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Problem description:

Modern military operations are getting more cooperative, and with that, more
complex in terms of information sharing. As a result, the concept of network
enabled capabilities (NEC) has been formed to create information superiority by
adapting faster to changing situations and improving decision making. In this
setting, communication is a basic challenge. Protected Core Networking (PCN)
is a fairly new concept intended to be used to implement a secure and flexible
transport communications infrastructure that supports the requirements of NEC
operations. PCN specifies a loose coupling between information domains and the
transport networks. The users, and information domains are located in Colored
Clouds (CCs) that are separated from the protected core (PCore) transport network.
Only network elements that contribute to the transport of information are part of
the PCore. Whereas PCN provides a protected network service, it does not provide
confidentiality protection of user data. This must be provided by the CCs. The main
goal of the PCore is to provide high-availability transport services to its users. The
PCore must ensure that the service level agreements (SLAs) are met. Access control
and mitigation of denial of service attacks are vital parts of that. As preventive
measures, PCN specifies initial entity authentication of all connecting entities, and
message authentication of all datagrams sent onto links in the PCore. However,
detailed specifications for the authentication solution lack, and evaluation of different
alternatives is still to be provided. Focusing on authentication in PCN, the intention
of this thesis is to fill at least part of this gap.

A much used form of authentication is proving possession of a key. Regardless
of whether symmetric or asymmetric keys are used, the verifying entity is required
to be in possession of a verification key. Although certificate-based PKIs are widely
deployed in practice today, the distribution of certificates is often complicated. In
1984 Shamir introduced identity-based cryptography where any unique string could
be used as the public key, and where certificates are superfluous. Typically, IDs are
used as public keys. A message signed with the private key can then be verified
by any peer using the ID of the originator of the message. A main objective is
to study the applicability of one or more identity-based cryptographic schemes for
authentication in PCN. Even though identity-based cryptography is not without its
drawbacks, and comes with challenges such as revocation and key escrow, it provides
an option to traditional certificate-based PKIs. The goals of this thesis are to:

— Study relevant solutions for using identity-based cryptography in PCN authen-
tication.



— Evaluate a solution, and analyze its security using formal methods.
— Discuss issues and challenges of deployment of the suggested solution.
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Abstract

Protected Core Networking (PCN) is a concept that aims to increase
information sharing between nations in coalition military operations.
PCN specifies the interconnection of national transport networks, called
Protected Core Segments (PCSs), to a federated transport network called
Protected Core (PCore). PCore is intended to deliver high availability
differentiated transport services to its user networks, called Colored Clouds
(CCs). To achieve this goal, entity authentication of all connecting entities
is specified as a protective measure. In resource constrained environments,
the distribution of service policy can be challenging. That is, which
transport services are associated with a given entity. The thesis proposes
two new and original protocols where CCs push service policy to the
network by performing authentication based on attributes. Using identity-
based signatures, attributes constituting a service policy are used directly
for an entity’s identity, and no external mechanism linking identity and
policy is needed. For interoperability, the idea has been incorporated
into PKINIT Kerberos and symmetric key Kerberos by carrying the
attributes within tickets. The proposed protocols are formally verified
in the symbolic model using scyther-proof. The experiment shows that
both CCs, and PCSs achieve greater assurance on agreed attributes, and
hence on expected service delivery. A CC and a visiting PCS are able to
negotiate, and agree on the expected service depending on the situation.
The proposed solution provides benefits to CCs on expected service when
connecting to a visiting PCS, with poor connectivity to the home PCS.
In that respect, interconnection of entities with little pre-established
relationship is simplified, and hence fulfillment of the PCN concept is
facilitated.






Sammendrag

Protected Core Networking (PCN) er et konsept som har som mal & mu-
liggjore gkt informasjonsdeling pa tvers av nasjoner i militaere koalisjons-
drevede operasjoner. PCN spesifiserer sammenkoblingen av nasjonale
transportnettverk, kalt Protected Core Segments (PCSs), til et felles
beskyttet transportnettverk, kalt Protected Core (PCore). PCore skal
tilby dets brukernettverk, kalt Colored Clouds (CCs), hgy tilgjengelighet
av differensiert tjenestekvalitet. For & oppna dette er autentisering av
sammenkoblede enheter spesifisert som et beskyttende tiltak. I ressurs-
fattige nettverk kan distribusjon av tjenestepolicy veere en utfordring.
Det vil si, hvilke transporttjenester som er assosiert med en entitet. I
denne masteroppgaven foreslas to nye og originale protokoller der CC-er
dytter tjenestepolicy til et PCS ved & utfgre autentiseringen basert pa
attributter. Ved bruk av identitets-baserte signaturer kan attributter
tilhgrende en tjenestepolicy benyttes direkte som en CCs identitet, og
ingen ekstern binding mellom identitet og policy er ngdvendig. For inter-
operabilitet har ideen blitt benyttet i PKINIT-Kerberos og symmetrisk
ngkkel-Kerberos ved a frakte attributter i tickets. Den foreslatte lgsningen
er formelt verifisert i den symbolske modellen ved hjelp av scyther-proof.
Eksperimentet viser at bade CC og PCS oppnar stgrre forsikring om
enigheten av attributter, og dermed ogsa pa forventet tjenestelevering.
En CC og et PCS er i stand til & forhandle om policy, og kan komme
til enighet om forventet tjenestelevering avhengig av situasjonen. Den
foreslatte lgsningen tilbyr fordeler for CC-er pa forventet tjenestelevering
nar den kobler seg til et fremmed PCS, med lav konnektivitet til dets
hjemlige PCS. Pa denne méaten forenkles sammenkoblingen av enheter
med lite forhdndsdefinert forhold, noe som understgtter mélet med PCN.
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Introduction

Maybe you have heard it before: the world is getting smaller, more complex, and
it changes faster than before. Humanity has probably been saying it for centuries.
Nevertheless, it is probably not less true today. New alliances and bonds are formed
continuously in this increasingly complex world. The essence of these bonds — trust —
is believed by many to depend on good communications. With situations changing
quickly, the ability to form new bonds and communicate effectively is a valued
trait. Cooperative work can only be effective with the right information, at the
right time. Recently, effective information sharing in military operations has become
increasingly difficult. In a much larger degree than previously, military operations
are now often coalition operations where parties cooperate to achieve common goals.
Local governments, humanitarian organizations, and international forces create new
trust relationships in order to work together. The ability to adapt faster to changing
situations has become key to successful operations.

In military operations, increasingly more decisions are made at the lowest de-
cision level because the command and control model is changing, moving towards
edge-organizations [HOO08]. Such a shift puts additional pressure on communications
systems to make information available to decisions makers at the periphery of the
network topology. To embrace these changes, the concept of Protected Core Network-
ing (PCN) was proposed. In traditional military Communication and Information
Systems (CISs), confidentiality services are tailored to the individual communications
infrastructure [HOO08]. The disadvantage of such an approach is that only information
of the correct classification can be sent on a specific link. While such an approach
may be acceptable in a single party engagement, it is clearly inefficient when multiple
parties are in the same geographical area. Each nation or organization would need
individual links going in the same direction with their own tailored confidentiality
measures. In their proposal for an architecture of PCN [HO08], Hallingstad et.al.
suggested that confidentiality services are eliminated from the transport network.
Each nation or organization would have to apply confidentiality to its data at a higher
protocol layer if needed. The network would then offer only service guarantees and
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timely delivery of data to its users. In essence, PCN creates a trusted overlay that
controls service access. In order to offer dependable transport services to its users,
threats such as network congestion, and malicious flooding of network links must
be addressed. Quality of Service (QoS) is the functionality required for managing
network resources in order to assure agreed service levels [SMD*13]. A common way
of enforcing QoS is through authentication. The focus of this thesis is related to au-
thentication, and specifically how Identity-based Public Key Cryptography (IDPKC)
may be used in PCN. IDPKC will be defined shortly, but a brief introduction to the
essentials of PCN will be given first.

1.1 Background

The concept of PCN was first outlined by Geir Hallingstad and Sander Oudkerk in
their article from 2008 [HOO08]. The concept has further been developed by the NATO
Research and Technology Organization PCN group which have created Requirements
for an Interoperability Specification (ISpec) for PCN [PCN10]. Selected challenges
for protected core networking is discussed in [PCN14]. Furthermore, QoS in PCN is
treated in [SMD™13]. These documents constitute the thesis’ background on PCN.

A high level overview of PCN as described in [HOO08] is included in Figure
1.1. The nodes marked 'E’ in the figure are specialized routers with enforcements
capabilities. That is, they are capable of enforcing access control on which packets
are forwarded through the network. E-nodes are interconnected to form independent
logical segments based on PCN capabilities called Protected Core Segments (PCSs).
A PCS is interconnected, and cooperates, with other PCSs over interfaces, called
PCN-1, to create a federated Protected Core (PCore) transport network. In a
deployment based on PCN principles, each nation or organization could contribute
with, and manage their own PCS. There is no central authority in a PCore as a
whole, and the PCSs are interconnected in an ad hoc manner. Only network elements
that contribute to the transport of information are part of PCore. The users, and
information domains are located in Colored Clouds (CCs), which are Local Area
Networks (LANSs) set up by nations or other logical groups. The CCs are separated
from PCore by encryption devices, marked with Z in Figure 1.1. CCs will connect to
PCore over interfaces called PCN-2, which will be further explained shortly. The
CCs in Figure 1.1 are drawn with different shades of grey to emphasize that user
networks with information of different classifications can utilize PCore. Similarly,
the PCore itself is drawn white to symbolize that information is treated similarly
regardless of classification.

It is emphasized that PCN is not concerned with the internal implementations
of PCSs. Rather, that the heterogeneous networks implemented as PCSs delivery
services to other PCSs and CCs according to PCN-1 and PCN-2 interfaces. The
main focus of the thesis will be on PCN-2 interface. As mentioned briefly above,



1.2. TERMINOLOGY 3

Protected Core Segment Protected Core

Figure 1.1: Overview of PCN as described in [HO08]. User networks holding
information are located in CCs. CCs are in turn connected to PCore through PCN-2.

PCN-2 defines a loose coupling between a CC and PCore. An important requirement
is that CCs should be able to move geographically and reconnect to PCore elsewhere,
without manual reconfiguration [PCN10].

To support different services, such as voice or data transfer, the PCore is intended
to have extensive support for QoS enforcement. The fact that critical traffic should
take priority over less important traffic is highlighted in [HOO08]. A Service Level
Agreement (SLA) between a CC and a PCS is negotiated, or pre-stored, in order
to determine which services will be provided and how they will be delivered to a
CC [SMD™13]. Its purpose is to give CCs the ability to predict which service can
be expected from the PCS. Similarly, it gives PCSs the ability to prepare to deliver
agreed service. A SLA can include parameters such as priority, bandwidth, and
delay depending on what is required for a given service. To verify the identity of a
connecting entity correctly, entity authentication of all connecting entities is required
[PCN10]. Additionally, individual packets travelling the PCore are required to be
protected using transaction authentication. These terms, entity authentication and
transaction authentication, will be informally defined shortly.

1.2 Terminology

Terminology slightly modified from [HWH11] are stated here for further reference.

Identity and identifiers: An Identity (ID) uniquely specifies an entity. An
identity is represented by one or more identifiers. An entity can be a single CC or
E-node, or a group of these referred to by one identifier. For example, CCs can have
individually distinguishable identities, but being part of a PCS, they can share an
identity separate from their individual ones.

Entity authentication: The process, or protocol, where one entity verifies that
another entity communicates with a claimed identity. After the identity is verified,
the process ends. Entity authentication can be mutual or one-way. Often there is
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also a notion of time involved, i.e. guarantees on the recentness of authentication.
Several different forms of entity authentication will be defined in chapter 3. The
main difference amongst them being the assurance one entity has on the state of the
other entity after authentication.

Authorization: The act of determining which services an identified entity should
have access to is called authorization. As authorization depends on identification,
the decision should be made based on authenticated identifiers. A specific identity
can be authorized for some service, or a user is authorized based on some identifier
shared between multiple users, such as roles or attributes.

Attribute: An attribute is a quality or feature inherent in some entity. For a
CC, an attribute might be some property such as the type of vehicle or ship, or which
nation it is from. A service attribute is defined as an attribute with a specific set of
services attached. For example, a reconnaissance ship might have certain predefined
services attached to it, such as continued connectivity, or limitations on delay.

Transaction authentication: Data-origin authentication with time variant
parameters is often called transaction authentication. The receiver is assured that
the message originated from the claimed source within a given time interval.

Having stated informal definitions of central concepts above, these will be used
when outlying challenges of doing authentication in distributed systems below.

1.3 Objectives

Separating entity authentication from transaction authentication can be advantageous
in distributed systems [EA04]. Entity authentication can then be performed by a
central server for Authentication, Authorization, and Accounting (AAA), while access
control of packets is enforced on distributed routers. Before transaction authentication
is applied to packets, the entity enforcing access control must have verified the source
identity so as to know which packets to forward. In PCN, certain transport services
might also be associated with an identity, i.e. the service policy. Maintenance and
distribution of service policy is often simplified through centralized control. To
achieve a flexible approach to QoS enforcement, the policy is here assumed dynamic.
That is, entities such as AAA-servers, E-nodes, and CCs may all be involved in the
process of determining the quality of services delivered. The goal is better utilization
of network resources. To achieve this, one challenge is the transportation of service
policy from a CC’s home PCS to visiting PCS. Another is how policy is transported
from a central server to distributed E-nodes. These two challenges are addressed in
this thesis.

Entity authentication is often performed by proving knowledge of a key. In public
key cryptography, a private key is linked to a public key through a one-way trapdoor
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function. A one-way trapdoor function is one that is easy to compute, but difficult to
invert without a secret key. This corresponds to (1.3) in Figure 1.2. The public key is
in turn usually bound to the owner’s identity (1.2), which finally is linked to a service
policy (1.1). To assure (1.2) a trusted entity, called Certificate Authority (CA), is
often assumed to issue certificates to other entities. A certificate is a document
stating that a CA has verified the binding between an identity and a public key.
In Public Key Infrastructures (PKIs) certificates are used to create tree structures
where leaf nodes only trust the root. Then, if entity CC' trusts C A, and C'A trusts E,
then transitively C'C trusts E. Nevertheless, if a CC’s public key, identity, and policy
are known to an E-node in advance, the authenticity of these bindings are assured
by secure physical storage. A CC would then only prove knowledge of the private
key to an E-node in order to be linked with a service policy. However, pre-storing
this information in all E-nodes for large number of CCs does not scale well.

In 1985 Shamir introduced Identity-based Public Key Cryptography (IDPKC)
[Sha85]. The idea is that any chosen string could be used as a public key. By choosing
this string to be an identity, the public key is essentially the same as the identity.
No external mechanism such as certificates, is then needed to ensure the binding
between the two (2.2). In IDPKC, a Key Generation Center (KGC) is involved in
the creation of private keys. Part of this process, entities are authenticated by the
KGC when receiving private keys. This process is referred to as pre-authentication.
Pre-authentication gives verifying entities assurance that a KGC has authenticated a
peer’s identity before issuing a private key based on their identity. The overarching
objectives of the thesis are to:

— Study relevant solutions for using IDPKC in PCN authentication
— Evaluate a solution, and analyze its security using formal methods
— Discuss issues and challenges of deployment of the suggested solution

Even though authentication may be simplified, IDPKC does not immediately
solve the challenge of distributing service policy to E-nodes. An underlying objective
is to examine the possibility of including information within an entity’s identity;
enabling distributed authentication by simplifying row (2) of Figure 1.2 even further.

(1.1) (1.2) (1.3)

m ‘ Service leval H Identity H Public Key }<—>|Private Key‘
(2) ‘ Service level H |dentity

(2.1) (2.2)

Figure 1.2: A comparison of classical public key cryptography (1) to IDPKC (2).
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1.4 Methodology

Formal methods are ways of using mathematics and logical notations to describe
a protocol. By formally stating security goals protocols need to achieve, models
can be run against an attacker’s assumed capabilities to evaluate its robustness.
Formal methods can detect wrong assumptions, an incorrect protocol, and model if
principals leak information. There are essentially two ways of providing formal security
guarantees to cryptographic protocols [BM13]. One way is through complexity
reductionist proofs that reduces the hardness of an unknown problem to that of
a known problem, and hence builds its security on those reductions and the base
problem. Then there are methods that treat cryptographic mechanisms as black
boxes with perfect security, called symbolic models. The approach taken by the thesis
is of the latter category.

Generally, one can divide formal methods of symbolic analysis into those that
aim to prove a protocol correct, and those that aim at finding flaws. Where ProVerif
[Bla01] and scyther-proof [Meil3] are examples of the former, Automated Validation
of Internet Security Protocols and Applications (AVISPA) [ABBT05] and scyther
[Cre06] represent the latter. Scyther will here be used for preliminary analysis of
protocols. Furthermore, a theorem proving tool built on scyther, called scyther-proof,
will be used to prove security properties correct. These tools will be explained in
more detail in chapter 3.

1.5 Limitations

All entities are assumed to have global system parameters pre-stored in a tamper
resistant module before deployment. When CCs are moving geographically and
reconnecting to PCore through other PCSs, global parameters for several PCSs are
needed. An authority in each security domain is assumed to generate private keys
for entities before deployment. The process of deploying keying material in advance
is assumed not compromised. Figure 1.3 shows that trust relationships between
PCSs must exist before deployment in order allow interconnection. Furthermore,
mechanisms for rekeying of private keys are not analyzed in this thesis. This choice
is justified by not assuming compromising adversaries. If PCN is adopted to the
tactical domain, this assumption may be too strong. It is also important to note the
inherent limitations of formal methods in a symbolic model. The attacker model and
security goals are critical in evaluating the security of the protocol. Formal methods
will not detect errors such as wrong implementation, or wrong usage. In the symbolic
model, cryptographic primitives are considered to have perfect security, and hence
are not considered in the model.
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Figure 1.3: Figure from [PCN10] showing that a trust relationship between con-
necting PCSs must exist prior to authentication

1.6 Outline

Following is an outline of the content of this thesis. This first chapter was intended to
introduce the concept of PCN, and to motivate the study of IDPKC for authentication
in PCN.

Chapter 2 initially states high level requirements for mechanisms supporting
authentication in PCN. It further looks at the PCN architecture from a high level
perspective, and briefly discuss id-based cryptography in Mobile Ad Hoc Networks
(MANETS), the topic of distributed authentication, and relevant Internet standards.

Chapter 3 explains concepts, and more theoretical foundations for many for the
mechanisms used throughout the thesis. Specifically, it gives background information
on IDPKC, and formal methods for verification of cryptographic protocols which
extend upon section 1.4 in this chapter.

Having laid the ground work in chapters 2 and 3, chapter 4 propose solutions,
and outlines the details through two new protocols. The contents of chapter 5 is the
experimental part of the thesis where the proposed protocols are formally analyzed
in a tool called scyther-proof. An adversary model is defined, and subsequently so
are security goals before the analysis. Results obtained are provided at the end of
the chapter.

Chapter 6 discuss the results from chapter 5 with respect to the adversary
model and security goal. In addition, it contains a discussion of issues related to a
practical deployment of the proposed solution, with a specific focus on identity-based
cryptography and signature schemes.

Chapter 7 summarizes the thesis by looking at assumptions, modelling, and
results. It also tries to answer the question if the objectives stated in section 1.3
were fulfilled. Finally, topics for further work are stated in section 7.2.






A literature survey on
authentication and IDPKC for
potential use in PCN

The goal of this chapter is to study relevant literature of authentication and IDPKC
for potential use in PCN. A high level overview of different solutions is given in order
to identify missing pieces of existing research. Focus will be on distributed systems
in environments with limited bandwidth.

Shortly a few requirements will be stated which will aid in the search for a viable
solution. What is meant by the security-requirement is the assurance a CC and
an E-node has on attributes defining expected service delivery. That is, to what
extent they have the same view of the authentication protocol and on agreed data
items. Later, more accurate definitions of authentication, such as Lowe’s [Low97]
definitions of agreement, will be applied to dissect the problem more carefully. Figure
2.1 illustrates how the specifications and requirements for PCN, such as those related
to authentication, are specified at the network layer. The thesis will follow in the
same line in order for authentication mechanisms to be interoperable independent of
selected access mediums.

PCMN-1 | PCN Characteristics| PCN-2

Metwork Layer PCN Interoperability Specification
T e
| L
: — — 13
Data link layer i o B E -S§ : @
P M E = = =
HN2El|l B |82 ]
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Figure 2.1: Figure showing how services in PCN, such as authentication, must run
over different carrier profiles [PCN10].
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2.1 Requirements

A few high level requirements found in PCN literature are stated here in order to
make architectural decisions regarding authentication later in the chapter:

Interoperable
Scalable
— Efficient

— Secure

Interoperability: To avoid complex solutions when interconnecting hetero-
geneous networks, an important requirement for PCN is interoperability. Many
technologies for the transportation of information exist. Examples include radio
links, IEEE 802.11, IEEE 802.3, satellite, and WiMAX. In order to utilize several
technologies for physical transportation and medium access, the thesis will be con-
cerned with solutions enforcing transaction authentication at the network layer of
the Open Systems Interconnection (OSI) stack.

Scalability: Scalability is concerned with the degree workload on central nodes
increase with the size of the network. In a future deployment of PCN, large parts of
national and international military entities may be connected to a common backbone.
Scalability of operation in critical functionality, such as authentication mechanisms,
is considered vital.

Efficiency: The many different communications technologies put constraints on
solutions that is intended to run on top of a range of these. Efficiency of computations
and bandwidth are important to achieve flexibility when deploying in operational
scenarios. Stationary networks can also benefit from efficiency in the number of
messages passes in connection setup traffic. Another goal is efficient interconnection
of PCS networks, that is with minimal manual configuration.

Security: Security is here meant as providing the correct service to a given entity.
It is important that the chosen solution provides guarantees to involved entities on
authentication and secrecy goals in order to enforcement the correct services.

