels of detail. It
combines both the time spectrum and IP-spectrum to investigate the NetFlow data.
The data from UNINETT required pre-processing before being made available to
the D3.js solution. These bash scripts used can be found in Appendix B. The code
for the solution can be found in Appendix A.

File structure

With the bash scripts, thousands of files are created. Data is split into as small and
many files as possible to reduce loading time at the front-end, and to make sure the
data is as comprehensible as possible. In section 2.2.2 we described the importance
of pre-processing the data to highlight certain aspects of larger data sets. With these
scripts we perform advanced preprocessing on significant amounts of data to bring
out the desired output to best find deviations trough visualization.

Overview

First visual element we have is the overview which in this case show an entire year,
neatly separated into months, weeks and days, shown in Figure 4.8. The purpose of
this is to be able to recognize patterns quickly in the data that correlates to regular
activities as backup etc. as mentioned in 3.1. For example a weekly backup will
create similar levels of network usage at specific times each week.

Figure 4.8: Proposed visual element showing statistics for an entire year

IP-addresses and ports

For each day there are millions of di�erent combinations of IP-addresses and ports that
send flows between each other. Through pre-processing it is possible to distinguish
which IP-addresses are the most popular each day, and thus find the ports the
IP-addresses use the most. The example in 4.9 visualize the number of flows for each
of these combinations trough a heatmap. A heatmap distinguishes values through
a color range based on the highest values in the data set, meaning the higher the
value, the darker the color.

28 4. D3.JS AND NETFLOW

Figure 4.9: Proposed visual element showing statistics for IP and port combinations

24-hour chart

When a IP-address and port are selected for a specific day, the next step is to look
at that day in more detail. Using the time-spectrum this graph shows the 24-hour
lapse and the amount of flows at each hour for the chosen IP-address and port.

Figure 4.10: 24-hour chart showing the behavior on one single IP and port combi-
nation

4.2. NUMBER OF FLOWS TO A CERTAIN HOST AND PORT 29

4.2.2 Pros and cons

In this section, I will present pros and cons for the visual- and text-based solution.
Both the solutions serves their purpose in di�erent ways. Some of the cons of each of
them are complemented well by the others pros.

Visual solution

Pros Cons

Very intuitive and straightforward to
use: The need for competence within
nfdump etc. is not as high, and lowers
the threshold to use the tool.
Visual interpretation of data is quicker
and easier for the human mind to com-
prehend. Patterns and other aberra-
tions are more likely to be visible than
in a text based solution.
As mentioned in 2.2.3, a goal is to
show only the data relevant to the user.
This means that the data that is not
pertinent to the user is never made
visible.

A visual solution might limit the possi-
bilities that exist in an advanced com-
mand line based solution. If going into
detail on the data, a visual solution
might be limited to certain parameters
and will not show the bigger picture.

Table 4.1: Pros and cons of a visual solution

30 4. D3.JS AND NETFLOW

Command line solution

Pros Cons

A command line solution possesses a
wide range of very specific commands
as in nfdump, providing the possibility
to do very distinct searches.

Such a tool is time-consuming and
harder to master than a intuitive and
visual solution. One is very reliable on
the searches being correct and provid-
ing the exact answer one is looking for
requires a fair amount of skill.
Patterns are not easy to recognize
when using a command line as it might
involve several searches to reveal the
desired information.

Table 4.2: Pros and cons of a command line solution

Chapter5Discussion

In this section, the solution will be tested and discussed to figure out if a visual
representation is a proper way to represent NetFlow data. Testing the proposed
solution up against existing command line based tools requires volunteers with
knowledge of nfdump. As this is a not a commonly used tool, volunteers from
UNINETT were chosen.

With a limited number of test persons, a quantitative examination is not possible.
Instead, I performed in-depth qualitative interviews along with testing of both
solutions.

As this is not a finished product the testing environment is limited to one month
of data, and focused on the potential of the visual solution to detect anomalies and
unusual behavior.

5.1 Interviews

During the interviews, the testing environment will be limited. At first the user will
be asked of his experience with nfdump. Then the user will try to use the visual
representation to find results previously only retrievable through nfdump.

The further focus will be on finding patterns in the data and how this can be
done in today’s solution versus the proposed solution.

In the last part of the interview there will be a discussion of prepared topics. The
template used and some key results can be found in Appendix C

31

32 5. DISCUSSION

5.2 Discussion topics

5.2.1 Potential in visual solution

Before discussing the solution, it is important to clarify that the proposed solution
in this work only covers a small area of use. It does not cover all potential threats
and is only an example of how visualization of NetFlow data can be done.

As the discussion proves, nfdump is capable of going more into depth than any
visual solution. Although having a significant potential, the visual solution is not
able to show very detailed information. But used along with a command line solution,
it can prevent the user from performing several high resource demanding nfdump
commands, and the visual solution could quickly reveal the information that otherwise
would be time-consuming to find with nfdump.

As a part of a larger system, a visual solution has potential. But its lack in
diversity requires a lot visual elements to cover all possible attacks.

One of the interview participants had mostly experience using NFsen, a tool
that has not been in focus in this work. It creates graphs and gives the option to
view flows over di�erent time frames. But when it comes to the specific searches
performed, the tool uses nfdump for its possibility for specific searches as used in 2.1.

All in all it is clear that a visual solution brings great contributions to network
monitoring, but is facing challenges taking completely over because the level of detail
required is narrow, and is often limited to specific events. Both solutions work
together and complement each other. As mentioned in 4.2.2, they work well together,
and complete functionality where the other is lacking.

Visual representation does not just represent a helpful tool in the security aspect
of network monitoring, but presenting statistics of use of the network as well.

5.2.2 Patterns

Discussing the possible use of visualization, its purpose became important, especially
what role it would have. In network monitoring patterns are important, especially in
detecting anomalies. Changes in behaviour in the network often means a computer
or server has been compromised. It was brought up that such network monitoring
could be beneficiary in a network in a normal business, but would show to many
false positives in a research network as at UNINETT. Spikes in the network that
would trigger alarms are not likely to be compromised computers, as the use of the
network is not as uniform as other more conform networks in tra�c.

5.3. REAL DATA IN THE PROPOSED SOLUTION 33

5.3 Real data in the proposed solution

During the development of the visual solution only dummy data was used. After
development was done, bash scripts found in B was run to extract the necessary
data. In 4.1.1 we discovered that the 18th of January between 1300 and 1400 had
the highest number of flows. The first section described in 4.2.1, has as its main
purpose to point out days with an abnormal amount of flows, and with real data it
pointed out 18th of January as well as seen in Figure 5.1. It serves its objective, by
showing the bigger picture.

Figure 5.1: Monthly view with real data from UNINETT

Section two of the visual representation, the main element, contains the most data,
displaying one hundred di�erent combinations of IP-addresses and ports. Looking
at the date pointed out earlier in Figure 5.1, we see that certain combinations is
responsible for the largest share of flows in Figure 5.2. Once a specific combination
is selected the solution gives the choice to look for patterns by changing the selected
date and look for changes in the behaviour on that combination.

