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Abstract

This thesis presents four research papers in the field of condensed-matter
theory. Three of the papers make use of large-scale Monte-Carlo simula-
tions to explore various aspects of Bose-Einstein condensates with multiple
superfluid components. Papers I and II relate to a two-component Bose-
Einstein condensate in three spatial dimensions under rotation. They ex-
plore the phase diagram and phase transitions of the model in two regimes,
where either inter- or intra-component interactions dominates, as well as
at a special SU(2)-symmetric point where all density-density interactions
are of equal strength. We find that this rich phase diagram, in the coexist-
ing regime, exhibits co-centered vortex lattices with hexagonal symmetry
when the inter-component interaction is attractive. These lattices evolve
into intercalated hexagonal lattices as the inter-component interaction is
made repulsive, and further into intercalated square lattices as the repul-
sive interaction is increased in strength. In the phase-separated regime,
we find striped vortex lattices for intermediate inter-component coupling
strengths. For sufficiently strong inter-component coupling strengths one
of the condensates is completely depleted, while the other develops a hexag-
onal vortex line lattice, as it is effectively a single-component condensate.

Paper III investigates the phases and phase transitions of a similar model
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of a two-component condensate, now in two spatial dimensions with spin-
orbit coupling and zero rotation. Here we find, for low inter-component
coupling strength, that the effect of the spin-orbit interaction is to modu-
late the condensate fields by a single 𝐪-vector, a plane wave state. For in-
creased inter-component couplings, but with intermediate spin-orbit cou-
pling, we again find that one of the condensates will be depleted, mak-
ing the remaining condensate effectively a single-component condensate.
This completely removes the effect of the spin-orbit interaction. For both
high inter-component and high spin-orbit interaction strengths, we find
that the condensate forgoes the energy gained by depleting one conden-
sate. It will rather modulate the condensate, but now with staggered con-
densate amplitudes. This state is a superposition of two states with mod-
ulation vectors 𝐪 and −𝐪, a standing wave state. We also explore the ther-
mal phase transitions in the absence of spin-orbit couplings, here we find
Kosterlitz-Thouless transitions in all components regardless of whether or
not one component has collapsed, and independent on the value of the
inter-component density-density interaction strength.

The last paper explores, in a purely analytical treatment, the effect of
inter-band Josephson couplings on an 𝑁 -component London supercon-
ductor. It utilizes a mathematical identity to re-express the model in terms
of integer-valued superconducting currents, and we show that the inclu-
sion of inter-band couplings introduces instanton-like events in these cur-
rents. These events effectively removes the current conservation in each
individual superconducting current, as is expected when introducing the
Josephson coupling. However, one particular combination of current, the
sum of all the currents, remains conserved even with the Josepshon cou-
pling. We argue that this converts the phase transitions of the neutral sector
into crossovers, while leaving the charged phase transition unaffected. The
fluctuations of the neutral sector will weaken, but may still influence the
charged fluctuations sufficiently to preempt the remaining inverted-3𝐷𝑋𝑌
transition, making it first order. We also re-express the onset of the Higgs
mass when entering the superconducting state as a blowout of loops of
superconducting current.
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CHAPTER 1

Introduction

The goal of physics in general, and condensed matter physics in particu-
lar, has always been to describe as many phenomena of nature as possible,
with as few and simple laws as possible. The Landau-Ginzburg-Wilson the-
ory with its successful treatment of phase transitions in as diverse systems
as liquids/solids, magnets, superfluids and superconductors is such an ex-
ample. Speaking of superfluids and superconductors, these at first quite
different phenomena may both be modeled by the Ginzburg-Landau model,
another very successful theory. The prediction of macroscopic behaviour
like thermodynamic phases or phase transitions from the interactions a
large number of identical constituents governed by a simple set of rules is
a tremendous triumph of condensed matter physics and statistical mechan-
ics. This thesis aims to explore macroscopic behaviour stemming from the
relatively simple Ginzburg-Landau description of two-component Bose-
Einstein condensates, which exhibit superfluidity, and multiband London
superconductors.

Bose-Einstein condensates, which have been realized experimentally
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2 Chapter 1. Introduction

since 1995 in cold alkali atoms, are a state of matter where a macroscopic
fraction of the atoms condense into the quantum ground state. Their re-
alization in cold atomic gases, along with the subsequent development
of many versatile experimental techniques like Feshbach resonances, op-
tical lattices, and synthetic gauge fields, allows for the realization of many
Hamiltonians. In addition to their versatility as a real-life model system,
they are interesting in their own right. One may also create mixtures of
different atomic gases, which creates a Bose-Einstein condensate with sev-
eral components that may interact. This opens up the possibility of many
a complex phenomenon not present in the simples condensate of a mono-
atomic gas. In the three first publications contained in this thesis [1–3],
we have aimed to map out the phase diagram of these two-component su-
perfluids with several interactions added, like density-density interactions
of the condensate, superfluid vortex-inducing external rotation, and spin-
orbit coupling. We show that these systems contain an array of interesting
phases, influenced by the subtle interplay between the interactions present
in the model.

A superconductor is a very different state of matter from superfluids
in many ways, but they are similar in that they both exhibit dissipation-
less flow of currents, be it electric currents or matter currents. They are
also similar in that they both may be described by the same model, the
Ginzburg-Landau model, although with some alterations. The final paper
of this thesis [4] examines the lattice London superconductor with multiple
superconducting bands. Specifically, it aims to shed some light on the ef-
fect of introducing inter-band Josephson couplings from a slightly different
angle, by re-expressing the model in terms of the actual superconducting
currents rather than the phases of the London model.

The main theme of this thesis, as you may have gathered, is to explore
the rather large parameter space of Ginzburg-Landau models with mul-
tiple components and various interactions. These are rather complicated
beasts, and not very analytically tractable. Therefore, our main weapon
will be large-scale Monte-Carlo simulations, backed up by arguments based
in symmetry considerations and mean-field theory.

This thesis will first go through some of the theory needed, covering
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some basic concepts of statistical mechanics in Chapter 2. Then, we will
cover Monte-Carlo simulations in Chapter 3, where we present the basic
requirements of a successful Monte-Carlo scheme, and some of the caveats
one must be aware of. Finally we present the history and theory of the
systems we wish to describe, as well as the specific theoretical models used
and the main results of our four papers. Chapter 4 deals with Bose-Einstein
condensates, while Chapter 5 treats the multiband superconductor.

Before we delve into the meat of this thesis, some notes on conven-
tions and notation. We use greek indices to denote spatial coordinates,
and roman indices to denote the component, or color of the order parame-
ter fields. We will use natural units throughout this thesis, except for a few
occasions where we will explicitly state otherwise, and fields and parame-
ters will generally be defined in a dimensionless fashion.
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CHAPTER 2

Statistical Mechanics

In this chapter I will give a brief introduction to the theoretical aspects
which lay the groundwork of this thesis. I will address the basic statis-
tical mechanics needed to develop the concepts used in, give an overview
of the theory of phase transitions, and present the lattice and continuum
models used to build up the more specialized models used in this work.
The main references I have used are Refs. [5–7].

2.1 Foundations of statistical mechanics

Statistical mechanics provides the framework for our research into collec-
tive phenomena. The goal is to extract macroscopic properties, like internal
energy, specific heat capacity and response to external fields, by consid-
ering only microscopic degrees of freedom. By treating these degrees of
freedom, which may be constituent atoms, quasi-particles, spins, or other
more abstract variables in a statistical manner one may calculate thermo-
dynamic properties that are not defined for single elements of the system.

5



6 Chapter 2. Statistical Mechanics

Given a system described by the state Ψ, where Ψ may be any set of
degrees of freedom, the probability of finding the system in a specific state
is

𝑝[Ψ] = 1
𝒵𝑒−𝛽𝐻[Ψ]. (2.1)

Here, 𝛽 = 1/𝑇 is the inverse temperature of the system, 𝐻[Ψ] is the Hamil-
tonian which describes the system, and 𝒵 is a normalization factor. This
distribution is the canonical probability distribution. The temperature can be
thought of as a tuning parameter in this formulation, which is the canonical
ensemble. This means that we consider a system of fixed particle number
and volume, that may exchange energy with the surroundings. The Hamil-
tonian is an energy functional that describes the behaviour of the system.
It is a function of Ψ, which in itself is typically a function of position and
possibly other variables. The normalization factor 𝒵 is called the partition
function, and is, as we will see in the following, a very central quantity.
We may calculate it by integrating the Boltzmann weight of every possible
configuration the system may be in, with a given value of 𝛽,

𝒵 = ∫ 𝒟Ψ𝑒−𝛽𝐻[𝜓]. (2.2)

At first glance, this may not seem too complicated, but in fact it is. Most of
the work done in the publications included in this thesis revolves around
calculating or estimating this quantity. As we will see, it contains all the
information about the thermodynamic quantities of the system.

The partition function is directly related to the Helmholtz free energy
in the following way

𝐹 = − 1
𝛽 ln 𝒵. (2.3)

This is shown through differentiation by 𝛽 on both sides of the equation,
resulting in

𝜕𝐹
𝜕𝛽 = 1

𝛽2 ln 𝒵 − 1
𝛽

𝜕
𝜕𝛽 ln 𝒵

= − 1
𝛽 𝐹 + 1

𝛽
𝜕

𝜕𝛽 (𝛽𝐹). (2.4)
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From thermodynamics, we know that the internal energy is defined as 𝑈 =
𝜕(𝛽𝐹)/𝜕𝛽, and the entropy as 𝑆 = 𝛽2𝜕𝐹/𝜕𝛽. Inserting this into the above
equation leaves us with

𝐹 = 𝑈 − 𝑇 𝑆, (2.5)

which is the definition of the Helmholtz free energy, with 𝛽 = 1/𝑇 .
Using the partition function, we may represent physical observables

as expectation values of said observable using the Boltzmann factor as a
probability distribution. The observables, 𝒪, are generally functions of the
degrees of freedom, 𝒪 = 𝒪[Ψ]1, and by using probability theory we may
write down their expectation values as

⟨𝒪⟩ = 1
𝒵 ∫ 𝒟Ψ𝒪𝑒−𝛽𝐻, (2.6)

which we call the thermal average of 𝒪. To show the relation between ther-
modynamic quantities and thermal averages, let us calculate the internal
energy, 𝑈 , and the heat capacity at constant volume, 𝐶𝑉 . The internal en-
ergy may be calculated by differentiating 𝛽𝐹 with respect to 𝛽, or in terms
of the partition function

𝑈 = − 𝜕
𝜕𝛽 ln 𝒵. (2.7)

The specific heat capacity at constant volume, 𝐶𝑉 , may be calculated by
two successive differentiations,

𝐶𝑉 = 𝛽2 𝜕2

𝜕𝛽2 ln 𝒵. (2.8)

Usually, 𝐻 does not have any explicit temperature dependence2, and we
may write the internal energy as the expectation value of 𝐻 ,

𝑈 = 1
𝒵 ∫ 𝒟Ψ𝐻𝑒−𝛽𝐻

= ⟨𝐻⟩, (2.9)
1We will suppress the functional dependence for brevity.
2It is implicitly temperature dependent through the fields, Ψ.
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and the specific heat as the fluctuations of 𝐻 ,

𝐶𝑉 = 𝛽2 (⟨𝐻2⟩ − ⟨𝐻⟩2) . (2.10)

However, if the Hamiltonian depends explicitly on temperature, we have
to be careful when differentiating the partition function. In that case we
have the two expressions

𝑈 = ⟨𝐻 + 𝛽 𝜕𝐻
𝜕𝛽 ⟩, (2.11)

and

𝐶𝑉 = 𝛽2(⟨ (𝐻 + 𝛽 𝜕𝐻
𝜕𝛽 )

2
⟩ − ⟨𝐻 + 𝛽 𝜕𝐻

𝜕𝛽 ⟩
2

− ⟨ 𝜕
𝜕𝛽 (𝐻 + 𝛽 𝜕𝐻

𝜕𝛽 ) ⟩). (2.12)

Oftentimes, we are interested in behaviour of systems under some ex-
ternal field. We may use a ferromagnet in an external magnetic field as
a generic example. In this case the Hamiltonian will consist of one part
pertaining to the internal dynamics of the spin, and a term coupling some
magnetization per unit volume, 𝑚[Ψ], to an external field ℎ. We will see a
couple of examples of specific Hamiltonians in Section 2.2. In general, we
may then write the Hamiltonian as

𝐻 = 𝐻0 − ℎ𝑚, (2.13)

which means that the system will lower its energy by aligning 𝑚 along ℎ.
Now, we may calculate the magnetization by differentiating with respect
to ℎ,

⟨𝑚⟩ = 1
𝛽𝑉

𝜕
𝜕ℎ ln 𝒵. (2.14)

In particular, we may be interested in the zero-field magnetization,

⟨𝑚⟩∣
𝐡=0

= 1
𝛽𝑉

𝜕
𝜕ℎ ln 𝒵∣

𝐡=0
. (2.15)
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We may also calculate the magnetic susceptibility,

𝜒 = (𝜕𝑚
𝜕ℎ ) ∣

ℎ=0

= 1
𝛽𝑉

𝜕2

𝜕ℎ2 ln 𝒵∣
ℎ=0

. (2.16)

It is clear that 𝒵 contains all the information of the thermodynamics of the
system you consider.

2.2 Lattice models

Our goal will always be to describe as much physics as possible through
the use of the simplest models imaginable. In fact, quite a lot of interesting
physics is described by the very simple models, or variations of them, intro-
duced below. Before presenting the more abstract concepts, we will define
these lattice models in order to have some reference point. The simplest
and most used models are spin models. This is a general class of models
of 𝑁 unit length spins interacting on a lattice. They are described by the
spin variable 𝐬𝑖, where the index 𝑖 denotes the lattice site. These models
may be classified by the dimensionality of the vector 𝐬𝑖, that is how many
components the spin has, and by the dimensionality of the lattice. These
quantities will be denoted by 𝑛 and 𝐷, respectively. Additionally, one may
consider the symmetry of the lattice, which basically decides how many
nearest neighbours each spin has. We will take the lattice to be hybercubic
in the following, each spin will have 2𝐷 nearest neighbours.

2.2.1 The Ising model

The simplest spin model is found when we take 𝑛 = 1. As the spins must
be unit length, this means that each spin takes the value 𝑠𝐫 = ±1. We
allow each spin to interact with all its nearest neighbours on the lattice,
where the interaction may be ferromagnetic or anti-ferromagnetic. A fer-
romagnetic interaction will lower the energy when the spins align, while an
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anti-ferromagnetic interaction will lower the energy when they anti-align.
We may represent this model, known as the Ising model, on the following
form,

𝐻 = −𝐽 ∑
⟨𝐫𝐫′⟩

𝑠𝐫𝑠𝐫′ − ℎ ∑
𝐫

𝑠𝐫, (2.17)

where ℎ is an external field, which makes it energetically favourable to have
𝑠𝐫 = 1 when ℎ > 0. 𝐽 is the interaction strength, which is ferromagnetic
when 𝐽 > 0, and ⟨𝐫𝐫′⟩ denotes summing over all nearest neighbour pairs.

2.2.2 The 𝑋𝑌 model

Next, we have the 𝑛 = 2 spin model, the 𝑋𝑌 model. This model features
interactions between two-component unit-length spins, 𝐬𝐫 = (𝑠𝑥,𝐫, 𝑠𝑦,𝐫),
on a lattice. The 𝑋𝑌 model is of course similar to the Ising model in that
you have spins, now with two components, which interact either ferromag-
netically or anti-ferromagnetically with their nearest neighbours only. The
Hamiltonian has the following form

𝐻 = −𝐽 ∑
⟨𝐫𝐫′⟩

𝐬𝐫𝐬𝐫′ − 𝐡 ∑
𝐫

𝐬𝐫. (2.18)

Here, 𝐡 is an external field, which tends to align the spins along its di-
rection. As the spins we consider are of unit length, a more convenient
parametrization would be to use the angle of each spin relative to a refer-
ence axis. One would then have 𝐬𝐫 = (cos 𝜃𝐫, sin 𝜃𝐫), and the Hamiltonian
would have the form

𝐻 = −𝐽 ∑
𝐫,�̂�

cos(𝜃𝐫+�̂� − 𝜃𝐫) − ℎ ∑
𝐫

cos 𝜃𝐫. (2.19)

Now, we have fixed the direction of the external field along the reference
axis of the spins, and introduced the alternate nearest neighbour sum over
𝐫 and �̂�, where �̂� is the unit vector in the 𝜇 direction.

One may of course have a higher value of 𝑛, which is the Heisenberg
model, but it is not relevant to our discussions. Other extensions may also
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be done, for instance by having longer ranged interactions beyond near-
est neighbours, different couplings in different directions (anisotropies),
or perhaps by combining different types of spins that couple to each other.
The possibilities are really endless, and one must chose a model which
properly describes the system one is interested in.

2.3 Spontaneous symmetry breaking and phase tran-
sitions

An important triumph of the statistical treatment of microscopic degrees
of freedom is its ability to describe and predict macroscopic phases. The
prime example here is of course taken from the Ising model, which has a
ferro-magnetically ordered phase below a critical temperature.

Heuristically, phase transitions can be thought of as a competition be-
tween the internal energy of the system, and its entropy. In a ferromagnet,
aligning spins will always lower the internal energy, but not always the
free energy. As seen from Eq. (2.5), the free energy can also be lowered
by increasing the entropy of the system, but this will increase the internal
energy. This leads to a competition between order and disorder, decided
by temperature3. At low temperature, order wins out, and spins will ferro-
magnetically align, while disorder reigns at high temperatures. These two
phases are separated by a phase transition, over which some thermody-
namical quantity changes in a non-analytical fashion.

At the heart of phase transitions lies the concepts of symmetries and
spontaneous symmetry breaking. By symmetry, we mean some transfor-
mation performed on the Hamiltonian of a system, which leaves the Hamil-
tonian unchanged. Mathematically, if we have the Hamiltonian 𝐻[Ψ], which
is a functional of some set of degrees of freedom, Ψ. Then, a symmetry is
some transformation

Ψ → Ψ′, (2.20)

3Or another parameter which describes the system, like interaction strengths or external
fields.
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such that
𝐻[Ψ′] = 𝐻[Ψ]. (2.21)

When the transformation bringing Ψ to Ψ′ is a representation of the group
𝒢, we say that the Hamiltonian has 𝒢 symmetry.

Spontaneous symmetry breaking is a concept which occurs in many sta-
tistical mechanics models. In general, if we have a Hamiltonian which has
𝒢 symmetry, some specific state of the system the Hamiltonian describes
may not have this symmetry (it may be symmetric under some subgroup
ℋ of 𝒢). If this occurs we say that the symmetry is spontaneously broken,
or that 𝒢 has been broken down to ℋ. Generally, this occurs when chang-
ing some parameter of the system to bring it from the high-symmetry to
the low-symmetry state, for instance by changing the temperature.

2.3.1 Continuous transitions and order parameters

With the concept of spontaneous symmetry breaking fresh in mind, let us
consider a less abstract example. An uniaxial ferromagnet, a ferromag-
net with an easy axis, has ferromagnetic domains which point either up
or down. This kind of system has up-down symmetry, and must be de-
scribed by equations that reflect this. The Ising model has this symme-
try, but we will first consider a very simple, phenomenological approach,
which is Landau-theory, or mean-field theory. We assume that the magnet
is described by a single, space-independent order parameter, 𝑀 . If 𝑀 = 0,
the system is not magnetized, and if |𝑀| > 0, it has a net magnetization.
Next, we construct what is known as the Landau free energy, by writing
down terms in an expansion of powers in the magnetization that respects
the up-down symmetry. The first few reads

𝐹𝐿 = 𝑏(𝑇 )𝑀2 + 𝑔(𝑇 )𝑀4 + … . (2.22)

We may assume 𝑔(𝑇 ) to be temperature independent, and it must be posi-
tive for the free energy to be bounded from below. Next, we must assume
that 𝑏(𝑇 ) changes sign from positive to negative as some critical tempera-
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ture 𝑇𝑐 is approached from above, for instance on the following form

𝑏(𝑇 ) = 𝑏𝑇 − 𝑇𝑐
𝑇𝑐

. (2.23)

By minimizing the free energy with respect to the magnetization, we find
that

𝑀 = {±√−𝑏(𝑇)
2𝑔 , 𝑇 < 𝑇𝑐.

0, 𝑇 > 𝑇𝑐.
(2.24)

This is the prime example of spontaneous symmetry breaking. The high-
temperature state has the up-down symmetry of the basic free energy de-
scribing the system, while at low temperatures the actual state the magnet
picks breaks this symmetry. Fig. 2.1 shows a schematic plot of this order
parameter, when it picks the positive value of 𝑀 .

The magnetization, 𝑀 , in this case is known as the order parameter,
and it signals the entry into the ordered, low-temperature state. As the
magnet is cooled below 𝑇𝑐, the magnetization will grow continuously from
zero, which is why this type of transition has been dubbed a continuous
phase transition. Now, this example is rather contrived, the Landau free
energy has been constructed to have the behaviour we wish. However,
as we will see, many models of statistical mechanics show exactly this be-
haviour of an order parameter continuously evolving from zero as temper-
ature (or some other parameter) is varied.

2.3.2 Symmetries and phase transitions of the zero-field Ising
and 𝑋𝑌 model

The Ising model, Eq. (2.17), with ℎ = 0 has Z2 symmetry, or up-down
symmetry. Letting each spin 𝑠𝐫 → −𝑠𝐫, leaves the Hamiltonian invariant.
In 𝐷 ≥ 2, the breaking of this symmetry causes the model to have a con-
tinuous phase transition. The order parameter of the Ising model is the
magnetization, 𝑚, defined as

𝑚 = 1
𝑁 ⟨∑

𝐫
𝑠𝐫⟩ . (2.25)
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Tc

T

M

Figure 2.1: A schematic plot of the order parameter when passing through
a second-order transition. As we approach the critical temperature, the
order parameter evolves continuously to zero.

In two dimensions, the model has been solved exactly, while in three di-
mensions the phase transition has been confirmed numerically. The one
dimensional model has been solved by Ising [8], and is shown to not have
a phase transition. Onsager solved the two dimensional model in zero ex-
ternal field [9], and found the critical temperature to be 𝑘𝐵𝑇 /𝐽 = 2/ ln(1+√

2).
The Hamiltonian of the 𝑋𝑌 -model, Eq. (2.19), with ℎ = 0 is invariant

under global rotations of the spin. That is, rotating each spin by a phase,
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𝜃𝐫 → 𝜃𝐫 + 𝜑, leaves 𝐻 invariant. This is known as a U(1) symmetry. If
|ℎ| > 0, this symmetry is explicitly broken. With the 𝑋𝑌 model, one may
also define a magnetization, 𝐦, as

𝐦 = 1
𝑁 ⟨∑

𝐫
(cos 𝜃𝐫, sin 𝜃𝐫)⟩ . (2.26)

This measures local order. One may also define a global order parameter,
the helicity modulus, Υ. This measures the response of the phases to an
imposed twist through the system, and is defined as the second derivative
of the free energy with respect to such an infinitesimal twist, 𝛿𝜇, where
𝜇 = (𝑥, 𝑦, 𝑧, …) is the direction the twist is applied.

Υ𝜇 = 1
𝑉

𝜕2𝐹[𝛿𝜇]
𝜕𝛿2𝜇

∣
𝛿𝜇=0

. (2.27)

Technically, this is done by imposing the twist in the phases of the spins

𝜃𝐫 → 𝜃′
𝐫 = 𝜃𝐫 − 𝛅 ⋅ 𝐫, (2.28)

then differentiating with respect to said twist. In the zero field 𝑋𝑌 model,
this calculation results in

Υ𝜇 = 1
𝑁

⎡⎢
⎣

⟨𝜕2𝐻
𝜕𝛿2𝜇

⟩ − 𝛽 ⎛⎜
⎝

⟨( 𝜕𝐻
𝜕𝛿𝜇

)
2

⟩ − ⟨ 𝜕𝐻
𝜕𝛿𝜇

⟩
2
⎞⎟
⎠

⎤⎥
⎦

= 𝐽
𝑁 [ ⟨∑

𝐫
cos(𝜃𝐫+�̂� − 𝜃𝐫)⟩

− 𝐽𝛽 ⟨(∑
𝐫

sin(𝜃𝐫+�̂� − 𝜃𝐫))
2

⟩ ], (2.29)

where one may think of the first term as energy-like, while the second is
current-like. This may of course be generalized to other models, as long as
there is a U(1)-phase involved, see [1, 10, 11].
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The zero field model exhibits a continuous phase transition in three
dimensions. In two dimensions, the situation is different, as spontaneous
breaking of a continuous symmetry in 𝐷 ≤ 2 is impossible, which we will
describe in a later section.

2.3.3 First-order transitions

Tc

T

M

Figure 2.2: A schematic plot of the order parameter when passing through
a first-order transition. At the critical temperature, the order parameter
drops discontinuously to zero.

While a continuous phase transition is characterized by an order pa-
rameter which continuously approaches zero at the transition point, a first-
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order transition is characterized by a discontinuous order parameter. A
schematic plot of a typical order parameter in a first-order transition is
shown in Fig. 2.2. Furthermore, in a first-order transition there will be a
certain amount of work, or latent heat, that needs to be done in order to
bring the system from one phase to the other. At the transition, there will
be two coexisting phases, separated by an energy barrier4. This causes do-
mains of one phase to coexist with domains of the other. This is often seen
in everyday life; when water boils, bubbles of water vapor forms (domains
of the high-temperature phase) in the water (domains of the low tempera-
ture phase), and more and more bubbles form as you apply more heat. In
the language of Landau theory, adding a term ∝ 𝑀3 will make its phase
transition first-order.

The term first-order transition stems from the fact that a first-order tran-
sition has a discontinuity in a first-order derivative of the free energy, for
instance the magnetization. Continuous phase transitions are often called
second-order transitions, as they have continuous first-order derivatives,
but discontinuous second-order derivatives. For instance, the heat capac-
ity or the magnetic susceptibility is typically discontinuous in a second or-
der transition. This language is a remnant of Paul Ehrenfest’s classification
of phase transitions, where the type of transition is named after the lowest
order derivative of the free energy which is discontinuous.

2.4 Universality and scaling laws

A profound concept in statistical mechanics is that of universality classes,
the idea that widely different physical systems with phase transitions have
critical properties that can be classified into a few categories. The univer-
sality classes are classified according to dimensionality of space, 𝐷, and
the dimensionality of the order parameter describing the system, 𝑛. For
instance, the uniaxial ferromagnet used in the example above, or in the
Ising model, would have 𝑛 = 1. A system with 𝑛 = 2 could be a magnet

4This will be important to remember when looking for first-order transitions in numer-
ical simulations.
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with a hard axis, as opposed to the easy axis in the uniaxial magnet, such
that the magnetization likes to point in the plane perpendicular to the hard
axis. The magnetization can then be described by a two-component vector,
like the 𝑋𝑌 model. A magnet without any preferred direction of magneti-
zation, or an isotropic magnet, would have 𝑛 = 3, which may be described
by the Heisenberg model.

The beauty of universality classes is that some properties of systems
which look very different at first glance, will be the same if they belong
to the same universality class. For instance, the uniaxial ferromagnet and
the critical point of the liquid-gas transition are both described by an order
parameter with 𝑛 = 1, belong in the same universality class, and have
the same critical exponents. The critical exponent are the quantities that
are universal within a given universality class. They describe the scaling
properties of thermodynamic quantities as the critical point is approached.
These scaling properties are succinctly expressed as six exponents. Four of
which are related to thermodynamic quantities, 𝛼, 𝛽, 𝛾, and 𝛿, and two that
are related to correlation functions, 𝜈 and 𝜂.

2.4.1 The exponents 𝛼, 𝛽, 𝛾 and 𝛿
Deriving the thermodynamical exponents starts with realizing that, close
to a critical point, the free energy can be written as a regular part and a
singular part5.

𝑓(𝜏, ℎ) = 𝑓𝑅(𝜏, ℎ) + 𝑓𝑆(𝜏, ℎ). (2.30)

Here, 𝑓 = 𝐹/𝑉 is the free energy per unit volume, 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐 is
the reduced temperature, and ℎ is some external field. We may assume we
are discussing a magnetic system in an external magnetic field, for clarity.
The critical point will then be at (𝜏, ℎ) = (0, 0). Widom postulated that the
singular part of the free energy obeys the relation

𝑓𝑆(𝜆𝑎𝜏, 𝜆𝑏ℎ) = 𝜆𝑓𝑆(𝜏, ℎ), (2.31)

5This derivation loosely follows [5] and [6].
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where 𝜆 is an arbitrary factor, and 𝑎 and 𝑏 are constants. If we choose 𝜆 =
|𝜏|−1/𝑎, we have

𝑓𝑆(𝜏, ℎ) = |𝜏|1/𝑎 𝑓𝑆 ( 𝜏
|𝜏| ,

ℎ
|𝜏 |𝑏/𝑎 ) . (2.32)

The next part of the argument is to realize that 𝜏/ |𝜏| may only take on
two values, ±1. Therefore, the right side may be written as two different
functions of a single variable,

𝑓𝑆(𝜏, ℎ) = |𝜏|2−𝛼 𝜓± ( ℎ
|𝜏|∆

) . (2.33)

Now we have defined the first critical exponent,

𝛼 = 2 − 1/𝑎, (2.34)

as well as the gap exponent, Δ = 𝑏/𝑎. At a continuous phase transition,
we know that the internal energy is well behaved, but the specific heat
will have a singular behaviour. If we insert Eq. (2.33) into the definition of
the specific heat, keeping in mind that we must take ℎ = 0, we find the
following scaling as 𝜏 → 0

𝑐𝑉 = −𝑇 𝜕2𝑓
𝜕𝑇 2 ∼ |𝜏|−𝛼 . (2.35)

Next, we may calculate the exponent related to the zero-field magnetiza-
tion near 𝑇𝑐,

𝑚∣
ℎ=0

= − (𝜕𝑓
𝜕ℎ) ∣

ℎ=0
= |𝜏|2−𝛼−∆ 𝜓′

±(0). (2.36)

First of all, this tells us that 𝜓′
+(0) = 0, as the magnetization is zero for

𝜏 > 0. Secondly, this gives us the scaling of the magnetization close to the
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critical point, where one defines the exponent6,

𝛽 = 2 − 𝛼 − Δ. (2.37)

The magnetic susceptibility defines the next exponent, it is given by

𝜒 = (𝜕𝑚
𝜕ℎ ) ∣

ℎ=0
= |𝜏|2−𝛼−2∆ 𝜓′′

± (0). (2.38)

This defines 𝛾 as
𝛾 = −2 + 𝛼 + 2Δ. (2.39)

The last thermodynamic exponent relates to the scaling of the magnetiza-
tion at 𝜏 = 0, but for finite ℎ. We have

𝑚∣
𝑇=𝑇𝑐

= − (𝜕𝑓
𝜕ℎ) ∣

𝑇=𝑇𝑐

= lim
𝜏→0

|𝜏 |2−𝛼−∆ 𝜓′
± ( ℎ

|𝜏|∆
) . (2.40)

Now, the argument of 𝜓± tends to infinity as we approach 𝑇𝑐. Hence, if we
assume that 𝜓± ∼ (ℎ/ |𝜏|∆)𝜅 in this limit, we have that

𝑚∣
𝑇=𝑇𝑐

= |𝜏|2−𝛼−∆−𝜅∆ ℎ𝜅. (2.41)

For 𝑚 to be finite, we must have 𝜅 = (2 − 𝛼 − Δ)/Δ, and the last thermo-
dynamic exponent, 𝛿, is defined as

𝑚∣
𝑇=𝑇𝑐

= ℎ1/𝛿, (2.42)

with
𝛿 = Δ/(2 − 𝛼 − Δ). (2.43)

6Not to be confused with the inverse temperature.
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The observant reader has probably realized that the four exponents are not
independent, as we started out with only two exponents 𝑎 and 𝑏. By com-
bining the four equations for the exponents, we find two relations between
the four exponents, known as scaling laws.

𝛼 + 2𝛽 + 𝛾 = 2, (2.44)
𝛼 + 𝛽(1 + 𝛿) = 2. (2.45)

2.4.2 Correlation functions and the exponents 𝜈 and 𝜂
Correlation functions describe the correlations between the degrees of free-
dom of the model at a separation distance 𝑟 = ∣𝐫 − 𝐫′∣. In general we can
write

𝐺(𝐫, 𝐫′) = ⟨𝐬𝐫𝐬𝐫′⟩, (2.46)

where 𝐬𝑖 is for instance the Ising or 𝑋𝑌 spin of Section 2.2, or some other
field variable. If we assume translational invariance, we have exponential
decay of the correlation function for large 𝑟,

𝐺(𝑟) ∼ exp −𝑟
𝜉 . (2.47)

Here, we define 𝜉 as the correlation length. The correlation function has a
very different behaviour when comparing ordered and disordered phases.
In the disordered phase, the field variables are completely uncorrelated,
and the correlation function decays exponentially to zero. In the ordered
phase, however, the correlation function will decay exponentially to a finite
value. This is the manifestation of long range order.

At the critical point, the situation is even more interesting. Here, critical
fluctuations occur across all length scales of the system. This means that
the correlation length diverges, and it diverges according to a power law
defined by

𝜉 ∼ 𝜏−𝜈. (2.48)
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When this happens, the decay of the correlation function is reduced to a
power law for large 𝑟7,

𝐺(𝑟) ∼ 1
𝑟𝐷−2+𝜂 , (2.49)

where 𝐷 is the dimensionality, and 𝜂 is the final critical exponent called the
anomalous dimension. The divergence of the correlation length means that
there is no remaining relevant length scale at the critical point, aside from
any lattice spacing, system size or similar scale. This means that the system
is scale invariant, critical fluctuations occur on all length scales. Further-
more, at the critical point, all the properties of the system are determined
by the universal exponents, and here lies the source of universality. It all
depends on the dimensionality of space and the symmetry of the order
parameter, the microscopic details of the system are irrelevant.

