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Abstract

Law enforcement agencies reports that Organised Criminal Groups are moving
more of their activities from traditional crime into the cyber domain. Where
they form so-called Darknets, whose purpose is to act as marketplaces for illegal
material, products, and services. These activities form a part of the Crime-as-a-
Service business model, which drives the digital underground economy by pro-
viding services that facilitate almost any type of cybercrime. The challenge for
law enforcement is knowing which entity to target for effectively taking down
these network structures. This thesis seeks to use graph-based algorithms and
methods to analyse network structures to identify interesting and relevant in-
dividuals within such networks. More specifically, it proposes Social Network
Analysis (SNA) methods for the process of identification of such individuals.

The thesis analyse each SNA method to identify those methods that identify
the most central individuals within a network. Also, it will analyse how the us-
age of different graph construction techniques can be applied to the process of
identification. The thesis contributions is to try to bridge the gap between law
enforcement agencies and cybercrimials by proposing an improved way of pri-
oritising individuals within these networks.
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Abbreviations

k-NN k-Nearest Neighbour.

ANN Artificial Neural Network.

API Application Programming Interface.

CaaS Crime-as-a-Service.

CoC Chain of Custody.

CSV Comma-Separated Values.

DBMS Database Management System.

DDoS Distributed Denial of Service.

GEXF Graph Exchange XML Format.

ICT Information and Communication Technologies.

IDS Intrusion Detection System.

MDL Minimum Description Length.

ML Machine Learning.

N/A Not Available.

OCG Organised Criminal Group.

OOV Order of Volatility.

PCA Principal Component Analysis.

SNA Social Network Analysis.

SOM Self Organising Map.

SVM Support Vector Machine.

XML Extensible Markup Language.
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Glossary

Analogy a comparison between things that have similar features.

Attribute to regard as resulting from a specified cause; consider as caused by
something indicated.

Commerce an interchange of goods or commodities, especially on a large scale
between different countries or between different parts of the same country.

Concert together or in some co-ordinated manner.

Corpus a collection of written or spoken material in machine-readable form,
assembled for the purpose of lingustic research.

Digital evidence digital information and data that contain reliable information
that supports or refutes a hypothesis about an incident, where the data is
stored on, received or transmitted by an electronic device.

Digital forensic is a structured process of investigating by collecting, identifying
and validating digital information for the purpose of reconstructing past
events. The goal is to preserve any Digital evidence in its most original
form.

Facilitate to make something possible or easier.

Induce to bring about, produce or cause.

Infer to derive by reasoning; conclude or judge from premises or evidence.

Information security safe-guarding data from unauthorized access or modifi-
cation to ensure its availability, confidentiality, and integrity.

Pendent rely on or being dependent of some other thing.

Recapitulation to give a brief summary of something.

Reciprocate to do something for or to someone who has done something similar
for or to you.
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1 Introduction

1.1 Topics covered by the project

Anonymisation techniques enable users to communicate freely without the risk
of being traced, which allow them to host and connect to secret services and
forums in parts of the Internet, known as Darknets. These underground forums
are being used by Organised Criminal Group (OCG) as marketplaces for ille-
gal material, buying and selling of products and services, and share experience
and expertise [1]. These activities, combined with the Crime-as-a-Service (CaaS)
business model, drives the digital underground economy by providing services
that facilitate almost any type of cyber crime [1].

An extensive network of persons that fulfill specific functions build the CaaS
business model [2]. For example, a hacker discovers a vulnerability in a software
program, which can be sold to another who writes an exploit that uses this vul-
nerability to take control of vulnerable machines. When the hacker has control
of these devices, they can be sold to another hacker who might group them with
other compromised machines to form a botnet of remotely controlled computers.
The botnet becomes a platform from which cyber criminals can hire, to launch
attacks against websites or networks.

Digital forensic is a process of investigating past events, by collecting, iden-
tifying and validating digital information. However, it is essential to gather in-
telligence about these networks to increase the success of a digital forensic in-
vestigation. What is both important and challenging is to filter out uninteresting
information, leaving entities of interest for the investigation. With potentially
many thousands of online criminals in one underground forum, efficient algo-
rithms and techniques must be used to filter all of the criminal entities.

1.2 Keywords

Social Network Analysis, network and graph analysis, graph theory, data mining
and digital forensic.
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1.3 Problem description

Many OCGs are moving their activities from traditional crime into cyber crime [1,
3], where the challenge lies in understanding how they organise online. The pop-
ulation in these underground forums is separated into two distinct groups. The
larger demographic consists of inexperienced persons with low or little technical
skill that carry out minor offenses. Whereas the smaller demographic consists of
highly skilled individuals, that not only conduct the most damaging cyber attacks
but they also sell their services to the larger population [1].

The anonymity technology cyber criminals use to mask their activity online
leaves law enforcement agencies insufficiently prepared for new threats from
cyber crime. The conservative and reactive nature of policing create the risk of
developing a blind spot for those crimes.

Law enforcement agencies are aware of the growing problem of online OCGs,
and they recommend to target individuals or groups with high reputation on
these underground forums. Alternatively, to target their key support services
when it is not possible to target them due to lack of attribution or jurisdictional
issues [1]. The challenge lies in knowing the relationships between cyber crimi-
nals, knowing how they organise and where to focus law enforcement investiga-
tion and intervention.

Cyber criminals create electronic trails as part of their online activities and in-
teractions. These trails are contained within enormous data sets that are difficult
to filter, analyse and interpret using traditional data processing methods. They
are often not immediately visible but may be hidden in the data in the form of
relationships and correlations [1].

1.4 Justification, motivation and benefits

Law enforcements recommends a focus on dismantling cybercriminal infrastruc-
ture [1, 3], to disrupt the critical services that support or enable cybercrime. The
arrest and prosecution of targets within the small (and highly skilled) population
brings a few advantages. This cyber criminal “elite” consists of fewer targets, but
they contribute more to the CaaS with new ideas and innovation of techniques
and services. By removing targets within this group, one will cause more dis-
ruption than by removing targets from the large population, as the numbers of
highly skilled cybercriminals are limited. Also, their technical skills are hard to
replace by a group with lower skills.

Although targeting the cyber criminal “elite” may be particularly challenging
due to jurisdiction. Many secondary targets provide skilled and essential services
whose removal would cause considerable disruption to the market [1]. When
cybercrime tools and services become more available and easy to access, the less
technical group will grow, which in turn leads to the development of more highly
skilled individuals. Therefore, it is important to develop useful algorithms and
methods for targeting online cyber criminals.

2
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1.5 Research questions

This thesis is to a large extent motivated by the use of graph analysis for iden-
tification of influential individuals and the behaviours found within a group of
people. In particular, this thesis seeks to answer the following questions:

1. Which features can be used to identify important and influential individuals
within a network?

2. How can graph construction techniques be applied in digital forensics for iden-
tifying targets?

Our research questions are of an explorative nature and aim to gain an under-
standing of relations between individuals. The answer to the first research ques-
tion will provide the knowledge that can help understand and explain one par-
ticular organisation or group. The answer to the second research question will
provide the knowledge of how graph construction algorithms can be of help for
law enforcement agencies in an investigation.

1.6 Contributions

A communicating network is a dynamic structure and has both large and small
changes over time. This master thesis seeks to provide a better understanding
of the abilities to find communication relationships that can identify high-value
targets in a network. Particularly with a focus on graph-based methods, where
this thesis should provide methods and techniques that law enforcements could
utilise for investigating relationships between cyber criminals.

The organised cyber crime advocates a more creative approach to combatting
traditional law enforcement investigations, prosecutions, and surveillance meth-
ods. It has to the author’s knowledge not been discussed previously, and it is
important to analyse this problem as these criminal organisations continue, even
if leadership or membership changes over time.

The intended goal of this thesis is to evaluate how the use graph algorithms
can solve the problem of finding high-value targets, to provide law enforcement
agencies a more comprehensive list of targets.
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1.7 Thesis outline

This section provides a brief summary listing of the contents presented in this
thesis. The listing is based on the chapters, where each chapter and its con-
tent is described. First, the necessary background theory and related work are
presented. Then the methodologies for this thesis is presented, followed by the
experiment design, setup, and execution. Finally, a recapitulation describes the
experiment results with a discussion and conclusion, as well as further work.

• Chapter 2 provides an overview of the field of digital forensic and Machine
Learning. It also describes the most fundamental knowledge of graph the-
ory for the section about Social Network Analysis.
• Chapter 3 presents the state of the art from published literature regard-

ing organised crime. Further, we discuss the most common methods for
analysing social networks.
• Chapter 4 provides an overview of the methodology used to guide this

thesis. It includes a description of the dataset, feature quality evaluation,
and a discussion of the different methods used to achieve our results.
• Chapter 5 presents the experiments performed, technical specification of

the equipment, software requirements necessary to perform the experi-
ments. Further, it discusses the results from feature evaluation and graph
construction, as well as expected results.
• Chapter 6 provides a recapitulation of the thesis and the most significant

findings, including theoretical implications, practical considerations, and
proposals for future work.
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2 Background

The previous chapter gave an introduction to the thesis and introduced the re-
search questions that will guide this thesis. It also described the justification and
motivation for thesis and its contributions. The following chapter will present
relevant background material. It begins by describing different types of OCGs
and strategies to combat the threat from these groups. Then it describes the
field of research known as Machine Learning (ML), as some of the ideas within
this area is used in this thesis. Then we give an introduction to graph theory. It
serves as an introduction to the section about Social Network Analysis (SNA), as
this field employ methods from graph theory to understand social networks and
structures. At the end of this chapter, we provide a recapitulation to summarise
the most relevant background theory provided in this chapter.

2.1 Organised crime
Before developing successful strategies and techniques to combat organised crim-
inal activity, it is important to define organised crime and how it functions [4].
The term “group” separates individual crime from crimes committed by groups,
and it is usually used to describe a group of people who cooperate to accomplish
a goal. The definition of OCG from Article 2 of the United Nations Convention
against Transnational Organized Crime [5] is adopted in this thesis:

A structured group of three or more persons, existing for a period and acting in concert with
the aim of committing one or more serious crimes or offences to obtain, directly or indirectly,
a financial or other material benefits.

A “structured group” is referred to as a group that have existed for some pe-
riod before or after the offence(s) [5]. It is not necessary to have formally de-
fined roles for its members, continuity of its membership or a developed organ-
isational structure. However, many OCGs incorporates many of the successful
structures from legitimate business organisations [4]. The structures includes
common rules, a hierarchy of authority, division of labour and responsibility, in-
dividual specialisation and specialised training. Their activities are often local
to one country, but they can also be transnational organisations. Transnational
crimes are crimes that have an effect across national borders, and that offend
fundamental values of the international community [6]. The activities of these
groups have grave implications on (inter)national security (e.g. political, eco-
nomic and social areas). As their operations include harassment, fraud, unlawful
propaganda, pornography and prostitution, theft, money laundering, espionage,
drug and human trafficking, identity theft and financial scams [7, 8].
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OCGs have many different structures and types, just like any legitimate busi-
ness organisation. Therefore, our focus will be on describing the types that utilise
Information and Communication Technologies (ICT) to commit offence(s) in the
cyberspace domain. We differentiate between “cyber-enabled” OCGs that move
some of their operations online and the “cyber-dependent” OCGs that operate
exclusively online.

2.1.1 Organised crime groups typology

The modern ICT provides over tree billion people with access to the Internet,
which had a global growth of 6.6% in 2014 [9]. This trend with global expansion
will continue as telecommunication companies expand their broadband services,
and more people acquire personal devices such as computers, smartphones and
tablets.

Commercial businesses use ICT’s bandwidth speed and availability to pro-
vide services for their customers all over the world, e.g. online banking and
e-commerce. Even national and local government organisations recognise the
reduced cost by providing electronic services to their citizens. Internet services
such as banking, shopping and e-commerce are now linked to almost every part
of our daily lives, and we are becoming increasingly globalised and intercon-
nected.

This technology creates an asymmetry between criminals and law enforce-
ment. Where one criminal has access to countless victims from anywhere in the
world, and law enforcement struggle to determine the scope of the criminal ac-
tivity. Criminals that are using this technology use it to conduct new crimes or to
commit traditional crimes in new ways. Kim-Kwang R. Choo [8] identified three
types of OCGs that exploit advances in ICT: traditional organised crime groups,
ideologically or politically motivated organised groups and organised cybercriminal
groups. The two first types are cyber-enabled, and the last is cyber-dependent.

Traditional organised crime groups are mainly involved in profit generating
activities such as extortion of businesses, monopolising, bouncership in
nightclubs, prostitution and human trafficking, narcotics and weapon traf-
ficking, illegal bookmarking, unlicensed money lending and collection of
protection money [8]. Money has always been the driving force behind
traditional OCGs, but they have adopted ICT to facilitate or enhance their
profit-generating criminal activities [8].

Ideologically and politically motivated organised crime groups are mainly
driven by ideology or political views. These types of groups and organised
crime have been considered separate becuase they did not share the same
motivating factors for their activities [8] But in recent years, there has been
a convergence between them. Warren [10] and Charlton [11] have noted
that terrorist groups such as Al-Qaeda have recruited experts in OCGs for
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their money laundering expertise, to help them overcome their money sup-
ply issues.

Organised cybercrime groups are involved in profit generating activities such
as hacking, Distributed Denial of Service (DDoS) attack, malicious soft-
ware, piracy, online fraud and identity theft. Since these groups operate
exclusively online, it is likely that they operate with different organisa-
tional structures. For exampple, they co-operating for a limited period to
conduct a specifically defined task or set of tasks [8]. Cybercrime groups
are therefore more loosely structured, flexible and transnational than the
other types of groups. Organised cybercrime groups tend to have smaller
membership sizes [8], as their physical strength is irrelevant in the cyber
domain. They rely more on knowledge over technology to bypass electronic
defences. Therefore, their strength is in software and not in the number of
individuals. Where the most technologically sophisticated individuals sell
their knowledge and expertise to others via the CaaS business model.

2.1.2 Organised crime analysis

There is not much theory for the analysis of digital OCGs. It is either because
law enforcements agencies do not want to leak information about how they op-
erate, it is challenging to analyse those types of crimes, or this field of analysis
is still being developed. However, they often involve methods and processes that
we find in a digital forensic investigations. These processes are employed after
a (cyber) crime has been commited, and reported to the authorities. In 2001,
Digital Forensics Research Workshop defined digital forensic as [12]:

The use of scientifically derived and proven methods toward the preservation, collection,
validation, identification, analysis, interpretation, documentation and presentation of dig-
ital evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, or helping to anticipate unauthorized actions
shown to be disruptive to planned operations.

The investigation process is done by using forensically sound and rigorous
methods for handling digital evidence, to preserve it in its most original form.
The goal for the forensic examination is to find facts, and via these facts to recre-
ate the truth of an event [13]. Figure 1 shows the process sequence for gathering
digital evidence, which consists of six phases:

Identification includes actions such as system monitoring and audit analysis to
verify that an incident has occured.

Preservation involves setting up necessary equipment to gather the evidence
to ensure an acceptable Chain of Custody (CoC) and Order of Volatility
(OOV). This step is crucial to avoid contamination of proof.
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Collection retrieves relevant data via approved methods of recovering tech-
niques.

Examination and analysis consist of recovery of hidden or encrypted data, data
mining, timelining, evidence validation and other analytical methods.

Presentation consists of documentation, expert vitness in court and safe storage
of digital evidence.

Figure 1: Forensic investigation process

In addition to the requirement that evidence must be legally obtained to be
admissible in a court of law, there are also two essential forensic principles that
investigators must follow: CoC and OOV. Investigators must be aware of the or-
der of evidence collection given in the OOV principle. Digital data have different
lifetimes before they either vanish, are subjected to change or modification. The
OOV principle allows an investigator to think about the life of the data, to collect
the most volatile data first. However, by collecting more volatile data such as
memory, they will inadvertenly change less volatile data on the system, such as
information in hard disks. OOV principle should be considered before starting
an investigation; the same goes for CoC. It is “the chronological documenta-
tion of the movement, location and possession of evidence” [13]. This principle
documents the integrity of evidence, to show that it has not been changed since
acquisition. Therefore, it is important to document the evidence collection phase.
Hash functions are often used to ensure the integrity of digital data.

2.2 Machine learning

Advances in ICT gives us the ability to store and process significant amounts of
data, as well as to access it over a computer network [14]. Think of the example
of a supermarket chain, with hundreds of stores all over a country, selling thou-
sands of goods to millions of customers. The point of sale terminals generates
gigabytes of data every day, by recording the details of each transaction between
the customer and the store: date, goods bought, money spent and so forth. In-
vestigation of this type results in the collection of vast amounts of data, where
tiny pieces of evidence are hidden in chaotic environments [15]. ML is a field of
study that can analyse this amount of data and turn it into information that we
can use [14], for example, to make predictions.

8



Algorithms and Methods for Organised Cybercrime Analysis

Figure 2: Machine learning processs [16]

2.2.1 Machine learning methods

We differentiate ML methods on how the obtained (induced) knowledge is used [17]:
classification, regression, clustering, learning of associations, relations and dif-
ferential equations. This thesis explains the first three ML methods, as indicated
by the blue colour in Figure 3.

Figure 3: Machine learning taxonomy [17]

Supervised learning
Supervised learning is the task of inferring a function from a labelled data set [18].
The set L consists of n number of samples, and each sample is a pair composed
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of a feature and the desired output value (often called a target variable, class or
label). The data set typically look like L = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where
x is a vector of length m and y is the desired label for the input sample (x, y).
The data set L is typically divided into two complementary subsets.

The first subset Lt (called training set) is presented to the ML method to train
the model, by pairing the input with the target variable. The second subset Lv
(called validation set or testing set) is used to evaluate how well the model has
been trained and to estimate model properties such as classification or regres-
sional error. Methods for dividing the original data set into a training set and
validation set is discussed in Section 2.2.4.

This section will cover the two supervised learning categories classification and
regression. In classification, the class is categorical (described in Section 2.2.2),
and the goal is to produce an inferred function from the learning set, that would
determine the correct class for unseen samples in the validation set.

An example of a (linear two-class) classification problem can be seen in Fig-
ure 4. The classification algorithm learns to infer a function f(x) → y (where y
is categorical) that can separate the square and circle classes from each other,
using data samples in the training set. Where the red line illustrates the inferred
function. This function is evaluated by testing it on the validation set, counting
the number of correctly and incorrectly classified data samples to get the accu-
racy for the function. Some common classification algorithms are decision trees,
naive-Bayes, Bayes network, decision rules, k-Nearest Neighbour (k-NN), linear
discriminant functions, logistic regression, Support Vector Machine (SVM) and
Artificial Neural Network (ANN) [17, 18].

Figure 4: Supervised learning: Classification

For regression, the target variable is numerical/real-valued (described in Sec-
tion 2.2.2), and it is not reasonable for the regression algorithm to predict pre-

10



Algorithms and Methods for Organised Cybercrime Analysis

cisely the target variable. Instead, the requirement is the prediction to be close
to the correct ones. The key difference between classification and regression:
in regression, the measure of error is based on the magnitude of the difference
between the real-valued prediction and the correct one, and in classification it
relies on the equality or inequality of these two labels [18].

An example of a regression problem can be seen in Figure 5. The regression
algorithm learns to infer a function f(x) → y (where y is continuous) that min-
imise the error of the predicted value. The red line illustrates the inferred func-
tion with the least error. Some common regressional algorithms are regression
trees, linear regression, locally weighted regression, SVM (for regression) and
ANN [17, 18].

Figure 5: Supervised learning: Regression

Unsupervised learning
Unsupervised learning is the task of inferring a function to describe hidden struc-
tures from an unlabeled data set [17]. The set U consists of n number of data
samples, and each sample contains only an input object. The data set typically
looks like U = {x1, x2, . . . , xn}, where x is a vector of length m. The distinction
from supervised learning is that data samples do not have a label (the desired
target variable), so there is no error or reward to evaluate a potential solution
generated by the unsupervised learning algorithm.

The goal will, therefore, be to organise the data samples into groups with sim-
ilar characteristics. This process of organisation is called clustering, which is by
far the most popular unsupervised learning method [17]. The task of clustering
is to group a set of similar samples into groups (called clusters) where the groups
are more analogous to each other than those in other groups.

Distance measures are often interchangeably described as similarity measures
in the literature, although there are differences between distances and similar-
ities, they are both referred to as distances in this thesis. A small distance is
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equivalent to high similarity, and a large distance is equivalent to low similar-
ity. Unsupervised learning algorithms use distance measures such as Euclidean
distance (2.1), Manhattan distance (2.2) and Minkowski distance (2.3) (for c = 1
and c = 2 the Minkowski metric becomes equivalent to Manhattan and Euclidean
distance respectively). Where p and q is 1-dimensional feature vectors.

d(p, q) =

m∑
i=1

√
(pi − qi)2 (2.1) d(p, q) =

m∑
i=1

|pi − qi| (2.2)

d(p, q) = (

m∑
i=1

|pi − qi|
c)1/c (2.3)

There are two types of clustering: hierarchical clustering and partitional clus-
tering. Partitional clustering partition the data samples into a specified number
of clusters and then evaluate these clusters by either minimising or maximising
some numerical criterion (such as distance measure) [17].

Figure 6 is a typical clustering problem where each data sample is associated
with a vector (two dimensions in this example). Partitional clustering algorithms
require the user to specify the number of clusters (two clusters in this example),
and the algorithm will initialize the centroids (mean vector representing all sam-
ples in that cluster). These centroids will continue to move to the centre of the
cluster as long as data samples change clusters, updating the centroid mean each
time. The clusters have converged when none of the data samples has changed
clusters, as illustrated by the blue and green clusters in the figure.

Figure 6: Unsupervised learning: Partitional clustering

Hierarchical clustering can be further divided into two categories: bottom-up
(agglomerative) or top-down (divisive) [17]. Bottom-up hierarchical clustering
begins with each example as separate clusters and merges them in successively
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larger clusters, whereas top-down hierarchical clustering begins with the whole
set of examples and proceeds to divide it into successively smaller clusters [17].
Both categories for hierarchical clustering seeks to build a hierarchy of clusters,
usually displayed as a dendrogram (see Figure 7).

Figure 7: Unsupervised learning: Hierarchical clustering

A good clustering result will have both high intra-cluster distances and low
inter-cluster distances [17]. The first is the sum of distances between objects in
different clusters are maximised while the latter is the sum of distances between
objects in the same cluster are minimised. Some common clustering algorithms
are k-means, affinity propagation, mean shift, spectral clustering, hierarchical
clustering and competitive learning (Self Organising Map (SOM)).

Semi-supervised learning
Semi-supervised learning is a type of supervised learning that in addition to la-
belled data also uses unlabelled data in the task of inferring a function. The
motivation for using unlabelled data is that labelled data is expensive to gen-
erate. It is time-consuming and requires expert knowledge of the data, whereas
unlabeled data is not difficult to obtain. ML researchers have found that using a
small amount of labelled data together with a larger amount of unlabeled data
can produce considerable improvement in learning accuracy [17, 18].

Semi-supervised learning is a type of supervised learning that makes use of
one small labelled data set L together with one unlabeled data set U for train-
ing. Set L = {(x1, y1), (x2, y2), . . . , (xn, yn)} and U = {x1, x2, . . . , xn}, where x is a
vector for lengthm and y is the desired label for the corresponding input object.
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Figure 8: Semi-supervised learning

2.2.2 Features and feature quality

Features are often referred to as attributes, variables or properties in the liter-
ature [17, 18]. However, this thesis makes a distinction between attribute and
feature. Features have so far been talked about being some abstract thing, but
they are one of the most fundamental descriptions we have of objects in the real
world that can be interpreted by a machine.

Objects in the real world can be described by several attributes such as colour,
length, weight and so forth. A feature is a specification of an attribute and its
value [19], i.e. “its weight is 25 kg” is a specification. A series of features can
be conveniently described by a feature vector, which is an n-dimensional vector
of features (usually numerical) that represents some object. Dimension usually
refer to the number of features.

Features can take on several roles, such as class as described in Section 2.2.1
supervised learning. Supervised learning problems have a data set S that con-
tains several samples s ∈ S, where s = {x, y} (feature vector x and class y). The
data samples usually only belong to one class, but there can exist several dif-
ferent classes (which will not be covered in this thesis). The feature vector is a
n-dimensional vector of features x = {x1, x2, . . . , xn}. Each feature x usually take
on a numerical value, either discrete or continuous.