34 5. DISCUSSION

Figure 5.2: Heatmap showing di�erent combinations of IPs and ports

5.3. REAL DATA IN THE PROPOSED SOLUTION 35

If we consider one of the most significant combinations on the 18th of January,
IP address: 161.223.1.142 and Port 443, it is easy to observe the daily patterns
compared in Figure 5.3. Showing no abnormal behaviour, we can rule out a DoS
attack.

Figure 5.3: Comparison of the pattern between two weekdays on one IP and port
combination

When comparing the behaviour in the di�erent combinations of IP-addresses and
ports, the last graph is used. It shows how the tra�c is distributed over 24-hours,
and shows spikes in tra�c if there was an attempt of a DoS attack. The tra�c can
be seen in Figure 5.3 and 5.4.

36 5. DISCUSSION

Figure 5.4: Chart showing the tra�c on the 18th of January, 2012

Since the dataset did not contain any significant abnormal behaviour, UNINETT
provided another month of data where some IP-addresses were responsible for a
larger part of the tra�c, to see if the solution could reveal something other than
reoccurring patterns in the network tra�c. The same scripts was executed on the
data, and made available to the solution.

This time there is not one certain date that points, which means we need to
utilize the second heatmap to spot abnormalities. During a 3-day period between
the 17th and 20th of January one specific combination, 79.36.247.140 on port 80, is
most used. The tra�c starts by growing steadily on the 17th and peaks at 12:00
with over 250,000 flows before it abruptly stops two hours later, shown in Figure 5.5.
Using nfdump to find the origin of this tra�c it was revealed to come from one single
IP-address, 190.118.80.182, and spread across thousands of source ports, shown in
Figure 5.6. The reason behind this tra�c is unclear as it follows no clear pattern.
For example a televised sporting event could give extreme spikes in tra�c, but in this
case the amount of flows are consistently rising no matter the hour. Without being
able to find the applications responsible for the tra�c, it is unforunately not possible
to conclude with anything other than that this sort of behavior is not normal.

5.3. REAL DATA IN THE PROPOSED SOLUTION 37

Figure 5.5: Charts displaying the tra�c between the 17th and 20th of January for
the IP, 79.36.247.140 on port 80

38 5. DISCUSSION

Figure 5.6: nfdump screenshot showing source ports and IPs to 79.36.247.140 on
the 17th of January

5.3. REAL DATA IN THE PROPOSED SOLUTION 39

Other irregularities appear on the days between the 13th through 17th of January,
a series of days where 9 out of 10 ports receive tra�c on one specific IP-address.The
first day is shown in Figure 5.7 And the single port with no tra�c is port 0, which
is reserved [24]. All of this tra�c originated from one singe IP-address and port as
seen in Figure 5.8.

Figure 5.7: Heatmap displaying tra�c across multiple ports on a single IP-address

40 5. DISCUSSION

Figure 5.8: nfdump screenshot showing source ports and IPs to 161.220.58.184 on
the 15th of January

Chapter6Challenges

6.1 Large data sets

When visualizing big data the main challenge is to e�ectively show the core message
of the data. Considering one hour of the data provided from UNINETT, there are
almost 400,000 di�erent IP-adresses, and the amounts of flows is in the millions.

In section 2.2.1 good visualization is said to be able to present many numbers
in a small space, make large data sets coherent, and reveal data at several levels of
detail. I chose to create individual modules with D3.js, with each covering a di�erent
layer of detail.

6.1.1 IP-spectrum

As mentioned the range of the Internet Protocol version 4 (IPv4) is large, and with
the emergence of IPv6 there is the challenge to represent such a large spectrum as
seen in6.1.1. In 4.2.1 this was resolved with pre-processing of the data for a specific
task. In other cases such a limitation on the number of IP-addresses represented
wouldn’t be satisfying. A comparison of the size of the two IP versions is done in
table 6.1.1

6.1.2 Increasing number of flows

The amount of data sent these days are expanding quickly. This means the number
of flows will follow, and a visual solution will need to be scalable to handle this
increase. In the solution in 4.2 the first overview could scale as the heatmap takes
in consideration the range of total flows. The second part of the solution is capable
of handling larger amounts of flows, but the limitation in the number of ports and
IP-addresses could limit certain attacks as port scanning. With the increase in IPv6,
the visual representation itself could become less intuitive and simple as the possible
combinations of IP-addresses and ports would be too big to yield results(, or reveal

41

42 6. CHALLENGES

IPv4 IPv6

Address size: 32-bit number
Address format:
Decimal notation: 192.168.0.0
Number of addresses: 232 =
4, 294, 967, 296

Address size: 128-bit number
Address format:
Hexadecimal
notation:
3FFF:F200:0234:AB00:0123:4567:8901:
ABCD
Number of addresses: 2128 =
340, 282, 366, 920, 938, 463, 463, 374, 607,
431, 768, 211, 456

Table 6.1: IPv4 vs. IPv6

attacks). As the last graph is based on simply number of flows over time, it could
prove e�ective even as the number of flows increase. It could be harder to reveal
minor spikes in flows as it will be less distinguished than before.

6.2 Live updates

During the development of the solution made in this work the data has been static
and the time used to process the data and present it has not been taken into
consideration. If a visual solution is to be used to monitor tra�c as it is being
collected, the processing of the live data needs to be improved to be able to detect
attacks and deviations as they are happening. nfdump is a powerful tool, but the
amounts of data generated are so large, and will increase further, that the possibility
to filter out specific information is to time consuming and require a lot of resources
from UNINETT. It was not made a priority in this work as the functionality of the
visual solution up against nfdump was the main focus, not if it met requirements in
speed, live monitoring and searching within the data.

6.3 Areas of use

In this work it is recognized that there are several positive aspects of a visual solution.
But to be as e�ective as it can be, it needs to work well along with other tools.
In 2.1.3 the current tool, nfsen, is used in combination with other solutions. The
same combination could be just as e�ective used along with a more updated and
interactive visual solution as developed in this work.

Alone it can not serve as a complete solution, but as a stand alone product it can
show important statistics about the network which can be used in anything from

6.3. AREAS OF USE 43

security measures to allocation of bandwidth. In [25] they set up an SQL-database
storing a large numbers of NetFlows to be able to perform queries to provide usage
statistics and network forensics, as well as the intrusion detection. Showing that the
purpose of data mining NetFlow packets can prove very useful within many areas of
use.

Chapter7Concluding Remarks and Future
Work

In this work the theory behind both Cisco’s NetFlow and basic visualization theory
has been presented. This has been used as background for the novel part of the work
which has been the development and testing of a simple tool to interact with the
NetFlow data to find unusual behavior in the network, revealing several abnormalities
described in 5.3. Potential in such a solution has been discussed through qualitative
interviews with experienced users of the current tools. Results show there is a need
for developments within the field of visualization in network monitoring.

What has been created in this work is merely a fraction of what is possible with
both NetFlow data and D3.js. Further analysis of what information that should
be included in the visual presentation could give a solution capable of discovering
anomalies not being picked up by current systems. By showing how visual elements
can improve how people interact with NetFlow data I hope the potential for using
visual tools combined with human inspection and experience has been accentuated.