Finally, there are two relations between the thermodynamic exponents,
and the ones defined from the correlation function. The first one follows
from the fluctuation theorem, which relates the susceptibility to the corre-
lation function at the critical point in the following way

𝜒 ∼ ∫ d𝐷𝑟𝐺(𝑟). (2.50)

If we insert the power law of Eq. (2.49) and assume that the only length
scale present is the correlation length, we have

𝜒 ∼ ∫
𝜉

d𝑟𝑟𝐷−1 1
𝑟𝐷−2+𝜂

∼𝜉2−𝜂

∼𝜏−𝜈(2−𝜂). (2.51)

Comparing this to the definition of 𝛾, 𝜒 ∼ 𝜏−𝛾, we have that

𝛾 = 𝜈(2 − 𝜂). (2.52)

7But smaller than the correlation length.
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The last relation, known as hyperscaling, is arrived at by realizing that the
combination 𝑓𝑆/𝑘𝐵𝑇𝐶 must have dimension (length)−𝐷. And, the only
length we know about close to the critical point is the correlation length.
Therefore,

𝑓𝑆
𝑘𝐵𝑇𝐶

∼𝜉−𝐷

∼𝜏𝑑𝜈. (2.53)

By using Eq. (2.33), we have our final relation8

2 − 𝛼 = 𝜈𝐷. (2.54)

2.5 The Ginzburg-Landau model

In all of the papers included in this thesis, the starting point is a continuum
model described by a complex field, known as the Ginzburg-Landau model.
It stems from realizing that the spatially homogeneous order parameter
of Landau theory is not sufficient to accurately describe phase transitions,
one must also account for spatial fluctuations. The simplest extension of
Landau theory is to replace the magnetization 𝑀 with a spatially varying,
real valued, magnetization 𝑚(𝐫), and adding gradient terms to the Lan-
dau function, which now becomes a functional. In our case, however, we
will always consider superfluid or superconducting order parameters with
U(1) symmetry, and therefore need to express the model in terms of com-
plex fields, 𝜓(𝐫).

The basic model which we will build on may be represented9 as

𝐻 = ∫ d𝐷𝑟 [ 1
2𝑚 |𝛁𝜓(𝐫)|2 + 𝛼 |𝜓(𝐫)|2 + 𝑔 |𝜓(𝐫)|4 + …] . (2.55)

8This final relation is not valid if 𝐷 > 𝐷uc, which is the upper critical dimension above
which mean field theory is exact.

9I choose to use dimensionless fields and parameters here. In Paper I the model with a
non-fluctuating gauge field is derived on the lattice from a dimensionful formulation.
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Higher order terms are usually irrelevant, and terms of odd order are not
allowed by symmetry in the cases we consider. The complex field may
be written as an amplitude and a phase, both spatially varying, 𝜓(𝐫) =
|𝜓(𝐫)| exp(𝑖𝜃(𝐫)). Eq. (2.55) is invariant under global U(1) rotations of the
phase 𝜃,

𝜃(𝐫) → 𝜃(𝐫) + 𝜑 ∀ 𝐫. (2.56)

An extension to this basic Ginzburg-Landau functional is to promote
the global U(1) symmetry to a local symmetry. This means that the equa-
tions of motions are invariant under rotations of the phase 𝜃, where the
rotations themselves may depend on 𝐫,

𝜃(𝐫) → 𝜃(𝐫) + 𝜑(𝐫). (2.57)

This is only possible, due to the derivative term, by adding a gauge field,
𝐀(𝐫), which transforms in such a way that the total Hamiltonian is left
invariant. If the gauge field transforms as

𝐀(𝐫) → 𝐀(𝐫) + 1
𝑒𝛁𝜑(𝐫), (2.58)

while 𝜃 transforms according to Eq. (2.57), the following Hamiltonian will
be invariant under local U(1) transformations,

𝐻 = ∫ d𝐷𝑟[ 1
2𝑚 |(𝛁 − 𝑖𝑒𝐀(𝐫))𝜓(𝐫)|2 + 𝛼 |𝜓(𝐫)|2 + 𝑔 |𝜓(𝐫)|4

+ 1
2 (𝛁 × 𝐀(𝐫))2 ]. (2.59)

Here, 𝑒 is the charge, which represents the coupling strength between the
matter field, 𝜓(𝐫), and the gauge field, 𝐴(𝐫).

2.5.1 Lattice regularization

Lattice models are very well suited for numerical simulations, as they are
defined on a grid by construction. The Ginzburg-Landau model, however,
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must be discretized in some way if one wants to apply numerical tech-
niques to it. The basic scheme is to define the complex field and gauge
field on a 𝐷-dimensional hypercubic lattice of sides 𝐿. That is, with 𝐷 = 3
we take

𝜓(𝐫) → 𝜓𝐫, (2.60)

and
𝐀(𝐫) → 𝐀𝐫, (2.61)

where 𝐫 now refers to the lattice vector 𝐫 = �̂� ⋅ 𝑖 + �̂� ⋅ 𝑗 + ̂𝐳 ⋅ 𝑘 + … where
𝑖, 𝑗, 𝑘, … ∈ (1, … , 𝐿), and �̂� is a unit vector in the 𝜇 = (𝑥, 𝑦, 𝑧) direction.
Derivatives must be replaced by lattice forward differences, 𝜕𝜇 → Δ𝜇. If
we are dealing with a covariant derivative, the forward difference must
take this into account. The standard treatment is to make the replacement

(𝜕𝜇 − 𝑖𝑒𝐴𝜇(𝐫)) 𝜓(𝐫) → 1
𝑎 (𝜓𝐫+�̂�𝑒−𝑖𝑒𝑎𝐴𝐫,𝜇 − 𝜓𝐫) , (2.62)

where 𝑎 is the lattice spacing. The integral must be replaced by a sum over
all lattice sites

∫ d𝐷𝑟 → 𝑎𝐷 ∑
𝐫

, (2.63)

The Maxwell term is replaced by a lattice analogue

1
2 (∇ × 𝐀(𝐫))2 → 1

2𝑎2 (𝚫 × 𝐀𝐫)2 , (2.64)

where
[𝚫 × 𝐀𝐫]𝜇 = ∑

𝜈𝜆
𝜀𝜇𝜈𝜆Δ𝜈𝐴𝐫,𝜆. (2.65)

is the lattice analogue of the cross product
By applying the above recipes to Eq. (2.59), one may arrive at a lattice

formulation of the continuum Ginzburg-Landau model. Transforming the
quadratic and quartic terms is straightforward, simply replace the contin-
uum field by the lattice analogue. The derivative term requires some mas-
saging. If we use the covariant form of the forward difference, we may



26 Chapter 2. Statistical Mechanics

write the term as

1
2𝑚 ∫ d𝐷𝑟 |(𝛁 − 𝑖𝑒𝐀)𝜓(𝐫)|2 → 1

2𝑚𝑎2 ∑
𝐫,𝜇

∣𝜓𝐫+�̂�𝑒−𝑖𝑒𝑎𝐴𝐫,𝜇 − 𝜓𝐫∣2 . (2.66)

Multiplying out, we have the following expression for the derivative term
of the Hamiltonian, 𝐻𝑘,

𝐻𝑘 = 1
2𝑚𝑎2 ∑

𝐫,𝜇
[ ∣𝜓𝐫+�̂�∣2 + |𝜓𝐫|2

− 𝜓𝐫+�̂�𝜓∗
𝐫𝑒−𝑖𝑒𝑎𝐴𝐫,𝜇 − 𝜓∗

𝐫+�̂�𝜓𝐫𝑒𝑖𝑒𝑎𝐴𝐫,𝜇]. (2.67)

Here, we may first recognize that the two first terms in the bracket are actu-
ally the same10. We may also, by replacing the complex field by amplitudes
and phases, identify the last term as a cosine. Hence, we have

𝐻𝑘 = 1
𝑚𝑎2 ∑

𝐫,𝜇
[|𝜓𝐫|2 − ∣𝜓𝐫+�̂�∣ |𝜓𝐫| cos(𝜃𝐫+�̂� − 𝜃𝐫 − 𝑒𝑎𝐴𝐫,𝜇)] . (2.68)

Combining all this, we have the following lattice Hamiltonian

𝐻 = 𝑎𝐷 ∑
𝐫

[ − 1
𝑚𝑎2 ∑

𝜇
∣𝜓𝐫+�̂�∣ |𝜓𝐫| cos(Δ𝜇𝜃𝐫 − 𝑒𝑎𝐴𝐫,𝜇)

+ (𝑏 + 𝐷
𝑚𝑎2 ) |𝜓𝐫|2 + 𝑔 |𝜓𝐫|4 + 1

2𝑎2 (Δ × 𝐀𝐫)2 ], (2.69)

where Δ𝜇𝜃𝐫 = 𝜃𝐫+�̂� − 𝜃𝐫.

2.5.2 The London approximation

In many cases, the critical properties of a system described by a Ginzburg-
Landau model is captured very well by phase fluctuations only (and gauge-
field fluctuations, where applicable). Therefore, one often works in the

10Just shift the sum by one lattice constant in the first term.
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London approximation, or phase-only approximation. This boils down to
disallowing any fluctuation in the amplitude field, and fixing it to some
value |𝜓𝐫| = 𝜌 ∀ 𝐫. In this approximation, the potential becomes an unim-
portant constant, and we may reduce the Hamiltonian to the following sim-
ple form.

𝐻 = 𝑎𝐷 ∑
𝐫

[ − 𝜌2

𝑚𝑎2 ∑
𝜇

cos(Δ𝜇𝜃𝐫 − 𝑒𝑎𝐴𝐫,𝜇) + 1
2𝑎2 (Δ × 𝐀𝐫)2 ]. (2.70)

In fact, this is equivalent to an 𝑋𝑌 -model, coupled to a gauge field.

2.6 Topological defects

Models that are symmetric under a group 𝒢 also support non-perturbative
objects known as topological defects11. In Z2 symmetric models you find
kinks (or domain points) in one dimension, domain lines in two dimen-
sions, or domain walls in three dimensions. These are configurations where
the spins point in one direction in one part of the system, and in the oppo-
site in another part. These two domains of say up and down spins are then
separated by a domain wall where the spins change direction. In Fig. 2.3,
such a configuration is depicted. The domain line is emphasized with a
dashed line.

Topological defects are a consequence of the field theory and its bound-
ary conditions allowing solutions that are homotopically distinct.12 A ho-
motopy group in our context describes a mapping between 𝑛-dimensional
spheres, 𝑆𝑛, and the manifold, 𝑀 , of the boundary of physical space, de-
noted as Π𝑛(𝑀). If we take the one dimensional kink as an example,
we have a mapping from the 0-dimensional sphere (simply two points
{+1, −1}) onto itself (the boundary of one dimensional space is also a 0-
dimensional sphere). The trivial configuration of having no kink corre-
sponds to the trivial map, while the kink corresponds to twisting the order

11By non-perturbative I mean that they will never show up in perturbation theory.
12See [12] Chap. V.7 for a more thorough treatment and some references.
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Figure 2.3: Example of a domain wall configuration in an 2𝐷 Ising model
on a 10×10 lattice. The spins in the right part of the system point upwards,
while the ones in the left point down. These two domains are separated by
a wall where the spins change direction, indicated by the dashed line.

parameter from −1 to +1. You may also have an anti-kink with the op-
posite twist. The homotopy group in this case would be Π0(𝑆0) = Z2,
which shows that the kinks may have two different value for the topologi-
cal charge (in addition to the trivial configuration of charge 0).

Now, if the order parameter has a higher symmetry, we will get other
topological objects. For 𝑋𝑌 -spins in two or three dimensions the objects
will be vortices or vortex lines, respectively. A single vortex configuration,
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in the plane, is represented by the spins pointing radially outwards at spa-
tial infinity, so that the spin winds around once as you trace around the
vortex core. A vortex line is simply vortices stacked on top of each other.
The homotopy group of these configurations are maps from 𝑆1 to either 𝑆1

or 𝑆2, both of which are equal to ℤ, the set of integers. Hence, vortices may
have charges {±1, ±2, ±3, …}, corresponding to the number of windings of
the spin as you go around the core counter-clockwise.

The energy of a single vortex may be approximated in two dimensions
by the integral

𝐸𝑉 ∼ ∫
𝑅

𝑟0

d𝑟
𝑟 = ln 𝑅

𝑟0
, (2.71)

where 𝑅 is the system size, and 𝑟0 is some lower cutoff, for instance the
lattice spacing. It diverges logarithmically with system size, which means
that a single vortex can not appear out of nowhere in the thermodynamic
limit. It can not disappear either, which shows that it is a topologically
protected object. If you somehow put a system into a single vortex config-
urations, it would cost an infinite amount of energy to unwind the vortex.
There are two ways around this. First, vortices may appear in pairs of one
vortex and one anti-vortex with the opposite winding. In this case the net
winding at spatial infinity is zero, and the energy of the configuration will
not diverge. This is relevant for the Kosterlitz-Thouless transition, which
we tackle in Section 2.7. In three dimensions, similar arguments cause vor-
tex excitations to always form closed loops rather than isolated lines.

The other ’solution’ is to gauge the model: we may compensate for the
energy cost of the vortex with the gauge field. If we consider a gauged two
dimensional London model on the continuum (with units reinserted), we
have the Hamiltonian

𝐻 = ℏ
2𝑚 ∫ d2𝑟 (𝛁𝜃 − 𝑒𝐀)2 . (2.72)

If we integrate 𝛁𝜃 around a single vortex core in a closed contour, we find
the vorticity

∮
𝐶

𝛁𝜃 ⋅ d𝐥 = 2𝜋𝑛, (2.73)
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Figure 2.4: Example of a vortex configuration in an 2𝐷𝑋𝑌 model on a 10×
10 lattice. The spins point radially outwards from the vortex in the center
plaquette, denoted by the + sign. If you move in a closed path counter-
clockwise around the vortex, the spins turn an angle 2𝜋.

where 𝑛 is the topological charge of the vortex. The energy of the vortex
may now be cancelled out by having the gauge field in the configuration
𝐀 → 𝛁𝜃/𝑒 at spatial infinity. This means that a vortex will carry a magnetic
flux, Φ, equal to

Φ = ℏ ∮
𝐶

𝐀 ⋅ d𝐥 = ℎ
𝑒 𝑛. (2.74)

This is often written as Φ0𝑛, where Φ0 = ℎ/𝑒 is the magnetic flux quan-
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tum. The interpretation of this is that vortices in models with local U(1)
symmetry carry an integer number of magnetic flux quanta each.

The lattice model of Eq. (2.69) should also take vortices into account.
With no gauge field, a vortex configuration on the lattice should have

∑
𝐫,𝜇∈𝐶

Δ𝜇𝜃𝐫 = 2𝜋𝑛, (2.75)

where 𝐶 now is a closed contour going counter clockwise around a pla-
quette of the lattice. The vortices are now objects living on the plaquettes
of the lattice. In order to find these vortices, we must demand that the sum
of Δ𝜇𝜃𝐫 around a plaquette is inside the primary interval of the phases,
𝜃𝐫 ∈ [−𝜋, 𝜋). In Eq. (2.75), 𝑛 is then the number you have to add to the
plaquette-sum of Δ𝜇𝜃𝐫 to bring it back inside the primary interval. If you
have a gauge field, you instead have to keep the sum of Δ𝜇𝜃𝐫−𝑒𝐴𝐫,𝜇 inside
the primary interval.

2.7 The Kosterlitz-Thouless transition

A famous theorem known as the Mermin-Wagner-Hohenberg [13, 14] the-
orem states that a continuous symmetry can not be spontaneously broken
in systems with two or fewer dimensions.

Even if no spontaneous symmetry breaking may occur, Kosterlitz and
Thouless hypothesized that two-dimensional systems with continuous sym-
metries (like the two-dimensional 𝑋𝑌 -model) may still undergo a phase
transition, dubbed a Kosterlitz-Thouless transition. They found that 𝑋𝑌 -
spins in two dimensions, although they never exhibit long-range order for
any finite temperature, will have what is known as quasi-long range or-
der. This state is characterized by power-law decay of the correlations be-
tween spins, rather than exponential decay, as a disordered state would
exhibit. Furthermore, they showed that the helicity modulus will have a
discontinuous jump at the transition temperature [15, 16]. The mechanism
behind this transition is vortex-driven. In the low-temperature phase, vor-
tices will be confined to forming bound pairs of vortices and anti-vortices.
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A single vortex will have a logarithmically diverging energy. In the high-
temperature phase, these vortex anti-vortex pairs will disassociate, form-
ing free vortices. In Fig. 2.5, two snapshots from a Monte-Carlo simula-
tion of the 2𝐷𝑋𝑌 model is shown. The left hand panel shows the high-
temperature phase, where individual vortices may move freely, while the
right hand panel shows the low-temperature phase where they are bound
in pairs.
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Figure 2.5: Monte-Carlo snapshots of the vorticity in a 2𝐷𝑋𝑌 model. The
left panel shows a typical configuration above the KT critical temperature,
where vortices are not bound in pairs, while the right panel shows that the
vortices form bound pairs below the KT critical temperature.
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Later, Halperin, Nelson and Young expanded on the ideas of Kosterlitz
and Thouless to describe the melting transition of a two-dimensional solid
[17–19]. This is known as the KTHNY-scenario, where a two-dimensional
solid melts to a liquid through two KT-transitions where first quasi-long
range translational order is restored, then orientational order. Like in the
KT-transition of the 𝑋𝑌 -model, the two transitions of the KTHNY-scenario
are driven by topological defects, known as dislocations and disclinations.
Dislocations are extra rows of particles forced into a perfect periodic lat-
tice. Disclinations are line defects that violates the orientational symmetry,
basically they are single lattice points with one extra, or one fewer, nearest
neighbour. In fact, an isolated dislocation is a pair of disclinations. The two
KT-transitions are then driven by proliferations of first dislocations, which
causes quasi-long range translational order to be lost, and then disclina-
tions, which destroys the remaining orientational order.

In a two-dimensional solid, the particle-particle correlation function
will have power law singularities, as opposed to 𝛿-function singularities,
at a set of reciprocal Bragg vectors, 𝐆, corresponding to the periodicity of
the lattice structure.

𝐺(𝐫 − 𝐫′) ∼ |𝐫 − 𝐫′|𝜂𝐆(𝑇) . (2.76)

The prediction of Halperin, Nelson and Young was that these correlations
will follow a power law with a specific exponent, 𝜂𝐆(𝑇 ), in the low tem-
perature solid phase. The exponent will be dependent on temperature, and
the magnitude of the Bragg vector. Specifically, as 𝑇 approaches the melt-
ing temperature, 𝑇𝑚, from below (where quasi-long range order is lost),
the exponent will approach a limiting value given by [18]

𝜂∗
𝐆 = lim

𝑇→𝑇 −𝑚
𝜂𝐆(𝑇 )

= 𝐺2𝑎2

16𝜋2 , (2.77)

where 𝑎 is the lattice spacing. 𝐺2𝑎2 will simply be a numerical factor,
dependent on the lattice symmetry. For instance, for a hexagonal lattice
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𝜂∗
𝐆 = 1/3 for the first-order peak. Hence, in order to classify a melting tran-

sition as a KTHNY-transition, one would measure the correlation function
and determine the exponent, as a function of temperature. If the exponent
approaches the limiting value at the melting transition, the transition may
be identified as such. However, if the lattice melts before the limiting value
is reached, then the transition is likely a first-order transition directly from
the solid phase into the isotropic liquid phase. This would be a preemp-
tive proliferation of disclinations. Several studies have been done on two-
dimensional melting in various systems, and both first-order and KTHNY
transitions has been found[20–27].

A third possible scenario, in the presence of a pinning potential13, is
a de-pinning transition from a commensurate solid into an isotropic liq-
uid. This may happen, for instance, in a two-dimensional lattice super-
conductor in too high external fields [28–30], and would not conform to
the KTHNY-scenario. If 𝐌 is the smallest nonzero reciprocal-lattice vector
common to both the pinning potential and the solid and 𝐆0 is the smallest
reciprocal-lattice vector of the solid, one must have a sufficiently large ratio
𝑀2/𝐺2

0 in order to have a KTHNY-transition in the presence of a pinning
potential [18].

13This could be a substrate, or a numerical lattice grid,



CHAPTER 3

Monte-Carlo Simulations

This chapter will deal with Monte-Carlo simulations. What they are, why
we use them, and how they work. Monte Carlo has been essential in an-
swering questions about models in statistical mechanics (and in other fields
as well) which are too complex to solve analytically. In the following we
will go through the hows and whys of Monte-Carlo, in the context of spin
models. Most of the material covered here may be found in [31].

3.1 The basics of Monte-Carlo simulations

As alluded to in Chapter 2, the brunt of the work in this thesis concerns
calculating the partition function. Mean field theory and other approxi-
mations gets you quite a bit along the way, especially with determining
ground state phase diagrams. However, phase transitions are notoriously
difficult to pin down in the mean field approximation, simply because fluc-
tuations are so important in this regime. For most models, other than the
most basic like the Ising model in one or two dimensions, actually per-

35
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forming the configuration sum of the partition function is impossible for
arbitrarily large systems.

To remedy this, enter Monte-Carlo sampling techniques. The basic idea
relies on the observation that, even though the configuration space is vast
and exponentially increasing with system size, only a few1 of the configu-
rations make up the bulk of the sum in the partition function. Most con-
figurations have a vanishingly small Boltzmann weight. Take for instance
again the Ising model in zero field. At low temperatures the partition func-
tion is dominated by configurations with most of the spins aligned, while
the configurations where the total magnetization is close to zero hardly
contributes. By sampling mostly the configurations that ”matter” one may
approximate the real behaviour of the system at a given temperature with
quite good accuracy.

In order to do this, one must first clearly define a scheme, or algorithm,
that properly samples the configuration space. One must also carefully
define the numerical error that inherently accompanies such a scheme, and
properly consider the limitations and pitfalls introduced. In this chapter,
we will go through the basic rules that must be fulfilled for any Monte-
Carlo scheme to be valid.

Heuristically, we must construct a scheme consisting of the following
steps

1. Draw a new random configuration from the space of all possible con-
figurations.

2. Accept or reject the configuration according to some rule, which prop-
erly accepts the most important configurations.

3. Measure the physical observables relevant to the problem you want
answered, this could be internal energy, specific heat, some type of
order parameter (like magnetization), etc.

4. If sufficient statistics has been acquired, stop the simulation. If not,
return to step one.

1A few compared to the total number of configurations, which is often enormous.
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5. Calculate thermal averages of observables and properly estimate the
associated numerical error.

This seemingly simple list introduces a few concepts that must be properly
defined to make sure that the results of the simulation actually reflects the
real behaviour of the model in question.

3.1.1 Monte-Carlo integration

The use of Monte-Carlo simulations to solve problems in statistical me-
chanics relies on the more general concept of Monte-Carlo integration. Say
you want to integrate some terribly complicated function, 𝑓(𝐱), where 𝐱
usually is a collection of a large number of degrees of freedom. Monte-
Carlo integration is the process of estimating this integral by randomly
sampling configurations 𝐱 in the phase space and calculating the function
value, 𝑓(𝐱). In mathematical terms we represent this estimate as

∫ dΩ𝑓(𝐱) ≈ Ω ̄𝑓, (3.1)

where Ω is the volume of phase space, and ̄𝑓 is the mean of 𝑓(𝐱) evaluated
at 𝑁 randomly chosen points 𝐱𝑖,

̄𝑓 = 1
𝑁 ∑

𝑖
𝑓(𝐱𝑖). (3.2)

Of course, if the integrand, 𝑓(𝐱), is dominated by some small area of phase
space this is a terribly inefficient method of estimating the integral. And
this is exactly the case when we deal with the partition function. To rem-
edy this, we apply the concept of importance sampling. Instead of randomly
picking the points, 𝐱𝑖, we choose them according to some probability dis-
tribution, 𝑝(𝐱). Formally, this is equivalent to transforming the integral in
the following way

∫ dΩ𝑓(𝐱) = ∫ d𝑝(𝐱)𝑓(𝐱)
𝑝(𝐱) , (3.3)
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where d𝑝(𝐱) = dΩ𝑝(𝐱). In this case we may approximate the integral by

𝐼 ≈ 1
𝑁 ∑

𝑖

𝑓(𝐱𝑖)
𝑝(𝐱𝑖) . (3.4)

The uniform sampling is then the special case of 𝑝(𝐱) = 1/Ω.
To apply this to statistical mechanics we identify that the partition func-

tion is a multi-dimensional integral where 𝑓(𝐱𝑖) ≅ exp(−𝛽𝐻[Ψ𝑖]) and
∫ dΩ ≅ ∫ 𝒟Ψ. We also want to calculate expectation values of observ-
ables 𝒪, in that case 𝑓(𝐱) ≅ 𝒪 exp(−𝛽𝐻)/𝒵. If we use uniform sampling,
the Monte-Carlo estimate of an expectation value would be

⟨𝒪⟩ ≈
∑𝑖 𝒪[Ψ𝑖]𝑒−𝛽𝐻[Ψ𝑖]

∑𝑖 𝑒−𝛽𝐻[Ψ𝑖] . (3.5)

However, a much more efficient scheme would be to use importance sam-
pling with 𝑝(𝐱) = 𝑝[Ψ], i.e. the canonical probability distribution, Eq. (2.1).
In this case, the estimator for the expectation value of 𝒪 simplifies to

⟨𝒪⟩ ≈ 1
𝑁 ∑

𝑖
𝒪[Ψ𝑖]. (3.6)

The drawback is that we now have to create an algorithm that generates the
values {Ψ𝑖} from the canonical probability distribution, without knowing
the normalization, the partition function itself. Remember, all the infor-
mation about the thermodynamics of the system is contained in the nor-
malization, 𝒵. Hence, if 𝒵 is known, one would not have to bother with
Monte-Carlo simulations at all.

3.2 Markov-chain Monte-Carlo

In a Monte-Carlo simulation we want to draw random configurations from
the probability distribution defined by the partition function in order to
estimate the expectation value, or thermal average of some observable, 𝒪.
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Markov-chain Monte-Carlo is a scheme to stochastically generate chains of
configurations according to a set of rules. The idea is to generate a chain
of configurations, 𝑋1 → 𝑋2 → … → 𝑋𝑁 from the set of possible config-
urations {Ψ}, where the next configuration only depends on the previous.
In fact, for it to be a proper Markov chain, the probability of moving from
state Ψ𝑖 to Ψ𝑗, 𝑃(𝑋𝑡 = Ψ𝑖|𝑋𝑡+1 = Ψ𝑗) ≡ 𝑃 (Ψ𝑖 → Ψ𝑗), in a step must be
independent of the history of the chain. Furthermore, as these are proba-
bilities, we require that

𝑃(Ψ𝑖 → Ψ𝑗) ≥ 0, (3.7)

and
∑

𝑗
𝑃(Ψ𝑖 → Ψ𝑗) = 1. (3.8)

The last equation simply means that we must end up somewhere in the
configuration space when transitioning from state Ψ𝑖.

With these basic assumptions in mind, we may construct the probabil-
ity, 𝑝(𝑋𝑡 = Ψ𝑖), that the system is in state Ψ𝑖 at step 𝑡 in the Markov chain,

𝑝(𝑋𝑡 = Ψ𝑖) = ∑
𝑗

𝑝(𝑋𝑡−1 = Ψ𝑗)𝑃 (Ψ𝑗 → Ψ𝑖). (3.9)

This may be thought of as a master equation for the Markov chain. The goal
of our Markov-chain Monte-Carlo simulation of the statistical mechanics
problem is for the probability of being in state Ψ𝑖 at time 𝑡 to approach
an equilibrium probability. If this probability is the canonical probability
distribution, 𝑝[Ψ𝑖], we are indeed sampling the configurations from the
correct distribution. That is, we must have 𝑝(𝑋𝑡 = Ψ𝑖) = 𝑝[Ψ𝑖] for any
𝑡. Inserting this into the master equation, Eq. (3.9), and using Eq. (3.8), we
have

∑
𝑗

𝑝[Ψ𝑗]𝑃 (Ψ𝑗 → Ψ𝑖) = ∑
𝑗

𝑝[Ψ𝑖]𝑃 (Ψ𝑖 → Ψ𝑗). (3.10)

This is known as the balance condition. It is common to use a more strict
version of this condition, by demanding that Eq. (3.10) is satisfied term by
term,

𝑝[Ψ𝑗]𝑃 (Ψ𝑗 → Ψ𝑖) = 𝑝[Ψ𝑖]𝑃 (Ψ𝑖 → Ψ𝑗), (3.11)
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which is known as detailed balance.
In addition to detailed balance, one more condition must be fulfilled in

order to properly approximate the partition function. Given a finite, but
possibly very large, number of elements in your Markov chain, every point
in the space of all possible configurations must be visited. This is known as
ergodicity. This is important to fulfill, in order to avoid getting stuck in local
energy minima, and to avoid improper sampling of the states in general.

3.2.1 The Metropolis-Hastings algorithm

Now we must define an algorithm which creates a Markov chain accord-
ing to the canonical probability distribution. The simplest Markov-chain
Monte-Carlo algorithm, the Metropolis-Hastings algorithm, relies on us-
ing the relative Boltzmann weight of the new configuration compared to
the old as the probability to accept the new configuration. This automati-
cally ensures that the configurations are picked from the actual probability
distribution of the partition function, and that detailed balance is satisfied.

We may split the probability of transitioning from state Ψ𝑖 to state Ψ𝑗
into a product of two probabilities, one to select the new state, and one to
accept it. That is,

𝑃(Ψ𝑖 → Ψ𝑗) = 𝑃𝑆(Ψ𝑖 → Ψ𝑗)𝑃𝐴(Ψ𝑖 → Ψ𝑗). (3.12)

Generally, the selection probability is constructed to be symmetric,

𝑃𝑆(Ψ𝑖 → Ψ𝑗) = 𝑃𝑆(Ψ𝑗 → Ψ𝑖). (3.13)

In the Metropolis-Hastings algorithm, we make the choice of acceptance
probability to be the ratio of the new probability weight to the old if the
new weight is lower than the old, otherwise we accept the new state auto-
matically. Mathematically, this reads

𝑃𝐴(Ψ𝑖 → Ψ𝑗) = min (1, 𝑝[Ψ𝑗]
𝑝[Ψ𝑖]) . (3.14)
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It is straightforward to realize that Eq. (3.14) satisfies detailed balance, by
insertion into Eq. (3.11). If we insert Eq. (2.1) into Eq. (3.14), we have the
simple expression

𝑃𝐴(Ψ𝑖 → Ψ𝑗) = min (1, 𝑒−𝛽(𝐻[Ψ𝑗]−𝐻[Ψ𝑖]))
≡ min (1, 𝑒−𝛽∆𝐸) . (3.15)

A single Monte-Carlo move following the Metropolis-Hastings algo-
rithm is thus done in the following way:

1. From state Ψ𝑖, pick a new state Ψ𝑗.

2. Calculate Δ𝐸.

3. Generate a random number, 𝑟, between 0 and 1.2

4. If log 𝑟 ≤ −𝛽Δ𝐸, accept the new state.

This already defines a very robust and flexible simulation scheme, but
we will modify it slightly to optimize it for large-scale simulations. The
Metropolis-Hastings algorithm was employed in all papers which includes
results from numerical simulations.

3.2.2 Update schemes

So far, we have covered how to accept a proposed configuration, but not
how to propose the new configuration. The Metropolis-Hastings algo-
rithm relies on having a symmetric selection probability, 𝑃𝑆(Ψ𝑖 → Ψ𝑗) =
𝑃𝑆(Ψ𝑗 → Ψ𝑖), but as long as this is fulfilled, we have some freedom to do
this. If the model in question only includes nearest-neighbor interactions
in your model, as the models considered in papers I-III, it is convenient to
have a local update scheme as well. This means that you update each spin
at a time, in succession3. One full round of attempting to update each spin

2To speed up the simulation, we generally generate all the random numbers needed in
one go, and put it in an array.

3It is important to attempt to update each spin of your lattice, to fulfil ergodicity
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of your lattice once, is called a single Monte-Carlo sweep. A big advan-
tage of local updates is that Δ𝐸 only depends of the nearest neighbours
of the spin you update. This makes the calculation more efficient, and it
will be straightforward to make a simulation code that can run on parallel
computer clusters.

The simplest way to update a single spin, just picking any random ori-
entation of the spin, generally results in low acceptance rates. One way to
avoid this is to restrict the space of possible updates (while still fulfilling er-
godicity). For instance, with an 𝑋𝑌 -spin you might pick a new orientation
that lies in some small interval around the initial orientation. This will
greatly increase acceptance rates, as the new configuration will typically
lie very close in energy to the old configuration. One caveat is that if you
choose the interval too small, the configurations at different steps in your
Markov chain might be highly correlated with the previously measured
configuration. Hence, one must choose an interval that is small enough
that acceptance rates are high, but still large enough to minimize statistical
errors from correlation. We use this update scheme in all the Monte-Carlo
backed papers.

3.2.3 Thermal equilibration

When a Monte-Carlo simulation is initialized, it is common to start with
a completely random configuration. Chances are, this configuration will
be no where near thermal equilibrium. If one were to measure observables
from this point, one would essentially measure from the wrong state as the
system evolves towards the true equilibrium, and statistical errors would
be unnecessary large. To remedy this, one usually discards a number of
initial Monte-Carlo sweeps before beginning to measure observables. This
is known as thermalization, or thermal equilibration. By monitoring the
internal energy of the system during thermalization as a function of Monte-
Carlo time, one can make sure that the system has evolved to equilibrium
if the internal energy has converged.

Fig. 3.1 shows a typical example of this, using the energy per spin, 𝐻/𝑉
at each Monte-Carlo step as a measure of convergence. Here we initialize a
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Figure 3.1: Monte Carlo time series of the configurational energy per spin
for a 3𝐷 Ising model simulated on a 643 lattice, when starting from a com-
pletely ordered initial configuration and a random initial configuration.
The energy quickly converges to the equilibrium value in both cases.

3𝐷 Ising model at both a random configuration, and a completely ordered
configuration on a lattice of 64 × 64 × 64 spins. The random configuration
lies at a higher energy than the equilibrium energy, while the ordered con-
figuration lies at a lower energy, at this particular value of 𝛽. Both quickly
relaxes to the equilibrium energy. The thermalization procedure evolves
the system to the proper equilibrium state. It is important to thermalize
long enough that the internal energy has converged, which in the case of
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Fig. 3.1 occurs after roughly 60 Monte-Carlo sweeps. For more complicated
models, the required number of sweeps before the system has relaxed to
thermal equilibrium may be significantly higher.

3.3 Issues from finite sampling time and system size

As we perform the simulations on a computer, naturally, we are limited
in some ways by finite resources. The simulation time, system size, and
number of parameters we may simulate are all limited. This introduces
some issues which must be dealt with, presented in the following.