The above requirements will now be utilized when studying literature of authen-
tication. It is important to note that fulfillment of these requirements must be
balanced in distributed, heterogeneous networks.
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2.2 Literature

When surveying the literature, focus was initially on IDPKC in Mobile Ad Hoc Net-
works (MANETS). Since MANETS are self-configuring, infrastructure-less networks,
parallels can be drawn to the required interconnection of entities in PCN. Topics of
distributed authentication and Internet standards were also covered.

2.2.1 Authentication in MANETSs

In the following section two methods for doing transaction authentication are pre-
sented. Next, the trade-offs between public key, symmetric key, and IDPKC are
discussed. Furthermore, the use of IDPKC in MANETS is motivated.

Three level framework for authentication In [HWH11] Hegland et.al. pro-
pose a three level framework for authentication in tactical ad hoc-networks in network
based defense. They suggest network level hop-by-hop authentication as basic authen-
tication of data-packets. Additionally, they suggest using group keys for symmetric
authentication hop-by-hop, because one limits the scaling problems of using keys at
the granularity of individuals. In addition, they reason that verification of group
membership might in many applications be sufficient for basic authentication.

Quality of service enforcement in Military Ad Hoc Networks Military
ad hoc networks are different from true ad hoc networks in that some planned
structure can be assumed [HWO08]. In order to fulfill QoS requirements in such a
network Hegland et.al. propose a protocol for authenticating QoS fields in IP-header
based on group keys. The resulting protocol is based on distributing group keys to
specific intermediate nodes or routers which enables them to authenticate QoS fields.
Identified drawbacks are insider attacks or node compromise, and the associated key
distribution. One possible solution is the use of digital signatures and certificates to
authenticate data packets. Hegland et.al. [HWO08] briefly discuss this solution and
mention that digital signatures might be a viable solution for fixed networks rather
than tactical networks.

Packet Level Authentication using Digital Signatures In [CLKO05] Can-
dolin et.al. propose a generic solution for performing Packet Level Authentication
(PLA) in heterogeneous military networks. They identify that a solution to security
issues in a systems-of-systems approach could benefit from the simplicity of PLA.
To support their claims, they propose a solution where each node in the network,
and not only source and destination, can authenticate a data packet. Specifically,
they suggest that an IP-packet is authenticated using digital signatures, and that
a certificate is carried in the IP-extension header. While such an approach clearly
simplifies key management, the computational overhead, and bandwidth consumption
is significant.
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Strong authentication in MANETSs In [TD07] Tang et.al. discuss challenges
of strong authentication in MANETSs through the framework from [HG04]. Authen-
tication using symmetric keys can be performed between two entities who share a
key by proving possession of this key. One way of doing this is a classical challenge-
response where one party takes the role of authenticator, and the other as supplicant.
The authenticator encrypts a secret value, and asks the supplicant to decrypt. If
mutual authentication is requested, the roles are changed. Advantages of symmetric
key solutions are identified as efficiency of operations and computationally feasibility
[TDO7]. Typical issues are related to key distribution. Secret keys have to be securely
deployed in each node. There is also an inherent trade-off between the number of
entities who share a symmetric key and the security in case of key compromise. Some
suggestions for reducing the number of key pairs are further discussed in [TD07], and
includes for instance key hierarchies.

Interoperability between national MANETSs In [SBW'15] Salmanian et.al.
propose an architecture for the interoperability between two national MANETS in
a coalition. Part of their contribution is a key management scheme supporting
interoperability between small platoon-sized MANETS from different nations. Their
scheme utilizes a certificate-based PKI to simplify key distribution. Interestingly,
they suggest using a special mission key for encrypting the header of a packet, while
the payload is encrypted using a group key. To set up security associations between
two nodes chosen as gateways, they use a combination of public key cryptogra-
phy for distributing group keys, while using symmetric key cryptography for data
confidentiality.

Identity-based cryptography in MANETSs In [Thal5] Thakur and Heena
provide a review on applications of IDPKC in MANETs. They survey literature
on how IDPKC could be used to secure routing protocols in MANETS, and how
it could be used in military settings. Specifically, the use of non-interactive key
establishment, and pre-authentication are identified as major advantages of IDPKC.
In [BBKPO7], Balfe et.al. propose a scheme for using IDPKC in a military coalition
structure. They build their scheme on that each security domain contains its own
KGC issuing private key to entities in its domain. Disadvantages of IDPKC listed
in [TDO7] include key escrow, single point-of-failure, and the distribution of private
keys. These will be discussed in chapter 6 in the context of PCN.
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2.2.2 Authentication in distributed networks

The focus of the following section will be on authentication in distributed networks.
Specifically, two solutions using the ticket-based architecture are covered.

Authentication and the SESAME solution Authentication can be particu-
larly challenging in distributed federated networks due to the difficulty of synchroniz-
ing access rights. In [Ash97] Ashley et.al. use the framework of [CJW96] to examine
the applicability of Secure European System for Applications in a Multivendor En-
vironment (SESAME)[KPP94] to a multi-domain environment. They argue that
it will often be the case that the foreign network does not have knowledge of the
client in advance. Additionally, a system mapping access right, or attributes, across
administrative domains are necessary. Finally, a trust system must be in place for a
foreign network to trust the authenticity of a decision made by another network.

In [CJW96] Ching et.al. identified that traditional protection systems in closed
environments intertwine the fields of naming, entity authentication, and access
control. They suggest that in a large scale network, the access decision should
not depend entirely on static identities and attributes. Information related to the
environment from which the request originated, and local context were identified as
other important parameters. In a multi-domain environment, it is rarely practical
for a foreign network to store access policies for both foreign and local clients
in a centralized database. For this reason, access rights are either pulled by the
remote network server from the client’s home network, or pushed by the client’s
application [Ash97]. The reader is referred to the article for the full discussion, but
for example a push-based architecture normally creates less communications traffic,
and a decision can be made more efficiently [Ash97]. Another advantage of the
push-based architecture, is that the access decision can be tempered based how the
client is authenticating, and on properties of the environment.

(1) Authenticate

2y AUC "| Authentication Server
(3) AUC _

. [4)PAC Tl Atribute Server
(5) PAC
[6) Service | Application Server

Figure 2.2: In SESAME [KPP94] an application server perform access control
purely on attributes and local state, without knowing the client in advance.

Figure 2.2 illustrates the main entities involved. A client authenticates to an
authentication server, and receives an Authentication Certificate (AUC) stating that
the it has been authenticated. The client can in turn present the AUC to an attribute
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server, and receive back proof of its access rights in a special access control certificate,
called Privilege Certificate (PAC). Finally, the PAC is presented by the client to an
application server whenever access to a protected resource is needed. Based upon the
attributes, and other local information, the application takes a decision. The PAC is
thought to be a data structure protected using public key cryptography [KPP94].

Federated authentication and ticket-based guest access An Identity Man-
agement System (IdM) is a system that maintains information regarding actors in
an information system. It provides services such as validation of credentials for the
purpose of authentication. In [Fon10][FD11] Fongen identify that IdMs can bridge the
gap between two security domains. Conforming with traditional user management,
[FD11] stress that access rights should be linked to roles or attributes rather than
directly to users. A central concept in order to achieve this is Identity Statements
(ISs). The ISs are short lived service tickets to remove the need for Certificate Revo-
cation Lists (CRLs). CRLs are lists maintained by PKIs on invalidated credentials.
Specifically, an IS binds an identity to a public key, and a set of attributes. It is
signed by an authority trusted by all entities within a domain. By having access
control be performed on attributes, rather than identities, a loose coupling between
information domains and services are achieved. A central concept in order to achieve
this is guest access. With guest access, a user’s home network issues a guest-ticket
consisting of attributes associated with that identity. It is assumed that the home
network has a pre-established trust relationship with the visiting network. Upon
connecting to the visiting network, the user presents its guest-ticket to the network.
The visiting network verifies the signature and then determines which services it
associates with the presented attributes. A new foreign-guest-ticket is issued by the
visiting network, possibly with new attributes, and digitally signed.

2.2.3 Interoperability in IP-networks

Internet Engineering Task Force (IETF) specifies open standards for protocols and
services on the Internet. Internet Protocol Security (IPSec) provides services such as
access control, and data origin authentication to IP-packets [KS05]. In order to keep
track of which services will be applied to IP-packets shared state, called Security
Associations (SAs), are maintained between source and sink of an IPSec connection
[KHNE14]. Two standards for setting up SAs for IPSec are covered, namely Internet
Key Exchange (IKE) and Kerberized Internet Negotiation of Keys (KINK). IKE is
built on a Diffie-Hellman key exchange [DH76] authenticated with digital signatures.
KINK on the other hand is based on Kerberos.
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Id-based Internet Key Exchange IKE is cryptographically built from the
Sigma protocols of authentication key exchange [Kra03]. In [SD03] Smetters et.al.
identify that the extensibility of IKE, with negotiating parameters initially, would
help almost seamlessly incorporate IDPKC into IKE. They argue that as long a
IDPKC mechanisms can be used in existing protocol flows and message fields, few
changes would be needed. When using IDPKC, certificates are superfluous because
one can authenticate by proving possession of the private key corresponding to an
identity. The identity itself can be known by the peer beforehand, or sent along
in IKE exchange. In RFC 4306 IKEv2 [KHNE14], a number of possible formats
for identities are specified, such as Fully Qualified Domain Name (FQDN) and IP-
addresses. If IP-address are used as identities, [CNCT04] conclude that the ID-field
in Figure 2.3 could be eliminated. Appendix A provides additional information on
the fields of Figure 2.3.

CC E

HDR, SAil, N;, ¢’
HDR,SAr1,N,,g"
HDR {signa(N;,¢",N,, Hx,,(IDy)), SAi2, TSi, TSr}x,
HDR, {sign,(Ny,g", Ni, H,(IDR)), SAr2, TSi, TSr} k.,

Figure 2.3: IKEv2 as standardized in [KHNE14]. SAs contains suggestions of
cryptographic primitives. HDR, contains control information, e.g. SPI and flags.

A non-interactive public key distribution protocol was first suggested by Maurer
and Yacobi [MY96]. If a peer’s identity is known by an entity in advance, it can non-
interactively use Diffie-Hellman (DH) key exchange to construct a shared key with this
peer since the identity is its public key. Reference [SD03] argues that this advantage
might not be fully exploited in IKE as the parties would have to exchange fresh
nonces and other negotiated data anyway. Instead, the entities could use another key
exchange protocol without the nonce exchange to take advantage of the non-interactive
key distribution. The resulting shared secret key could further be used in pre-shared
key mode of IKE [SD03]. IKE can be performed with, and without confidentiality
protection of identities against passive adversaries. If identity protection is required,
the parties exchange DH-exponentials initially and derive a shared key to protect
the confidentiality of further exchanged information. This version requires one
additional message because sending the identity- and authentication information
must be delayed. If IP-addresses are used for identities, these must be known to the
peer beforehand if such protection is desirable, as sending them in the first exchange
would expose one’s identity. Figure 2.4 shows how an IPSec SA could be set up
between a CC and an E-node at the edge of a PCS.
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Figure 2.4: Figure showing an IPSec [KS05] security association set up between a
CC and an edge E-node using IKE or KINK.

Kerberos and ticket-based authentication Kerberos is an authentication
system based on symmetric key cryptography [MNSS88]. In Kerberos, a client
authenticates once to an Authentication Server (AS), and receives a Ticket Granting
Ticket (TGT) with a given expiration time. A TGT is a statement from the AS
stating that the client has authenticated. The TGT is later used by the client to
authenticate to a Ticket Granting Service (T'GS) where the client requests a Service
Ticket (ST) for a particular service on the network. After verifying that the TGT
presented by the client is valid and not expired, TGS issues a ST and session keys to
the client. The client then passes ST to an application server with which it wants
to communicate securely. The three steps are illustrated in Figure 2.5. Kerberos is
based on the Trusted Third Party (TTP) model for distributing keying material, and
is in its basic form purely built on symmetric key cryptography. Several extension
has been suggested and standardized to extend its scope, such as the use of public
key cryptography for initial authentication [ZT06]. The use of Kerberos [NHYRO05]
for setting up security associations for IPSec is described in RFC 4430 KINK.

(1 ; f Authentication Server |

() ; f Ticket Granting Sewerl

(8| Application Server |

Figure 2.5: Kerberos as standardizied in [MNSS88]. (1) is called the AS-exchange;
(2) the TGS-exchange; and (3) the AP-exchange

The ticket-based architecture is identified as a solution to the efficiency-requirement.
Doing authentication based on attributes is considered advantageous with respect to
the scalability-requirement. With the introduction of KINK as a way of setting up
security association for IPSec, a possible solution to the interoperability-requirement
was found. However, in Kerberos [NHYRO5], there is not mechanism for a client to
push service attributes to the network and negotiate. Hence, the security-requirement
is not sufficiently fulfilled.



Theory

The following chapter is intended to introduce concepts, and theoretical background
used in the thesis. There are three main parts to this chapter. First, theory related
to authentication and to the methodology used in chapter 5 is covered. Second,
background on variants of the Kerberos protocol is treated. Third, a high level
introduction to IDPKC is given.

3.1 Formalizing Authentication

Cryptographic protocols are inherently difficult to get right. Many examples exist of
protocols that have been deployed or standardized, just to later be shown insecure.
The usage of formal methods to evaluate protocols have just started to receive wide
spread acknowledgement. Two examples being the analysis of ISO/IEC 9798 in
[BCM13|. Another example is the analysis of ISO/IEC 11770 in [CH14]. Contrary
to the openness of the standardization process of cryptographic algorithms, crypto-
graphic protocols have often been standardized without thorough study from the
community [MMOB10]. Several tools for formal verification have emerged in recent
years, and the process of correctly using these has evolved. In [MMOB10] Matsuo
et.al. create a framework for security assessment of cryptographic protocols.

Reference [MMOBI10] specifies that in order to get a protocol certified, the designer
is required to create a document consisting of adversarial model, protocol specification,
and a specification of security properties the protocol should satisfy. Finally, it must
present some evidence that the protocol satisfies the promised properties in the given
adversarial model. To reach the highest level of protocol assurance, all the above
mentioned characteristics must be formally defined, and a verification tool with
unbounded number of sessions used for evidence of correctness. Before formalizing
security goals, a much used mechanism for identification called challenge-response
will first be defined.

17
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3.1.1 Challenge-response identification

The idea of using challenge-response of identification has been around for a long time.
In [Dif88] Diffie claim that it dates back to 1952 when Horst Feistel at the Air Force
Cambridge Research Center used it for identification of aircrafts to be friend or foe.
Instead of using static challenge-response pairs, a radar challenged aircrafts with
random numbers, and would determine their identity based on a correctly received
encrypted response.

When discussing protocols, an initiator I is the entity sending the first message
of a protocol. A responder R, responds to an initiators request. In a later run of the
protocol, the roles may change and the entity that initially took the responder role
may take the initiator role. An identification scheme is an algorithm that allows an
entity R to prove to an entity I that it is in fact R [HPSS08]. Typically, R wants to
prove possession of a secret key to I without revealing the key itself. A common way
of doing this is through a challenge and response cycle [HPSS08]. Assume entities
I and R share a symmetric key. Entity I sends a fresh random challenge to R, on
which R applies some cryptographic operation using its key and sends it back to
I. Using the same key, R verifies that an operation was done on the challenge with
the key known only by I and R. The setup of challenge-response identification is
illustrated in Figure 3.1. It is folklore that any challenge-response identification
scheme built on public key cryptography can be converted into a signature scheme.
In that case, as the challenge from I, R uses a hash of a message. For the response,
R’s signature over the message is used. Using a hash function over the message as a
challenge assures I that R did not have any prior knowledge of the challenge as hash
functions are one-way functions.

Ny
{Nr}x

Figure 3.1: Challenge-response protocol based on fresh numbers called nonces as
described in [Dif88]. Each nonce is randomly chosen, and used exactly once.

By sending a new challenge each time, an attacker is unable to replay an old
response, and use it to fool the challenger. Since only a peer with the correct key
is able to encrypt properly, identification of R is achieved by proving possession of
the encryption key K. One of the first works on identification schemes for computer
networks is due to Needham and Schroeder in their work from 1978 [NS78]. Their
public key unilateral identification scheme is illustrated in Figure 3.2

In their version of a public key based challenge-response mechanism, they sug-



3.1. FORMALIZING AUTHENTICATION 19

{Nr1,I}pkr
{Nl}pkl

Figure 3.2: Unilateral Needham-Schroeder public key challenge- response [NS78|.
The protocol was later shown insecure by Lowe [Low96]

gested including the sender’s identity under the encryption. Since anyone could
obtain R’s public key, including the identity I gives R assurance that it is in fact [
that wants to communicate. However, later Lowe [Low96] showed that the protocol
was vulnerable to a man-in-the-middle attack. By initiating a session with I, and
later impersonating I to R, an attacker was able to perceive R to believing that it
was in fact communicating with I. The fixed version incorporates an advice that
was later stated by Abadi and Needham in [AN96]. They advised that each protocol
message should clearly state what it means, and that its interpretation should only
depend on its content. Based on that, the identity of the responder R was included
in the response.

{N1,R}sk1
{N1,I}skr

Figure 3.3: Needham-Schroeder-Lowe public key two-party unilateral challenge-
response based on nonces [Low96].

A second version of the public key Needham-Schroeder-Lowe (NSL) protocol was
also suggested using digital signatures. This version, illustrated in Figure 4.4, is the
one used in chapter 4. Note that the entities here includes the identity of its peer
under the signature instead of its own as in Figure 3.2.

3.1.2 Security goals

In [BM13] Boyd et.al. define the terms user-oriented goals and key-oriented goals to
describe goals related to authentication and key establishment respectively. The focus
here will be on user-oriented goals. That is, goals related to entity authentication
rather than properties of the established key.

It is not straight forward what is meant by authentication. A common definition
from [Low97] called weak aliveness is now stated as one example. “A protocol provides
weak aliveness to an initiator I of a responder R if I observes R’s identity, and only
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passive eavesdropping adversaries are assumed”. Entity I can then be sure that R
was at the network at some point in time. Another useful definition would be to give
I assurance that R is in fact performing the responder role of the communication
session. These are both definitions of entity authentication. It is clear that the
assurance one entity receives from its believed peer varies greatly in these definitions.
Cremers define in [Cre06] a degree of authentication called synchronization which
is proved stronger than Lowe’s definition of injective agreement. The difference
being that Lowe’s definition does not concern itself with the order of a send- and
receive-event. However, synchronization explicitly define that a send must happen
before a receive. This opens up the possibility of modelling preplay attacks [Cre06].
A preplay means that a message was injected into the network before it was formally
created. Sometimes it may be difficult to objectively determine if an attacker has
been active in a session. One way is to see if a given protocol would finish differently
if an adversary was present. Another way, which will be discussed shortly, is how
each participant view the scheme carried by the protocol. As neither participant
has information on the global state of the scheme, each participant only knows what
is provided through the protocol or generated locally. The following definitions of
authentication is taken from [Low97] and will be used in chapter 5.

The goal below says nothing about if R knows that it is running the protocol
with I at all. Neither does it say anything about when R has run the protocol.

Definition 3.1. Recent Aliveness: A protocol guarantees to an initiator [
aliveness of another agent R if, whenever I (initiator) completes a run of the protocol,
apparently with responder R, then R has previously been running the protocol.

It does not say anything about when R was running the protocol, nor that R was
responder in the same protocol instant.

Definition 3.2. Weak Agreement: A protocol guarantees to an initiator I weak
agreement with another agent R if, whenever I (initiator) completes a run of the
protocol, apparently with responder R, then R has previously been running the
protocol, apparently with I.

In non-injective agreement R does not necessarily agree with I on the number of
sessions they are running.

Definition 3.3. Non-injective Agreement: A protocol guarantees to an initiator
I non-injective agreement with a responder R on a set of data items ds if, whenever
T (initiator) completes a run of the protocol, apparently with responder R, then R
has previously been running the protocol, apparently with I, and R was acting as
responder in this run, and the two agents agreed on the data values corresponding
to all the variables in ds.
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Injective agreement means that there is a one-to-one relationship between the
sessions run by I and those run by R.

Definition 3.4. Injective Agreement: A protocol guarantees to an initiator [
agreement with a responder R on a set of data items ds if, whenever I (initiator)
completes a run of the protocol, apparently with responder R, then R has previously
been running the protocol, apparently with I, and R was acting as responder in his
run, and the two agents agreed on the data values corresponding to all the variables
in ds, and each such run of I corresponds to a unique run of R.

3.1.3 Adversary model

An adversary model says something about the capabilities and intent of an attacker.
The Dolev-Yao (DY) adversary model [DY83] assumes an active eavesdropper, who
after having gained access to the communication channel has access to all messages
sent on the channel. The adversary can alter, inject, delay, or drop packets, and
can also be a legitimate party and initiate connections with others. Furthermore,
cryptographic primitives are assumed to be perfect. That is, a party not in possession
of the secret key is not able to change or forge a digital signature, or decrypt encrypted
data. Compromising adversaries are however not assumed. Attackers are therefore
modelled without being in possession of long term secrets.

3.1.4 Tools for formal analysis of protocols

Scyther-proof and the underlying scyther were chosen in this thesis due to their
state-of-the-art performance and ease of use. To achieve increased trustworthiness of
results, scyther-proof can check its output proof script in Isabelle [Meil3].

Scyther Scyther [Cre08] is a tool developed by Cas Cremers for unbounded
verification and falsification of security protocols. The tool provides state-of-the-art
performance [Cre08], and guaranteed termination. Additionally, it can also provide
proof that no attack exists within a given bound. In scyther, protocols are modelled
using the Security Protocol Description Language (SPDL) language, based on the
semantics in [Cre06]. Security properties in scyther are modelled as so called claim
events. A claim is based on the local view of a participant on a set of values. Thus,
based on locally generated values, and messages received, an entity claims some
security goal. The purpose of the protocol is for an agent to be sure that some global
property hold, based on just local view[Cre06]. Scyther is available for download at
tool website!, or on the developers GitHub account?.