7.1 Recommendations for Future Work

In the work done in this paper only the basic knowledge of how NetFlow can be
visualized has been done. To further improve its functionality and operation in-depth
research into performance is required.

7.1.1 Further testing

The data provided from UNINETT was not confirmed to contain any attacks, but
showed although that the visual representation of the data revealed similar patterns
as discovered trough the current nfdump solution. Future work should test the visual
solution against larger sets of data to prove scalability and the ability to reveal
patterns over bigger time slots, and larger sets of data.

45

46 7. CONCLUDING REMARKS AND FUTURE WORK

7.1.2 Customized searches

As showed in section 4.1.1 the commands in nfdump can reveal detailed information
in few commands, but there are still a few searches required to obtain the requested
data. By creating an Application Programming Interface (API) that simplifies the
extraction of the information used in the visual elements, the possibility to display
live NetFlow data is obtainable.

7.1.3 Expand visual elements

Pre-processing data from UNINETT was time consuming and the focus was to display
an example of what is possible. With a faster way of searching and processing the
data as mentioned in the previous section it could have been expanded to include a
wider scope. The possibility to choose between source and destination IP-addresses
and ports would be more e�ective in monitoring the tra�c, since it would make
the user able to see who is originating as well as who is receiving the tra�c. The
amount of IP-addresses could be higher to paint a clearer picture. An example of a
solution with data from a year, and 24 IP-addresses, and a weekly graph along with
the current 24-hour graph is shown in Figure 7.1.

7.1. RECOMMENDATIONS FOR FUTURE WORK 47

Figure 7.1: Example of the potential of a visual solution

References

[1] P. Services, C. Software, C. Technologies, M. Instrumentation, C. NetFlow,
D. Literature, and W. Papers, “Introduction to cisco ios netflow - a technical
overview,” 2016.

[2] K. Lakkaraju, W. Yurcik, R. Bearavolu, and A. J. Lee, “Nvisionip: an interactive
network flow visualization tool for security,” in Systems, Man and Cybernetics,
2004 IEEE International Conference on, vol. 3, pp. 2675–2680 vol.3, Oct 2004.

[3] T. Prolexic, “Distributed re ection denial of service (drdos) attacks an introduction
to the drdos white paper series,” 2013.

[4] “A cisco guide to defending against distributed denial of service attacks,” 2016.

[5] M. Bostock, “D3.js - data-driven documents,” 2016.

[6] d. (Username), “Update d3.js data with button press,” 2015.

[7] K. G. Co�man and A. M. Odlyzko, Handbook of Massive Data Sets, ch. Internet
Growth: Is There a “Moore’s Law” for Data Tra�c?, pp. 47–93. Boston, MA:
Springer US, 2002.

[8] G. H. Jamieson, Visual communication: More than meets the eye. Intellect Books,
2007.

[9] M. Polychronakis, E. P. Markatos, K. G. Anagnostakis, and A. Øslebø, “Design
of an application programming interface for ip network monitoring,” in Network
Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP, vol. 1,
pp. 483–496, IEEE, 2004.

[10] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better netflow,”
SIGCOMM Comput. Commun. Rev., vol. 34, pp. 245–256, Aug. 2004.

[11] “Nfdump.sourceforge.net,” 2016.

[12] B. Claise, “Cisco systems netflow services export version 9,” 2004.

[13] B. Trammell and E. Boschi, “An introduction to ip flow information export
(ipfix),” Communications Magazine, IEEE, vol. 49, no. 4, pp. 89–95, 2011.

49

50 REFERENCES

[14] Computers & Mathematics with Applications, vol. 37, no. 10, p. 173, 1999.

[15] “Rfc 3917,” 2016.

[16] V. Friedman, “Data visualization and infographics smashing magazine,” 2008.

[17] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton, “Big
data,” The management revolution. Harvard Bus Rev, vol. 90, no. 10, pp. 61–67,
2012.

[18] E. R. Tufte and P. Graves-Morris, The visual display of quantitative information,
vol. 2. Graphics press Cheshire, CT, 1983.

[19] “Data presentation architecture,” 2016.

[20] “Simple d3.js graph,” 2016.

[21] K. Lakkaraju, W. Yurcik, and A. J. Lee, “Nvisionip: Netflow visualizations of
system state for security situational awareness,” in Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer Security, VizSEC/DM-
SEC ’04, (New York, NY, USA), pp. 65–72, ACM, 2004.

[22] J. Zhihua, “Visualization of network tra�c to detect malicious network activity,”
2008.

[23] N. Downie, “Chart. js documentation,” Dostopno na: http://www. chartjs. org/-
docs (marec 2014), vol. 65, p. 66, 2014.

[24] B. Mitchell, “Tcp/udp port 0,” 2016.

[25] J.-P. Navarro, B. Nickless, and L. Winkler, “Combining cisco netflow exports
with relational database technology for usage statistics, intrusion detection,
and network forensics,” in Proceedings of the 14th Large Installation Systems
Administration Conference (LISA 2000), pp. 285–290, 2000.

AppendixAAppendix A

1 <!DOCTYPE html>
<meta c h a r s e t=" utf ≠8">

3 <s t y l e> /� s e t the CSS �/

5 body { font : 24px A r i a l ; }

7 path {
s t r o k e : s t e e l b l u e ;

9 s t roke ≠width : 2 ;
f i l l : none ;

11 }

13 . a x i s path ,
. a x i s l i n e {

15 f i l l : none ;
s t r o k e : grey ;

17 s t roke ≠width : 1 ;
shape≠r ender ing : c r i spEdges ;

19 }

21
r e c t . bordered {

23 s t r o k e : #E6E6E6 ;
s t roke ≠width : 2 px ;

25 }

27 t ext . mono {
font≠s i z e : 12 pt ;

29 font≠f ami ly : Consolas , c o u r i e r ;
f i l l : #aaa ;

31 }

33 t ext . ax i s ≠workweek {
f i l l : #000;

35 }

37 t ext . ax i s ≠worktime {
f i l l : #000;

51

52 A. APPENDIX A

39 }
. RdYlGn . q0≠11{ f i l l : rgb (165 ,0 ,38) }

41 . RdYlGn . q1≠11{ f i l l : rgb (215 ,48 ,39) }
. RdYlGn . q2≠11{ f i l l : rgb (244 ,109 ,67) }

43 . RdYlGn . q3≠11{ f i l l : rgb (253 ,174 ,97) }
. RdYlGn . q4≠11{ f i l l : rgb (254 ,224 ,139) }

45 . RdYlGn . q5≠11{ f i l l : rgb (255 ,255 ,191) }
. RdYlGn . q6≠11{ f i l l : rgb (217 ,239 ,139) }

47 . RdYlGn . q7≠11{ f i l l : rgb (166 ,217 ,106) }
. RdYlGn . q8≠11{ f i l l : rgb (102 ,189 ,99) }

49 . RdYlGn . q9≠11{ f i l l : rgb (26 ,152 ,80) }
. RdYlGn . q10 ≠11{ f i l l : rgb (0 ,104 ,55) }

51
. header {

53 he ight : 50 px ;
background:#F0F0F0 ;