3.3.1 Error estimation

During the Monte-Carlo simulations, we measure expectation values of
different physical observables, 𝒪. As shown above, one may estimate this
by simply taking the arithmetic mean of the set of observables measured
during the Monte-Carlo simulations. We say that one of these measure-
ments is a measure step, and it is always performed at the end on a full
Monte-Carlo sweep of the lattice. However, as we shall see below, one
measure step is not necessarily taken after each Monte-Carlo sweep, we
usually perform many Monte-Carlo sweeps before each measure step. Ac-
companying an estimate of any observables, we must have an estimate of
its statistical error, otherwise it has little value. Given that the measure-
ments, 𝒪[Ψ𝑖], are statistically independent, we may use the one standard
deviation error estimate on the form

𝜎2 = ⟨𝒪[Ψ]2⟩ − ⟨𝒪[Ψ]⟩2

𝑁 − 1 , (3.16)

where 𝑁 is the total number of measure steps.
The above estimate does not take into account that the configurations at

subsequent measurements may be correlated. Say, in an extreme case, we
were simulating the Ising model, and would measure the value of 𝐻 after
each proposed spin flip. In this case each configuration measured would
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differ by a single spin, and would be highly correlated. But, even if we pro-
pose to update each spin once before measuring, the measurement could
still be correlated. This is especially true if acceptance probabilities are low,
for instance close to a critical point. To account for this we must estimate
the auto-correlation time, 𝜏𝐴, and modify the error estimate accordingly. In
order to calculate 𝜏𝐴, we define the auto-correlation function, 𝜑(𝑡), which
measures correlations between measurements separated by a number of
measure steps, 𝑡. The auto-correlation function is defined as

𝜑(𝑡) = (
𝑁−𝑡
∑
𝑖=1

𝒪[Ψ𝑖]𝒪[Ψ𝑖+𝑡]
𝑁 − 𝑡 − ⟨𝒪[Ψ𝑖]⟩2) 1

⟨𝒪[Ψ𝑖]2⟩ − ⟨𝒪[Ψ𝑖]⟩2 . (3.17)

If we assume that this function decays exponentially, we may define 𝜏𝐴,

𝜑(𝑡) ∼ 𝑒−𝑡/𝜏𝐴 , (3.18)

and we may estimate it by summing up the auto-correlation function

𝜏𝐴 ≈ ∑
𝑡

𝜑(𝑡). (3.19)

Knowing 𝜏𝐴, the error estimate of Eq. (3.16) is modified to

𝜎2 = (1 + 2𝜏𝐴) ⟨𝒪[Ψ]2⟩ − ⟨𝒪[Ψ]⟩2

𝑁 − 1 , (3.20)

One may of course minimize the auto-correlation time by increasing the
number of Monte-Carlo sweeps between each measurement step.

3.3.2 Critical slowing down

At a critical point, we have seen that the correlation length diverges. It
turns out that the system will be highly correlated in time as well. This
means that the auto-correlation time will diverge as well, which will worsen
statistics at the critical point. In the real world this effect slows down the
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dynamics of the system, hence the name critical slowing down. Close to
the critical point, the auto-correlation time behaves as

𝜏𝐴 ∼ 𝜉𝑧 ∼ |𝑇 − 𝑇𝑐|𝜈𝑧 , (3.21)

where 𝑧 is the model and algorithm dependent dynamical critical exponent.
There are several algorithms that try to deal with these effects, called cluster
algorithms, which base themselves upon updating a large number of spins
at the same time. Just to name a few, some successful algorithms are the
Swendsen-Wang algorithm [32] or the Wolff algorithm [33]. It is also worth
mentioning the worm algorithm [34], while it is not considered a cluster
algorithm, it still features non-local updates. All of these algorithms are
useful because they have an almost zero dynamical critical exponent.

At a first order transition, a similar effect causes simulations to be in-
creasingly difficult to handle, called exponential tunneling time. Here, we
have the following behaviour at the transition point

𝜏𝐴 ∼ 𝑒𝐿𝐷−1 , (3.22)

where 𝐿 is the system size, and 𝐷 is the dimensionality. The reason for this
behaviour is the coexistence of phases that occurs at a first order transition.
To properly sample the system at the transition, you need to sample con-
figurations from both of the coexisting phases. The auto-correlation time
may be thought of as the time the system uses to tunnel from one phase
to the other. Here, we have the additional complication that the system
becomes increasingly difficult to simulate as we increase the system size,
which is the reason why first order transition may be hard to pin down.

3.3.3 Finite size scaling

Often, when simulating a statistical mechanics model, we want to deter-
mine what kind of phase transitions the model has. We want to find out if
we are dealing with first- or second-order transitions, and what universal-
ity class they may belong to. In Chapter 2 we showed that certain quantities
like the specific heat and magnetization have singularities governed by a
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few critical exponents, which determine the model’s universality class, as
a second-order transition point is approached. We also showed that there
exists a correlation length, 𝜉, which diverges according to 𝜉 ∼ |𝑇 − 𝑇𝑐|−𝜈

as we approach the critical point. In a Monte-Carlo simulation, we will be
limited by the fact that we can not simulate systems in the thermodynamic
limit, we have to define the model on a system of finite size. Typically,
we use either a square or a cube with sides 𝐿. What this means is that, at
the critical point, the correlation length will not diverge, but it will grow
according to Eq. (2.48) until it reaches the limiting value of 𝐿. If we are
sufficiently far away from the transition, 𝜉 ≪ 𝐿, and we may consider the
system as if we are in the thermodynamic limit.

This may seem like a weakness of our finite system size, and will give
rise to finite size effects if the system size is too small, but it may be ex-
ploited to determine the order and classification of the transition. This is
known as finite size scaling. Quantities that would be singular at 𝑇 = 𝑇𝑐,
will instead be smoothed out across a critical region of size |𝑇 − 𝑇𝑐| ∼
𝐿−1/𝜈. This may be inserted into the definitions of the critical exponents
to yield scaling laws for finite sized systems. For instance, the specific heat
will scale as

𝑐𝑣 ∼ 𝐿𝛼/𝜈, (3.23)

and the magnetization in zero field as

𝑚 ∼ 𝐿−𝛽/𝜈. (3.24)

The other scaling laws are straightforward to derive. To utilize this knowl-
edge, one would perform simulations at a range of values for 𝐿, locate the
transition point for each simulation4, and fit this data to the appropriate
scaling behaviour.

For a first-order transition, there is no true scaling in the same sense
as for continuous phase transitions. However, it is still possible to verify a
first-order transition by extracting the scaling exponent of the specific heat
[35]. It can be shown that, in a first-order transition, the specific heat has

4For the specific heat this amounts to locating the peak of the curve.
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the leading order behaviour

𝑐𝑣 ∼ 𝐿𝐷. (3.25)

That is, it has effective critical exponents 𝛼 = 1 and 𝜈 = 1/𝐷 [36, 37].
Another method is to measure the probability distribution of the inter-
nal energy per volume at the transition suspected to be first order [38, 39].
In a first-order transition, this histogram will have a bimodal distribution,
where the two peaks are of equal height exactly at the transition point. The
horizontal distance between the peaks relates to the latent heat released
when going through the transition, and should therefore not scale with
system size, so to remain finite in the thermodynamic limit. The vertical
distance between the two peaks and the local minimum between them re-
lates to the free energy barrier separating the two transitions. This barrier
should increase with system size. The two peaks should grow, while the
local minimum between them should be pulled downwards.

3.3.4 Re-weighting

A related issue to the above is that when performing Monte-Carlo simu-
lations, we are necessarily restricted to simulating at a discrete set of in-
verse temperatures, 𝛽. This may make determining exact locations of crit-
ical points challenging, especially for strong first order transitions which
will have sharp transitions. A solution to this is the concept of re-weighting.
When we do a Monte-Carlo run, what we essentially do is measure a col-
lection of samples of some observable, 𝒪. These observables are drawn
from the probability distribution defined in Eq. (2.1), at a given value of 𝛽.
However, one would expect that this distribution changes very little if one
were to change the inverse temperature by a small amount, 𝛽 → 𝛽′. The
expectation value of 𝒪 at 𝛽′ is defined as

⟨𝒪(𝛽′)⟩ = ∫ 𝒟Ψ𝒪𝑒−𝛽′𝐻

∫ 𝒟Ψ𝑒−𝛽′𝐻 . (3.26)
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Figure 3.2: Specific heat capacity of the 3𝐷 Ising model on a 163 lattice
calculated from raw and re-weighted data. The simulation was performed
on the five 𝛽-values indicated by the red points, which was chosen to lie
around the phase transition. Then, in post-processing, the blue points were
calculated using multi-histogram re-weighting combining the data from
the five simulated 𝛽-values. The re-weighted data captures the cusp of the
specific heat curve nicely, even if we did not simulate exactly at these 𝛽-
values. Notice how the error bars grow larger around the peak, as this is
where the histogram overlap is smallest.

By multiplying each integrand by 1 = exp −𝛽𝐻 exp 𝛽𝐻 , we may re-express
the expectation value as

⟨𝒪(𝛽′)⟩ = ∫ 𝒟Ψ𝒪𝑒−(𝛽′−𝛽)𝐻𝑒−𝛽𝐻

∫ 𝒟𝑒−(𝛽′−𝛽)Ψ𝑒−𝛽𝐻

=
⟨𝒪𝑒−(𝛽′−𝛽)𝐻⟩

𝛽
⟨𝑒−(𝛽′−𝛽)𝐻⟩𝛽

. (3.27)
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This means that you may calculate the expectation value of 𝒪 at 𝛽′ by calcu-
lating the expectation value of 𝒪𝑒−(𝛽′−𝛽)𝐻 and 𝑒−(𝛽′−𝛽)𝐻 in the ensemble
at 𝛽. Using the Monte-Carlo estimator of Eq. (3.6) we see that this amounts
to re-weighting the terms in the sum by a factor exp −(𝛽′ − 𝛽)𝐻 . This sim-
ple technique is known as Ferrenberg-Swendsen single-histogram re-weighting
[40]. There also exists a technique known as Ferrenberg-Swendsen multi-
histogram re-weighting [41], which not surprisingly combines measurements
taken from several different couplings to calculate the value of an observ-
able at a set of new couplings. Fig. 3.2 shows an example of calculating the
specific heat of the 3𝐷 Ising model, using multi-histogram re-weighting.
A couple of caveats must be taken into consideration here. First of all, the
efficiency of this method relies on the that histograms of 𝐻 at 𝛽 and 𝛽′

overlap sufficiently, which basically amounts to having a sufficiently small
separation between 𝛽′ and 𝛽. Secondly, the calculation above assumes that
the Hamiltonian does not depend on 𝛽 explicitly.

3.4 Detecting a Kosterlitz-Thouless transition

In Section 2.7 we briefly discussed the consequences of the Mermin-Wagner-
Hohenberg theorem for the 𝑋𝑌 -model. The question still remains: how do
you actually detect a Kosterlitz-Thouless transition in a Monte-Carlo simu-
lation? The defining characteristic is the behaviour of the helicity modulus,
Υ = (Υ𝑥 + Υ𝑦)/2. At the critical inverse temperature of the KT-transition,
𝛽KT, the helicity modulus has a discontinuous jump from a finite value to
zero. Furthermore, the size of the jump multiplied by the critical coupling,
𝛽KTΥ(𝛽KT), has a universal value of 2/𝜋. The first method, proposed by
Weber and Minnhagen [42], relies on a finite-size scaling of the helicity
modulus. As the helicity modulus is a second derivative of the free en-
ergy, one must consider logarithmic corrections to it in two dimensions.
Weber and Minnhagen found that these are on the form

Υ(𝐿) = Υ(∞) (1 + 1
2

1
ln 𝐿 + 𝐶 ) , (3.28)
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as 𝛽KT is approached from above. Therefore, the procedure is to calculate
Υ for several system sizes, perform a fit of Υ for several values of 𝛽 around
the transition to the function Eq. (3.28), and determining which 𝛽 provides
the best fit. The value of Υ(∞)𝛽 at the best fit may then be compared to the
prediction of Kosterlitz and Thouless.

The second method, of Minnhagen and Kim [43] relies on an expansion
of the free energy in the infinitesimal phase-twist defined in Eqs. (2.27)
and (2.28), where Υ is the second-order derivative with respect to the twist.
We expand the difference in the free energy as

𝐹(𝛿𝜇) − 𝐹(0) = Υ𝜇
𝛿2

𝜇
2! + Υ4,𝜇

𝛿4
𝜇

4! . (3.29)

Where Υ4,𝜇, known as the fourth-order modulus, is the fourth-order deriva-
tive of the free energy with respect to the phase twist in the 𝜇-direction.
Derivatives of odd order vanish due to symmetry. The argument is as fol-
lows. For the system is to be stable under the phase twist, Eq. (3.29) must
be greater than or equal to zero. Then, if we observe that the fourth-order
modulus is finite and negative at the critical point, in the thermodynamic
limit, the helicity modulus cannot go continuously to zero at the critical
point, while still keeping the free-energy difference positive. The proce-
dure is then to measure Υ4 = (Υ𝑥 +Υ𝑦)/2 around the critical point, where
it will generally have a dip to a negative value, and do an extrapolation of
the depth of this dip to 1/𝐿 = 0. If this value is finite, there must be a
discontinuous jump in Υ to ensure stability. In addition, one may also ex-
trapolate the location of the lowest point of the dip to estimate the critical
temperature. The convergence of the location is quite slow, however, so
the first method is better suited to estimate 𝛽KT. We use both the finite size
scaling of Eq. (3.28) and the extrapolation of the depth of the dip in Υ4 in
Paper III.
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CHAPTER 4

Bose-Einstein Condensates

This chapter will describe the motivation, and theoretical and experimental
background for the largest part of this thesis. In papers I-III, we attempt
to model a two-component Bose-Einstein condensate using a Ginzburg-
Landau approach. I will here give a brief overview of the history of this
phenomenon, describe the experimental setups in which it has been ob-
served to motivate our theoretical and numerical work, and finally present
the relevant models we have used in our simulations. Some reviews of this
enormous subject can be found in Refs. [44–47]

4.1 History

The theoretical concept of Bose-Einstein condensation has existed for quite
some time. Satyendra Bose developed a theory of the quantum statistics
of light in 1924, which he sent to Albert Einstein. Einstein submitted the
work of Bose for publication on his behalf [48], and extended the theory
to matter in two later papers [49, 50]. This resulted in the concept of the

53
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Bose gas, governed by Bose-Einstein statistics. Einstein also proposed that
a non-interacting gas of bosons may, upon cooling, macroscopically oc-
cupy the lowest energy state. This was a new state of matter, now known
as a Bose-Einstein condensate. It is characterized by a macroscopic frac-
tion 𝜌𝑔/𝜌 where 𝜌𝑔 is the density of particles in the ground state, and 𝜌
is the total density of particles in the gas. For an ideal Bose gas1 in three
dimensions, this fraction can be shown to be

𝜌𝑔
𝜌 = 1 − ( 𝑇

𝑇𝑐
)

3/2
, (4.1)

where

𝑇 3/2
𝑐 = 𝜌

𝜁(3/2) ( ℎ2

2𝜋𝑚𝑘𝐵
)

3/2
, (4.2)

provided 𝑇 < 𝑇𝑐. Here, 𝑚 is the boson mass, and 𝜁 is the Riemann zeta
function. Above 𝑇𝑐, 𝜌𝑔 = 0, and all particles reside in an excited state.
Below 𝑇𝑐, a macroscopic number of particles occupy the ground state, and
at 𝑇 = 0 all particles will sit in the ground state.

In 1938, helium-4 was successfully cooled to a superfluid [51, 52], a liq-
uid which has zero viscosity. London proposed that Bose-Einstein conden-
sation was the mechanism for this phenomenon, as well as for supercon-
ductivity [53]. However, the theory of Einstein, and its extension by Bo-
goliubov only pertained to non- and weakly-interacting Bose gases, which
superfluid helium is not. Because of the strong interactions in superfluid
helium, the fraction of the bosons which are condensed is very low, so it
was not possible to conclude that this was in fact a Bose-Einstein conden-
sate. But, superfluidity is a property of Bose-Einstein condensates, so these
phenomena are tightly related.

Experimental verification of a pure gaseous Bose-Einstein condensate
came quite a bit later. In 1995, the group of Eric Cornell and Carl Wieman
produced a Bose-Einstein condensate in a dilute gas of rubidium atoms
[54]. In 2001, they received the Nobel Prize for this achievement, shared

1See for instance Ref. [7].
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with Wolfgang Ketterle, who independently achieved Bose-Einstein con-
densation in sodium atoms [55]. Not long after the group of Hulet achieved
condensation in a gas of lithium atoms [56]. Following these initial exper-
iments, a vast amount of experimental work has been done. Gases with
interactions tunable by Feshbach resonances has been achieved, mixtures
of different isotopes, or of a single isotope in different hyperfine spin states
has been Bose-Einstein condensed, superfluid vortices has been excited in
Bose-Einstein condensates, and many schemes for producing optical lat-
tice potentials has been developed. All of this makes cold atomic gases an
incredibly exciting field, where many model systems may be realized in an
experimental setup.

4.2 Experimental realization of a Bose-Einstein con-
densate in cold atomic gases

Since the first successful creation of a Bose-Einstein condensate in the lab
there has been quite a lot of effort put into this field. As many of the results
in this thesis attempt to explain previously observed phenomena in experi-
ments, or more frequently to predict what might be observed, it is relevant
to briefly discuss the different experimental setups and techniques used.

In order to create a Bose-Einstein condensate [57], one must cool down
a cloud of bosonic atoms down below the transition temperature, which
depending on the type and density of atoms used is on the order of a few
hundred nK to a few μK. To accomplish this one first loads a magneto-
optical trap with atoms. In this trap one performs an initial cooling to about
100 μK, well above the transition temperature. This first cooling procedure
is done by exploiting the Doppler effect. By shining a laser on the cloud of
atoms with a frequency slightly lower than the atomic transition frequency
of the atom, the atoms traveling towards the laser source will have a higher
chance of absorbing a photon and slowing down due to the absorbed mo-
mentum.

After the initial cooling, the gas is moved to a different magnetic trap,
where it is pumped to a specific hyperfine spin state which is confined by
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the trap. After pumping, it is cooled further below the critical temperature
for condensation, by evaporative cooling [57, 58]. The principle here relies
on using an oscillating magnetic field to transfer the most energetic atoms
into a hyperfine state which is not confined by the magnetic trap, thereby
removing them from the cloud and lowering the temperature of the cloud.

The versatility of atomic gases lies in the variety of ways one may tune
inter-atomic interactions, add periodic lattice potentials with lasers, intro-
duce vortices by rotating or stirring the gas, or even construct synthetic
gauge fields. Combining these kinds of techniques allows you to realize
a wide variety of condensed matter models in the lab. In the following
we will go through some of the techniques that are relevant to the models
studied in papers I-III.

4.2.1 Rotation, vortices and vortex lattices

A Bose-Einstein condensate also exhibits superfluidity, which has a few
experimental manifestations. It has a critical velocity of collective excita-
tions, below which the flow is dissipationless [59]. Furthermore, the con-
densate is coherent, it exhibits long-range correlations [60]. Finally, being a
superfluid, it also supports topological vortex defects. By rotating the con-
densate, the angular momentum introduced into the gas manifests itself as
quantized rotating vortices. This may be achieved either by introducing an
elliptical deformation to the confinement potential and rotating the defor-
mation [61, 62], or by ’stirring’ it using a laser [63]. The former approach
will allow the formation of vortex lattices with a large number of vortices,
at sufficiently high rotation. The latter may be used to introduce a small
number of vortices into the gas. A triangular lattice of a large number of
vortices was first seen by Ketterle’s group [64], but the triangular structure
predicted by Abrikosov was first observed for a small number of vortices
earlier [61].
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4.2.2 Feshbach resonances

One of the aspects of cold atomic gases which makes them such versatile
systems is the ability to manipulate interaction parameters, even during
the experiment. A Feshbach resonance is a rather general phenomenon
[65] that occurs in many-body systems, where a bound molecular state lies
close to a scattering state. By tuning this energy difference using magnetic
or optical fields, one may directly tune the 𝑠-wave scattering length, and
therefore the inter-atomic interaction strength. Many of these resonances
has been discovered in the alkali metals typically used in cold atom exper-
iments2.

4.2.3 Mixtures of atomic gases

A Bose-Einstein condensate created out of a single species is a very inter-
esting system to study in its own right, especially when we add rotation-
induced vortices. However, by mixing different species of atoms (hetero-
nuclear mixtures), or mixing single-species atoms in different hyperfine
states (homo-nuclear mixtures), quite a lot of new phenomena are revealed.
The main reason being that you now have the opportunity to have inter-
actions between the condensates, for instance density-density interactions
which in turn influence inter-vortex dynamics or more exotic interactions
like spin-orbit interactions. Another new phenomenon is phase separa-
tion, spatial segregation of the two condensates [67]. In the years since the
first Bose-Einstein condensate was produced, both hetero-nuclear [68, 69]
and homo-nuclear [70, 71] mixtures have been created. In the homonu-
clear mixtures, a rotation induced vortex lattice has also been created [72],
wherein both hexagonal and square lattices were observed.

4.2.4 Optical lattices

So far we have discussed Bose-Einstein condensates that are trapped in
some kind of harmonic potential, essentially making it a continuum system

2See [66] for a review and a comprehensive list of both optical and magnetic resonances.
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where one oftentimes may describe the condensate with classical Ginzburg-
Landau theories. Optical lattices [45], on the other hand, have been called
quantum simulator, as they allow you to realize many quantum lattice
Hamiltonians. By interfering laser beams, you may create a periodic po-
tential for the atoms to move in. Essentially, you create an array, either 1D,
2D or 3D, depending on the setup, of many small harmonic traps. There
has even been a proposal to create a synthetic four-dimensional optical lat-
tice, by utilizing internal atomic states to create the fourth dimension [73].

4.2.5 Synthetic gauge fields

While cold atomic gases in themselves are already quite versatile in real-
izing a wide variety of condensed matter system, the charge neutrality of
the atoms leaves more to be desired. A lot of interesting physics arises
from the forces on charged particles in electromagnetic fields, for instance
quantum Hall physics or the quantized vortices of a type-II superconduc-
tor. Quantized vortices may be induced in the neutral atomic gases by ro-
tation, which may be thought of as a synthetic magnetic field in an extreme
type-II superconductor, but this technique is limited by an upper critical
frequency related to the trapping frequency. However, there is a tremen-
dous amount of work done on realizing other types of synthetic gauge
fields using optical lasers coupling to the internal states of the atoms in
a space-dependent manner. A strong synthetic magnetic field was created
using this technique [74], where quantized vortices were observed.

These techniques may also be used to create non-Abelian gauge fields,
specifically spin-orbit couplings which couple a particles spin to its mo-
mentum. The same group created a synthetic spin-orbit coupling in a Rb87

gas [75] using lasers tuned to the internal Raman transitions of the atoms,
which changes its spin. This corresponded to having equal Rashba [76] and
Dresselhaus [77] spin-orbit coupling strengths. A similar technique was
also used to create a synthetic spin-orbit coupling in a one-dimensional
optical lattice [78]. There are also proposals to realize various spin-orbit
couplings in optical lattices, by for instance driving the lattice with period-
ically varying magnetic fields [79], or using off-resonance lasers [80].
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4.3 Theoretical models of Bose-Einstein condensates

In papers I-III, we attempt to model homo-nuclear mixtures of cold-atom
Bose-Einstein condensates, by writing down a Ginzburg-Landau theory
for each individual condensate. Building on Eq. (2.55), we have the base
Hamiltonian given by3

𝐻 = ∫ d𝐫[1
2 |𝛁Ψ|2 + 𝑉 (Ψ)]. (4.3)

Here, Ψ is a two-component spinor of complex fields 𝜓𝑖, with 𝑖 = 1, 2,
which may be expressed further as an amplitude and a phase,

𝜓𝑖 = |𝜓𝑖| exp 𝑖𝜃. (4.4)

The index 𝑖 is often referred to as a color index. The amplitude is associated
with the density of condensate at 𝐫, while the superfluid phase is associated
with the superfluid velocity, 𝐯𝑖(𝐫) = 𝛁𝜃𝑖(𝐫). The spinor Ψ gives us a more
compact notation, and gives rise to the sometimes used name of a spinor
condensate. The potential 𝑉 contains terms that respects the symmetries
of the problem we are interested in. In general, assuming we have a U(1)-
symmetry associated with rotations of the individual phases 𝜃𝑖, we may
write the potential as

𝑉 (𝜓𝑖) = − ∑
𝑖

𝛼𝑖 |𝜓𝑖|2 + ∑
𝑖𝑗

𝑔𝑖𝑗 |𝜓𝑖|2 ∣𝜓𝑗∣2 , (4.5)

on component form. One could also add other, symmetry-breaking terms,
to the potential. For instance a term 𝜓1𝜓∗

2 + 𝜓∗
1𝜓2 would break the U(1) ×

U(1)-symmetry associated with rotating the individual phases down to a
single U(1)-symmetry associated with rotating 𝜃1 + 𝜃2.4

In papers I and II we use a highly symmetric form of the potential,
namely

𝑉 (Ψ) = 𝜂 (|Ψ|2 − 1)2 + 𝜔 (Ψ†𝜎𝑧Ψ)2 , (4.6)
3We suppress the 𝐫 dependence in the fields 𝜓𝑖(𝐫) for brevity.
4This is applicable to multiband superconductors, as we will discuss in the next chapter.
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or

𝑉 (𝜓1, 𝜓2) = 𝜂 (|𝜓1|2 + |𝜓2|2 − 1)2 + 𝜔 (|𝜓1|2 − |𝜓2|2)2 . (4.7)

on component form. This is simply a re-parametrization of Eq. (4.5), with
𝛼1 = 𝛼2 = 2𝜂, 𝑔11 = 𝑔22 = 𝜂 + 𝜔 and 𝑔12 = 𝜂 − 𝜔, while also adding
an unimportant constant. If we set 𝜔 = 0, this Hamiltonian is symmetric
under SU(2)-rotations of Ψ, while with finite 𝜔 it is symmetric under U(1)-
rotations of each individual component 𝜓𝑖. In both cases, the model has
an additional Z2 symmetry corresponding to interchanging 𝜓1 ↔ 𝜓2.

In paper III, however, we use a more general form of the potential,
Eq. (4.5) with the parametrization 𝛼1 = 𝛼(1 − Δ), 𝛼2 = 𝛼(1 + Δ), 𝑔11 =
𝑔(1 − 𝛾), 𝑔22 = 𝑔(1 + 𝛾), and 𝑔12 = 𝑔𝜆. This results in the form

𝑉 (𝜓𝑖) = − 𝛼(1 − Δ) |𝜓1|2 − 𝛼(1 + Δ) |𝜓2|2

+ 𝑔(1 − 𝛾) |𝜓1|4 + +𝑔(1 + 𝛾) |𝜓2|4 + 2𝜆𝑔 |𝜓1|2 |𝜓2|2 . (4.8)

This form is useful when you are want to describe a condensate with an
imbalance in the quadratic term, parametrized by Δ, or in the quartic term,
parameterized by 𝛾. The potential of Eq. (4.8) is invariant under individual
global U(1) rotations of each phase 𝜃𝑖, but not under Z2 transformations if
Δ or 𝛾 is finite.

4.3.1 Rotating the condensate

In papers I and II, we want to model the effect of inter- and intra-component
density-density interactions on rotation-induced vortices. The two density-
density interactions present in Eq. (4.6) do not directly couple to the vor-
tices, which are related to the phases of the condensate. However, the
density-density interactions will affect the vortices indirectly through the
gradient term |𝛁𝜓𝑖|2. If we write the gradient out in terms of phases and
amplitudes, we have

|𝛁𝜓𝑖|2 = (𝛁 |𝜓𝑖|)2 + |𝜓𝑖|2 (𝛁𝜃𝑖)2 . (4.9)
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The last term shows that having a lower amplitude at a point will lower
the cost of having large gradients in the phase, which is exactly what oc-
curs around a vortex. Hence, the vortices will interact through both inter-
and intra-component short-range density-density interactions, as well as
through long-range current-current interactions.

Now, in order to induce a net amount of vortices threading through
the system, we need to apply some rotation. This is modelled by apply-
ing a gauge-field, however a non-fluctuating one5, akin to Eq. (2.59). This
modifies the gradient term of the Hamiltonian in the following way,

|𝛁𝜓𝑖|2 → |(𝛁 − 𝑖𝐀) 𝜓𝑖|2 . (4.10)

𝐀 is related to the angular rotational velocity, 𝛀, through 𝐀 ∼ Ω × 𝐫. It
is also important to note that when modelling a rotating condensate, one
should in principle include a rotating trap potential coupling directly to
the amplitudes. However, we choose to disregard this complication, as we
only want to study the physics at the center of the trap.

In a Monte-Carlo simulation, you have a few options on how to imple-
ment the rotation, as you have some degree of choice stemming from gauge
invariance. We choose to implement it in Landau gauge, which on the lattice
is

𝐀 = (0, 2𝜋𝑓𝑥, 0), (4.11)

where 𝑓 is the number of vortices per plaquette, called the filling fraction,
and 𝑥 is the lattice coordinate in the 𝑥-direction. This introduces a con-
straint, 𝐿𝑓 ∈ ℕ, due to the periodic boundary conditions. If one wants to
relax this constraint, one might use extended Landau gauge [81].

4.3.2 Spin-Orbit coupling

Spin-orbit interactions are a generic class of interactions which couples
a particle’s momentum to its spin. It results in a momentum-dependent

5In the partition function language, this means that we do not integrate over 𝐀.
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splitting of the energy bands of particles with different spin, and it gener-
ally arises from a broken inversion symmetry of the crystal lattice in con-
densed matter systems. In the following we consider a two-dimensional
system, as the particular type of spin-orbit coupling we consider only cou-
ples to 𝑘𝑥 and 𝑘𝑦 in the plane. One could of course imagine having a three-
dimensional system where each layer has an internal spin-orbit coupling,
but no inter-layer coupling arising from the spin-orbit coupling. One might
also construct a spin-orbit coupling that is isotropic in 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧. This
is called a Weyl spin-orbit coupling [82].

In a single-particle description of a two-level system, we may express a
spin-orbit operator in a general way like the following

ℋSO = 𝛼𝜎𝑥𝑘𝑦 + 𝛽𝜎𝑦𝑘𝑥. (4.12)

More specifically, one may have a Rashba-type coupling [76] with 𝛼 = −𝛽,
or a Dresselhaus-type coupling [77] with 𝛼 = 𝛽. In addition to the spin-
orbit coupling, we add a kinetic term and a Zeeman splitting, making the
full operator

ℋ = 𝑘2

2𝑚𝐼 − Δ𝜎𝑧 + ℋSO, (4.13)

where Δ is the strength of the Zeeman field, 𝑚 is the particle mass and 𝐼
is the identity matrix. The spectrum of Eq. (4.13) may be solved exactly,
yielding

𝐸± = 𝑘2

2𝑚 ± √Δ2 + 𝛼2𝑘2𝑦 + 𝛽2𝑘2𝑥. (4.14)

Now we simplify to 𝛼2 = 𝛽2 ≡ 𝜅2. In this case we have two different
solutions in the lower (−) band, depending on the strength of the Zeeman
field. For not too high values of Δ, we have

𝑘2 = 𝜅2𝑚2 − Δ2

𝜅2 . (4.15)

However, if Δ is larger than a critical value, given by Δ ≥ 𝜅2𝑚, we have
𝑘2 = 0. Fig. 4.1 shows a one dimensional cut of the lowest energy band
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Figure 4.1: Energy of the lower band of a non-interacting two-level sys-
tem with spin-orbit coupling, Eq. (4.13), for three different values of the
Zeeman field, Δ. The blue curve shows Δ = 0, where the band has two
minima at finite momentum. The green curve shows Δ = 𝜅2/𝑚, which is
the critical value of Δ where the two minima at finite momentum merge
into one. Finally, the red curve shows Δ = 3𝜅2/2𝑚, quite a bit above the
critical Zeeman field.

for three different values of Δ, exemplifying the minima at finite momenta
which merges into one as Δ is tuned above the critical value. Eq. (4.15)
shows that the lower energy band is degenerate, the minimum can lie any-
where on the circle with radius 𝑘. However, if we were to define the non-
interacting model on a lattice, and go through the same exercise as above,
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one would find instead four degenerate minima at (±𝑘0, ±𝑘0) where

𝑘0 = arcsin (√[1 − (Δ/4𝜅2𝑚)2] / [1 + 1/2𝜅2𝑚2]) , (4.16)

provided Δ < 4𝜅2𝑚 [83]. As for the continuum model, Δ ≥ 4𝜅2𝑚 gives a
single minimum at the origin.

For the Ginzburg-Landau description, we may write the general for-
mulation of the spin-orbit coupling in the following way.

𝐻SO = 𝑖
2 ∫ d𝐫Ψ† [𝛼 + 𝛽

2 𝛔 ⋅ 𝛁 + 𝛼 − 𝛽
2 (𝛔 × 𝛁) ⋅ ̂𝐳] Ψ + h.c. (4.17)

In paper III, we use this formulation with 𝛼 = −𝛽 = 𝜅, resulting in

𝐻SO = 𝑖𝜅
2 ∫ d𝐫Ψ† ((𝛔 × 𝛁) ⋅ ̂𝐳) Ψ + h.c., (4.18)

or on component form

𝐻SO = 𝜅
2 ∫ d𝐫 [𝜓∗

2𝜕𝑥𝜓1 − 𝜓∗
1𝜕𝑥𝜓2 + 𝑖𝜓∗

2𝜕𝑦𝜓1 + 𝑖𝜓∗
1𝜕𝑦𝜓2] + h.c., (4.19)

which is a pure Rashba-type spin-orbit interaction. This Hamiltonian will
break the U(1) × U(1) symmetry arising from global rotations of each in-
dividual phase down to a single U(1) symmetry associated with rotating
𝜃1 and 𝜃2 the same amount. This may be viewed as a U(1) symmetry as-
sociated with rotating the composite phase 𝜃1 + 𝜃2.

4.4 Main results of papers I-III

Here I will present the main results of papers I-III. Papers I and II deal with
the same model of a two-component Bose-Einstein condensate in three di-
mensions, under rotation, wherein its phase diagram and phase transitions
are explored. Paper I discusses the coexisting regime (𝜔 ≥ 0), where both
condensates are always present, while paper II discusses the regime where
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phase separation is possible (𝜔 < 0). In paper III we deal with a similar
model of a two-component condensate, now in two dimensions without
rotation, but with spin-orbit coupling. Again we examine the phase dia-
gram and phase transitions of the model.