Lhttps://www.cs.ox.ac.uk/people/cas.cremers/scyther/
2https://github.com/cascremers/scyther
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Scyther-proof Scyther-proof was developed in an attempt to increase trustwor-
thiness in protocol verification tools. In [Meil3] Meier outlines a generic approach to
construct algorithms for theorem proving from security protocol verification algo-
rithms. In that respect, scyther-proof is a demonstration of the generic approach
applied to scyther. Scyther-proof generates human readable proof, which can further
be analyzed using Isabelle/Higher-Order Logic (HOL) theorem prover. Being able to
independently analyze the proofs using a theorem prover like Isabelle/HOL increases
credibility of results from scyther-proof. Proofs are generated in scyther-proof by first
assuming that an attack exists. In order to perform some attack, some information
must be obtained by the adversary. By studying each case where an attacker might
have obtained this information, and repeating this process recursively, a theorem
can be proved if all instances of an attack leads on a contradiction. The theory
underlying scyther-proof is taken from reference [Meil3]. The security protocol model
underlying scyther-proof consists of a protocol specification language, an operational
semantics of how the protocol executes in the presence of an active adversary, and
security properties [Meil3]. Security protocols with scyther-proof are modelled as
a set of roles. Each of these roles execute a sequence of role steps. A role step will
consist of either a send or a receive event. When receiving or sending a message
from the network, an entity will match the given message to a pre-defined message
pattern to identify its structure.

3.2 Kerberos authentication

Four-pass Kerberos and public key Kerberos are covered in this section. Kerberos
builds on the work by Needham and Schroeder on TTP authentication [NS78]. Specif-
ically, authentication depends upon the two entities, A,B, and a Key Distribution
Center (KDC) being the only ones who know the session key that is being used.

3.2.1 Four-pass Kerberos

The four-pass Kerberos is here described as in [Sti05]. Entity A takes the role of
client in Figure 3.4, B that of application server, and Trusted Authority (TA) the
role of AS. The KDC incorporates the functionality of both the authentication server
and ticket granting server in standard Kerberos. When receiving A’s request, the T'A
generates a fresh session key K. The T A also specifies for how long the session key
should be valid, i.e. the lifetime L. A random challenge 4 sent by A is included in
the response from T'A to A. The random number is included to prevent an attacker
from replaying and old response. Since the entire response from T A is encrypted
with a key shared between A and T'A only, A is able to authenticate TA. Note
that T'A does not authentication A as all values are received unencrypted. When
approaching the server B, A relays the ticket tp and sends an authenticator to B.
The authenticator yo includes A’s identity, and the current time encrypted with the
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session key. A proves knowledge of the session key through the authenticator. By
proving that it knows the session key, A also proves that it was able to decrypt y1,
and hence is authenticated by B.

When B decrypts tg, it uses the session key to decrypt the authenticator from A.
If only A and T'A know their shared key, and one unidentified entity proves to B
that it knew this key and used it to retrieve the session key, B can conclude that his
session key is meant for communication with A. Finally, B proves to A that it was
able to decrypt y; and hence knows the session key. It does so by incrementing the
timestamp and sending it encrypted with the session key back to A.

1. A chooses a random number, r4. A sends ID 4, IDg and r4 to the TA.

2. T'A chooses a random session key K, a lifetime, L and computes a ticket to B,
tp = ex, (K| IDa|lL), and y1 = ex, (ral|IDp|| K| L). TA sends tg and y; to A.

3. A decrypts y; using its key K4, obtaining K. Then A determines the current
time, time, and computes ys = ex (ID4|[time).

4. B decrypts tp using its key Kp, obtaining K. It also decrypts ys using the key
K, obtaining time. Then B computes:

y3 = ex (time + 1). Finally, B sends y3 to A

—®| Authentication

.  — | Server
w —>* Application

«— | Server

Figure 3.4: Four-pass Kerberos [Sti05] where a client immediately requests KDC
for a ST instead of a TGT. (1) Is called the AS-exchange; (2) the AP-exchange

3.2.2 Public key Kerberos

Using public key cryptography for entity authentication reduces the number of entities
a client needs to share a key with at deployment. With Public Key Cryptography for
Initial Authentication (PKINIT) as illustrated in Figure 3.5, only the AS-exchange of
Kerberos is changed, that is the first two messages. In Figure 3.5 K DC symbolizes
the identity of a KDC, N¢ a nonce, and T¢,T1, T are timestamps representing the
lifetime, start and end-time respectively. In the second message, K is a new session
key, and M ACk (*) is a Message Authentication Code (MAC) keyed with K over
the entire initial request. S represent the application server for which C' has been
issued a ticket.
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C KDC
(*)sz’gnc{KDC, TC7N0} ~
{signkpc{K, MACKk (%)} }puvc, C, ST, {K¢cs, No, Th, Tn, S}k

Figure 3.5: A simplified version of PKINIT [ZT06] is illustrated. Public key
cryptography based on certificates are used to exchange a session key.

3.3 Identity-based cryptography

Identity-based cryptography is a paradigm within public key cryptography where
an entity’s public key is derived from its identity. By having the mapping between
identity and public be trivial, no external mechanism for authenticity is required. In
the article introducing the idea of identity-based cryptography Shamir points out
that this concept is ideal for closed user groups [Sha85]. A high level description of
its setup and usage is given here.

In [JNO9] Kiltz et.al. discuss characteristics of IDPKC. Because the public key is
a globally known value, it should not be possible to compute the private key from the
public key given only public system parameters. They further argue that since this
is an identity-based system, it should not be dependent on some user-specific value
other than the identity. Unlike RSA cryptosystem [RSA78] where each user chooses
two secret prime numbers and use them as part of the cryptosystem. If a similar
approach was adopted in IDPKC, it would be difficult to find a mapping between
the public identity and a unique decryption with that key. As a consequence, the
computation of private keys must be a function of a global trapdoor information
common to many users. The entity in possession of the global trapdoor information
in IDPKC is called KGC. The inherent property of IDPKC requiring a central KGC
enables key escrow. That is, a KGC could in theory forge signatures or decrypt
traffic for all entities with a key registered with that KGC.

IDPKC the names Setup and KeyGen are used for the required algorithms specific
to the identity-based paradigm. The setup algorithm run by KGC produces two
keys, Master Secret Key (MSK) and Master Public Key (MPK). MPK is published
and made available to all users in a security domain, while MSK is kept secret. In
the KeyGen algorithm individual users’ private keys are generated. After deciding
on an identity to use, a user registers this key with the KGC. After verifying the
user’s claim on its identity, the KGC combines the identity with MSK to create the
corresponding private key, called User Secret Key (USK). The user then receives the
private key from KGC and stores it at a secure location. Other users with knowledge
of a peer’s identity can verify a signature from the peer, or encrypt information to
the peer using its identity as the public key. There is a significant difference between
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Signature channel | signature valid/
message —» ) 1 ) )
a9 Generation " Verification invalid
Y I
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Figure 3.6: A high level description of digital signatures using IDPKC as described
in [Sha&5].

algorithms where the owner of the private key initiates (e.g. signatures such as in
Figure 3.6), and when the owner of the public key initiates (e.g. encryption as in
Figure 3.7). In the former case, such as when signing, all information required by
the receiver can be embedded in the message. This is however not the case with the
process of encryption, where the initiator only has the identity in order to encrypt.
Auxiliary information would then have to be extracted from the receiver’s identity.

message message
) channel .
—®* Encryption Decryption ———»

I | 1

h 4

Random
Seed , Key
Recipient's Generation

identity

Figure 3.7: A high level description of encryption and decryption using IDPKC as
described in [Sha85].

Identity-based Signature (IBS) will be studied in more detail in the following
section. The use of Identity-based Encryption (IBE) in PCN will however not be
studied further in this thesis in order to limit the scope. IBE requires a special
construction called a pairing on elliptic curves to be realized. A definition of this
term will be give shortly, since its use in IBS will be discussed in chapter 6.
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3.3.1 Identity-based signature algorithms

The following definition of IBSs is borrowed from [GGO09]. The Setup algorithm
is referred to as parameter-generation algorithm. KeyGen is referred to as key-
extraction algorithm. Then, an IBS scheme is a quadruple (G, &, S, V) of probabilistic
polynomial-time algorithms, where

— @ is the parameter-generation algorithm. It takes as input the security parameter
17 and outputs the system public parameters MPK, a master secret key MSK.

— & is the key-extraction algorithm that takes as input parameters MPK, a master
key MSK and an identity id and outputs a private key usk;q corresponding
to the user with this identity.

— S is a signing algorithm that takes as input parameters MPK, a private key
usk;q and a message m and outputs a signature o.

— V is a deterministic signature verification algorithm that takes as input pa-
rameters MPK a signature o, a message m and an identity id and outputs
whether or not o is a valid signature of m relative to (MPK,id).

Several IBS-schemes can be realized using number theoretic primitives. Other
require a special construction called a pairing on elliptic curves.

3.3.2 Identity-based signatures from number theory

A way of transforming a class of identification schemes to IBS-schemes was found and
proved independently by Bellare et.al. [BNN09] and Kurosawa and Heng [KHO04] in
2004. Instances of these identification schemes exist for hard problems based on both
factoring, pairings, as well as the RSA. The Fiat-Shamir (FS) transformation [FS86]
defines a transformation of a standard identification scheme to a standard signature
scheme. Reference [BNNO09] builds on this further by creating a transformation of
a standard identification scheme to an identity-based identification scheme. They
further define a transformation that takes convertible standard signature schemes,
and transforms them to identity-based signature schemes. The result is a corollary
that states that a special class of convertible standard identification schemes can be
transformed to identity-based signature schemes through the two transformations.

One identification scheme with special properties which has a corresponding
signature scheme is Schnorr, which will be explained in the next section.
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3.3.3 Schnorr signature scheme

The description of Schnorr signature scheme is copied from [Sti05]. The scheme
functions as a basis for two identity-based schemes described in chapter 6.

Let p be a prime such that the discrete logarithm problem in Z7 is intractable,
and let ¢ be a prime that divides p — 1. Let a € Z;, be a q’th root of 1 modulo p.
Let P ={0,1}*, A =Z, x Z,, and define:

K= {(p>Q7aaa76) : ﬁ = aa(mOdp)}a

where 0 < a < ¢ — 1. The values p,q,a, and 8 are public key, and a is the
private key. Finally, let h : {0,1}* — Z, be a secure hash function.

For K = (p,q,,a,(), and for a (secret) random number k, 1 < k < ¢ — 1, de-
fine: sigr (z,k) = (v,9) where v = h(x||a*modp) and § = k + ay mod p.

For x € {0,1}* and 7,0 € Z,, verification is done by performing the following
computations: very(z, (v,8)) = true < h(z||a’ B~ Ymodp) = v

3.3.4 Identity-based signatures from pairings

A pairing is a function that maps points of an elliptic curve into the multiplicative
group of a finite field. Or more generally, a pairing é is a map from a group G to
another group G The following explanation of bilinear pairing is from [JN09]:

& GxGr Gy (3.1)

Such that for all elements P, @ in G, and all integers a and b, we have é(aP, bQ) =
é(P, Q). Typically P,(Q are points on an elliptic curve E, defined over a finite field
F,. P and @ are assumed to be points of order r on E. @ may be defined over an
extension field of F;; The map is also specified to be non-degenerate, which means
that all elements should not be mapped to the identity in Gp. Also required is a
hash function that maps any identity id to a point P;; in G in a collision resistant
manner. The KGC creates a secret s, and publishes a triple (P, @, Q), where Q, and
Q are related by Qs = Q. When a user whose identity maps to P;q asks KGC for its
private key, it receives back the point P;q = Pig - s

Definition 3.5. Embedding Degree (Directly from [KMO05]) Given an elliptic
curve F : y* = 2% + ax + b defined over the finite field F,, and a basepoint P with
prime order n dividing E(F,). Assume further that n does not divide ¢. Let k be
the multiplicative order of ¢ modulo n. That is, the smallest positive number k& such
that n | ¢* — 1. The number k is called the embedding degree.
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Even though all elliptic curves have pairings, not all are useful in cryptographic
applications [MPP*15]. Definition 3.5 introduces the concept of a curves embedding
degree. In order for an elliptic curve to have pairings that can be implemented in
practice, the curve needs to have a small embedding degree. In addition to finding a
proper curve, the pairing itself need to be chosen. The most common pairings today
are the Weil and Tate pairings [KMO05].

Definition 3.6. Bilinear Diffie-Hellman Problem Let G; and Gs be two cyclic
groups of prime order m, and let P be a generator of G;. Let é&: G x G — Gp be a
bilinear map. Given P, aP, bP, ¢P for some a,b,c € Z,, compute v € G2 such that
v = e(P, P)%*

Definition 3.7. Discrete Logarithm Problem

Assuming (G, ) is a multiplicative group and o € G has order n. The discrete
logarithm problem is: Given 8 € («), find the unique exponent a, 0 < a <n — 1,
such that a* =

Definitions 3.6 and 3.7 will not be commented here, but they are used in a
discussion regarding efficiency of pairings in chapter 6. The next chapter introduces
two new protocols for PCN with application of IDPKC.



Proposal of two new authentication
protocols for PCN

The following chapter propose two new extensions to Kerberos for its use in PCN.
One protocol is based on four-pass symmetric key Kerberos, called A, and the other
on four-pass PKINIT Kerberos, called B. Separate authentication protocols are
run between entities, and carried inside the Kerberos messages, to achieve stronger
security guarantees. The authentication protocols used within A and B, are called
a and b respectively. Protocols a and b are authenticated using identity-based
signatures and use timestamps and nonces respectively to assure freshness. Focus is
kept on the cryptographic core of the proposed protocols.

In Kerberos notation, a CC will act as a client, the KDCs as authentication servers,
and E-nodes as application servers. The KDC in a CC’s home PCS is referred to as
HKDC, and VKDC in the visiting PCS. HKDC and VKDC are assumed to support
both public key cryptography using certificates and IDPKC. From this point on,
the Kerberos terminology and the PCN-equivalent will be used interchangeably. In
Figure 4.1 a CC is assumed to have moved geographically, and reconnected to PCore
through an E-node in a visiting PCS. Similarly to Kerberos, a CC first approaches
VKDC when connecting to a new PCS. The E-node at the edge in Figure 4.1 is
assumed to forward authentication traffic to the VKDC. Traffic belonging to other
services is blocked by the edge E-node. After finishing communicating with VKDC,
a CC approaches the E-node for the last part of connection setup.

Figure 4.1: A CC connects to PCore through an E-node in a visiting PCS. VKDC
is responsible for initial authentication, before a CC approaches an E-node.

29
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4.1 Attribute-based authentication and protocols a and b

The following section explains how data carried by protocols a and b are separately
authenticated in using identity-based signatures.

The challenge of distributing service policy is solved within protocols a and b.
First to VKDC from HKDC, then from VKDC to the correct E-node. Similarly
to the ISs proposed by Fongen [Fonl0], it is assumed that CCs carry documents
stating their service rights issued by HKDC. These documents will be referred to
as service statements. A service statement will contain attributes relevant for a CC,
as well as a validity time, identity of issuing KDC, and which CC it is issued to. A
service statement is authenticated using identity-based signatures. In order to involve
CCs in the process of requesting a specific service level, CCs encapsulate service
statements issued by KDCs in ones created by itself. The outer service statement
represents the CCs request for service, while the inner represent allowed service
authorized by a KDC. The idea is clarified by Figure 4.4. When approaching a
visiting PCS, a CC encapsulates the service statement issued by HKDC inside one
created by itself containing requested service. Upon receiving this statement from
a CC, VKDC verifies the signatures and checks if the CC requests more than it
is authorized to receive. It further issues a new service statement for the CC, on
which services it can use in V-PCS. The process is repeated when the CC connects
to an E-node. CC encapsulates the service statement received from VKDC into one
created by itself on requested service. After verifying the signatures and checking
that the CC did not request more than decided by VKDC, the E-node returns a
service statement on which services the CC can expect. A relevant question is how
CC and E-node are able to verify the signatures created by one another, when little
pre-established relationship is assumed. The solution is found in cryptography, rather
than in authentication protocol theory and is introduced in the next paragraph.

PCS Policy
Attribute A ={}

Aftribute B = {}

: T/ awibute©
P A #Vehicle type
Attribute N
#Mission

Figure 4.2: A figure showing how attributes of a CC can be used for authentication.
The attributes are linked to service policies in both VKDC and E-node

E-node Paolicy
Aftribute B = {}

Attribute C = {}
Attribute D = {}
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IDPKC decouples the public key and the private key. Any string, such as an
identity, can be used as a public key. Instead of using CCs’ unique identities as public
keys, sets of service attributes can constitute public keys. Since service attributes
are sent as part of service statements, E-nodes are able to reconstruct public keys,
and verify signatures from CCs. E-nodes would then not verify CCs’ identities, but
rather verify that they are authorized for a given set of service attributes. Figure 4.2
illustrates how different characteristics of a CC may be used for authentication. A
ship with PCN capabilities dock at a harbor of a nation managing a PCS. Certain
attributes are associated with the ship, such as nation, priority, type of ship, or
mission name. When a CC connects to the PCS, VKDC determines PCS-global
policy and sends it back to the CC. Afterwards, when connecting to an E-node, the
service decision made by VKDC is tempered based on local state at the E-node.

Two different schemes are identified. One approach is to associate a private
key directly with a pre-defined service level. Another is to let multiple attributes
constitute a service level, and a CC could have one private key for each service
attribute. One scheme for each of these two alternatives will be discussed in chapter
6. In Figure 4.3, (1) is a PKI where policy is stored in routers in advance. Row (2)
illustrates IDPKC where a policy is linked to a user’s identity. In (3), a private key
is linked directly to a given service level. With (4), multiple attributes constitute a
service level, and each attribute is coupled with a private key. E-nodes are assumed

(1) ‘Ser\eicelevel H Identity }1—){ Public Key
(2) ‘Ser\eicelevel H Identity I% » Private Key

(3) | Service level [+ » Private Key

Attribute A [ »| Private Key A
Attribute B % » Private Key B

Figure 4.3: Four way of coupling private keys and service classes are shown. (3)
directly links a key with a service level. Alternative (4) may allow more flexibility

iR

familiar with the identity of the KDC in its own PCS. Furthermore, KDCs from
different PCSs are assumed to know each other’s identities in advance. The proposed
solution of using service attributes for identities is here assumed mainly between a
CC and an E-node, as they are least likely to share each other’s identities in advance.
Protocols a and b are now introduced. Both follow the high level steps explained
above when a CC connects to a visiting PCS.
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Protocol a: A CC has previously received from HKDC a service statement
containing service attributes associated with it, further referred to as Authl. Together
with Authi, information on issuing KDC, identity of CC, and lifetime L0 it is signed
by HKDC, signgkpc(HKDC,CC, Authl, LO). When connecting to a visiting PCS,
a CC presents the service statement to VKDC, embedded within a new service
statement. In Figure 4.4, Auth2 represents the CC’s request for service, and L1 is the
current time. After receiving this element, the VKDC verifies the signature, checks
that Auth2 is a subset of Authl, and that it can provide the services requested in
Auth2. VDKC also checks if L1 is an old timestamp, and hence if the message is a
replay. VKDC’s decision on allowed service is sent back to the CC' in a data element
called Auth3. In Figure 4.4 VKDC includes both a start time 7'1, and an expiration
time T'N in the new service statement for the visiting PCS.

CC VKDC

signcc(signgx po(HKDC, CC, Authl, L0), Auth2, CC, L1)
SignVKpc(VKDC, OC, Auth?), Tl, TN)

Figure 4.4: Negotiating version for access rights where the client receives assurance
on which services the visiting PCS supports.

A similar exchange is performed when a CC connects to a specific E-node. The el-
ement signcoc(signy kpo(VKDC,CC, Auth3, T1,TN), Authd, CC, L2) is then sent
from the CC to an E-node. The element Auth4 represents the C'C’s request for
service. A final decision taken by the E-node is echoed back within Authd, as
signg(E,CC, Authb,T2,TM). Elements T2 and T M represent start time and expi-
ration time respectively. In protocol a as described here, the goal of the E-node is to
receive information from both VKDC and CC on which services should be delivered.
For CC, the goal is to actively request certain services and receive assurance from
VKDC and E-node on which of these services will ultimately be delivered.

Protocol b: A CC first approaches VKDC with a request for service, and receives
a service statement for the PCS. The CC uses this statement to request services from
an E-node. However, instead of using timestamps under the signatures, a public
key NSL challenge-response based on nonces is used. First between CC and VKDC,
then between CC and E-node. The challenge-response is however only one-way, and
gives assurance to CC that the response received from VKDC or E-node was not
replayed. The service statements issued by HKDC and VKDC would still need to
include timestamps to limit their validity. Also, when a CC sends requests to VDKC
or an E-node, it would still need to include the current time to give them freshness
assurance. These separate authentication exchanges are intended to give increased
control to the CC over the decision made by the foreign network on expected service.
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CC VKDC

{C, A, N¢, Authl, Auth2, L1}sk(C)
{A,C, N¢, Auth3, T1sta, T1lexp}sk(A)

{C,E, Noa, AuthX, Auth4,T1}sk(C)
{E,C, Nga, Authb, T2} sk(E)

Figure 4.5: Figure showing two public key NSL unilateral authentication protocol.
Here {Authi}sk(C) means a signature created by C' over Authi

Protocol b shown in Figure 4.5 is different from protocol a in one more way.
Instead of forwarding the entire service statement received by VKDC to an E-node,
a CC here only use it for information. That is, instead of functioning as an authority,
the VKDC gives advice to the CC on services provided by the PCS. As is illustrated
in Figure 4.5, CC sends AuthX to the E-node instead of Auth3 done in Figure 4.4.
The element AuthX may or may not be different from Auth3 received by VKDC,
which only functions as information to aid a CC in requesting further services. Four-
pass Kerberos with protocol a inside is introduced first. Second, PKINIT Kerberos
carrying protocol b is treated.