Different learning algorithms require various types of features. Conversion
between feature types is typically done during the preprocessing phase, and it
is further discussed in Section 2.2.3. This is a list of four different feature types
and examples of the values they can take:

• Categorical is a finite number of discrete values, and there are two kinds
to denote the ordering [19]. The type nominal denotes that there is no
ordering between the values, such as colour. The type ordinal denotes that
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there is ordering, such as low, medium or high.
• Numerical is a finite number of discrete or continuous values. Discrete val-

ues are counted, so they can only take on a certain number of whole values
(1, 2, 3, 4, 5, . . .), whereas continuous values can take on an infinite number
of possible values within a range (between the range 1.0 and 2.0 the values
can be 1.1, 1.01, 1.001, 1.0001, . . .).
• Boolean is a binary value, and it relates to a data type that can have two

possible values representing true or false, typically 1 or 0 respectfully.
• String is a finite number of zero or more alphabetic characters and it usu-

ally make a distinction between lower and upper-case characters, such as
[A,B,C, . . . , Z] and [a, b, c, . . . , z]. In addition to characters, some strings
also allow numbers (alphanumerical).

Feature quality measures
Each feature need to be compared to each other because not all features provide
equal quality to the classification or regression task [17, 18]. Feature quality
measures will not be covered in depth in this thesis. It is mentioned because
estimating the usefulness of a feature for predicting the label is one of the most
important tasks in ML [17]. Some common measures are information gain, Gain-
ratio, distance measure, Minimum Description Length (MDL) and Gini-index.

The previously mentioned measures only estimate the quality of one feature
independently of the context of other features [17]. For problems with strong de-
pendencies between the features, algorithms such as ReliefF and its regressional
version RReliefF should be used. Since these algorithms also take into account
the context of other features.

2.2.3 Data preprocessing methods

“Garbage in, garbage out” is a common concept in computer science. The con-
cept refers to the logical processes that computers and algorithms operate by,
where their quality of the output (result) is determined by the quality of the in-
put [20]. ML algorithms learn from data, more precisely the features from each
data sample. The algorithms can only be as good as the data it receives, and it
is, therefore, crucial that they receive the right features. Each algorithm requires
features that are meaningful, of a specific type and scale.

This section will go through some basic methods for conversion between dis-
crete and continuous values, the challenge of missing or unknown features and
how to reduce the amount of features.

Feature discretisation
Many ML algorithms are known to produce better models by discretizing con-
tinuous features [21, 22]. Discretisation of continuous features is the process of
splitting continuous values into a finite set of intervals that are treated as dis-
crete values. The goal of discretisation is to find a set of cut points to partition

15



Algorithms and Methods for Organised Cybercrime Analysis

the range into a smaller number of intervals [22]. The challenge is that when
continuous values are discretized, there is always some amount of discretisation
error.

Discretisation can be both unsupervised or supervised, but typically contin-
uous values can be divided into intervals of equal width (Figure 9) or equal
frequency (Figure 10). For each discretisation of continuous value, some infor-
mation is lost since values within the same range cannot be distinguished any-
more. The goal for both unsupervised and supervised discretisation algorithms
is to reduce the error between the original continuous value and the discretized
value, so to avoid the loss of information in the discretisation process. The algo-
rithms should find the optimal number of intervals and the optimal boundaries for
each interval [17].

Figure 9: Equal width discretisation

Figure 10: Equal frequency discretisation

Missing feature values
In real world data sets, it is usually the case that some of the feature values are
missing. They can also be corrupt or incorrect, but this is much harder to discover
in large data sets. One strategy is to discard the samples with missing values [14],
but this is not a good strategy when the dataset is small. The non-missing values
in the sample can also contain information necessary for the problem. Missing
values can either be ignored or replaced by an estimation, called imputation.

Some of the most common schemes are to replace the values with zero or
calculate its value based on a probability distribution [23]. The probability dis-
tribution for continuous values can be substituted by the mean (average) of the
available feature values, whereas discrete values can be replaced by the most
frequent value [14].

Feature selection and feature extraction
ML algorithms are known to perform worse when many features are not neces-
sary for model prediction [24]. Some of the problems with high-dimensional
datasets (i.e. datasets with more than 10 features) is that not all the mea-
sured features are important for understanding the underlying problem of in-
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terest [17]; it can be affected by the curse of dimensionality (described in Sec-
tion 2.2.4); it increase the complexity and thereby the run-time of the learning
algorithm; and it is harder to interpret, explain and visualise. Techniques to re-
duce the number of total features are usually performed to avoid these problems,
and it can be divided into feature selection and feature extraction [17].

Feature selection is the process of selecting a subset of relevant features, and
it should be used when the dataset contains many features that are either un-
needed, redundant or irrelevant [25]. These features can be removed without
loss of information. The process will either include or exclude features present
in the dataset without changing them. Feature selection techniques can be di-
vided into three categories [17]: filtering, wrapper and embedded. Where each
category of techniques have both advantages and disadvantages.

Filtering is the simplest and quickest methods for feature subset selection. These
methods estimate the feature quality via a function and the best n features out
of total m features are selected, where n < m. The functions usually consider
the features independently of each other (e.g. MDL), but features with strong
dependencies can be evaluated by functions that take dependencies between
the features into consideration (e.g. ReliefF). The number n can be chosen in
advance, or determined dynamically by the number of features whose quality
exceeds some threshold value [17].

Figure 11: Filtering methods

Wrapper methods are slower than its counterparts, but it can provide the best
feature subset. It uses algorithms that search the space of feature subsets and
testing the performance of each subset using a learning algorithm [24]. The sub-
set that gives the best performance is selected for final use. There is 2m possible
subset to search with a total ofm features. An exhaustive search is often imprac-
tical, so most wrapper methods incorporate a heuristic process to narrow the
search space [24]. The disadvantage with wrapper methods is that it tends to be
computationally intensive.
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Figure 12: Wrapper methods

Embedded methods are ML algorithms that include an embedded feature selec-
tion method [24] in the learning algorithm and therefore becomes an inherent
part of the learning process, such as decision trees. These algorithms learn by
splitting the original dataset into subsets based on the feature quality values.

Figure 13: Embedded methods

The learning model can be enhanced by the feature selection and seemingly
get better results if it is done as a preprocessing step [26]. When feature selection
is performed before model selection and training, then the learned model will
overfit (described in Section 2.2.4) and be biassed towards the dataset. There-
fore, feature selection methods should be performed on the prepared fold (de-
scribed in Section 2.2.4) right before the model is trained.

Feature extraction should be distinguished from feature selection as it does not
select the best subset of features. Instead it uses a function to calculate new fea-
tures based on the original features [17]. This function is a mapping from the
original high-dimensional space to a new space with fewer dimensions. Prin-
cipal Component Analysis (PCA) is a transformation of the original dataset by
selecting the subspace that has the largest variance.

PCA generates a new coordinate system for the feature with the largest vari-
ance by any projection of the data set lies on the first axis (called the first princi-
pal component), the second largest variance on the second axis and so on [17].
PCA generates a representation of the original feature space that captures the
content of the original data. It is sometimes the case that classification or re-
gressional problems can be carried out in the reduced transformed space more
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accurately than in the original space [17].

Figure 14: Original dataset before PCA [27] Figure 15: New dataset after PCA [27]

2.2.4 Applications and challenges

ML is widely applied in digital forensic to find digital evidence in electronic de-
vices such as mobile phones, personal computers, hard disk, cameras, music play-
ers, game consoles and so forth. Text documents and e-mail messages represent
a primary source of evidence during forensic analysis [28]. Domingos et al. [29]
applied SVM to the task of authorship verification and attribution. They retrieved
between 84% and 100% of e-mail messages sent from three different authors in
an e-mail corpus with 156 messages.

File fragmentation occurs when file systems lay out the contents of files in
a non-continuously way and is maybe the most investigated problem in digital
forensics [28]. The problem is that it is hard to identify file fragments that belong
together when the mapping provided by the file system is corrupt or otherwise
missing. Li et. al [30] have shown a classification accuracy higher than 90% for
common file types such as PDF, JPEG, and GIF.

ML represents a resource that can be exploited to facilitate the activity of
the forensic analyst [28]. However, there exist several problems that must be
considered when using ML algorithms. The problem of overfitting, the curse of
dimensionality and no free lunch theorem will be discussed in this section.
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Overfitting
The largest problem in ML is the problem of overfitting [31]. Overfitting oc-
curs when the learned model begins to “memorise” the training data rather than
learning to generalise from them. A learned model can perfectly classify the
training data, but it typically fails to classify new or otherwise unseen samples.
Methods such as cross-validation or pruning are used to avoid overfitting [31].

Cross-validation methods try to predict the performance of the learned model
by using a validation set that is independent of the data used to train the model.
These methods are divided into exhaustive or non-exhaustive cross-validation.

An example of exhaustive methods are leave-p-out and its particular case leave-
one-out, where p = 1. Leave-p-put uses p samples as the validation set, and
the rest of the samples will be utilised for training the model. This process is
repeated for all the combinations it is possible to split the original dataset. This
process produces

(
n
p

)
possible combinations. However, it is impossible to train

and validate all combinations as soon as the total number of data samples n
becomes large [32]. Leave-one-out is illustrated in Figure 16.

An example of non-exhaustive methods are k-fold and its particular case 2-
fold, where k = 2. K-fold splits the original dataset randomly into k equal sized
subsets called folds. k − 1 folds are used for training the model, and one fold is
retained as the validation data. This is repeated until all the k folds have been
used as the validation set. The results from all the folds can then be averaged
to produce a single performance estimation [32]. k-fold with k = 10 is most
frequently used in practice [17], but k is usually reduced when the learning
takes much time. When k = n, where n is the number of samples, then k-fold
becomes identical to leave-one-out exhaustive method. 4-fold cross-validation is
illustrated in Figure 16.

Figure 16: Cross validation methods

Curse of dimensionality
The second biggest problem in ML is the curse of dimensionality [31]. This ex-
pression was used by Bellman in 1961 to refer to the fact that many algorithms
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that work fine in low dimensions do not necessarily behave similarly in higher
dimensions. The goal for ML algorithms is to generalise beyond the samples in
the training set, but correctly generalising becomes exponentially harder as the
dimensionality grows [31].

There is a maximum number of features where the performance of a classifier
will degrade rather than improve. Figure 17 illustrates the curse of dimensional-
ity. There is a limited number of features where the performance (accuracy) of
a classifier improves, but the performance is reduced as the number of features
is increasing. The curse is caused by the fact that a fixed number of training
samples covers only a small fraction of the total possible input space [31]. There
are many ways to mitigate the curse of the dimensionality, including increasing
the number of training samples, feature selection and dimensionality reduction
(feature extraction). However, there is no single solution to the many difficulties
caused by the curse of dimensionality [33].

Figure 17: Curse of dimensionality

No free lunch
The no free lunch theorem states that there is no ML algorithm that outperforms
all others in any given task [34]. ML algorithms generate a representation of
reality by discarding unnecessary details and information. This representation
(model) is generated based on some assumptions, which may hold in some situ-
ations but may not hold for other situations [35]. Each model must use some
knowledge or assumptions beyond the data it is given to generalise beyond
it [31].
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2.3 Graph theory

Graph theory algorithms will be heavily applied in this thesis to analyse datasets
of communicating OCGs. Therefore, Section 2.3 will cover the fundamentals of
this mathematical field, and provide the knowledge of graph terminology, how
graphs are represented and how they are interpreted. This section serves as an
introduction to understand SNA, as it is the process of investigating social struc-
tures through the use of graph theory. SNA will be covered in Section 2.4, where
it is discussed the various levels of analysis on an ego or complete network. This
section also covers the graph construction algorithms that is used in this research
to evaluate how they can be applied in digital forensic processes.

Graph theory is a mathematical field, and it is the study of graphs, which are
mathematical structures used to model pairwise relationships between objects.
More formally, a graph G consists of V, a non-empty set of vertices (also called
nodes or points) and E, a set of edges (also called arcs or lines) [36]. Names and
terminology vary between different disciplines, e.g. law enforcement agencies
often call them entities and relationships [37] whereas social network analysis
often call them actors and ties [38]. However, this section is going to follow the
exact mathematical terminology.

Figure 18 illustrate a simple graph and the set of vertices and edges contained
in it. Set is a collection of objects, and in Figure 18 the set of vertices contains
V = {v1, v2, v3, v4, v5, v6} and a set of edges E = {(v1, v2), (v1, v5), (v1, v6), (v2, v3),
(v2, v5), (v3, v4), (v3, v5), (v5, v6)}.

Figure 18: Graph Figure 19: Digraph

Edges in a graph can have different properties depending on the context.
Edges can be undirected or directed; the first is called a graph (or undirected
graph), and the latter is known as a digraph (or directed graph). When the num-
ber of edges between vertices is important, one allows multiple edges between
pairs of vertices; then it is called a multigraph. Graphs can also contain loops (a
relationship to itself). However, undirected and directed edges are the two most
common concepts when graphs are discussed.
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Graph terminology
Type Edges Multiple edges Loops
Simple graph Undirected No No
Multigraph Undirected Yes No
Pseudograph Undirected Yes Yes
Simple directed graph Directed No No
Directed multigraph Directed Yes Yes
Mixed graph Directed and undirected Yes Yes

Table 1: Graph terminology [36]

2.3.1 Vertex degree

Vertices also have a wide variety of properties that will be covered in this sub-
section. Two vertices in a graph are called adjacent (or neighbours) if they are
endpoints of an edge, endpoints is vertices at either end of an edge e (the edge
is also said to connect two vertices). For example, v3 and v4 are adjacent in Fig-
ure 18.

Vertex degree keeps track of how many edges are incident with a vertex, by
counting the number of edges that share one vertex. So the degree of a vertex in
a graph is the number of edges incident with it [36] (a loop contributes twice
to the degree), and is denoted deg(v) for vertex v. E.g. the vertex degrees in the
graph in Figure 18 is deg(v4) = 1, deg(v6) = 2, deg(v1) = deg(v2) = deg(v3) = 3
and deg(v5) = 4. A vertex with degree zero, deg(v) = 0, is called isolated because
it is not connected to any other vertex in the graph. A vertex with degree one,
as vertex v4 in Figure 18, is called pendant, since it is pendant on the other
connected vertex to stay connected to the graph.

Inspecting the degree of vertices are important in many fields that use graph
theory to model and produce a solution to their problems. For example in soci-
ology to model the central and most important actors in a group of people, and
this is discussed in Section 2.4.

A digraph has different properties from what is previously discussed. Since
the edges now have a direction. Consider the edge (u, v), u is said to be adjacent
to v and v is said to be adjacent from u [36]. For example, the edge (v3, v4) in
Figure 19 illustrate this, and v3 is called the initial vertex of the edge, and v4 is
referred to as the terminal vertex (or end vertex) of the edge. Consequently, the
initial and terminal vertex of a loop are the same.

Vertex degree in a digraph is also denoted according to the direction of the
edge. The in-degree of a vertex, denoted by deg−(v), is the number of edges with
v as their terminal vertex, and the out-degree of a vertex, denoted by deg+(v) is
the number of edges with v as their initial vertex. A loop contributes one to both
in-degree and out-degree. E.g. in-degree of vertex v1 in the digraph in Figure 19
is deg−(v1) = 2 and the out-degree is deg+(v1) = 2. Since this vertex is the
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Figure 20: Graph vertex degree properties Figure 21: Digraph vertex degree properties

terminal node to two edges (from v2 and v6, and the initial node for one edge
(to v5). Each edge has an initial and terminal vertex, so the sum of in-degree
and out-degree of the graph are the same. Let G = (V, E) be a digraph, then∑

v∈V deg
−(v) =

∑
v∈V deg

+(v) = |E| [36].
In a digraph, a vertex with only out-going edges is referred to as a source, and

one with only in-going edges is known as a sink. Vertex v3 in Figure 19 illustrates
a source, and vertex v4 shows a sink.

2.3.2 Subgraph

A subgraph is a subset of the vertices in a network, and all the edges linking these
vertices. In other words, it has a partial one-to-one correspondence of vertices
and edges of the original graph and the subgraph. Any group of vertices can form
a subgraph, as long as the edges are preserved. Figure 22 illustrate this property.

Figure 22: Subgraph of Figure 18
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Component
A component consists of a subset of vertices in which all the vertices are con-
nected to one another by at least one path [38]. For example, Figure 23 illustrate
four components in an undirected subgraph, they are {(v1, v2, v3), (v4),
(v5, v6, v7, v8), (v9, v10)}. A vertex with no incident edges is itself a component
(see vertex v4 in Figure 23). A graph can be called connected when that graph
has exactly one connected component, consisting of the whole (sub)graph.

Figure 23: Connected components (four components)

In a directed subgraph, the components are said to be either weak or strong,
depending on the edge direction. Figure 24 illustrate component properties. A
strong component is a subgraph in which there is a path from every vertice to
every point following all the edges in the direction they are pointing. A weak
component is a subgraph which would be connected if we ignored the direction
of the edges.

Figure 24: Types of directed components
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Cliques
A clique is a complete subgraph where each pair of vertices are connected, and
the clique of largest possible size is referred to as a maximum clique [39]. A
maximum clique is the largest clique that cannot be extended by a new vertex.
Clique can be extended to k-clique, where k is the size of the clique. E.g. the
graph in Figure 18 have three 3-cliques: (v1, v2, v5), (v1, v5, v6) and (v2, v3, v5).

2.3.3 Graph representation

We have only illustrated graphs visually with vertices and edges until now. How-
ever, this is only an effective illustrations for humans to understand graphs and
computers will have difficulties to interpret this form of model. Therefore, there
exist many different forms of modelling graphs that are easier for computers
to process. Selecting the method for representing the graph will depend on the
problem. There are two common representations to represent a graph; they will
be discussed in the following subsections.

Adjacency list
The first method is to use an adjacency list, which specifies the vertices that
are adjacent to each vertex of the graph [36]. An adjacency list can be used
for both undirected and directed graphs. However, it cannot represent graphs
with multiple edges. The adjacency list is also the best representation of large
and sparse graphs, which means a graph with few edges between elements in
the set of vertices. The adjacency list store a graph in a more compact form
than an adjacency matrix, however, this effect decreases as the graph becomes
denser (more connections between vertices). Also, for some algorithms, there is
a significant advantage to having a list of the adjacent vertices [40].

However, the limitations with the adjacency list are that it takes more time to
insert or delete an edge, to check if there is an edge between two vertices, and it
is not an efficient implementation for graphs that changes dynamically [40].

Vertex Adjacent vertices
v1 v2, v5, v6
v2 v1, v3, v5
v3 v2, v4, v5
v4 v3
v5 v1, v2, v3, v6
v6 v1, v5

Table 2: Undirected adjacency list for Figure 18

Initial vertex Terminal vertices
v1 v5
v2 v1
v3 v2, v4, v5
v4
v5 v2, v6
v6 v1

Table 3: Directed adjacency list for Figure 19

Adjacency matrix
The second method is to use a matrix representation, and there are two com-
monly used matrices to represent graphs. The first is an adjacency matrix, which
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is an n×n zero-one matrix with 1 as its (i, j)th cell when vi and vj are adjacent,
otherwise 0. A cell is the intersection of a row with a column, and each cell repre-
sents the presence or absence of ties between row i and column j. The values of
cells are referred to as (i, j). Note that the adjacency matrix can contain numer-
ical values [36], e.g. for the number of multiple edges (and loops) or weighted
edges.

A matrix is either symmetric or asymmetric for undirected or directed graph
respectfully. Figure 25 is a symmetric matrix since the graph has undirected
edges, so this means that an edge contributes once to each vertice.

The advantage with a matrix representation is that it is very convenient to
work with, as checking for existing edges, adding and removing an edge is done
by examining the (i, j)th cell in the matrix. The limitations are that it will con-
sume a huge amount of memory [40], so they are often preferred when the
graph is dense. It is also less efficient for analysing each of the incident vertices
since it has to traverse all the coloumns in one row. It is also difficult to add or
remove a vertex, so using matrices for a dynamic structure is quite slow.

v1 v2 v3 v4 v5 v6


v1 0 1 0 0 1 1

v2 1 0 1 0 1 0

v3 0 1 0 1 1 0

v4 0 0 1 0 0 0

v5 1 1 1 0 0 1

v6 1 0 0 0 1 0

Figure 25: Adjacency matrix for graph in Figure 18

v1 v2 v3 v4 v5 v6


v1 0 0 0 0 1 0

v2 1 0 0 0 0 0

v3 0 1 0 1 1 0

v4 0 0 0 0 0 0

v5 0 1 0 0 0 1

v6 1 0 0 0 0 0

Figure 26: Adjacency matrix for digraph in Figure 19

Incidence matrix
The second matrix representation is incidence matrix. This is a matrix that repre-
sents a graph on the ordering of the set of vertices V and set of edges E, so there
is a 1 when edge ej is incident with vi. This results in a n×m matrix where n is
the number of vertices (|V |) andm is the number of edges (|E|). Incidence matrix
also can represent multiple edges and loops.
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Figure 27: Graph with edge labels for Figure 18

e1 e2 e3 e4 e5 e6 e7


v1 1 0 0 0 0 1 0

v2 1 1 1 0 0 0 0

v3 0 0 1 1 1 0 0

v4 0 0 0 0 1 0 0

v5 0 1 0 1 0 0 1

v6 0 0 0 0 0 1 1

Figure 28: Incidence matrix for Figure 27

2.4 Social network analysis

The two previous chapters with ML (Section 2.2) and graph theory (Section 2.3)
sections laid the foundation for understanding graph construction algorithms
and SNA respectfully. They will be discussed in this section.

SNA is a multidisciplinary area involving social, mathematical (graph theory),
statistical and computer science. It uses methods and analytical techniques to
uncover the social relations that form from individuals and groups, the structure
of those relationships, and how relations and their structure influence (or are
influenced by) social behaviour, attitudes, beliefs and knowledge [38]. Social
relationships such as family, work colleagues and friends form different social
networks, and it is normal for a person to be a member of many different so-
cial networks. For example, a friendship network would be one relation, work
colleagues another relation and so on.

Social networks can be formally defined as a graph, with a set of relations
(edges) and a set of actors (vertices). SNA encourages the separating of vari-
ous social networks according to different relations. However, networks can also
represent multi-relational data. The terminology in SNA is more orientated to-
wards social terms but refers to the same abstract objects as in the mathematical
terminology.

SNA is usually conducted via interviews with the actors of interest [38], where
specifically crafted questions is necessary to create a boundary around a partic-
ular network. A boundary defines actors that can be considered to be inside the
network and which ones are outside the network. The population of interest have
been selected by specifying the boundary.

There are two types of social networks. The first is an ego network – which is
comprised of a focal actor (called ego) and the people to whom ego is directly
connected is referred to as alters [38], including the edges between the alters.
Alters in an ego network has their own ego network. The second is a complete
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network – where an entire set of actors and the ties linking these actors together
are studied.

Figure 29: Ego network Figure 30: Complete network

The edges in both ego and complete networks can be directed or undirected.
The edges represent a relation; then the arrowheads indicate the direction of the
relation. When the graph is directed, it shows directed relations in SNA terms.

Each actor is represented twice in an adjacency matrix, once in the row and
once in the column. The senders are found in rows and receivers in columns.
The diagonal of the matrix, therefore, represents a sender’s relations with her-
self. An actor’s tie with themselves (self-loops) are usually not of interest when
analysing a network, and therefore, the diagonal of the adjacency matrix tends
to be ignored [38].

2.4.1 Levels of analysis

Network analysis breaks down the notion of a network as being composed of a
series of levels such as actors (i.e. individuals); dyads (i.e. pairs of actors); triads
(i.e. structures consisting of three actors); subgroups; and complete networks.
Actor level analysis focuses on the individual, whereas dyad and triad level anal-
ysis focuses on the social structures. Dyad and triads can be viewed as building
blocks for larger network structures. This section will cover the actor level meth-
ods used in the thesis, and briefly mentioning the other levels of analysis.

Actor level
The analysis of a network at the actor level is to describe the position of an ac-
tor within a network according to these methods outlined in this section. Actor
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level analysis helps to understand how individual actors are positioned within a
particular network by answering the questions of who is important to that net-
work, who makes things “happen” in the network or holds the network together
in times of distress [38].

Measures of centrality are used to uncover the answers to these questions.
Centrality is measured by an actor’s degree, betweenness, closeness and eigenvec-
tor. Degree is seen as a more local measure as it only takes into account directly
connected edges. Whereas betweenness, closeness and eigenvector are seen as
global measures because they also take into account directly linked actors.