4.4.1 Papers I and II

In these works [1, 2], we studied the effects of inter-component density-
density interactions on the rotation-induced vortex lines in a two-component
Bose-Einstein condensate in three dimensions. The full continuum Hamil-
tonian used was

𝐻 = ∫ d3𝑟[ ∑
𝑖

1
2 |(𝛁 − 𝑖𝐀) 𝜓𝑖|2 + 𝜂 (|𝜓1|2 + |𝜓2|2 − 1)2

+ 𝜔 (|𝜓1|2 − |𝜓2|2)2 ], (4.20)

where 𝐀 = (0, 2𝜋𝑓𝑥, 0). As we have two condensates, and therefore two
kinds of vortices, the density-mediated interactions between the two kinds
of vortices allow for a much richer phase diagram than if we only had a
single-component condensate. As described above, in Section 4.3.1, repul-
sive or attractive inter-component density-density interactions can be di-
rectly translated to repulsive or attractive inter-component vortex-vortex
interactions. In the parametrization used in these papers, Eq. (4.7), the pa-
rameter 𝜔 represents the ratio between inter- and intra-component inter-
action strengths. A positive value of 𝜔 means the intra-component inter-
actions dominates, while a negative 𝜔 means inter-component interactions
dominates. The parameter 𝜂 appears in front of the term (|Ψ|2 − 1)2

, and
constrains overall fluctuations of the amplitudes, and must be positive to
ensure stability. If 𝜔 < 𝜂 the inter-component interactions are repulsive,
and if 𝜔 > 𝜂 they are attractive. Consequently, there are two types of in-
teractions that affect the type of vortex matter we find. On the one hand,
we have the inter-component density-density interactions, which are short-
range and can be either attractive or repulsive. On the other hand, we have
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the intra-component vortex-vortex interactions, which are always repul-
sive, long-ranged and isotropic.

Figure 4.2: Schematic phase diagram of the two-component rotating Bose-
Einstein condensate in three dimensions in the 𝜔 − 𝛽 plane, as 𝜂 and 𝑓
is held fixed. We typically used 𝜂 = 5.0 and 𝑓 ∈ 1/16, 1/32, 1/64. Vary-
ing 𝑓 or 𝜂 will alter the details of the phase diagram. The 𝑥-axis then
represents tuning the ratio between inter- and intra-component coupling
strength from inter-component dominated on the left-hand side to intra-
component dominated on the right hand side. The solid black line down
the middle represent the line where they are equal, and also the line where
SU(2)-symmetry is in effect. The nature of the different regions is de-
scribed in the text.
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These initial reflections pave the way to understand the phase diagram
of the vortex matter introduced into the condensate by the rotation, shown
in Fig. 4.2. Here we show the phases found in Monte-Carlo simulations,
in the 𝜔 − 𝛽 plane with 𝜂 and 𝑓 fixed to some generic value. Altering 𝑓 or
𝜂 will change the details of the phase diagram, but not the qualitative fea-
tures, provided 𝜂 > 0 and 𝑓 is finite and not too large. Let us first discuss
𝜔 > 0, the regime where intra-component interactions dominates, which
corresponds to the right half of Fig. 4.2. Here, both condensates will be
present for all parameter values that make physical sense. First of all, for
high temperatures, both condensates will be in a vortex liquid phase, char-
acterized by a ring-shaped vortex structure factor. This is region I in the
phase diagram, colored in blue. As we cool down the condensates, the vor-
tices will freeze into a floating solid6, the exact nature of which depends on
the value of 𝜔. In a single-component condensate, the vortices freeze into
a hexagonal vortex lattice when only influenced by the isotropic vortex-
vortex interactions, now the interactions may alter that. Let us start out on
the far right side of the phase diagram, where 𝜔 > 𝜂. In this region we find
a hexagonal vortex lattice in each component, where one vortex of com-
ponent one is always co-centered with a vortex of component two. This is
because the inter-component interaction is attractive. No energy is gained
from deviating from the hexagonal lattice structure. If we lower 𝜔 slightly
below 𝜂, we are in the regime with repulsive inter-component interactions.
For not too low values of 𝜔, we still find two hexagonal lattices, but they
are no longer co-centered. The repulsive density-density interactions cause
the vortices to avoid each other, however slightly. The states characterized
by two hexagonal vortex lattices are colored cyan in the phase diagram,
and are labeled IIIa and IIIb. Region IIIb refers to the co-centered vortices,
while IIIa is the region where the vortices are intercalated.

For even lower values of 𝜔, we find that the two vortex lattice assume
a square symmetry, and that they are completely intercalated with each
other, i.e. a vortex of type one will not overlap with a vortex of type two.

6We assume that 𝑓 is low enough that we do not encounter a pinned solid for the values
of 𝛽 considered here.
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This is because of, for this parameter range, the density-density interac-
tions between component one and two are highly repulsive, causing the
amplitudes of the individual components to be staggered with respect to
each other. This staggering is most efficiently achieved in a square lattice,
hence the symmetry of the vortex lattice. This in turn causes the vortices
to avoid each other as they will seek the areas of low amplitude of their
respective components. The square vortex lattice is less efficient than a
hexagonal lattice at maximize the inter-vortex distance of each individ-
ual component, but this extra cost in energy is gained back in lowering
the inter-component density-density interaction energy. The square lattice
symmetry is therefore a compromise between lowering the energy from
the potential, and lowering the vortex-vortex interaction energy. This re-
gion of the phase diagram is labeled II in Fig. 4.2, and is colored yellow.
We find that the thermal phase transitions from region I into region II, IIIa,
and IIIb show strong first order characteristics.

A final feature of the 𝜔 > 0 part of the phase diagram is the shape of
the demarcation line between region II and IIIa. In paper I we describe a
structural transition between square vortex lattices into hexagonal lattices
as the temperature is lowered. This, we argue, is because the vortex lattices
become ”stiffer” as the temperature is lowered, and therefore more prone
to forming a hexagonal lattice. In other words, the cost of not maximizing
the inter-vortex distance grows as temperature is lowered. Therefore, the
vortex structure gradually evolves from a square symmetry to a hexagonal
symmetry for certain values of 𝜔.

The line 𝜔 = 0 was also examined in paper I. Here, the model has a
higher symmetry than when 𝜔 ≠ 0, namely SU(2) as opposed to U(1) ×
U(1). What this means, in terms of density-density interactions, is that the
potential only contains the term proportional to (|Ψ|2 − 1)2

. This is rather
special, as only the total amplitude |Ψ|2 = |𝜓1|2 + |𝜓2|2 is constrained, it
costs no energy to shift amplitude from component one to component two
as long as the sum of the two amplitudes is left unchanged. This in turn
causes large fluctuations in the individual amplitudes. In terms of the vor-
tices, this means that they may be unwound freely by letting the amplitude



4.4. Main results of papers I-III 69

of the associated component drop to zero. They are no longer topologically
protected. However, as we force a net amount of flux through the system
with the rotation, we will always have a fixed number of vortices in the
system. As we describe in paper I, the main effect of this is to create a
new phase where the helicity modulus is finite along the axis of rotation,
without an accompanying vortex lattice. This is rather peculiar, as a fi-
nite phase coherence along the axis of rotation signals a vortex solid phase
in conventional superfluids. We argue that this is directly caused by the
large amplitude fluctuations, they allow for movements of entire straight
vortex lines, which in turn causes the thermal averages of the vortex den-
sity to look like a vortex liquid. At a lower temperature, these collective
movements of the vortex lines cease, and a number of interesting vortex
structures appear.

Now we turn to the left hand side of the phase diagram shown in Fig. 4.2,
which we explored in paper II. Here, the behaviour is largely described
by the competition between inter-component density-density interactions
wanting to deplete one of the condensates, and the isotropic vortex-vortex
interactions’ tendency to maximizing the inter-vortex distance. Firstly, we
again find a two-component vortex liquid phase for high temperatures, la-
beled as region I and colored blue. For small but negative values of 𝜔 and
lower temperatures, we find that the vortices form a striped lattice and are
staggered between component one and two. The reason for this can be
understood in light of the above-mentioned competition between density-
density interactions and vortex-vortex interactions. The density-density
interaction would like one amplitude to be completely suppressed, which
would also put the vortices of that component in a liquid phase. However,
this is at odds with the phases’ wish to be ordered at this temperature, with
the vortices spread out evenly, maximizing the inter-vortex distance. The
response to this competition is to form stripes in the amplitudes, alternat-
ing between high and low values staggered between the two components.
The vortices then arrange themselves in the low-amplitude stripes of their
respective components, and maximize the inter-vortex distance within that
stripe. This does not break the Z2 symmetry that stems from swapping
component one with component two. This state is labeled region IV in
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Fig. 4.2, and is colored magenta. We find strong indications of a first or-
der transition going from region I to region IV in the phase diagram. As
we lower 𝜔 further, we find that one of the condensates is completely de-
pleted as the temperature is lowered. This does break the Z2 symmetry,
and effectively reduces the model to a single component condensate. As
we lower the temperature further, the vortices in the condensate that is not
depleted freeze into a floating solid with hexagonal symmetry, and the mi-
nority component remains in a vortex liquid state. In this case, the energy
gained from having a uniform vortex distribution is not enough to pre-
vent one of the condensate amplitudes from depleting. We find these two
transitions, the breaking of the Z2 symmetry and the freezing of the ma-
jority component, to be separated by a small interval in 𝛽. This is reflected
in Fig. 4.2, where region VI, colored green, is the phase where Z2 is bro-
ken, but the majority condensate is still in a vortex liquid phase, making
this an imbalanced vortex liquid. Region V, colored in red, represents the
phase where the majority component has entered a floating solid phase.
The black dot at 𝜔 = 𝜔𝑐 marks the splitting of the Z2 transition and the
freezing of the lattice. We do not rigorously determine the nature of two
transitions going from region I to region V via region VI, but on symme-
try grounds one would expect the transition from region I to VI to be an
Ising-transition, while the transition going from region VI to region V is a
first-order transition associated with the freezing of the lattice.

4.4.2 Paper III

In paper III [3] we examined a two-component Bose-Einstein condensate in
two-dimensions, now without rotation, but with spin-orbit coupling. We
also used a different parametrization of the potential, the full Hamiltonian
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we used was

𝐻 = ∫ d2𝑟[1
2 |𝛁𝜓𝑖|2 − 𝛼(1 − Δ) |𝜓1|2 − 𝛼(1 + Δ) |𝜓2|2

+ 𝜅
2 (𝜓∗

2𝜕𝑥𝜓1 − 𝜓∗
1𝜕𝑥𝜓2 + 𝑖𝜓∗

2𝜕𝑦𝜓1 + 𝑖𝜓∗
1𝜕𝑦𝜓2 + h.c.)

+ 𝑔(1 − 𝛾) |𝜓1|4 + 𝑔(1 + 𝛾) |𝜓2|4

+ 2𝜆𝑔 |𝜓1|2 |𝜓2|2 ]. (4.21)

Here, 𝜅 parametrizes the spin-orbit coupling strength, 𝛼 and 𝑔 the over-
all quadratic and quartic coupling strengths, Δ the deviation from equal
quadratic coupling strengths, 𝛾 the deviation from equal quartic coupling
strengths, and 𝜆 the deviation from having equal intra- and inter-component
quadratic coupling strengths. In the paper, we fixed 𝛼 and 𝑔 to generic val-
ues 𝛼 = 10.0 and 𝑔 = 1.0, Δ to a small, finite value Δ = 0.1, 𝛾 to zero, and
varied 𝜅 and 𝜆. Fig. 4.3 shows the mean field phase diagram we obtained,
in the 𝜆-𝜅-plane.

This phase diagram was obtained by assuming that the complex fields
𝜓𝑖 could be written as either a single plane wave, or by two plane waves
with momentum of equal magnitude but opposite direction, both parametrized
by a wave-vector 𝐪. This was prompted by the single-particle spectrum,
which shows that the ground state resides at finite momentum, and by
previous works on a similar model [83, 84] which found states modulated
by either one or two 𝐪-vectors. We solved the resulting mean field equa-
tions, treating the wave-vector 𝐪 as a variational parameter, in addition to
the fields 𝜓𝑖. This resulted in three distinct phases, for finite 𝜅, depend-
ing on the value of the interaction parameters, shown in Fig. 4.3. For small
values of the inter-component coupling strength, 𝜆, we found that mod-
ulating the condensate by a single 𝐪-vector was favoured. This is repre-
sented by the blue region labelled I in Fig. 4.3. If we from here keep 𝜅
small, and increase 𝜆, one of the components will deplete, and the spin-
orbit coupling loses its effect. This will remove the modulation, and the
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Figure 4.3: Mean field phase diagram of the two-component spin-orbit cou-
pled Bose-Einstein condensate in two-dimensions, in the 𝜆-𝜅 plane. The
other parameters is fixed to generic values described in the text. Region I is
a state modulated by a single 𝐪-vector, region II is a single component con-
densate residing at zero 𝐪, while region III is modulated by two 𝐪-vectors
of equal magnitude but opposite direction. This figure is taken from paper
III [3].

remaining condensate will reside at zero momentum. The depletion oc-
curs because the energy gained by having a finite 𝐪 in both of the conden-
sates is lower than the energy gained from completely depleting one of the
condensates. In Fig. 4.3 we represent this phase by the red region labelled
II. However, if the spin-orbit coupling strength, 𝜅, is sufficiently high, the
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energy gained by modulating the two condensates is greater than the en-
ergy gained by simply removing one condensate altogether. This results
in a compromise, where the amplitudes of both condensates are staggered
with respect to each other, partially minimizing the density-density inter-
action energy and retaining the spin-orbit induced modulation. This phase
is represented by the green region labelled III in the phase diagram.

We support and expand on these mean field results in our Monte-Carlo
simulations, where we to a large extent are able to reproduce the low-
temperature phase diagram quantitatively. We also find that modulation
by a single 𝐪-vector manifests itself as a striped state in the superfluid
phases only, while the modulation of two 𝐪-vectors gives a striped state
in the superfluid phases, as well as a striped and staggered state in the
amplitudes. For high temperatures, the model is always a two-component
normal fluid state. The two states which reside at finite 𝐪 may be though of
as bosonic analogues of Fulde-Ferrell-Larkin-Ovchinnikov states in super-
conductors. These are states where the order parameter is paired at finite
momentum, the ground states are pair-density waves. The state of region I
is akin to a Fulde-Ferrel state, which is an order parameter paired at a sin-
gle momentum vector, and may be thought of a plane wave state. Region
III, on the other hand, is akin to a Larkin-Ovchinnikov state, which is a su-
perposition of two order parameters paired at 𝐪 and −𝐪, and is therefore
like a standing wave state.

For zero 𝜅, the model is a two-component superfluid for small values of
𝜆, and a single-component superfluid for sufficiently large values of 𝜆. In
the Monte-Carlo simulations, we found that this model exhibited thermal
phase transitions in the Kosterlitz-Thouless universality class in both com-
ponents when 𝜆 is in the two-component regime, and a single Kosterlitz-
Thouless transition when one component is depleted. This was found us-
ing the two techniques described in Section 3.4: fitting the helicity mod-
ulus to Eq. (3.28) and extrapolating the negative dip of the fourth order
modulus to a finite value. Both techniques gave results consistent with a
Kosterlitz-Thouless transition for all values of 𝜆 considered.
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4.4.3 Outlook

The results contained in papers I-III predict and confirm many interest-
ing phases present in Bose-Einstein condensed cold atomic gases. Some,
like the presence of square vortex lattices in rotating two-component con-
densates, have already been observed [72], and others may be realized in
future experiments. In particular, the curious state observed in paper I at
the SU(2)-symmetric point, the striped phase observed in paper II, as well
as the interplay between inter-component density-density and spin-orbit
interactions observed in paper III would be interesting and feasible to ob-
serve in a experimental setup involving cold atomic gases. Furthermore, all
three papers suggest several new avenues of theoretical research. It would
be interesting to consider the following extensions. In paper I, the nature of
the phase transition from the uniform phase into the vortex lattice phase
along the SU(2)-symmetric line could be examined. Paper II presents a
rather rich phase diagram, and makes a few non-rigorous remarks about
the nature of the transitions between the phases contained within, which
warrants further study. Finally, a number of extensions may be made re-
garding paper III, mainly adding a third dimension and examining the ef-
fect of the spin-orbit coupling on rotation-induced vortex matter.



CHAPTER 5

Multiband Superconductors

Up to this point in the thesis we have only discussed Bose-Einsten conden-
sates, which exhibit superfluidity. In short, this phenomenon can be de-
scribed as a fluid flowing without friction. Superconductivity is a very sim-
ilar phenomenon which may occur when charged particles are involved1,
where an electric current flows without resistance. One may think of it as
superfluidity of a charged condensate. A good review of the topic can be
found in Ref. [85].

5.1 History and phenomenology

Superconductivity was discovered even before superfluidity, in 1911 by
Heike Kammerlingh Onnes, who observed a sudden drop in resistivity
to zero at a critical temperature in mercury as it was cooled to very low

1As opposed to the cold-atom Bose-Einstein condensates considered thus far, which are
neutrally charged.
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temperatures. This was the first of many conventional superconductors dis-
covered over the years, others including for instance lead, niobium com-
pounds and magnesium diboride (MgB2). These materials are dubbed
conventional superconductors, as their properties and mechanism for su-
perconductivity may be described by the Bardeen-Cooper-Schrieffer the-
ory [86]. In addition to the conventional superconductors, we have the
unconventional superconductors which include copper-oxide compounds,
as well as iron-based compounds. As you may have guessed, these are
not described by the theory of Bardeen, Cooper and Schrieffer. Many of
these superconductors have much higher critical temperatures, prompting
the name high-𝑇𝑐 superconductors. Bednorz and Müller received the Nobel
Prize in 1987 for their discovery of the first high-𝑇𝑐 superconductor, doped
La5−𝑥Ba𝑥Cu5O5(3−𝑦), in 1983 [87].

In addition to the classification into conventional and unconventional
superconductors, one may classify superconductors according to their mag-
netic properties. We stated that the defining property of a superconductor
is its zero-valued resistivity, however this is not the whole story. More
interestingly, a superconductor exhibits the Meissner effect, complete ex-
pulsion of any magnetic field in its interior. In what is dubbed a Type-I
superconductor, an applied magnetic field is completely expelled until the
magnetic field strength reaches a critical value, 𝐻𝑐, where the magnetic
field enters the material and destroys superconductivity. Materials that
exhibit type-I superconductivity are typically pure metals like lead, mer-
cury and aluminium. In a Type-II superconductor, however, there will be
two critical field values, 𝐻𝑐1 and 𝐻𝑐2. Below the lower critical field, 𝐻𝑐1,
the material completely expels the external field. Above the lower critical
field, but below the upper, 𝐻𝑐2, the magnetic field will enter the super-
conductor as quantized units of magnetic flux, in the form of magnetic
vortices. These vortices will form an Abrikosov flux line lattice [88]. As
the field is then increased further, more and more vortices enter until they
completely fill the material when the upper critical field is reached, which
destroys superconductivity completely. A type-II superconductor there-
fore exhibits an intermediate, mixed phase where it has superconductivity
everywhere except inside the magnetic vortices. Type-II superconductiv-
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ity is generally present in metal alloys, rather than pure metals, as well as
the copper-oxides and other high-temperature superconductors. As you
may have noticed, this state is very similar to a superfluid under rotation,
with the magnetic vortices playing the role of the superfluid vortices.

As with the superfluid models discussed in the previous chapter, su-
perconductors may consist of several superconducting components, here
called superconducting bands. This extension will introduce non-trivial
new effects, depending on the type of interactions included. On the most
simple level, as all superconducting components will be charged, the elec-
tromagnetic field will mediate interactions between all bands. This will
cause the vortices to couple in non-trivial ways, introducing new com-
posite degrees of freedom, which will be discussed below. In addition,
depending on the system described, one may have to include inter-band
Josephson couplings which removes the current conservation of the indi-
vidual condensates associated with the U(1) symmetry. In these Josephson-
coupled multiband superconductors, with three or more bands, you may
also find an additional Z2 symmetry associated with time reversal [89–91].

5.2 Models of multiband superconductors

The basic effective model of a single component superconductor is the
Ginzburg-Landau theory of a single complex order-parameter field, 𝜓(𝐫),
coupled to a non-compact gauge field, 𝐀(𝐫). This model is of course very
similar to the model of a superfluid, except for one important difference.
As a superconductor is a condensate of charged particles, one must also in-
clude the electromagnetic interactions of the condensate through the gauge
field. Thus, the basic Hamiltonian reads2

𝐻 = ∫ d𝐫 [ 1
2𝑚 |(𝛁 − 𝑖𝑒𝐀) 𝜓|2 + 𝑉 (|𝜓|) + 1

2 (𝛁 × 𝐀)2] , (5.1)

with
𝒵 = ∫ 𝒟(𝜓, 𝐀)𝑒−𝛽𝐻 (5.2)

2We suppress the 𝐫 dependence in the fields 𝜓𝑖(𝐫) and 𝐀(𝐫) for brevity.



78 Chapter 5. Multiband Superconductors

The important difference lies now in the fact that the gauge field 𝐀 is a
fluctuating field on its own. The potential 𝑉 can be any function of 𝜓 that
respects the symmetries of the system one wishes to model. The field 𝜓
consists of an amplitude and a phase, 𝜓 = |𝜓| exp 𝑖𝜃. The amplitude rep-
resents the density of the superconducting condensate, while the gradient
of the phase is the superconducting current. In its most basic form, the
potential will include the familiar quadratic and quartic terms,

𝑉 (|𝜓|) = −𝛼(𝑇 ) |𝜓|2 + 𝑔 |𝜓|4 + … . (5.3)

This allows us to define two characteristic length scale of the superconduc-
tor, which quantifies the type-I-type-II classification. The superconducting
coherence length, defined as

𝜉 = √ ℏ2

2𝑚 |𝛼(𝑇 )| , (5.4)

describes the length scale over which the condensate amplitude will vary.
The second scale is the magnetic penetration depth, which describes how
far into the superconductor an applied magnetic field will penetrate3. It is
defined by

𝜆 = √
𝑚

4𝜇0𝑒2 |𝜓0|2
, (5.5)

where |𝜓0| is the equilibrium value of |𝜓| in the absence of a magnetic field.
The ratio between these two, 𝜅 ≡ 𝜆/𝜉, is dubbed the Ginzburg-Landau
parameter. This ratio may be directly used in the classification of a super-
conductor. The superconducting transition in a type-I superconductor is a
first-order transition, while in a type-II superconductor it is continuous. A
point separating a first-order and a continuous phase transition is called a
tri-critical point, and is a general feature of such phase diagrams. There-
fore, in the context of superconductors, one may define a value 𝜅tri, where
the order of the superconducting phase transition, and the classification,

3In the definition of 𝜉 and 𝜆 we have reinserted the proper units
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changes. Landau theory predicts that a superconductor with 𝜅 < 1/
√

2
is of a type-I superconductor, while one with 𝜅 > 1/

√
2 is a type-II su-

perconductor, and hence 𝜅tri = 1/
√

2. Monte-Carlo simulations [92] has
determined the actual value of the tri-critical point to 𝜅tri = 0.76(4)/

√
2.

Eq. (5.1) describes a single-band superconductor, but we are interested
in superconductors of multiple bands. This is done, not surprisingly, by
adding more complex fields. By considering a field with an index, 𝜓𝑖,
where 𝑖 runs from 1 to 𝑁 , we may describe a superconductor of 𝑁 bands.
The generalization is straightforward,

𝐻 = ∫ d𝐫[ ∑
𝑖

1
2𝑚𝑖

|(𝛁 − 𝑖𝑒𝐀) 𝜓𝑖|2 + 𝑉 (|𝜓1| , … , |𝜓𝑁|)

+ 1
2 (𝛁 × 𝐀)2 ]. (5.6)

Now, some important differences arise. First, the gauge field may now me-
diate interactions between the condensates. This will be discussed further
once we present the specific model in question. Secondly, one may include
other interactions between the condensate beyond the density-density type.
One, which we do not consider in this work, is Andreev-Bashkin terms
on the form 𝛁𝜓∗

𝑖 ⋅ 𝛁𝜓𝑗. These terms, also called drag terms, induce in-
teractions between the currents of the individual fields. Actually, this is
very similar to the effect of the gauge field. A current in one component
may induce a current in another component either in the same direction, or
in the opposite direction, depending on the sign of the Andreev-Bashkin
term. Another type of interaction, which we do include, is known as the
Josephson interaction. This interaction does not conserve each individual
condensate independently, which is very important in light of the phase
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transitions of the system. It has the form

𝐻𝐽 = − ∫ d𝐫 ∑
𝑖<𝑗

𝜂𝑖𝑗 (𝜓∗
𝑖𝜓𝑗 + 𝜓∗

𝑗𝜓𝑖) ,

= − ∫ d𝐫 ∑
𝑖<𝑗

𝜂𝑖𝑗 |𝜓𝑖| ∣𝜓𝑗∣ cos (𝜃𝑖 − 𝜃𝑗) ,

(5.7)

Here, 𝜂𝑖𝑗 is the strength of the Josephson coupling between condensate
𝑖 and 𝑗. A positive value of this coupling favours locking of the phases
of the condensates to point in the same direction, while a negative value
favours locking in the opposite direction. It breaks down the individual
U(1) symmetries of each condensate into a single overall U(1) symmetry,
if all 𝜂𝑖𝑗 > 0. This remaining symmetry corresponds to rotating the sum
of all the phases.

5.2.1 The London superconductor

It turns out that, as far as the phase transitions is concerned, it suffices to
consider only fluctuations in the phases of the complex field (as well as the
gauge field) when describing a single component type-II superconductor
[81] with a sufficiently large value of the Ginzburg-Landau parameter, 𝜅.
To this end, one may write the complex field as a constant amplitude (called
the bare stiffness of the phase) times the fluctuating phase factor, 𝜓𝑖 =
𝜌𝑖 exp 𝑖𝜃𝑖. When one has multiple bands, it suffices that the band with the
largest bare stiffness has a sufficiently large associated ratio 𝜆/𝜉 [93]. In this
case, the Hamiltonian reads

𝐻 = ∫ d𝐫[ ∑
𝑖

𝜌2
𝑖
2 (∇𝜃𝑖 − 𝑒𝐀)2 − ∑

𝑖<𝑗
𝜌𝑖𝜌𝑗𝜂𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)

+ 1
2 (𝛁 × 𝐀)2 ]. (5.8)
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The potential is now an unimportant constant, and the condensate ampli-
tudes, 𝜌𝑖, are parameters. The parameter 𝑚𝑖 may be absorbed into 𝜌𝑖.

5.2.2 Lattice London model

In paper IV, the specific model we consider is that of a multiband lattice
London superconductor. The most straightforward way to arrive at this
particular model is to discretize the complex field and the gauge field on
a cubic grid, then replace the derivatives with a lattice derivative. At this
point one has a lattice model with amplitude fluctuations included, similar
to the models considered in papers I-III, Eqs. (4.20) and (4.21), but with a
fluctuating gauge field. Taking the London limit at this point results in the
following model

𝐻 = ∑
𝐫

[ − ∑
𝑖,𝜇

𝜌2
𝑖 cos(Δ𝜇𝜃𝐫,𝑖 − 𝑒𝐴𝐫,𝜇) − ∑

𝑖<𝑗
𝜌𝑖𝜌𝑗𝜂𝑖𝑗 cos(𝜃𝐫,𝑖 − 𝜃𝐫,𝑗)

+ 1
2 (𝚫 × 𝐀𝐫)2 ]. (5.9)

5.2.3 The Villain model

Preserving the periodic structure of the phase degrees of freedom is of
great importance when constructing a proper lattice model. The lattice
London model, which uses trigonometric functions, accomplishes this im-
mediately. Another option is to use what is known as the Villain approx-
imation [94]. It amounts to replacing the cosine function with the square
of its argument, while also inserting a new integer valued field to preserve
the periodic structure. If we take a 𝑁 -component lattice London model,
with 𝜂𝑖𝑗 = 0, the initial Hamiltonian of Eq. (5.9) will transform into

𝐻 = 1
2 ∑

𝐫
𝜌2

𝑖 (𝚫𝜃𝐫,𝑖 + 2𝜋𝐧𝐫,𝑖 − 𝑒𝐀𝐫)2 + 1
2 ∑

𝐫
(𝚫 × 𝐀𝐫)2 , (5.10)
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now with
𝒵 = ∫ 𝒟(𝜓, 𝐀) ∑

{𝐧}
𝑒−𝛽𝐻 (5.11)

Here, 𝐧𝐫,𝑖 is an integer-valued vector field running from −∞ to ∞, intro-
duced to account for the periodicity of each phase 𝜃𝐫,𝑖. Eq. (5.10) is known
as the Villain model, and it may be generalized to include Josephson cou-
plings as well [93]. In brief words, this is done by introducing an additional
integer-valued scalar field for each phase combination which is Josephson
coupled. It has the same symmetries as the lattice London model, and the
same qualitative phase diagram. However, the approximation will renor-
malize the couplings, which leads to a quantitatively different phase dia-
gram.

5.3 Vortices and duality

In all of the above models of superconductors, topological defects of the
order field drives the phase transition. These defects, vortices, are anal-
ogous to the vortices of BECs and superfluids introduced in the previous
chapter. In this case, however, they represent holes in the superconducting
states, carrying quantized magnetic flux. In a single-component supercon-
ductor, in the extreme type-II limit where the London approximation is
valid, the superconducting phase transition is entirely driven by a prolif-
eration of vortex loops [81, 95, 96], in zero external magnetic field. These
vortex loops will fill the system, and therefore completely suppress super-
conductivity, making the system behave as a normal metal. This transition
is analogous to the superfluid to normal fluid transition of He4, first sug-
gested by Onsager [97, 98]

With the Villain model, Eq. (5.10), as a starting point, one may derive
a model which has the vortices as the basic degrees of freedom, not the
phases. This dual model will more directly represent the relevant topolog-
ical defects of the superconductor. This derivation is rather lengthy, and
has already been presented quite elegantly in Ref. [93]. Therefore, I will
only quote the final result here, as it provides an enlightening and alternate



5.3. Vortices and duality 83

viewpoint to both the lattice London model, as well as the integer current
model we derive in paper IV and below. The partition function in the dual
picture is

𝒵 = ∏
𝑖

∑
{𝐯𝑖}

𝛿𝚫⋅𝐯𝑖,0𝑒−𝛽𝐻, (5.12)

where 𝐻 is
𝐻 = 2𝜋2 ∑

𝐫,𝐫′
∑
𝑖𝑗

𝜌2
𝑖 𝐯𝐫,𝑖𝑉𝑖𝑗(𝐫 − 𝐫′)𝐯𝐫,𝑗. (5.13)

This is a model of integer-valued vortex-fields, 𝐯𝐫,𝑖, defined on the dual
lattice to the original lattice. They represent the vorticity passing through
the plaquettes of the original lattice, and are constrained to form closed
loops. 𝑉𝑖𝑗(𝐫 − 𝐫′) is the vortex-vortex interaction potential in real space. It
is more conveniently represented in Fourier space, as

𝑉𝑖𝑗(𝐪) = 𝜚2
𝑖

∣𝐐𝐪∣2 + 𝑒2 ∑ 𝜌2
𝑖

+ 𝛿𝑖𝑗 − 𝜚2
𝑖

∣𝐐𝐪∣2
, (5.14)

where we have defined 𝜚2
𝑖 ≡ 𝜌2

𝑖 / ∑𝑖 𝜌2
𝑖 , for brevity. It contains both the

screened intra- and inter-vortex interactions mediated by the gauge field
in the first term, and the unscreened intra-vortex interactions which are
the Coulomb interaction of the vortices themselves in the second term.
The momentum appearing in the potential, 𝐐𝐪 is the lattice momentum,
𝑄𝐪,𝜇 = 2 sin(𝑞𝜇/2)4. The term 𝑒2 ∑𝑖 𝜌2

𝑖 in the first denominator is the
reason for the screening, and in may be thought of as the bare mass of the
gauge field5. If 𝑒 = 0, there is no coupling to the gauge field, and the po-
tential reduces to

𝑉𝑖𝑗(𝐪) = 𝛿𝑖𝑗

∣𝐐𝐪∣2
. (5.15)

This leaves us with only the unscreened intra-component Coulomb repul-
sion between the vortices.

4Essentially, it is the Fourier representation of the ∆𝜇 operator.
5The gauge field is massive in the superconducting state, due to the Meissner effect.
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This dual model shows that there are inter- and intra-component vortex-
vortex interaction mediated by the gauge field, as well as intra-component
vortex-vortex interactions, mediated by phase fluctuations. This makes the
𝑁 -component London superconductor a very rich model, as the gauge-
field will mediate interactions between vortices of all types. In short, it
will lead to an interesting phase diagram, with different scenarios occur-
ring depending on the values of the charge, 𝑒, and the individual phase
stiffnesses, 𝜌𝑖. It will also lead to formation of new composite objects made
up of individual vortices, which will further influence the phase diagram
and transitions. This will be discussed in the following.

5.3.1 Charged and neutral modes

With multiple condensates, the elementary degrees of freedom may com-
bine into new composite degrees of freedom. The continuum London su-
perconductor may be rewritten in such a way, starting from Eq. (5.8), we
may represent the gradient term as

𝐻 = 1
2 ∑𝑖 𝜌2

𝑖
∫ d𝐫[ (∑

𝑖
𝜌2

𝑖 𝛁𝜃𝑖 − 𝑒 ∑
𝑖

𝜌2
𝑖 𝐀)

2

+ ∑
𝑖<𝑗

𝜌2
𝑖 𝜌2

𝑗 [𝛁(𝜃𝑖 − 𝜃𝑗)]2 ] + … . (5.16)

At first glance, this tells us that we may define one mode, the sum of all the
phases, which will interact with the gauge field, and many other modes
which does not interact with the gauge field. The sum of all the phases,
dubbed the charged mode, ∑𝑖 𝜌𝑖𝜃𝑖 ≡ Θ, will have a charge 𝑒 ∑𝑖 𝜌2

𝑖 . The
phase differences, 𝜃𝑖 − 𝜃𝑗 ≡ 𝜗𝑖𝑗, of which there will be 𝑁(𝑁 − 1)/2, are
dubbed neutral modes. It is important to note that this representation has
too many degrees of freedom, if we interpret all 𝜗𝑖𝑗 as such. In Eq. (5.8),
there are 𝑁 phases, while Eq. (5.16) has 𝑁(𝑁 − 1)/2 + 1 > 𝑁 . In other
words, if one were to define a partition function from Eq. (5.16) directly,
and integrate over ∫ 𝒟(Θ, 𝜗𝑖𝑗), the resulting partition function would be
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incorrect. The reason for this is that each individual phase is a constituent
in 𝑁−1 phase differences, as well as the phase sum. If one individual phase
is excited, 𝑁 − 1 composite neutral modes are excited as a consequence.
Hence, they are not all independent, and may not be integrated over as
such.

It is also possible to separate the dual model of Eq. (5.13) in terms of
charged and neutral vortices [93], which leads to the following Hamilto-
nian.

𝐻 = 2𝜋2

(∑𝑖 𝜌2
𝑖 )

[
(∑𝑖 𝜌2

𝑖 𝐯𝐪,𝑖) ⋅ (∑𝑗 𝜌2
𝑗 𝐯−𝐪,𝑗)

∣𝐐𝐪∣2 + 𝑒2 ∑ 𝜌2
𝑖

+ ∑
𝑖𝑗

𝜌2
𝑖 𝜌2

𝑗 (𝐯𝐪,𝑖 − 𝐯𝐪,𝑗) (𝐯−𝐪,𝑖 − 𝐯−𝐪,𝑗)
∣𝐐𝐪∣2

]. (5.17)

Here, 𝐯𝐪,𝑖 is simply 𝐯𝐫,𝑖 in reciprocal space. Again, it is clear that there
is a single mode which interacts through the gauge field, and is therefore
screened, while there are 𝑁(𝑁 − 1)/2 vortex modes which only interact
through the unscreened vortex-vortex Coulomb interactions.