4.2 Protocol A: Four-pass Kerberos with a

Protocol A is based on four-pass Kerberos with symmetric key cryptography [CKMO0].
In order to participate in authentication, a CC' push a service statement to the VK DC
in the first Kerberos message. The service statement is represented in Figure 4.6 with
timestamps, identifiers, and service attributes Auth? under the signatures. Message
passes of protocol a are included in four-pass Kerberos by simply including each
messages pass within its Kerberos equivalent message number. In Figure 4.6 the
service statement issued by HKDC to CC in the first message is exactly the same
as the first message of Figure 4.4. No interaction between the timestamps used by
HKDC, and those used by VKDC in the Kerberos protocol is assumed. However, it
is assumed that the timestamps used by VKDC for service statements are the same
as used within the tickets in Kerberos. In Figure 4.6 VKDC is abbreviated A, and
CC as C for readability. L1 is the current time, N4 a nonce. Elements T'1sta, and
Tlexp are timestamps stating start time and expiration time for a Kerberos ticket.
T1 and T2 are sequence numbers. Furthermore, K¢ is the freshly generated server
key intended for communication between C and E. Next, protocol b carried within
PKINIT Kerberos is introduced
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C A

C, E, Ny,Ly, {{HKDC,C, Authl, L0}sk(HK DC), Auth2, C, L, }sk(C) _
C{E,Kcg,Tlsta, Tlexp, N1, {Auth3, A, C, T'1sta, Tlexp}sk(A)}k(A,C)
{C,E,K¢s,T1sta, Tlexp}x,

A{C,E,Kcp,Tlsta,Tlexp}t i,
{C, Ty, {Auth4, {Auth3, A, C, T1sta, Tlexp}sk(A), C,T1}sk(C)} ke
{:1727 {Auth5, E, 07 T2}8k(E)}KCE

Figure 4.6: Figure showing protocol A, i.e. the composition of protocol a and
symmetric key Kerberos. The messages of protocol a are carried within Kerberos.

4.3 Protocol B: Four-pass PKINIT Kerberos with b

In protocol B a CC initially authenticates to VKDC using four-pass PKINIT Kerberos.
PKINIT Kerberos is presented in Figure 4.7 without protocol b for readability.
Protocol b would however be carried by PKINIT similarly to protocol a in four-pass
Kerberos described above. In Figure 4.7 CC is abbreviated as C', HKDC as A, and
E represents an E-node. It is assumed that certificates are used for authenticity in
the PKINIT exchange between a CC and VKDC.

C A

CaE7N1a Ll) {L17N17 h(C7Ea leLl)}Sk(C)
. {CaEvKCE7T]-aTN}KAEa{EaKCEaTlaTNle}KcA
{{K¢g,h(Kcg,C,E,N¢,L1,{L1,N1,h(C,E, N1, L1)}sk(C))}sk(A) }pb(C)
E

EC, {C, E, Kcg, T17TN}KAE7 {Ea TC}KCE
Ca E7 {T2}KCE

Figure 4.7: Four-pass PKINIT Kerberos without protocol b. Here h() is a hash
function, and public key encryption of element A by C is represented as {A}pb(C).

The advantage of protocols A and B as presented here is that an E-node only
need to know the attributes of a CC in advance, and not globally unique identities.
Since authentication of service attributes can be performed between all three entities,
they can achieve greater agreement on service policy. This claim, as well as security
properties of the protocols, will be formally verified in the next chapter.



Verification of protocols using

formal methods

Following the standardized approach to achieve protocol assurance specified in
chapter 3, the chapter is outlined as follows. The protocols A and B are first formally
described using SPDL. Furthermore, security goals such as authentication and secrecy
are defined. Finally, security goals and protocol models are input to the tool scyther-
proof [Meil3] for formal verification. The DY adversary model is assumed, and is
built into scyther-proof. The DY-model was defined in chapter 3.

5.1 Protocol Descriptions

The following section contains the models of the protocols from chapter 4 in SPDL.
Table 5.1 defines the most common syntax when modelling protocols in SPDL.

Cryptographic syntax of scyther-proof

Identity of peer I

Fresh Nonce generated by peer [

Hash function

Timestamp

MAC of message M, under key k

Digital Signature of peer I on message M
Asymmetric private key of peer [
Asymmetric public key of peer
Asymmetric encryption of peer I on message M
Symmetric session key shared by I and R
Symmetric key encryption

Symmetric key shared by I and R

3 leak. C->:T1

I

Ni

h()

T1

h(M, k(L,R))
{M}sk(I)
sk(T)

pb(I)
{M}pb(I)
SessionKey
{M}k(LR)
k(L,R)

C leaks T1 to the public

Table 5.1: Syntax when modelling cryptographic primitives in SPDL [Cre08]. Since
scyther-proof is built on scyther, they share syntax for modelling protocols.
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In the modelling, focus is kept on the cryptographic core of the protocols, and
other elements are abstracted away. The excerpts of the protocol models listed in
this chapter are also slightly simplified compared to those run in scyther-proof. The
complete protocol models are listed in Appendix C. Compared to the original models,
Tlstart and Tlexpire are here abbreviated T1sta and Tlexp. Furthermore, Authori
elements are abbreviated Authi. Similarly to chapter 4 a CC is represented as C,
KDCs as A, and E-nodes as E. The CCs home KDC, HKDC, is left out of the model
as it is only statically involved by issuing a service statement prior to the protocol.

5.1.1 Protocol model A

Following is an explanation of the modelling of Protocol A from Figure 4.6 in SPDL.
The Kerberos part of protocol modelled here is slightly changed from the Kerberos
model that is available on the github page of scyther-proof'. It is changed to a
four-pass model, and additionally embeds protocol a from Figure 4.4 within its
messages. The timestamp L1 stating the current time of the client is modelled as
a nonce leaked to the adversary before the protocol is run. Furthermore, N1 is a
nonce, T'lsta, and Tlexp are timestamps stating the start and expiration time of the
ticket. These are similarly to L1 modelled as nonces leaked to the adversary. The
session key for C' and F, called K¢, is modelled as SerKey, short for server key.

In Listing 5.1, C includes in the first request a service statement representing
its request for service within the first Kerberos message. Contained within are the
elements Auth2 and Authl which represent service statement from the CC, and
HK DC respectively. In the return message, a third element Auth3 is included in
the service statement issued by A.

Listing 5.1: The first two messages of protocol A are displayed below. Note that
the signature over the service attributes issued by HKDC, Authl, is removed.

1 _leak. C— : L1
1. C—> A : C,S,N1,L1,{Auth2,Authl,C,L1}sk(C)

2_leak. A —> : Tlsta,Tlexp
2. C <— A: C,{C,E,SerKey,Tlsta,Tlexp}k(A,E),
{S,SerKey, Tlsta,Tlexp,N1,{Auth3 ,A,C, Tlsta,Tlexp}sk(A)}k(C,A)

Listing 5.2 shows that in the message from C to E, the service statement from
A is included by C under a new signature. Entity C has made a choice based on
A’s decision, called Auth4, which should be a subset of Auth3. Finally, in the last
message E has made a decision Authb, signed it and sent it to C' in the final message.

Lhttps://github.com/meiersi/scyther-proof
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Listing 5.2: The last two messages of protocol A are displayed below. C includes
its service statement in the Kerberos authenticator when approaching F

3 leak. C —> : T1

3. C — E: A {C,E,SerKey,Tlsta,Tlexp}k(A,E),

{C,T1,{Auth4,{Auth3 ,A,C, Tlsta, Tlexp}sk (A),C,T1}sk (C)}SerKey

4 leak. E —> : T2
4. E —> C : {T2,{Auth5,E,C,T2}sk (E)}SerKey

5.1.2 Protocol model B

Following is an explanation of the modelling of protocol B from chapter 4. In Listing
5.3 the AS-exchange of Kerberos is modelled with the PKINIT specific extension.
The service statements are included directly within the Kerberos messages.

Listing 5.3: The first message of protocol B is displayed below. A hash function is
applied to the entire original request, and signed by C' to ensure its authenticity.

1 _leak. C—> : L1
1. C — A: C,E,N1,L1,{C,A NC, Authl , Auth2 ,L1}sk (C),
{L1,N1,h(C,E,N1,L1,{C,A,NC, Authl, Auth2,L1}sk (C))} sk (C)

In Listing 5.4, the authenticator is encrypted with a session key, SesKey, rather
than with a long term key shared between C' and A. Entity C obtains SesKey by
decrypting the PKINIT response with its private key. The entire request initially
sent by C' is returned authenticated with a MAC keyed with SesKey. Observe that
the nonce sent by C' in the first request is returned by A in the response.

Listing 5.4: The second message of protocol B is displayed in the listing below.
The first two lines are Kerberos AS-REP elements, the last line a PKINIT extension.

2_leak. A —> : Tlsta,Tlexp
2.C <— A: C,{C,E,SerKey,Tlsta,Tlexp}k(A,E),

{E, SerKey , Tlsta,Tlexp,N1,{A,C,NC, Auth3, Tlsta, Tlexp}sk (A)}SesKey,

{{SesKey ,h(SesKey, (C,E,N1,L1,{C,A/NC, Authl, Auth2 ,L1}sk(C),{L1,N1,
h(C,S,N1,L1,{C,A,NC, Authl , Auth2 ,L1}sk(C))}sk(C)))}sk(A)}pk(C)

The last two messages of protocol B are included in Appendix C. They are similar
to those displayed in Listing 5.2, with the exception of how the service statement
received from A is treated, and the inclusion of a nonce NC2 instead of a timestamp.
There, entity C has received service attributes Auth3 from A, but instead of sending
this element directly to E, its own decision AuthX is included under the signature
with Auth4. Finally, the server E returns the nonce NC2, and its final decision on
service Authb under a signature to C'.



38 5. VERIFICATION OF PROTOCOLS USING FORMAL METHODS

5.2 Security Goals

From a practical point of view, one of the most important goals of the new protocols
is that C receives assurance from F and A on agreed policy, i.e. that it achieves
non-injective agreement on exchanged data. For E, agreement with A and C on
negotiated service attributes is the most important goal, as the final decision on
service for C' is based on these data. However, it might not need to agree with C' and
A on all data elements in the protocol, as long as identities, keys, and service policy
is correctly interpreted. Hence weak agreement might suffice. For E, it might also be
relevant to determine if C actually did communicate with A before approaching E.
For that reason, ordering of events will be studied. PKINIT Kerberos and standard
six-pass Kerberos were formally verified using scyther at Cryptographic Protocol
Verification Portal (CPVP)2. For Kerberos they verify weak agreement for A, C, G,
and S. G being a ticket granting server, and S an application server. PKINIT is
modelled with the same security goals, except that secrecy of session key K¢ 4 is
included. In PKINIT, non-injective agreement holds for entity C. A generalized
version of public key NSL was theoretically proven in [Cre06] to possess injective
synchronization. Following the disjoint encryption theorem [GT00], the same security
goals should hold for the composed protocols.

5.3 Setup of experiment

To make the experiment reproducible, the setup of scyther-proof as used in the thesis is
explained here. The experiment was performed on a computer with Intel(R) Core(TM)
i7-4710HQ CPU at 2.50 GHz, and available RAM was 7,89 GB RAM. Operating
system was Windows 10 version 1511, OS build 10586.104, 64 bit operating system
with x64-based processor. On it, VirtualBox version 5.0.16 r 105871 was downloaded
from https://www.virtualbox.org and installed according to the guidelines on the
website. A new virtual machine was set up and assigned the following resources
from the host machine: 5028MB RAM, and one core from the CPU. It was also
assigned 40 GB of disk storage. An Ubuntu 14.04 64-bit image was downloaded from
http://www.ubuntu.com/desktop, and the virtual machine was started from that
image. Next, the source code to scyther-proof was found at the GitHub account of
its main developer Simon Meier, and download by running (1). The second step
was to install Haskell using (2). Finally, step into the root directory of downloaded
scyther-proof and install the cabal tool by running (3).

(1) $ wget https://github.com/meiersi/scyther—proof
(2) $ sudo apt—get install haskell—platform
$

(3)

cabal install

2http://crypto-protocol.nict.go.jp/about_ us.html


https://www.virtualbox.org
http://www.ubuntu.com/desktop

5.4. RESULTS 39

5.4 Results

After installing the tool as described above, scyther-proof was run with the shortest-
flag, and with the protocol models and goals as input. That is, the proof with the
minimum number of applications of the chain rule was found. Details can be found
in [Meil3]. Security goals successfully proved with the protocol models of section 5.1
are listed here. The raw proof output by scyther-proof is included in Appendix C.
Table 5.2 define the most common syntax for modelling security properties.

Explanations of security properties

secret(A,2,K,{C,A}) If role A has executed step 2, then K is secret to anyone
but C and A.

step(2, A_2) An instances of A running in thread 2 has completed
step 2 of the role.

uncompromised(C#2) The value of C variable is uncompromised in thread 2.

role(2) = A An instance of role A is running in the second thread.

C#2 = C#1 Thread 1 and 2 agree on the value of the C variable.

St(2,A_2) < St(1,C_2) || An instance of role A running in thread 2 completed
step 2 before an instance of role C running in thread 1
completed step 2.

Table 5.2: Syntax when modelling security properties in scyther-proof [Meil3].
Agreement on variables, ordering of events in time, or specific premises assumed.

5.4.1 Protocol A

Contrary to Kerberos, role A in thread 2 here receives the values C, Authl, Auth?2,
and L1 authenticated by C' in thread 1. These items are included under the signature,
signco (Authl, Auth2, L1, C), received from C. Since these values are authenticated
under a signature created by C, A agrees with C' on these values. In standard
Kerberos, entity A does not know who sent these data items, and therefore cannot
deduce that C' sent these items before they were received by A. Assume that A is
running in thread 2, has completed step 2, and that C, A, and E are uncompromised.
The properties in Listing 5.5 are then proved for an entity A.

Listing 5.5: Authentication for role A in protocol A is illustrated below. The reader
is referred to Table 5.2 for details on the syntax.

C#2 = C#1 &  Authl#2 = Authl#l &
L1#2 = LI#l &  Auth2#2 = Auth2#1 & St (2, A 1) < St(2, A_2)

Assume that F is in thread 3, has completed step 4, and that C,A, and E are all
uncompromised. It implies for F that there are two other threads running, 1 and 2.
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Role A is running in thread 2, and role C' is running in thread 1. Furthermore, E
agrees with A on the following statements: that A is running in thread 2, and on
the values C, A, E, Tlsta, Tlexp, SerKey, and Auth3. E agrees with C that C
is running in thread 1, and on values C, A, E, T1, T1sta, Tlexp, SerKey, Auth3,
and Auth4. Concerning causality, F determines that A’s send happened before C’s
receive, which in turn happened before C’s second send, and finally E’s own receive.

St(2,A 2) < St(1,C_2) < St(1,C_3) < St(3,S_3)

Assume role C is running in thread 1, that C, A, and F are uncompromised,
and that C has completed step 4. It implies for role C' that there exist two other
threads, 2 and 3, with role A running in thread 2 and role F running in thread 3.
Furthermore, C' agrees with A and FE respectively on the following items:

role(2) = A role(3) = E &
A#l = A#2 C#1 = C#3
CH#l = C#2 E#l = E#3

Tlsta#l = Tlsta#2
Tlexp#1 = Tlexp#2
Auth3#1 Auth3#2

&
&
T2#1 = T243 &
Auth5#1 = Auth5#3 &
&
&
&

Tlsta#l = Tlsta#3
Tlexp#l = Tlexp#3
SerKey#1 = SerKey#3

g

Concerning causality, as C' is involved in all send events and receives corresponding
answers to these, it is able to determine a strict ordering of all send and receive
events.

St(1, C_1) < St(2, A1) < St(2, A_2) < St(1, C_2) <
St(1, C_3) < St(3, S_3) < <

5.4.2 Protocol B

The same secrecy goals proven in protocol A also hold for protocol B. The only
difference being that secrecy of SesKey was proven for A and C. Regarding authen-
tication, assume role a C' running in thread 1, which has completed step 2 of the
protocol, and that C', A, and E are all uncompromised. It implies for C' that there
exists a role A running in thread 2, and that C' agrees with A on the following data
items: A, C, NC, Authl, Auth2, Auth3, L1, T'1sta, Tlexp. Since A included in
the response message the nonce sent by C', C' can conclude that A did not send its
response before it received the nonce sent by C' in the first message.

St(1, C 1) < St(2, A 1) < St(2, A 2) < St(1, C 2) <

St(1, C_1) < St(1, C_2) < St(2, A_1) < St(2, A_2)

In the challenge-response between C' and E, much of the same properties hold
as in the exchange between C' and A above. Assume C' is running in tread 1, has
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completed step 4 of the protocol, and that C, A, F are uncompromised. Then, C is
able to conclude that there is a role E executing thread 3, and they further agree on
the following data items: E, C, NC2, T2, AuthX, Auth4, Authb. Full ordering of
events for C' is also deduced.

For a role A running in thread 2 which has completed step 2 with C, A, and FE
uncompromised, it is able to determine that there exists a role C' running in thread 1.
Furthermore, role A agrees with role C' on the following data items: C, NC', Authl,
Auth2, N1, L1. Here, role A is able to conclude that the first message was in fact
sent by role C, and hence can conclude that it responds to C’s request in the second
message.

St(1, C_1) < St(2, A1) < St(2, A_1) < St(2, A_2)

Finally, for role E of protocol B, in addition to agreement on the items mentioned
in protocol A, the nonces used within protocol b are agreed upon.

role(2) = A & role(l1) =C
NC#3 = NC#2 & Tlexp#3 = Tlexp#l
Tlexp#3 = Tlexp#2 &  AuthX#3 = Auth3#1
Tlsta#3 = Tlsta#2 &  Authd#3 = Auth4#1
SerKey#3 = SerKey#2 & Tlsta#3 = Tlsta#l
CH3 = CH#2 & A#3 = A#2 & SerKey#3 = SerKey#1
E#3 = E#2 & NCH#3 = NCH2 &  C#3 = CH#1 & A#3 = A#1
& E#3 = E#l & NCHE3 = NC#1
&  NCO2#3 = NC2#1 & T1#3 = T1#1

prrrrreer

Role F is also able to conclude that A received its first message from C. Role C
is therefore almost able to determine a full causality chain.

St(1,C_1) < St(2,A_1) < St(2,A_2) < St(1,C_2) <
St(1,C.3) < St(3,5.3) < St(3,5_4)

The protocols defined in chapter 4 were formally analyzed in this chapter. Mod-
elling of protocols and security goals were done in SPDL, and proven correct using
scyther-proof. In the next chapter, the results obtained will be discussed in addition
to a discussion of the result in the context of PCN.






Discussion

There are two main parts to this discussion. First, the proposed protocols and results
from their analysis are discussed with emphasis on limitations and trustworthiness.
Second, the proposed solution is discussed within context of practical deployment
with a special focus on IDPKC. The chapter is finalized with the authors opinion of
the proposed solutions for entity authentication at the PCN-2 interface.

6.1 Discussion of results

The following section will discuss architectural choices made in chapter 2 and chapter
4, before variations of the Kerberos protocol. Next, the extent and limitations of the
results obtained in chapter 5 are discussed with emphasis on security goals, adversary
model, protocol models, and scyther-proof.

6.1.1 Architectural decisions

Three architectures of authentication were considered for PCN. A strict peer-to-peer
model (X), a central AAA-server aided model (Y'), and a token-based model (Z).

IDPKC IKE was identified as one alternative of X. In IKE, the identities of
authorized entities are often pre-stored in router policy. For example, a range of
IP-addresses, or domain names found through reverse Domain Name System (DNS)
could be assigned a specific policy. It was found that in IKE based on IDPKC, the
ID-field of IKE could in principle be removed if global network addresses are used
for identification. However, [PCN10] states that IP-addresses shall be dynamically
assigned connecting CCs in PCN. As transaction authentication on network layer
was assumed, media access control addresses are not present for identification. Media
access control addresses are unique identifications assigned to network equipment by
manufactures. These are often used for identification at link-layer of the OSI stack.
One exception being IPv6 link local addresses, which are constructed from an entity’s
mac-address. These are however only globally unique within a given link domain
[Dee98]. IDPKC IKE does not offer a simple way of authenticating CCs from several
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PCSs. Storing service policy in E-nodes corresponding to CCs from several PCSs,
clearly does not scale well.

To simplify the authentication of CCs coming from other PCSs, model Y could
be considered. A common way of separating entity authentication from transaction
authentication is through the use of Extensible Authentication Protocol (EAP) [AE(S].
EAP is an application layer protocol enabling mutual entity authentication between
a client and a central AAA-server. Not being able to process entity authentication,
a router forwards EAP authentication requests through a RADIUS [WRRS00] or
diameter [FALZ12] protocol to an AAA-server. The setup is illustrated in Figure
6.1. Using a central server for authentication and authorization fulfills the scalability
requirement from chapter 2. One limitation is that the router did not participate in
entity authentication. Instead, a client authenticates an AAA-server which tells the
client to trust the router. In principle, one legitimate router could masquerade as
another legitimate one, without the client being able to tell the difference [EA04].

Client Router/ Authentication-
lent Access Points Authorization-server
D O

< (1) 5

- 3 . (@ .

Figure 6.1: Figure showing a client participating in entity authentication with an
AAA-server (1). Keying material is then transported to router (2), and client (3).

Commonly known standards that use centralized authentication are IEEE 802.11
Wireless LANs and cellular networks (GSM/UMTS/LTE) [AE08]. In IEEE 802.11
[AT03], the authentication and key establishment through EAP is followed by
transportation of the shared key from an AAA-server to an access point. Due
to how cellular network towers and wireless LAN access points are deployed, the
risk of compromise has been justified by external considerations [EA04]. In PCN
terminology, the client corresponds to a CC, and the router an E-node. To transport
service policy, one option is to pull policy corresponding to a given identity from a
CCs home PCS. However, if continued connectivity from visitor PCS to home PCS
is difficult to assure, a CC might not receive the necessary services in time.

To solve the problem of varied connectivity, model Z was suggested. That is,
a push-based model for authentication based on tokens. By using tokens, a TTP-
approach is assumed. In a TTP-approach, one entity functions as a bridge between
two other entities where each of them trusts the TTP. One argument for the use of a
Z architecture contrary to Y, is that an E-node should be able to temper intended
service delivery based on local considerations. Instead of simply receiving at list of
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services the CCs are authorized to use, the E-node can modify this decision. Either
based on the strength of authentication of a CC, or on network properties of the
PCS, similarly to SESAME [KPP94]. In [Ash97], Ashley argues that a common
disadvantage of push- contrary to pull-models is that the access rights stated in the
ticket might not be fresh. To remedy the situation, authentication between CC and
E-node could be assumed to depend on a TTP regularly issuing fresh service rights.