Degree centrality is calculated by counting the number of directly adjacent
vertices an actor has in a network, i.e. deg(v) as described in Section 2.3.1. The
formula to calculate the degree centrality from a symmetric adjacency matrix A
is given by Equation 2.4, where i is the actor of interest, Aij is the cell value from
actor i to actor j and n is the total number of vertices.

CD(i) =

n∑
j=1

Aij =

n∑
j=1

Aji = deg(i) (2.4)

When degree centrality is calculated on a graph, it can only be viewed as a
measure of an actor’s level of involvement or activity in the network.However,
the direction of the edges can often show interesting insights into group structure
and the placement of individuals within this structure [38]. Therefore, in-degree
and out-degree centrality has been developed for digraphs. In-degree centrality
is the number of edges adjacent from other vertices. It is often used as a mea-
sure of prestige or popularity [38]. The formula for in-degree centrality for an
asymmetric adjacency matrix A is given by Equation 2.5:

Cin(i) =

n∑
j=1

Aij = deg
−(i) (2.5)

Out-degree centrality is the number of edges adjacent to other vertices. It
is often used as a measure of expansiveness [38]. The formula for out-degree
centrality from an asymmetric adjacency matrix A is given by Equation 2.6:

Cout(i) =

n∑
j=1

Aji = deg
+(i) (2.6)
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A disadvantage of degree, in-degree and out-degree is that these centrality
measures can only be used to make meaningful comparisons among actors in the
same network or networks of the same size [38], i.e. they have the same number
of actors. Linton C. Freeman [41] developed a way to convert these centrality
measures into proportions by normalising the scores. Normalising is done by
taking the original centrality scores and dividing them by the total number of
actors, not including the actor in consideration. Normalising degree centrality
is given by Equation 2.7. By normalising the centrality scores, it becomes in
proportion to the network. Therefore, they then can be compared to centrality
scores from other networks or networks of different sizes.

C
′

D(i) =
CD(i)

n− 1
(2.7)

The equation is the same for normalising in-degree and out-degree, given by
Equation 2.8 and Equation 2.9 respectfully.

C
′

in(i) =
Cin(i)

n− 1
(2.8) C

′

out(i) =
Cout(i)

n− 1
(2.9)

Degree, in-degree and out-degree centrality measures are not considered the
most powerful measures of centrality. Since they do not consider the rest of the
network; they only look at the immediate edges of each actor. In other words,
they ignore the other actors and edges in the network.

Betweenness centrality takes into consideration the rest of the network when
computing a score for an individual actor. Betweenness capture the dimension
of centrality that it is not important how many people they know, but rather
where they are placed within that network [38]. Betweenness centrality looks at
how often an actor rests between two other actors. More formally, it calculates
how many times an actor sits on the geodesic (i.e. the shortest path) linking two
other actors together. There may be more than one shortest path between two
vertices. If an actor rests between many other actors in the network, then this
actor can significantly influence the network by choosing to withhold or distort
information she or he receives [38].

It is computed by counting the number of times actor k rests on a geodesic
for actors i and j. The adjacency matrix can be both asymmetric and symmetric,
but the data should be binary. The formula is given in Equation 2.10, where ∂ij
is the total number of shortest paths from vertice i to j and ∂ikj is the number of
those paths that pass through k. Normalised formulas for betweenness centrality
is given for digraphs in Equation 2.11 and graphs in Equation 2.12.
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CB(k) =
∑ ∂ikj

∂ij
, i 6= j 6= k (2.10)

C
′

B =
CB(k)

(n− 1)(n− 2)
(2.11) C

′

B =
CB(k)

(n− 1)(n− 2)/2
(2.12)

Betweenness centrality score can be normalised to compare it with another
network of different size. Research has shown that betweenness centrality re-
sults in a larger amount of variance (difference) among actors than other cen-
trality measures. Therefore, it best captures the most important actors in the
network [38], i.e. leaders or the most influential network actors. Those who is
more important to the network thus stands out much more clearly using be-
tweenness centrality than any other forms of centrality.

Closeness centrality (farness) capture an actor’s potential pendency. Closeness
centrality is defined as the sum of distances between one actor and all the other
actors. The distance measure is defined by the length of their shortest paths.
The formula is given in Equation 2.13, where d(ij) is the distance (length of the
shortest path) connecting actor i to actor j. The normalised formula for closeness
centrality is given in Equation 2.14.

CC(i) =

n∑
j=1

d(ij) (2.13)
C

′

C(i) = [CC(i)]
−1 (n− 1) (2.14)

The network must hold binary data, and any isolates must be removed from
the graph [38]. Isolated vertices would hold an infinite distance from all other
actors in the network because isolates can never be reached. Closeness centrality
can therefore only be measured on fully connected and binary networks. It can
be used in a directed or undirected graph, but the graph must also be strongly
connected when the graph is directed. Strongly connected graph means that all
the actors can reach one another by some path, paying attention to the direction
of the edge. A weakly connected graph would be one where all actors are linked
by some path, ignoring the direction of the edges. Higher values of closeness
centrality score indicate higher centrality in the network.

Eigenvector centrality expands on the notion of degree centrality to also in-
clude their alters’ edges. Eigenvector centrality is defined as the sum of an ac-
tor’s edges to other actors, weighted by the alters’ degree centrality. Therefore,
the centrality score becomes weighted towards those actors who have alters with
high degree centralities [38]. Alters can drastically affect actors eigenvector
centrality score as one’s importance is based on their friend’s importance. The
formula is given in Equation 2.15, where λ 6= 0.
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CE(v) =
1

λ

n∑
u=1

xu,vCE(xu) (2.15)

Dyadic level
A dyad consists of two actors and the edge that link these actors together. When
pairs of actors are studied, the focus will often look at how ties are initiated,
continued and terminated; what kind of resources get exchanged between them;
reciprocity; and the strength of ties [38]. Not many analyses take place on the
dyad level, but it is important to describe as one gathers data on an entire net-
work on the dyadic level.

As previously mentioned, actors often have many (and different) relations
with other individuals. These relations also differ in strength and direction. For
example, a person often has multiple individuals that they consider their friends,
but friendship does not have to be reciprocated. On Facebook, friendship is re-
ciprocated via accepting a friend request, and they can, therefore, be considered
undirected. However, on Twitter, persons can follow another without requiring
that person to reciprocate this action, and they can, therefore, be considered
directed.

One friendship relation does not equal another relation. For example, out of
all those that they consider their friends, there are only one (or a few) that they
consider their best friend(s). Therefore, the edges in both of these scenarios can
be weighted, to measure the level of closeness, familiarity, warmth, affection and
so forth of the friendship. The edge towards the best friends will be of greater
strength than the rest.

The properties of dyads such as the kind of edge relation, strength, direction
and duration can be understood through the use of a dyad census [38].

A dyad census categorises the edges in dyads into some state. In a graph,
there is a binary relationship between the two actors. Binary dyads consist of
relations that exist (they are connected), or the relation does not exist (isolates).
A digraph, however, has three possible states: M (mutual), A (asymmetric) and N
(null). These states are illustrated in Figure 31. A mutual edge has a bidirectional
edge between two actors; an asymmetric edge is unidirectional, and null has no
connection between the actors.
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Figure 31: Dyad census MAN states

Triadic level
A triad consists of three actors and all the edges between them. It can, there-
fore, be seen as being composed of different kinds of dyads among a set of three
actors [38]. Triads are also the simplest structures in which we can see the emer-
gence of hierarchy [42]. A triad census can be viewed as an extension of the dyad
census, as it looks at the number of mutual, asymmetric and null states between
the actors. A triad census consists of a three digit number. The first number indi-
cate the number of mutual dyads, the second indicate the number of asymmetric
dyads, and the third indicate the number of null dyads. Figure 32 illustrate the
four possible representations of undirected triads; they are closed triad, open
triad, connected pair and unconnected.

Figure 32: Representations of undirected triads

For digraphs, there are 16 possible triads, as illustrated in Figure 33. The
letters U, D, C, and T is used to distinguish between different triads in which
these numbers are the same, where “U” is for up, “D” for down, “C” for cycle
and “T” for transitive. Transitivity of a relation means that when there is an edge
from v to u, and also from u to w, then there is also a tie from v to w.
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Figure 33: Triad census

Subset level
Any group from the set of vertices set can form a subset, as long as all the edges
linking them together is included in the subgraph. So an ego network can be
seen as a subgraph that is centred on a certain vertex.

Identifying the components of a network is important, as some network anal-
yses require the network being connected. For example, closeness is best com-
puted on strongly connected graphs [38]. Any network that can be seen as a
disconnected graph might be treated as several separate networks for conduct-
ing certain analysis, such as closeness centrality.

Alternative techniques must be used to uncover subsets within the network
when the network cannot be broken into different components. Clique, n-cliques
and k-core are three techniques to find subsets within a graph.

A clique (described in Section 2.3.2) consists of a subgroup of people who
are directly connected to one another through mutual edges. Cliques are usually
analysed on graphs, but when cliques are analysed on a digraph, it is important
to pay attention to the direction of the edges. Cliques would only include those
edges that are mutual, and as such, a digraph can be expected to hold fewer
cliques than a graph [38]. Analysis of cliques is interested in mutuality of ties,
as all actors are having ties to all other actors in the clique. This approach has
the problem of clique overlap, as it can cause confusion in interpreting the results
of the clique analysis. A clique overlap occurs whenever one (or more) actor(s)
from one clique can be included as a member(s) of another clique.

Therefore, the n-clique technique was developed as the definition of a clique
is often seen as being overly strict. A clique will include or exclude actors based
on their directly connected vertices, whereas n-cliques is linked by a path of
length n or less. The rule by which one allows an actor to join a clique has been
relaxed. The value of n should be kept at three or less, as one move away from
the sociological understanding with any number higher than tree [38].

K-core is another way to define a subset within a graph. It is built on the
concept of degree centrality, as an actor is part of a k-core if they have (at least)
a degree centrality of k within that group [38]. It is easier for an actor to join
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Figure 34: Clique

a subgroup when the value of k is low, and the subgroup will increase in size.
It becomes more difficult for an actor to join the group when the value of k
increases.

Identifying actors that act as a bridge between different components can help
taking down a criminal network. By removing either vertex v2 or v4 in Figure 34
will create two disconnected components.

Network level
Network level analysis looks at the graph as a whole. This type of analysis hope
to uncover some features of the network that characterise the network as a
whole [38], such as density. Density refers to the proportion of edges in a net-
work that are present, by counting the number of edges that exist in a network
in a proportion of the potential edges that could exist. The formula for a graph
is given in Equation 2.16, where L is the actual number of lines present in the
graph and n is the number of vertices in the graph. Each node is potentially
connected to all others (except themselves). In digraphs, we are interested in
the direction of the edges, reflected in the denominator of density formula for
digraphs in Equation 2.17.

d =
L

n(n− 1)/2
(2.16) d =

L

n(n− 1)
(2.17)

One issue with density is that one (or more) person(s) can raise the density
score when they have a disproportionately higher number of edges to others in
the network [38]. Degree centralisation score is a good way to see the extent to
which a graph’s density score depends on the edges of one vertex. Degree central-
isation is based on degree centrality, and the formula is given in Equation 2.18.
Where CDmax is the largest degree centrality score, CD(ni) is the degree central-
ity of actor ni, andmax

∑
CDmax−CD(ni) is the theoretical maximum possible

sum of differences in actor centrality [38]. Note that it should be computed on
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undirected and binary graphs.

C =

∑
CDmax− CD(ni)

max
∑
CDmax− CD(ni)

(2.18)

2.4.2 Graph construction approaches

Graph construction algorithms have been applied to the problem om label prop-
agation, as they can automatically suggest labels for social media objects (mu-
sic, video, pictures). Manually annotating these objects becomes infeasible as the
volume of the data grows. Additionally, users may provide incorrect annotations.

Label propagation algorithms make two assumptions [43]. First, the labels of
the initially labelled data object should remain unchanged. Second, data objects
that are similar to each other should be assigned the same label. Semi-supervised
learning algorithms, introduced in Section 2.2, assign labels to unseen data ob-
jects based on known labels for other data objects. This assignment can be per-
formed through graph paths that connect labelled to unlabeled vertices [43].
The edge weights in these similarity graphs may represent pairwise similarities
(distances) between the data objects. These graphs should reflect the relation-
ships between the entities being labelled [43]. Therefore, the construction of the
similarity graphs is critical to the label propagation performance.

This section will focus the discussion on the neighbourhood graph construc-
tion algorithms: k-NN, e-neighbourhood and b-matching. Which can be found in
the work from Pitas [43]. He also discusses more advanced graph construction
algorithms for label propagation.

In neighbourhood methods, the graph is constructed by connecting each node
to its closest ones. Closeness between nodes is determined by a distance or sim-
ilarity function, as discussed in Section 2.2.1. Neighbourhood methods use the
distance between vertices to construct a similiarity graph, and they construct
sparse graphs [43].

k-Nearest neighbour method
In k-NN graphs, each vertex is connected to its k nearest vertices (called neigh-
bours). This approach often constructs asymmetric graphs [43], since it is not
guaranteed that vertex v is the closest neighbour of u, when vertex u is the near-
est neighbour of v. It also produces irregular graphs, since certain vertices end up
with a higher degree than others. A regular graph, in contrast, is a graph where
each vertex has the same number of neighbours.

See the original graph in Figure 35, where the evaluated vertex is vi. There
is a directed edge from vi to u whenever u is one of the k nearest neighbours.
Figure 36 illustrate the three (k = 3) nearest vertices of vertex vi.
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Figure 35: k-NN original graph for vertex vi Figure 36: 3-NN neighbourhood for vertex vi

e-neighbourhood method
In the e-neighbourhood method, a vertex is connected to all the vertices within
a predefined distance e, where e > 0. Such a graph construction is sensitive to
parameter e selection, and it often leads to graphs having disconnected com-
ponents [43]. For these reasons, the k-NN method shows advantages over the
e-neighbourhood method, and it is usually preferred in practice.

See the original graph in Figure 37, where the evaluated vertex is vi. There is a
directed edge from vi to u whenever the distance to vertex u is less than or equal
to e. Figure 38 show the e-neighbourhood to vertex vi, where e is unspecified.

Figure 37: e-neighbourhood original graph for ver-
tex vi

Figure 38: e-neighbourhood for vertex vi
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b-matching method
k-NN and e-neighbourhood graphs do not guarantee that the result will be a
regular graph. However, the b-matching method proposed in [44] guarantees
graph regularity. This approach involves two steps [43, 44]:

1. Graph sparsification – from starting with a complete graph, the edges are
selected that will be present in the final, sparse graph P.

2. Edge re-weighting – weights are learned for the edges that were selected in
the previous step.

The first step generates a binary matrix P ∈ {0, 1}N×N, where the cells Piij
determine the presence of an edge between data samples xi and xj in the final
matrix. The calculation of matrix P is performed by minimising the following
function:

min
P

∑
ij

PijDij (2.19)

subject to ∑
j

Pij = b, Pii = 0, Pij = Pji, ∀i, j = 1, . . . ,N (2.20)

The distance matrix D is calculated from Dij =
√
Wii +Wjj − 2Wij, where W

denotes the weight matrix. For the last step, the weights for the selected edges
are learned by using one of three different schemes [43, 44]:

• Binary weights, W = P

• Gaussian kernel weightsWij = Pijexp
(
−
d(xi,xj)

2σ2

)
, where d(xi, xj) is distance

function between the vertex feature vectors xi and xj and σ is the kernel
bandwidth
• Locally Linear Reconstruction (LLR)

2.4.3 Applications and challenges

SNA have mostly been applied in social sciences [38], but it has been imple-
mented in both economy studies and digital forensic investigations. It has been
used to study the lives of 172 terrorists in the Hamburg Cell [45]. This cell started
the planning for the terrorist attacks on 9/11, and ultimately participated in the
attack. Sageman [45] found the most common factor driving them was the social
ties within their cell.

SNA is a tool that can be used to understand the social relations that form
within a network of people. It represents a resource that can be exploited to
facilitate the activities of the forensic analyst. As with any tool, the researcher
needs to understand when it can be applied to the underlying problem and how
best to avoid the common challenges of the field. This section will cover the SNA
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challenges of data acquisition and privacy and the graph construction challenge
of distance metric selection.

Data acquisition
The first challenge of SNA is the data acquisition step. This step is crucial since
it is hard to know all the actors beforehand. It will also define the boundary
around the population of interest. We do not cover typical data anonymisation
techniques that typically are carried out after the data acquisition process. Canali
et al. [46] highlighted three main techniques to acquire data from social net-
works. They were network traffic analysis, ad-hoc applications and crawling the
user graph.

Network traffic analysis is well known to information security professionals,
as this technique is commonly found in Intrusion Detection System (IDS). It is a
typical traffic sniffing and analysis technique that capture network packets on the
wire. From these tools, it is possible to analyse the browsing of social networks
to obtain the relations between the users.

Ad-hoc applications are a third-party application that uses the social network
private Application Programming Interface (API). This allows the collection of
user information through interacting with registered user profiles. However, it is
often limited to the registered users for that third-party application, and there-
fore, the information is dependent on the population of the application.

Crawling is the most popular solution for data acquisition in social
networks [46]. This technique crawls through the publicly available information
about users. Crawling may take advantage of the publicly available APIs that
some social network operators provide [46].

Privacy laws
All of the previously mentioned data acquisition techniques have their problems,
but the problem they share is the issue of privacy laws. For the data to be mean-
ingful, the researcher must know who the respondent was in order to establish
a link to those other actors they indicated having a relationship with [47]. It is
hard to balance the protection personal or sensitive data against the benefits of
the study. Therefore, anonymity can not be garanteed during the data collection
stage.

In 2006, Netflix published 10 million movie rankings by 500 000 customers,
as part of a challenge to come up with a better movie recommendation system.
This dataset was protected by removing personal details and replacing names
with random numbers, and the dataset was thought to be anonymised. How-
ever, Narayanan and Shmatikov [48, 49] showed that this dataset could be de-
anonymised by correlating the data with the public available IMDB1 database.
A significant portion Netflix customers could be re-identified because they had

1http://www.imdb.com/
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posted their e-mail address information online.
Even though viewing habits is less sensitive than medical records, it shows

that de-anonymisation of large datasets is possible. Therefore, the researcher
has to be clear on who will see the collected data and what can happen as a
result of someone seeing what they responded.

Selection of distance metrics
The choice of the distance metric strongly affects the resulting graph [43]. When
no information is provided for the data samples, graph construction algorithms
will usually use Euclidean distance to calculate the distance between the ver-
tices. It is important for the selected distance metric to capture the underlying
structure that may exist in the data. When prior knowledge of the data samples
is available, for example, labels or clustering information, it can be incorporated
into the distance metric to provide a better result [43].

2.5 Summary

This chapter has provided a thorough understanding of the various fields that is
used in this thesis. So this section summarises the relevant topics that are covered
in this chapter. The first chapters provided the knowledge and understanding of
SNA and graph construction algorithms.

From section about organised crime (Section 2.1), it is important to under-
stand how criminals organise in networks. These networks provide services to
the rest of CaaS business model. By understanding the organisational structure,
it will be possible to identify a point of attacks to dismantle these groups.

ML (Section 2.2) is not directly used in this thesis, but the ideas behind clus-
tering can be transferred to graph construction. It is, therefore, important to
understand data preprocessing methods, to avoid the curse of dimensionality. A
few distance measures were discussed and according to the “no free lunch” the-
orem, no distance metric that outperforms the other metrics in any given task.
The Euclidean distance measure is often preferred, but it is necessary to compare
several distance measures to select the metric that performs the best.

The section about graph theory (Section 2.3) provided the necessary mathe-
matical understanding of graphs. It is necessary as SNA methods use graph the-
ory to analyse and understand social networks. The centrality measures will be
used when solving the first research question, and graph construction algorithms
will be used to solve the second research question.
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3 Previous work

In the previous chapter, an introduction to the thesis was given, and theory on
several central topics was presented. The following chapter presents previous
work related to the contributions of this thesis. It provides an overview of the
state of the art in social causes for organised crime, and a discussion of related
work. Further, the current use of SNA in practice is presented.

Sociological causes for organised crime

In 1924, Sutherland recognised that most communities, independent of their in-
come, race or sociological background, are organised for both criminal and anti-
criminal behaviour. Sutherland [50] investigated the interactions and learning
aspects that underlie criminal activities. He proposed the differential association
theory that advocates that interaction with others who are offenders increase the
likelihood of someone becoming and remaining an offender. Social peers can
play a crucial role in the development of values and beliefs favourable to law
violation [50, 51]. In this theory, Sutherland elaborated on nine postulates to
discriminate at the individual level between lawbreakers and law-abiding citi-
zens, where three is especially relevant for this thesis [50]:

• Criminal behaviour is learned (behaviour)
• Criminal behaviour is learned in interactions with other persons in a process

of communication
• The principal part of the learning of criminal behaviour occurs within inti-

mate personal groups

Differential association theory proposed individuals learn the values, atti-
tudes, techniques and motives for criminal behaviour through interaction with
others. However, one critique against this theory is the idea that people can be
independent, rational actors and can have individual motivations [52]. The cri-
tique is that the theory does not take into account individual personality traits
that might affect their susceptibility to environmental influences.

Learning through communication

Assuming that criminal behaviour can be learned through communication, we
can, therefore, induce that learning takes place in underground forums. These
forums can be viewed as social networks [53]. Where entities know each other
through their pseudonyms, as they communicate through public threads or via
private messages.
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Previous work has been focused on the social aspect of organised crime. How-
ever, a few of them have suggested graph-based algorithms and techniques for in-
telligence gathering. Graph theory and graph-based algorithms have been widely
used in digital forensics for network forensic analysis [54] and malware detec-
tion and classification [55]. The growth of cybercrime put challenges the ability
for investigators to apply the process of digital forensics to obtain timely results.
Irons and Lallie [56] discussed the need for intelligent techniques to address the
challenges of the broad and complex cyber domain, where they suggest network
analysis techniques.

Sparrow [37] discussed the application of SNA techniques as a new intelli-
gence gathering technique. SNA is the study of relations, ties, patterns of com-
munication, and behavioural performance within a social network [38, 57]. It
uses graphs to model the entities and the relationship between them.

To the authors knowledge, it has not been studied how SNA can be applied for
intelligence gathering about an underground forum. However, the information
that is of interest to the forensic examiner are among the following [58]:

• Key actors
• Entity relationships in the network at specific times
• Changes over time (e.g. pre- and post-criminal activity)

Social network analysis of the Enron dataset

Due to the difficulty of acquiring datasets containing underground forums, we
substitute it with the Enron dataset. This dataset, discussed in Section 4.1.2, is an
e-mail corpus containing the e-mail messages for many employees of Enron. The
value of SNA in investigations has been demonstrated on research conducted on
the Enron corpus. Disener and Carley [59] examined the structural properties of
the Enron network to identify key players. They showed that, in general, people
with higher positions was more likely to be key players in the organisation. Their
research also indicated that people with higher positions sent more e-mails than
they received before the Enron crisis. Communication was more diverse concern-
ing formal positions during the crisis than during regular months.

Researchers have been able to [58]:

• Discover key players [57]
• Discover hidden group
• Discovering organisational structures
• Demonstrate how communication networks change during an emerging

situation
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Social network analysis in digital forensic

Abraham et al. [57] used centrality measures for discovering influential individ-
uals. These measures tries to describe an actor’s relative position within his or
hers network. Sparrow discussed that betweenness centrality could be a mea-
sure of significance within communication networks [37]. Methods and ideas
for SNA has been applied to the analysis of physical OCGs [51, 53]. However,
none of them have applied it to the new challenge of online OCGs.

It is more common for investigators to collect social network data for spe-
cific suspects, since they are already under investigation. However, we focus
on methods for gathering intelligence of previously unknown (social) networks.
The underground forums used by cybercriminals can be viewed as a social net-
works [53]. They frequently only know each other online via pseudonyms, as
they communicate with each other in public threads or via private messages.

The research has been focused on how these underground forums operate.
Motoyama et al. [53] characterised different underground forums based on the
social networks they formed and how individuals gain and lose trust. They found
that forum members gains trust by participating in traiding and discussion threads.
However, the forums they inspected did not appear as “organised”, as there were
few people that issued a friend request to other users. The goal for these fo-
rums is to expand the knowledge based of their members, through learning in
interactions with other members.