55 border : 1 px s o l i d #CCC;
width :960 px ;

57 margin : 0 px auto ;
}

59 </ s t y l e>
<body>

61
<!≠≠ load the d3 . j s l i b r a r y ≠≠>

63 <s c r i p t s r c=" http :// d3 j s . org /d3 . v3 . min . j s "></ s c r i p t>
<s c r i p t type =’ t ext / j a v a s c r i p t ’ s r c =’knockout≠min . j s ’></ s c r i p t>

65 <div>
<div s t y l e=" font≠s i z e : 50px ; text≠a l i g n : c e n t e r ; margin≠top : 20px ; margin

≠bottom : 20px " data≠bind=" text : currentDate () "></ div>
67 <div id=" year " s t y l e=" margin≠top=20px ; font≠s i z e : 12px ; "></ div>

<div id=" area1 " s t y l e=" padding≠ l e f t : ≠50px "></ div>
69

<div s t y l e=" text≠a l i g n : c e n t e r ">
71 Date : <span s t y l e=" text≠a l i g n : c e n t e r ; font≠s i z e : 36px ; " data≠bind=" text

: currentDate () ">

73

Current IP : <span s t y l e=" text≠a l i g n : c e n t e r ; font≠s i z e : 36px ; " data≠bind

=" text : chosenIp () ">Current port : <span s t y l e=" text≠a l i g n :
c e n t e r ; font≠s i z e : 36px ; " data≠bind=" text : chosenPort () ">

75

Total number o f f l o w s : <span s t y l e=" text≠a l i g n : c e n t e r ; font≠s i z e : 36

px ; " data≠bind=" text : to ta lF lows () ">
77 </ div>

<div id=" area2 "></ div>
79 </ div>

81 <s c r i p t>

83 f u n c t i o n AppViewModel () {
t h i s . currentDay = ko . obse rvab l e (1) ;

85 t h i s . a v a i l a b l e C o u n t r i e s = ko . observableArray ([]) ;

53

t h i s . a v a i l a b l e P o r t s = ko . observableArray () ;
87 t h i s . chosenIp = ko . obse rvab l e (’ 1 5 9 . 1 5 2 . 1 4 5 . 1 7 6 ’) ;

t h i s . chosenPort = ko . obse rvab l e (’ 8 0 ’) ;
89 t h i s . currentYear = ko . obse rvab l e (2012) ;

t h i s . currentMonth = ko . obse rvab l e (1) ;
91 t h i s . currentDate = ko . obse rvab l e (’2012 ≠01 ≠11 ’) ;

t h i s . to ta lF lows = ko . obse rvab l e (’ 97731 ’) ;
93 t h i s . f l o w s = ko . obse rvab l e () ;

}
95

var parseDate = d3 . time . format ("%d≠%b≠%y ") . parse ;
97

ko . applyBindings (AppViewModel) ;
99

101 f u n c t i o n readTextFi l e (f i l e)
{

103 var rawFi le = new XMLHttpRequest () ;
rawFi le . open ("GET" , f i l e , t rue) ;

105 rawFi le . onreadystatechange = f u n c t i o n ()
{

107 i f (rawFi le . readyState === 4)
{

109 i f (rawFi le . s t a t u s === 200 | | rawFi le . s t a t u s == 0)
{

111 var a l l T e x t = rawFi le . responseText ;
r eadIps (a l l T e x t) ; }

113 }
}

115 rawFi le . send (n u l l) ;
}

117
f u n c t i o n readIps (t ext) {

119 l i s t = text . s p l i t (" , ") ;
a v a i l a b l e C o u n t r i e s (l i s t) ;

121 c o n s o l e . l og (a v a i l a b l e C o u n t r i e s ())
}

123
readTextFi l e (" 2012_01_01 . txt ")

125
f u n c t i o n f i r s t G ra p h () {

127 var width = 900 ,
he ight = 100 ,

129 c e l l S i z e = 15 ; // c e l l s i z e
week_days = [’ Sun ’ , ’Mon’ , ’ Tue ’ , ’Wed’ , ’ Thu ’ , ’ Fri ’ , ’ Sat ’]

131 month = [’ Jan ’ , ’ Feb ’]

133 var day = d3 . time . format ("%w") ,
week = d3 . time . format ("%U") ,

135 percent = d3 . format (" .1% ") ,
format = d3 . time . format ("%Y≠%m≠%d ") ;

137 parseDate = d3 . time . format ("%Y≠%m≠%d ") . parse ;

54 A. APPENDIX A

139 var c o l o r = d3 . s c a l e . l i n e a r () . range ([" white " , ’ black ’])
. domain ([0 , 1 0])

141
var svg = d3 . s e l e c t ("#year ") . s e l e c t A l l (" svg ")

143 . data (d3 . range (2012 , 2013))
. en te r () . append (" svg ")

145 . a t t r (" width " , ’100% ’)
. a t t r (" data≠he ight " , ’ 0 . 5 6 7 8 ’)

147 . a t t r (" viewBox " , ’ 0 0 900 105 ’)
. a t t r (" c l a s s " , "RdYlGn")

149 . s t y l e (" he ight " , " 450 ")

151 . append (" g ")
. a t t r (" trans form " , " t r a n s l a t e (" + ((width ≠ c e l l S i z e � 53) / 2) + "
, " + (he ight ≠ c e l l S i z e � 7 ≠ 1) + ") ") ;

153
svg . append (" t ext ")

155 . a t t r (" trans form " , " t r a n s l a t e (≠38 , " + c e l l S i z e � 3 .5 + ") r o t a t e
(≠90) ")
. s t y l e (" text≠anchor " , " middle ")

157 . t ex t (f u n c t i o n (d) { re turn d ; }) ;

159 f o r (var i =0; i<7 ; i++)
{

161 svg . append (" t ext ")
. a t t r (" trans form " , " t r a n s l a t e (≠5 , " + c e l l S i z e � (i +1) + ") ")

163 . s t y l e (" text≠anchor " , " end ")
. a t t r (" dy " , " ≠.25em")

165 . t ex t (f u n c t i o n (d) { re turn week_days [i] ; }) ;
}

167
var r e c t = svg . s e l e c t A l l (" . day ")

169 . data (f u n c t i o n (d) { re turn d3 . time . days (new Date (d , 0 , 1) , new Date
(d + 1 , 0 , 1)) ; })

. en te r ()
171 . append (" r e c t ")

. a t t r (" c l a s s " , " day ")
173 . a t t r (" width " , c e l l S i z e)

. a t t r (" he ight " , c e l l S i z e)
175 . a t t r (" x " , f u n c t i o n (d) { re turn week (d) � c e l l S i z e ; })

. a t t r (" y " , f u n c t i o n (d) { re turn day (d) � c e l l S i z e ; })
177 . a t t r (" f i l l " , ’# f f f ’)

. a t t r (" t i t l e " , f u n c t i o n (d) { re turn " va lue : "+d . Comparison_Type })
179 . datum (format)

. on (" c l i c k " , f u n c t i o n (d) {
181 heatmapChart (" 02/heatmap_ "+d+" . csv ") ;

currentDate (d) ;
183 updateGraph () ;

to ta lF lows (’ ’) ;
185 }) ;