Figure 6.2: A token-based architecture for authentication. Continued connectivity
between PCSs is not necessary for connection setup between a CC and an E-node.

In the protocols in chapter 4, VKDC functions as a TTP between E-nodes and
CCs. Similarly, HKDC functions as a TTP between VKDC and CC. One could
assume that VKDC pulls service rights from HKDC when connectivity is established.
In between pull requests, a push-based model could be used based on the issued
service statement. To limit the validity of service statements, timestamps were
included. A CC would then have to approach the VKDC for a new service statement
after a given time, and obtain its updated service rights retrieved by VKDC from
HKDC. The setup is illustrated in Figure 6.2. A CC first requests its HKDC for a
statement on which services it is authorized to use (1)(2). When connecting to a
foreign PCS, the CC push this statement to VKDC (3). After authenticating the
issuing authority (HKDC), and making a decision on authorized service in PCS-V,
VKDC responds with a new service statement (4). This document states a CCs
authorized services within PCS-V. Finally, the PCS-V service statement is pushed
to E-nodes the CC connects to. These ideas aid in fulfillment of the requirements
scalability and efficiency. However, the requirements of interoperability and security
were not sufficiently covered. Focus was then shifted towards token-based solutions
specified as Internet standards. Specifically, the Kerberos protocol with its KINK
extension to set up SAs for IPSec were a natural choice for further study.
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6.1.2 Kerberos in MANET-like networks

In [PM04] changes where suggested to the traditional Kerberos v5 [NHYRO5], in
order to make it more suitable for MANETs. In addition to replication of KDCs
to distribute authentication, Kerberos Assisted Authentication in Mobile Ad-Hoc
Networks (KAMAN) build on four-pass Kerberos [CKMO00]. Later, a modified version
of KAMAN intended to prevent against replay attacks was proposed in [BK12]. The
Modified Kerberos Assisted Authentication in Mobile Ad-Hoc Networks (mnKAMAN),
used the fact that user passwords were hashed in order to encrypt the entire packet
to protect against replay. In mKAMAN, two clients want to communicate with the
help of a KDC. In the equivalent of the AS-exchange in Kerberos V5, the KDC
encrypts the packet with the first client’s hashed password. Inside the packet, and
together with the ticket for the second client, is the hashed password for the second
client. The first client is able to encrypt the entire packet going to the second client
with its the hashed password received from KDC.

Even though mKAMAN presents a way of using Kerberos in MANET-like envi-
ronments, it is not straight forward to extend its use across security domains. To use
a variation of Kerberos in coalition military operations, two choices were identified;
cross domain tickets and public key cryptography. A choice was made to follow the
latter approach, as it might be difficult for a CC to know which PCSs it will visit in
advance, and hence needs to request cross domain ticket for. Nevertheless, the idea
of KAMAN to use four-pass Kerberos instead of standard six-pass was pursued. The
reasoning behind this choice was that TGSs were specified in Kerberos V5 to not
expose the user’s password more than once [NHYRO05]. This is however no concern
when public key cryptography is used for initial authentication.

PKINIT was chosen for initial authentication in Kerberos. Alternatives to PKINIT
as public key cryptography in Kerberos have been created. Examples are Public
Key Kerberos for Distributed Authentication (PKDA) [SC97], Public Key Utilizing
Tickets for Application Servers (PKTAPP) [MHNO97], and Public Key Cryptography
for Cross-Realm Authentication in Kerberos (PKCROSS)[HTTmO01]. In PKDA, a
client authenticates directly to an application server using public key cryptography,
and the server issues a ticket for itself. Workload is then distributed away from the
KDC. The need for an online key distribution center is thus eliminated. PKTAPP
tries to achieve the goals of PKDA using PKINIT. With PKTAPP, a client performs
the AS-exchange using PKINIT with a Local Ticket Granting Server (LTGS) at the
application server. When a client sends an AS-REQ to a LTGS, it also specifies an
application server in order to get a service ticket. Instead of receiving a TGT as in
traditional Kerberos, the client receives a service ticket. Another difference between
PKDA and PKTAPP is that PKDA requires the client to compute the symmetric
key, while with PKTAPP it is the responsibility of the server. A comparative study
of the three protocols was performed in [AJR11], and the performance of public key
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versions of Kerberos in large networks was analyzed in [HMO1]. When cross domain
authentication is necessary, [HMO01] concluded that PKCROSS is more efficient than
PKTAPP if a client authenticates to several entities in the visiting domain. However,
PKCROSS requires continued connectivity between security domains, and is therefore
not considered further. Neither is using a variation of PKDA such a PKTAPP, as
authenticating directly an E-node would scale similarly to architecture X discussed
previously.

Authentication in Kerberos between A and B depends on a TTP. A consequence
of the TTP-model is that A does not authenticate B independently of TTP. Since
the thesis assumes a CC authenticating with attributes linked to service classes,
not authenticating the E-node separately is equivalent of not receiving assurance
from E-node on agreed service level. To fulfill the security requirement, a separate
authentication of E-nodes to CCs was believed necessary. The experiment proving
security properties of the composed protocols are discussed in following sections.

6.1.3 Security goals

In protocol A, entity A was not able to conclude anything about C from data
received in the clear. Since an active intruder was assumed in the DY-model, A
may not even known if C' is present on the network, as an active intruder could
impersonate C. Hence it does not even achieve recent aliveness from the unprotected
data. The service statement was signed by C over freshly generated data item, and
hence A received assurance that these data items was recently sent by C'. Assuming
synchronized clocks, and that VK DC' is familiar with C' in advance, V K DC was from
these items able to verify the identity of C', and verify the freshness of this message.
Another important point is that A, C, and E all agree on the Auth3-element. The
consequence of which is that all three entities have a common understanding of the
PCS’s offered services. The other security goals of protocol A related to agreement
are trivial in the sense that only an entity with knowledge of a specific key is able to
construct a signature or encrypt data. As a non-compromising adversary is assumed,
only legitimate entities are in possession of these keys. When an entity receives data
protected with such a key, it will be able to conclude who constructed the message
and hence achieve agreement over the protected data items. However, as neither
A, nor E are involved in all messages, they only achieve agreement on some of the
values, and hence weak agreement is concluded. Related to ordering of events, it is no
surprise that C' is able to order all events, and achieve non-injective synchronization,
as it was involved in all send and receive events. When receiving message 2 from
VKDC, C was able to tell if an adversary had been active and changed values
even though not all were cryptographically protected. The reason is that C' was the
one sending these unprotected data items, and can therefore compare against the
response received from A to see if an adversary changed the values.
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For protocol B the introduction of public key cryptography in the first message
gives A assurance on all data items sent from C. Related to ordering of events,
an assumption is made on synchronized clocks, and A was then able to conclude
freshness from C’s current time L1. For C, the first received message contains a nonce
sent by itself in the first sent message, which enables C to deduce that this message is
not a replay. Interestingly, C'’s independent signing of the service statement may be
unnecessary in the first exchange as the data is already signed as part of PKINIT, and
nonces are used for replay protection. One exception may be if the service statement
is forwarded from the E-node to another entity, while the PKINIT exchange stops
at the E-node. The CC could then benefit from assurance on whom conducted the
authentication, and hence created the signature over the returned nonce. In terms of
replay protection, the effect of protocol b is quite different in the second exchange.
In an attempt to model the effect of unsynchronized clocks, the timestamps were
removed and only the service statement was replay protected. Then, the property of
non-injective synchronization for C did still hold. That is, replay protection using
nonces in the inner authentication protocol also provided the composed protocol B
with replay protection. In addition to inclusion of nonces, protocol b inside B was
modelled slight different than protocol a inside A. Contrary to protocol a where C'
included the entire authenticated service statement from A in the request to E, in
protocol b entity C' just copied some of the information. It is therefore modelled as
C sending AuthX to FE, instead of forwarding the entire Auth3. The effect is that F
does not achieve agreement with A on Auth3. The solution used in protocol b may
be more applicable when A is only giving advice to C' on service policy, rather than
sending commands on policy for the PCS.

6.1.4 Adversary model

Assuming perfect cryptography may be considered controversial when analyzing
protocols, as the threat of cryptanalysis is assumed negligible. Even though a given
cryptographic scheme might not break completely, small pieces of information could
be leaked by cryptanalysis and utilized in an attack on other properties of the system.
Such a threat may be even more realistic if the adversary is able to predict the
messages being signed, such as when timestamps are used, and when the public key
is known to the adversary in advance. A similar limitation can be made on the
assumption of non-compromising adversaries. Even though an adversary may not
compromise a CC or E-node entirely in the physical sense, sensitive information could
be leaked inadvertently. Specially crafted data packets sent from the adversary to an
PCN-entity could trigger an uncontrolled response, possibly leaking useful control
data. In that sense, the DY-model can be considered quite static, and modelling the
protocols with dynamically compromising adversaries could be necessary for a more
realistic analysis. This is identified as a topic for further work in chapter 7.
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6.1.5 Symbolic model of cryptography

In the protocol models of chapter 5, cryptography was treated as black boxes.
However, not all black-boxes in cryptography are alike. The type of black-box used,
and its input-output values will depend on the cryptography inside.

In the suggested protocols, only the separate authentication protocol inside
Kerberos was assumed to be based on IDPKC. A signature scheme only requiring
a recipient to know the identity of the signer in advance can be assumed. With
IDPKC based on pairings, the situation is different. Auxiliary parameters must then
be extracted by the sender from the recipient’s identity in order to encrypt properly,
and hence requires a different black-box to model properly. The question if such
constructions could be used effectively in PCN is briefly discussed in section 6.2.
Another consideration when modelling the protocols in chapter 5 was the public key
in the IDPKC setting. As the public key and the attributes essentially are the same,
a choice was made to model the public key as attributes Authé, and not as pub;. In
some situations, privacy with regard to what a specific entity is signing might be
a requirement. To avoid eavesdroppers trying specific public keys to verify some
signature, a user may want the public key to be indistinguishable from random. By
modelling a public key as an attribute the opposite of privacy, namely assurance
that the other entity knows the data items can be modelled. The extraction of the
public key from attributes is not explicitly modelled in this thesis. The public key
corresponding to the private used with the signatures is therefore assumed known
to the recipient in advance. Theoretically, one possible reason for including the
parameter-extraction algorithm would have been to model if an adversary could
perform a man-in-the-middle attack by registering the public key as its own at the
KGC. Since private keys are assumed stored locally at PCN-entities in advance, no
online KGC is necessary. Additionally, in a military setting it would be reasonable
to assume strict control on the distribution of private keys.

6.1.6 Scyther-proof theorem prover

One clear disadvantage of scyther-proof is the modelling of time. In the experiment
here, time is modelled as fresh numbers leaked to the adversary at the beginning
of a session. Therefore, it might be difficult to make brunt statements about
replay protection, and the difference between fresh nonces, timestamps and sequence
numbers. Especially one observation during the experiment was noteworthy. In an
attempt to model the behavior when timestamps were not present, a nonce under
a signature in protocol B seemed to function as a sequence number. That is, the
ordering of events for F was still proven correct when the nonce within the signature
was present, and the timestamps were not. As nonces are random numbers not
previously known to FE, it should not be able to make a deduction about timing when
it did not have any local state to compare the nonce with. To assume shared state
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between C' and F may be an unreasonable assumption. The limited modelling of
time also constitutes a challenge when assumptions of clock skew and their impact
on T'1sta and T'lexp need to be made. On the other hand, versions of Kerberos have
been formally analyzed extensively in the past, and focus in the experiment here
is not on the Kerberos protocol itself. Rather, focus has been on the agreement of
service policy between peers, and the interaction between Kerberos and the inner
authentication protocol. Related to the challenge-response mechanisms, C' should
theoretically be able to conclude injectivity of the response as it can check that it has
not been received previously. However, the notion of injectivity is closely related to
modelling of time, and is not supported by scyther-proof. Modelling the interaction
between timestamps, sequence number and fresh nonces is identified as topic for
further work in chapter 7.

The use of formal methods is not a bulletproof methodology. In [BCM13] Basin
et.al. formally analyzed the security of the ISO/TEC 9798 protocols for entity
authentication. Using the tool scyther, they identified a number of vulnerabilities
in the standard related to role-mix up. That was however not the first time the
standard has been changed due to new attacks being found [CM10]. As abstractions
are used when modelling protocols, weaknesses are sometimes found in later models
of a given protocol. Another example being Kerberos with its public key version
PKINIT which was formally analyzed in [Tsa08] using Backes-Pfitzmann-Waidner
(BPW) formalism. New vulnerabilities were found even though PKINIT had been
extensively analyzed prior to that experiment. It is therefore difficult to conclude
much about the verified protocols that are not included within the analysis. It also
seems difficult to predict which parts of a protocol, or the environment, can be
abstracted away without affecting the security analysis.

The next section will contain considerations of practical deployment. Specifi-
cally, some elements that are abstracted away from the formal modelling, such as
cryptography, will be devoted some time.

6.2 Discussion of practical deployment

Previously in the thesis, cryptographic primitives have been treated as black-boxes.
The symbolic model of protocol analysis treats cryptographic primitives as having
perfect security. Now the black-boxes are opened, and both security related and
non-security related issues are discussed.

6.2.1 IDPKC in PCN

The study of IDPKC in PCN was interesting for mainly for three reasons. Commonly
acknowledges drawback are less prominent, the lack of certificates, and that key
distribution is simplified.
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First, a commonly argued drawback of IDPKC is that a KGC theoretically is able
to store copies of USKs derived from a MSK. In some application, a compromise of
MSK can result in an attacker being able to decrypt all information transferred pro-
tected with keys derived from this key. However, PCore does not offer confidentiality
services, and hence a potential loss of forward secrecy is minimized. In the case of
identification schemes or digital signature schemes, a KGC will theoretically be able
to impersonate PCN entities. As CCs and E-nodes in PCN are assumed part of a
military hierarchy, their privacy with respect to a centralized authority in their home
PCS can be questioned. Although impersonation of PCN entities can cause issues
for accounting services, it is more of a policy problem rather than security. If a KGC
is physically secured, key escrow might be a tolerable risk. As mentioned in [TDO07],
it is theoretically possible to destroy the KGC after deployment if all nodes are
configured prior to use. Note that the KGC would be needed in the case of renewing
or regenerating private keys [TDOT]. If rekeying is not possible, long lifetimes would
be necessary for all private keys. Regarding arguments of single point-of-failure,
several constructions to distribute the KGC based on threshold cryptography has
been suggested [BFO01].

Second, while certificate-based PKIs are widely deployed and used on the Internet,
such as in Transport Layer Security (TLS) [Die08], the complex certificate handling
has been subject to much discussion [ES00]. One of the most significant disadvantages
of using digital signatures instead of MACs within tickets and authenticators, is
the increased load from certificates. When each signature requires an additional
signature in the form of a certificate, the load on bandwidth resources quickly
increases. However, the advantage of digital signatures over MACs is relevant when
forwarding tickets. When an E-node receives an element from VKDC through the
CC, it should either be included in a ticket issued under a key the CC does not know,
or be authenticated using a digital signature. The approach based on signatures was
chosen because one of the goals of the thesis was to give CCs increased control over
expected service delivery. For that reason, it was necessary for a CC to be able to
verify the authenticity of a VKDC’s proposal. The use of signatures, as opposed to
MACs, enables a separation of protocol a and b from the Kerberos variants since
symmetric keys are not needed for the authenticity of service attributes. Such a
separation is not fully taken advantage of in this thesis, but could prove valuable in
other scenarios.

The third reason is related to key distribution, for both private and public keys.
In certificate-based approaches the private key never leaves the user, and hence is less
exposed. In IDPKC however, private keys must be securely transferred to entities
from KGC, which is considered a possible weak link in terms of security. In the
context of PCN, it is assumed that each PCS would have a KGC which performs
parameter-generation algorithm and key-extraction algorithm before deployment.
When setting up the system, the KGC would verify the authenticity of an entity
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before securely storing the private key in a tamper resistant card. MPKs are also
assumed stored in tamper resistant cards to protect their authenticity. Nevertheless,
if a private key is exposed during use, it would have to be invalidated. As a protocol
for spontaneously updating private keys increases complexity, one could assume a
policy where private keys are changed upon maintenance of PCN-entities at regular
time intervals. For this reason, it is not a good idea to use the attributes directly as
public keys. An extra string should be added to the chosen attributes so that they
can be updated without changing the format of public keys. Additionally, it is often
recommended to include a timestamp as part of the public key so it is invalidated
after a given period.

Regarding distribution of public keys, these are in IDPKC often assumed known
to the verifier in advance. In the protocols from chapter 4, we get one identity for
free, that is the Kerberos principal name. Additionally, a predefined set of service
attributes can be assumed stored in each entity. If one assumes public/private key
pairs shared within a group, authentication may be performed just based on a set
of attributes shared within a group. Alternatively, the Kerberos-principal identity
may be included as part of a global identity for an entity together with attributes
and other auxiliary data in order to create a unique identity. An E-node could then
receive the Kerberos-principal identity for a CC in the standard way through the
service ticket from the local KDC. A CC’s public key would be reconstructed using
the Kerberos-principal identity and a set of attributes provided by the CC. The
advantage being that an E-node could link a CC’s service usage to a specific identity,
and not just to a group of entities sharing attribute keys.

6.2.2 IDPKC Signature schemes in PCN

Several IBS-schemes can be realized using number theoretic primitives. Addition-
ally, the use of pairings on elliptic curves has led to signature schemes with new
functionality. However, these often come at the cost of much higher computational
load. Focus of this section is on efficiency and security considerations of IDPKC.
Two schemes based on number theory are discussed first, before a brief discussion on
pairing-based signatures in general.

Service class through a single identification scheme

In chapter 3 it was identified that one of the most common ways of constructing
identity-based signatures was from identification schemes. Schnorr signature scheme
was patented until 2008, but its attractive properties such as efficiency and flexibility
has quickly made it attractive for resource constrained environments.

One example being [GG09], in which Galindo and Garcia propose a lightweight
IBS schnorr signature scheme. Their construction is based on using two regular
schnorr signatures to achieve an id-based equivalent. One signature is computed by
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KGC using MSK over the user’s identity. This signature is then used as the public
key for the second signature. They achieve a scheme with comparable efficiency to
the best id-based schemes based on integer factoring, discrete logarithm on elliptic
curves, and pairing-based alternatives [GG09]. For use in the protocols proposed
in chapter 4, one could associate a set of attributes A, B, ..., D with a service class
before deployment. The service class would then constitute the CC’s identity, and a
corresponding private key would be securely stored in the CC. Depending on the
situation, a CC could receive one or more private keys associated with several service
classes in advance. The CC’s HKDC could then sign the name of the service class
with M SK before deployment and use this as a public key for that particular service
class. For example, a service class ¢ = A || B]|...|| D, for attributes A, B, ..., D. The
concept of building identities composed of attributes is illustrated in Figure 6.3.

One clear disadvantage of pre-established service classes linked with key pairs is its
limited flexibility. A CC would not be able to negotiate on attributes at the VKDC.
The VKDC could instead function as a certification authority for a CC connecting to
the PCS. After checking the validity of a service statement issued by HKDC, VKDC
could copy these attributes to a new service statement for that PCS. Approaching
an E-node, the CC could prove possession of its identity, i.e. concatenation of all
its attributes. The E-node would then itself determine, based on local policy, if the
proved attributes are a super-set of required attributes for a given service. In such
a scenario, all the CC’s attributes are presented to an E-node, regardless of policy,
which could result in a privacy issue. A CC would also need one private key stored
locally for each of the pre-established service classes it is authorized to use. An
E-node’s ability to dynamically change policy based on local considerations would
be limited as it cannot ask the CC to authenticate with a subset of attributes.

Service
attribute ACD
Service
attribute CD
Service Service Service Service
attribute A attribute B attribute C attribute D

Figure 6.3: A hierarchy of service attributes. Base service attributes are named
A,B,C, and D. Each attribute corresponds to service policy stored in E-nodes.
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Service classes defined through multiple identification schemes

In a second approach, private keys may be issued for each single attribute. Attributes
can then more flexibly be combined to create specific service classes. Different
E-nodes could, depending on the environment they are installed in, achieve more
specific policies on which attributes are necessary for a given service level. In the
simplest case, a CC would then have to prove possession of each private key in parallel
identification schemes as illustrated in Figure 6.4. However, in a more advanced case,
a CC could create a batch consisting of a set of attribute signatures [GLSY04]. In
their generalization of schnorr identification scheme, Gennaro et.al. claim that the
bandwidth and computational load of the resulting batch is just above a standard
schnorr signature [GLSY04]. They argue that this is an efficient construction when
an entity wants to prove possession of several keys at the same time. In [GLSY04] the
scheme is proposed for privacy preserving situations of authentication. Theoretically,
a CC could have some special attributes which are of sensitive nature, and should
only be revealed to certain E-nodes. Contrary to the scheme described above where
all attributes are always sent, this scheme allows the CC to adjust which attributes
are presented to the network for authentication.

Attribute A

Private Key A

Attribute C

Private Key C

Figure 6.4: Identification schemes executed in parallel, one for each attribute cor-
responding private key. A solution batching these together is presented in [GLSY04]

Signatures from pairings

In [GPS08] Galbraith et.al. discuss important considerations when using pairings
in cryptography. They argue that while purely treating pairings as black boxes is
attractive since it abstracts away the complex mathematical background, it can
result in schemes having different properties than first believed. With the increased
performance of computers, longer keys are needed to provide sufficient security using
symmetric key cryptography. As public key cryptography is often used to transport
symmetric keys to simplify key management, the strength of the public key primitives
must increase accordingly.