Modeling the interconnections of social networks has recently attracted atten-
tion in computer science [51]. A social network can be represented by graph-
based structures, where users are represented by vertices and the relationships
between users are represented by edges.

IBM i2 Analyst’s Notebook

Some popular tools such as EnCase, FTK, The Sleuth Kit, Redeye and Volatility is
regularly found in a digital forensic investigator’s toolbox. Also, there is the IBM
i2 Analyst’s Notebook [60]. It is a visualisation tool that tries to optimise the
value of big data. It allows analysts to collate, analyse and visualise data from
disparate sources while reducing the time required to discover key information
in complex data [60].

The author got a demonstration of Analyst’s Notebook at a law enforcement
agency, where they used it for visualisation and analysis. Analyst’s Notebook
treat each entity (vertice) and link (edge) as the same objects, with some small
variation in the attributes they use. However, its power comes from the abil-
ity that these objects can be of anything that has some relationship of some
kind. Since around three or four years, this software has come with built-in al-
gorithms for measures of centrality found in the research area of SNA. These
algorithms are degree, betweenness, closeness and eigenvector. They are discussed
in Section 2.4.1. Also, the software also has the k-core algorithm, which is a
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maximum group of actors who are connected to k other members of the group.

Graph construction

Graph construction algorithms are popular in social media and the area of la-
bel propagation problems [43], such as the automatically labelling of photos or
videos. The problem consists of labelling large amounts of images based on a few
images with labels. Graphs are often employed as an effective representation for
label propagation [61]. The images are expressed as vertices and edges reflect
similarity between them.

It has to the author’s knowledge not been studied how graph construction
algorithms can be used for digital forensics, more specifically in the area of net-
work analysis.
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4 Choice of methods

In the previous chapters, an introduction to the problem, theory on central top-
ics, and the current state of the art have been presented. The following chapter
discusses the methodology applied to answer the defined research questions.
This includes a selection of different methods, a justification for this selection,
as well as the expected results. This chapter clearly states how the activities are
performed, ensuring repeatability for future researchers.

4.1 Dataset

Relational data can be collected or randomly generated in numerous ways. Col-
lected data is usually obtained from archival records to recover information such
as transactions (for the study of economic transactions), or using questionnaires
or interviews to get relations between friends (for the study of social relation-
ships). The nature of the study determines the methods of data collection, the
size of the population and the appropriate analytic methods [62].

The concern of which actors to include in the study determines the population
(boundary) of interest. Sometimes it is impossible to use analytic measurements
on the entire population as the population becomes large. In such situations, a
sample of the entire population may be taken from the set. The population issue
is relatively easy to deal with in a closed set of actors, such as in all employ-
ees in a small business or faculty in an academic department. For other studies,
the boundary of the set of actors may be difficult (if not impossible) to deter-
mine [62].

Social networks form different structures depending on how people inter-
act. For example, Twitter has a directional follower-followee relationship since
the follower does not have to reciprocate the followee, whereas Facebook can
be viewed as undirected as they require a confirmation of friendship requests.
Therefore, it is important for the dataset to be representative of the environment
under investigation.

Because of the difficult nature of getting hold of a real dataset over organised
criminal groups, the available options for this thesis is to generate a dataset
randomly or to find a pre-existing dataset.

4.1.1 Randomly generated datasets

Initially, we had the option of generating a random graph to construct a network
consisting of actors operating in the CaaS business model. In the research of
Newman et al. [63] they constructed random graphs and compared them to
real-world network data.
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Their research showed that in some cases, the constructed graph was in agree-
ment with real-world networks. In other graphs, the agreement was poorer. This
suggests that there was “some presence of additional social structures in the net-
work that was not captured by the random graph, or social forces at work that
shape the network” [63].

Since randomly generated graphs sometimes have a poor representation of
real-world network data, we are more interested in networks that already con-
tain the social forces that shape it.

4.1.2 Enron-email corpus dataset

Due to privacy and legal restrictions, it is very tough to get hold of large and
realistic datasets. The exception is the Enron corpus dataset, as it contains e-
mails generated by 158 senior executives of the Enron Corporation [64], which
was acquired by the Federal Energy Regulatory Commission (FERC) during the
criminal investigation of Enron Corporation.

After the investigation, FERC made the decision to publish the Enron e-mails
from senior executives from 1998 through 2002. The version FERC had posted
the e-mails in an unusable format, Leslie Kaelbling (at Massachusetts Institute
of Technology), purchased the raw files and spent the time to clean up the data
– removing duplicates, organising folders and taking out the remaining private
attachments and e-mails [65].

Figure 39: Enron logo

The original dataset with 517 431 e-mails have
gone through some numerous revisions to clean and
structure the data, and it was eventually reduced
down to 252 759 by 2004. It is available at http:
//www.cs.cmu.edu/~enron/. Professor William W. Co-
hen posted the dataset result from 2004 at Carnegie
Mellon University (CMU) [66]. This dataset of 2004 by
Cohen is widely accepted by many researchers [65].
This version excludes attachments, and some mes-
sages have been deleted upon the request of Enron
employees. The Enron dataset has been applied to get
a better understanding of how language is used and
how social networks function, and it has improved ef-
forts to uncover social groups based on e-mail commu-
nication [59].

The original dataset is distributed into 3500 subfolders and is, therefore, dif-
ficult to use in computational tasks. We will, therefore, need it to be in a more
computational-friendly format, as in a Database Management System (DBMS).
Shetty and Adibi [67] from the University of Southern California processed the
Enron corpus in 2004 and released a MySQL 4.0 dump version. We will be using
their MySQL database, with 252 759 e-mails generated from 151 employees. The
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MySQL dump is available from https://www.cs.purdue.edu/homes/jpfeiff/
enron.html [68].

Enron database schema
Figure 40 shows the schema of the database that shows it contains four tables.

employeelist provides information about all of the 151 employees, including
full name and e-mail address.

message contains information about all e-mail messages, including the sender,
subject, date and time sent, message content and other information.

recipientinfo contains information about which e-mail message was sent, the
e-mail address of the recipient and the type (TO, CC, BCC).

referenceinfo contains information about all those messages that have been
referenced after being sent once, either as a forward or reply [67].

The syntax from MySQL v4.0 and v5.7 has changed, generating an error when
trying to import their MySQL dump. More specifically, the cause of this error is a
keyword in “TYPE=MySIAM” from v4.0. By changing this line to “ENGINE=MySIAM”
makes it compatible with v5.7 and solve the importing error.

Database engine MySIAM do not support foreign keys, so the arrows in Fig-
ure 40 illustrates where this field can be found in other database tables. The
database engine should be converted to InnoDB to support foreign keys, but this
is not necessary for this thesis.

Figure 40: Enron database schema
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Enron corpus validity
As previously mentioned, the Enron corpus has gone through numerous revi-
sions to clean the database of duplicate messages, e-mail addresses, removal of
personal information and by request from previous Enron employees [64, 65].
These revisions could have resulted in leaving the corpus in an invalid state.
However, with the corpus being widely studied and highly accepted by many
researchers, it is evaluated to low risk that the corpus is in an invalid state.

Removal of employees and their messages from table “employeelist” and “mes-
sage” is seen as a reduction of the population boundary for the SNA. Moreover,
therefore, not a risk of producing incorrect results in the analysis.

The removal of messages between employees would affect the resulting graph.
The edge weights get distorted and will not show the correct frequency of sent
and received messages. It is hard to verify as the original dataset, with over
3500 subfolders, as it is very tough to process. To the best of our knowledge, the
Enron corpus is valid and will produce a result that reflects the reality within
Enron corporation.

4.2 Pre-processing

To explore and understand how factors (such as relationships on an individual
and group level) might have impacted the network, we need to extract and anal-
yse this information in an effective and efficient way.

The MySQL database is one step in the direction of a structure that is easier
to analyse. However, this format contains unnecessary information such as e-
mail message text, and additional processing is required to extract the number
of messages between Enron employees.

We first wanted to go through each e-mail in the “message” table and extract
to and from e-mail addresses and the frequency. We then had to separate e-mail
addresses ending with “@enron.com”, since the table also contain other e-mail
addresses for people outside of the Enron corporation. As they are outside of the
Enron coorporation, they are also outside of the population of interest for this
research. After processing around 26% of the e-mails the program had generated
a graph with over 5000 vertices after 6 hours.

Since this creates a graph with too large of a population, we had to select
a sample to represent Enron. We choose the 151 employees listed in the table
“employeelist” to represent our sample. Selecting this sample makes it easier to
calculate the centrality measures and to find their position (job title) within the
company. Including the employees position makes it easier to evaluate the results
from the SNA.

It is assumed that talented actors in a network tend to have more central
roles for the communication. It can be compared to the CaaS business model
with criminals of different positions and expertise. Criminals with more desirable
expertise will have more attention whereas criminals with less expertise will get
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less attention.

4.3 Experimental design

This section discusses how this thesis will answer each of the research questions.

4.3.1 Features for identification of individuals and groups

SNA centrality measures are the best indication of how important an actor is.
Other levels of analysis (see section 2.4.1) is first interesting to analyse when
you only have small groups to analyse (such as k-cliques). The challenge lies
in fully understanding the different measures and knowing the context of how
to interpret them. This thesis will examine the various centrality measures on
the Enron dataset. The goal is to evaluate each measure for their ability to list
important actors. The reason for this target is to quickly prioritise a digital foren-
sics investigation on those actors and to continue analysis on those actors with
different levels of analysis.

Limitations
The limitation of this analysis is that the e-mail messages was captured over
a four-year period. So the results can be skewed towards the amount of time
they were active. People that got inactive for some reason (sick leave, pregnancy,
changed positions, left the company, and so forth) might affect the result of the
analysis. One additional restriction is that the script to extract SQL data only
looks at sending e-mails, whereas e-mail communication is more dynamic than
one sender and one reciever. Finally, the dataset might poorly representat a real
underground forum, so it can only be used as a proof-of-concept.

Results
The results of this analysis will directly impact the next section as it will limit the
available features to construct a graph. Features that take the other actors into
consideration will be selected for the graph construction. This process of select-
ing the best features will hopefully aid in the graph construction to understand
similarities between actors. It is important to understand the different available
features before continuing with other experiments.

4.3.2 Graph-based construction techniques for digital forensics

The goal of this research question is to find whether graph construction algo-
rithms can help in a digital forensic investigation. To achieve this aim, a set of al-
gorithms is implemented (see section 2.4.2). The goal is to see whether changes
in graph construction algorithms produces a reliable graphical representation
that could be used in an investigation. The algorithms are selected to evaluate
how they can be applied to digital forensic investigations rather than finding an
algorithm that performs the best.
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Limitations
Due to limited time and complexity of particular algorithms, we will be unable
to test all the algorithms described in section 2.4.2. Because of this, we limit our
experiments to neighbourhood construction algorithms. The reason we do not
implement other algorithms is that we could not find previously implemented
algorithms, and it takes time to implement each algorithm and to making sure
that it work as intended. Implementing more algorithms would also increase the
time needed to understand, compare and analyse each result. The specific graph
construction algorithms that are tested in our experiments is the following: e-
neighborhood and k-NN.

Results
The results of this experiments are not necessarily complex to analyse, but to un-
derstand. The reason for this statement is that human interaction is governed by
hidden and complex social forces or behaviours. These social forces impact the
algorithms used for building the graphs. The goal is to understand how (some)
graph construction algorithms can help in a digital forensic investigation. It is
expected that these algorithms can assist in the fast identification and prioritisa-
tion of important actors in a network. e-neighborhood is expected to produce the
least reliable results, as it is heavily dependent on the selected distance (e). k-NN
is supposed to produce a more reliable result. However, it can produce irregular
graphs.
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5 Experiments

In the previous chapters, we have discussed the motivation and contribution of
the thesis, theory on central topics, and the current state of the art in topics
related to our research questions. Further, we presented our methodologies for
solving the research questions. In the following chapter, we will give a descrip-
tion of the experimental environment we used, to provide a guideline for future
research and repeatability. We also provide a description of the experiment pro-
cess and the expected results, in addition to discussing the software implemen-
tations responsible for executing the experiments. Further, we review the results
related to each research question, and a summary is provided at the end to list
the findings.

5.1 Experimental design and environment setup

To adequately represent and analyse the information contained in the corpus
we need to extract the necessary data from the database. The data of interest
are the Enron employees as vertices and the e-mail exchange as edges. The re-
lation among and between the actors in this dataset are reflected in the e-mail
exchanged between employees and the content of those messages. In this thesis,
we concentrate on the extraction and explorative analysis of exchanged e-mails.

From a sociological perspective, the relational data in the corpus is considered
multi-mode and multi-time. In other words, it contains multiple modes (rela-
tions) such as friendship, mentor/mentee and colleague to name a few. It also
contains relations over an extended period of time, where these relations could
change.

We need a data format that can handle rich network data to represent ade-
quately and analyse the information provided within the corpus. That also can
be used as input to multiple analysis tools that we consider using. We chose to
use Graph Exchange XML Format (GEXF) as the data format because it meets
our requirements. GEXF is a file format similar to Extensible Markup Language
(XML) that can represent an arbitrary number of vertex sets and graphs. Also, to
represent our required vertices and edges, it can also represent their attributes
such as node label, position, colour and edge weight. Listing 5.1 provide an ex-
ample of the GEXF file format.
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<?xml ver s ion=" 1.0 " encoding="UTF−8" ?>
<gexf xmlns=" h t t p : //www. gexf . net /1.2 d r a f t " ve r s ion=" 1.2 ">

<graph mode=" s t a t i c " de fau l tedgetype=" d i r e c t ed ">
<nodes>

<node id=" 0 " l a b e l=" Hel lo " />
<node id=" 1 " l a b e l="Word " />

</nodes>
<edges>

<edge id=" 0 " source=" 0 " t a r g e t=" 1 " />
</ edges>
</graph>

</ gexf>

Listing 5.1: Hello world GEXF example

The advantage of using the GEXF format over other data formats is that many
tools, such as Networkx and Gephi, already support this format. Because of its
similarity to the XML data format, it can easily be changed to any other required
format with an XML parser. Also, the Python package Networkx can read and
write this file format, including numerous other output formats. GEXF files for
the representation of communication networks require data from three tables in
the database: employeelist, message and recipientinfo.

All database work and data extraction were performed on a MacBook Pro
machine, with Python scripts that we wrote for this purpose. In addition to the
laptop computer, we also had a desktop computer available. However, it was
not necessary as the laptop had the necessary processor and memory capacity.
Table 4 provide a list of the equipment and Table 5 provide a list of the software
required for these experiments. Python was used to extract the Enron dataset,
run the SNA and graph construction.

MacBook Pro (Retina, mid 2012) Desktop computer
Processor 2,3 GHz Intel Core i7 3,41 GHz Intel Core i7-6700
Memory 8 GB 1600 MHz DDR3 32 GB 1300 MHz DDR4
Storage 250 GB SSD Flash Storage 500 GB SSD Flash Storage
Operating system OS X 10.11.5 Windows 10 and Ubuntu 15.10

Table 4: Experiment equipment

The Python script sqlexp.py (seen in Appendix E) was created to export the
necessary information from the dataset. At the start of the script, it generates a
list of all the Enron employees found in the employeelist table. It uses their e-
mail addresses to find messages (from table message) that have been sent from
the employee e-mail address to other employees in the same dataset sample.
E-mail correspondence has three distinct types: TO (direct to the recipient), CC
(copy to a recipient) and BCC (blind copy to a recipient). We are interested in
each e-mail type since it is a direct action taken by the employee. Therefore, we
do not discriminate on the type of e-mail correspondence. An edge is added to
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each recipient of the e-mail message, where the weight is the number of e-mail
messages between the same sender and receiver.

Module Version
Python 2.7.10
Scipy 0.16.0
Numpy 1.9.2
Networkx 1.11
MySQLdb 1.2.5
gexf 0.2.2
lxml 3.5.0
libxml2 2.7.0

Table 5: Python modules requirements

This script also generates the vertex
colours use throughout this thesis, de-
scribed in Section 5.3.1. The colouring
is based on each employee’s job po-
sition within the hierarchy of Enron,
seen in Figure 42. The output from
sqlexp.py (Appendix E) is one graph
and one digraph, which will be used
for SNA. Be aware that this output
also includes self-loops (messages sent
to oneself), but these edges are discarded before the analysis.

5.1.1 Dataset

Figure 41 show the adjacency matrix over the dataset. It was created with Pro-
tovis1, where a blue square indicates an edge between two actors and a white
square indicates the lack of an edge. Protovis also organises the matrix accord-
ing to some clustering algorithm. The usage of this algorithm and its parameters
could not be changed by the researcher, but the figure correctly orders the cells
according to the employee IDs.

Figure 41 indicates that the network is sparse. More actors increase the chance
for the network to be sparse, but in this case, it can also be because of the
extended period for when the e-mail messages were collected (little over four
years). Also, some employees could have quit, or been replaced by other em-
ployees, and therefore no edge was created between those actors. It can also be
because of the fact that corporations are organised, and people will usually have
contact with others within the same department.

1http://mbostock.github.io/protovis/
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Figure 41: Enron undirected adjacency marix (tool: Protovis)

Results from script sqlexp.py (Appendix E):

• File undirected_colour.gexf with 151 vertices and 1612 edges
• File directed_colour.gexf with 151 vertices and 2235 edges

The naming scheme for these files reflects the direction of the graph, and “colour”
refers to the colour scheme for the Enron job title hierarchy in Figure 42.

5.1.2 Dataset validation

Validating the datasets was manually done by randomly selecting a few Enron
employees, and check that their count of sent e-mails correlated with the edge
weight in the dataset. This validation process was done through querying the
database through the MySQL shell. The process of validating the digraph was
to insert the sender’s employee ID on line three and the receiver’s ID on line
seven into the query in Listing 5.2. For this example, the sender is ID 9, and the
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receiver is ID 67. So a valid digraph will have an edge from 9 to 67 with weight
310 whereas a valid graph will add to this weight with the edge weight from 67
to 9 with weight 386, so a total weight of 696.

The script would have generated a valid directed dataset if the result of this
query was equal to the edge weight that corresponds to the sender and receiver
IDs. For undirected dataset, the query has to be run two times, and the results
added. One time with the sender’s ID on line three and receiver’s ID on line
seven, and vice versa for the second time.

1 SELECT COUNT( rva lue ) FROM r e c i p i e n t i n f o WHERE mid IN (
2 SELECT mid FROM message WHERE sender LIKE (
3 SELECT Email_ id FROM employee l i s t WHERE eid LIKE 9
4 )
5 )
6 AND rva lue IN (
7 SELECT Email_ id FROM employee l i s t WHERE eid LIKE 67
8 ) ;
9

Listing 5.2: Query to validate dataset

Before using the datasets generated from the sqlexp.py for SNA, self-loops
can be removed without affecting the results. As one’s relationship to themselves
are not interesting. The affected vertices with self-loops are:

2 3 6 7 11 13 14 15 16 17 18 20 23
26 27 28 29 30 31 32 33 35 36 37 38 39
40 42 44 45 48 49 51 52 53 55 57 58 59
61 65 66 67 68 69 70 71 72 73 75 76 78
79 80 84 91 92 97 98 100 101 103 105 107 109
111 112 113 114 116 120 122 123 125 126 127 128 129
131 135 137 139 140 142 149 150

Table 6: Enron employees with self-loops

Also, some centrality measures require the graph to be connected (discussed
in 2.3.2). A graph is connected when there is an edge between every pair of
vertices, so there is no unreachable vertex. Employee 116 is the only one that is
isolate from the others in both the graph and digraph. Since she is both isolate
and has self-loops, she is removed from the dataset before SNA.
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5.2 Experiment execution

This section discusses the Python scripts used to execute the experiments. First,
the SNA is performed and analysed with the Python package Networkx. Then
the feature extraction and graph construction are analysed. Experiment results
are first discussed in Section 5.3.

5.2.1 Features for identification of individuals and groups

The first research question is “which features can be used to identify important and
influential individuals within a network?” The goal is to use graph methods to
separate important individuals from the rest of the group so that digital forensic
investigators can focus their investigation on a subset of actors. SNA have been
used in sociological studies to analyse social structures in a network. We want
to apply them for analysis of organisational structures to find actors with higher
positions within a network. From the discussion of SNA in background theory
and previous work, it has been shown that SNA can be used to achieve this goal.

The Python script sna.py (found in Appendix F) utilises the Python package
Networkx. It is a package for the creation, manipulation, and study of the struc-
ture, dynamtics, and functions of complex networks [69]. The selection of the
programming language was because of the author’s familiarity with it. Also, the
Python language has many advanced and popular third-party packages such as
SciPy, Numpy and Networkx. SciPy and Numpy will be discussed in the next
subsection.

The Networkx package has implemented all of the algorithms for centrality
measures (covered in 2.4.1) that are used in SNA. Also Networkx has several
other centrality measures such as katz, load, current flow closeness, current flow
betweenness and communicability betweenness. These new measures are also
included in our SNA to analyse their effect of reaching our research goal. Table 7
lists the different measures analysed for both graph and digraph.

We selected the centrality measures that could measure an actors position
within a network as features. Standard measures of centrality in SNA is de-
gree, in-degree, out-degree, betweenness, closeness and eigenvector, and they
are therefore included as default in the analysis. However, the new centrality
measures need a justification for their inclusion. As each algorithm measures
different qualities of each actor, this list gives a justification for including the
measures:

Degree is the most simple and basic measure of centrality. It is the number of
edges incident to the vertex and is not considered a powerful measure.
Therefore, it can only be seen as a measure that emphasises an actor’s
activity in a network, in other words, their involvement in a network.

In-degree is the number of edges adjacent from the vertex. When edges are
associated with some positive aspect such as friendship or collaboration,
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Directed graph Undirected graph
Degree Degree
In-degree
Out-degree
Closeness Closeness
Betweenness Betweenness
Eigenvector Eigenvector
Katz Katz
Load Load

Current flow closeness
Current flow betweenness
Communicability betweenness

Table 7: Centrality measures analysed by sna.py (Appendix F)

in-degree is often interpreted as a form of popularity [38].

Out-degree is the number of edges adjacent to the vertex. When edges are asso-
ciated with some positive aspect, out-degree is often interpreted as a form
of outgoing or social person [38].

Betweenness quantifies the number of times a vertex acts as a bridge along the
shortest path between two vertices. It emphasises the potential control over
information flow in the network.

Closeness is the distance (shortest path) from all the other actors. Thus, the
more central a vertex is, the lower its total distance from all other vertices.

Eigenvector is the measure of the influence of a vertex in a network. It measures
an actor’s involvement in a network based on how many edges their alters
have. Eigenvector is often interpreted as a form of popularity; an actor is
considered important when they also have many important friends.

Katz is a generalisation of the eigenvector centrality. Eigenvector works well if
the (di)graph is (strongly) connected. It counts the number of total walks
between actors, where each connection is given a weight based on the walk
length. It measures an actor’s involvement in a network based on the total
amount walks between a pair of actors. This is an additional centrality
measure that Networkx lists, and could potentially be better to achieve our
goal.

Load is the fraction of all shortest paths that pass through that node. It is slightly
different from betweenness. Networkx lists this as an additional centrality
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measure, and could potentially be better to achieve our goal. It can also be
compared with betweenness centrality.

Current-flow closeness is a variant of closeness centrality based on effective
resistance between nodes in a network [69]. It is also known as information
centrality. Networkx lists this as an additional centrality measure, and its
results can be compared with closeness centrality.

Current-flow betweenness is a variant of betweenness centrality which uses an
electrical current model for information spreading, whereas betweenness
centrality uses shortest paths [69]. Networkx lists this as a centrality mea-
sure, and its results can be compared with betweenness centrality.

Communicability betweenness uses the number of walks connecting every pair
of vertices as the basis of a betweenness centrality measure [69]. Networkx
lists this as an additional centrality measure, and its results can be com-
pared with betweenness centrality.

The SNA script analyses both files resulted from the exportation script, as
discussed in Section 5.1. The (di)graph is read from a file, and Networkx converts
it into a dataformat that it can process. Note that this method also preserves the
colours for the employee job titles.

The SNA process begins after removing isolates and vertices with self-loops.
It analyses the dataset for each of the measures of centrality, by following the
list provided in Table 7. Each centrality value is saved to a data structure that
assigns it to the correct vertex index and holds the ordering of the values. This
data structure is easier to write to a Comma-Separated Values (CSV) file.