In spite of the redundant degrees of freedom, Eqs. (5.16) and (5.17) pro-
vide a very interesting viewpoint regarding the phase transitions in the
model. Several papers [11, 93] have explored the phase transitions in mod-
els with multiple U(1) symmetries and zero Josephson coupling, and show
that the classification into charged and neutral modes is vital to under-
standing their phase transitions. In addition to, as described above, prolif-
erating individual vortices, one may have phase transitions associated with
proliferation of composite vortices. These composite vortices will corre-
spond to 2𝜋 phase windings of several individual phases at the same point
in space. Using the same terms as above, a charged vortex is a 2𝜋 winding
of all phases 𝜃𝑖 simultaneously at the same point, 𝐫. This may also be called
a superconducting vortex. In addition to this one superconducting vortex
mode, there will be 𝑁(𝑁 − 1)/2 neutral vortex modes, corresponding to a
2𝜋 winding in one phase and a −2𝜋 winding in another. These may also be
called superfluid vortices, as they do not interact through the gauge field.
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Depending on the values of the bare phase stiffnesses and the charge,
one may observe several scenarios. First, let us assume we have 𝑁 compo-
nents with equal stiffnesses, and a charge 𝑒 relatively large. The low tem-
perature phase in this case will be a superconducting superfluid, where
one mode is superconducting, and 𝑁 − 1 modes are superfluid. As we in-
crease temperature, the superconducting mode corresponding to the phase
sum will lose coherence first, provided the charge is sufficiently large [11].
Lowering temperature further will cause the neutral modes to proliferate,
presumably in a superposition of 𝑁 − 1 phase transitions in the 3𝐷𝑋𝑌 -
universality class.

Next, we describe the situation if one lowers the electric charge, 𝑒. This
will cause the critical temperature of the charged sector to increase, while
not altering the critical temperatures of the neutral sector(s) much at all.
When they merge, the proliferation of the neutral vortices will trigger pro-
liferation of the charged vortices as well. This interplay between the sec-
tors causes the transition to become first order, which has been shown
in Monte-Carlo simulations with 𝑁 = 2 [11], both with equal and un-
equal bare stiffnesses of the two phases. This has been dubbed a preemp-
tive vortex-loop proliferation, and was first observed in Monte-Carlo sim-
ulations of a two-component superfluid with Andreev-Bashkin current-
current interactions [99].

Finally, for unequal bare phase stiffnesses, 𝑁 = 2, and a sufficiently low
charge, one may have the following scenario. As the temperature is low-
ered, individual vortices of one of the components will cause the system
to lose superfluidity, entering a phase with only superconductivity in the
remaining component. Then, as temperature is lowered further, the sec-
ond type of vortices proliferate, and superconductivity is lost in an inverted
3𝐷𝑋𝑌 transition[11]. If 𝑁 > 2 in this scenario, one will find a succession of
𝑁 − 1 superfluid transitions, corresponding to the 𝑁 − 1 superfluid modes
losing coherence, and then a final superconducting phase transition [93].
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5.4 Character expansion

The main idea behind paper IV is to utilize what is known as a character
expansion [100] on the action of Eq. (5.9). To this end we apply the identity

𝑒𝑎 cos 𝑥 =
∞
∑

𝑏=−∞
𝐼𝑏(𝑎)𝑒𝑖𝑏𝑥. (5.18)

to all cosine terms in the action of a lattice London superconductor. Here,
𝐼𝑏(𝑎) is the modified Bessel function of the first kind. This introduces new,
integer-valued fields, 𝑏, which may be have one or more components de-
pending on the nature of 𝑥. This kind of expansion is an expansion in
the traces of the irreducible representations of the underlying symmetry
group. For degrees of freedom invariant under the U(1) group, 𝑥, these
traces are simply exp 𝑖𝑏𝑥.

As a simple example, let us apply this identity to a single-band lattice-
London superconductor, defined by the Hamiltonian

𝐻 = − ∑
𝐫,𝜇

cos (Δ𝜇𝜃𝐫 − 𝑒𝐀𝐫,𝜇) + 1
2 ∑

𝐫
(𝚫 × 𝐀𝐫)2 . (5.19)

We may now apply Eq. (5.18) to the cosine term, yielding a partition func-
tion

𝒵 = ∫ 𝒟(𝜃, 𝐀) ∏
𝐫

⎛⎜
⎝

∏
𝜇

∞
∑

𝑏𝐫,𝜇=−∞
𝐼𝑏𝐫,𝜇

(𝛽)𝑒𝑖𝑏𝐫,𝜇(∆𝜇𝜃𝐫−𝑒𝐴𝐫,𝜇)⎞⎟
⎠

∏
𝐫

×𝑒− 𝛽
2 (𝚫×𝐀𝐫)2 . (5.20)

As we mentioned above, this introduces a new integer-vector field, 𝐛𝐫,
which will represent the actual superconducting currents. These super-
currents will be dual objects to the integer-valued vortex fields, 𝐯𝐫, intro-
duced in Eq. (5.13), and they are defined on the dual lattice to that of the
vortex fields. A vortex will have a loop of supercurrent flowing around
it, and a supercurrent will have a loop of vorticity flowing around it. After
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performing a lattice integration of parts, moving the lattice difference from
𝜃 to 𝑏, we may integrate out the phase-degrees of freedom, which leaves a
constraint on the 𝐛-field.

𝚫 ⋅ 𝐛𝐫 = 0 ∀ 𝐫, (5.21)

it is divergenceless. Now we may also integrate out the gauge fields, the
details of which may be found in paper IV, which introduces long-range
current-current interactions between the 𝐛-fields. The resulting partition
function reads

𝒵 = ∑
𝐛

(∏
𝐫

𝛿𝚫⋅𝐛𝐫,0) (∏
𝐫,𝜇

𝐼𝑏𝐫,𝜇
(𝛽)) 𝑒−𝑆𝐺 , (5.22)

where
𝑆𝐺 = ∑

𝐫,𝐫′

𝑒2

2𝛽 𝐷(𝐫 − 𝐫′)𝐛𝐫 ⋅ 𝐛𝐫′ , (5.23)

is the part of the action containing the gauge-mediated interaction. 𝐷(𝐫, 𝐫′)
is the current-current interaction potential in real space. The current-current
interaction may be represented in reciprocal space as 𝐷𝐪 = 1/ ∣𝐐𝐪∣2, where
𝐐𝐪 again is the lattice momentum.

What this calculation shows us is that the lattice London superconduc-
tor may be re-expressed as an integer valued vector-current field, 𝐛𝐫, which
is divergence-free and interacts with itself in two ways. One way being
the on-site repulsion set in effect by the Bessel functions, the other being
the long range interaction mediated by the gauge field. The phase transi-
tion in the current language will occur in the opposite way as in the vortex
language. At low temperatures, in the superconducting state, the super-
currents proliferate and fill the system completely. The vortices, however,
only form small closed loops. As temperature is increased towards the crit-
ical temperature, the supercurrents will collapse6 and superconductivity is
lost. You may view this dual description as occurring in exactly the same
way as in the vortex picture, but with an inverted temperature axis.

6At the same temperature the vortices proliferate.
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5.5 Main results of paper IV

The main result of paper IV is the interpretation of a multiband London
superconductor, after transforming it using Eq. (5.18) and integrating out
the original phase-degrees of freedom. The specific form of the partition
function we use, may be written as

𝒵 = ∑
{𝜃,𝐀}

∏
𝐫

(∏
𝑖,𝜇

𝑒𝛽 cos(∆𝜇𝜃𝐫,𝑖−𝑒𝐴𝐫,𝜇)) (∏
𝑖<𝑗

𝑒𝛽𝜂 cos(𝜃𝐫,𝑖−𝜃𝐫,𝑗))

× 𝑒 −𝛽
2 (∆×𝐀𝐫)2 . (5.24)

Here, we simplified the Hamiltonian of Eq. (5.9) by choosing all stiffnesses
equal to unity, and all 𝜂𝑖𝑗 = 𝜂 > 0. Having 𝜂 > 0 ensures that there are no
frustrated phases. After using the identity Eq. (5.18) on the cosine terms
stemming both from the gradients and from the Josephson interaction, we
arrive at the following partition function.

𝒵 = ∑
{𝐛,𝑚}

∏
𝐫,𝑖

𝛿𝚫⋅𝐛𝐫,𝑖,∑𝑗≠𝑖 𝑚𝐫,𝑖,𝑗

∏
𝐫,𝜇,𝑖

𝐼𝑏𝐫,𝑖,𝜇
(𝛽) ∏

𝐫,𝑖<𝑗
𝐼𝑚𝐫,𝑖,𝑗

(𝛽𝜂)𝑒−𝑆𝐺 . (5.25)

The details of the derivation may be found in paper IV. Now, the gauge
action, 𝑆𝐺, is

𝑆𝐺 = 𝑒2

2𝛽 ∑
𝐫,𝐫′

∑
𝑖𝑗

𝐛𝐫,𝑖 ⋅ 𝐛𝐫′,𝑗𝐷(𝐫 − 𝐫′), (5.26)

where the current-interaction potential, 𝐷(𝐫 − 𝐫′), has the same Fourier
representation as before, 𝐷𝐪 = 1/ ∣𝐐𝐪∣2. Eq. (5.25) is a direct general-
ization of Eq. (5.22). The integer-valued vector field, 𝐛𝐫,𝑖 has the same
interpretation as before as the supercurrents, but now with an added in-
dex, 𝑖, as we have 𝑁 supercurrents. The gauge-mediated interaction has
the same basic form, but it now mediates interactions between all currents,
both inter- and intra-component. Contrary to the vortex-vortex interaction
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of Eq. (5.13), 𝐷(𝐫 − 𝐫′) only represents gauge-mediated interactions. The
analogue of the Coulomb intra-vortex interactions is in this case the con-
tact interactions contained in the Bessel function 𝐼𝑏𝐫,𝑖,𝜇

(𝛽). The effect of
the Josephson interaction is seen mainly by the inclusion of a new integer-
valued scalar field, 𝑚𝐫,𝑖,𝑗 = −𝑚𝐫,𝑗,𝑖. They appear in the 𝛿-function con-
straint, where they give the supercurrents a finite divergence. They also
interact with each other through a contact Bessel-function term. If we set
𝜂 = 0, we must have 𝑚𝐫,𝑖,𝑗 = 0 ∀ 𝐫, 𝑖, 𝑗, and we revert to 𝑁 divergence-free
supercurrents, as 𝐼𝑛(0) is unity for 𝑛 = 0, and zero for all 𝑛 > 0.

The effect of the scalar fields, 𝑚𝐫,𝑖,𝑗, is as follows. Instead of only hav-
ing closed loops of supercurrents of a single component, it is now possible
to end a supercurrent of one component, 𝑖, on a site, if there is a supercur-
rent of any other component, 𝑗, coming out of the site. This changing of
color from 𝑖 to 𝑗 is then an excitation of ±1 in 𝑚𝐫,𝑖,𝑗, which may be thought
of as an instanton-like event. As each instanton event must consist of one
supercurrent component entering the site and one exiting, we will still have
closed loops of supercurrent, but the current may change color an arbitrary
amount of times before coming full circle again. The effect of the Josephson
coupling is to snip the closed currents of the individual superconducting
components into pieces, then gluing them back together into closed loops
consisting of all combinations of the different components. The net effect
of this is to convert the phase transitions in the individual components into
crossovers, for any value of 𝜂. However, something survives. If one sums
𝛿-function constraint over all components, one finds

∑
𝑖

𝚫 ⋅ 𝐛𝐫,𝑖 = − ∑
𝑖

∑
𝑗≠𝑖

𝑚𝐫,𝑖,𝑗

= 0 ∀ 𝐫. (5.27)

That is, one particular combination of the supercurrents is still divergence-
free. Interestingly, and perhaps not surprisingly, it is the sum of all the
components. Remember, that in the vortex and phase language, it was the
sum of all the components which coupled to the gauge field, and here it is
no different. From Eq. (5.26) one sees that the sum of all the superconduct-
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ing components interact through the gauge field. As this particular combi-
nation, ∑𝑖 𝐛𝐫,𝑖 is divergence-free, it should have a phase transition. And
this phase transition is expected to be in the inverted 3𝐷𝑋𝑌 -universality
class, if it is not influenced by the neutral modes. We also calculated the
gauge-field correlator in terms of the integer-valued current fields, and
show that the onset of the Meissner effect is driven by a blowout of current-
loops in the charged sector of the model. This is a complement to previous
work, which has shown that the vortex-loop proliferation in the charged
sector drives the transition from the Meissner state into the normal metal
state [93]. The two descriptions are therefore dual to each other.

In paper IV we also use the identity of Eq. (5.18) to transform the model
where the phases are separated into charged and neutral modes, with ex-
plicit expressions provided for 𝑁 = 2 and 𝑁 = 3, taking care to integrate
out the redundant degrees of freedom properly. This allows us to explicitly
show that one must introduce a single integer-valued vector field which is
divergence-free and coupled to the gauge field, and 𝑁(𝑁 − 1)/2 integer-
valued vector fields which have a finite divergence due to the instanton
events, and not coupled to the gauge field. The field with zero divergence
may be associated with the superconducting vortices of Eq. (5.17), while
the remaining fields with nonzero divergence are associated with the su-
perfluid vortices. The phase transitions present in the neutral sector with-
out the Josephson coupling present will be converted into crossovers, while
the phase transition in the charged sector is unaffected. What then remains,
for any value of 𝑒 or 𝜂 ≠ 0, is a single superconducting phase transition as-
sociated with the collapse (proliferation) of the composite superconduct-
ing currents (vortices). This transition may be either first or second order,
depending on whether or not the remaining fluctuations in the neutral sec-
tor are strong enough to influence the fluctuations of the charged sector.
This will depend on the strength of the Josephson coupling, but also on
the location of the crossovers in neutral sector relative to the phase transi-
tion of the charged sector.



92 Chapter 5. Multiband Superconductors

5.5.1 Outlook

Paper IV presents a new formulation, Eq. (5.25), a schematic phase dia-
gram, as well as an entirely new way of probing the Higgs mechanism
in multi-band superconductors. These results suggest further research, in
particular a Monte-Carlo study of the action of Eq. (5.25) in order to con-
firm the predictions of paper IV, and to further confirm the predictions of
previous Monte-Carlo studies of the London model [101]. The action of
Eq. (5.25) more directly expresses the relevant degrees of freedom, and is
particularly suited for worm-type algorithms because of its link-current na-
ture. However, the long-range interactions introduced by integrating out
the gauge field make the model more challenging to simulate on parallel
computers.
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Thermal fluctuations and melting transitions for rotating single-component superfluids have been intensively
studied and are well understood. In contrast, the thermal effects on vortex states for two-component superfluids
with density-density interaction, which have a much richer variety of vortex ground states, have been much
less studied. Here, we investigate the thermal effects on vortex matter in superfluids with U(1) × U(1) broken
symmetries and intercomponent density-density interactions, as well as the case with a larger SU(2) broken
symmetry obtainable from the [U(1) × U(1)]-symmetric case by tuning scattering lengths. In the former case
we find that, in addition to first-order melting transitions, the system exhibits thermally driven phase transitions
between square and hexagonal lattices. Our main result, however, concerns the case where the condensate exhibits
SU(2) symmetry, and where vortices are not topological. At finite temperature, the system exhibits effects which
do not have a counterpart in single-component systems. Namely, it has a state where thermally averaged quantities
show no regular vortex lattice, yet the system retains superfluid coherence along the axis of rotation. In such
a state, the thermal fluctuations result in transitions between different (nearly) degenerate vortex states without
undergoing a melting transition. Our results apply to multicomponent Bose-Einstein condensates, and we suggest
how to detect some of these unusual effects experimentally in such systems.

DOI: 10.1103/PhysRevA.91.013605 PACS number(s): 67.85.Fg, 67.25.dk, 67.60.Bc, 67.85.Jk

I. INTRODUCTION

Bose-Einstein condensates (BECs) with a multicomponent
order parameter, and the topological defects such systems
support, represent a topic of great current interest in condensed
matter physics [1–15]. Such multicomponent condensates may
be realized as mixtures of different atoms, mixtures of different
isotopes of an atom, or mixtures of different hyperfine spin
states of an atom. The interest in such condensates from a
fundamental physics point of view is mainly attributed to the
fact that one may tune various interaction parameters over
a wide range in a BEC. This enables the study of a variety
of physical effects which are not easily observed in other
superfluid systems such as 3He and 4He.

The behavior of a single-component BEC under rotation
is well known. The ground state is a hexagonal lattice of
vortex defects which melts to a vortex liquid via a first-
order phase transition. This is well described by the London
model, where amplitude fluctuations may be ignored. Over
the years, in the context of studying vortex lattice melting
in high-Tc superconductors, many works have confirmed this
through numerical Monte Carlo simulations for systems in
the frozen gauge, three-dimensional (3D) XY, and Villain
approximations [16–25], as well as in the lowest-Landau-
level approximation [26], and by mapping it to a model of
2D bosons [27]. Single-component condensates have been
available experimentally for quite some time [28,29], and the
hexagonal lattice ground state has been verified [30].

Condensates with two components of the order param-
eter have also been studied extensively. Analytical works
focusing on determining the T = 0 ground states have
demonstrated a range of interesting possible lattice struc-
tures [5,6,10,13,14,31]. By varying the ratio between inter- and
intracomponent couplings, the ground-state lattice undergoes
a structural change from hexagonal symmetry through square

symmetry to double-core lattices and interwoven sheets of
vortices. Similar systems with three components have also
been studied [15]. Experimentally, spinor condensates have
been realized in two general classes of systems. The first option
is to use one species of atoms, usually rubidium, and prepare
it in two separate hyperfine spin states [1,2]. Vortices [3]
and vortex lattices [7] have been realized in these binary
mixtures, where both hexagonal and square vortex lattice states
were observed. The other option is to mix condensates of
two different species of atoms [4,12]. The use of Feshbach
resonances [32,33] allows direct tuning of the scattering
lengths, and by extension the inter- and intracomponent
interactions of multicomponent condensates [8,9,11].

In this paper, we consider a specific model of a two-
component BEC, which has the full range of fluctuations of
the order-parameter field included, as well as intercomponent
density-density interactions. We consider the model with
U(1) × U(1) and as SU(2) symmetries. For the U(1) × U(1)
case, we find a succession of square and hexagonal vor-
tex ground-state patterns as the intercomponent interaction
strength is varied, along with the possibility of thermal
reconstruction from a square to a hexagonal vortex lattice as
temperature is reduced.

The SU(2)-symmetric case is interesting and experimen-
tally realizable. In this case U(1) vortices are no longer
topological, in contrast to the [U(1) × U(1)]-symmetric case.
In this case, when fluctuation effects are included we find a
highly unusual vortex state where there is no sign of any vortex
lattice. Nonetheless, global phase coherence persists. This state
of vortex matter is a direct consequence of massless amplitude
fluctuations in the order parameter, when the broken symmetry
of the system is SU(2). At the SU(2) point, but at lower
temperatures, we also observe dimerized vortex ground-state
patterns.

1050-2947/2015/91(1)/013605(16) 013605-1 ©2015 American Physical Society
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The paper is organized as follows. The model and def-
initions of relevant quantities are presented in Sec. II. The
technical details of the Monte Carlo simulations are briefly
considered in Sec. III. In Sec. IV, the results are presented and
discussed. In Sec. V, we discuss how to experimentally verify
the results we find. Some technical details and the investigation
of the order of the melting transitions with full amplitude
distributions included, for the cases N = 1 and N = 2, are
relegated to Appendixes.

II. MODEL AND DEFINITIONS

In this section we present the model used in the paper, first
in a continuum description and then on a three-dimensional
cubic lattice appropriate for Monte Carlo simulations. The
relevant quantities for the discussion are also defined.

A. Continuum model

We consider a general Ginzburg-Landau (GL) model of an
N -component Bose-Einstein condensate, coupled to a uniform
external field, which in the thermodynamical limit is defined
as

Z =
∫ N∏

i

Dψ ′
i e

−βH , (1)

where

H =
∫

d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2mi

∣∣∣∣
(

∂μ − i
2π

�0
A′

μ

)
ψ ′

i

∣∣∣∣
2

+
N∑
i

α′
i |ψ ′

i |2 +
N∑

i,j=1

g′
ij |ψ ′

i |2|ψ ′
j |2

⎤
⎦ (2)

is the Hamiltonian. Here, the field A′
μ formally appears as

a nonfluctuating gauge field and parametrizes the angular
velocity of the system. The fields ψ ′

i are dimensionful complex
fields, i and j are indices running from 1 to N denoting the
component of the order parameter (a “color” index), α′

i and g′
ij

are Ginzburg-Landau parameters, �0 is the coupling constant
to the rotation induced vector potential, and mi is the particle
mass of species i. For mixtures consisting of different atoms
or different isotopes of one atom, the masses will depend on
the index i, while for mixtures consisting of atoms in different
hyperfine spin states, the masses are independent of i. The
inter- and intracomponent coupling parameters g′

ij are related
to real inter- and intracomponent scattering lengths aij in the
following way:

g′
ii = 4π�

2aii

mi

, (3)

g′
ij = 8π�

2aij

mij

(i �= j ), (4)

where mij = mimj/(mi + mj ) is the reduced mass. In this pa-
per we focus on using BECs of homonuclear gases with several
components in different hyperfine states; hence mi = m ∀ i.
Intercomponent drag in BEC mixtures has been considered

in previous works using Monte Carlo simulation (ignoring
amplitude fluctuations), but we will not consider this case
here [34–38].

We find it convenient for our purposes to rewrite (2) in
the following form, the details of which are relegated to
Appendix A:

H =
∫

d3r

[
1

2
(Dμ�)†(Dμ�) + V (�)

]
. (5)

Here, � is an N -component spinor of dimensionless complex
fields, which consists of an amplitude and a phase, ψi =
|ψi | exp (iθi), Dμ = ∂μ − i 2π

�0
A′

μ is the covariant derivative,
and summation over repeated spatial indices is implied. We
neglect, for simplicity, the presence of a trap and the centrifugal
part of the potential. We consider only the case where the
vector potential is applied to each component of �, as follows
from the fact that the masses are independent of species
index i.

We have studied this model in detail with N = 2, where we
write the potential in the form

V (�) = η(|�|2 − 1)2 + ω(�†σz�)2. (6)

This formulation is more relevant for our discussion, as it
immediately highlights the symmetry of �, as well as the soft
constraints applied to it. The details of the reparametrization
are shown in Appendix A.

Note that Eq. (6) may also be rewritten in the form (correct
up to an additive constant term)

V = (η + ω)(|ψ1|4 + |ψ2|4) + 2(η − ω)|ψ1|2|ψ2|2. (7)

Comparing with Eq. (2), we have g11 = g22 ≡ g = η + ω and
g12 = η − ω. The model features repulsive intercomponent
interactions provided η − ω > 0, and this is the case we will
mainly focus on. We will however briefly touch upon the
case η − ω < 0 corresponding to an attractive intercomponent
density-density interaction, which leads to ground states with
overlapping vortices in components 1 and 2. Normalizability
of the individual order-parameter components, or equivalently
boundedness from below of the free energy, requires that
η + ω > 0. Thus, while ω > η makes physical sense, ω < −η

does not. In this paper, we assume η > 0 and ω � 0.
Two-component BECs feature considerably richer physics

than a single-component BEC. Since the gauge field para-
metrizing the rotation of the system is nonfluctuating, there is
no gauge-field-induced current-current interaction between the
two condensates (unlike in multicomponent superconductors).
The only manner in which the two superfluid condensates
interact is via the intercomponent density-density interaction
2(η − ω)|ψ1|2|ψ2|2. In the limit where the amplitudes of each
individual component are completely frozen and uniform
throughout the system, one recovers the physics of two de-
coupled 3D XY models, with a global U(1) × U(1) symmetry.
The density-density interaction between ψ1 and ψ2 leads to
interactions between the topological defects excited in each
component. As a result, a first-order melting of two decoupled
hexagonal lattices is not the only possible phenomenon that
could take place. Previous experiments and numerical studies
have reported a structural change of the ground state from
a hexagonal to a square lattice of vortices as the effective
intercomponent coupling is increased [5–7]. This corresponds
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to increasing the ratio η/ω in our case. As we will see
below, other unusual phenomena can also occur, notably when
thermal fluctuations are included.

One special case of the model deserves some extra attention.
If one takes the limit ω → 0 in Eq. (6) the symmetry of the
model is expanded to a global SU(2) symmetry. One may then
shift densities from one component to the other with impunity,
as long as |ψ1|2 + |ψ2|2 is left unchanged. This effectively
leads to massless amplitude fluctuations in the components of
the order parameter. Therefore, it is possible to unwind a 2π

phase winding in one component by letting the amplitude of
the same component vanish. The introduction of this higher
symmetry leads to very different vortex ground states than
what are found in the [U(1) × U(1)]-symmetric case with
ω �= 0.

B. Separation of variables

In multicomponent GL models complex objects, such as
combinations of vortices of different colors, are often of
interest. In general, it is possible to rewrite an N -component
model coupled to a gauge field, fluctuating or not, in
terms of one mode coupled to the field and N − 1 neutral
modes [39,40]. For a more general discussion of charged
and neutral modes in the presence of amplitude fluctuations
see Refs. [41] and [42]. Considering only the kinetic part of
the two-component Hamiltionian Hk , we have the following
expression:

Hk = 1

2|�|2 |ψ∗
1 ∂μψ1 + ψ∗

2 ∂μψ2 − iAμ|�|2|2

+ 1

2|�|2 |ψ1∂μψ2 − ψ2∂μψ1|2. (8)

Hence, the first mode couples to the applied rotation, while the
second does not. This corresponds to the phase combinations
θ1 + θ2 and θ1 − θ2, respectively.

C. Lattice regularization

In order to perform simulations of the continuum model, we
define the field � on a discrete set of coordinates, i.e., �(r) →
�r, where r ∈ (ix̂ + j ŷ + kẑ| i,j,k = 1, . . . ,L). Here, L is the
linear size in all dimensions; the system size is V = L3. We use
periodic boundary conditions in all directions. By replacing the
differential operator by a gauge-invariant forward difference(

∂

∂rμ

− iAμ(r)

)
�(r) → 1

a
(�r+aμ̂e−i(2π/�0)aA′

μ,r − �r),

(9)

and introducing real phases and amplitudes ψr,i = |ψr,i |eiθr,i

we can rewrite the Hamiltonian:

H =
∑
r,μ̂
i

|ψr+μ̂,i ||ψr,i | cos(θr+μ̂,i − θr,i − Aμ,r)

+
∑

r

V (�r). (10)

The lattice spacing is chosen so that it is smaller than
the relevant length scale of variations of the amplitudes. A

dimensionless vector potential Aμ has also been introduced.
See Appendix A for details. We denote the argument of the
cosine as χ

μ

r,i , as a shorthand.

D. Observables

An important and accessible quantity when exploring phase
transitions is the specific heat of the system,

cV = β2 〈H 2〉 − 〈H 〉2

L3
. (11)

While crossing a first-order transition there is some amount
of latent heat in the system, manifesting itself as a δ-function
peak of the specific heat in the thermodynamic limit. On the
lattice one expects to see a sharp peak, or anomaly, at the
transition. This is used to characterize the transition as first
order.

A useful measure of the global phase coherence of the
system is the helicity modulus, which is proportional to the
superfluid density. It serves as a probe of the transition from
a superfluid to a normal fluid. In the disordered phase, the
moduli in all directions are zero, characterizing an isotropic
normal-fluid phase. The cause of this is a vortex loop blowout.
Moving to the ordered phase, all moduli evolve to a finite value.
If we turn on the external field we still have zero coherence in
all directions in the disordered phase. In the ordered phase,
however, the helicity modulus along the direction of the
applied rotation jumps to the finite value through a first-order
transition. The value of the transverse moduli will remain zero.
Formally, the helicity modulus is defined as a derivative of the
free energy with respect to a general, infinitesimal phase twist
along rμ [43]. That is, we perform the replacement

θr,i → θ ′
r,i = θr,i − biδμrμ (12)

in the free energy, and calculate

ϒμ,(b1,b2) = ∂2F [θ ′]
∂δ2

μ

∣∣∣∣
δμ=0

. (13)

Here, b = (b1,b2) represents some combination of the phases
θ1 and θ2, b1θ1 + b2θ2. To probe the individual moduli,
bi is chosen as bi = (1,0) or bi = (0,1). The composite
phase-sum variable is represented by the choice bi = (1,1),
while bi = (1, − 1) is the phase difference. Generally, for
a two-component model, the helicity modulus can be writ-
ten as the sum of two indivudual moduli and a cross
term [36,40],

ϒμ,(b1,b2) = b2
1ϒμ,(1,0) + b2

2ϒμ,(0,1) + 2b1b2ϒμ,12. (14)

For the model considered in this paper, the individual helicity
moduli can be written as

〈ϒμ,i〉 = 1

V

[〈∑
r

ψri
ψr+μ̂,i cos

(
χ

μ

r,i

)〉

− β

〈(∑
r

ψr,iψr+μ̂,i sin
(
χ

μ

r,i

))2〉]
, (15)
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while the mixed term has the form

〈ϒμ,12〉 = −β

〈(∑
r

|ψr,1||ψr+μ̂,1| sin
(
χ

μ

r,1

))

×
(∑

r

|ψr,2||ψr+μ̂,2| sin
(
χ

μ

r,2

))〉
. (16)

We denote the helicity modulus of the phase sum ϒμ,(1,1) as
ϒ+

μ as a shorthand.
The structure factor Si(q⊥) can be used to determine

the underlying symmetry of the vortex lattice. Square and
hexagonal vortex structures will manifest themselves as four
or six sharp Bragg peaks in reciprocal space. In a vortex liquid
phase one expects a completely isotropic structure factor.
The structure factor is defined as the Fourier transform of
the longitudinally averaged vortex density 〈ni(r⊥)〉, which is
subsequently thermally averaged,

Si(q⊥) = 1

LxLyf

〈∣∣∣∣∣
∑
r⊥

ni(r⊥)e−ir⊥·q⊥

∣∣∣∣∣
〉

. (17)

Here ni(r⊥) is the density of vortices of color i averaged over
the z direction,

ni(r⊥) = 1

Lz

∑
z

ni(r⊥,z), (18)

and r⊥ is r projected onto a layer of the system with a given
z coordinate. The vortex density is calculated by traversing
each plaquette of the lattice, adding the factor χ

μ

i,r of each
link. Each time we have to add (or subtract) a factor of 2π

in order to bring this sum back into the primary interval of
(−π,π ] a vortex of color i and charge +1 (−1) is added to this
plaquette.

In addition to the structure factor, we look at thermally
averaged vortex densities 〈ni(r⊥)〉 as well as thermally
and longitudinally averaged amplitude densities 〈|ψi |2(r⊥)〉,
defined similarly to Eq. (18),

|ψi |2(r⊥) = 1

Lz

∑
z

|ψi |2(r⊥,z). (19)

This provides an overview of the real-space configuration of
the system.

When including amplitude fluctuations, which, when the
potential term is disregarded, are unbounded from above,
it is of great importance to make sure all energetically
allowed configurations are included. To this end, we measured
the probability distribution of |ψi |2, P (|ψi |2) during the
simulations by making a histogram of all field configurations
at each measure step, and normalizing its underlying area to
unity in postprocessing.

The uniform rotation applied to the condensates is imple-
mented in the Landau gauge:

A = (0,2πf x,0), (20)

where f is the density of vortices in a single layer. Note
that this implies a constraint Lf ∈ (1,2,3, . . .) due to the
periodic boundary conditions. When probing a first-order
melting transition, it is important to choose a filling fraction
large enough that an anomaly in the specific heat is detectable.

However, if the filling fraction is too large, one may transition
directly from a vortex liquid into a pinned solid, completely
missing the floating solid phase of interest. This scenario is
characterized by a sharp jump in not only the longitudinal,
but also the transverse helicity modulus [44,45]. One must
therefore chose f small enough to assure that the vortex line
lattice is in a floating solid phase when it melts.

III. DETAILS OF THE MONTE CARLO SIMULATIONS

The simulations were performed using the Metropolis-
Hastings algorithm [46,47]. Phase angles were defined as
θ ∈ (−π,π ], and amplitudes as |ψ |2 ∈ (0,1 + δψ]. The choice
of δψ will be discussed further, as it is important to ensure
inclusion of the full spectrum of fluctuations. Both the phases
and the amplitudes were discretized to allow the use of
tables for trigonometric and square root functions in order
to speed up computations. We typically simulated systems of
size L3 = 643, with sizes up to L3 = 1283 used to resolve
anomalies in the specific heat. We used 106 Monte Carlo
sweeps per inverse temperature step, and up to 107 close
to the transition. 105 additional sweeps were typically used
to thermalize the system. In the simulations, we examined
time series of the internal energies taken during both the
thermalization runs and the measurement runs to make sure
the simulation converged. One sweep consists of picking a
new random configuration for each of the four field variables
separately in succession, at each lattice site. Measurements
were usually performed with a period of 100 sweeps, in
order to avoid correlations. Ferrenberg-Swendsen multihis-
togram reweighting was used to improve statistics around
simulated data points, and jackknife estimates of the errors are
used.

Figure 1 shows the probability distribution of the ampli-
tudes, P(|ψi |2). We get a peaked distribution for finite ω.
On the other hand, when ω = 0, this is no longer the case.
The distribution now approaches a uniform distribution on the
interval (0,1]. In this case the parameter η serves to control

FIG. 1. (Color online) The probability distribution of the am-
plitudes, P(|ψi |2), for N = 2, at inverse temperature β = 1.20,
f = 1/32, and η = 2, with ω values from 0 to 3. The distribution
is completely symmetric in i.
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the approach to uniformity, η → ∞ corresponding to the CP 1

limit.
With these initial simulation runs as a basis, we choose

δψ appropriately in order to capture the entire spectrum of
fluctuations.