55

187 var legend = svg . s e l e c t A l l (" . l egend ")
. data (month)

189 . en te r () . append (" g ")
. a t t r (" c l a s s " , " l egend ")

191 . a t t r (" trans form " , f u n c t i o n (d , i) { re turn " t r a n s l a t e (" + (((i +1)
� 50) +8) + " ,0) " ; }) ;

193 l egend . append (" t ext ")
. a t t r (" c l a s s " , f u n c t i o n (d , i) { re turn month [i] })

195 . s t y l e (" text≠anchor " , " end ")
. a t t r (" dy " , " ≠.25em")

197 . t ex t (f u n c t i o n (d , i) { re turn month [i] }) ;

199 svg . s e l e c t A l l (" . month ")
. data (f u n c t i o n (d) { re turn d3 . time . months (new Date (d , 0 , 1) , new
Date (d+1 , 0 , 1)) ; })

201 . en te r () . append (" path ")
. a t t r (" c l a s s " , " month ")

203 . a t t r (" id " , f u n c t i o n (d , i) { re turn month [i] })
. a t t r (" d " , monthPath) ;

205
d3 . csv (" d a t e f i l e . csv " , f u n c t i o n (e r ro r , csv) {

207
csv . forEach (f u n c t i o n (d) {

209 d . Comparison_Type = p a r s e I n t (d . Comparison_Type) ;
}) ;

211
var Comparison_Type_Max = d3 . max(csv , f u n c t i o n (d) { re turn d .

Comparison_Type ; }) ;
213

var data = d3 . nes t ()
215 . key (f u n c t i o n (d) { re turn d . Date ; })

. r o l l u p (f u n c t i o n (d) { re turn 10� (Math . s q r t (d [0] . Comparison_Type /
Comparison_Type_Max)) ; })

217 . map(csv) ;

219 r e c t . f i l t e r (f u n c t i o n (d) { re turn d in data ; })
. a t t r (" f i l l " , f u n c t i o n (d) { re turn c o l o r (data [d]) ; })

221 . a t t r (" t i t l e " , f u n c t i o n (d) { re turn " va lue : "+data [d] .
Comparison_Type }) ;

223 }) ;

225 f u n c t i o n numberWithCommas(x) {
x = x . t o S t r i n g () ;

227 var pattern = /(≠?\d+)(\d{3}) / ;
whi l e (pattern . t e s t (x))

229 x = x . r e p l a c e (pattern , " $1 , $2 ") ;
r e turn x ;

231 }

233 f u n c t i o n monthPath (t0) {

56 A. APPENDIX A

var t1 = new Date (t0 . getFul lYear () , t0 . getMonth () + 1 , 0) ,
235 d0 = +day (t0) , w0 = +week (t0) ,

d1 = +day (t1) , w1 = +week (t1) ;
237 r e turn "M" + (w0 + 1) � c e l l S i z e + " , " + d0 � c e l l S i z e

+ "H" + w0 � c e l l S i z e + "V" + 7 � c e l l S i z e
239 + "H" + w1 � c e l l S i z e + "V" + (d1 + 1) � c e l l S i z e

+ "H" + (w1 + 1) � c e l l S i z e + "V" + 0
241 + "H" + (w0 + 1) � c e l l S i z e + "Z" ;

}
243

d3 . s e l e c t (s e l f . frameElement) . s t y l e (" he ight " , " 2910px ") ;
245

var margin = { top : 50 , r i g h t : 0 , bottom : 500 , l e f t : 200 } ,
247 width = 2200 ≠ margin . l e f t ≠ margin . r i ght ,

he ight = 900 ≠ margin . top ≠ margin . bottom ,
249 g r i d S i z e = Math . f l o o r (width / 24) ,

legendElementWidth = g r i d S i z e ,
251 buckets = 9 ,

c o l o r s = ["#f f f f d 9 " , "#edf8b1 " , "#c7e9b4 " , "#7fcdbb " , "#41b6c4 " , "
#1d91c0 " , "#225ea8 " , " #253494 " , "#081d58 "] , // a l t e r n a t i v e l y
co lo rbrewer . YlGnBu [9]

253 days = a v a i l a b l e P o r t s () ,
t imes = a v a i l a b l e C o u n t r i e s () ,

255 d a t a s e t s = [" heatmap/ data . t sv " , " heatmap/ data2 . t sv "] ;

257 var svg = d3 . s e l e c t ("#area1 ")
. append (" svg ")

259 . a t t r (" width " , width + margin . l e f t + margin . r i g h t)
. a t t r (" he ight " , he ight + margin . top + margin . bottom)

261 . append (" g ")
. a t t r (" trans form " , " t r a n s l a t e (" + margin . l e f t + " , " + margin .

top + ") ") ;
263

var dayLabels = svg . s e l e c t A l l (" . dayLabel ")
265 . data (a v a i l a b l e C o u n t r i e s ())

. en te r () . append (" t ext ")
267 . t ex t (f u n c t i o n (d) { re turn d ; })

. a t t r (" x " , 0)
269 . a t t r (" y " , f u n c t i o n (d , i) { re turn i � g r i d S i z e ; })

. s t y l e (" text≠anchor " , " end ")
271 . a t t r (" trans form " , " t r a n s l a t e (≠6 , " + g r i d S i z e / 1 .5 + ") ")

. a t t r (" c l a s s " , f u n c t i o n (d , i) { re turn ((i >= 0 && i <= 4)
? " dayLabel mono a x i s ax i s ≠workweek " : " dayLabel mono a x i s ") ; })

273 . t r a n s i t i o n () . durat ion (250) ;

275
var t imeLabels = svg . s e l e c t A l l (" . t imeLabel ")

277 . data (a v a i l a b l e C o u n t r i e s ())
. en te r () . append (" t ext ")

279 . t ex t (f u n c t i o n (d) { re turn d ; })
. a t t r (" x " , f u n c t i o n (d , i) { re turn i � g r i d S i z e ; })

281 . a t t r (" y " , 0)

57

. s t y l e (" text≠anchor " , " middle ")
283 . a t t r (" trans form " , " t r a n s l a t e (" + g r i d S i z e / 2 + " , ≠6) ")

. a t t r (" c l a s s " , f u n c t i o n (d , i) { re turn ((i >= 7 && i <= 16)
? " t imeLabel mono a x i s ax i s ≠worktime " : " t imeLabel mono a x i s ") ; })

;
285

var heatmapChart = f u n c t i o n (c s v F i l e) {
287 d3 . t sv (c s vF i l e ,

f u n c t i o n (d) {
289 r e turn {

day : +d . day ,
291 hour : +d . hour ,

va lue : +d . value ,
293 ip : d . ip ,

port : d . port
295 } ;

} ,
297 f u n c t i o n (e r ro r , data) {

var c o l o r S c a l e = d3 . s c a l e . q u a n t i l e ()
299 . domain ([0 , buckets ≠ 1 , d3 . max(data , f u n c t i o n (d) {

re turn d . va lue ; })])
. range (c o l o r s) ;

301
var cards = svg . s e l e c t A l l (" . hour ")