However, the script will only display the 30 highest values to the terminal
window. This number was selected based on these criteria:

• Our goal is to find features that can be used to identify important and influ-
ential individuals within a large group of people. It is most convenient to
select a subset from the set of actors, which allow digital forensic investiga-
tors to focus on those actors. Therefore, selecting 30 actors to analyse allow
us to evaluate if the feature is consistent with finding actors according to
our goal.
• Some actors with lower organisational positions might occopy the high-

est values when the limit is set to a low number. Therefore, the centrality
measure could be incorrectly evaluated as worse than other measures.
• Setting the limit to a higher number will go against our goal of finding a

subset of focal actors, as it provides a longer list of actors to investigate. It
will, therefore, occupy more of an investigator precious time.

The output from the sna.py script (Appendix F) is two CSV files for one graph
and one digraph dataset; the first is called undirected_features.csv and the latter is
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called called directed_features.csv. We chose to use CSV files as they provide the
necessary order for vertices and their features. Each vertex is therefore repre-
sented with one row in the CSV file. Also, each row can also be seen as a feature
vector (discussed in 2.2.2) for each vertex. These files will be used as input for
the graph construction algorithms.

We discussed in Section 2.2.2 about Feature quality measures that it was nec-
essary to evaluate each feature because not all features provide equal quality to
the problem at hand. By selecting a few different measures of centrality, for two
types of graphs, it can increase the likelihood of finding features that best cap-
tures the most important actors in a network. From previous research, we expect
that betweenness centrality best captures them [38]. Because of the similarities
of centrality measures for each graph type, we also assume that their ability to
identify important actors will be quite similar between the types of graphs.

5.2.2 Graph-based construction techniques for digital forensics

The second research question is “how can graph construction techniques be ap-
plied in digital forensics for identifying targets?” The goal is to use graph con-
struction techniques to aid an investigator through the target identification pro-
cess. Several types of graph construction techniques have been applied to the
problem of label propegation [43], but with the limited time, we are going to
focus on the neighbourhood approaches: k-NN and e-neighbourhood. Each of
these technqiues is implemented in the Python script neighborhood_approaches.py
(seen in Appendix G).

The “no free lunch” theorem (discussed in Section 2.2.4) states that there is no
technique or function that outperform the other techniques or functions for all
tasks. Therefore, we are implementing two graph construction techniques and
using several distance measures to compare and evaluate them to each other.
The plan was to also include the b-matching algorithm. However, it proved chal-
lenging as it takes into account more constrains than the two other techniques.
The implementations for each algorithm had to be tested to be verified that they
worked as described in Section 2.4.2.

The script uses the Python packages SciPy and Numpy. Numpy2 contains a
powerful N-dimensional array that is used to contain the feature vectors. More-
over, SciPy3 is a popular package that contains scientific computing tools for
Python; it includes several functions to calculate the distance between two fea-
ture vectors.

For this experiment, we are interested in functions that can compute the dis-
tance for numerical feature vectors (no-boolean vectors). The functions had to
not contain additional parameters beyond the feature vectors, as we are not so
familiar with the Enron dataset that we can customise the parameters to optimise

2http://www.numpy.org
3http://www.scipy.org/
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the results. More specifically, we selected these eight distance functions: braycur-
tis, canberra, chebyshev, cityblock (Manhattan), correlation, cosine, euclidean and
hamming.

The script begins by parsing the two files, directed_features.csv and
undirected_features.csv, with feature vectors generated from the SNA script dis-
cussed in the previous section. These feature vectors are saved in aN-dimensional
Numpy array, where N correspond to the number of features in Table 7. It also
saves the vertex colours used in this thesis, to be consistent of the colour coding
which follows the Enron hierarchy in Figure 42.

Then, for each distance function, it generates a graph based on the graph
construction algorithm. For e-neighbourhood method, there is an edge between
two vertices when their feature vector distance is less than a specifided value
e. Smaller values for e is more preferable, as it will be easier to connect similar
actors. Whereas with higher values for e, actors will be connected to more actors
and thus be more difficult to analyse. We select and evaluate the values 0.01,
0.02, 0.03, 0.04, 0.05 and 0.06 for e.

For k-NN method, there is en edge between one vertex and its k most similar
actors for a specified value k. Again, smaller values for k is more preferable, as
it does not connect as many actors together. k-NN method guarantees that each
vertex have at least k out-bound edges, however, each vertex is not guaranteed
to have k in-bound edges. The in-bound edges are most likely in a range equal
to or higher than zero. We select and evaluated the values 1, 2 and 3 for k.

For each technique, the verification process was to randomly select a vertex
u. We calculated the distance between u and all the other vertices and put these
values into a list. Then, we sorted this list in ascending order, with smaller val-
ues first of the list. For either e-neighbourhood or k-NN graph to be constructed
sucessfully, the vertex u has to be connected to the appropriate number of closest
(similar) actors. For e-neighbourhood this would be all actors below a threshold
e, and for k-NN this would be its closest k neighbours. We compared the dis-
tance lists for vertex u with the appropriate neighbourhood approach and dis-
tance function. After trying several randomly selected vertices we could not find
one inconsistent constructed graph.

The output from this Python script is several GEXF files with the filename-
pattern: graph direction_value_construction method_distance function.gexf. Where
“graph direction” refers to the two graph types graph and digraph, “value” to
the total nine values for e and k, “construction method” for the two methods
e-neighbourhood and k-NN, and “distance function” to the eight distance func-
tions. This results in 2 ∗ 9 ∗ 8 = 144 graph and 144 digraphs used for analysis.

The script allows for both binary and weighted output of graph edges. We ex-
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pect to see some similarities in graph and digraphs, with the digraph performing
better since it contain more information in its edges. However, we are going to
focus on the binary graph output for our analysis.

Since this script produces similarity graphs, where similar feature vectors for
actors are connected to other similar actors, we expect to find some pattern in
the resulting graph. We think that this pattern will allow us to prioritise actors in
a better way than the lists generated by the SNA. Because it takes into account
all of the features, which is the centrality measures. There should be little vari-
ation in the selection of distance measure as they all find the similarity between
1-dimensional feature vectors. However, a distance measure that divides or seg-
regates the actors according to their centrality or that best prioritises the actors
will fit our goal the best.

5.3 Experiment results

Before conducting the experiments, as outlined in Chapter 4, we can import
both the graph and digraph into Gephi4. It is an open-source software program
for visualisation and exploration tool for graphs. The graph has 151 vertices and
1612 edges, and the digraph has 151 vertices and 2235 edges. The illustration
for both of these graphs is presented in Appendix B.

The experiment results for each research question is presented in this section.
First, it present the results from the SNA, where the focus is on the centrality
measures to prioritise actors before a digital forensic investigation. An investiga-
tor will be more efficient with their time by focusing on a few focal actors, rather
than trying to study the complete graph. Then the results from the various graph
construction algorithms are presented. Where we focus on how these algorithms
can be used with features extracted from the SNA process.

5.3.1 Results of Social Network Analysis

In this subsection we provide an overview of the results from SNA on the data
subset, which consists of 151 Enron employees from the employeelist table. The
result is from SNA for both graph and digraph, and a description of generating
these graphs was provided in Section 5.1. This section is presenting the summary
from the SNA result, but the results is presented in their entirety in Appendix C.

To evaulate how centrality measures can help in the identification of interest-
ing or important persons, we will also need their job title (or position) within
the company. The complete list of Enron employees, including their job titles,
used for this experiment can be viewed in Appendix A. A description of the pro-
cess for gathering these job titles is found in the same appendix. Table 8 show a
summary of the Enron employee job titles, where 138 employees had their job
positions listed, and only 13 was not included in the list. These 13 employees
will be treated as Not Available (N/A) during the analysis.

4https://gephi.org
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Position # Employees Percent
CEO 4 2,90%
President 4 2,90%
Vice President 21 15,22%
Director 12 8,70%
Managing Director 2 1,45%
In-House Lawyer 1 0,72%
Manager 12 8,70%
Trader 11 7,97%
Specialist 0 0.00%
Analyst 0 0.00%
Employee 35 25,36%
N/A 36 26,08%
Total 138 100.00%
Empty 13
Total 151

Table 8: Number of individuals per job title

43 employees (28,48% of 151)
with job titles in the Enron dataset
have what we regard as a high posi-
tion within the company. We assume
that higher positions are considered
to be more important or influential
within the network than employees
with lower positions. A summary of
the Enron employee list is found in
Table 8. Whereas the lower positions
represent the majority of the dataset
with 108 employees (71,52% of 151).
Where 13 of them have unknown job
titles.

It is to be expected that lower job positions is more represented in the dataset,
as they fulfill more of the jobs of an organisation. Therefore, the centrality mea-
sures should find active and important actors with higher positions. The distinc-
tion between high and low positions is based on the Enron hierarchy present in
the work from Gilbert [70]. Figure 42 illustrate colour coding for the different
job titles. The colours in this figure is used throughout this thesis, including the
generation of graphs.

Figure 42: Enron hierarchy of job titles [70]

The identification of high positions is preferable over low positions. Also,
within high positions, the identification of CEO and president is preferable over
vice president and director (or managing director).

We chose to inspect the top 30 highest ranking actors for each measure of
centrality. A summary of the top 30 graph features are found in Table 9, and the
full results can be found in Appendix C, in Tables 20, 21, 22, 23 and 24.

The summary in Table 9 show the SNA results for a graph. The first column
shows the centrality measures selected for the graph (discussed in Section 5.2.1).
The columns from two to six show the amount of high positions that was found
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Centrality measure C P VP D MD Total % top 30 % 43 HP
Degree 2 3 5 1 1 12 40.00 27.906976744
Closeness 2 3 8 1 1 15 50.00 34.88372093
Betweenness 2 2 6 0 1 11 36.67 25.581395349
Eigenvector 0 1 7 0 1 9 30.00 20.930232558
Katz 2 2 2 1 0 7 23.33 16.279069767
Load 2 2 7 0 1 12 40.00 27.906976744
Current flow closeness 0 2 7 0 0 9 30.00 20.930232558
Current flow betweenness 1 1 8 0 0 10 33.33 23.255813953
Communicability betweenness 3 2 10 3 1 19 63.33 44.186046512

Table 9: High level positions found by centrality measures for undirected graph

for that measure, where the job titles have been reduced to initials. Where “C”
stands for CEO, “P” for president, “VP” for vice president, “D” for director and
“MD” for managing director. Column seven show the total amount of high posi-
tions actors found by the centrality measure, with column eight displaying the
percentage of the top 30 list that holds high positions. At last, coloumn nine (43
HP, where HP is “high position”) hold the percentage of how many of those 43
we consider high position that are within those top 30 actors.

Centrality measure C P VP D MD Total % top 30 % 43 HP
Degree 3 3 10 0 1 17 56.67 39.534883721
In-degree 1 3 11 2 1 18 60.00 41.860465116
Out-degree 3 2 8 1 0 14 46.67 32.558139535
Closeness 3 3 11 0 1 18 60.00 41.860465116
Betweenness 1 3 8 1 0 13 43.33 30.23255814
Eigenvector 0 2 8 0 1 11 36.67 25.581395349
Katz 1 1 1 6 0 9 30.00 20.930232558
Load 1 3 9 0 0 13 43.33 30.23255814

Table 10: High level positions found by centrality measures for directed graph

Table 10 presents the SNA results for a directed gprah. The description of
columns from the previous table is also applied to this table. All results of digraph
SNA analysis is found in Appendix C, in Tables 25, 26, 27 and 28.

5.3.2 Results of graph-based construction techniques

In this subsection, we provide an overview of the results from graph construc-
tion. The result has been 144 graphs and 144 digraphs, and a description of
generating these graphs was provided in Section 5.2.2. This section is present-
ing the summary of the graph construction neighbourhood approaches, but the
result is presented in its entirety in Appendix D.

In the previous sections, the relationship between vertices had always been
some communication between them. However, for graph construction approaches
this is no longer the case. The relationship between vertices now represents the
similarity between their feature vectors. This similarity is calculated by several
distance functions, as listed in Section 5.2.2. Table 11 show the minimum and
maximum distance over all feature vectors.

An initial evaluation of these values indicates that some minium values has
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Graph Digraph
Distance measure Min Max Min Max
Braycurtis 0.0135893026624 0.813441493401 0.00831285077795 1.50270295281
Canberra 0.518823901069 9.27871034156 0.436380271907 7.93760289983
Chebyshev 0.013422818792 0.782908318632 0.006711409396 0.900192949238
Cityblock 0.0350083484866 2.91255273106 0.00949945718664 2.50614556103
Correlation 0.000112208245271 0.599616961817 2.51215982707e-05 1.93466245485
Cosine 7.08791772255e-05 0.480578481897 1.87554821347e-05 1.89933105094
Euclidean 0.0169881059058 1.20179754992 0.00692017593907 1.09143782882
Hamming 0.5 1.0 0.5 1.0

Table 11: Distance measures minimum and maximum values

some value higher than our smallest e distance, which is e = 0.01. We expect
there to be an edge between some arbitrary vertices u and v when the distance
is less than e. Therefore, the minimum values suggest that the distance functions
Correlation and Cosine will start to produce a similarity graph the beginning,
where e = 0.01. The other distance measures, Braycurtis, Chebyshev and Eu-
clidean will start producing similarity graphs when e = 0.02. Whereas Canberra
and Hamming will never produce similarity graphs as their minimum distance is
0.5 and above.

The same initial evaluation can also be done for the digraph. Where Corre-
lation and Cosine will start by producing the similiarity digraphs, and the other
distance measures will soon follow. Except for Canberra and Hamming as they
have a minimum distance of 0.5 and above.

Tables 14, 15, 14, 15 and 16 show the summary of the different distance
functions for both e-neighbourhood graph and digraph. These tables confirm
our initial evaluation of how the distance measures could behave.

Graph
0.01-neighbourhood 0.02-neighbourhood 0.03-neighbourhood

Distance Nodes Edges Weak Nodes Edges Weak Nodes Edges Weak
Braycurtis 0 0 0 5 3 2 35 20 16
Canberra 0 0 0 0 0 0 0 0 0
Chebyshev 0 0 0 19 11 9 54 41 20
Cityblock 0 0 0 0 0 0 0 0 0
Correlation 140 758 5 149 1883 5 149 2830 3
Cosine 146 999 4 149 2321 3 149 3496 2
Euclidean 0 0 0 5 3 2 21 12 10
Hamming 0 0 0 0 0 0 0 0 0

Table 12: Graph construction summary e-neighbourhood part 1
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Graph
0.04-neighbourhood 0.05-neighbourhood 0.06-neighbourhood

Distance Nodes Edges Weak Nodes Edges Weak Nodes Edges Weak
Braycurtis 68 53 21 95 125 16 121 245 13
Canberra 0 0 0 0 0 0 0 0 0
Chebyshev 94 119 16 118 242 14 126 387 8
Cityblock 5 3 2 7 4 3 15 8 7
Correlation 149 3683 2 150 4493 1 150 5137 1
Cosine 149 4518 1 150 5374 1 150 6089 1
Euclidean 38 25 15 78 61 24 104 138 19
Hamming 0 0 0 0 0 0 0 0 0

Table 13: Graph construction summary e-neighbourhood part 2

Digraph
0.01-neighbourhood 0.02-neighbourhood

Distance Nodes Edges Weak Strong Nodes Edges Weak Strong
Braycurtis 6 6 3 3 20 22 9 9
Canberra 0 0 0 0 0 0 0 0
Chebyshev 16 18 7 7 66 146 13 13
Cityblock 2 2 1 1 8 8 4 4
Correlation 134 3406 5 5 147 6022 6 6
Cosine 143 4218 7 7 145 7038 3 3
Euclidean 4 4 2 2 30 40 12 12
Hamming 0 0 0 0 0 0 0 0

Table 14: Digraph construction summary e-neighbourhood part 1

Digraph
0.03-neighbourhood 0.04-neighbourhood

Distance Nodes Edges Weak Strong Nodes Edges Weak Strong
Braycurtis 42 64 15 15 74 192 13 13
Canberra 0 0 0 0 0 0 0 0
Chebyshev 104 616 5 5 116 1210 4 4
Cityblock 15 16 7 7 34 46 13 13
Correlation 147 8102 4 4 148 9782 4 4
Cosine 148 9368 4 4 149 11048 4 4
Euclidean 77 196 12 12 95 512 4 4
Hamming 0 0 0 0 0 0 0 0

Table 15: Digraph construction summary e-neighbourhood part 2

Digraph
0.05-neighbourhood 0.06-neighbourhood

Distance Nodes Edges Weak Strong Nodes Edges Weak Strong
Braycurtis 97 428 6 6 115 754 7 7
Canberra 0 0 0 0 0 0 0 0
Chebyshev 127 2224 5 5 134 3068 5 5
Cityblock 53 104 14 14 72 180 10 10
Correlation 149 11192 4 4 149 12354 4 4
Cosine 149 12588 3 3 149 13726 3 3
Euclidean 111 906 5 5 121 1500 6 6
Hamming 0 0 0 0 0 0 0 0

Table 16: Digraph construction summary e-neighbourhood part 3

Evaluating the k-NN approach is different to evaluating e-neighbourhood, as
k-NN guarantees k outgoing-edges. Since there is no boundary for selecting the
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nearest neighbour, only that its the k closest neighbour, they should produce
graphs with more edges and more connected graphs. Tables 17, 18 and 19 show
the summary of the different distance functions for both k-NN graph and di-
graph. They show that k-NN produces more edges, however, all the actors clus-
ters together to form smaller connected components. It is first when we increase
k that the components gets fewer, but they contain more actors. See 2-NN and
3-NN in Table 17 compared to 1-NN.

Graph
1-NN 2-NN 3-NN

Distance Nodes Edges Weak Nodes Edges Weak Nodes Edges Weak
Braycurtis 150 107 43 150 210 4 150 302 2
Canberra 150 114 36 150 210 3 150 307 1
Chebyshev 150 101 49 150 206 5 150 306 5
Cityblock 150 110 40 150 213 2 150 303 2
Correlation 150 109 41 150 210 5 150 309 3
Cosine 150 108 42 150 208 5 150 308 4
Euclidean 150 107 43 150 209 4 150 302 4
Hamming 150 123 27 150 239 3 150 343 1

Table 17: Graph construction summary k-NN

Digraph
1-NN 2-NN

Distance Nodes Edges Weak Strong Nodes Edges Weak Strong
Braycurtis 150 150 34 116 150 300 2 75
Canberra 150 150 40 110 150 300 2 61
Chebyshev 150 150 40 110 150 300 4 62
Cityblock 150 150 35 115 150 300 1 75
Correlation 150 150 42 108 150 300 5 64
Cosine 150 150 40 110 150 300 4 76
Euclidean 150 150 42 108 150 300 4 62
Hamming 150 150 26 124 150 300 3 99

Table 18: Digraph construction summary k-NN part 1

Digraph
3-NN

Distance Nodes Edges Weak Strong
Braycurtis 150 450 1 37
Canberra 150 450 1 21
Chebyshev 150 450 1 33
Cityblock 150 450 1 35
Correlation 150 450 2 40
Cosine 150 450 1 42
Euclidean 150 450 2 32
Hamming 150 450 1 50

Table 19: Digraph construction summary k-NN part 2

An intial analysis of the k-NN approach shows an improved graph structure
which includes all the actors. There is small differences in the number of edges
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they generate. However, the hamming distance generate more edges than the
rest. This is propably caused by its unusual minimum and maximum values found
in Table 11. Where the minimum is 0.5 and maximum is 1.0. k-NN graph, where
k = 1, also produces more disconnected components, which can negatively affect
the prioritisation. However, k-NN graphs show more advantages for implemen-
tation into digital forensic processes.

5.4 Experiment discussion

The experiments conducted in this chapter tested whether an actors communi-
cation behaviour can be used to identify them according to their organisational
job positions and whether graph construction could be used for this purpose.
This section discusses each experiment result and research question separately.
First, we discuss the best features for identifying individuals of importance. Then
we discuss the best methods for graph-based construction techniques for digital
forensic.

5.4.1 Features for identification of individuals and groups

The purpose of this experiment is to see whether SNA methods can find many
of the interesting actors within a network of communicating actors. We evaluate
how “interesting” an actor is based on their job title, where we assume that
job titles can reflect over to desired services provided by entities in the CaaS
model. Therefore, we consider more central job such as a CEO or president will
to be more interesting than (for example) managers and employees. The features
that are used to identify the most interesting actors has been the measures of
centrality provided by SNA process. The full result of this analysis is found in
Appendix C.

After extracting the features for each Enron employee, we listed each feature
individually, with the top 30 highest values for each of them. We have separated
the results between graph and digraph, we will, therefore, do the same for this
discussion. As they the graphs differ in structure, features and produces differ-
ent results. We first discuss the results for the graph, before discussing digraph
results.

In SNA of the graph, we observed that almost all of the features detected most
of the CEOs and presidents. However, the features communicability betweenness
and closeness contained most of the central job positions. For communicability
betweennness, there was a total of 19 actors with central job titles, where three
of them was CEOs and two presidents. It did also list more vice presidents and
directors than any other feature. For closness, there was a total of 15 actors with
central job titles, where two of them was CEOs and three presidents. It listed
the same number of vice presidents as current flow betweenness, however, it is
ranked higher as it listed more actors with central job positions.

In SNA of the digraph, we observed that its features had detected many of the
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same actors as the analysis of the graph. Those features was degree, out-degree,
closeness, betweenness and eigenvector. However, the ordering of the actors was
different. In-degree was the only that had a different set of actors displayed. The
features closeness and degree contained most of the central job positions. For
closeness, there was a total of 18 actors with central job titles, where three of
them was CEOs and three presidents. Also, it listed as many vice presidents as
in-degree, which is more than any other feature. For degree, there was a total of
17 actors, where three of them was CEOs, three presidents, ten vice presidents
and one managing director. In-degree is listed with more high positions actors.
However, degree found more of the job titles we are interested in.

Even though the centrality measures had a good detection rate of high job
positions, some actors were either employees or had been listed as N/A. For
example, the top two actors for each feature was either employee (ID 122) or
N/A (ID 150). A closer inspection of actor with ID 150 showed that it was an
assistant to president [71]. This shows that SNA can also find secondary targets,
which can be taken down to cause a major disruption to the operations for the
president. In addition, employee ID 122 is Chief Operating Officer (COO) and is
responsible for the daily operation of the company, and usually routinely reports
to a CEO.

From previous work, we expected to find most of the high ranking actors in
betweennness centrality. Since it has been argued over its capability to capture
the most important actors in a network [38, 37]. However, this assumption was
proved to be false according to our experiment and dataset. It found 11 actors
in the analysis of the graph and 13 actors for the digraph. Performing almost as
bad as the worst features, eigenvector, katz and load.

We expected that there would be a difference between the two types of graphs
as e-mail communication do not have to be reciprocated. However, it was not
found any significant difference between graph and digraph when comparing
them to each other. Digraph performed slightly better as it found on average
47,08% high position actors in its top 30 list, whereas graph found 39,58% in its
lists.

5.4.2 Graph-based construction techniques for digital forensics

It is hard to read and compare each actor from the numbers and tables pro-
duced by SNA. Therefore, the purpose of this experiment is to see whether graph
construction algorithms can find a better way of prioritising interesting actors.
Where we prioritise according to the results from the SNA. The features used
to construct the graphs is the measures of centrality, according to Table 7. As
the graph construction resulted in 288 graphs, where 144 is graphs and 144 is
digraphs, we have to limit the selection of graphs to analyse. A selection of the
analysed graphs is found in Appendix D.

The e-neighbourhood approaches for graph and digraph, where e = {0.01,
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0.02, 0.03, 0.04, 0.05, 0.06}, was not included in this analysis. The reason for this is
that they produce sparse and disconnected graphs, with many few components.
A graphical example produced by e-neighbourhood is found in Figure 43. Sparse
and disconnected graphs are difficult to analyse for some reasons:

• Not all actors are represented in the graph, only those actors with a simi-
larity smaller than e.
• Increasing the value of e resulted in more dense and connected graphs,

however, the edges gets connected to many other actors.
• The selection is therefore highly dependent on the selection of the value e.