IV. RESULTS OF THE MONTE CARLO SIMULATIONS

In this section, the η-ω phase diagram of ground states
is explored by slow cooling and examination of vortex
and amplitude densities, as well as structure factors. In
addition to the expected hexagonal and square vortex ground
states, several interesting regions of the parameter space are
investigated further. A special case between the square and
the hexagonal regions of the phase diagram is discovered,
where the lattice first forms a square structure, but thermally
reconstructs into a hexagonal lattice as the temperature is
decreased further. Furthermore, we consider in detail the ω = 0
line in the phase diagram, where we discover additional vortex
fluctuation effects. For ω = 0, the system features an SU(2)
symmetry. An unusual feature is an interesting state with global
phase coherence, but without a regular vortex lattice. In this
case ordinary vortices do not have topological character due to
SU(2) symmetry. Additionally, we obtain several interesting
vortex structures characterized by dimerlike configurations at
lower temperatures. Here, we observe honeycomb lattices, or
double-core lattices, and stripe configurations, consistent with
previous T = 0 results [6].

We also examine the melting transitions of the square
and hexagonal lattices with the full amplitude distribution
included, as well as the melting of the hexagonal lattice in a
model with N = 1 as a benchmark of the method. To classify
the transition, we look at thermal averages of the specific heat,
helicity moduli, and vortex structure factors. These results are
presented in Appendixes B and C.

A. The η-ω phase diagram

Adding a second matter field and intercomponent density-
density interactions results in a considerably richer set of
ground states than in the single-component case. In the absence
of a fluctuating part of the rotational “gauge field” there will
be no gauge-field-mediated intercomponent current-current
interactions. For η − ω < 0 (η,ω > 0) the effective intercom-
ponent density-density coupling η − ω is negative and the
ground state of each color of condensate has a hexagonal
symmetry, as shown in Fig. 2(a). If, on the other hand
η − ω > 0, the intercomponent coupling becomes positive.
Now, for sufficiently large ratios η/ω, the vortices arrange
themselves into two interpenetrating square lattices, shown in
Fig. 2(b). The value of the ratio η/ω for which the lattice
reconstructs depends on the strength of the rotation f . If
we neglect fluctuations, η − ω < 0 is expected to result in
a hexagonal lattice, while η − ω > 0 leads to a square lattice
for sufficiently large η/ω.

The physics of the reconstruction of the lattice can be ex-
plained by modulations of the amplitude fields. The existence
of static periodic amplitude modulations (density variations)
is due to the presence of vortices. Without vortices (f = 0)
and ω > 0, the ground state is one where both amplitudes are
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FIG. 2. (Color online) Representative configurations of the two
main ordered phases in the U(1) × U(1) region. (a) shows a square
structure at (η,ω) = (5.0,0.5), while (b) illustrates the hexagonal
structure at (η,ω) = (5.0,5.0). Each subfigure shows vortex densities
〈ni(r⊥〉 in the left column, amplitude densities 〈|ψi |2(r⊥〉 in the
right column, and structure factors (insets) of each component as
indicated. The induced vortex density and inverse temperature are
fixed to f = 1/64 and β = 1.5 in both subfigures.

equal and smooth. Vortices in one component tend to suppress
locally the corresponding amplitude, which in turn means
that the term η(|ψ1|2 + |ψ2|2 − 1)2 enhances the amplitude
of the other component. At small ω, i.e., large η − ω, there
is a strong tendency to form a square density lattice due to
this intercomponent density-density interaction. Conversely,
if ω is large enough compared to η, the density-density
interaction is not strong enough to overcome the isotropic
current-current interactions between same-species vortices. In
other words if the current-current interactions dominate the
interspecies density-density interactions, a hexagonal lattice is
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(a)

(b)

FIG. 3. (Color online) The η-ω phase diagram of the ground
states for f = 1/32 (a) and f = 1/64 (b). The simulations were
performed for a range of (η,ω) pairs to determine the zero-temperature
ground state. Approximate demarcation lines for the phase boundaries
separating hexagonal lattices, square lattices, and dimerized phases,
were drawn from these results (solid lines). I denotes the phase
where the hexagonal vortex lattices in the two components are
cocentric, II denotes the case where the hexagonal lattices are
intercalated, while III denotes the square lattice phase. The dotted
line is the line ω = η at which the intercomponent density-density
interaction 2(η − ω)|ψ1|2|ψ2|2 changes sign. See also Figs. 11 and 12
in Appendix D.

energetically favored over a square lattice, and vice versa.
Note that similarly a square vortex lattice forms in two-
component London models with dissipationless drag when
there are competing inter- and intraspecies current-current
vortex interactions [34,35].

Figures 3(a) and 3(b) show the phase diagrams for filling
fractions f = 1/32 and f = 1/64, respectively. The sepa-
ration line is approximate and drawn from several separate
simulations.

To clarify what is going in Figs. 3(a) and 3(b), we
refer to Figs. 11 and 12 in Appendix D. Here, we show
tableaus to illustrate in more detail how the density and
vortex lattices reconstruct at a temperature well below any
melting temperatures of the vortex (and density) lattices, as
the density-density interaction 2(η − ω)|ψ1|2|ψ2|2 is varied.
Specifically, we fix the interaction parameter η, as well as the
inverse temperature β and filling fraction f , while increasing
the parameter ω. This reduces the effective intercomponent

density-density interaction which favors a square lattice, until
the lattice reconstructs from square to hexagonal symmetry.

When η = ω, it is seen from Eq. (7) that the two
components of the order parameter decouple. For ω < η the
intercomponent density-density interaction is repulsive, while
it is attractive for ω > η. For ω < η, the vortex lattices (and
the density lattices) are intercalated, while for ω > η they are
cocentric. In Figs. 3(a) and 3(b) we illustrate the demarcation
line between the two situations as a dotted line in the hexagonal
phase.

Beyond the square and hexagonal lattices we also observe
dimer configurations of vortices for ω = 0, which will be
discussed further below. The calculations are consistent with
the ground states obtained in Refs. [6] and [10].

B. Thermally induced reconstruction of vortex lattices

Now we move to discussion of the effects of thermal fluc-
tuations in these systems. Figure 4 shows the vortex densities
in component 1 in reciprocal space, as β is increased, i.e., as
temperature is reduced, in a temperature range below where the
lattice melts. The actual melting of the two-component lattice
is discussed in Sec. IV C. We fix the filling fraction f = 1/64,
as well as the interaction parameters η = 2 and ω = 0.5.

For the highest temperatures shown in Fig. 4 the vortex
lattice is square. Upon cooling the system, the vortex lattice
reconstructs into a hexagonal lattice, consistent with the
ground-state phase diagram of Fig. 3(b). The density-density
interaction term 2(η − ω)|ψ1|2|ψ2|2 aids formation of a square
lattice at higher temperatures, while the current-current inter-
actions drive the lattice towards a hexagonal configuration
when it is cooled further. This means that the free energy per
vortex of the square lattice, which is lower than that of the
hexagonal lattice at β = 0.90, has become larger than that of
the hexagonal lattice when β = 1.50. This is essentially the
combination of an energetic and an entropic effect. We observe
this reconstruction not too far away from the demarcation
line separating a square and a hexagonal vortex lattice. Deep
inside the hexagonal phase in Fig. 3(b), we observe direct
vortex lattice melting from a hexagonal lattice to a vortex
liquid. We note that intermediate entropically stabilized vortex
lattice phases were a subject of interesting investigation in
the different system of U(1) × U(1) superconductors [48];
however, the vortex interaction form is different in our case.

C. SU(2) vortex states

The limit ω → 0 is quite different from the [U(1) × U(1)]-
symmetric case ω �= 0. From Eq. (6), it is seen that the
Hamiltonian is invariant under SU(2) transformations of �.
Vortices, which are topological in a U(1) × U(1) model, are
no longer topological in the SU(2) case. One may unwind
a 2π phase winding by entirely transferring density of one
component to the other, which may be done at zero energy
cost.

Figure 5 shows one of the main results of this paper. These
are simulations with SU(2) symmetry, i.e., ω = 0, as well as
η = 5.0 and f = 1/64. The top panel show the phase stiffness
associated with the phase sum, ϒ+

μ . This is the physically
relevant phase variable in this case, as it couples to the rotation.
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FIG. 4. (Color online) Thermally induced reconstruction from a
square vortex lattice in either of the components at η = 2,ω = 0.5,
to a hexagonal vortex lattice, as β is increased. Here, f = 1/64. (a)–
(f) show inverse temperatures β = {0.80,0.90,1.20,1.30,1.34,1.38},
respectively. Each subfigure shows S1(q⊥) only; S2(q⊥) is identical.
The physical reason for the reconstruction originates with the inter-
component density-density interaction term 2(η − ω)|ψ1|2|ψ2|2), and
is explained in detail in the text.

We observe that the stiffness along the z direction becomes
finite at an inverse temperature β ∼ 0.9. This is what one
would expect when a vortex lattice forms. However, the bottom
panels, which show the vortex density of component 1 at
β = 0.94, show no apparent signs of vortex ordering. Hence,
we have an unusual situation. There is a relatively large β

range where we have a finite z-directed helicity modulus of
the phase sum, but no apparent ordering of induced vortices. A
finite helicity modulus generally means that there are straight
vortex lines with very little transverse fluctuations threading
the entire system along the direction in question. In the U(1)
picture this corresponds to a regular vortex lattice. For an
SU(2) condensate, this is no longer the case. Large relative
amplitude fluctuations can occur since they have zero energy
cost in the ground state as the energy is no longer minimized
by a preferential value of |ψ1|2 − |ψ2|2. This results in many
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FIG. 5. (Color online) Illustration of the observed state with
coherence along the direction of the rotation axis without a regular
vortex lattice, seen only with SU(2) symmetry. The parameters used
are ω = 0.0, λ = 5, and f = 1/64. The top panel shows the helicity
modulus of the phase sum, ϒ+

μ . The two bottom panels show the
vortex densities n1(r⊥) at β = 0.94, where the z-directed modulus is
clearly finite. The bottom left and bottom right panels are taken from
simulations using 106 and 107 Monte Carlo sweeps, respectively. No
apparent vortex line structure is seen here, and by increasing the
number of Monte Carlo sweeps the variations of the vortex density
are smoothed out further. Note how the value of the average vortex
density seems to converge towards 1/64.

(nearly) degenerate vortex states between which the system
can fluctuate, thus greatly simplifying the effort of moving an
entire, almost straight, vortex line. We are left with a phase
where we have coherence along the z direction, but no regular
vortex lattice appears in thermal averages. Nearly straight
vortex lines will shift between a large number of degenerate, or
nearly degenerate, states at a time scale shorter than a typical
Monte Carlo run.

The bottom panels of Fig. 5 show some inhomogeneities of
the vortex densities, exemplifying that this is not an ordinary
vortex liquid with segments of vortex lines executing trans-
verse meanderings along their direction, which would yield
zero helicity modulus along the direction of the field-induced
vortices. Rather, what we have is a superposition of many lat-
ticelike states of nearly straight vortex lines, where the fluctua-
tions are largely collective excitations of entire nearly straight
lines, rather than fluctuations of smaller segments of lines.

We emphasize again that these collective excitations origi-
nate with large amplitude fluctuations due to the SU(2) softness
of the amplitudes of the components of the superfluid order
parameter, rather than with phase fluctuations. Increasing the
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FIG. 6. (Color online) Two examples of SU(2) vortex configura-
tions from a single simulation, for two different inverse temperatures.
The parameters η, f , and ω are fixed in each subfigure, at η = 1.0,
ω = 0.0, and f = 1/64. (a) shows β = 0.84, while (b) shows β =
1.50. Each subfigure shows vortex densities 〈ni(r⊥〉 in the left column,
amplitude densities 〈|ψi |2(r⊥〉 in the right column, and structure
factors (insets) of each component as indicated. This illustrates the
degeneracy of the vortex line lattice in the isotropic limit, as the
configurations evolve when β is varied. See Appendix D for more
details.

number of Monte Carlo sweeps by an order of magnitude
smooths these variations out (without noticably altering the
value of ϒ+

z ), as seen in the bottom right panel of Fig. 5. Note
how the average value of the vortex density seems to converge
towards 1/64. This is what we expect for a vortex lattice or
liquid in a [U(1) × U(1)]-symmetric model, as the density of
thermal vortices will average to zero, and f is the average flux
density per plaquette.

As the system is cooled further, the movements of large vor-
tex lines cease, and a regular vortex lattice appears. However,
degeneracy must still be present, as the exact pattern formed
by the lattice is distinctively different between simulations
(keeping all parameters equal). The lattice also has a tendency
to shift between configurations as the temperature is varied,
below the temperature of initial vortex-lattice formation. We
observe two distinct classes of vortex states, illustrated in
Fig. 6. The two are stripes [Fig. 6(a)] and honeycomb lattices
[Fig. 6(b)], both of which are seen in Ref. [6]. Note that these
vortex densities are taken from a single simulation, after the
lattice has formed. Within the accuracy of our simulations
the obtained states are not metastable. The evidence of this
is obtained by performing several independent runs from
different initial configurations. Again, we refer to Appendix D,
where Fig. 13 illustrates the degeneracy in the vortex line
lattices obtained in the isotropic limit in further detail.

V. EXPERIMENTAL CONSIDERATIONS

Hexagonal and square lattices have already been observed
in binary condensates of rubidium [7]. However, an SU(2)
condensate has not been realized experimentally. In this
section, we briefly outline under what circumstances an
observation of an SU(2) vortex state may be feasible.

In order to experimentally realize SU(2) conditions, one
requires a two-component BEC, where both intra- and inter-
component interactions are equal. As we have seen, the SU(2)
physics crucially depends on this, since even minor deviations
from this condition immediately yield U(1) × U(1) physics.
This corresponds to ω = 0 in our parametrization. Intra- and
intercomponent density-density interactions are given in terms
of scattering lengths. While tuning of these in an experiment is
possible with Feshbach resonances, it may still be a challenge
to tune two scattering lengths independently to be equal to a
third, to arrive at the SU(2) point. From what is known for
scattering lengths of real systems, it appears that a mixture
of two species of the same atom, but in different hyperfine
states, lends itself more readily to a realization of an SU(2)
condensate than a mixture of different atoms or a mixture of
different isotopes of the same atom. This is so, since in the
former case, the relevant scattering lengths typically a priori
are much more similar to each other than they are in more
heterogeneous mixtures.

One promising candidate therefore appears to be a conden-
sate of 87Rb prepared in the two hyperfine states |F = 1,mf =
1〉 ≡ |1〉 and |F = 2,mf = −1〉 ≡ |2〉. In this system, the
three relevant s-wave scattering lengths already have values
close to the point of interest, a11 = 100.4aB , a22 = 95.00aB ,
and a12 = 97.66aB , where aB is the Bohr radius [2,49].
Reference [11] reports on a magnetic Feshbach resonance at
a field of approximately 9.1 G, where control of a12 of the
order of 10aB is possible. Additionally, Ref. [50] reports on an
optical Feshbach resonance of the state |F = 1,mF = −1〉,
able to tune the intracomponent scattering length, using
two Raman lasers, with detuning parameters approximately
given by �1 = 2π × 75 MHz and �2 = 2π × 20 MHz. Here,
varying �2 tunes the value of the scattering length around
the Feshbach resonance, while varying �1 changes the width.
Hence, greater control of the resonance is possible with an
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optical Feshbach resonance compared to a magnetic one.
Presumably, there should exist optical Feshbach resonances
able to tune the scattering length of either the |1〉 or the |2〉
state, for instance the one reported to exist at 1007 G for
the |1〉 state [51]. This resonance should be far enough away
from the intercomponent resonance at 9.1 G to not cause any
interference.

This suggests one possible setup. Namely, prepare a two-
component condensate of 87Rb in the |1〉 and |2〉 states under
rotation, and tune a12 to a22 using a magnetic field. Then, tune
a11 to the same value using optical techniques, while taking
time-of-flight images of the condensate. The prediction is that
as the system is tuned through the optical Feshbach resonance,
one should observe a hexagonal composite vortex lattice
at subresonance frequencies, the nonunique vortex ordering
pattern, discussed above, at a frequency where all scattering
lengths are equal, close to the optical Feshbach resonance,
and finally the reappearance of a hexagonal vortex lattice at
frequencies above the frequency where all lengths are equal
(Fig. 6). The observation of a featureless rotating condensate
would be a direct manifestation of the loss of topological char-
acter of U(1) vortices in the SU(2)-symmetric case. It would
be interesting to study the dynamics of the vortex lattice in this
case with methods like those used in [52]. For other discussions
of SU(N) models in cold atoms see Refs. [53] and [54].

In actual experiments, a magnetic trap is used to confine
the condensate in a given lateral region. The effect of this
on thermal fluctuations in vortex matter has been studied in
detail in previous theoretical works for the one-component
case, without amplitude fluctuations [55,56]. The effect of the
trap is to yield a maximum overall condensate density at the
center of the trap, while depleting it towards the edge of the
trap. As a result, the lattice melts more easily near the edge of
the trap. As can be inferred from the work on single-component
melting [55,56], the results of the present paper, where no
inhomogeneity due to a magnetic trap has been accounted for,
is therefore most relevant to the region close to the center of
the trap.

VI. CONCLUSIONS

In this paper, we have investigated a two-component U(1) ×
U(1) and SU(2) Bose-Einstein condensate with density-
density interaction under rotation at finite temperature,
thereby extending previous works which calculated the zero-
temperature ground state numerically. In the U(1) × U(1)
case we report that thermal fluctuations can lead to a phase
transition between hexagonal and square vortex lattices with
increased temperature.

In the isotropic, SU(2), limit, we have observed an interme-
diate state of global phase coherence without an accompanying
vortex lattice in the thermally averaged measurements. In
addition, we observe a variety of dimerized vortex states,
such as dimerized stripes and honeycomblike lattices, which
exist for a wide range of temperature. These lattices could
be observed in binary Bose-Einstein condensates in two
separate hyperfine states, by precisely tuning the inter- and
intracomponent scattering lengths to the SU(2) point through
the use of Feshbach resonances.
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APPENDIX A: REWRITING THE GENERAL
HAMILTIONIAN

Here we present the details of rewriting Eq. (2) into Eq. (5),
which is more suited for our purposes. We repeat the starting
point here for convenience.

H =
∫

d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2mi

∣∣∣∣
(

∂μ − i
2π

�0
A′

μ

)
ψ ′

i

∣∣∣∣
2

+
N∑
i

α′
i |ψ ′

i |2 +
N∑

i,j=1

g′
ij |ψ ′

i |2|ψ ′
j |2

⎤
⎦ . (A1)

First, we scale the field variables and Ginzburg-Landau
parameters, to obtain some dimensionless quantities:

α′
i = α0αi, (A2)

g′
ij = g0gij , (A3)

|ψ ′
i | =

√
α0

g0
|ψi |. (A4)

This gives us the Hamiltonian,

H = α2
0

g0

∫
d3r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

2miα0

∣∣∣∣
(

∂μ − i
�0

2π
A′

μ

)
ψi

∣∣∣∣
2

+
N∑
i

αi |ψi |2 +
N∑

i,j=1

gij |ψi |2
∣∣ψj

∣∣2

⎤
⎦ , (A5)

which on the lattice reads

H = α2
0a

3

g0

∑
r

⎡
⎣ N∑

i=1

3∑
μ=1

�
2

miα0a2

× [|ψr,i |2 − |ψr+μ̂,i ||ψr,i | cos(θr+μ̂,i − θr,i − Aμ,r)]

+
N∑
i

αi |ψr,i |2 +
N∑

i,j=1

gij |ψr,i |2|ψr,j |2
⎤
⎦ , (A6)

where a is the lattice constant, and we have introduced

Aμ = 2π

�0
aA′

μ. (A7)
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Next, we specialize to the case N = 2, α1 = α2, g11 =
g22 ≡ g, and m1 = m2, and define a2 to be equal to �

2/mα0,
which sets our length scale. Note that it should not be
confused with the coherence length in the multicomponent
case without intercomponent density-density interaction. For
the definition of coherence lengths in the presence of multiple
components and intercomponent density-density interactions,
see Refs. [57] and [58]. The energy scale is defined as J0 as
follows:

J0 = α2
0a

3

g0
. (A8)

The coupling parameters η and ω used in this paper are defined
by comparing the potential term of Eq. (A6) to the form where
the soft constraints |ψ1|2 + |ψ2|2 = 1 and |ψ1|2 − |ψ2|2 = 0
are implemented. Thus, we have

V (�) = η(|ψ1|2 + |ψ2|2 − 1)2 + ω(|ψ1|2 − |ψ2|2)2, (A9)

with

η = −α

2
− 3

2
, (A10)

ω = g − g12

2
. (A11)

The lattice version of the Hamiltionian reads

H =
∑
r,μ̂
i

|ψr+μ̂,i ||ψr,i |[cos(θr+μ̂,i − θr,i − Aμ,r)]

+
∑

r

η(|ψ1|2 + |ψ2|2 − 1)2

+
∑

r

ω(|ψ1|2 − |ψ2|2)2. (A12)

This model will then have the following continuum form:

H =
∫

d3r

[
N∑
i

1

2

∣∣(∂μ − iAμ)ψi

∣∣2 + V (�)

]
. (A13)

APPENDIX B: FIRST-ORDER LATTICE MELTING
FOR N = 1 RECONSIDERED

As a benchmark on simulations with amplitude fluctuations
included, we verify the well-established first-order melting
transition on this model with only a single component
of the order-parameter field, in the presence of amplitude
fluctuations. The added feature of the computation is that the
complete amplitude-distribution function was utilized, through
the methods described in Sec. III. In this case, the term in the
potential proportional to ω in Eq. (6) is absent, and the potential
reduces to

V (�) = η(|�|2 − 1)2. (B1)

With amplitude fluctuations neglected, this model reduces to
the much studied uniformly frustrated 3D XY model, with well-
known results as mentioned in the Introduction of the paper.
The model features a first-order phase transition manifested
as a melting of the frustration-induced hexagonal lattice of

(a)

(b)

FIG. 7. (Color online) Specific heat (a) and helicity moduli (b)
for N = 1, f = 1/16, and η = 10. At β = 0.751 we see a clear
anomaly in the specific heat accompanied by a sharp jump in the
longitudinal helicity modulus. The transverse moduli remain zero
throughout the transition.

vortices [16,18–25]. The fluctuations responsible for driving
this transition are massless transverse phase fluctuations of the
order parameter.

units of 

un
it

s 
of

 

units of 

un
it

s 
of

 

FIG. 8. (Color online) Vortex density n(r⊥) and structure factor
S(q⊥) (inset) for N = 1, f = 1/16, and η = 10, at inverse tem-
peratures β = 0.749 (left) and β = 0.752 (right). This corresponds
to temperatures slightly higher and lower, respectively, than the
transition point β = 0.751.

013605-10



FLUCTUATION EFFECTS IN ROTATING BOSE-EINSTEIN . . . PHYSICAL REVIEW A 91, 013605 (2015)

(a)

(b)

FIG. 9. (Color online) Specific heat (a) and helicity moduli of
both components (b), for N = 2, f = 1/16, ω = 1.0, and η =
0.5. At β ≈ 0.53 we see a clear anomaly in the specific heat
accompanied by a sharp jump in the longitudinal helicity moduli
of both components. The transverse helicity moduli remain at zero
throughout the transition. The insets in (a) show the structure factors
at the high- and low-temperature sides of the transition, respectively,
β = 0.528 and β = 0.534. This clearly shows that the sharp anomaly
in the specific heat separates an isotropic phase from a phase with
hexagonal order.

The simulations were performed with η = 10. Figure 7(a)
shows the specific heat, which has strong signs of an anomaly
at β = 0.751. Figure 7(b) shows that the anomaly in the
specific heat is accompanied by a relatively sharp jump in
the helicity modulus in the z direction. It is also important
to note that the helicity moduli in the transverse directions
remain zero throughout the transition. This indicates that
the vortex lattice melts in a genuine phase transition, and
not as a result of thermal depinning from the underlying
numerical lattice. This is therefore a strong indication of
a first-order melting transition. Figure 8 shows the vortex
density and structure factor immediately before and after the
transition. The high-temperature side shows an incoherent
vortex liquid, characterized by a circular structure factor. The
low-temperature side shows that a clear hexagonal structure is
established as soon as the liquid freezes.

(a)

(b)

FIG. 10. (Color online) Specific heat (a) and helicity moduli of
both components (b), for N = 2, f = 1/16, ω = 1.0, and η = 2.0. At
β ≈ 1.11 we see a clear anomaly in the specific heat accompanied by
a sharp jump in the longitudinal helicity moduli of both components.
The transverse helicity moduli remain at zero throughout the
transition, except for the x-directed modulus which drops to a negative
value at a point well separated from the transition. The insets in (a)
show the structure factors at the high- and low-temperature sides of
the transition, respectively, β = 1.110 and β = 1.112. This clearly
shows that the sharp anomaly in the specific heat separates an isotropic
phase from a phase with square order.

We emphasize that these results are not unexpected. The
purpose of including them here is to demonstrate that the
method of including amplitude fluctuations into the computa-
tion of the vortex lattice melting reproduces the known result
for N = 1, previously obtained in the absence of amplitude
fluctuations [16,18–25], but generally believed to be correct
also when amplitude fluctuations are included.

APPENDIX C: FIRST-ORDER LATTICE MELTING
FOR N = 2

We next consider the melting transition for N = 2,
where the intercomponent density-density interaction 2(η −
ω)|ψ1|2|ψ2|2 term in the potential energy in Eq. (7) comes
into play. We consider the [U (1) × U (1)]-symmetric case, i.e.,
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FIG. 11. (Color online) Tableau illustrating the different density and vortex lattices in real space, as the parameter ω increases, i.e., as the
intercomponent density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square density and vortex lattice. The
parameters f , β, and η are fixed to f = 1/64, β = 1.5, and η = 5 while ω is increased from 0.0 to 6.0 horizontally. The six rows show, from top
to bottom the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of components
1 and 2. For ω = 0, which is the SU(2)-symmetric case, the system exhibits a dimerized phase in component 1, which is complementary to
a dimerized phase in component 2, shifted with respect to that of component 1 by an amount corresponding to the lattice constant of the
density lattice. The ground state, where the roles of components 1 and 2 are interswitched, is degenerate with the illustrated phase. Note that
an area of the system with a high vortex density always corresponds to an area with a low amplitude density. For the SU(2)-symmetric case,
U(1) vortices are not topological. When ω �= 0, the SU(2) symmetry is broken down to U(1) × U(1), and U(1) vortices are topological. The
reduction of the interaction 2(η − ω)|ψ1|2|ψ2|2 reduces the tendency towards formation of square density and vortex lattices, leading to an
eventual reconstruction to a standard hexagonal vortex lattice, and hence a hexagonal density lattice.

ω �= 0. Again, the full spectrum of amplitude fluctuations is
included, using the methods described in Sec. III.

For parameters (η,ω,f ) = (0.5,1.0,1/16) and (η,ω,f ) =
(2.0,1.0,1/16) the lattices are clearly hexagonal and square,

respectively. The hexagonal lattice obtained for η = 0.5 and
ω = 1.0 was found to have a melting transition at β ≈ 0.53.
Figure 9(a) shows the specific heat with a δ-function-like
anomaly at this temperature. Around this point, we have
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FIG. 12. (Color online) Tableau illustrating the different density and vortex lattices in real space, as the parameter ω increases, i.e., as the
intercomponent density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square density and vortex lattice. The
parameters f , β, and η are fixed to f = 1/64, β = 1.5, and η = 3 while ω is increased from 0.0 to 5 horizontally. The six rows show, from top
to bottom, the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of components
1 and 2.

used a closely spaced set of temperatures, in order to get
a proper resolution of the anomaly. Figure 9(b) shows the
helicity moduli of both components. Both of the z-directed
stiffnesses have a zero expectation value in the disordered
phase, indicating no phase coherence. In the ordered phase,
both of 〈ϒz,i〉 develop finite expectation values which means
that the system has superfluidic properties along the direction
of rotation. The two phases are divided by a sharp jump in
the longitudinal phase stiffness, a characteristic of a first-order

transition. The drop is even sharper than was obtained for the
N = 1 case, indicating an even larger latent heat associated
with the transition. The x- and y-directed stiffnesses remain
zero in the ordered state, which rules out any possibility of
numerical pinning effects [44,45]. Looking further at the insets
of Fig. 9(a), which show the structure factors in the disordered
and ordered phases, we see clear evidence of an incoherent
vortex liquid at β < 0.53 in the left inset, while the right inset
shows an ordered hexagonal vortex liquid lattice at β > 0.53.
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FIG. 13. (Color online) Tableau illustrating the different SU(2) density and vortex lattices in real space, as the parameter β increases. The
parameters f , η, and ω are fixed to f = 1/64, η = 1.0, and ω = 0.0 while β is increased from 0.9 to 1.3 horizontally. The six rows show,
from top to bottom, the amplitude densities of components 1 and 2, the vortex densities of components 1 and 2, and the structure factors of
components 1 and 2. Note how the vortex structures and the density structures always track, that is, an area of the system with a high vortex
density always corresponds to an area with a low amplitude density.

Turning to the square lattice, now the parameters in question
are η = 2.0 and ω = 1.0. The transition point is located at
β ≈ 1.11. Figure 10(a) shows the specific heat. Again, an
anomaly is located at the transition point. The helicity moduli,
shown in Fig. 10(b), also show first-order behavior. Both z-
directed components are zero on the high-temperature side,
and develop a finite value through a sharp jump at the low-
temperature side. It is important to also consider the transverse

components. Both 〈ϒx,i〉 and 〈ϒy,i〉 are zero throughout the
area of interest. Here we note that the x-directed modulus drops
to a tiny negative value at a point after the transition. This is
a nonphysical effect, most likely caused by a metastable state.
We believe this is simply a numerical artifact, as we used a
lower amount of Monte Carlo time away from the transition.
Turning our attention to the structure factors, shown in the
insets of Fig. 10(b), we again see the isotropic vortex liquid in
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the disordered side of the transition; the ordered side shows a
square fourfold symmetry.

Thus, both the square and the hexagonal lattices undergo
first-order melting transitions from their respective ordered
phases, into an isotropic vortex line liquid.

APPENDIX D: INTERCOMPONENT INTERACTION, AND
ITS EFFECT ON DENSITY AND VORTEX LATTICES

In this Appendix, we include more detailed figures of the
vortex and density structures in real and reciprocal space, as
the intercomponent interaction 2(η − ω)|ψ1|2|ψ2|2 is varied,
to supplement the points made in Secs. IV A and IV C.

Figures 11 and 12 illustrate how the vortex lattice and
the component densities reconstruct as the intercomponent
density-density interaction (η − ω)|ψ1|2|ψ2|2 changes. We do
this by fixing η at 5.0 and 3.0, respectively, and tuning ω. The
inverse temperature β is also fixed in both tableaus. Common
in both figures is that the vortices first form two interlaced
square lattices for sufficiently small ω, and, by extension, large
intercomponent coupling. Then the lattices reconstruct into a
hexagonal structure. Note that the hexagonal lattices of the two
components start out slightly shifted with respect to each other,
but become completely cocentered when ω > η. This final
state corresponds to an attractive intercomponent coupling.

The behavior of the amplitude densities is explained in
Sec. IV A, and we can compare the reasoning to the top two
rows of Figs. 11 and 12. First of all, the presence of a vortex
locally suppresses the amplitude, which again may affect
the immediate neighborhood, depending on the value of the
intercomponent coupling. For strong repulsive couplings a

suppression of the amplitude of one color in an area leads to an
enhancement of the amplitude of the other color in the same
area. The absence of vortices in the neighborhood then leads
to the opposite effect. This causes staggering of the amplitude
densities and formation of distinct vortex sublattices.
Considering carefully the range of variation in the amplitudes,
it is seen that there are rather large gradients for the square
structures. When the coupling is only weakly repulsive or even
attractive there is a much less dramatic effect. The variations
in the amplitudes are much smaller; there is little to no
staggering.

The first column of Figs. 11 and 12 is in a different
class from the rest. Here ω = 0, and we are in the SU(2)
regime. Figure 13 further illustrates the wide variety of ground
states obtainable here. This tableau, in contrast to the two
previous ones, has a fixed η and ω, while we vary the inverse
temperature β from column to column. These pictures are
all taken from a single simulation, evolved through Monte
Carlo sampling from a single randomized initial state as
β is increased. The vortex lattice initially forms at around
β = 0.7 and evolves continuously. It continues to evolve even
at the lowest temperatures (β = 1.5) used in the simulation.
This pattern is common in all simulations done with similar
parameter sets.

The common features in the SU(2) lattices are clearly seen
in Fig. 13. The vortices tend to form dimers, which usually
have some global alignment. The alignment is evident in the
Bragg peaks, as we in most cases have two opposing peaks
of higher intensity than the rest. The vortex dimer complexes
always arrange themselves in a hexagonal structure, which is
also seen in the structure factors.
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Abstract
Weconsider a two-component interacting bosonic condensate with dominating intra-species
repulsive density–density interactions.We study the phase diagramof the system atfinite temperature
with rotation, using large-scaleMonte Carlo simulations of a two-componentGinzburg–Landau
model of the system. In the presence of rotation, the system features a competition between long-
range vortex–vortex interactions and short-range density–density interactions. This leads to a
rotation-driven ‘mixing’ phase transition in a spatially inhomogeneous state with a broken ( )U 1
symmetry. Thermal fluctuations in this state lead to nematic two-component sheets of vortex liquids.
At sufficiently strong inter-component interaction, we find that the superfluid and 2 phase
transitions split. This results in the formation of an intermediate state which breaks only 2 symmetry.
It represents two phase separated normal fluidswith a difference in their densities.

1. Introduction

Multi-component phase-coherent condensates, such asmulti-component superconductors and Bose–Einstein
condensates (BECs), have proven to be a rich ground for exploring quantumphenomena in condensedmatter
physics. In particular, BECs serve as a highly useful syntheticmodel systems for a wide variety of real condensed
matter systems, due to their tunable interactions usingmagnetic and optical Feshbach-resonances. By creating
mixtures of the same boson in different hyperfine states, one effectively createsmulticomponent condensates
[1–4]. Furthermore, by using crossed lasers, onemay set up latticemodel systemswith a vast combinations of
intersite hoppingmatrix elements, as well as intrasite interactions, both intra- and interspecies [5–10]. This
means that thesemodel systems, apart frombeing interesting in their own right, emulate various aspects of a
plethora of condensedmatter systems of great current interest, such asmulticomponent superconductors,
Mott-insulators, and even topologically nontrivial band insulators. The latter follows from the recent realization
of synthetic spin-orbit couplings in such condensates [11–13]. Of particular interest is the physics of these
systems in the strong coupling regime.

BECswith two components of the order parameter (two species of particles) represent afirst step away from
ordinary single-component condensates. This extension opens up awhole vista of physics which has no
counterpart compared to single-component condensates, due to thewide variety of interspecies couplings that
may be generated. Thus, these systems display physics which is beyondwhat is ordinarily seen in condensed
matter systems, butmay nevertheless serve as usefulmodel systems for future artificially engineered condensed
matter systems. As such, it is of interest to chart their physical properties to themaximumextent over awide
range of parameters.