303 . data (data , f u n c t i o n (d) { re turn d . day+ ’: ’+d . hour ; }) ;

305 cards . append (" t i t l e ") ;

307 cards . ente r () . append (" r e c t ")
. a t t r (" x " , f u n c t i o n (d) { re turn (d . hour ≠ 1) � g r i d S i z e ;

})
309 . a t t r (" y " , f u n c t i o n (d) { re turn (d . day ≠ 1) � g r i d S i z e ;

})
. a t t r (" rx " , 4)

311 . a t t r (" ry " , 4)
. a t t r (" c l a s s " , " hour bordered ")

313 . a t t r (" width " , g r i d S i z e)
. a t t r (" he ight " , g r i d S i z e)

315 . s t y l e (" f i l l " , c o l o r s [0])
. on (" c l i c k " , f u n c t i o n (d) {

317 chosenIp (d . ip) ;
chosenPort (d . port) ;

319 to ta lF lows (d . va lue) ;
c o n s o l e . l og (d . va lue+" "+" "+chosenIp ()+" "+chosenPort ())

;
321 updateGraph () ;

}) ;
323

cards . t r a n s i t i o n () . durat ion (1500)
325 . s t y l e (" f i l l " , f u n c t i o n (d) { re turn c o l o r S c a l e (d . va lue) ;

}) ;

58 A. APPENDIX A

327 cards . s e l e c t (" t i t l e ") . t ex t (f u n c t i o n (d) { re turn d . ip +’ and ’
+ d . port + ’: ’+d . va lue ; }) ;

329 cards . e x i t () . remove () ;

331 }) ;
} ;

333
heatmapChart (’ heatmap_temp . tsv ’) ;

335
var d a t a s e t p i c k e r = d3 . s e l e c t ("#dataset ≠p i c k e r ") . s e l e c t A l l (" .

dataset ≠button ")
337 . data (d a t a s e t s) ;

339 d a t a s e t p i c k e r . en te r ()
. append (" input ")

341 . a t t r (" va lue " , f u n c t i o n (d) { re turn " Dataset " + d })
. a t t r (" type " , " button ")

343 . a t t r (" c l a s s " , " dataset ≠button ")
. on (" c l i c k " , f u n c t i o n (d) {

345 updateGraph () ;
}) ;

347
f u n c t i o n updateGraph () {

349 d3 . s e l e c t ("#area2 ") . s e l e c t A l l (" svg ") . remove () ;

351 var margin = { top : 30 , r i g h t : 20 , bottom : 30 , l e f t : 200} ,
width = 2000 ≠ margin . l e f t ≠ margin . r i ght ,

353 he ight = 500 ≠ margin . top ≠ margin . bottom ;

355 // Parse the date / time

357
// Set the ranges

359 var x = d3 . time . s c a l e () . range ([0 , width]) ;
var y = d3 . s c a l e . l i n e a r () . range ([he ight , 0]) ;

361
// Def ine the axes

363 var xAxis = d3 . svg . a x i s () . s c a l e (x)
. o r i e n t (" bottom ") . t i c k s (5) ;

365
var yAxis = d3 . svg . a x i s () . s c a l e (y)

367 . o r i e n t (" l e f t ") . t i c k s (5) ;

369 // Def ine the l i n e
var v a l u e l i n e = d3 . svg . l i n e ()

371 . x (f u n c t i o n (d) { re turn x (d . date) ; })
. y (f u n c t i o n (d) { re turn y (d . c l o s e) ; }) ;

373
// Adds the svg canvas

375 var svg = d3 . s e l e c t ("#area2 ")
. append (" svg ")

59

377 . a t t r (" width " , width + margin . l e f t + margin . r i g h t)
. a t t r (" he ight " , he ight + margin . top + margin . bottom)

379 . append (" g ")
. a t t r (" trans form " ,

381 " t r a n s l a t e (" + margin . l e f t + " , " + margin . top + ") ") ;

383 // Get the data
d3 . csv (" / chart / chart / "+currentDate () +’/’+ currentDate ()+"_"+chosenIp () +’

_’+ chosenPort () + ’. csv ’ , f u n c t i o n (e r ro r , data) {
385 data . forEach (f u n c t i o n (d) {

d . date = +d . date ;
387 d . c l o s e = +d . c l o s e ;

}) ;
389

// Sca l e the range o f the data
391 x . domain (d3 . extent (data , f u n c t i o n (d) { re turn d . date ; })) ;

y . domain ([0 , d3 . max(data , f u n c t i o n (d) { re turn d . c l o s e ; })]) ;
393

// Add the v a l u e l i n e path .
395 svg . append (" path ")

. a t t r (" c l a s s " , " l i n e ")
397 . a t t r (" d " , v a l u e l i n e (data)) ;

399 // Add the X Axis
svg . append (" g ")

401 . a t t r (" c l a s s " , " x a x i s ")
. a t t r (" trans form " , " t r a n s l a t e (0 , " + he ight + ") ")

403 . c a l l (xAxis) ;

405 // Add the Y Axis
svg . append (" g ")

407 . a t t r (" c l a s s " , " y a x i s ")
. c a l l (yAxis) ;

409
}) ;

411 } ;

413 updateGraph ()
} ;

415
f u n c t i o n changeIpOrPort () {

417
// Get the data again

419 d3 . csv (" 2011/ "+currentDate () +’/’+ currentDate ()+"_"+chosenIp () +’_’+
chosenPort () + ’. csv ’ , f u n c t i o n (e r ro r , data) {

data . forEach (f u n c t i o n (d) {
421 d . date = parseDate (d . date) ;

d . c l o s e = +d . c l o s e ;
423 }) ;

425 // Sca l e the range o f the data again
x . domain (d3 . extent (data , f u n c t i o n (d) { re turn d . date ; })) ;

60 A. APPENDIX A

427 y . domain ([0 , d3 . max(data , f u n c t i o n (d) { re turn d . c l o s e ; })]) ;

429 // S e l e c t the s e c t i o n we want to apply our changes to
var svg = d3 . s e l e c t ("#area2 ") . t r a n s i t i o n () ;

431
// Make the changes

433 svg . s e l e c t (" . l i n e ") // change the l i n e
. durat ion (750)

435 . a t t r (" d " , v a l u e l i n e (data)) ;
svg . s e l e c t (" . x . a x i s ") // change the x a x i s

437 . durat ion (750)
. c a l l (xAxis) ;

439 svg . s e l e c t (" . y . a x i s ") // change the y a x i s
. durat ion (750)

441 . c a l l (yAxis) ;

443 }) ;
}

445
f i r s t G r a p h () ;

447 </ s c r i p t>
</body>

Listing A.1: HTML and scripts to create the proposed solution

AppendixBAppendix B

Appendix B contains the scripts used to create .csv files from all the data made
available from UNINETT.

A script that creates .csv files for every nfcapd file in a day. This script is run by
another short script that runs it 31 times for each day.