For sparse and disconnected graphs, see Figure 43, the analysis difficulty lies
in not knowing how the different components relate to another. It is necessary
to know how the disconnected components are connected to have a prioritised
ordering of actors. In the opposite case with a dense and connected graph, the
difficulty is that it contains too many edges between the actors. It is, therefore,
difficult to differentiate which actor is most similar to other actors.
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Figure 43: e-neighbourhood Euclidean, where e = 0.04, connected components

For the reasons mentioned above, k-NN approach will be better suited for
prioritising actors as it includes all the actors in the graph. However, there is still
2 ∗ 3 ∗ 8 = 48 k-NN graphs, where 24 is graphs and 24 is digraphs. This produces
more over 40 pages with graphs for analysis and appendix section, so we are
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going to focus on the analysis of (undirected) graphs. Therefore, by reducing
the analysis to one graph type we can compare the different values for k and
each distance metric. The digraphs can be produced by following the steps in
this chapter.

It is important to note that the relationship between the vertices do not reflect
e-mail communication between the employees, but rather the similarity of the
feature vectors. Where k-NN produces an edge between a feature vector and its
closest k neighbour vectors. In Section 2.2.1 we discussed that a small distance
was equivalent to large similarity. This similarity graph can be used to under-
stand the whole picture given by the SNA tables and values.

Lists produced by SNA are good for an digital forensic investigator to follow.
However, they should not rely on following one list that has worked in the past.
As each measure of centrality capture one dimension of the communication pat-
tern, there would be variations when some features work better than others.
Therefore, a list loses the context of the other features, whereas the advantage
with a similarity graph is that it takes into account all features when generating
the graph.

According to Table 17, 1-NN produces disconnected graphs, where the small-
est number of disconnected (weak) componets was 27. This is the same problem
as with e-neighbourhood approach, where the problem was of knowing the re-
lations between the components. However, when increasing to 2-NN, the graph
become more connected with a maximum of five components. We are going to
focus our discussion on the 2-NN graph produced by Cityblock (Manhattan) with
two components, where the graph is found in Figure 59.

The top five actors, ID 53 (CEO), 107 (President), 122 (Employee), 127 (CEO)
and 150 (N/A) are connected into a tight cluster in all the 2-NN graphs, indepen-
dent of the distance measures. These actors also appear together frequently in
measures degree, closeness, betweenness, load and communicability between-
ness. This suggests that the graph construction algorithm k-NN have captured
the patterns found via SNA. Figure 44 illustrate one such component, from 2-NN
Cityblock graph.

53107

122

127150

Figure 44: Top five actors component in 2-NN Cityblock
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Figure 45 is a subgraph of the 2-NN graph, with Cityblock distance function.
Note that the distances between vertices in this figure does not reflect the actual
distance, it is only for illustration purposes. The complete graph can be found in
Figure 59. It shows one complete graph component, and only parts of a second
component, illustrated by the empty edges from vertices 21 and 59.

Figure 45: Investigation path

Our suggestion is that an investigator selects a start vertex based on expe-
rience or via our suggestion, to start with unexplored vertices from the SNA
lists. We suggest starting with closeness centrality list, which is the best feature
for both graph and digraphs to list actors with central positions. With this sug-
gestion, we start with the first unexplored actor, with label 150, indicated with
number one (1.) in the figure. The red edges is a proposed path that they can
take to continue to investigate unexplored actors. This path is arbitrary, but it
can be improved with adding weights to the edges, to illustrate the similarity
between two actors. With weights is involved, we propose that an investigator
follows the path with least weight as those actors are more similar.

When an investigator has visited each vertex in a connected component, we
suggest that they check the SNA lists again to find the next unexplored actor. In
this example, the next actor, with label 17, in indicated with number two (2.)
in the figure. Because of the irregular graph generated by the k-NN approach,
it is difficult to know which path to select as next actor. This could be solved
by selecting the smallest weight in a weighted graph, or use an algorithm that
guarantees regular graphs such as b-matching. Again, the red edges is a proposed
path for an investigator.

Best distance measures are Braycurtis, Cityblock, Cosine and Euclidean, as
they provided graphs with more chains than graphs with paths. As this will allow
an investigator to follow one specific path rather than choosing between different
paths.
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6 Discussion, conclusion and further work

The previous chapters have presented theory and state of the art related to our
research questions. Further, we presented our methodologies for solving the re-
search questions, and the results of the experiments. The experiments focused
on the issues of identifying important actors within a communication network.
This chapter provides discussions of the implications as well as a summary of
the thesis. The theoretical and practical implications of the obtained results are
discussed before ending the discussion with a conclusion.

6.1 Theoretical implications

We wanted to demonstrate how people of importance could be identified via
the communication patterns in a network. This identification was performed by
analysing the e-mail communication inside the Enron corporation. We are not
the first to use SNA centrality measures on the Enron dataset. However, to our
knowledge we are the first to perform a systematical evaluation of the perfor-
mance of each measure of centrality. Furthermore, we suggest a graph-based
method for prioritising actors according to their importance.

Research question 1

Which features can be used to identify important and influential individuals within a network?

We performed a literature review to determine the features that would high-
light important individuals within a communicating network. SNA centrality
measures were proposed as a solution to this problem. This thesis has used algo-
rithms and methods from graph theory and SNA to develop the proposed method
of identifying important actors. It includes several types of centrality measures,
where each of them provides a different solution to what it means to be impor-
tant.

The current situation for a digital forensic investigation is to manually analyse
a suspicious underground forum to study actor’s behaviours and decide who is
important to that network. It can be concluded from the experiments that some
SNA methods are better for finding actors with importance to the network.

The proposed algorithms are based on literature and have a strong theoretical
foundation. They are widely used in several different research areas, most sig-
nificantly found in sociological studies. So the investigators can benefit from the
use of SNA methods as they fulfil the criteria in the Daubert standard. However, it
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is important to highlight that our dataset contained structures of an organisation
and that we assume these same structures are found in organised crime.

The proposed centrality measures have been shown to automate the forensic
analysis to collect intelligence about which individuals is considered important in
a communication network. The remaining task of an investigator is to perform a
manual investigation on each entity, to determine which individual they should
prioritise to take down. They can benefit from a list of this sort, so they can
prioritise other entities when there are jurisdictional or other issues during the
investigation. Finding secondary entities to take down is a matter of following
the same prioritisation list and find frequent communication parties with the one
they intend to disrupt.

Also, these techniques can give a greater insight into the investigation as they
help to identify entities who may not have been part of the original investigation.

Research question 2

How can graph construction techniques be applied in digital forensics for identifying targets?

From the different SNA centrality measures, we observed that some features
performed better for the task of identifying important individuals. A challenge,
however, is that none of the features alone will provide a reliable indicator of
importance, instead, they can be combined for greater accuracy. Graph construc-
tion algorithms, more specifically neighbourhood approaches, have been shown
to create similarity graphs.

To improve the identification process, with respect to the “no free lunch” the-
orem, we have conducted experiments using a variety of neighbourhood ap-
proaches and distance functions. Our method provides a better approach to the
identification of targets to take down. An investigator can better follow a simi-
larity graph’s edges to identify actors of importance since it takes into consider-
ation all the features. However, the problem of finding the right starting point
remains. Therefore, we suggest they should use experience and the list from SNA
as a starting point in the graph.

6.2 Practical recommendations

The dataset used in this thesis was the Enron corpus, which is a popular dataset
commonly used in scientific research. The Enron corporation contained original
organisational structures and positions. It is uncertain if these assumptions about
the network structure can be transferred to underground forums, such as those
found in Darknet. As the dataset is over 900 MB, containing over two hundred
thousand e-mail messages, it is possible that it may contain inconsistencies. In
addition, our proposed methods do not cover all necessary aspects of being used
in a complete digital forensic solution.

Changes in the criminal landscape require changes in the law enforcement
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skill sets. They can no longer afford to ignore the less visible, but no less damag-
ing, phenomena such as cybercrime. However, it is no longer possible or efficient
to seek to identify and prosecute all suspects for these crimes. Our proposed
method have the potential to be a more efficient way to disrupt or prevent cy-
bercriminal activities.

The experiments should be easy to reproduce as both the dataset and soft-
ware tools is open source and free to use. The tools we used was mostly our
Python scripts that used Networkx, Numpy, SciPy and other popular third pack-
ages. With tightening budgets, these algorithms and methods allow to effective
routinely investigate these underground forums. In addition, the common foren-
sic tool IBM i2 Analyst’s Notebook already provide some of the SNA algorithms.
We suggest that closeness centrality should be used for the analysis as it found
most of the employees with higher positions within the undirected and directed
version of the Enron dataset.

The type of dataset is very important when using SNA algorithms. We are not
aware of any other ways to interpret their results, other than the sociological
explanation of them, discussed in Section 2.4.1. Therefore, it is important to
consider the dataset used with this approach. For example, entities with star-like
(or fan-like) structures should have their neighbours removed to avoid gener-
ating an incorrect result. Star-like entities are graph structures with one vertex
and k leaves, and they will, therefore, get an artificial high centrality score. The
structure is known as a “star” in graph terminology.

6.3 General discussion

Graph-based algorithms and methods have been successfully used in digital foren-
sic for malware analysis and network forensics. We used graphs for their power
of abstraction, to solve the issue of identifying important actors within a commu-
nication network. The advantage with graphs is that vertices gain the expressive
power of edge weight such as frequency and direction. This allows a graph to
express the overall pattern of the network, which can be studied by investiga-
tors. However, the problem with this approach is that vertices loose the e-mail
content, but this could be included in the vertices as features.

We successfully identify actors with high job titles in our experiment. Unfortu-
nately, the dataset used in our experiment might not be a good substitution of an
underground forum. Real organisations have a hierarchy they follow, whereas it
has been suggested that cybercriminals are more loosely structured. Therefore,
the problem with our approach is that it is unknown that real organisational
structures can relate to such forums or entities within the CaaS business model.
The SNA approach will also not discover if an entity has used a middle-man for
his activities, without an investigation of those suspects.

Entities can hide behind multiple pseudonyms and across multiple under-
ground forums. Our approach does not take this situation into consideration.
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However, it should be possible to correlate entities in underground forums of
different sizes. Comparisons of networks with different sizes is discussed in Sec-
tion 2.4.1. Also, entities with multiple pseudonyms could be identified through
analysing their area of interest, expertise or via their communication pattern.

The “garbage in, garbage out” principle (discussed in Section 2.2.3) says that
feeding data of poor quality into the algorithm will produce a result of poor qual-
ity. Therefore, the preprocessing of the data play a central role in how data can be
understood. We used the Enron dataset for our experiments, and we focused on
undirected graphs in our experiment with graph construction algorithms. How-
ever, the process of identification and prioritisation could benefit from knowing
the direction of similarity and how similar they are (weight). An investigator
could then focus on the direction of the edge, and select those actors which are
most similar to previously analysed actors. Therefore, this research could benefit
from the analysis of directed graphs.

6.4 Conclusion

Anonymisation techniques allow cyber criminals to communicate with peers in
digital undergrounds known as Darknets. Where the small group of technology-
skilled individuals provide their services to potentially thousand other criminals,
that do not possess the same level of technological skills. Since they often spe-
cialise in different tasks, they can also provide service to skilled criminals. There-
fore, the initial goal of the thesis was to present a way of analysing such unknown
underground forums for digital forensic investigators. To combat the threat from
these forums and the challenge of analysing them.

In this thesis, we have shown that SNA centrality measures and similarity
graph construction can aid investigators in this process of identification. From
the research questions in Chapter 1, we first wanted to identify features that
would identify important actors found in the smaller population of the CaaS
business model. We assumed their identification is equivalent to the hierarchical
structure found in organisations and corporations. Our assumption is based on
the similarity between skilled individuals and employees with higher job posi-
tions. They are both regarded as having control over information in a communi-
cation network. In addition to being more sought after for their expertise.

The features we selected was the centrality measures in SNA, discussed in
related work [37] and [56] as a solution for gathering intelligence about com-
munication networks. We used analysed these centrality measures for an undi-
rected and directed version of the Enron dataset. For the graph, we identified
communicability betweenness and closeness as the best features. Where 63.33%
and 50.00% of the first 30 employees had higher job titles. For the graph, it
was in-degree and closeness that was the best features. Where both features had
60.00% of the first 30 employees had higher job titles. Our results show that
the application of centrality measures find higher ranking actors within patterns
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found in the communicating network.
The second research question was related to how graph-based methods can

improve the identification and prioritisation of entities. We used the neighbour-
hood approaches e-neighbourhood and k-NN, each with eight distance functions.
This graph improves on SNA centrality measures as it takes into account all of the
features, to produce a similarity graph. Our result shows that e-neighbourhood
worked poorly as a way to prioritise actors, as it produced graphs with many
disconnected components and not all actors were included. Therefore, only sim-
ilar (under the threshold e) was included, and this does not necessary equate to
higher job positions. In addition, the disconnected components were difficult to
analyse how they would relate do each other.
k-NN proved easier to analyse as it contained all the actors, where each actor

was guaranteed to have k out-going edges. When k = 1 it had the same problem
as e-neighbourhood that created a graph with many disconnected components.
However, when k = 2 the graph had become more connected, with maximum
five components. We recomment the use previous experience and lists generated
from the SNA process to identify a vertex for a starting point of investigation.
After this initial starting vertex, the graph allow the investigator to follow the
graph edges to other similar actors.

Law enforcement agencies are in the blind when they encounters an unknown
network, such as those found in the Darknet. It is a challenging task to begin to
understand the network, to identify targets of importance with the goal of stop-
ping their criminal activity. Our work shows this work can be effectively done
through analysing graphs, that represents such underground networks. It has
contributed towards the goal of finding central actors within a communication
network. We have bridged the gap between law enforcement agencies and cy-
bercriminals by applying graph-based algorithms and methods on real world
networks, and by proposing an improved way of prioritising users within those
networks.
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6.5 Further work

Based on our experimental results and proposed graph-based method for priori-
tising important actors, we propose several further research areas. We hope that
our research motivates future work.

Differentiate between e-mail types, and including message content
We did not distinguish between e-mails types sent as TO, CC or BCC when cre-
ating our dataset. As these types are used differently, they should, therefore, not
be treated equally. Sending an e-mail to another actor should count more toward
the edge weight than copy or blind-copy.

In addition, the message content could also introduce a score to the edge
weight. Where more casual messages had less weight than more important mes-
sages, thereby allowing the edge weights to reflect more of the real communica-
tion between actors. We propose the investigation on whether different weight-
ing of e-mail types can result in increased accuracy of SNA methods.

Weighted voting of SNA centrality measures
In our experiments, we assumed that all measures of centrality were equally
good at finding important actors within a network. However, our experiment
showed that they were not equally in finding important actors. Therefore, we
propose to investigate each centrality measure to produce weights that can be
applied to the edges. We recommend that this be done through a dataset that
already contain an evaluation of how important the actors is.

Dynamically changing communication graph
In our experiments, we used e-mail communication over four years. Human in-
teraction is dynamically and always changing, and our experiment does not re-
flect these changes. We propose the investigation on whether dynamical graphs
can better reflect the intercommunication between actors. Gephi already has sup-
port for viewing dynamically graphs. We have not looked into this, but it should
require some additional attributes for the nodes and edges such as timestamp or
time-period. Additional attributes such as geolocation, gender, language, and so
forth could also provide valuable information for an investigator.

Real underground forum dataset
The Enron dataset is an old e-mail communication dataset. However, it is the
best-case scenario that an investigator can get, with all the e-mail messages be-
tween individuals available. We propose the investigation of a worst-case sce-
nario, where only public available discussion threads are analysed. During this
thesis, there was a database leakage of a real hacker forum called Nulled.io,
in addition to datasets available at www.azsecure-data.org/dark-web-forums.
html. We recommend that these new datasets should be used for this research.
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Communication over different types of mediums
Technology allows for multiple ways of communication, such as Voice over IP
(VoIP), instant messaging and forum threads. We propose the investigation of
finding how these types of communication medias differ concerning SNA. This
is to effectively prepare for new types of technology, and to develop new tech-
niques for analysing them.

Other graph construction algorithms
We focused on a particular set of neighbourhood approaches for graph construc-
tion. There exist many different algorithms; particularly b-matching could pro-
duce a better result for the prioritisation of important actors. We propose the
investigation on whether other graph construction algorithms does have a bet-
ter effect. We recommend that the implementation of these algorithms should be
publicly published so the community can easily use them in other research areas.

Method for path selection
We have used neighbourhood approaches in our experiments. Since they are
known to produce irregular graphs, this make it harder for an investigator to
select the path they want to investigate. An irregular graph is where each vertex
not necessarily have equal number of edges. We propose the investigation on
finding methods for path traversal that best accomplishes the goal of prioritising
entities. We recommend to use a weighted similarity graph, so to select a path
with the smallest distance (equivalent to largest similarity). Alternatively, using
b-matching algorithm as it will produce a regular graph.

Graph construction for file reconstruction
Graph construction proved a good way to illustrate similarities between feature
vectors. As file (fragment) reconstruction is mostly based on clustering, from
ML, it has to compare each fragment to all objects in a cluster. A similarity graph
would produce paths that a computer can follow to reconstruct files, potentially
reducing the number of comparisons and time for reconstruction.
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A Enron employee list

This list of Enron employees contains all employee ID and label (which is their
Enron e-mail address). Center for Imaging Science (CIS) have the same list
including each employees position within the company, available from http:
//cis.jhu.edu/~parky/Enron/employees. Some employees was (as what we
believe) sensored with the string “xxx” after the employee e-mail address (or
username). They are converted to N/A in this table. Other employees had full e-
mail address/username, first and last name but “N/A” in their position within the
company. We suspect they were not recorded when the table was first created.
This list over employees follow the list found in the Enron database table.
These employees are not listed in the database employeelist table:

andrew.lewis@enron.com Director margaret.carson@enron.com N/A
brenda.whitehead@enron.com N/A mark.e.haedicke@enron.com Managing Director
clint.dean@enron.com N/A mark.haedicke@enron.com Managing Director
daren.farmer@enron.com Manager mark.taylor@enron.com Employee
darron.giron@enron.com Employee michele.lokay@enron.com Employee
david.delainey@enron.com CEO mike.mcconnell@enron.com N/A
debra.bailey@enron.com N/A m..scott@enron.com N/A
d..martin@enron.com Vice President m..smith@enron.com N/A
e.taylor@enron.com Employee m..tholt@enron.com Vice President
f..keavey@enron.com Employee patrice.mims@enron.com N/A
fletcher.sturm@enron.com Vice President paul.thomas@enron.com N/A
gretel.smith@enron.com N/A phillip.allen@enron.com Manager
hunter.shively@enron.com Vice President phillip.love@enron.com N/A
james.steffes@enron.com Vice President randall.gay@enron.com N/A
jeffrey.hodge@enron.com Managing Director richard.sanders@enron.com Vice President
jeffrey.shankman@enron.com President rob.gay@enron.com N/A
j.harris@enron.com N/A sandra.brawner@enron.com Director
j..kaminski@enron.com Manager steven.kean@enron.com Vice President
joannie.williamson@enron.com N/A susan.pereira@enron.com Employee
john.forney@enron.com Manager s..ward@enron.com N/A
john.lavorato@enron.com CEO t..hodge@enron.com Managing Director
judy.hernandez@enron.com N/A thomas.martin@enron.com Vice President
kevin.presto@enron.com Vice President vince.kaminski@enron.com Manager
larry.campbell@enron.com Employee v.weldon@enron.com N/A

These employees from the database table was not recorded in the CIS employee
list:

45, 56, 76, 84, 89, 92, 93, 109, 110, 118, 122, 127, 143, 147, 148

They are listed as blank in this table, but treated as not available.
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# Label Position # Label Position
1 robert.badeer@enron.com Director 77 john.zufferli@enron.com Vice President
2 kevin.hyatt@enron.com Director 78 andy.zipper@enron.com Vice President
3 tracy.geaccone@enron.com Employee 79 w..white@enron.com N/A
4 teb.lokey@enron.com Manager 80 charles.weldon@enron.com N/A
5 richard.ring@enron.com Employee 81 judy.townsend@enron.com Employee
6 taylor@enron.com Employee 82 d..thomas@enron.com N/A
7 theresa.staab@enron.com Employee 83 j..sturm@enron.com Vice President
8 w..pereira@enron.com Employee 84 geoff.storey@enron.com Director
9 stephanie.panus@enron.com Employee 85 geir.solberg@enron.com Employee
10 k..allen@enron.com Manager 86 cara.semperger@enron.com Employee
11 mark.whitt@enron.com N/A 87 holden.salisbury@enron.com Employee
12 t..lucci@enron.com Employee 88 eric.saibi@enron.com Trader
13 marie.heard@enron.com N/A 89 andrea.ring@enron.com N/A
14 b..sanders@enron.com Vice President 90 cooper.richey@enron.com Manager
15 monika.causholli@enron.com Employee 91 dutch.quigley@enron.com N/A
16 michelle.cash@enron.com N/A 92 m..presto@enron.com Vice President
17 mike.grigsby@enron.com Manager 93 phillip.platter@enron.com Employee
18 lynn.blair@enron.com N/A 94 vladi.pimenov@enron.com N/A
19 lindy.donoho@enron.com Employee 95 joe.parks@enron.com N/A
20 kimberly.watson@enron.com N/A 96 scott.neal@enron.com Vice President
21 keith.holst@enron.com Director 97 matt.motley@enron.com Director
22 joe.quenet@enron.com Trader 98 l..mims@enron.com N/A
23 d..steffes@enron.com Vice President 99 albert.meyers@enron.com Employee
24 m..forney@enron.com Manager 100 errol.mclaughlin@enron.com Employee
25 jay.reitmeyer@enron.com Employee 101 jonathan.mckay@enron.com Director
26 frank.ermis@enron.com Director 102 larry.may@enron.com Director
27 elizabeth.sager@enron.com Employee 103 a..martin@enron.com Vice President
28 darrell.schoolcraft@enron.com N/A 104 mike.maggi@enron.com Director
29 danny.mccarty@enron.com Vice President 105 m..love@enron.com N/A
30 bill.rapp@enron.com N/A 106 h..lewis@enron.com Director
31 benjamin.rogers@enron.com Employee 107 louise.kitchen@enron.com President
32 shelley.corman@enron.com Vice President 108 jeff.king@enron.com Manager
33 kim.ward@enron.com N/A 109 j.kaminski@enron.com Manager
34 juan.hernandez@enron.com Employee 110 john.hodge@enron.com Managing Director
35 joe.stepenovitch@enron.com Vice President 111 john.griffith@enron.com N/A
36 a..shankman@enron.com President 112 c..giron@enron.com Employee
37 jane.tholt@enron.com Vice President 113 doug.gilbert-smith@enron.com
38 barry.tycholiz@enron.com Vice President 114 chris.germany@enron.com Employee
39 dana.davis@enron.com Vice President 115 lisa.gang@enron.com N/A
40 tori.kuykendall@enron.com Trader 116 mary.fischer@enron.com Employee
41 l..gay@enron.com N/A 117 j..farmer@enron.com Manager
42 martin.cuilla@enron.com Manager 118 chris.dorland@enron.com Manager
43 f..campbell@enron.com Employee 119 mike.carson@enron.com Manager
44 john.arnold@enron.com Vice President 120 f..brawner@enron.com Director
45 harry.arora@enron.com Vice President 121 robert.benson@enron.com Director
46 w..delainey@enron.com CEO 122 sally.beck@enron.com Employee
47 brad.mckay@enron.com Employee 123 rick.buy@enron.com Manager
48 tana.jones@enron.com N/A 124 don.baughman@enron.com Trader
49 susan.scott@enron.com N/A 125 eric.bass@enron.com Trader
50 susan.bailey@enron.com N/A 126 s..shively@enron.com Vice President
51 j..kean@enron.com Vice President 127 kenneth.lay@enron.com CEO
52 kay.mann@enron.com Employee 128 kam.keiser@enron.com Employee
53 lavorato@enron.com CEO 129 jeff.skilling@enron.com CEO
54 greg.whalley@enron.com President 130 sean.crandall@enron.com
55 paul.y barbo@enron.com 131 ryan.slinger@enron.com Trader
56 jason.wolfe@enron.com N/A 132 mike.swerzbin@enron.com Trader
57 jason.williams@enron.com N/A 133 diana.scholtes@enron.com Trader
58 jim.schwieger@enron.com Trader 134 craig.dean@enron.com Trader
59 monique.sanchez@enron.com N/A 135 bill.williams@enron.com N/A
60 kevin.ruscitti@enron.com Trader 136 stacy.dickson@enron.com Employee
61 matthew.lenhart@enron.com Employee 137 drew.fossum@enron.com Vice President
62 peter.keavey@enron.com Employee 138 mark.guzman@enron.com
63 scott.hendrickson@enron.com N/A 139 mary.hain@enron.com
64 tom.donohoe@enron.com N/A 140 lysa.akin@enron.com
65 e..haedicke@enron.com Managing Director 141 steven.harris@enron.com
66 stanley.horton@enron.com President 142 dan.hyvl@enron.com Employee
67 sara.shackleton@enron.com N/A 143 eric.linder@enron.com
68 rod.hayslett@enron.com Vice President 144 steven.merris@enron.com
69 richard.shapiro@enron.com Vice President 145 robin.rodrigue@enron.com
70 michelle.lokay@enron.com Employee 146 steven.south@enron.com N/A
71 matt.smith@enron.com N/A 147 carol.clair@enron.com
72 mark.mcconnell@enron.com N/A 148 chris.stokley@enron.com
73 jeff.dasovich@enron.com Employee 149 kate.symes@enron.com Employee
74 james.derrick@enron.com In-House Lawyer 150 liz.taylor@enron.com N/A
75 gerald.nemec@enron.com N/A 151 rosalee.fleming@enron.com
76 debra.perlingiere@enron.com N/A
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B Complete graphs