The parameter rangewhere inter-component density–density interactions exceed intra-component
density–density interactions signals the onset of immiscibility, or phase separation, of the two components.
Numerical works solving theGross–Pitaevskii ground-state equations have also found interesting vortex lattices
in this regime [14–16, 19–24]. The effect of the repulsive inter-component density–density interactions
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overpowering the intra-component interactions causes the condensate to form intertwined sheets of vortices
when the condensate is subject to rotation [25]. The condition for immiscibility is readily realized
experimentally, usingmagnetic and optical Feschbach resonances [16, 26]. Several works have also focused on
the critical properties of the rotation-freemodel using RG,mean-field and quantumMonteCarlo
simulations [17, 18].

In the present paper, we focus on the regime of density–density interactionswhere the inter-component
interactions are larger than the intra-component interactions. This regime is qualitatively different from the case
inwhich the intra-component interactions dominate, in that immiscibility (phase-separation) of the condensate
components sets in. This leads to density-modulated non-uniform ground states. Previousworks have studied
the effect of an inter-component density–density interaction on the rotation-induced non-homogeneous
ground states. Theseworksweremostly limited to two spatial dimensions solving theGross–Pitaevskii ground-
state equations [14–16, 19–25], although certain aspects of the three-dimensional case were also studied at the
mean-field level [15, 24]. Here, we consider the case of three dimensions, taking fully into account the thermal
density- and phase-fluctuation of the condensate ordering fields.

2.Definitions

2.1.Model
Weconsider a general Ginzburg–Landau (GL)model of anN-component BECs, which in the thermodynamic
limit is defined as

 ò y= b- ( )e , 1
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is theHamiltonian. Thismodel is a description of the condensate while the particle content of the systemoutside
the condensate is not captured by equation (2). Here, the fieldAμ formally appears as a non-fluctuating gauge-
field and parametrizes the angular velocity of the systemunder rotation. The condensate fields yi are
dimensionful complexfields which are allowed tofluctuate both in phase and amplitude. Importantly, the
phases are definedwith compact support p q p- < £ ,i leading to the appearance of topological defects in the
formof vortices (two dimensions) and vortex loops (three dimensions) in the condensate. Themodel is thus
capable of capturing all thermalfluctuations of the condensate, including vortex-fluctuations destroying long-
range phase coherence in the condensate.Moreover, i and j are indices running from1 toN denoting the
component of the order parameter (a ‘color’ index). The parameters ai and gij are chemical potentials and
interaction parameters of themodel, respectively. F0 is the coupling constant to the rotation-induced vector
potential, andmi is the particlemass of species i. Formixtures consisting of different atoms or different isotopes
of one atom, themasses will depend on the index i, while formixtures consisting of same atoms in different
hyperfine states, themasses are equal among the components i. The inter- and intra-component coupling
parameters gij are related to real inter- and intra-component scattering lengths aij, in the followingway
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Here, = +( )m m m m mij i j i j is the reducedmass. In this work, we focus on homonuclear condensates with
several components in different hyperfine states, i.e. = "m m i.i Note that when

l= º > = ºg g g g g g ,12 21 11 22 i.e. l > 1, there is a strong tendency in the system to phase separate, leading to
two immiscible quantumfluids. For a homonuclear binarymixture, we have =m m 2.ij i Then, it suffices that

>a aij ii for the inter-component density–density interactions to dominate the intra-component density–
density interactions.

It is convenient to rewrite the potential (repeated indices are summed over) as follows [27]

a y y yº + ( )V g , 5i i ij i j
2 2 2

by introducing interaction parameters h w, , such that h w= +g , and l h w= -g , i.e. h l= +( )g 1 2,
w l= -( )g 1 2.Here,λ denotes the ratio between the inter- and intra-component interactions. Then,
equation (5) takes the form (up to an additive constant)

2
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For l > 1, w < 0,with the proviso that h w h w+ = - >∣ ∣ 0 for stability. Furthermore, wewill assume that
a a= ,1 2 a a¹1 2 acts as an externalfield conjugate to the pseudo-magnetization of the system.

We discretize themodel on a cubic lattice with sides L by defining the order parameter field on a discrete set
of coordinates y y( )r ,i ir, Î + + = ¼( ˆ ˆ ˆ∣ )i j k i j k Lr x y z , , 1, , .The covariant derivative is replaced by a
forward difference
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Here, the lattice version of the non-fluctuating gauge field is parametrized in Landau gauge, p=m ( )A fx0, 2 , 0 ,r,

where f is the number of vortices per plaquette, orfilling fraction. The lattice spacing, a, isfixed to be smaller than
the characteristic length scale of the variations of the order parameter, andm Îˆ (ˆ ˆ ˆ)x y z, , is a unit vector.

Thus, the lattice version of theHamiltonianwe consider is given by

å

å

å

å

y y q q

a h y

h y y

w y y

=- - -

+ +

+ + -

+ -

m
m m m+ +

( )
( )

( )

( )

( )

ˆ
ˆ ˆH Acos

2

1

. 8

i

i i i i

i
i i

r
r r r r r

r
r

r
r r

r
r r

,
, , , , ,

,
,

2

,1
2

,2
2 2

,1
2

,2
2 2

Here, we havewritten the order parameter fields as real amplitudes and phases, y y= qe .i i
i

r r, ,
ir, In addition,

we have defined an energy scale, a=J a g ,0 0
2 3

0
3 where a0 and g0 are the parameters of theGL theory atT= 0.

Throughout, wefix h = 5.0 and a h a h+ = + =2 2 0.1 2 This guarantees a non-zero ground state condensate
density for all values ofω.

2.2. Ground state symmetry
Equation (8) defines two superfluids coupled by density–density interactions.When there is no phase
separation, we have a ( )U 1 × ( )U 1 symmetry broken in the ground state.When the inter-component
interaction is equal to the intra-component interaction the systembreaks SU(2) symmetry.Here, we are
interested in the phase separated case. In this case, the systembreaks an additional 2 symmetry, corresponding
to interchanging y y« .1 2 That is, when w > 0, y y=∣ ∣ ∣ ∣1

2
2

2 is favored. This represents a 2 -symmetric
state. On the other hand, when w < 0, y y¹∣ ∣ ∣ ∣1

2
2

2 is favored, such that y y-∣ ∣ ∣ ∣1
2

2
2 may acquire a nonzero

expectation value, with equal probabilities that the expectation value is either positive or negative. This
corresponds to breaking an Ising-like 2 symmetry. Thus, the ground state breaks a composite ´( )U Z1 2

symmetry.

2.3.Observables
The equilibriumphases of themodel are characterized by several order parameters. To identify the Ising-like,
phase separated order of the systemwe define

y yD = - ( ), 91
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Afinite value ofΔ signals relative density depletion in either of the condensates. In addition to 2 order, it is
important tomonitor the ( )U 1 ordering of the system. The helicitymodulusmeasures phase coherence along a
given direction of the system. It is defined as
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Here, q¢[ ]F is the free energy with an infinitesimal phase twist, dm, applied along theμ-direction, i.e., wemake
the replacement
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dq q q ¢ = - · ( )r 12i i ir r r, , ,

in F.
We also identify the nature of the phases by computing thermal averages of real-space configurations of

densities yá ñ^∣ ( )∣ri
2 and vortices á ñ^∣ ( )∣n ri

2 in the system. These are computed by averaging the quantity along
the z-direction of the system,with subsequent thermal averaging. That is
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The vorticity, ni r, is calculated by traversing a plaquette with surface normal in the z-direction, adding the phase
difference q q- -m m+ ˆ Ai ir r r, , , on each link. If this plaquette sum turns out to have a value outside the primary
interval, p p-( ], , p p-( )n n2 2 is added to the sum,which inserts a vortex of charge+ -( )n n on the plaquette.

To further characterize vortex structures, we examine the structure factor of the vortices, defined as
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This is simply the Fourier-transform of the z-averaged vorticity. To improve the resolution of the interesting
q-vectors, we remove the =q̂ 0 point from thefigures.We also calculate
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in order tomonitor the development of peaks in the structure factor across transition points.
We also compute the specific heat capacity

b
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H H . 17V
3
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2

as ameans of precisely locating the various transition points.

2.4.Details of theMonte-Carlo simulations
Weconsider themodel on a lattice of size ´ ´L L L ,x y z using theMonte-Carlo algorithm, with a simple
restricted update scheme of each physical variable, andMetropolis–Hastings [28, 29] tests for acceptance. Here,
Li is the linear extent of the system in theCartesian direction Î ( )i x y z, , . In all our simulation, we have used
cubic systems = = =L L L L,x y z with Î { }L 32, 64, 96 .At each inverse temperature, 106Monte-Carlo steps
are typically used, while 105 additional sweeps are used for equilibration. EachMonte-Carlo step consists of an
attempt to update each amplitude and phase separately in succession, at each lattice site. To improve acceptance
rates, we only allow each update to change a variable within a limited interval around the previous value, the size
of which is chosen by approximatelymaximizing acceptance rates andminimizing autocorrelations. The
Mersenne–Twister algorithm is used to generate the pseudo-randomnumbers needed [30]. To ensure that the
state is properly equilibrated, time series of the internal energymeasured during equilibration are examined for
convergence. To avoidmetastable states, wemake sure that several simulations with identical parameters and
different initial seeds of the randomnumber generator anneals to the same state.Measurements are post-
processedwithmultiple histogram reweighting [31]. Error estimates are determined by the jackknife
method [32].

3.Mixing and superfluid phase transitions in the presence of rotation

In this sectionwe consider the effect of imposing afinite rotation on the condensate. Ourmain results are
presented for a system size of L= 64 and =f 1 32, butwe have considered system sizes Î { }L 32, 64, 96 .

Introducing afinite amount of (rotation-induced) vortices in the ground state significantly alters the simple
arguments regarding the expected ground state symmetry presented above. The effect of the vortices is to
suppress the parameter regimewhere a broken 2 symmetry is found,D ¹ 0.Recall that for f= 0, the ground
state the broken 2 symmetry will reduce the condensate to a single component condensate with a single broken

( )U 1 symmetry in the ground state. Afinite amount of vortices alters this. Vortices interact via long range
current–current interactions. It is energetically favorable tomaximize the distance between vortices, subject to

4
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the constraint that a specific number of themhas to be containedwithin a given area perpendicular to the
direction of rotation. This effect leads to a uniformdistribution ofminima (equivalentlymaxima) in the
condensate densities. On the other hand, density suppression by vortices in one component in general allows the
densities in the second component to nucleate. The short-range repulsive inter-component density–density
interaction h w y y y y- +( )(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
2

2
2

2
1

2 (which exceeds the intra-component density–density interaction
h w y y y y+ +( )(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
1

2
2

2
2

2 for w < 0), tends to produce regionswhere the density one component is
largewhile the other is small, and vice versa. Below a critical value of w w- = - » + 0.6,c we donot see any
onset ofD ¹ 0 at any value ofβ as the system is cooled froma uniform state. That is, the interface tension
between the phases is sufficiently low and the overall free energy, which includes long range inter vortex
interaction, isminimized by the state withD = 0.

For the subsequent discussion, it helps to consider a schematic phase diagramof the systemwith ¹f 0,
whichwe have obtained through large-scaleMonte-Carlo simulations. The phase diagram is shown infigure 1.
Region I denotes the simple translationally invariant high-temperature 2 - and ( )U 1 × ( )U 1 -symmetric two-
component phase with equal densities of both condensate components. Region II shows the 2 -symmetric
striped phase. Region III is a regionwith broken 2 -symmetry, with one high-density condensate component in
a uniformhexagonal vortex lattice phase, and one low-density component in a uniform vortex liquid phase. The
gray region separating Region II and III represents upper and lower bounds of the transition betweenRegion II
and III. Region IV is a regionwith broken 2 -symmetry, butwith the two condensates both in a vortex-liquid
phase. Thus, the phase transition separating Region I fromRegion II is a phase-transition line separating a two-
component isotropic vortex liquid from a two-component striped (nematic) vortex liquid. The line separating
Region I fromRegion IV is onewhere a 2 -symmetry is broken, and the line separating Region II fromRegion
IV is onewhere a translational symmetry is broken and the system acquires non-zero helicitymodulus

3.1. Transition fromRegion I to Region II
Wefirst consider the thermally driven transition from the high-temperature symmetric two-component vortex
liquid phase, Region I, to the low-temperature two-component striped (nematic) phase, Region II, forfixed
negativeω, but where w w<∣ ∣ ∣ ∣,c i.e. to the left of the splitting point where Region IV opens up.

Infigure 2we show the specific heat cV, helicitymoduli in the z-direction ¡z i, as the inverse temperatureβ is
varied, for =f 1 32 andω=−0.50. This corresponds to a value of w- to the left of the splitting point where
Region IV opens up (see figure 1). The longitudinal helicitymoduli ¡z i, of both components develop a finite
expectation value. The onset of this finite value is accompanied by an anomaly in the specific heat.

We note the sharp, δ-function anomaly in the specific heat and the discontinuous behavior of the helicity
moduli in both components. These features are all straightforwardly interpreted as signals of afirst-order phase
transition. This is furthermore borne out by performing a computation of the histogramof the free energy

Figure 1.The phase diagramof the two-component Bose–Einstein condensate atfinite rotation, ¹f 0, h = 5, and w < 0.Negative
ωmay lead to the breaking of the 2 -symmetry in the problem, in addition to the usual breaking of the obvious ( )U 1 × ( )U 1
-symmetry. Region I is a 2 - as well as ( )U 1 × ( )U 1 -symmetric two-component vortex-liquid phase. Region II is a 2 -symmetric
striped (nematic)phase consisting of a two-component vortex liquidwith broken translational symmetry in a direction perpendicular
to the stripes, but not in the direction parallel to the stripes. Region III is a phase with broken 2 -symmetry, andwith broken
translational symmetry in one condensate component, but not the other. Region IV is similar to Region III, except that no
translational symmetry is broken in either condensate component. The gray region represents upper and lower bounds of the
transition line betweenRegion II and III. Details are explained in themain body of the paper.
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versus internal energy of the system at precisely at the transition, see figure 3. This shows a double-dip structure
with a peak in between, the standard hallmark of two degenerate coexisting states separated by a surfacewhose
energy is given by the height of the peak between theminima. This surface energy clearly scales upwith system
size (more precisely it scales with the cross-sectional area of the system), while the difference between the
energies separating the two degenerate states approaches afinite value as the system size increases. The
histograms develop into two separate δ-function peaks as the system size increases, while the difference in the
internal energy between the two degenerate states of equal probability (equivalently of equal free energy) is the
latent heat of the system. The latter clearly approaches a finite value per degree of freedomas the system size
increases, demonstrating thefirst-order character of the transition.

To further characterize the transition I II, figure 4, shows the 2 order parameterΔ and the structure
functions Î^( ) ( )S iq , 1, 2i in a narrow range around the transition point. From the top panel, it is seen that
D = 0 for allβ considered.Moreover, we see that asβ is increased, themaximumvalue of the structure
function, corresponding to the developing Bragg peaks in the low temperature phase are significantly increased
at the transition temperature. Themaximum ismeasured by averaging themaximumof the structure function
at eachmeasurement, regardless of location, hence the actual valuemay differ fromwhat is seen in the bottom
panel offigure 4. The onset of the lattermarks the transition from a uniform two-component vortex liquid to a
two-component nematic vortex liquid, a striped phase. Themechanism for producing the striped phase is
described above. In the striped phase, it is difficult to equilibrate the system at each new temperature stepwith
only localMC-updates, as is evident from the noise in the structure functions seen on the low temperature side

Figure 2. Specific heat, cV, and helicitymoduli along the z-axis ,¡ ,z i, with =f 1 32 and w = -0.50, i.e as the system transitions from
Region I toRegion II infigure 1.

Figure 3.Histogramsof the probability distributionof the internal energyper site,U L ,3 at the transitionpoint w b=- »0.5, 0.9995,
separatingRegion I fromRegion II infigure 1, for = { }L 64, 96 .Multi-histogram reweightingwasused toobtainhistogramswith
approximately equal peak heights.

6
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of the top panel offigure 4. This noise wouldmost likely be improved by using different approaches, for instance
cluster algorithms.However, the noise does not alter our conclusions regarding the transition, or the nature of
the striped phase. Note that in the thermodynamic limit, isolated vortex sheets can be expected to be in the state
of one-dimensional (1D) liquid at anyfinite temperature in analogywith the absence of crystalline order in 1D
systems.

We thus conclude that the transition fromRegion I to Region II is afirst order phase-transition involving the
breaking of a composite ( )U 1 × ( )U 1 symmetry, from an isotropic two-component vortex liquid in Region I to
a two-component nematic phase of intercalated lattices of stripes of 1D vortex liquids in Region II.We next go
on to consider in somemore detail the structure functions, primarily to gainmore insight into the character of
the striped phase of Region II.

The four bottompanels offigure 4 show the structure functions Î^( ) ( )S iq , 1, 2i at two values ofβ,
b = 0.990 and b = 1.010.Atβ= 0.990, both structure functions show ring-like structures characteristic of an
isotropic liquid.Notice also that the intensity of the rings are equal, which is a consequence of the fact thatΔ= 0.
Atβ= 1.010, both structure functions have developed Bragg peaks in one direction bot no Bragg peaks in the
corresponding perpendicular direction. This is indicative of a striped phase.

Thismay be further corroborated by correlating the structure functionswith real-space vortex structures for
various values ofβ. This is shown infigure 5.

One aspect of the structure functions shown in the two bottom rows offigure 5, is particularly important.
Consider first the case b = 0.900,well within Region 1 for w w< .c This is shown in the leftmost column of
figure 5. The real-space vortex configurations in both components are disordered.Moreover, Î^( ) ( )S iq , 1, 2i

both components feature ring-structures characteristic of an isotropic liquid phase. The value of ∣ ∣q at which the
rings appear is ameasure of the average inverse separation between the vortices in the isotropic liquids. The
intensities of both structure functions is the same. Consider next the caseβ= 0.995, shown in themiddle

Figure 4. 2 order parameterΔ and vortex structure functions Î^( ) ( )S iq , 1, 2i in the vicinity of the transition fromRegion I to
Region II,figure 1, with w= = -f 1 32, 0.50.The top panel showsΔ as a function ofβ, as well asmaxima of the structure functions

^( )( )S qmax .i The four bottompanels show the structure functions ^( )S q1 and ^( )S q2 for the two values b = 0.990 and b = 1.010.
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Figure 5.Tableaux showing detailed real space and reciprocal space pictures of the transition fromRegion I toRegion II. The inverse
temperature is varied between each column, b Î { }0.900, 0.995, 1.100 . Each row shows averaged vortex densities of each
component, á ñ^( )n r ,i averaged amplitude densities of each component, yá ñ^∣ ( )∣r ,i and vortex structure functions of each
component, ^( )S q .i The leftmost column corresponds to an inverse temperaturewell within Region I, themiddle column is at an
inverse temperature just below the transition intoRegion II, while the rightmost column iswell within Region II.

8
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columnoffigure 5. From the real-space pictures, one discerns a tendency towards stripe-formation. This is
reflected in Î^( ) ( )S iq , 1, 2 ,i where the ring-like structures now instead are anisotropic, developing peaks in
the direction perpendicular to the direction of the incipient stripes. At even lower temperatures b = 1.100,well
within Region II where stripes are fully developed, the tendency towards anisotropies in Î^( ) ( )S iq , 1, 2i is
evenmore obvious. This is shown in the rightmost columnoffigure 5. In this case, Bragg-peaks have fully
developed in the directions perpendicular to the stripes. There are, however, no Bragg peaks in the direction
parallel to the stripes. If the stripes were perfectly straight, therewould be twoweakBragg peaks in these
directions. This would be the 1D analog of the ring-like liquid structures of the isotropic liquid. The value of ∣ ∣q
at which this single weak peak occurs corresponds to the inverse average separation between vortices within the
stripes. The reason they are not observed in our calculations, is due to the slight fluctuations in the shape of the
stripes, whichwash the Bragg peaks out.

We thus conclude that Region II is a striped phasewhere the stripes form 1Dvortex liquids. Vortices in
quasi-1D systems have finite energy and cannot form a 1D solid at anyfinite temperature. This is consistent with
the structure factor we observe. On the other hand, the interaction between stripesmay not be negligible, so the
details of the phase diagram inRegion II warrant further investigation. A notable feature of this state is the finite
helicitymodulus in z-direction, even if the structure factors show absence of vortex orderingwithin stripes. This
highly unusual situation originates with the positive interface energy between the two condensates. That is,
consider a stripe-liquid in x-direction. A vortex line in the z-direction is free to execute transversemeanderings
in the x-direction. A superflow in the z-directionwould produce a y-component of theMagnus-force on the x-
components of thefluctuating vortex lines.However, vortex segments are restrained frommoving in y-direction
due to the stripe interface tension. This results in the observed finite helicitymodulus in z-direction. Similar
results are found for a number of otherω-valueswe have considered, for4 w- < 0.6.

3.2. Transition fromRegion I to Region III, via Region IV
Increasing w- further, such that the inter-species density–density interaction increases, eventually favors a
different pattern of phase-separation of the two components, despite the effect of long-range current–current
interactions between rotation-induced vortices promoting uniformdensity distributions. This leads to a broken
2 -symmetry. The condensate component with a globally suppressed density will therefore be in a vortex-liquid
phasewhile the condensate component with globally enhanced density will be in a vortex lattice phase. Thus, the
broken symmetries of the ordered phase are ( )U 1 × 2 , and the breaking of these symmetries are split into two
separate transitions. The splitting occurs because the ( )U 1 -sector directly couples to the rotation, while the 2

-sector does not. The phase-transition in the stiff ( )U 1 -sector, which is a vortex-latticemelting, is therefore
separated from the 2 -transition by an amountwhich depends on f.

This is illustrated in figure 6, showingΔ, specific heatCV, and ¡ ¡,z z,1 ,2 as functions ofβ. The 2 order
parameterΔhas an onset at b ,

2
at which the specific heat has an anomaly. This transition is a transitionwhere

an Ising like order parameter is broken, and can be continuous. There is no onset of ¡ ,z,2 showing that
component 2 remains in a vortex liquid phase. Component 1 forms a vortex solid at lower temperature, as
evidenced by the onset of ¡ .z,1 This happens at a b ( )U 1 which is separated from b ,

2
as explained above. The

freezing of component one is effectively a freezing transition of a single component, and is therefore expected to
be afirst-order transition. Accompanying this onewould expect to see a second, smaller anomaly in the specific
heat, at a lower temperature. This is not observed in the simulations performed, as the small anomaly is
completely overshadowed by the large specific heat peak from the 2 transition.

Figure 7 shows the structure functions ^( )S q1 and ^( )S q2 atω=−4.0 at three different values ofβ, namely
b = ( )0.184, 0.190, 0.195 .These values correspond to Regions I, IV, and III infigure 1, respectively. Here again,
we see the freezing of one component across the transition, while the other component remains in the liquid
phase. The additional informationwe get out of these panels is that one component remains an isotropic vortex
liquid, while the other component freezes into a hexagonal vortex liquid. This sets the low-temperature Region
III (see figure 1) atω=−4.0 drastically apart from the low-temperature Region II (see figure 1) atω=−0.50.
The latter features a low-temperature two-component nematic vortex liquid phase with broken rotational
invariance, the former case features a low-temperaturemixed isotropic vortex liquid/hexagonal vortex lattice
phase.

Taking figure 1 and figure 6 at face value, suggests that two separate transitions exist. However, one cannot
entirely rule outfinite-size artifacts associatedwith a single transitionwhere the onset of ¡z,1would coincide
with the onset ofΔ infigure 6. By examining the structure factors, examples of which are shown in themiddle
panel offigure 7 it is evident that a relatively large intermediate regime corresponding to Region IV is observed.
From the sharp onset ofΔ, accompanied by the specific heat peak, we determine the transition temperature for

4
We also observedmuch smaller but finite helicitymodulus in the direction perpendicular to stripes, whichwe interpret as a consequence of

weak standard geometric pinning of domainwalls.
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the 2 symmetry breaking to be b = ( )0.1850 5 .
2

The appearance of six sharply definedBragg peaks in the
structure factor, appear at a lower temperature b = ( )0.195 1 .The onset of ¡z,1prior to the appearence of the
Bragg peaksmay be afinite size effect. That being said, simulating larger system sizesmay also alter the details of
the transition temperatures.

On general grounds onemay expect that phase IV should exist. The simulations unambiguously identify a
state where one component has a vortex lattice while the other componentwith a suppressed density is in a state
of tensionless vortexmatter. Since a vortex liquid can formdue to positional disorder of tension-full vortex lines,

Figure 6.The phase transitions betweenRegion I andRegion IV, and betweenRegion IV andRegion III, for w= = -f 1 32, 4.0,
and L= 64.Note the separation between the onset ofΔ and ¡ .z i, The onset ofΔ signals the breaking of a 2 -symmetry, alongwith the
associated anomaly in specific heatCV. Thismarks the transition fromRegion I to Region IV infigure 1. In Region IV, we haveD ¹ 0,
while both components remain in isotropic vortex liquid states. In passing fromRegion IV toRegion III in figure 1, the onset of one of
the helicitymoduli, ¡z,1 say, signals the freezing of the vortex liquid in the corresponding component, while the absence of an onset of
the helicitymodulus, ¡z,2 say, in the other component shows that this component remains in a vortex liquid phase. The onset of ¡z,1

signals the breaking of a ( )U 1 -symmetry associatedwith vortex-liquid freezing.

Figure 7.The phase transitions of the system for w= = -f 1 32, 4.0. Structure functions ^( )S q1 and ^( )S q2 at three different
values ofβ, namely b = ( )0.184, 0.190, 0.195 , corresponding to Regions I, IV, and III infigure 1, respectively.
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it can be expected that the tension-full vortex liquid in the dominant component still suppresses the density of
subdominant component leading to the appearance of the state IV. Alternatively, suppose that one starts out
from a low-temperature phase-separated statewhere one components is in a vortex lattice state and the other
component effectively has amuch lower density. The vortex lattice of the dominant componentmaymelt
without affecting the density in this component, since vortex-latticemelting is driven by phase-fluctuations of
the superfluid order parameter, not density fluctuations. Further investigation of this part of the phase diagram
iswarranted.

For amore detailed overview of the transition, figure 8 shows the evolution of á ñ^( )n r ,i yá ñ^∣ ( )∣r ,i and

^( )S qi across the three Regions, I, IV, and III. If one follows the evolution of the vortex densities in each
component, it is seen that the componentwhich acquires a low stiffness in Region IV and III is virtually
unchanged, i.e. it remains in a completely uniform state. The other component, on the other hand, evolves from
a uniform state in Region I, through being close to freezing into a hexagonal lattice in Region IV, and finally into
a hexagonal structure in Region III. The amplitude densities corroborate this picture. In Region I they are on
average equal and uniform,while in Region IV the difference in stiffness is clearly seen.Here some
inhomogeneities arise in the stiff component as the vortices are close to entering a hexagonal phase, which is also
reflected in the soft component simply because of the local intercomponent repulsion. In Region III, the

Figure 8.Tableaux showing detailed real space pictures of the transition fromRegion I toRegion III, via Region IV. The inverse
temperature is varied between each column, b Î { }0.184, 0.190, 0.195 , and w = -4. Each row shows, from top to bottom, averaged
vortex densities of each component, á ñ^( )n r ,i and averaged amplitude densities of each component, yá ñ^∣ ( )∣r .i Note the vortex-
ordering in one of the components, and the lack of vortex-ordering in the other component, as the system transitions from the
symmetric phase Region I (b = 0.184) to the low-temperature phase Region III (b = 0.195). Note also the disparity in density-
amplitudes in the two components in the intermediate regimeRegion IV (b = 0.190), due to the 2 -symmetry breaking.
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amplitude density of the stiff component is high and uniformwith small dips corresponding to each vortex. The
soft component is low anduniformwith small peaks, again due to intercomponent interactions.

3.3. Transition fromRegion II to Region III
Finally, we consider the transition fromRegion II to Region III. In Region II, we haveD = 0,while in Region
III,D ¹ 0.Therefore the Regions II and III are separated by a 2 -symmetry breaking. Stripe-forming systems
in general have complicated structural transitions.Wefind an intermediate regimewhere the lattice of stripes
has disordered, butwhere the hexagonal lattice/isotropic liquid-mixture has not yet fully developed. This results
inmultiplemetastable, but robust coexisting phases of vortices in components 1 and 2 residing in different parts
of the condensate. These two coexisting phases are separated by a surface of positive surface energy. This surface
constrains themotion of vortex systems. As a result, in the finite systemswhichwe simulate, the helicity
modulus ¡z i, acquire nonzero values in both components in this intermediate regime.

As w- is increased further, such that one component becomes dominant and the other is suppressed, the
minor component becomes normal. Note thatwhen the inclusions of the normal component become isolated,
they represent quasi-1D subsystems.Quasi-1D systems are superfluid only at zero temperature. However,
simulations onfinite systemsmay still display finite helicitymodulus. As the density of the component increases,
the corresponding intra-component current–current interaction between the rotation-induced vortices in this
component increases. Hence, the intra-component long-range interaction for this component dominates, and a
hexagonal vortex-lattice results. Consequently, the helicity-moduli in the two components have quite different
behavior as w- increases. In the component that eventually takes up a vortex lattice state, it increases
monotonically with w- . In the other component, it is non-monotonic as a function ofω, eventually
approaching 0 deep into Region III.

Typical examples of the vortex structures that appear betweenRegion II andRegion III infigure 1 are shown
infigure 9. These are allmetastable, long-lived states which prevent equilibration of the system.Wehave been
unable to locate the sharp separatrix between these two regions, andwhether there are other stable intermediate
phases due to the lack of equilibration.Note that this problem is known in other stripe-forming systemswhere
phases are separated bymetastable and glassy states [41, 42]. The gray area infigure 1 represents upper and lower
bounds for the transition. The boundswere determined by determining the parameter rangewhere the
simulation equilibrates to either striped or hexagonal/liquid separated configurations, exclusively.

4. Conclusions

In this paper, we have considered the states of a two-component BEC in the situationwhere inter-component
density–density interactions dominate the intra-component density–density interactions. The two components
of the condensate are assumed to be comprised of homonuclear atoms in two different hyperfine states. The
problem features an Ising-like symmetry. This Ising (or 2 ) symmetry emerges from the dominance of the
inter-component interactions over the intra-component ones. The spontaneous breaking of this Ising-
symmetry corresponds to a spontaneously generated, interaction-driven, imbalance between condensates in
different hyperfine states.

Atfinite rotation, wefind four regions, denotedRegions I, II, III, and IV, of thermodynamically stable states,
see figure 1. Region I is a high-temperature regimewhere the system remains in a two-component isotropic
vortex liquid phase with equal densities of both components. Region II is a nematic phase (broken rotational
symmetry)with ordered stripes of 1D vortex liquids, andwith equal densities in different components. This state
features a spontaneously broken composite ( )U 1 × ( )U 1 -symmetry, but is 2 -symmetric. In addition it
spontaneously breaks translation symmetry in one direction due to formation of periodicmodulation of
condensate densities. Region III is amixed state with one component in a ( )U 1 -symmetric isotropic vortex
liquid phasewhile the other component resides in a hexagonal vortex lattice phasewith broken ( )U 1 -symmetry.
The origin of the different behaviors of the two components is that Region III also features a spontaneously
broken 2 -symmetry, i.e. a difference in the densities of the two components. The componentwith a large
density has higher phase stiffness than the componentwith the lower density, hence the discrepancy in their
vortex states. Finally, Region IV is a region intermediate betweenRegion I andRegion III, inwhich ( )U 1
-symmetry is not broken in either of the components, but where a spontaneously generated imbalance between
densities of hyperfine states exists. Both components are in an isotropic and disordered vortex state.

The phase transition fromRegion I to Region II infigure 1 is afirst-order composite ( )U 1 × ( )U 1 transition.
The phase transition betweenRegion I andRegion IV is associatedwith a spontaneous 2 symmetry breaking
where a difference in densities of the two condensates sets in. The phase-transition betweenRegion IV and
Region III is a first order ( )U 1 transition associatedwith the freezing of an isotropic vortex liquid in one
component into a hexagonal vortex lattice in the same component, while the other component (the onewith
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Figure 9.Tableaux showing detailed real space and reciprocal space pictures of the transition fromRegion II to Region III. The
parameterω is varied between each column, w Î - - -{ }0.300, 0.500, 0.700 ,while the inverse temperature isfixed, b = 1.2. Each
row shows, from top to bottom, averaged vortex densities of each component, á ñ^( )n r ,i averaged amplitude densities of each
component, yá ñ^∣ ( )∣r ,i and vortex structure functions of each component, ^( )S q .i The first column shows a configuration close to a
pure Region II configuration, the second column is a configuration from the highlymetastable crossover region, while the last column
shows a configuration close to a pure Region III configuration.Note that we consider both thefirst and the last column to be inRegion
II and III, respectively, as they consist of purely of domains with configurations from either region, not amixture of the two.
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depleted density due to the 2 -symmetry breaking) remains in the isotropic vortex liquid phase. The phase
transition fromRegion II to Region III, driven by increasing the dominance of inter-component density–density
interactions over intra-component density–density interactions, involves at the very least a spontaneous
breaking of a 2 -symmetry as the two condensate components pass from anematic state of intercalated lattices
of 1D vortex liquids into amixed state of an isotropic vortex liquid in one component and a hexagonal vortex
lattice in the other component. This transition is characterized by a broad regime ofmetastable states with
inhomogeneous phase separation.