In traditional Elliptic Curve Cryptography (ECC), security depends on the
difficulty of solving a problem known as Discrete Logarithm Problem (DLP). In
pairing-based cryptography, security depends on the hardness of another mathe-
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matical problem called Bilinear Diffie-Hellman Problem (BDHP). Although BDHP
has been studied extensively in recent years, it is still quite new compared to DLP.
Researchers have found that solving DLP leads to solving BDHP, so the security is no
stronger than of traditional ECC [MPP*15]. Security of pairing-based cryptography
is based on the hardness of finding discrete logarithms in the finite field IF». Often
¢ will be a prime or a power of 2 or 3 [KMO05]. In [KMO05] Koblitz et.al argue that
the bit length of ¢* must be around the same length as a typical RSA modulus for
the same security. This effectively leads to bit lengths of 15360 to match a 256-bit
AES key. In traditional ECC, the needed key lengths are decreased compared to
RSA when higher security level are required. As this is not the case for pairing-based
cryptography, the cost compared to traditional ECC can be significant with high
security standards. Details on the required bit-lengths for different security levels
are treated in [Len01].

The Boneh-Lynn-Shacham (BLS) signature [BLS04] is based on the Weil pairing,
and is considered one of the most efficient uses of pairing-based cryptography due
to the short signature lengths. In [KMO05] Koblitz et.al. point out that while the
signature lengths are shorter in BLS than e.g. Elliptic Curve Digital Signature Algo-
rithm (ECDSA), it needs much longer public keys. Having longer public keys leads
to increased cost when computing signatures as the number of exponentiations grows.
However, short signatures are not the only application of pairings in IDPKC. Several
other constructions such as attribute authentication schemes [YO15], aggregate sig-
natures, and group signature schemes [Pop02] provide interesting functionality. For
that reason, a decision to choose pairing-based schemes should be based on the need
for a specific functionality not offered elsewhere. A study of these special schemes’
potential use in PCN could prove an interesting topic for further work.

The final section of this chapter contains the authors opinion of the proposed
solutions.
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6.2.3 Entity authentication at PCN-2 interface

This section contains the authors opinion. It is outside the scope of the thesis to
discuss the applicability of different QoS-schemes in PCN. However, in order to link
entity authentication to the fields of QoS and transaction authentication, a short
introduction is given. Generally speaking, QoS schemes are divided into schemes
that do the signaling in-line as part of the packet header, and schemes that reserve
resources in advance. An example of the former is Integrated Services (IntServ)
[BCS94] which reserves resources for distinct flows in advance. An example of the
latter is Differentiated Services (DiffServ) [BBC198] which defines per-hop-behavior
of aggregate flow. It uses the Differentiated Services Code Point (DSCP) value in
the traffic flow field in the IP-header to indicate behavior for a given flow. The
interesting idea of authenticating QoS-fields in the IP-header as part of DiffServ was
proposed with symmetric keys in [HWO08] and asymmetric keys in [CLKO05]. These
two schemes were briefly introduced in chapter 2. Correctly handling the separation
of CCs from PCore through PCN-2 has been the focus of this thesis. Assume a
DiffServ approach to QoS enforcement. Assume further that either of the above
mentioned solutions to protection of QoS fields in the IP-header is used. Then clearly
a huge responsibility rests at the E-node at the edge of a PCS as seen in Figure 6.5.
Not being part of the PCore, a CC must trust the E-node to correctly interpret QoS
fields in sent packets, re-authenticate, and forward these into the PCore. This was
the motivation of increased assurance for a CC on service policy from the E-node.

Figure 6.5: Packet level authentication using signatures. Distribution of public
keys are simplified as they are transferred in line with IP-packets [CLKO05].

A TTP token-based approach to authentication was chosen. The drawback is an
increased complexity and bandwidth usage at PCN-2 interface. For this reason, the
proposed solution does not seem advantageous in tactical environments. One the
other hand, the proposed solution does not require the network to pull service policy
from the CC’s home PCS. In that sense, it might be valuable in more stationary
networks, where connectivity can be assured at PCN-2 interface, but may be difficult
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to guarantee across several PCSs. Intermediate scenarios, such as forward operating
bases in more exposed environments may also take advantage of the increased
assurance a CC receives from the E-node on service. A relevant question is if the
VKDC is necessary at all. Why can not a CC approach an E-node in a visiting PCS
with a service token from HKDC? If all E-nodes store public keys of KDCs from
multiple PCSs, key distribution is solved. An E-node would authenticate a CC as
described in chapter 4. Although, it might then be difficult to rapidly change policy
for an entire PCS when situations change. Another argument for a CC approaching
the VKDC before E-nodes is to retrieve auxiliary information about the PCS. When
a CC connects to a visiting PCS, it may not know much about its offered services. It
might therefore be natural to receive such information from a central server before
approaching distributed E-nodes.

It has been argued in the thesis that entity authentication based on attributes,
rather than on unique identities, is a possible solution to overcome the challenges
of authentication in distributed systems. Groups of entities with similar attributes
would then be treated as having the same identity. On one side, it provides clear
drawbacks with respect to compromised, or ill behaving entities. It may also be
difficult to add services for one specific entity after deployment if entities are only
identified by attributes shared with others. One the other hand, applying a set of
services to an entire group of entities is clearly simplified. There are also advantages
of privacy associated with attributes, as it may be more difficult to track specific
entities. In the protocols suggested in chapter 4, some form of global identities are
assumed. Specifically, the Kerberos principal identities could be used for unique
identification of entities when initially authenticating to KDCs. This identity could be
used to either block specific entities, or associate some services with a specific entity,
but not with other entities in its group. Authentication of a CC by E-nodes could
still be performed based on attributes after having obtained a service statement from
a KDC. It is the authors opinion that the balanced weight between unique identities
and more general attributes, and between distributed and centralized authentication
described here, can provide valued flexibility to PCN-2 entity authentication.






Conclusions and Further Work

Section 7.1 summarize, and present results obtained, and tries to answer if the
objectives of the thesis were fulfilled. Topics for further work are listed in section 7.2.

7.1 Conclusions

A pragmatic approach was taken to IDPKC in PCN, by first identifying that a
limitation of existing solutions is static service policies. Between different PCSs,
and between KDCs, E-nodes, and CCs. An architecture where users push service
attributes to the visiting PCS was assumed. Using IDPKC, attributes directly linked
to service levels were proposed as a CC’s identity. No external mechanism binding
an identity and a policy is then needed by the E-node. A CC proves possession
of private keys corresponding to one or more service attributes by participating in
an identification scheme with the E-node. For interoperability, the attribute-based
scheme was proposed carried within four-pass PKINIT and symmetric key Kerberos.
The parallel composition of the two protocols was analyzed in the symbolic model
using scyther-proof with the DY adversary model. A CC, E-node, and VKDC were
able to agree on PCS service policy. Furthermore, a CC received assurance from
VKDC and E-node, that its requests for service was interpreted correctly. Due to
the fact that military networks often can assume pre-distribution of keying material,
and more closed user groups, the commonly known drawbacks of IDPKC are less
prominent in PCN than in traditional commercial applications.

PCN was introduced as a way of enabling secure and flexible communications in
coalition operations. Specifying interfaces for interconnection of PCSs, flexibility is
achieved for CCs to move geographically, and reconnect to PCore elsewhere. The
advantage provided by PCN is how PCore can provide high availability service delivery
to connected user networks. The thesis has shown that entity authentication based
on attributes using identity-based signatures can lead to simplified authentication
and increased assurance of service. In effect, easy interconnection of entities with
little pre-existing relationship is simplified, enabling the flexibility required by PCN.

59
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7.2 Further Work

Two topics for further work are identified. One improving the trustworthiness of the
results obtained here, and one extending upon the work done in this thesis.

Theorem proving: The Tamarin theorem prover [MSCB13] builds on the
scyther-proof tool, and generalizes the underlying theory. It includes support for
equational theories and expressive property specification language. Tamarin supports
modelling of time, and it could be interesting to study situations where the authen-
tication of service policy and the Kerberos protocol are based on timestamps with
different length of validity. Furthermore, its support for dynamically compromising
adversaries could enable more realistic modelling of exposed environments. Addi-
tionally, Tamarin currently has experimental support for pairing-based primitives
and further studies with attribute authentication schemes could necessitate formal
verification of these protocols.

Data-origin authentication based on asymmetric keys: This suggestion
builds on PLA from [CLKO05]. One idea could be to use the flow label field of IPv6
as public key in IDPKC. Instead of coupling the authenticity of an IP-packet with
a specific entity, it is coupled with a key corresponding to a traffic class. Source
authentication is achieved, as only an entity with the correct key would be able to
send data signed with a given traffic class key. An E-node on the edge of a PCS could
sign the IP-header with the correct private key for that service class. Intermediate
E-nodes verify that the signature corresponds to the service class and forwards the
packet along.
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Internet Protocols

This appendix contains background information on the IPv6 standard. The flow
label specification by IETF is [RAJC11]. The IPv6 specification itself is defined in
[Dee9s].

A.1 Internet Protocol Security

Internet Protocol Security (IPSec) provides security services for traffic at the IP-layer
[KS05]. Some of the services IPSec provides are access control, authentication, replay
protection and integrity checks. Figure A.1 illustrates an IPv6 header. IPsec can
enforce access control based on so called selector values in the IP-header. That is,
determine if a given IP-packet can enter the network based on the value of certain
fields. In order to do that properly, these fields must be linked with an identity
so an authorization decision can be made. Integrity checks are necessary for the
gateway to ensure that the packet was not modified after leaving the authorized
sender. The Next Header Type in Figure A.1 can be used to indicate further headers,
so called extension headers, which allow more intricate options for packet processing.
One of these extension headers is Authentication Header (AH). An AH-header is
appended to the packet if it is authenticated with IPSec AH. The extension header
carries information regarding how this packet should be handled by the endpoint, or
intermediate nodes.

A.1.1 Authentication Header

IP Authentication Header is described in [Ken05]. The Authentication Header (AH)
is an extension header to the IPv6 header to provide message authentication to an
IP packet. Optionally, it can provide protection against replays. AH supports two
modes of use, transport- and tunnel mode [Sta95]. Transport Mode authenticates
IP payload and some of the IP header fields. Tunnel Mode authenticates the entire
original TP packet and some of the outer IP-header fields. The rest of this section
will be concerning the use of tunnel mode.
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Version Traffic Class Flow Label

Payload Length (16 bits) Next Header Type Hop Limit

Source Address (128 bits)

Destination Address (128 bits)

Figure A.1: Figure showing the fields of IPv6 header [Dee98].

IPv6 defines six extension headers, one of which is authentication header (AH).
The AH provides integrity and data-origin authentication for the entire IPv6 packet.
Table A.1 shows how the extension headers, and specifically the AH, are added to
the original IPv6 packet in tunnel mode.

New IP Ext AH Orig IP Ext TCP Data
HDR. HDRX* HDR. HDRX*

Table A.1: A figure illustrating the structure of an IPv6 packet in Authentication
Header tunnel mode [Ken05].

Figure A.2 illustrates the structure of Authentication Header. The security
Parameters Index (SPI) is a number used to identify the security association. The
sequence number field is a counter which starts at zero, and is incremented by one
for each message exchanged in that security association. The goal of the sequence
number is to prevent replay of old packets. Maybe the most interesting field is
the authentication data field. It contains the Integrity Check Value (ICV) used to
provide authentication and integrity to data. Given that the receiver possesses the
secret key, it can compute a HMAC value over the received data in the same way as
the sender and compare the output to the HMAC value received. Any changes of
protected fields during transmission will lead to the receiver computing a different
output value than the sender and the changes will be detected.
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0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Next Header | Payload Length | RESERVED
Security Parameter Index (SPI)

Sequence Number Field

Authentication Data (variable)

Figure A.2: A figure showing the structure of the Authentication Header as specified
in [Ken05]

A.1.2 Establishment of Security Associations

Two methods of setting up security associations are discussed in this thesis. Internet
Key Exchange and Kerberized Internet Negotiation of Keys (KINK). IKE is built on
authenticated Diffie-Hellman key exchange, and KINK is built on Kerberos.

Internet Key Exchange

The sigma protocol family was proposed in [Kra03]. Sigma served as the cryptographic
basis for signature based modes in IKEv1 [HCT98], and a slightly modified version
is used in IKEv2 [KHNE14]. Sigma, and therefore the IKE protocols, are based
on a challenge-response mechanisms based on nonces for replay protection. Thus,
IKE has a minimum of three messages passes. The IKEv2 protocol as shown in
Figure A.3 consists of two message exchanges: IKE-SA-INIT and IKE-AUTH. The
first exchange, IKE-SA-INIT set up a security association for the IKE protocol
itself through agreement on cryptographic mechanisms and the exchange of material
needed to create a shared key. In the second exchange, which is authenticated,
information for the IPsec association is agreed upon.

CC E

HDR, SAil, N;, g*

HDR,SAr1,N,,g"
HDRJ{ID;,signa(N;, g, N,., Hi , (Cert;)), SAi2, T'Si, TSr} i,
HDR, {ID,,sign,.(N,,g",N;, Hg,(Cert,)), SAr2, TSi, TSr} i,

Figure A.3: IKEv2 as standardized in [KHNE14]. Certificates are here used as an
entity’s identity.

Another way of setting up a security association is through Kerberized Internet
Negotiation of Keys (KINK).
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KINK

The use of Kerberos [NHYRO05] for setting up a security association for IPSec is
described in IETF standard Request For Comments (RFC) 4430 KINK[ST06]. KINK
reuses payloads from the Quick Mode of IKE version 1 [HC'98] in order to take
advantage of existing implementations [ST06].

CC E

CREATE+ISAKMP+KINK-AP-REQ
REPLY+ISAKMP-KINK-AP-REP

Figure A.4: KINK as described in [ST06]. Through KINK, an IPSec SA can be
set up in just two message passes. Kerberos is embedded in KINK as payload.

A.2 Diameter

The diameter base protocol provides an AAA framework for services such as network
access and QoS [FALZ12]. Information is transported within Attribute-Value Pairs
(AVPs). Some AVPs are associated with the base protocol itself, while others are
for specific services. The AVPs are transported within diameter messages between
diameter clients and servers. In contrast to the Remote Authentication Dial-In User
Service (RADIUS) protocol [WRRS00], any diameter-peer can initiate a request
which makes its architecture mimic peer-to-peer networks. A diameter peer can
act as client in one exchange, and server in another [FALZ12]. Typically, a client
will be an entity at the boarder of the network performing access control. Figure
A5 illustrates this setup. The diameter client acts in many ways on behalf of the
client, and can generate diameter authentication and authorization request messages.
These requests are sent to a diameter server which provides these services. The
diameter protocol specifies the encapsulation of EAP in AVPs, which in turn specify
the encapsulation of entity authentication protocols.

Router/

Diameter client Diameter Server

Client

Figure A.5: In diameter the router acts as a diameter client, and forwards authen-
tication traffic to a diameter server.
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A.3 Authorization within Kerberos

The information within this section is from RFC 7751 [SY16] and RFC 4120
[NHYRO05]. Kerberos Authorization Data Container supersedes the previously used
kdc-issued data element. It enables MACs or signatures to authenticate an autho-
rization data container. The new authorization data container is called Container
Authenticated by Multiple MACs (CAMMAC). The purpose of both kdc-issued and
CAMMAC, is for the KDC to signal permissive usage of a ticket to the AS. This
field is separately authenticated by the KDC so the application server has assurance
that the decision to include these elements was made by the KDC. With the previous
kdc-issued element, the field was authenticated by a key known by the KDC and
the application server. The fact that the AS knows the key can cause a problem
if an AS is using the ticket to ask the KDC for delegated authority. An AS would
then be able to change values in the kdc-issued, and request delegated authority
with increased permissions on behalf of the client. Using CAMMAC, a KDC could
authenticate this field with a key known only by itself before issuing the ticket. It
would then detect if an AS has changed the field later on.

AD-CAMMAC ::=SEQUENCE {
elements [0] AuthorizationData ,
kdc—verifier [1] Verifier -MAC OPTIONAL
svc—verifier [2] Verifier -MAC OPTIONAL
[3] SEQUENCE (SIZE (1..MAX))
OF Verifier OPTIONAL

other—verifiers

}

Verifier ::= CHOICE {
mac Verifier -MAC,

}
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A.4 PKDA

A Figure showing the PKDA protocol as described in [SC97]. In an attempt to
distribute workload away from a central server, clients are in PKDA authenticating
directly to Local Ticket Granting Servers (LTGSs) located with application servers.

C _E
E
. Certg
E {Tstart; Krand, C, Certo, {Krand, £, P, Tauth } privC } pubE N
{Ea {Kc,ea C, Tauth}Ke}7 {C, E, Kc,e; Tauth}Krand
{Ev {Kc,ea Cv Tauth}Ke}a {Ca Tel}Kc,e

Figure A.6: PKDA as described in [SC97]. If instantiated with IDPKC, the first
two messages are eliminated. The result is a three-pass protocol with timestamps.



Isabelle

The output from scyhter-proof can be further input to the Isabelle tool for independent
theorem proving. To use Isabelle after installing scyther-proof as described in chapter
5, a few more supplementary tools must be present on the system. According to the
Isabelle website http://isabelle.in.tum.de/installation.html some version of Perl 5.x
with libwww is required (1,2,3). Then, download Isabelle from the website mentioned
above, and unpack using (4):

(1) $ sudo apt—get install perlbrew
perlbrew init

perlbrew install perl —-5-20.1

tar —xzf Isabelle2016__app.tar.gz$

& L &PH

(2)
(3)
(4)

According the Meier’s notes on the GitHub page®, the logic image of Isabelle/HOL
theories will be built the first time scyther-proof is called using the isabelle -flag.

Thttps://github.com/meiersi/scyther-proof

(0]


http://isabelle.in.tum.de/installation.html




Code

This chapter contains code modelling the security protocols of chapter 4 and the
security goals of chapter 5. It additionally contains the proof code output by scyther-
proof after running the code against an attacker with Dolev-Yao capabilities.

C.1 Protocol A

C.1.1 Protocol model and goals

theory Kerberos_V5_4pass
begin

section {* 4—pass Kerberos Protocol, Version 5 =x}

protocol KerberosFour

{

1_leak. C—> : L1

1. C—>A : C,S,N1,L1, {’1’,Author2, Authorl, C, L1}sk(C)

2 leak. A —> : Tlstart, Tlexpire

2. <— A: C, {’2_1’, C, S, ServerKey, Tlstart, Tlexpire}k(A,S),

{’2_2", S, ServerKey, Tlstart, Tlexpire, NI,

{’2_2 1’ ,Author3, A, C, Tlstart, Tlexpire}sk(A)}k(C,A)

C < C, ServerTicket ,

{’2_2", S, ServerKey, Tlstart, Tlexpire, NI,

{’2_2 1’ ,Author3, A, C, Tlstart, Tlexpire}sk(A)}k(C,A)

3_leak. C —> : T1

3. C—> : A, ServerTicket,

{’3’, C, T1, {’3_1’, Author4,

{’2_2 1’, Author3, A, C, Tlstart, Tlexpire}sk(A), C, Tl1}sk(C)}ServerKey
—> S: A, {’2_1’, C, S, ServerKey, Tlstart, Tlexpire}k(A,S),

{’3’, C, T1i, {’3_1’, Author4,

{’2_2 1’, Author3, A, C, Tlstart, Tlexpire}sk(A), C, T1}sk(C)}ServerKey

4 _leak. S —> : T2
4. S —> C : {’4°, T2, {’4_1’,Author5, S,C, T2}sk(S)}ServerKey

subsection{* Secrecy Properties =x}

properties (of KerberosFour)
A_SessionKey_secret: secret (A,—, SessionKey ,{C,
C__SessionKey_secret: secret (C,2, SessionKey ,{C,

A})
A})

7
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A_
C_

ServerKey_ secret: secret (A, —,
ServerKey_secret: secret (C, 2,

ServerKey ,
ServerKey ,

subsection{* Authentication Properties =x}

property (of KerberosFour) A_auth:

pre

"
"

"

mises

role (2) = A"
uncompromised (C#2, A#2, S#2)"
step (2, A_2)"

imply a thread 1 such that

role (1) = C &

C#2 = C#1 &

Authorl#2 = Authorl#l &
Author2#2 = Author2#1 &
L1#2 = L1#1 &

St(2, A_1) < St(2, A_2)

property (of KerberosFour) S_auth:

pre

mises

role(3) = S"
uncompromised (C#3, A#3, S#3)"
step (3, S_4)"

imply threads 1, 2 such that

role (2) = A &

C#3 = C#2 &

A#3 = A#2 &

S#3 = S#2 &

Tlstart#3 = Tlstart#2 &

Tlexpire#3 = Tlexpire#2 &
ServerKey#3 = ServerKey#2 &
Author3#3 = Author3#2 &

role (1) =C &

C#3 = C#l1 &

A#3 = A#1 &

S#3 = S#1 &

T1#3 = TI#1 &

Tlstart#3 = Tlstart#1 &
Tlexpire#3 = Tlexpire#l &
ServerKey#3 = ServerKey#1 &
Author3#3 = Author3#1 &
Authord#3 = Authord#1 &

St(2,A_2) < St(1,C_2) <
St(1,C_3) < St(3,S_3)

property (of KerberosFour) C_auth:
premises

role (1) = C"
uncompromised (C#1, A#1, S#1)"
step (1, C_4)"

imply threads 2,3 such that

"

role(2) = A &

A#l = A#2 &

C#l = C#2 &

Tlstart#1 = Tlstart#2 &
Tlexpire#l = Tlexpire#2 &
Author3#1 = Author3#2 &

role(3) =S &
C#1l = C#3 &
S#1 = S#3 &
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ServerKey#1 = ServerKey#3 &
Tlstart#1 = Tlstart#3 &
Tlexpire#l = Tlexpire#3 &
T2#1 = T2#3 &