Figure 46: Complete graph of population sample
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Figure 47: Complete digraph of population sample
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C Social network analysis results

Position ID Degree Position ID Closeness
N/A 150 0.4966442953020134 N/A 150 0.6592920353982301
Employee 122 0.4899328859060403 Employee 122 0.645021645021645
CEO 53 0.42953020134228187 CEO 53 0.6286919831223629
President 107 0.4228187919463087 President 107 0.6208333333333333
Employee 27 0.40268456375838924 CEO 127 0.6182572614107884
Manager 17 0.2953020134228188 Manager 17 0.5752895752895753
Employee 128 0.2885906040268456 Vice President 92 0.5643939393939394
N/A 49 0.2885906040268456 Vice President 38 0.5601503759398496
Vice President 92 0.26174496644295303 Vice President 96 0.5498154981549815
Vice President 96 0.2550335570469799 N/A 49 0.5498154981549815
Vice President 38 0.2483221476510067 Employee 73 0.5498154981549815
Employee 73 0.2483221476510067 President 54 0.5457875457875457
President 54 0.22818791946308725 Vice President 44 0.5437956204379562
Vice President 44 0.22818791946308725 N/A 48 0.5418181818181819
Vice President 78 0.22818791946308725 Vice President 78 0.5398550724637681
Vice President 126 0.21476510067114093 Manager 123 0.5379061371841155
N/A 48 0.21476510067114093 Employee 128 0.5379061371841155
N/A 59 0.2080536912751678 CEO 129 0.5379061371841155
Manager 10 0.2080536912751678 Manager 10 0.5359712230215827
CEO 129 0.20134228187919462 N/A 33 0.5340501792114696
Vice President 83 0.20134228187919462 Managing Director 65 0.5340501792114696
N/A 33 0.20134228187919462 Vice President 69 0.5340501792114696
N/A 75 0.20134228187919462 Vice President 83 0.5321428571428571
Vice President 137 0.19463087248322147 Employee 27 0.5302491103202847
Employee 27 0.19463087248322147 N/A 75 0.5283687943262412
Director 101 0.19463087248322147 President 66 0.5265017667844523
Managing Director 65 0.19463087248322147 N/A 59 0.5246478873239436
President 66 0.19463087248322147 Director 21 0.5228070175438596
N/A 57 0.18791946308724833 Vice President 23 0.5209790209790209
Manager 123 0.18120805369127516 Vice President 126 0.5209790209790209

Table 20: Graph degree and closeness centrality results
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Position ID Betweenness Position ID Eigenvector
N/A 150 0.12741903205662952 N/A 67 0.5484543984046928
Employee 122 0.0771999546616338 N/A 48 0.49700038653622225
CEO 53 0.07128931996362767 N/A 147 0.39518085824653326
CEO 127 0.06087954853442533 N/A 13 0.30432015715026534
N/A 49 0.05480578002058777 N/A 50 0.3010855876166442
President 107 0.049624345900325634 Employee 9 0.29458298665378435
N/A 135 0.032366349181675066 Employee 6 0.08423610844462812
Employee 73 0.03046819220287483 Employee 27 0.0756057981648209
N/A 33 0.02565356746845891 Employee 136 0.07040947636419569
Manager 17 0.023740618469121476 N/A 57 0.05817183899861572
Employee 128 0.02106796329345721 President 107 0.0344705160349727
N/A 75 0.019034444664106517 Employee 73 0.02910497832110247
President 66 0.018280869446014737 Vice President 69 0.02693984537623267
Vice President 38 0.018181740027529956 N/A 33 0.017416032369916897
N/A 140 0.01682247962835146 Vice President 23 0.016513291438288048
Vice President 68 0.015177805015212351 Employee 52 0.01466135593533686
N/A 48 0.014017748147200963 N/A 150 0.01270954296430585
Vice President 92 0.012127292160119813 Vice President 44 0.010769154042500612
Employee 52 0.01197444925337974 Managing Director 65 0.00871332127231574
Vice President 96 0.011049030820347389 Employee 142 0.008179348615640637
Employee 27 0.01070099147481135 Vice President 92 0.007965403632577193
Managing Director 65 0.010421681352084381 Vice President 78 0.00796453147706711
N/A 139 0.009844761717010667 Vice President 38 0.007733705214378049
N/A 57 0.008603987492661204 N/A 91 0.00772721408987753
N/A 76 0.008491717923483395 N/A 139 0.006496199473090178
Vice President 23 0.0077490378271448815 Vice President 51 0.005264396884965995
Vice President 32 0.007729347919215445 Employee 122 0.004340854098370539
N/A 59 0.007592212592856629 Manager 17 0.003889894483466084

Table 21: Graph betweenness and eigenvector centrality results
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Position ID Katz Position ID Load
Director 106 0.27083515497575944 N/A 150 0.12202317376736826
Manager 108 0.1943822198843708 Employee 122 0.0749447076684403
N/A 148 0.19332995710295922 CEO 53 0.07170193047811683
Trader 60 0.18324243086890468 CEO 127 0.059724024971851586
N/A 113 0.17835118356319138 N/A 49 0.053555813387741416
N/A 79 0.15623876546680746 President 107 0.04905674315636346
Employee 85 0.15471874637429617 N/A 135 0.034558746004214005
N/A 140 0.1424285520623401 Employee 73 0.029936747738610103
Employee 15 0.14094533992454614 N/A 33 0.02581228226931536
Manager 42 0.13787232837246427 Manager 17 0.02303920029683394
Manager 109 0.1361845447599217 Employee 128 0.0209920140199694
CEO 53 0.13561006189208738 N/A 75 0.01931366634632139
N/A 64 0.13231945246309346 President 66 0.01798053109032224
N/A 72 0.12920736554705878 Vice President 38 0.017563251595088373
Manager 10 0.1176746581491969 N/A 140 0.017191862424829202
N/A 80 0.11322472422213939 Vice President 137 0.014505452618174286
N/A 82 0.1126313082113631 Vice President 68 0.014286960620496947
Vice President 51 0.11172423040288532 N/A 48 0.013839326662930345
President 54 0.10690005116331523 Employee 114 0.01366941922233052
Employee 87 0.10331211043591552 Employee 52 0.013327235550118876
N/A 94 0.09740159212627263 Vice President 92 0.012027356643537138
N/A 55 0.09691462482124993 Employee 27 0.010845184878195652
N/A 16 0.09528478632828273 Vice President 96 0.010839189149365639
President 36 0.08989688226411195 Managing Director 65 0.010322754675794492
CEO 127 0.08962345847982207 N/A 139 0.010276975594747113
Employee 43 0.08445535367063431 N/A 76 0.008700937078845608
Vice President 137 0.0842524357824327 Vice President 32 0.00825383446060586
Employee 99 0.06952090790212889 Vice President 23 0.007911441515488607
N/A 145 0.06260104388956907 N/A 59 0.007416120123040826

Table 22: Graph katz and load centrality results
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Position ID Current-flow closeness Position ID Current-flow betweenness
President 107 0.6467799882131677 N/A 150 0.20032855968508428
N/A 150 0.6389661879385443 President 107 0.1860438175805059
Manager 17 0.635764500612942 Employee 73 0.1559911048523174
Employee 73 0.6340578529725237 Manager 17 0.15213481265904769
Vice President 69 0.624241308465019 N/A 49 0.12460083975654498
N/A 48 0.6185319433429298 Employee 122 0.10842293886747335
Employee 122 0.6161062882772926 N/A 48 0.07497359104222295
Vice President 38 0.6151686793189958 Employee 114 0.07462935109494692
Vice President 23 0.614519404160276 Vice President 38 0.07376415068088717
N/A 67 0.613287224001205 N/A 135 0.07000278332793267
N/A 13 0.6055026561122205 N/A 139 0.06730254289422952
Employee 9 0.6041223653246481 Vice President 96 0.06471196267723739
N/A 147 0.6022580233576166 Employee 128 0.06456817287350414
N/A 49 0.6002257089330718 N/A 75 0.06026463906777592
N/A 75 0.597027516157679 N/A 151 0.05894353855247506
N/A 50 0.5966946598118354 N/A 140 0.05770949179208586
Employee 128 0.5958701069090415 Vice President 137 0.0555954652831289
N/A 33 0.5956816156223563 N/A 33 0.05435034625519146
N/A 151 0.5934262212595738 Vice President 92 0.05320533073556542
N/A 139 0.5918030447634124 Vice President 69 0.05272553500947823
Vice President 92 0.5905785050567769 Vice President 23 0.052488778468610255
Employee 61 0.5894611799547581 Vice President 44 0.050804019160239015
Vice President 44 0.5894487814880507 Employee 61 0.05028115330852095
President 54 0.5853131066700509 CEO 127 0.04971538820191448
Vice President 51 0.5850549879446145 N/A 141 0.04827370128989803
Vice President 137 0.5843153835450076 Employee 52 0.04717523980139562
Employee 27 0.5827658797646988 Employee 27 0.04631946365119866
N/A 57 0.5827190803124106 N/A 76 0.04612563419976971
N/A 141 0.5799087094586808 Vice President 32 0.04526331173599807
N/A 76 0.5760741190760632 Employee 149 0.04483809986798685

Table 23: Graph current flow closeness and current flow betweenness centrality results

94



Algorithms and Methods for Organised Cybercrime Analysis

Position ID Communicability betweenness
Employee 122 0.7829800076092372
N/A 150 0.7699423081856573
President 107 0.7229092802664814
CEO 127 0.6769885851312053
CEO 53 0.662217185039693
Manager 17 0.4719586283665264
Vice President 92 0.4338540679053311
Vice President 96 0.4263958374398043
Vice President 38 0.4238913937923879
Vice President 44 0.41269454368465897
Vice President 78 0.40421595632831486
President 54 0.39616785350040484
Vice President 126 0.3793176357645377
Manager 10 0.3749448691117962
Employee 128 0.35191030652519323
Vice President 83 0.34498301350537985
CEO 129 0.3294282073974352
Employee 73 0.3116800168592963
N/A 49 0.3096793664140022
Manager 123 0.27884190219867383
Managing Director 65 0.2621594815928801
N/A 48 0.26164351867758706
N/A 59 0.26050894835002497
Director 101 0.24934151920303904
Director 84 0.2430405738257549
Director 21 0.2298501800537978
Vice President 69 0.22958155898955004
Vice President 51 0.22795060768425818
Employee 27 0.22621011371315286
Vice President 103 0.2253664183665956

Table 24: Graph communicability betweenness centrality result
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Position ID Degree Position ID In-degree
President 107 0.7046979865771812 President 107 0.30201342281879195
Employee 122 0.5906040268456376 Manager 17 0.2483221476510067
N/A 150 0.5704697986577181 President 54 0.22147651006711408
Manager 17 0.4966442953020134 Vice President 96 0.22147651006711408
CEO 127 0.4899328859060403 Vice President 38 0.18791946308724833
CEO 53 0.44295302013422816 Vice President 126 0.18120805369127516
N/A 49 0.4228187919463087 Director 84 0.174496644295302
Vice President 96 0.4093959731543624 N/A 33 0.174496644295302
Employee 128 0.40268456375838924 Vice President 92 0.174496644295302
Vice President 92 0.3825503355704698 N/A 57 0.16778523489932887
Employee 73 0.3624161073825503 Vice President 44 0.16778523489932887
Vice President 44 0.35570469798657717 N/A 48 0.15436241610738255
Vice President 38 0.3422818791946309 N/A 49 0.15436241610738255
Vice President 137 0.3221476510067114 N/A 75 0.15436241610738255
President 54 0.3221476510067114 Employee 27 0.1476510067114094
N/A 48 0.3221476510067114 Vice President 68 0.1476510067114094
N/A 75 0.3221476510067114 Vice President 78 0.1476510067114094
N/A 33 0.31543624161073824 Employee 25 0.14093959731543623
Vice President 126 0.3087248322147651 Director 21 0.14093959731543623
Vice President 78 0.3087248322147651 Manager 123 0.14093959731543623
President 66 0.2953020134228188 Vice President 103 0.14093959731543623
N/A 57 0.28187919463087246 Managing Director 65 0.14093959731543623
Managing Director 65 0.28187919463087246 President 66 0.14093959731543623
N/A 76 0.28187919463087246 Manager 10 0.14093959731543623
Vice President 32 0.2751677852348993 Vice President 137 0.1342281879194631
Vice President 68 0.2751677852348993 CEO 127 0.1342281879194631
Employee 27 0.2684563758389262 Employee 128 0.1342281879194631
CEO 129 0.2684563758389262 Vice President 32 0.1342281879194631
N/A 59 0.2684563758389262 N/A 141 0.1342281879194631
Vice President 51 0.2684563758389262 Vice President 23 0.12751677852348994

Table 25: Digraph degree and in-degree centrality results
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Position ID Out-degree Position ID Closeness
N/A 150 0.4966442953020134 N/A 150 0.6535087719298246
Employee 122 0.46308724832214765 Employee 122 0.6260504201680672
CEO 53 0.42953020134228187 CEO 53 0.6182572614107884
President 107 0.40268456375838924 President 107 0.5983935742971888
CEO 127 0.35570469798657717 CEO 127 0.5797665369649806
Employee 128 0.2684563758389262 Employee 73 0.5418181818181819
N/A 49 0.2684563758389262 Vice President 92 0.5283687943262412
Manager 17 0.2483221476510067 N/A 49 0.5265017667844523
Employee 73 0.2483221476510067 Manager 17 0.5209790209790209
Vice President 92 0.2080536912751678 Vice President 44 0.5209790209790209
Vice President 137 0.18791946308724833 Vice President 51 0.5068027210884354
N/A 59 0.18791946308724833 N/A 75 0.5050847457627119
Vice President 96 0.18791946308724833 N/A 48 0.5033783783783784
Vice President 44 0.18791946308724833 Vice President 96 0.5016835016835017
CEO 129 0.16778523489932887 CEO 129 0.5
N/A 48 0.16778523489932887 Vice President 38 0.49666666666666665
N/A 140 0.1610738255033557 Managing Director 65 0.49174917491749176
Vice President 78 0.1610738255033557 Vice President 78 0.4837662337662338
N/A 105 0.15436241610738255 Employee 128 0.48220064724919093
Vice President 38 0.15436241610738255 Vice President 69 0.48220064724919093
President 66 0.15436241610738255 N/A 139 0.4806451612903226
N/A 76 0.15436241610738255 N/A 79 0.4806451612903226
Vice President 51 0.1476510067114094 Vice President 126 0.4790996784565916
Director 101 0.1476510067114094 President 54 0.4790996784565916
Employee 61 0.1476510067114094 Vice President 137 0.476038338658147
Employee 9 0.1476510067114094 Vice President 23 0.476038338658147
N/A 139 0.14093959731543623 Vice President 32 0.476038338658147
N/A 33 0.14093959731543623 President 66 0.476038338658147
Vice President 32 0.14093959731543623 N/A 59 0.4745222929936306

Table 26: Digraph out-degree and closeness centrality results
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Position ID Betweenness Position ID Eigenvector
President 107 0.10076605522644952 N/A 67 0.5391047010625928
N/A 49 0.06970766699584406 N/A 50 0.45532201973661945
Manager 17 0.06009844962678258 N/A 48 0.3942517012642078
CEO 127 0.04812042737735486 N/A 13 0.35544760602602576
N/A 33 0.0464827946000284 Employee 9 0.30256656815580246
Employee 73 0.0458765540767956 N/A 147 0.26967775214165873
N/A 150 0.04339706334678396 N/A 57 0.12168590576547944
Employee 122 0.043036743753226636 Employee 27 0.11484421567917934
Vice President 92 0.04057671578347909 Employee 136 0.1101009937204844
N/A 135 0.037400982697570646 Employee 6 0.1061614267767172
Vice President 96 0.035132222282581685 President 107 0.03696942158036821
N/A 75 0.034560238742703836 N/A 75 0.029959483325828786
Employee 52 0.029868733280033147 N/A 33 0.020553407080967846
Employee 128 0.02681801013382451 Vice President 44 0.017863588032695655
N/A 139 0.026545374052426123 Employee 52 0.015990845082520355
Vice President 23 0.025982954754434393 Vice President 38 0.01472444832871569
Employee 86 0.02430040581946505 N/A 91 0.013033765763950758
Employee 149 0.02283005291743167 Vice President 78 0.012467377902678819
N/A 48 0.022143753840107923 Vice President 92 0.010740798051241058
Vice President 137 0.021852725292509662 Employee 142 0.00851342395099905
Vice President 44 0.021214955107970737 N/A 11 0.006303248910870136
Employee 114 0.02098511762772163 Vice President 69 0.006126932631440135
Trader 132 0.019170330300736265 President 54 0.00548486733374738
President 54 0.019090605295859202 Vice President 77 0.004671859410378506
Vice President 126 0.017975596242310963 Vice President 39 0.00463946737357979
Vice President 68 0.01755695848498713 Vice President 126 0.004409953458334775
Vice President 32 0.01647685912710031 Manager 17 0.004246902756002734
President 66 0.01634924619001559 Managing Director 65 0.004177535355094588
Director 1 0.01585235296943939 Employee 122 0.004153544111844599

Table 27: Digraph betweenness and eigenvector centrality results
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Position ID Katz Position ID Load
N/A 143 0.24237422850728338 President 107 0.09589345968071644
N/A 130 0.23537953089929822 N/A 49 0.06562775891450512
Trader 134 0.23321842855683123 Manager 17 0.0549235689618194
Trader 133 0.18490272073304684 CEO 127 0.04864510544420742
Trader 131 0.14847560114705086 N/A 33 0.047666240371718516
Trader 132 0.14216395037258336 Employee 73 0.045360911999927846
Director 1 0.13665227360950677 Employee 122 0.04369300543857222
Employee 85 0.0957221897350964 N/A 150 0.04195730869993218
Director 97 0.08754325544868294 Vice President 92 0.040891667571169146
Director 26 0.08672008514228506 N/A 135 0.039554582574569314
N/A 138 0.07966115848806787 N/A 75 0.034626941887536136
Employee 99 0.05958095358628763 Vice President 96 0.034147323326961784
N/A 56 0.04908151246885697 Employee 52 0.031556689666421986
Employee 136 0.03825420144836524 N/A 139 0.02895107162110891
Employee 25 0.03438250355928042 Employee 128 0.026798206207182377
Director 120 0.032164274331988985 Vice President 23 0.02567056036183881
Director 102 0.02861180884487637 Vice President 38 0.02484820543422453
N/A 135 0.02816877309328466 Employee 86 0.02442509542637905
President 54 0.026407817729662837 Employee 149 0.02372649680414163
N/A 94 0.02484048406979067 N/A 48 0.022691642798503612
Employee 5 0.020932518538827365 Vice President 137 0.021934170297805783
Manager 119 0.020789502185213124 Vice President 44 0.020807063001073236
Vice President 39 0.019834819908128336 President 54 0.018735221321616646
Manager 123 0.01779256550599657 Vice President 68 0.018317786395246102
N/A 41 0.017721429711231716 Trader 132 0.017923264098955963
Manager 4 0.017238968657953928 Vice President 32 0.017370598241606642
Director 106 0.016686015104044077 Vice President 126 0.016659037514068165
CEO 46 0.016498568546175364 President 66 0.015940664353338387
N/A 89 0.013826167717827973 Manager 118 0.014773718438079538

Table 28: Directed katz and load centrality results
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D Graph construction results

These (di)graphs was produced by Gephi1. The algorithms used to generate them
was the Yifan Hu one time, followed by Expansion times three. Expansion was
added as Yifan Hu algortihm could produce graphs with vertices close to each
other or overlaying. Expansion, as the name suggests, will pull each vertex from
the rest with an equal distance, so to perserve the Yifan Hu organisation. This
appendix only contain 24 k-NN graphs, where k = {1, 2, 3} for the distance mea-
sures Braycurtis, Canberra, Chebyshev, Cityblock, Correlation, Cosine, Euclidean
and Hamming.