1 \ l a b e l { csv_dai ly }
#! / bin /bash

3 mkdir /home/ e e g l a r s e / f l o w t e s t /2012_02/$ (p r i n t f "%02d " $1)
c lock_converte r () {

5 i f [$ (($1 % 100)) ≠gt 59] ; then
re turn $ (($1 % 100))

7 f i
i f [$ (($1 % 100)) ≠ l t 60] ; then

9 echo $ (p r i n t f "%04d " $1)
re turn $ (($1 % 100))

11 f i
}

13
f o r ((c =0; c <=2355; c += 5))

15 do
nfdump ≠r $ (p r i n t f "%02d " $1) / nfcapd .201202 $ (p r i n t f "%02d " $1) $ (

c lock_converte r $c) ≠n 10 ≠s s r c i p ≠o csv > /home/ e e g l a r s e /
f l o w t e s t /2012_02/$ (p r i n t f "%02d " $1) /$ (c lock_converte r $c) . csv

17 done

Listing B.1: Creates .csv files for every nfcapd file in a day

A script that fetches the total amount of flows for each day and creates a file
with the values.

1

3 c lock_converte r () {
i f [$ (($1 % 100)) ≠gt 59] ; then

5 r e turn $ (($1 % 100))

61

62 B. APPENDIX B

f i
7 i f [$ (($1 % 100)) ≠ l t 60] ; then

echo $ (p r i n t f "%04d " $1)
9 r e turn $ (($1 % 100))

f i
11 }

13
f o r ((c =0; c <=2355; c += 5))

15 do
t o t a l _ f i l e=$ (awk ≠F’ , ’ ’NR == 15 { p r i n t $1 } ’ /home/ e e g l a r s e /

f l o w t e s t /2012_02/$ (p r i n t f "%02d " $1) /$ (c lock_converte r $c) . csv)
17 echo $ t o t a l _ f i l e >> t e s t f i l e 2 $ 1 . csv

done
19

awk ’{ s+=$1} END { p r i n t s } ’ t e s t f i l e 2 $ 1 . csv >>d a t e f i l e 2 . csv

Listing B.2: Total amount of flows for each day

A script that finds the top 10 used IP-adresses for each day.

1
nfdump ≠R / data / net f l ow /oslo_gw /2012/01/ $ (p r i n t f "%02d " $1) / nfcapd

.201201 $ (p r i n t f "%02d " $1) 0000 : nfcapd .201201 $ (p r i n t f "%02d " $1) 2355
≠n 10 ≠s d s t i p ≠o csv > /home/ e e g l a r s e / f l o w t e s t / top10 /$ (p r i n t f "

%02d " $1) . csv

Listing B.3: Top 10 used IP-adresses for each day

A script that creates a list of the top 10 most popular ports, based on the 10
most popular IP-addresses.

i p _st r in g = ’ ’
2 ip=$ (awk ≠F’ , ’ ’NR == 2 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $1) . csv)
ip _st r in g+=’dst ip ’ $ip ’ or ’

4 ip=$ (awk ≠F’ , ’ ’NR == 3 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $1) . csv)

ip _st r in g+=’dst ip ’ $ip ’ or ’
6 ip=$ (awk ≠F’ , ’ ’NR == 4 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $1) . csv)
ip _st r in g+=’dst ip ’ $ip ’ or ’

8 ip=$ (awk ≠F’ , ’ ’NR == 5 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $1) . csv)

ip _st r in g+=’dst ip ’ $ip ’ or ’
10 ip=$ (awk ≠F’ , ’ ’NR == 6 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $1) . csv)
ip _st r in g+=’dst ip ’ $ip ’ or ’

12 ip=$ (awk ≠F’ , ’ ’NR == 7 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $1) . csv)

ip _st r in g+=’dst ip ’ $ip ’ or ’

63

14 ip=$ (awk ≠F’ , ’ ’NR == 8 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $1) . csv)

ip _st r in g+=’dst ip ’ $ip ’ or ’
16 ip=$ (awk ≠F’ , ’ ’NR == 9 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $1) . csv)
ip _st r in g+=’dst ip ’ $ip ’ or ’

18 ip=$ (awk ≠F’ , ’ ’NR == 10 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $1) . csv)

ip _st r in g+=’dst ip ’ $ip ’ or ’
20 ip=$ (awk ≠F’ , ’ ’NR == 11 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $1) . csv)
ip _st r in g+=’dst ip ’ $ ip

22

24 nfdump ≠R / data / net f l ow /oslo_gw /2012/01/ $ (p r i n t f "%02d " $1) / nfcapd
.201201 $ (p r i n t f "%02d " $1) 0000 : nfcapd .201201 $ (p r i n t f "%02d " $1) 2355
≠n 10 ≠s ds tpor t $ i p l i s t ≠o csv > /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $1) . csv

Listing B.4: Top10 ports based in IP-addresses

A script that uses the 10 most popular IP-adresses and their corresponding ports to
find the number of flows sent to each port on each IP-address.

2 #! / bin /bash
f o r ((i = 1 ; i < 31 ; i++)) ; do

4 i p l i s t =()
ip=$ (awk ≠F’ , ’ ’NR == 2 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
6 i p l i s t [0]= $ip

ip2=$ (awk ≠F’ , ’ ’NR == 3 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$
(p r i n t f "%02d " $ i) . csv)

8 i p l i s t [1]= $ip2
ip=$ (awk ≠F’ , ’ ’NR == 4 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
10 i p l i s t [2]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 5 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

12 i p l i s t [3]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 6 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
14 i p l i s t [4]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 7 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

16 i p l i s t [5]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 8 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
18 i p l i s t [6]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 9 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

20 i p l i s t [7]= $ip

64 B. APPENDIX B

ip=$ (awk ≠F’ , ’ ’NR == 10 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$
(p r i n t f "%02d " $ i) . csv)

22 i p l i s t [8]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 11 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$

(p r i n t f "%02d " $ i) . csv)
24 i p l i s t [9]= $ip

p o r t l i s t =()
26 ip=$ (awk ≠F’ , ’ ’NR == 2 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
p o r t l i s t [0]= $ip

28 ip=$ (awk ≠F’ , ’ ’NR == 3 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

p o r t l i s t [1]= $ip
30 ip=$ (awk ≠F’ , ’ ’NR == 4 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
p o r t l i s t [2]= $ip

32 ip=$ (awk ≠F’ , ’ ’NR == 5 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

p o r t l i s t [3]= $ip
34 ip=$ (awk ≠F’ , ’ ’NR == 6 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
p o r t l i s t [4]= $ip

36 ip=$ (awk ≠F’ , ’ ’NR == 7 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

p o r t l i s t [5]= $ip
38 ip=$ (awk ≠F’ , ’ ’NR == 8 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
p o r t l i s t [6]= $ip

40 ip=$ (awk ≠F’ , ’ ’NR == 9 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

p o r t l i s t [7]= $ip
42 ip=$ (awk ≠F’ , ’ ’NR == 10 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
p o r t l i s t [8]= $ip

44 ip=$ (awk ≠F’ , ’ ’NR == 11 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

p o r t l i s t [9]= $ip
46 f o r ((s = 0 ; s < 10 ; s++)) ; do

f o r ((j = 0 ; j < 10 ; j++)) ; do
48 $ (nfdump ≠R / data / net f l ow /oslo_gw /2012/01/ $ (p r i n t f "%02d " $ i) /

nfcapd .201201 $ (p r i n t f "%02d " $ i) 0000 : nfcapd .201201 $ (p r i n t f "%02d "
$ i) 2355 ≠n 10 ≠s ds tpor t ≠o csv ’ dst ip ${ i p l i s t [$s] } and dst port
${ p o r t l i s t [$ j] } ’ ≠o csv)

done
50 done

done

Listing B.5: Number of flows for each port and IP-address combination

65

A script extracting the values fetched in the preceding example, and creates
.CSV-files for each IP-address and port combination.