Author5#1 = Author5#3 &

St(1, C_1) < St(2, A_1) <
St(2, A_2) < St(1, C_2) <
St(1, C_3) < St(3, S_3) <
St(3, S_4) < St(1, C_4)

end

C.1.2 Proof script A

theory Kerberos_ V5 4pass begin
section {* 4—pass Kerberos Protocol, Version 5 x}

protocol KerberosFour
{ role A
{ Recv_1(7C, 7S, ?N1, ?L1, {’1’, ?Author2, ?Authorl, 7C, ?L1}sk(?C))
Send__2_leak (~T1lstart, ~Tlexpire)
Send_2(7C, {’2_1’, ?C, 7S, ~ServerKey, ~Tlstart, ~Tlexpire}k(A,?S),
{’2_2", 7S, ~ServerKey, ~Tlstart, ~Tlexpire, ?NI1,
{’2_2 1, ~Author3, A, ?C, ~Tlstart, ~Tlexpire}sk(A)}
k(7C,A)
)
}

role C
{ Send_1_leak( ~L1 )
Send_1(C, S, ~N1, ~L1, {’1’, ~Author2, ~Authorl, C, ~L1}sk(C))
Recv_2(C, 7?ServerTicket ,
{’2_2", S, ?ServerKey, ?Tlstart, ?Tlexpire, ~N1,
{’2.2 1, ?Author3, ?A, C, ?Tlstart, ?Tlexpire}sk(?A)}
k(C,7A)

)
Send_3_leak( ~T1 )
Send_3(?7A, ?ServerTicket ,
('3, C, ~T1,

{’3_1", ~Author4, {’2_2_1’, ?Author3, ?A, C, ?Tlstart, ?Tlexpire}sk(?A),
c, ~T1}
sk (C)
}
?ServerKey
)
Recv_4( {4, ?T2, {’4_1°, ?Author5, S, C, ?T2}sk(S)}?ServerKey )
}
role S

{ Recv_3(?7A, {’2_1’, 7C, S, ?ServerKey, ?Tlstart, ?Tlexpire}k(?7A,S),
{’37, 7C, ?T1,
{’3_1’, ?Author4,
{’2_2 1°, ?Author3, 7A, ?C, ?Tlstart, ?Tlexpire}sk(?A), 7C, ?T1}
sk (?7C)

?ServerKey

)
Send_4_leak( ~T2 )

Send_4( {’4°, ~T2, {’4_1’, ~Author5, S, ?C, ~T2}sk(S)}?ServerKey )
}
}
property (of KerberosFour) KerberosFour_msc_typing:
"A@QC :: (Known(C_2) | Agent)
A@S :: Known(S_3)

Authorl@A :: (Known(A_1)

Author1@QC)
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Author2@A :: (Known(A_1) | Author2@C)
Author3@C :: (Known(C_2) | Author3@A)
Author3@S :: (Known(S_3) | Author3@A)
Author4@S :: (Known(S_3) | Author4@C)
Author5@QC :: (Known(C_4) | Author5@S)
CQA :: Known(A_1)
cas :: (Known(S_3) | Agent)
L1@A :: Known(A 1)
N1@QA :: Known(A_1)
S@QA :: Known(A_1)
ServerKey@QC :: (Known(C_2) | ServerKey@A)
ServerKey@S :: (Known(S_3) | ServerKey@QA)
ServerTicket@C :: Known(C_2)
T1@QS :: (Known(S_3) | TiQC)
TlexpireQC :: (Known(C_2) | Tlexpire@QA)
Tlexpire@S :: (Known(S_3) | Tlexpire@QA)
Tlstart@C :: (Known(C_2) | Tlstart@A)
Tlstart@S :: (Known(S_3) | Tlstart@QA)
T2@C :: (Known(C_4) | T2@S)"

proof

case A_1_Authorl
sources ( {’1’, 7Author2#0, ?Authorl#0, ?C#0, ?L1#0}sk (?C#0) )
qed (2 trivial)
next
case A_1_Author2
sources ( {’1’, 7Author2#0, ?Authorl#0, ?C#0, 7L1#0}sk (?C#0) )
qed (2 trivial)
next
case A_1 C
tautology
next
case A_1_L1
tautology
next
case A_1_N1
tautology
next
case A_1_S
tautology
next
case C_2 A
sources (
{’2_2>, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1’, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k (C#0,7A#0) )
case fake
sources (
{’2_2 1°, ?7Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (7A#0) )
case (C_3_enc_2 #1)
sources (
{’2_2", S#1, ?ServerKey#1, ?Tlstart#0, ?Tlexpire#0, ~NI1#1,
{’2_2 1’, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?7A#0)}
K (C#0,7A%#0) )
qed (2 trivial)
ged (2 trivial)
qed (1 trivial)
next
case C_2__Author3
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1°, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
K (C#0,7A%0) )
case fake
sources (
{’2_2 1°, ?7Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (7A#0) )
case (C_3_enc_2 #1)
sources (
{’2_2>, S#1, ?ServerKey#1, ?Tlstart#0, ?Tlexpire#0, ~N1#1,
{’2_2 1°, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k (C#0,7A#0) )
ged (2 trivial)
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qed (2 trivial)
ged (1 trivial)
next
case C_2_ ServerKey
sources (
{’2_2, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1’, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
K (C#0,7A%0) )
ged (2 trivial)
next
case C_2 ServerTicket
tautology
next
case C_2_ Tlexpire
sources (
{’2_2>, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1’, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k (C#0,7A#0) )
ged (2 trivial)
next
case C_2_ Tlstart
sources (
{’2_2>, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1, ?Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k (C#0,7A#0) )
qed (2 trivial)
next
case C_4_ Authorb
sources (
{’4°, ?T2#0, {’4_1’, ?Author5#0, S#0, C#0, ?T2#0}sk (S#0)}?ServerKey#0 )
case fake
sources ( {’4_1’, ?Author5#0, S#0, C#0, ?T2#0}sk (S#0) )
ged (2 trivial)
ged (1 trivial)
next
case C_4 T2
sources (
{4, ?7T2#0, {’4_1°, ?Author5#0, S#0, C#0, ?T2#0}sk (S#0)}?ServerKey#0 )
ged (2 trivial)
next
case S_3_A
tautology
next
case S_3__ Author3
sources (
{37, ?C#0, ?T1#0,
{’3_1", 7Author4#0,
{’2_2 1°, ?7Author3#0, 7A#0, 7C#0, ?Tlstart#0, ?Tlexpire#0}sk (?7A#0),
2040, 7T1#0}
sk (7C#0)

?ServerKey#0 )
case fake
sources (
{’3_1’, 7Author4#0,
{’2_2 1’, ?Author3#0, ?A#0, 7C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0),
70#0, 7T1#0}
sk (7C#0) )
case fake
sources (
{’2_2 1°, ?Author3#0, ?A#0, ?C#0, ?Tlstart#0, ?Tlexpire#0}sk (7A#0) )
case (C_3_enc_2 #1)
sources (
{’2_2", S#1, ?ServerKey#1, ?T1lstart#0, ?Tlexpire#0, ~N1#1,
{’2_2 1°, ?7Author3#0, 7A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (7A#0)}
k(C#1,7A#0) )
ged (2 trivial)
ged (2 trivial)
next
case (C_3_enc_1 #1)
sources (
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{’2_2", S#1, ?ServerKey#1, ?Tlstart#0, ?Tlexpire#0, ~N1#1,
{’2_2 1’, ?Author3#0, 7A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k(C#1,7A#0) )
case fake
sources (
{’2_2 1’, ?7Author3#0, ?A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (7A#0) )
case (C_3_enc_2 #2)
sources (
{’2_2>, S#2, ?ServerKey#2, ?Tlstart#0, ?Tlexpire#0, ~N1#2,
{’2_2 1°, ?Author3#0, 7A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k(C#1,7A40) )
ged (2 trivial)
ged (2 trivial)
ged (1 trivial)
qed
next
case (C_3_enc #1)
sources (
{’2_2", S#1, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0, ~N1#1,
{’2_2 1°, ?7Author3#0, 7A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (7A#0)}
k (C#1,7A#0) )
case fake
sources (
{’2_2 1, ?Author3#0, 7A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (?A#0) )
case (C_3_enc_2 #2)
sources (
{’2_2, S#2, ?ServerKey#2, ?Tlstart#0, ?Tlexpire#0, ~N1#2,
{’2_2 1’, ?Author3#0, ?A#0, C#1, ?Tlstart#0, ?Tlexpire#0}sk (7A#0)}
Kk (C#1,7A#0) )
ged (2 trivial)
ged (2 trivial)
ged (1 trivial)
qged
next
case S_3__Author4
sources (
{’37, ?C#0, ?T1#0,
{’3_1>, ?Authord#o,
{’2_2 1°, ?7Author3#0, 7A#0, ?C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0),
7040, 7T1#0}
sk (?7C#0)

?ServerKey#0 )
case fake
sources (
{’3_1", ?Author4#0,
{’2_2 1’, ?7Author3#0, ?A#0, 7C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0),
7C#0, ?T1#0}
sk (7C#0) )
ged (2 trivial)
qed (1 trivial)
next
case S_3_C
sources (
{’2_1", 7C#0, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0}k(?A#0,S#0) )
qed (2 trivial)
next
case S_3_ ServerKey
sources (
{’2_1", ?7C#0, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0}tk(?A#0,S#0) )
ged (2 trivial)
next
case S_3_T1
sources (
{’3°, ?C#0, ?T1#0,
{’3_1°, ?Authord#o,
{’2_2 1°, ?7Author3#0, 7A#0, ?C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0),
7040, 7T1#0}
sk (?7C#0)
}

?ServerKey#0 )
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qed (2 trivial)
next
case S_3_Tlexpire
sources (
{’2_1>, ?C#0, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0}k(?A#0,S#0) )
ged (2 trivial)
next
case S_3_Tlstart
sources (
{’2_1>, ?C#0, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0}k(?A#0,S#0) )
ged (2 trivial)
qed

subsection{* Secrecy Properties =}

property (of KerberosFour) A_ SessionKey_secret:
for all #0 the premises
"role( #0 ) = A"
"uncompromised ( A#0, ?C#0 )"
"knows (~SessionKey #0)"
imply "False"
resolve ’KerberosFour_msc_typing
sources ( ~SessionKey#0 )
qed

property (of KerberosFour) C_ SessionKey_ secret:
for all #0 the premises
"role( #0 ) = C"
"uncompromised ( C#0, 7A#0 )"
"step (#0, C_2)"
"knows (~SessionKey #0)"
imply "False"
saturate
resolve ’KerberosFour__msc_typing
sources ( ~SessionKey#0 )
qed

property (of KerberosFour) A_ServerKey_ secret:
for all #0 the premises
"role( #0 ) = A"
"uncompromised ( A#0, ?7C#0, ?S#0 )"
"knows (~ServerKey #0)"
imply "False"
resolve ’KerberosFour_msc_typing
sources ( ~ServerKey#0 )
case A_2 ServerKey
contradicts secrecy of k(A#0,?7S#0)
next
case A_2 ServerKey 1
contradicts secrecy of k(?C#0,A#0)
qed

property (of KerberosFour) C_ ServerKey secret:
for all #0 the premises
"role( #0 ) = C"
"uncompromised ( C#0, S#0, 7A#0 )"
"step (#0, C_2)"
"knows (? ServerKey #0)"
imply "False"
saturate
resolve ’KerberosFour__msc_typing
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1’, ?7Author3#0, 7A#0, C#0, ?Tlstart#0, ?Tlexpire#0}sk (?A#0)}
k (C#0,7A40) )
case fake
contradicts secrecy of k(C#0,7A#0)
next
case (A_2 enc_1 #1)
contradictory due to ’A_ServerKey_ secret’
qed
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subsection{* Authentication Properties =x}

property (of KerberosFour) A_auth:
for all #2 the premises
"role( #2 ) = A"
"uncompromised ( A#2, 7C#2, ?7S#2 )"
"step (#2, A_2)"

imply
(7 #1.
role( #1 ) =C &
7C#2 = C#1 &
?7Authorl#2 = ~Authorl#l1 &

?Author2#2 = ~Author2#1 & ?7L1#2 = ~L1#1 & St(#2, A_1) < St(#2, A_2))"

saturate
resolve ’KerberosFour_msc_typing
sources ( {’1’, 7Author2#2, ?Authorl#2, ?C#2, ?L1#2}sk (?7C#2) )

case fake

contradicts secrecy of sk (?C#2)
next

case (C_1_enc #3)

tautology
qed

property (of KerberosFour) S_auth:
for all #3 the premises
"role( #3 ) = S"
"uncompromised ( S#3, TA#3, 7C#3 )"
"step (#3, S_4)"
imply
(7 #1.
(7 #2.
role( #2 ) = A
role( #1 ) = C
TCH#3 = TCH#2 &
TAH#3 = A#2 &
S#3 = 7S#2 &

&
&

?Tlstart#3 = ~Tlstart#2 &
?Tlexpire#3 = ~Tlexpire#2 &
?ServerKey#3 = ~ServerKey#2 &
?Author3#3 = ~Author3#2 &

TCH#3 = C#1 &
TA#3 = TA#1 &
S#3 = S#1 &
TTI#3 = ~T1#1 &
?T1lstart#3 = ?Tlstart#1 &
?Tlexpire#3 = ?Tlexpire#l &
?ServerKey#3 = 7ServerKey#1 &
?Author3#3 = ?Author3#1 &
?7Authord#3 = ~Authord#1 &
St(#2, A_2) < St(#1, C_2) &
St(#1, C_2) < St(#1, C_3) & St(#1, C_3) < St(#3, S_3)))"
saturate
resolve ’KerberosFour_msc_typing
sources (
{’2_ 1, ?7C#3, S#3, ?ServerKey#3, ?Tlstart#3, ?Tlexpire#3}k(?A#3,S#3) )
case fake
contradicts secrecy of k(7A#3,S#3)
next
case (A_2 enc #4)
sources (
{’37, 7C#3, ?T1#3,
{’3_1’, 7Author4#3,
{’2_2 1°, ?Author3#3, A#4, 7C#3, ~Tlstart#4, ~Tlexpire#4}sk (A#4), 7C#3,
?T14#3}
sk (?7C#3)

~ServerKey#4 )
case fake
contradictory due to ’A_ServerKey_ secret’
next
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case (C_3_enc #5)
sources (
{’2_2", S#5, ~ServerKey#4, ~Tlstart#4, ~Tlexpire#4, ~N1#5,
{’2_2 1°, ?Author3#3, A#4, C#5, ~Tlstart#4, ~Tlexpire#4}sk (A#4)}
K (C#5,A%#4) )
case fake
contradicts secrecy of k(C#5,A#4)
next
case (A_2 enc_1 #6)
tautology
qed
qed
qed

property (of KerberosFour) C_auth:
for all #1 the premises

"role( #1 ) = C"

"uncompromised ( C#1, S#1, 7A#1 )"

"step (#1, C_4)"

imply
(7 #2.
(7 #3.

role( #2 ) = A
role ( #3 ) S
2AH#1 = A#2
C#l = 7C#2
?T1lstart#1 ~Tlstart#2 &
?Tlexpire#l = ~Tlexpire#2 &
?Author3#1 = ~Author3#2 &
C#l = 7C#3 &
S#1 = S#3 &
?ServerKey#1 = ?ServerKey#3 &
?Tlstart#1 = ?T1lstart#3 &
?Tlexpire#l = ?Tlexpire#3 &

&
&

&l

7T24] = ~T2#3 &

?Author5#1 = ~Author5#3 &

St(#1, C_1) < St(#2, A_1) &

St(#2, A_1) < St(#2, A_2) &

St(#2, A_2) < St(#1, C_2) &

St(#1, C_2) < St(#1, C_3) &

St(#1, C_3) < St(#3, S_3) &

St(#3, S_3) < St(#3, S_4) & St(#3, S_4) < St(#1, C_4)))"

saturate
resolve ’KerberosFour_msc_typing
sources (
{’2_2", S#1, ?ServerKey#1, ?Tlstart#1, ?Tlexpire#1, ~NI1#1,
{’2_2 1°, ?7Author3#1, 7A#1, C#1, ?Tlstart#1, ?Tlexpire#l}sk (7A#1)}
k(C#1,7A#1) )
case fake
contradicts secrecy of k(C#1,7A#1)
next
case (A_2 enc_1 #2)
sources ( ~N1#1 )
case C_1 N1
sources (
{47, ?T2#1, {’4_1’, ?Author5#1, S#1, C#1, ?T2#1}sk(S#1)}~ServerKey#2 )
case fake
contradictory due to ’'A_ServerKey_secret’
next
case (S_4_ enc #3)
sources (
{37, C#1, ?T1#3,
{’3_1", 7Author4#3,
{’2_2 1°, ?7Author3#3, 7A#3, C#1, ?Tlstart#3, ?Tlexpire#3}sk (7A#3), C#1,
?T14#3}
sk (C#1)
}
~ServerKey#2 )
case fake
contradictory due to ’A_ServerKey_ secret’
next
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case (C_3_enc #4)
sources (
{’2_2", S#4, ~ServerKey#2, ?Tlstart#3, ?Tlexpire#3, ~N1#4,
{’2_2 1°, ?7Author3#3, 7A#3, C#1, ?Tlstart#3, ?Tlexpire#3}sk (7A#3)}
k(C#1,7A#3) )
case fake
contradictory due to ’'A_ServerKey_secret’
next
case (A_2_ enc_1 #35)
tautology
qed
qed
qed
qed
qed

end

C.2 Protocol B

Protocol model and security goals of the scenario where a CC authenticates using
PKINIT Kerberos to a KDC is provided here. The corresponding proof code is in
section C.2.2.

C.2.1 Protocol B model and goals

theory PKINITKerberosNSL
begin

protocol PKINITKerberosNSL

1. ¢C—> : C,S, N1,L1,{’1_1",C,A, NC, Authorl, Author2, L1}sk(C),
{’1_2’,L1,N1, h(C,S, NI,L1,
{’1_1’,C,A, NC, Authorl, Author2, L1}sk(C))}sk(C)
-> A: C,S, N1,L1,{’1_1’,C,A, NC, Authorl, Author2,L1}sk(C),
{’1_2>,L1,N1, h(C,S, NI,L1,
{’1_1’,C,A, NC, Authorl, Author2, L1}sk(C))}sk(C)
2. <— A: C, {’2_1’, C, S, ServerKey, Tlstart, Tlexpire}k(A,S),
{’2_2", S, ServerKey, Tlstart, Tlexpire, NI,
{’2_2 1, A,C, NC, Author3, Tlstart, Tlexpire}sk(A)} SessionKey,
{’2_3",{SessionKey, h(SessionKey, (C,S, N1,L1,
{’1_1’,C,A, NC, Authorl, Author2, L1}sk(C),
{’1_2’, L1,N1, h(C,S, N1,L1,
{’1_1",C,A, NC, Authorl, Author2,L1}sk(C))}sk(C)))}sk(A)}pk(C)
C <— : C, ServerTicket ,
{’2_2", S, ServerKey, Tlstart, Tlexpire, NI,
{’2_2 1>, A, C, NC, Author3, Tlstart, Tlexpire}sk(A)} SessionKey,
{’2_3",{SessionKey , h(SessionKey, (C,S, N1,L1,
{’1_1’,C,A, NC, Authorl, Author2, L1}sk(C),
{"1_2’, L1,N1, h(C,S, N1,L1,
{’1_1’,C,A,NC, Authorl, Author2, L1}sk(C))}sk(C)))}sk(A)}pk(C)
3. C—> : A, ServerTicket,

{’3’, ¢, T1,{’3_1’,C,S,NC2,AuthorX, Author4 ,T1}sk (C)} ServerKey
—> S: A, {’2_1’, C, S, ServerKey, Tlstart, Tlexpire}k(A,S),
{’3’, C, T1,{’3_1’,C,S,NC2,AuthorX, Author4 ,T1}sk (C)} ServerKey
4. S —> = {’4>, T2,{’4_1",S,C,NC2, Author5,T2}sk(S)}ServerKey
—> C: {’4’, T2,{’4_1",S,C,NC2, Author5,T2}sk(S)}ServerKey
}

properties (of PKINITKerberosNSL)
A__SessionKey_secret: secret (A,—, SessionKey ,{C,A})
C__SessionKey_secret: secret (C,2, SessionKey ,{C,A})



A__ServerKey_secret:
C_ServerKey__secret:

property (of PKINITKerberosNSL)

premises
"role (1) = C"
"step (1, C_2)"
"uncompromised (C#1, A#1, S#1)"

imply a thread 2 such that
" role(2) = A
& A#1 = A#2
& C#1 = C#2
& NC#1 = NC#2
& Authorl#1 = Authorl#2
& Author2#1 = Author2#2
& Author3#1 = Author3#2
& L1#1 = L1#2
& Tlstart#1 = Tlstart#2
& Tlexpire#l = Tlexpire#2
& St(1, C_1) < St(2, A_1)
& St(2, A_2) < St(1, C_2)
& St(1, C_1) < St(1, C_2)
& St (2, A_1) < St(2, A_2)

property (of

premises

"role (1)

—C"

"step (1,C_4)"

secret (A,
secret (C,
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—, ServerKey,
2, ServerKey, {C,A,

C_noninjective_synch:

PKINITKerberosNSL) C2_noninjective_ synch:

"uncompromised (C#1, A#1, S#1)"
imply a thread 3 such that

" role(3) =8

& S#1 = S#3

& C#1 = C#3

& NC2#1 = NC2#3

& T1#1 = TI#3

& T2#1 = T2#3

& AuthorX#1 = AuthorX#3

& Authord4#1 = Authord#3

& Author5#1 = Author5#3

& St(1, C_3) < St(3, S_3)

& St(3, S_4) < St(1, C_4)

& St(1, C_3) < St(1, C_4)

& St(3, S_3) < St(3, S_4)

property (of PKINITKerberosNSL) A_auth:
premises
"role (2) = A"

"uncompromised (C#2, A#2,

"step (2, A_2)"

imply a thread 1 such that
" role(1l) =C
& C#2 = C#1
& NC#2 = NC#1
& Authorl#2 = Authorl#1
& Author2#2 = Author2#1
& NI1#2 = N1#1
& L1#2 = L1#1
& St(1, C_1) < St(2, A_1)
& St(2, A1) < St(2, A_2)

"

S#2)"

property (of PKINITKerberosNSL) S_auth:
premises

"role(3) = S"

"uncompromised (C#3, A#3, S#3)"

"step (3,

S_4)"

imply threads 1, 2 such that
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role (2) = A &