1https://gephi.org
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Figure 48: Graph k-NN Braycurtis where k = 1
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Figure 52: Graph k-NN Correlation where k = 1
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Figure 53: Graph k-NN Cosine where k = 1
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Figure 54: Graph k-NN Euclidean where k = 1
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Figure 55: Graph k-NN Hamming where k = 1
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Figure 56: Graph k-NN Braycurtis where k = 2
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Figure 57: Graph k-NN Canberra where k = 2
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Figure 58: Graph k-NN Chebyshev where k = 2
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Figure 59: Graph k-NN Cityblock where k = 2
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Figure 60: Graph k-NN Correlation where k = 2
113



Algorithms and Methods for Organised Cybercrime Analysis

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

6869

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
101

102

103

104

105

106

107

108

109
110

111

112

113

114

115

117

118

119

120
121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140
141
142

143

144

145

146

147

148

149

150

151

Figure 61: Graph k-NN Cosine where k = 2
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Figure 62: Graph k-NN Euclidean where k = 2
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Figure 63: Graph k-NN Hamming where k = 2
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Figure 64: Graph k-NN Braycurtis where k = 3
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Figure 65: Graph k-NN Canberra where k = 3
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Figure 66: Graph k-NN Chebyshev where k = 3
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Figure 67: Graph k-NN Cityblock where k = 3
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Figure 68: Graph k-NN Correlation where k = 3
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Figure 69: Graph k-NN Cosine where k = 3
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Figure 70: Graph k-NN Euclidean where k = 3
123
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Figure 71: Graph k-NN Hamming where k = 3
124



Algorithms and Methods for Organised Cybercrime Analysis

E SQL table export

1 #!/ usr / bin /env python
2

3 import MySQLdb
4 import networkx as nx
5

6 ’ ’ ’
7 ’ employee_pos i t ion . csv ’ con ta ins a l i s t with employee l i s t e id
8 and the employee p o s i t i o n found in t h e s i s Appendix A , e . g . :
9 1 , D i r e c to r

10 2 , D i r e c to r
11 3 , Employee
12 4 ,Manager
13 5 , Employee
14 . . .
15 ’ ’ ’
16

17 def main () :
18 ’ ’ ’
19 Job t i t l e s and t h e i r node co lour s . Some job t i t l e s have the same colour .
20 They are " D i r e c to r " = " Managing D i r e c to r " and " Employee " = "N/A " .
21 ’ ’ ’
22 c o l o r s = {
23 ’CEO ’ : { ’ co lo r ’ : { ’ r ’ :234 , ’ g ’ :107 , ’ b ’ :102 , ’ a ’ :0}} , # Red
24 ’ P r e s iden t ’ : { ’ co lo r ’ : { ’ r ’ :166 , ’ g ’ :128 , ’ b ’ :184 , ’ a ’ :0}} , # Purple
25 ’ V ice P re s iden t ’ : { ’ co lo r ’ : { ’ r ’ :126 , ’ g ’ :166 , ’ b ’ :224 , ’ a ’ :0}} , # Blue
26 ’ D i r e c t o r ’ : { ’ co lo r ’ : { ’ r ’ :151 , ’ g ’ :208 , ’ b ’ :119 , ’ a ’ :0}} , # Green
27 ’ In−House Lawyer ’ : { ’ co lo r ’ : { ’ r ’ :103 , ’ g ’ :171 , ’ b ’ :159 , ’ a ’ :0}} , # Blue−green
28 ’ Manager ’ : { ’ co lo r ’ : { ’ r ’ :255 , ’ g ’ :181 , ’ b ’ :112 , ’ a ’ :0}} , # Orange
29 ’ Trader ’ : { ’ co lo r ’ : { ’ r ’ :255 , ’ g ’ :217 , ’ b ’ :102 , ’ a ’ :0}} , # Yellow
30 ’ S p e c i a l i s t ’ : { ’ co lo r ’ : { ’ r ’ :230 , ’ g ’ :208 , ’ b ’ :222 , ’ a ’ :0}} , # L igh t purple
31 ’ Ana lys t ’ : { ’ co lo r ’ : { ’ r ’ :212 , ’ g ’ :225 , ’ b ’ :245 , ’ a ’ :0}} , # L igh t blue
32 ’ Employee ’ : { ’ co lo r ’ : { ’ r ’ :245 , ’ g ’ :245 , ’ b ’ :245 , ’ a ’ :0}} , # Gray
33 ’ Managing D i r e c t o r ’ : { ’ co lo r ’ : { ’ r ’ :151 , ’ g ’ :208 , ’ b ’ :119 , ’ a ’ :0}} , # Green
34 ’N/A ’ : { ’ co lo r ’ : { ’ r ’ :245 , ’ g ’ :245 , ’ b ’ :245 , ’ a ’ :0}} , # Gray
35 }
36 p o s i t i o n s = {}
37 enron_email = {}
38 undirec ted = nx . Graph ()
39 d i r e c t ed = nx . DiGraph ()
40

41 with open ( ’ employee_pos i t ion . csv ’ , ’ r ’ ) as i n _ f i l e :
42 ’ ’ ’
43 Generate a l i s t over Enron job p o s i t i o n s
44 ’ ’ ’
45 f o r l i n e in i n _ f i l e . r e a d l i n e s () :
46 l i n e = l i n e . s t r i p () . s p l i t ( ’ , ’ )
47 p o s i t i o n s [ i n t ( l i n e [0]) ] = l i n e [1]
48 t r y :
49 connect ion = MySQLdb . connect ( ’ l o c a l h o s t ’ , ’ root ’ , ’ password ’ , ’ enron ’ )
50 cur = connect ion . cur sor ()
51 query = ’ SELECT eid , Emai l_ id FROM employee l i s t ORDER BY eid ’
52 cur . execute ( query )
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53 employees = cur . f e t c h a l l ( )
54 f o r employee in employees :
55 i f not employee [0] in undirec ted . nodes () :
56 undirec ted . add_node ( employee [0])
57 undirec ted . node[ employee [0]][ ’ l a b e l ’ ] = employee [1]
58 undirec ted . node[ employee [0]][ ’ v i z ’ ] = c o l o r s [ p o s i t i o n s [ employee [0]]]
59 i f not employee [0] in d i r e c t ed . nodes () :
60 d i r e c t ed . add_node ( employee [0])
61 d i r e c t ed . node[ employee [0]][ ’ l a b e l ’ ] = employee [1]
62 d i r e c t ed . node[ employee [0]][ ’ v i z ’ ] = c o l o r s [ p o s i t i o n s [ employee [0]]]
63 i f not employee [1] in enron_email :
64 enron_email [ employee [1]] = employee [0]
65 f o r n in undirec ted . nodes () :
66 query = ’ SELECT rtype , rva lue FROM r e c i p i e n t i n f o WHERE mid IN (SELECT mid FROM

message WHERE sender LIKE \ ’% s \ ’ ) AND rva lue IN (SELECT Email_ id FROM employee l i s t
) ’ % ( undirec ted . node[n][ ’ l a b e l ’ ] )

67 cur . execute ( query )
68 r e c i p i e n t s = cur . f e t c h a l l ( )
69 f o r r e c i p i e n t in r e c i p i e n t s :
70 # r e c i p i e n t [0] = TO, CC, BCC
71 # r e c i p i e n t [1] = r e c i p i e n t email address
72 i f not undirec ted . has_edge (n , enron_email [ r e c i p i e n t [1]]) :
73 undirec ted . add_edge (n , enron_email [ r e c i p i e n t [1]] , weight = 0)
74 i f not d i r e c t ed . has_edge (n , enron_email [ r e c i p i e n t [1]]) :
75 d i r e c t ed . add_edge (n , enron_email [ r e c i p i e n t [1]] , weight = 0)
76 undirec ted [n][ enron_email [ r e c i p i e n t [1] ] ] [ ’ weight ’ ] += 1
77 d i r e c t ed [n][ enron_email [ r e c i p i e n t [1] ] ] [ ’ weight ’ ] += 1
78 p r i n t ’ Completed Enron employee e id %s ’ % (n)
79 except KeyboardInterrupt :
80 ’ ’ ’
81 Uncomment e x i t (0) to al low c t r l −c to s top exec t ion and cont inues to
82 wri te p a r t i a l exported SQL informat ion to f i l e s . This was used f o r
83 t e s t i n g .
84 ’ ’ ’
85 e x i t (0)
86 except MySQLdb . Er ror as e :
87 p r i n t ’ Er ror %d : %s ’ % ( e . args [0] , e . args [1])
88 e x i t (0)
89 f i n a l l y :
90 i f connect ion :
91 connect ion . c l o s e ()
92 p r i n t ’ Undirected ( graph ) # of v e r t i c e s %s and edges %s ’ % ( len ( undirec ted . nodes () ) ,

len ( undirec ted . edges () ) )
93 p r i n t ’ D i rec ted ( digraph ) # of v e r t i c e s %s and edges %s ’ % ( len ( d i r e c t ed . nodes () ) ,

len ( d i r e c t ed . edges () ) )
94 nx . wr i te_gex f ( undirected , ’ und i rec ted_co lour . gexf ’ , ve r s ion = ’ 1.2 d r a f t ’ )
95 nx . wr i te_gex f ( d i rec ted , ’ d i r e c t ed_co lou r . gexf ’ , ve r s ion = ’ 1.2 d r a f t ’ )
96 p r i n t ’ Wri t ten graph and digraph to f i l e ’
97

98 i f __name__ == ’ __main__ ’ :
99 main ()

Listing E.1: sqlexp.py
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F Enron social network analysis

1 #!/ usr / bin /env python
2

3 import networkx as nx
4

5 und i r_da tase t = {}
6 d i r _ d a t a s e t = {}
7 u n d i r _ f i l e = ’ und i rec ted_co lour . gexf ’
8 d i r _ f i l e = ’ d i r e c t ed_co lou r . gexf ’
9 l ength = 30

10

11 def w r i t e _ d a t a s e t _ t o _ f i l e ( graph ) :
12 da ta se t = d i r _ d a t a s e t i f graph . i s _ d i r e c t e d () e l s e und i r_da tase t
13 f i lename = d i r _ f i l e i f graph . i s _ d i r e c t e d () e l s e u n d i r _ f i l e
14 f i lename = fi lename . rep lace ( ’ co lour . gexf ’ , ’ f e a t u r e s . csv ’ )
15 with open ( fi lename , ’w ’ ) as i n f i l e :
16 f o r ac to r in da ta se t :
17 row = s t r ( ac to r ) + ’ , ’
18 l ength = len ( da ta se t [ ac to r ])
19 f o r i in range ( length ) :
20 row += s t r ( da ta se t [ ac to r ][ i ] )
21 i f i < length − 1:
22 row += ’ , ’
23 i n f i l e . wr i te ( ’%s \n ’ % (row) )
24

25 def add_tup le_ to_datase t ( dataset , t p l ) :
26 f o r item in t p l :
27 i f item not in da ta se t :
28 da ta se t [ item ] = []
29 da ta se t [ item ] . append ( t p l [ item ])
30

31 def prepare_graph ( graph ) :
32 p r i n t ’ Read %s with %s nodes and %s edges ’ % \
33 ( d i r _ f i l e i f graph . i s _ d i r e c t e d () e l s e u n d i r _ f i l e , \
34 graph . number_of_nodes () , graph . number_of_edges () )
35 # Remove s e l f −loops because they are u n i n t e r e s t i n g fo r SNA
36 remove_sel f loop_edges = graph . s e l f l oop_edges ()
37 i f remove_sel f loop_edges :
38 p r i n t ’ Found %s s e l f −loops , removing them ! ’ % \
39 ( len ( remove_sel f loop_edges ) )
40 graph . remove_edges_from ( remove_sel f loop_edges )
41 p r i n t ’ Graph have %s nodes and %s edges ’ % \
42 ( graph . number_of_nodes () , graph . number_of_edges () )
43 # Also remove i s o l a t e s from the graph
44 node_ i so l a t e s = nx . i s o l a t e s ( graph )
45 i f node_ i so l a t e s :
46 p r i n t ’ Graph i s not connected , removing i s o l a t e s : %s ’ % ( node_ i so l a t e s )
47 graph . remove_nodes_from ( node_ i so l a t e s )
48 p r i n t ’ Graph have %s nodes and %s edges ’ % ( graph . number_of_nodes () , graph .

number_of_edges () )
49 re turn graph
50

51 def prese rve_graph_co lo r s ( graph ) :
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52 da ta se t = d i r _ d a t a s e t i f graph . i s _ d i r e c t e d () e l s e und i r_da tase t
53 f o r node in graph . nodes () :
54 n = graph . node[node]
55 i f node not in da ta se t :
56 da ta se t [node] = []
57 da ta se t [node ] . append (n[ ’ l a b e l ’ ] )
58 da ta se t [node ] . append (n[ ’ v i z ’ ] [ ’ co lo r ’ ] [ ’ a ’ ] )
59 da ta se t [node ] . append (n[ ’ v i z ’ ] [ ’ co lo r ’ ] [ ’ r ’ ] )
60 da ta se t [node ] . append (n[ ’ v i z ’ ] [ ’ co lo r ’ ] [ ’ b ’ ] )
61 da ta se t [node ] . append (n[ ’ v i z ’ ] [ ’ co lo r ’ ] [ ’ g ’ ] )
62

63 def soc i a l _ne twork_ana l y s i s ( graph ) :
64 func = lambda x : x [1]
65 da ta se t = d i r _ d a t a s e t i f graph . i s _ d i r e c t e d () e l s e und i r_da tase t
66 i f graph . i s _ d i r e c t e d () :
67 p r i n t ’ S t rong ly connected : %s ’ % (nx . i s _ s t rong ly_connec ted ( graph ) )
68 p r i n t ’ Weakly connected : %s ’ % (nx . i s_weakly_connected ( graph ) )
69 p r i n t ’ Number of weakly components : %s ’ % (nx . number_weakly_connected_components (

graph ) )
70 i f not graph . i s _ d i r e c t e d () :
71 p r i n t ’ Diameter : %s ’ % (nx . diameter ( graph ) )
72 p r i n t ’ Per iphery : %s ’ % (nx . per iphery ( graph ) )
73 p r i n t ’ Radius : %s ’ % (nx . rad ius ( graph ) )
74 p r i n t ’ Degree c e n t r a l i t y : %s ’ % \
75 sor ted (nx . d e g r e e _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
76 add_tup le_ to_datase t ( dataset , nx . d e g r e e _ c e n t r a l i t y ( graph ) )
77 i f graph . i s _ d i r e c t e d () :
78 p r i n t ’ Indegree c e n t r a l i t y : %s ’ % \
79 sor ted (nx . i n _ d e g r e e _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
80 add_tup le_ to_datase t ( dataset , nx . i n _ d e g r e e _ c e n t r a l i t y ( graph ) )
81 p r i n t ’ Outdegree c e n t r a l i t y : %s ’ % \
82 sor ted (nx . o u t _ d e g r e e _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
83 add_tup le_ to_datase t ( dataset , nx . o u t _ d e g r e e _ c e n t r a l i t y ( graph ) )
84 p r i n t ’ C loseness c e n t r a l i t y : %s ’ % \
85 sor ted (nx . c l o s e n e s s _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
86 add_tup le_ to_datase t ( dataset , nx . c l o s e n e s s _ c e n t r a l i t y ( graph ) )
87 p r i n t ’ Betweenness c e n t r a l i t y : %s ’ % \
88 sor ted (nx . be tweennes s_cen t ra l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
89 add_tup le_ to_datase t ( dataset , nx . be tweennes s_cen t ra l i t y ( graph ) )
90 p r i n t ’ E igenvec tor c e n t r a l i t y : %s ’ % \
91 sor ted (nx . e igenvec tor_cent ra l i t y_numpy ( graph ) . i tems () , key=func , r eve r se=True ) [ :

length ]
92 add_tup le_ to_datase t ( dataset , nx . e igenvec tor_cent ra l i t y_numpy ( graph ) )
93 p r i n t ’ Katz c e n t r a l i t y : %s ’ % \
94 sor ted (nx . katz_centra l i ty_numpy ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
95 add_tup le_ to_datase t ( dataset , nx . katz_centra l i ty_numpy ( graph ) )
96 p r i n t ’ Load c e n t r a l i t y : %s ’ % \
97 sor ted (nx . l o a d _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=True ) [ : length ]
98 add_tup le_ to_datase t ( dataset , nx . l o a d _ c e n t r a l i t y ( graph ) )
99 i f not graph . i s _ d i r e c t e d () :

100 p r i n t ’ Current flow c lo sene s s c e n t r a l i t y : %s ’ % \
101 sor ted (nx . c u r r e n t _ f l o w _ c l o s e n e s s _ c e n t r a l i t y ( graph ) . i tems () , key=func , r eve r se=

True ) [ : length ]
102 add_tup le_ to_datase t ( dataset , nx . c u r r e n t _ f l o w _ c l o s e n e s s _ c e n t r a l i t y ( graph ) )
103 p r i n t ’ Current flow betweenness c e n t r a l i t y : %s ’ % \
104 sor ted (nx . cu r ren t_ f l ow_be tweennes s_cen t ra l i t y ( graph ) . i tems () , key=func , r eve r se=

True ) [ : length ]
105 add_tup le_ to_datase t ( dataset , nx . cu r ren t_ f l ow_be tweennes s_cen t ra l i t y ( graph ) )
106 p r i n t ’ Approximate cur ren t flow betweenness c e n t r a l i t y : %s ’ % \
107 sor ted (nx . approx imate_current_ f low_betweenness_cent ra l i t y ( graph ) . i tems () , key=

func , r eve r se=True ) [ : length ]
108 add_tup le_ to_datase t ( dataset , nx . approx imate_current_ f low_betweenness_cent ra l i t y (
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graph ) )
109 p r i n t ’ Communicabil i ty betweenness c e n t r a l i t y : %s ’ % \
110 sor ted (nx . communicab i l i t y_be tweenness_cent ra l i t y ( graph ) . i tems () , key=func ,

r eve r se=True ) [ : length ]
111 add_tup le_ to_datase t ( dataset , nx . communicab i l i t y_be tweenness_cent ra l i t y ( graph ) )
112

113 def main () :
114 graphs = []
115 graphs . append (nx . read_gexf ( u n d i r _ f i l e ) )
116 graphs . append (nx . read_gexf ( d i r _ f i l e ) )
117

118 f o r graph in graphs :
119 graph = prepare_graph ( graph )
120 preserve_graph_co lor s ( graph )
121 soc i a l _ne twork_ana l y s i s ( graph )
122 w r i t e _ d a t a s e t _ t o _ f i l e ( graph )
123

124 i f __name__ == ’ __main__ ’ :
125 main ()

Listing F.1: sna.py
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G Graph construction

1 #!/ usr / bin /env python
2

3 from sc ipy . s p a t i a l import d i s t ance
4 import networkx as nx
5 import numpy as np
6

7 undir_graph = nx . Graph ()
8 dir_graph = nx . DiGraph ()
9 neighbors = [1 , 2 , 3]

10 eps i l on = [0.01 , 0.02 , 0.03 , 0.04 , 0.05 , 0.06]
11 removed_nodes = [0 , 116]
12 weighted = Fa l se
13

14 def k_neares t_ne ighbors (k , dataset , graph , d i s t ) :
15 matrix = []
16 # Construc t d i s t a n c e s f o r the complete graph
17 f o r i in range (152) :
18 matrix . append ( [ ] )
19 # Some d i s t ance measures did not l i k e a l l nu l l a r ray / l i s t
20 i f not i in removed_nodes :
21 f o r j in range (152) :
22 i f not j in removed_nodes :
23 matrix [ i ] . append ( d i s t ( da ta se t [ i ] , da ta se t [ j ] ) )
24 e l s e :
25 matrix [ i ] . append (0 .0)
26

27 # Check the d i s t ance to f ind the c l o s e s t k neighbors
28 f o r i in range (152) :
29 i f not i in removed_nodes :
30 iknn = [] # Index
31 knn = [] # Weight ( c a l c u l a t e d by d i s t ance measure )
32 removed_nodes . append ( i )
33 f o r j in range (152) :
34 # Avoid s e l f −loops and removed nodes from prev ious Python s c r i p t
35 i f not j in removed_nodes :
36 iknn . append ( j )
37 knn . append ( matr ix [ i ][ j ] )
38 s e l e c t i o n _ s o r t (knn , iknn )
39 iknn = iknn [ : k]
40 knn = knn [ : k]
41 removed_nodes . pop ()
42 f o r j in range ( len ( iknn ) ) :
43 i f weighted :
44 graph . add_edge ( i , iknn [ j ] , weight = knn[ j ])
45 e l s e :
46 graph . add_edge ( i , iknn [ j ])
47

48 w r i t e _ g r a p h _ t o _ f i l e ( graph , k , ’ k_neares t_ne ighbors ’ , d i s t )
49

50 def e_neighborhood (e , dataset , graph , d i s t ) :
51 matrix = []
52 # Construc t d i s t a n c e s f o r the complete graph

130



Algorithms and Methods for Organised Cybercrime Analysis

53 f o r i in range (152) :
54 matrix . append ( [ ] )
55 f o r j in range (152) :
56 matrix [ i ] . append ( d i s t ( da ta se t [ i ] , da ta se t [ j ] ) )
57 # Check the d i s t ance to f ind neighbors with in e
58 f o r i in range (152) :
59 # Skip i s o l a t e s and i n v a l i d node indexes
60 i f not i in removed_nodes :
61 removed_nodes . append ( i )
62 f o r j in range (152) :
63 # Avoid s e l f −loops , i s o l a t e s and i n v a l i d indexes
64 i f not j in removed_nodes :
65 d = d i s t ( da ta se t [ i ] , da ta se t [ j ] )
66 i f d < e :
67 i f weighted :
68 graph . add_edge ( i , j , weight = d)
69 e l s e :
70 graph . add_edge ( i , j )
71 removed_nodes . pop ()
72 w r i t e _ g r a p h _ t o _ f i l e ( graph , e , ’ eps i lon_ne ighbors ’ , d i s t )
73

74 def w r i t e _ g r a p h _ t o _ f i l e ( graph , i t e r a t i o n , cons t ruc t ion , d i s t ) :
75 fname = ’ d i r e c t ed_ ’ i f graph . i s _ d i r e c t e d () e l s e ’ undirec ted_ ’
76 w = ’ _weighted ’ i f weighted e l s e ’ ’
77 fname += ’%s_%s_%s%s . gexf ’ % ( i t e r a t i o n , cons t ruc t ion , d i s t . __name__ , w)
78 p r i n t ’ Generated graph : %s ’ % ( fname)
79 nx . wr i te_gex f ( graph , fname , ve r s ion = " 1.2 d r a f t " )
80 graph . remove_edges_from ( graph . edges () )
81

82 def s e l e c t i o n _ s o r t ( a l i s t , b l i s t ) :
83 f o r i in range ( len ( a l i s t )−1,0,−1) :
84 pos_max=0
85 f o r j in range (1 , i +1) :
86 i f a l i s t [ j ] > a l i s t [pos_max ] :
87 pos_max = j
88 temp = a l i s t [ i ]
89 a l i s t [ i ] = a l i s t [pos_max]
90 a l i s t [pos_max] = temp
91 temp = b l i s t [ i ]
92 b l i s t [ i ] = b l i s t [pos_max]
93 b l i s t [pos_max] = temp
94

95 def minmax( dataset , d i s t_measures ) :
96 f o r d i s t in dis t_measures :
97 minimum = 100
98 maximum = 0
99 f o r i in range ( len ( da ta se t ) ) :

100 i f i not in removed_nodes :
101 removed_nodes . append ( i )
102 f o r j in range ( len ( da ta se t ) ) :
103 i f j not in removed_nodes :
104 d = d i s t ( da ta se t [ i ] , da ta se t [ j ] )
105 i f minimum > d :
106 minimum = d
107 i f maximum < d :
108 maximum = d
109 removed_nodes . pop ()
110 p r i n t d i s t . __name__ , minimum , maximum
111

112 def v a l i d a t e ( dataset , d i s t_measures ) :
113 # Change ’10 ’ to eva lua te another Enron employee
114 e id = 10
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115 minimum = 100
116 maximum = 0
117 f o r d i s t in dis t_measures :
118 matrix = []
119 f o r i in range (152) :
120 matrix . append ( [ ] )
121 # Some d i s t ance measures did not l i k e a l l nu l l a r ray / l i s t
122 i f not i in removed_nodes :
123 removed_nodes . append ( i )
124 f o r j in range (152) :
125 i f not j in removed_nodes :
126 matrix [ i ] . append ( d i s t ( da ta se t [ i ] , da ta se t [ j ] ) )
127 e l s e :
128 matrix [ i ] . append (0 .0)
129 removed_nodes . pop ()
130 # sor ted ( matr ix [x ]) [3] where 3 i s becuase two empty a r ray s p lu s s " s e l f −loop "

i d e n t i c a l matr ix
131 p r i n t ’ D i s tance : %s , min : %s , max: %s , ar ray : %s ’ % ( d i s t . __name__ , sor ted (

matr ix [ e id ]) [3] , so r ted ( matr ix [ e id ]) [−1] , matr ix [ e id ])
132

133 def main () :
134 # Scipy d i s t ance measures between two 1−dimensional a r ray s
135 # http :// docs . s c i py . org /doc/ s c i py / re f e rence / generated / s c i py . s p a t i a l . d i s t ance .

euc l idean . html
136 dis tance_measures = [
137 d i s t ance . b ray cu r t i s ,
138 d i s t ance . canberra ,
139 d i s t ance . chebyshev ,
140 d i s t ance . c i t yb l o ck ,
141 d i s t ance . c o r r e l a t i o n ,
142 d i s t ance . cos ine ,
143 d i s t ance . eucl idean ,
144 d i s t ance . hamming ,
145 ]
146

147 f o r f i lename , graph in (( ’ und i r e c t ed_ f ea tu re s . csv ’ , undir_graph ) , \
148 ( ’ d i r e c t e d _ f e a t u r e s . csv ’ , d i r_graph ) ) :
149 with open ( fi lename , ’ r ’ ) as f :
150 n_co l s = 0
151 # E x t ra c t node metadata such as l a b e l and co lo r
152 f o r l i n e in f . r e a d l i n e s () :
153 ac to r = l i n e . s t r i p () . s p l i t ( ’ , ’ )
154 n_co l s = len ( ac to r )
155 e id = i n t ( ac to r [0])
156 # Add new node to graph
157 graph . add_node ( e id )
158 graph . node[ e id ][ ’ l a b e l ’ ] = eid # or ac to r [1] f o r e−mail address
159 graph . node[ e id ][ ’ v i z ’ ] = { ’ co lo r ’ : {
160 ’ r ’ : i n t ( ac to r [3]) ,
161 ’ g ’ : i n t ( ac to r [5]) ,
162 ’ b ’ : i n t ( ac to r [4]) ,
163 ’ a ’ : f l o a t ( ac to r [2])
164 }}
165 # E x t ra c t node f e a t u r e s
166 da ta se t = np . zeros ((152 , n_co l s − 6) , dtype = np . f l o a t )
167 f . seek (0)
168 f o r l i n e in f . r e a d l i n e s () :
169 f e a t u r e s = l i n e . s t r i p () . s p l i t ( ’ , ’ )
170 e id = i n t ( f e a t u r e s [0])
171 f o r i in range (6 , n_co l s ) :
172 da ta se t [ e id ][ i − 6] = f l o a t ( f e a t u r e s [ i ] )
173
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174 # Graph cons t ruc t i on a lgor i thms
175 f o r d i s t in dis tance_measures :
176 f o r k in neighbors :
177 k_neares t_ne ighbors (k , dataset , graph , d i s t )
178 f o r e in eps i l on :
179 e_neighborhood (e , dataset , graph , d i s t )
180 #minmax( dataset , d is tance_measures )
181

182 i f __name__ == ’ __main__ ’ :
183 main ()

Listing G.1: neighbourhood_approaches.py
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