1 #! / bin /bash
c lock_converte r () {

3 i f [$ (($1 % 100)) ≠gt 59] ; then
re turn $ (($1 % 100))

5 f i
i f [$ (($1 % 100)) ≠ l t 60] ; then

7 echo $ (p r i n t f "%04d " $1)
re turn $ (($1 % 100))

9 f i
}

11

13 f o r ((i = 1 ; i < 31 ; i++)) ; do
i p l i s t =()

15 ip=$ (awk ≠F’ , ’ ’NR == 2 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

i p l i s t [0]= $ip
17 ip2=$ (awk ≠F’ , ’ ’NR == 3 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$

(p r i n t f "%02d " $ i) . csv)
i p l i s t [1]= $ip2

19 ip=$ (awk ≠F’ , ’ ’NR == 4 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

i p l i s t [2]= $ip
21 ip=$ (awk ≠F’ , ’ ’NR == 5 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
i p l i s t [3]= $ip

23 ip=$ (awk ≠F’ , ’ ’NR == 6 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

i p l i s t [4]= $ip
25 ip=$ (awk ≠F’ , ’ ’NR == 7 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
i p l i s t [5]= $ip

27 ip=$ (awk ≠F’ , ’ ’NR == 8 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (
p r i n t f "%02d " $ i) . csv)

i p l i s t [6]= $ip
29 ip=$ (awk ≠F’ , ’ ’NR == 9 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$ (

p r i n t f "%02d " $ i) . csv)
i p l i s t [7]= $ip

31 ip=$ (awk ≠F’ , ’ ’NR == 10 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$
(p r i n t f "%02d " $ i) . csv)

i p l i s t [8]= $ip
33 ip=$ (awk ≠F’ , ’ ’NR == 11 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /$

(p r i n t f "%02d " $ i) . csv)
i p l i s t [9]= $ip

35 p o r t l i s t =()
ip=$ (awk ≠F’ , ’ ’NR == 2 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
37 p o r t l i s t [0]= $ip

66 B. APPENDIX B

ip=$ (awk ≠F’ , ’ ’NR == 3 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

39 p o r t l i s t [1]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 4 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
41 p o r t l i s t [2]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 5 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

43 p o r t l i s t [3]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 6 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
45 p o r t l i s t [4]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 7 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

47 p o r t l i s t [5]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 8 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
49 p o r t l i s t [6]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 9 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

51 p o r t l i s t [7]= $ip
ip=$ (awk ≠F’ , ’ ’NR == 10 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /

top10port /$ (p r i n t f "%02d " $ i) . csv)
53 p o r t l i s t [8]= $ip

ip=$ (awk ≠F’ , ’ ’NR == 11 { p r i n t $5 } ’ /home/ e e g l a r s e / f l o w t e s t / top10 /
top10port /$ (p r i n t f "%02d " $ i) . csv)

55 p o r t l i s t [9]= $ip
f o r ((s = 0 ; s < 10 ; s++)) ; do

57 f o r ((j = 0 ; j < 10 ; j++)) ; do
echo " date , va lue " >> daily_201201$ (p r i n t f "%02d " $ i)_${ i p l i s t [

$s] }_${ p o r t l i s t [$ j] } . csv
59 f o r ((c =0; c <=2355; c += 5)) do

nfdump ≠r $ (p r i n t f "%02d " $1) / nfcapd .201201 $ (p r i n t f "%02d " $ i
) $ (c lock_converte r $c) ≠n 10 ≠s s r c i p ≠o csv > /home/ e e g l a r s e /
f l o w t e s t /2012/ $ (p r i n t f "%02d " $ i) /$ (c lock_converte r $c) . csv

61 $ t o t a l _ f i l e=$ (awk ≠F’ , ’ ’NR == 15 { p r i n t $1 } ’ /home/ e e g l a r s e
/ f l o w t e s t /2012/ $ (p r i n t f "%02d " $1) /$ (c lock_converte r $c) . csv)

echo $ t o t a l _ f i l e >> daily_201201$ (p r i n t f "%02d " $ i)_${ i p l i s t [
$s] }_${ p o r t l i s t [$ j] } . csv

63 done
done

65 done
done

Listing B.6: Create .csv files for each port and IP-address combination

AppendixCAppendix C

Appendix C consist of the interview template for each interview, and the key results.

C.1 Template

The template is simply a facilitator to start the discussion with interviewee.

Part 1:
Explain the purpose of the interview, how the tools works, and what to look for.

Questions regarding nfdump:

1. In what degree do you use nfdump in your daily work?

2. What are the pros and cons of using nfdump?

3. How do you look for patterns in NetFlow packets today?

4. What would you like from a visual representation of NetFlow packets?

Demonstration of the visual solution.

Questions regarding potential in the solution:

5. How does the visual solution work in your opinion?

6. What is the potential in such a representation of the NetFlow packets?

7. What specific problems can such a solution solve?

8. In what level of detail should the visualization be?

67

68 C. APPENDIX C

C.2 Key results

Key results revolve around the potential in such a solution and what problems it
might solve, e.g. question 6 and 7.
Focus on what purpose it would serve up against the current nfsen was how to quickly
see changes is behavior as the possibility to see di�erent representations of the data.
It was quickly stated that such a solution could be used as a plug-in in a bigger tool.
That it only paints a part of the bigger picture.

During the testing and answers in question 5 and 8 it was revealed that it served
its purpose to find patterns and unusual behavior, but lacked details to go into more
specific information, such as tra�c between two individual IP-addresses and ports.

	List of Figures
	Listings
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Scope
	Objectives

	Outline
	Methodology
	Deviation from problem description

	Background
	NetFlow
	How does it work?
	Main components
	nfdump

	Data visualization
	Characteristics
	Visual perception
	Data presentation architecture

	D3.js
	How does it work?
	svg files

	Research
	Related work
	Alternatives to D3.js
	Initial research
	Traits of a DDoS attack
	Raw NetFlow format

	D3.js and NetFlow
	Using D3.js
	Scope

	Number of flows to a certain host and port
	Scope in D3.js
	Pros and cons

	Discussion
	Interviews
	Discussion topics
	Potential in visual solution
	Patterns

	Real data in the proposed solution

	Challenges
	Large data sets
	IP-spectrum
	Increasing number of flows

	Live updates
	Areas of use

	Concluding Remarks and Future Work
	Recommendations for Future Work
	Further testing
	Customized searches
	Expand visual elements

	References
	Appendix A
	Appendix B
	Appendix C
	Template
	Key results