C#3 = C#2 &

A#3 = A#2 &

S#3 = S#2 &

Tlstart#3 = Tlstart#2 &

Tlexpire#3 = Tlexpire#2 &
ServerKey#3 = ServerKey#2 &

role (1) = C &

C#3 = C#1 &

A#3 = A#1 &

S#3 = S#1 &

NC2#3 = NC2#1 &

T1#3 = T1#1 &

AuthorX#3 = AuthorX#1 &
Authord#3 = Authord#1 &
Tlstart#3 = Tlstart#1 &
Tlexpire#3 = Tlexpire#l &
ServerKey#3 = ServerKey#1 &

St(1,C_1) < St(2,A_1) <
St(2,A_2) < St(1,C_2) <
St(1,C_3) < St(3,S_3) <
St(3,S_4)

property (of PKINITKerberosNSL) C_auth:
premises

"role (1) = C"
"uncompromised (C#1, A#1, S#1)"
"step (1, C_4)"

imply threads 2, 3 such that
"

end

role(2) = A &

A#1 = A#2 &

C#1l = C#2 &

NC#1 = NC#2 &

SessionKey#1 = SessionKey#2 &
Tlstart#1 = Tlstart#2 &
Tlexpire#l = Tlexpire#2 &

role(3) =S &

C#l = C#3 &

S#1 = S#3 &

NC2#1 = NC2#3 &

ServerKey#1 = ServerKey#3 &
T2#1 = T2#3 &

St(1, C_1) < St(2, A1) <
St(2, A_2) < St(1, C_2) <
St(1, C_3) < St(3, S_3) <
St (3, S_4) < St(1, C_4)

C.2.2 Proof script B

theory PKINIT_Kerberos_V5_WithNSL begin

protocol PKINITKerberosNSL
{ role A

{

Recv_1(7C, 7S, ?N1, ?L1,
{’1_1, ?C, A, ?NC, ?Authorl, ?Author2, ?L1}sk(?C),
{"1_2’, ?L1, ?N1,
h(?C, ?S, ?N1, ?L1, {’1_1’, ?C, A, ?NC, ?Authorl, ?Author2,
sk (7C)
)

Send__2_leak (~T1lstart, ~Tlexpire)

7L1}sk (7C))}
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Send_2(7C, {’2_1’, ?C, ?S, ~ServerKey, ~Tlstart, ~Tlexpire}k(A,?S),
{’2_2", 7S, ~ServerKey, ~Tlstart, ~Tlexpire, ?NI1,
{’2_2 1, A, ?C, ?NC, ~Author3, ~Tlstart, ~Tlexpire}sk(A)}
~SessionKey ,
23,
{~SessionKey ,
h(~SessionKey, 7C, ?S, ?N1, ?L1,
{’1_1>, 7C, A, ?NC, ?Authorl, ?Author2, ?L1}sk(?C),
{"1_2’, ?7L1, ?N1,
h(?C, ?S, ?N1, ?L1, {’1_1’, ?C, A, ?NC, ?Authorl, ?Author2, ?L1}sk(?7C))}

sk (7C)
)
¥
sk (A)
¥
pk(?7C)
)
}
role C

{ Send_1_leak( ~L1 )
Send_1(C, s, ~N1, ~L1, {’1_1’, C, A, ~NC, ~Authorl, ~Author2, ~L1}sk(C),
{’1_2’, ~L1, ~N1,
h(C, S, ~N1, ~L1, {’1_1’, C, A, ~NC, ~Authorl, ~Author2, ~L1}sk(C))}
sk (C)
)
Recv_2(C, 7?ServerTicket ,
{’2_2", S, ?7ServerKey, ?Tlstart, ?Tlexpire, ~NI1,
{’2.2 1, A, C, ~NC, ?Author3, ?Tlstart, ?Tlexpire}sk(A)}
?SessionKey ,
2.3,
{?SessionKey ,
h(?SessionKey, C, S, ~N1, ~L1,
{’1_1, C, A, ~NC, ~Authorl, ~Author2, ~L1}sk(C),

{’1_2’, ~L1, -N1,
h(C, s, ~N1, ~L1, {’1_1’, C, A, ~NC, ~Authorl, ~Author2, ~L1}sk(C))}
sk (C)
)

¥

sk (A)

¥

pk (C)

)

Send_3_leak( ~T1 )

Send_3 (A, ?ServerTicket,
{3, Cc, ~T1, {’3_1’, C, S, ~NC2, ~AuthorX, ~Author4, ~T1}sk(C)}
?ServerKey

)
Recv_4( {4, ?T2, {’4_1’, S, C, ~NC2, ?Author5, ?T2}sk(S)}?ServerKey )
}

role S

{ Recv_3(?7A, {’2_1’, 7C, S, ?ServerKey, ?Tlstart, ?Tlexpire}k(7A,S),
{’3°, ?C, ?T1, {’3_1’', ?C, S, ?NC2, ?AuthorX, ?Authord, ?T1}sk(?7C)}
?ServerKey

)
Send_4_leak( ~T2 )
Send_4( {’4°, ~T2, {’4_1>, S, ?C, ?NC2, ~Author5, ~T2}sk(S)}?ServerKey )
}
}

property (of PKINITKerberosNSL) PKINITKerberosNSL_msc_typing:
"A@S :: Known(S_3)

Authorl@A :: (Known(A_1) | Authorl@CQC)
Author2@A :: (Known(A_1) | Author2@CQC)
Author3@C :: (Known(C_2) | Author3@A)
Author4@S :: (Known(S_3) | Author4@CQC)
Author5@C :: (Known(C_4) | Author5@S)
AuthorX@S :: (Known(S_3) | AuthorX@C)
C@A :: Known(A_1)

Ca@s :: (Known(S_3) | Agent)



90 C. CODE

L1@A :: Known(A_1)
N1@QA :: Known(A_1)
NC@QA :: (Known(A_1) | NCacC)
NC2@S :: (Known(S_3) | NC2@C)
S@A :: Known(A_1)
ServerKey@C :: (Known(C_2) | ServerKey@A)
ServerKey@S :: (Known(S_3) | ServerKey@A)
ServerTicket@C :: Known(C_2)
SessionKey@C :: (Known(C_2) | SessionKey@A)
T1@QS :: (Known(S_3) | Ti@QC)
TlexpireQC :: (Known(C_2) | Tlexpire@QA)
Tlexpire@S :: (Known(S_3) | Tlexpire@QA)
Tlstart@C :: (Known(C_2) | Tlstart@A)
Tlstart@S :: (Known(S_3) | Tlstart@QA)
T2QC :: (Known(C_4) | T2@S)"

proof

case A_1_Authorl
sources (
{’1_1>, ?C#0, A#0, ?NC#0, ?Authorl#0, ?Author2#0, ?L1#0}sk (?C#0) )
ged (2 trivial)
next
case A_1_Author2
sources (
{’1_1’, ?7C#0, A#0, 7NC#0, ?Authorl#0, ?Author2#0, ?L1#0}sk (?C#0) )
qed (2 trivial)
next
case A_1_C
tautology
next
case A_1_L1
tautology
next
case A_1_N1
tautology
next
case A_1 NC
sources (
{’1_1’, ?C#0, A#0, ?NC#0, ?Authorl#0, ?Author2#0, ?L1#0}sk (?C#0) )
ged (2 trivial)
next
case A_1_S
tautology
next
case C_2_ Author3
sources (
{’2_2>, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0
{’2_2 1, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)}
?SessionKey#0 )
case fake
sources (
{’2_2_ 1", A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0) )
ged (2 trivial)
qed (1 trivial)
next
case C_2_ServerKey
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1’, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)}
?SessionKey#0 )
ged (2 trivial)
next
case C_2_ServerTicket
tautology
next
case C_2_SessionKey
sources (
{’2_2>, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#O0,
{’2_2 1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)}
?SessionKey#0 )
ged (2 trivial)
next



case C_2_ Tlexpire
sources (
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{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,

{’2_2 1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0,
?SessionKey#0 )
ged (2 trivial)
next
case C_2_ Tilstart
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0,
{’2_2 1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0,
?SessionKey#0 )
ged (2 trivial)
next
case C_4_ Authorb
sources (

?Tlexpire#0}sk (A#0)}

~N1#0,

?Tlexpire#0}sk (A#0)}

{747, ?T2#0, {’4_1’, S#0, C#0, ~NC2#0, ?Author5#0, ?T2#0}sk (S#0)}

?ServerKey#0 )
case fake
sources ( {’4_1’, S#0, C#0, ~NC2#0, ?Author5#0, ?T2#0}s
ged (2 trivial)
ged (1 trivial)
next
case C_4_T2
sources (
{747, ?T2#0, {’4_1’, S#0, C#0, ~NC2#0, ?Author5#0, ?
?ServerKey#0 )
qed (2 trivial)
next
case S_3_A
tautology
next
case S_3__ Author4
sources (
{’3°, 7C#0, ?T1#0,
{’3_1", 7C#0, S#0, ?NC2#0, ?AuthorX#0, ?Author4#0,
?ServerKey#0 )
case fake
sources (
{’3_1, 7C#0, S#0, ?NC2#0, ?AuthorX#0, ?Author4d#0o0,
ged (2 trivial)
ged (1 trivial)
next
case S_3__AuthorX
sources (
{37, ?C#0, ?T1#0,
{’3_1", 7C#0, S#0, ?NC2#0, ?AuthorX#0, ?Author4#0,
?ServerKey#0 )
case fake
sources (
{’3_1’, 7C#0, S#0, ?NC2#0, ?AuthorX#0, ?Author4#0,
qed (2 trivial)
qed (1 trivial)
next
case S_3_C
sources (

{’2_1", ?7C#0, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0}tk(?A#0,S#0) )

ged (2 trivial)
next
case S_3 NC2
sources (
{’37, 7C#0, ?T1#0,
{’3_1", 7C#0, S#0, ?NC2#0, ?AuthorX#0, ?Author4#0,
?ServerKey#0 )
case fake
sources (

k (S#0) )

T2#0} sk (S#0)}

?T1#0}sk (?7C#0)}

?2T140} sk (?C#0)

2T1#0} sk (?C#0)}

)

?T1#0} sk (?7C#0) )

?T1#0}sk (7C#0)}

{’3_1", ?C#0, S#0, ?NC2#0, ?AuthorX#0, ?Authord#0, ?T1#0}sk (?C#0)

ged (2 trivial)
ged (1 trivial)
next
case S_3_ServerKey

)
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sources (
{’2_1", 7C#0, S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0}tk(?A#0,S#0) )
ged (2 trivial)
next
case S_3_T1
sources (
{’37, 7C#0, ?T1#0,
{’3_1>, ?C#0, S#0, ?NC2#0, ?AuthorX#0, ?Authord#0, ?T1#0}sk (?C#0)}
?ServerKey#0 )
ged (2 trivial)
next
case S_3_Tlexpire
sources (
{’2_1>, ?C#0, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0}k(?A#0,S#0) )
ged (2 trivial)
next
case S_3_Tlstart
sources (
{’2_1>, ?C#0, S#0, ?ServerKey#0, ?T1lstart#0, ?Tlexpire#0}k(?A#0,S#0) )
ged (2 trivial)
qed

subsection{* Secrecy Properties =}

property (of PKINITKerberosNSL) A_ SessionKey_ secret:
for all #0 the premises
"role( #0 ) = A"
"uncompromised ( A#0, 7C#0 )"
"knows (~SessionKey #0)"
imply "False"
resolve ’PKINITKerberosNSL__msc_typing
sources ( ~SessionKey#0 )
case A__2_SessionKey
contradicts secrecy of sk (?C#0)
qed

property (of PKINITKerberosNSL) C_ SessionKey_ secret:
for all #0 the premises
"role( #0 ) = C"
"uncompromised ( A#0, C#0 )"
"step (#0, C_2)"
"knows (? SessionKey #0)"
imply "False"
saturate
resolve ’PKINITKerberosNSL__msc_typing
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)}
?SessionKey#0 )
case fake
sources (
{’2_2_1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)
case fake
contradicts secrecy of sk (A#0)
next
case (A_2 enc_ 2 #1)
contradictory due to ’'A_SessionKey_secret’
qed
next
case (A_2 enc_1 #1)
contradictory due to ’'A_SessionKey_secret’
qed

property (of PKINITKerberosNSL) A_ServerKey_ secret:
for all #0 the premises
"role( #0 ) = A"
"uncompromised ( A#0, ?7C#0, ?S#0 )"
"knows (~ServerKey #0)"
imply "False"
resolve ’PKINITKerberosNSL_msc_typing
sources ( ~ServerKey#0 )



C.2. PROTOCOL B

case A_2_ ServerKey

contradicts secrecy of k(A#0,7S#0)
next

case A_2_ ServerKey_ 1

contradictory due to ’'A_SessionKey_secret’
qed

property (of PKINITKerberosNSL) C_ ServerKey_secret:
for all #0 the premises
"role( #0 ) = C"
"uncompromised ( A#0, C#0, S#0 )"
"step (#0, C_2)"
"knows (? ServerKey #0)"
imply "False"
saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{’2_2", S#0, ?ServerKey#0, ?Tlstart#0, ?Tlexpire#0, ~N1#0,
{’2_2 1°, A#0, C#0, ~NC#0, ?Author3#0, ?Tlstart#0, ?Tlexpire#0}sk (A#0)}
?SessionKey#0 )
case fake
contradictory due to ’C__SessionKey_ secret’
next
case (A_2_ enc_1 #1)
contradictory due to ’A_ ServerKey__secret’
qed

subsection{* Authentication Properties =}

property (of PKINITKerberosNSL) C_noninjective synch:
for all #1 the premises
"role( #1 ) = C"
"uncompromised ( A#1, C#1, S#1 )"
"step (#1, C_2)"
imply
(7 #2.
role( #2 ) = A &
A#1 = A#2 &
C#l = 7C#2 &
~NC#1 = 7NC#2 &
~Authorl#1 = 7Authorl#2 &
~Author2#1 = ?Author2#2 &

?Author3#1 = ~Author3#2 &

~L1#1 = ?7L1#2 &

?T1lstart#1 = ~Tlstart#2 &

?Tlexpire#l = ~Tlexpire#2 &

St(#1, C_1) < St(#2, A_1) &

St(#2, A_2) < St(#1, C_2) &

St(#1, C_1) < St(#1, C_2) & St(#2, A_1) < St(#2, A_2))"

saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{’2_2", S#1, ?ServerKey#1, ?Tlstart#1, ?Tlexpire#1, ~NI1#1,
{’2_2 17, A#1, C#1, ~NC#1, ?Author3#1, ?Tlstart#1, ?Tlexpire#l}sk (A#1)}
?SessionKey#1 )
case fake
contradictory due to ’C__SessionKey_secret’
next
case (A_2 enc_1 #2)
sources ( {’1_1’, C#1, A#1, ~NC#1, ?Authorl#2, ?Author2#2, ?7L1#2}sk (C#1) )
case fake
contradicts secrecy of sk(C#1)
next
case (C_1_enc #3)
tautology
qed
qed

property (of PKINITKerberosNSL) C2_noninjective_synch:
for all #1 the premises
"role( #1 ) = C"
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"uncompromised ( A#1, C#1, S#1 )"
"step(#1, C_4)"

imply
(7 #3.
role( #3 ) =S &
S#1 = S#3 &

C#1l = 7C#3 &
~NC2#1 = 7NC2#3 &
~T1#1 = 7T1#3 &
TT2#1 = ~T2#3 &
~AuthorX#1 = ?7AuthorX#3 &
~Authord#1 = 7Authord#3 &
?Authorb5#1 = ~Author5#3 &
St(#1, C_3) < St(#3, S_3) &
St(#3, S_4) < St(#1, C_4) &
St(#1, C_3) < St(#1, C_4) &
saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{747, ?T2#1, {’4_1", S#1, C#1, ~NC2#1, ?Authorb5#1, ?T2#1}sk (S#1)}
?ServerKey#1 )
case fake
contradictory due to ’C_ServerKey_ secret’
next
case (S_4_enc #2)
sources (
{37, C#1, ?T1#2,
{’3_1", C#1, S#1, ~NC2#1, ?AuthorX#2, ?Authord#2, ?T1#2}sk (C#1)}
?ServerKey#1 )
case fake
contradictory due to ’C_ServerKey_ secret’

St(#3, S_3) < St(#3, S_4))"

next
case (C_3_enc #3)
tautology
qed
qed

property (of PKINITKerberosNSL) A_auth:
for all #2 the premises
"role( #2 ) = A"
"uncompromised ( A#2, 7C#2, ?7S#2 )"
"step (#2, A_2)"
imply
(7 #1.
role( #1 ) =C &
P7C#2 = C#1 &
INC#2 = ~NC#1 &
?Authorl#2 = ~Authorl#l &
?Author2#2 = ~Author2#1 &
IN1#2 = ~N1#1 &
7L1#2 = ~L1#1 & St(#1, C_1) < St(#2, A_1) & St(#2, A_1) < St(#2, A_2))"
saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{’1_2°, ?7L1#2, ?N1#2,
h(?7C#2, 7S#2, TN1#2, ?L1#2,
{’1_1’, ?7C#2, A#2, ?NC#2, ?Authorl#2, ?Author2#2, ?L1#2}sk (?C#2))

}
sk (7C#2) )
case fake
contradicts secrecy of sk(?7C#2)
next
case (C_1 enc_1 #3)
tautology
qed

property (of PKINITKerberosNSL) S_auth:
for all #3 the premises
"role( #3 ) = 8"
"uncompromised ( S#3, 7A#3, 7C#3 )"
"step (#3, S_4)"
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imply
(7 #1.
(7 #2.
role( #2 ) = A &
role( #1 ) = C &
PC#3 = TC#2 &
FAH#3 = A#2 &
S#3 = 7S#2 &
?T1lstart#3 = ~Tlstart#2 &
?Tlexpire#3 = ~Tlexpire#2 &
?ServerKey#3 = ~ServerKey#2 &
PC#3 = C#1 &
TA#3 = A#1 &
S#3 = S#1 &
TNC2#3 = ~NC2#1 &
2TI#3 = ~T1#1 &
?AuthorX#3 = ~AuthorX#1 &
?Authord#3 = ~Authord#1 &

?T1lstart#3 = ?T1lstart#1l &
?Tlexpire#3 = ?Tlexpire#l &
?ServerKey#3 = 7ServerKey#1 &
St(#1, C_1) < St(#2, A_1) &
St(#2, A_1l) < St(#2, A_2) &
St(#2, A_2) < St(#1, C_2) &
St(#1, C_2) < St(#1, C_3) &
St(#1, C_3) < St(#3, S_3) & St(#3, S_3) < St(#3, S_4)))"
saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{’2_1, 7C#3, S#3, ?ServerKey#3, ?Tlstart#3, ?Tlexpire#3}k(?A#3,S#3) )
case fake
contradicts secrecy of k(?7A#3,S#3)
next
case (A_2 enc #4)
sources (
{’1_1°, ?C#3, A#4, INC#4, ?Authorl#4, ?Author2#4, ?L1#4}sk (?7C#3) )
case fake
contradicts secrecy of sk (?7C#3)
next
case (C_1_enc #b5)
sources (
{’3°, C#5, 7T1#3,
{’3_1, C#b5, S#3, ?NC2#3, ?AuthorX#3, ?Authord#3, ?T1#3}sk (C#5)}
~ServerKey#4 )
case fake
contradictory due to ’A_ServerKey_ secret’
next
case (C_3_enc #6)
sources (
{’2_2>, S#3, ~ServerKey#4, ?Tlstart#6, ?Tlexpire#6, ~N1#6,
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{’2_2 1°, A#6, C#5, ~NC#6, ?Author3#6, ?Tlstart#6, ?Tlexpire#6}sk (A#6)}

?SessionKey#6 )

case fake
contradictory due to ’A_ ServerKey_ secret’

next
case (A_2 enc_1 #T7T)
tautology

qged

qed
qged
qed

property (of PKINITKerberosNSL) C_auth:
for all #1 the premises
"role( #1 ) = C"
"uncompromised ( A#1, C#1, S#1 )"
"step (#1, C_4)"
imply
(7 #2.
(7 #3.
role( #2 ) = A &
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role( #3 ) = S &
A#l = A#2 &

C#l = 7C#2 &
NC#1 = ?NC#2 &

?SessionKey#1 = ~SessionKey#2 &
?Tlstart#1 = ~Tlstart#2 &
?Tlexpire#l = ~Tlexpire#2 &

C#1l = 7C#3 &
S#1 = S#3 &
~NC2#1 = ?NC2#3 &
?ServerKey#1 = 7ServerKey#3 &
2T24#1 = ~T2#3 &
St(#1, C_1) < St(#2, A_1) &
St(#2, A_1) < St(#2, A_2) &
St(#2, A_2) < St(#1, C_2) &
St(#1, C_2) < St(#1, C_3) &
St(#1, C_3) < St(#3, S_3) &
St(#3, S_3) < St(#3, S_4) & St(#3, S_4) < St(#1, C_4)))"
saturate
resolve ’PKINITKerberosNSL_msc_typing
sources (
{’2_2", S#1, ?ServerKey#1, ?Tlstart#1, ?Tlexpire#1, ~NI1#1,
{’2_2 17, A#1, C#1, ~NC#1, ?Author3#1, ?Tlstart#1, ?Tlexpire#1}sk (A#1)}
?SessionKey#1 )
case fake
contradictory due to ’C__SessionKey_ secret’
next
case (A_2 enc_ 1 #2)
sources ( {’1_1’, C#1, A#1, ~NC#1, ?Authorl#2, ?Author2#2, ?7L1#2}sk (C#1) )
case fake
contradicts secrecy of sk(C#1l)
next
case (C_1_enc #3)
sources (
{74, ?T2#1, {’4_1°, S#1, C#1, ~NC2#1, ?Author5#1, ?T2#1}sk (S#1)}
~ServerKey#2 )
case fake
contradictory due to ’A_ ServerKey_secret’
next
case (S_4_enc #3)
sources (
{37, C#1, 7T1#3,
{’3_1", C#1, S#1, ~NC2#1, ?AuthorX#3, ?Authord#3, ?T1#3}sk (C#1)}
~ServerKey#2 )
case fake
contradictory due to ’A_ServerKey_ secret’
next
case (C_3_enc #4)
tautology
qed
qed
qed
qed

end
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