Figure 8 suggests that the rotation frequency ismuch smaller than the second critical frequency W .c2 A crude
estimate for the rotation frequencymay be obtained as follows. If the rotation frequencywere to be set at upper
critical rotation frequency W ,c2 the vortex cores would start overlapping, thus covering the plane perpendicular
to the rotation. The actual rotation frequencyΩmay thus be estimated in terms of the upper critical rotation as
W W = c,c2 where c is a numerical factor given by the fraction of the area of the plane perpendicular to the
rotationwhich is covered by vortex cores. Thus, an estimate, based on core size, gives W µ W0.1 .c2 This puts the
systemwell outside the regime of lowest-Landau level physics. The system is therefore indeed in a regimewhere
itmakes sense to talk about vortex-degrees of freedom rather than zeroes of the order parameter as the relevant
degrees of freedom. For this rotation frequency, we have found the critical value ofω (one of our interaction
parameters) to observe phase IV to be w » - 0.6.c This requires scattering lengths >a a 1.3.12 11 Since these
scattering lengths a priori are similar, and can bemanipulatedwith Feshbach resonances, it seems feasible to be
able to observe phase IV. In order to see the striped ground states phase II, the requirement is only that

>a a 1,12 11 which certainly seems to bewithin the realms of possibility.
In this paperwe have studied the system in the thermodynamic limit. Nonetheless, the results also yield

insights into certain aspects of the physics offinite systemswith phase separation of species inwhich the total
numbers of particles arefinite and independently conserved. For instance, for conserved total number of
particles and in the absence of rotation, afinite two-component system can form a bi-domain in the low
temperature state in the parameter regimewe have considered in this paper. In our case, the ground state is a
mono-domain. In both cases, however, the system evolves into similarmixed states at increased temperature.
Thus, although the thermodynamic limit calculations provide insights into the phases and phase transitions in
the systems, it also calls for further investigation offinite systems of this kind in the presence of a trap.
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We consider a two-component Bose-Einstein condensate with and without synthetic ”spin-orbit” interactions
in two dimensions. Density- and phase-fluctuations of the condensate are included, allowing us to study the
impact of thermal fluctuations and density-density interactions on the physics originating with spin-orbit inter-
actions. In the absence of spin-orbit interactions, we find that inter-component density interactions deplete the
minority condensate. The thermally driven phase transition is driven by coupled density and phase-fluctuations,
but is nevertheless shown to be a phase-transition in the Kosterlitz-Thouless universality class with close to uni-
versal amplitude ratios irrespective of whether both the minority- and majority condensates exist in the ground
state, or only one condensate exists. In the presence of spin-orbit interactions we observe three separate phases,
depending on the strength of the spin-orbit coupling and inter-component density-density interactions: a phase-
modulated phase with uniform amplitudes for small intercomponent interactions, a completely imbalanced,
effectively single-component, condensate for intermediate spin-orbit coupling strength and suficciently large
inter-component interactions, and a phase-modulated and amplitude-modulated phase for sufficiently large val-
ues of both the spin-orbit coupling and the inter-component density-density interactions. The phase which is
modulated by a single q-vector only is observed to transition into an isoptropic liquid through a strong de-
pinning transition with periodic boundary conditions, which weakens with open boundaries.

I. INTRODUCTION

Spin-orbit coupling (SOC) underpins many fascinating
phenomena in condensed matter physics, including the spin-
Hall1,2 effects and the existence of topological insulators3–6.
SOC is also important for determining the physical properties
of such important functional materials as GaAS7. Due to the
fundamental magneto-electric character of SOC in charged
systems, it also has important ramification for the manipu-
lation of spin-degrees of freedom using electric fields, cur-
rently a research topic of intense focus. While these exam-
ples represent systems where a real physical spin is coupled to
the orbital motion of electrons, similar phenomena may also
be investigated in bosonic systems. Here, the SOC does not
originate with a relativistic correction to the equations of mo-
tion, as they do in the electronic systems mentioned above.
Rather, they are synthetic in the sense of being engineered8,9

Rashba10- and Dresselhaus11 couplings in multi-component
Bose-Einstein condensates. Such multi-component conden-
sates could be either homo-nuclear with different species oc-
cupying different hyperfine spin states12,13, or they could be
mixtures of different types of bosons14,15. In either case, one
may associate an index with each species of the condensate,
serving as an internal ”‘spin”-degree of freedom. A great
advantage of studying the physics of competing interactions
and couplings in Bose-Einstein condensates or other ultra-
cold atomic systems is that the interaction parameters, namely
density-density interactions and ”spin-orbit” couplings, are
highly tunable. This facilitates the study of a wide range of
phenomena otherwise not accessible in standard condensed
matter systems.

SOC in a confined bosonic gas of cold atoms has been
achieved using an optical Raman-dressing scheme8. A sim-
ilar scheme has also been used in cold fermionic gases16. In
optical lattices17 a synthetic SOC has been realized in a one-
dimensional lattice using a similar Raman-dressing scheme18.
Other proposals for realizing SOC in an optical lattice include

periodically driving the lattice with an oscillating magnetic
field gradient19, or by using off-resonance laser beams20. The
two latter schemes avoids the problem of heating caused by
spontaneous emission of photons as they do not rely on near-
resonant laser fields.

In the case of topological insulators, the classification
scheme and the physical properties of these systems are
largely worked out and predicted at zero temperature and ig-
noring many-body interactions6,21–23. It seems worthwhile to
examine the effects of both temperature and many-body in-
teractions on the effect of SOC. In this respect, looking at
”pseudo-spin” Bose-Einstein condensates offers an attractive
alternative for studying many-body effects, since one can,
among other things, perform large-scale Monte-Carlo simu-
lations without the complicating factors arising from Fermi-
statistics in the problem. Bosonic systems also have the attrac-
tive property of featuring a condensate at low enough tempera-
tures, such that one has a mean-field starting point to compare
with, at least provided the system is placed far enough away
in parameter space from critical point arising either from in-
teraction effects or thermal fluctuations.

Previous works on bosonic spin-orbit coupled conden-
sates have shown that their ground state has a periodically
modulated striped spin structure both in a lattice model24,25

and by numerically solving the continuum Gross-Pitaevskii
equations26. Including SOC splits the energy bands of spin-up
and spin-down particles into bands of definite helicity, where
the lower band will have minima at finite momentum, pro-
vided that any additional Zeeman-splitting (i.e imbalance in
the condensate density) of the bands is not too large. A contin-
uum model will have a degenerate ring of minima in momen-
tum space, with fixed length of the momentum-vector in two
dimensions, while a square lattice will break the degeneracy
down to four points along the diagonals of the lattice. It has
also been shown that, in the weak coupling limit, the bosons
will condense either into one or two minima in the ground
state, depending on the strength of the intra-component inter-



2

actions. However, thermal fluctuations have not been consid-
ered before in such systems.

In this paper, we therefore consider a two-dimensional two-
component Bose-Einstein condensate with a Rashba synthetic
SOC. The condensates are also assumed to be population-
imbalanced with different densities among the components
in the ground state. Fluctuation effects are strong in two-
dimensional system such that no local order parameters ex-
ist for systems with continuous symmetries. Even so, one
may get some rough insights into the effects of varying in-
teractions and temperature at the mean-field level. For a spin-
orbit coupled system featuring a non-uniform ground state,
this differs from the case where one expects a uniform ground
state, in that the gradient terms of the theory need to be in-
cluded even at the mean-field level. We will perform such
a mean-field analysis in this paper, and compare the results
to what we obtain in large-scale Monte-Carlo simulations.
At low temperatures, we find that that a mean-field analy-
sis yields results for critical values of interaction parameters
that destroy the minority-condensate in good agreement with
Monte-Carlo simulations. At elevated temperatures, we find
that the amplitude-fluctuating two-component condensate un-
dergoes Kosterlitz-Thouless phase transitions for two qualita-
tively different parameter regimes. i) In the absence of SOC,
we find that the condensate loses phase-coherence via prolif-
eration of vortex-antivortex pairs in an amplitude-fluctuating
background, and that this phase transition is a Kosterlitz-
Thouless phase transition with a universal amplitude ratio of
the jump in superfluid density to critical temperature given
by 2/π. ii) In a parameter regime where SOC plays a role,
and gives a non-uniform ground state in the form of stripes
of modulated phases (but not amplitudes) of the condensate
ordering fields, we find via finite-size scaling of the struc-
ture functions at the pseudo-Bragg vectors that the stripes
melt through thermal depinning from the lattice, and not in a
Kosterlitz-Thouless-Halperin-Nelson-Young phase transition.
When the condensate we study features a non-uniform ground
state, it may be thought of as a bosonic analogue to either a
two-dimensional two-component superconductor in a Larkin-
Ovchinnikov state, or to a one-component superconductor in
a Fulde-Ferrell state. The former features topological order at
finite temperature, the latter is topologically disordered at any
finite temperature27.

The paper is structured as follows. Section II presents the
model and observables we use to classify the states and tran-
sitions observed. Section III contains the mean-field calcula-
tions. Section IV describes the Monte-Carlo scheme we use.
In Section V all our Monte-Carlo results as well as discussions
of their significance is included. We present our conclusions
in Section VI.

II. MODEL

In this section, we present the lattice model used in the
Monte-Carlo simulations, discuss some of its basic proper-
ties and present the observables measured in simulations to
classify the phases and phase transitions we observe.

A. Ginzburg-Landau model

The starting point of our formulation is the standard two-
component Ginzburg-Landau model with an added SOC,
given by

H =

∫
d2r

[
1

2
|∇Ψ|2 + V (Ψ)

]
+HSO (1)

Here, Ψ† = (ψ∗1 , ψ
∗
2) is a spinor of two complex fields, where

the individual components may be though of as a pseudospin
degree of freedom, and V is the potential. We allow the po-
tential to contain inter- and intra-component density-density
interactions, as well as a chemical potential. The chemical
potential is chosen to have different strengths for each com-
ponent, which may be viewed as a Zeeman-like field acting
on the pseudospins.

V (Ψ) =
∑
i

αi|ψi|2 +
∑
ij

gij |ψi|2|ψj |2 (2)

The term containing the spin-orbit interaction, HSO, is of the
Rashba type, on the form

HSO =
iκ

2

∫
d2rΨ†

(
(σ ×∇) · ẑ

)
Ψ + h.c. (3)

We may write the SOC on component form

HSO =
κ

2

∫
d2r

[
ψ∗2∂xψ1 − ψ∗1∂xψ2

+ iψ∗2∂yψ1 + iψ∗1∂yψ2

]
+ h.c. (4)

To simplify the representation of the potential term, we intro-
duce the following parametrization α1 = α(1 − ∆), α2 =
α(1 + ∆), g11 = g(1 − γ), g22 = g(1 + γ), g12 = λg.
∆ thus tunes the imbalance of the components, γ tunes the
relative strengths of the intra-component density-density in-
terations, while λ tunes the strength of the inter-component
density-density interaction. The latter is responsible for pro-
ducing a phase-separated state.

B. Lattice formulation

To arrive at a lattice model suitable for Monte-Carlo simu-
lations, we discretize the continuous fields ψi on a square grid,
that is we let ψi → ψr,i, where r = (rx, ry), rµ ∈ (1, . . . , L)
and µ ∈ (x, y). The derivatives are converted to forward finite
differences through the replacement

∂µψi →
1

a
(ψr+µ̂,i − ψr,i) , (5)

where µ̂ is a unit vector in the µ-direction, and a is the lattice
spacing. We suppress the lattice spacing in the following ex-
pressions, real space distances are plotted in units of a, while
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reciprocal space is plotted in units of 2π/La. By introducing
real amplitudes and phases, ψr,i = |ψr,i| exp(iθr,i) we may
write the derivatives of the Hamiltonian in terms of trigono-
metric functions.

We write the Hamiltonian as a sum of three terms as follows

H = HK +HSO +HV . (6)

HK contains the kinetic terms, which are written in the stan-
dard cosine formulation

HK =
∑
r,µ̂,i

(
|ψr|2 − |ψr+µ̂,i| |ψr,i| cos ∆µθr,i

)
. (7)

The potential term, with the new parametrization, is now writ-
ten as

HV =
∑
r

[
− α(1−∆) |ψr,1|2 − α(1 + ∆) |ψr,2|2

+ g(1− γ) |ψr,1|4 + g(1 + γ) |ψr,2|4

+ 2gλ |ψr,1|2 |ψr,2|2
]

(8)

The SOC term on the lattice may also be described in terms
of trigonometric functions. By replacing the differential op-
erators of Eq. (4) by the forward difference representation of
Eq. (5), and then replacing the complex fields with the am-
plitude and phase representation, we may write this particular
term of the Hamiltonian as

HSO = −κ
∑
r

[
|ψr,1| |ψr+x̂,2| cos(θr+x̂,2 − θr,1)

− |ψr,2| |ψr+x̂,1| cos(θr+x̂,1 − θr,2)

+ |ψr,1| |ψr+ŷ,2| sin(θr+ŷ,2 − θr,1)

+ |ψr,2| |ψr+ŷ,1| sin(θr+ŷ,1 − θr,2)

]
. (9)

C. London model

Thermal fluctuations of the phases of the complex order pa-
rameter component are the most relevant fluctuations. Hence,
it is useful first to neglect the amplitude fluctuations and con-
sider a London-model of the problem. To this end, we write
the complex fields as ψi = ρi exp iθi, where only the phase θi
is allowed to fluctuate. Note that this also implies that we as-
sume the amplitudes to be uniform. To arrive at a London
formulation we write the Ginzburg-Landau Hamiltonian of
Eq. (1) on component form, and replace the complex fields
with a constant amplitude and a fluctuating phase, as de-

scribed above. This gives

H =

∫
d2r

[∑
i

ρ2
i

2
(∇θi)2

−κρ1ρ2

[
sin(θ1 − θ2)∂x(θ1 + θ2)

+ cos(θ1 − θ2)∂y(θ1 + θ2)
]]
, (10)

such that two composite variables with very different behav-
iors emerge. On the one hand, θ− ≡ θ1 − θ2 has a preferen-
tial value: in the presence of the gradients of the phase sum
the second term in the above equations has phase-locking ef-
fects. On the other hand, θ+ ≡ θ1 +θ2 has first order gradient
terms, which may make it energetically favorable to modulate
this phase. As the SOC-term couples the two variables, there
may be subtle interplay between them influencing the phase
transitions of the model.

The scaling dimension of the SOC-term will be one less
than a Josephson coupling, which is a singular perturbation
that is relevant at any strength of the coupling.

Below, we will perform a mean-field analysis, where we as-
sume that the phases and amplitudes of the boson condensate
are modulated by some wave vector, which is included as a
variational parameter when the free energy is minimized. This
result may be compared to the previous work done on SOC
bosons. We also compare the mean-field analysis to Monte-
Carlo simulations of the interacting lattice model.

D. Observables

The phase transition observed at κ = 0 is classified by ex-
amining the helicity modulus, defined by

〈Υi,µ〉 ≡
1

V

∂2F (∆i,µ)

∂∆2
i,µ

, (11)

along with the fourth order modulus

〈Υ4,i,µ〉 ≡
1

V 2

∂4F (∆i,µ)

∂∆4
i,µ

. (12)

where ∆i,µ is an infinitesimal twist applied to the phase θr,i
in the µ-direction. The transition manifests itself as a discon-
tinuity in the helicity modulus in the thermodynamic limit.
This translates to a dip in the fourth order modulus that does
not vanish in the thermodynamic limit. See Appendix A for
more details. As the x- and y-directions are equivalent, we
will consider the average of Υi,x and Υi,y denoted by Υi,⊥,
as well as the average of Υ4,i,x and Υ4,i,y denoted by Υ4,i,⊥.

To examine the thermal melting of the spin-orbit induced
ground-state modulation, we calculate the specific heat, Cv .
It is given as fluctuations of the Hamiltonian

CV = β2
(〈
H2
〉
− 〈H〉2

)
(13)
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To compare the Monte-Carlo results to mean-field calcula-
tions, we measure the average amplitude ui, defined as

ui =

〈∑
r

|ψi,r|2
〉
. (14)

Note that we use the same notation for both the mean field
value and the thermal average of |ψi|2. It should be clear from
the context which one is discussed. We also measure the ther-
mal average of the density as a function of position, 〈|ψi(r)|2〉
to examine possible modulations in the density substrate. To
monitor the thermal fluctuations in the condensate densities,
we compute their probability distribution, P(|ψi|2) by mak-
ing a histogram of the field configurations at each measuring
step of the Monte-Carlo simulations.

In order to monitor the formation of the modulated ground
state, we compute the phase correlation function, defined by

GX(r, r′) = 〈eiθr,Xe−iθr′,X 〉 (15)

Here, X may represent either component 1, 2, as well as the
sum or difference of the two, θ1 + θ2 and θ1 − θ2. We also
calculate its fourier transform, the phase structure function,
defined by

GX(q) =
1

V

∑
r,r′

eiq·(r−r
′)GX(r, r′). (16)

At large distances, r, the correlation function is expected to
scale as GX(r) ∼ r−η . We measure this exponent by extract-
ing the value of GX(q) at a particular value,Q, which in turn
defines the exponent ηQ as

GX(Q) ∼ L2−η. (17)

III. MEAN-FIELD THEORY

Inter-component density interactions suppress the minority
condensate at sufficiently strong values of the coupling value.
To get crude estimates for the interaction parameters needed
for this to occur, we start out by considering the model in the
mean-field approximation. The full fluctuation spectrum of
the bosonic ordering fields will be considered in subsequent
sections. Here, we give the mean-field theory in a continuum
model.

In order to account for the fact that the ground state gener-
ically is modulated in the presence of SOC, we assume that
the complex fields ψi are given in terms of a mean field value
plus fluctuations, multiplied by a spatial plane wave modula-
tion with momentum q. In general, we may use the ansatz28,29

ψ1,q =
√
u1 + δu1 exp i(φ1 + δφ1 − arg q + q · r) (18)

ψ2,q =
√
u2 + δu2 exp i(φ2 + δφ2 + q · r), (19)

where arg q is the orientation of q with respect to some refer-
ence axis. Specifically, we follow previous work and assume

that the ground state is either modulated by a single wave vec-
tor (denoted Ψ0), or by two oppositely aligned wave vectors
(denoted Ψπ). That is

Ψ0 =

(
ψ1,q

ψ2,q

)
, (20)

and

Ψπ =
1

2

(
ψ1,q + ψ1,−q
ψ2,q + ψ2,−q

)
=

(
−
√
u1 + δu1e

iφ1+iδφ1−iθ̄ sin q · r√
u2 + δu2e

iφ2+iδφ2 cos q · r

)
, (21)

where θ̄ is the average angle of q and −q with respect to the
x-axis. Here, the amplitudes, phases, and the wave-vectors
are to be regarded as variational parameters in the mean-field
free energy of the modulated state.

Inserting these expression into Eq. (1) and using the mean-
field values only, we obtain the two free energy densities f0

and fπ .

f0 =
|q|2

2
(u1 + u2)−2 |q|κ

√
u1u2 sin(φ1−φ2)+V0. (22)

fπ =
|q|2

4
(u1 + u2)−|q|κ

√
u1u2 cos(φ1−φ2)+Vπ. (23)

Here, the potentials V0 and Vπ differ slightly due to numerical
factors obtained when integrating over space. They have the
forms

V0 =− α
[
(1−∆)u1 + (1 + ∆)u2

]
+ g
[
(1− γ)u2

1 + (1 + γ)u2
2 + 2λu1u2

]
(24)

and

Vπ =− α

2

(
(1−∆) + u1(1 + ∆)u2

)
+
g

8

[
3(1− γ)u2

1 + 3(1 + γ)u2
2 + 2λu1u2

]
(25)

Note from Eqs. (22) and (23), that in a modulated ground state
the SOC essentially acts as a phase locking on φ1−φ2 in a sys-
tem with a uniform ground state. We may minimize Eqs. (22)
and (23) with respect to this phase difference, assuming that
|q| 6= 0 and ui 6= 0 ∀ i, which yields a phase locking of
φ1 − φ2 = π/2 for f0 and φ1 − φ2 = 0 for fπ . The an-
gle arg q in the single q-vector case and the average angle θ̄
drops out of the equations, which reflects the degeneracy of
the single particle spectrum.

Considering the modulation vector present in Eqs. (22)
and (23) as a variational parameter and assuming ui 6= 0 ∀ i,
we find

|q| =
2κ
√
u1u2

u1 + u2
(26)
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in both cases. With this solution inserted into the free energy
densities, they become

f0 = −2κ2u1u2

u1 + u2
+ V0, (27)

and

fπ = − κ
2u1u2

u1 + u2
+ Vπ. (28)

Eqs. (27) and (28) may in principle be solved for u1 and u2,
but as they are cubic the expressions for the solutions are un-
wieldy and not particularly illuminating. Instead, we numer-
ically minimize both free energy densities, and then deter-
mine the ground state for a given parameter range by find-
ing min(f0, fπ). This gives the regions of the phase diagram
where the ground state is modulated by either one or two wave
vectors. For the SOC to be effective, it is also required that
u1u2 6= 0. For u1u2 = 0, the model reverts to a single com-
ponent condensate, i.e. a ”spinless” model where SOC cannot
be operative.

In Fig. 1, we plot a few representative values of f0 and fπ
as a function of λ, for two values of κ. For the lowest value of
κ, it is seen that f0 < fπ for all values of λ. Hence, a ground
state modulated by two q-vectors is not found. For a larger
value of κ, f0 < fπ for low and high values of λ, while for
intermediate values of λ, fπ < f0. Thus, for large enough κ
and intermediate values of λ, there is the possibility of finding
ground states modulated by two q-vectors.

Moreover, it is seen that for both values of κ, f0 is indepen-
dent of λ when λ reaches some value λ = λ∗. This happens at
the value for which the minority condensate (u1 in this case) is
completely suppressed. Furthermore, the second crossing of
f0 and fπ always occurs at values of λ > λ∗. Therefore, for
given κ and with increasing λ, the ground state modulated by
two q-vectors always transitions into a uniform ground state
with one condensate completely suppressed.

Note also that f0 increases more rapidly with λ than fπ .
This is due to difference in the potentials V0 and Vπ , Eqs. (24)
and (25). Therefore, having two crossings of f0 and fπ as
a function of λ means that one of the crossing points must
always be to the right of the point where f0 becomes λ-
independent. Thus, f0 being minimal always transitions into
fπ being minimal II as λ increases. There will never be a tran-
sition from fπ being minimal back to f0 being minimal with
increasing λ.

This may be summarized as follows. In Fig. 2, we show
the results of numerically solving Eqs. (27) and (28) in the
λ − κ plane. Region I represents the area where the single-
q modulated ground state is preferred, region III where the
two-q modulated ground state is preferred, and region II is
the area where u1u2 = 0 minimizes the free energy, mak-
ing this state a uniform, single-component state. The two
lines separating I and II, and II and III are located by the
crossings of the free energies f0 and fπ , and they therefore
represent first-order phase transitions at the mean-field level.
The line separating region I and II is a direct transition be-
tween a ground state modulated by one q-vector and a uniform
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FIG. 1. Results for minimum values of f0 and fπ as a function of λ
for two values of κ. Top panel: κ = 1. Bottom panel: κ = 2. Note
how f0 ceases to be dependent on λ for large λ, at some value λ∗.
Note also the discontinuity in the derivative of f0 at λ = λ∗.

ground state, without an intermediate ground state modulated
by two q-vectors. The location of this line is therefore de-
termined by the value of λ where f0 ceases to the dependent
on λ, while fπ represents a higher-energy state which is ir-
relevant. The order of this phase-transition is determined by
whether ∂f0/∂λ is continuous or discontinuous at λc. We
have ∂f0/∂λ ≈ (∂f0/∂u1)(∂u1/∂λ). Using Eq. 27, we see
that this is determined by ∂u1/∂λ. Since u1 vanishes in a fi-
nite interval in λ, ∂u1/∂λ has to be discontinuous at λ∗, and
hence so does f0. The transition line separating I and II is
therefore also first order.

IV. DETAILS OF THE MONTE-CARLO SIMULATIONS

The model is simulated using the Monte-Carlo algorithm
with a simple restricted update scheme of each physical vari-
able, using Metropolis-Hastings30,31 tests for acceptance. The
model is discretized on a rectangular lattice of size Lx × Ly ,
with periodic boundary conditions. Typically, 5 · 106 Monte-
Carlo sweeps is used at each temperature step, with an addi-
tional 5 · 105 sweeps discarded for equilibration. One sweep
consist of attempting to update each physical variable on each
lattice site once in succession. The proposed new value for
each variable is picked within a restricted region around the
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FIG. 2. Mean field phase diagram in the λ-κ plane, with other param-
eters α = 10.0, g = 1.0, ∆ = 0.1, γ = 0.0, m = 1.0. Region I and
III are the regions where both components exist and the effect of SOC
is present, resulting in a ground state at finite momentum. In region
I the ground state is modulated by a single wave-vector. In region
III, the ground state is modulated by two oppositely directed wave
vectors. Region II is the region where the inter-component inter-
actions suppress the minority condensate, which results in a single-
component condensate at zero momentum.

old value, where the size of the region is chosen to allow for
both high acceptance rates, and low autocorrelation times. To
further minimize auto-correlation times and increase simula-
tion efficiency, we measure observables with a period of 100
Monte-Carlo sweeps. Pseudo-random numbers are generated
with the Mersenne-Twister algorithm32. During equilibration,
time series of the internal energy is examined for conver-
gence, this ensures proper equilibration. To avoid metastable
states, several simulations with identical parameters, but dif-
fering initial seeds of the pseudo-random number generator
are performed to make sure they anneal to the same state.
Measurements are post-processed using multiple-histogram
re-weighting33, and error estimates are determined with the
Jackknife method34.

The allowed range of amplitude fluctuations is determined
during the equilibration procedure, by first allowing it to fluc-
tuate to a very large value (|ψi|2 ∼ 10 was typically used)
and then reducing the value to include all values that had a
non-zero probabilty of being picked according to the mea-
sured probability distribution, P(|ψi|2).

Unless otherwise stated, we fix α0 = 10.0, g = 1.0,
and γ = 0.0. The large value of α0 = 10.0 is cho-
sen to have sharp probability distributions of the ampli-
tudes. Generally, a square lattice of Lx = Ly ≡
L = 64 is used in simulations, but system sizes of
L ∈ (16, 24, 32, 40, 48, 56, 64, 96, 128, 160, 192, 224, 256)
are used for performing a finite size scaling (FSS) analysis.

V. RESULTS OF THE MONTE-CARLO SIMULATIONS

In this section, we present Monte-Carlo simulations to cor-
roborate and expand on the arguments given in the previous
sections. The model exhibits three different classes of BECs
for different parameter regimes. For strong inter-component
interactions and zero to intermediate SOC, there will be only
one superfluid condensate present. With no SOC, but for in-
termediate inter-component interactions, the model is a two-
component coupled superfluid. Finally, for intermediate in-
teractions and SOC, the model is a two-component superfluid
with a finite q-vector. This schematic picture shown in Fig. 2
is captured by a simple mean field argument, but we find it to
be essentially correct also when thermal fluctuations are taken
into account in Monte-Carlo simulations. We also examine
the thermal phase transitions present in the cases of zero SOC
and when the condensate is modulated by a single q-vector.

A. Kosterlitz-Thouless transition in the absence of spin-orbit
coupling

When κ = 0, the model represents a two-component BEC
coupled by density-density interactions, which may collapse
to a single-component condensate for strong inter-component
interactions. When neglecting amplitude fluctuations (which
of course decouples the condensates), the model reduces to
the XY-model. Here, the low-temperature phase is charac-
terized by quasi long-range order of the superfluid order pa-
rameter, where vortices and anti-vortices form bound pairs.
As the temperature is increased, the bound vortex-antivortex
pairs unbind at a Kosterlitz-Thouless (KT) transition35,36.
As a check of simulations we indeed obtain that the two-
component model with amplitude fluctuations included be-
longs in the KT universality class by establishing that the
helicity modulus undergoes a discontinuous jump to zero as
the system is heated from the low-temperature state, with the
value of the jump close to the predicted universal value. We
examine various values for the inter-component coupling λ,
and find that the above remains true for all the values of λ we
have considered.

Fig. 3 shows the helicity modulus and fourth or-
der modulus of component 2 for system sizes L ∈
(16, 24, 32, 40, 48, 56, 64) with inter-component coupling
strength λ = 2.0. The inset shows the depth of the dip in
the fourth order modulus as a function of inverse linear sys-
tem size. By fitting the helicity modulus to Eq. (A8) we de-
termine the discontinuous jump to be Υ(∞)βc = 0.650(1) at
βc = 0.282. Extrapolation of the value of the negative dip to
1/L = 0 gives a finite value of 0.49(1). This is clear evidence
for a discontinuous jump in the helicity modulus, placing the
transition in the Kosterlitz-Thouless universality class.

Similar results are obtained for values of λ ∈
(0.0, 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2.0) as shown in Table I.
For the values of λ where both condensates persist, transi-
tions of KT type is observed in both components, at different
critical couplings. In all cases considered, the value of the
minimum in Υ4 converges to a nonzero value. This demon-
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FIG. 3. Helicity modulus (top panel) and fourth order modulus (bot-
tom panel) of component 2 as a function of β for several system
sizes, with λ = 2.0 and κ = 0.0. The inset of the bottom figure
shows the value of the dip in the fourth order modulus as a function
of inverse system size. The dashed line is a linear extrapolation to the
thermodynamic limit. At this value of the inter-component coupling
strength, the condensate density of component 1 is extinguished, and
hence exhibits no KT-transition.

strates that there is a discontinuous jump in the helicity mod-
ulus, regardless of the value of the inter-component interac-
tion strength, and whether or not the minority condensate is
depleted. Additionally, the value of the discontinuous jump
varies weakly with λ, and is close to the universal value of
2/π. This indicates that fluctuations in the condensate am-
plitude only have a minor effect on the details of the transi-
tion. None of the obtained jumps are within the prediction
2/π, with error estimates, but most are close. Moreover, the
fitting routine was sensitive to the system sizes that were in-
cluded. Both effects may have been caused by the inclusion
of amplitude fluctuations. Also note that the critical tempera-
ture and depth of the dip varies very weakly with λ, as long as

λ ≥ 1.0. This is very reasonable, as the model is effectively
a single component condensate in this regime, so varying the
intercomponent interaction strength should have little to no
effect.

Finally, we remark that the fit of the discontinuous jump
and the determination of the depth of the dip in the fourth
order modulus are two independent methods for detecting a
KT-transition. As both methods give good results consistent
with the KT-prediction, we are confident in claiming that the
two-component imbalanced BEC without SOC has one or two
transitions, depending on the value of the intercomponent cou-
pling strength, in the KT universality class.

B. Spin-orbit induced modulated ground states

Preliminary arguments based on the non-interacting energy
spectrum and mean field calculations suggest that the ground
state of the spin-orbit coupled BEC resides at either one or two
finite q-vectors. In order to confirm this, Monte-Carlo simula-
tions of the full lattice model, Eqs. (6) to (9), were performed
in parameter regions corresponding to region I and III in the
phase diagram of Fig. 2.

1. Single q-vector

To observe the predicted modulated state where a single q-
vector is present, we perform simulations of the lattice model
at κ = 1.0 and λ = 0.0. Fig. 4 shows the real parts of the
phase correlation function, Eq. (15), and the structure factors
of the phase sum and phase difference variable in the low tem-
perature phase, when the inverse temperature is β = 1.5. The
phase correlation function Eq. (15) for the phase sum com-
posite variable is modulated with a single q-vector along the
diagonal. The phase difference composite variable shows no
modulation. It is, however, highly correlated, which is a re-
sult of the effective Josephson locking. This is in accord with
expectations based on the London-approximation, where am-
plitudes are frozen, see Eq. (10). The London case, with non-
modulated amplitudes, suffices to describe the situation with
relatively small values of intercomponent density-density in-
teractions, where amplitudes are constant throughout the sys-
tem. The SOC-term tends to lock θ1 − θ2 at constant value,
since the strength of the SOC-term effectively is constant due
to the constant values of the amplitudes, while SOC induces a
gradient in θ1 + θ2. The θ1 + θ2-modulations therefore origi-
nate with SOC-coupling.

In these simulations, the amplitudes are also allowed to
fluctuate. The real-space amplitude plots shown in Fig. 5,
show that the spatial amplitude fluctuations are small. In this
regime the potential does not favor large density differences
between the two components, and there is no phase separa-
tion. The state we observe is the same as was found in Refs.
24 and 25, where a single minimum in the non-interacting
spectrum is populated for λ < 1.
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TABLE I. Summary of the results obtained when searching for the KT-transition. Each row shows, for both components, the critical inverse
temperature at which the best fit to Eq. (A8), βc, the size of the jump at this inverse temperature, Υ∞βc, as well as the extrapolation of the
value of the minimum in the fourth order modulus to 1/L = 0. When λ ≥ 1.0, the density of component 1 has been completely depleted, and
there is no phase transition in this sector, as signified by the entries marked N/A.

Component 1 Component 2
λ βc Υ∞βc value of minimum in Υ4 βc Υ∞βc value of minimum in Υ4

0.00 0.280 0.617(1) 0.56(3) 0.226 0.642(2) 0.58(7)
0.25 0.391 0.609(1) 0.367(8) 0.249 0.5(3) 0.67(3)
0.50 0.605 0.595(1) 0.239(9) 0.284 0.625(1) 0.49(3)
0.75 2.24 0.58(1) 0.068(4) 0.290 0.627(1) 0.50(2)
1.00 N/A N/A N/A 0.292 0.662(1) 0.48(2)
1.25 N/A N/A N/A 0.290 0.667(1) 0.46(3)
1.50 N/A N/A N/A 0.290 0.703(1) 0.50(1)
1.75 N/A N/A N/A 0.284 0.653(1) 0.61(5)
2.00 N/A N/A N/A 0.282 0.650(1) 0.49(1)
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FIG. 4. The real part of the phase correlation function Eq. (15) in
real (top row) and reciprocal (middle row) space of the phase sum
(left column) and phase difference (right column), at parameters κ =
1.0, λ = 0.0 and β = 1.0. The bottom panel shows a real-space
cut along the diagonal perpendicular to the stripes, rd, of both the
phase sum and phase difference correlation functions. The effect
of the SOC is manifest in the phase sum, which is modulated by a
wave-vector, Q. The phase difference, exhibits no modulations in
the spatial correlation. We have removed the reference point r = 0
from the real space plots to improve visibility of the correlations.
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FIG. 5. Thermal amplitude averages in real space for component 1
(left panel) and 2 (right panel), at parameters κ = 1.0, λ = 0.0
and β = 1.0. As seen on the scale of the color map, there is very
little spatial fluctuations around the average, ui, in each individual
component.

2. Double q-vector

The ground state modulated by two oppositely directed q-
vectors only occurs, in mean field, at sufficiently high values
of both κ and λ. In order to observe this state, we perform
simulations at κ = 1.7 and λ = 1.2, with β = 1.0, inside re-
gion III of Fig. 2. In Fig. 6 we show Monte-Carlo calculations
of the correlation function of the phase sum and difference, in
both real and reciprocal space. As in the single-q vector case,
the phase-sum correlation is modulated, although now with a
larger |q|. The increase of the length of the q-vector directly
reflects the larger value of the SOC strength.

Another important difference between the double-q vector
state compared to the single-q vector state is shown in Fig. 7,
which shows the thermal averages of the amplitudes. In this
case, the amplitudes are also modulated. Furthermore, the am-
plitudes of the two components are staggered, when compo-
nent 1 has a large amplitude, component 2 has a low ampli-
tude, and vice versa. This is further exemplified in the bottom
panel of Fig. 7, where we show a cut along the diagonal per-
pendicular to the stripes in the amplitude densities. Here it is
clearly seen that the two amplitude variations are mirror im-
ages of each other, only shifted relative to each other by the
difference in the average amplitudes due to the component im-
balance.
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FIG. 6. Real part of phase correlation function Eq. (15) in real (top
row) and reciprocal (middle row) space of the phase sum (left col-
umn) and phase difference (right column), at parameters β = 1.0,
λ = 1.2 and κ = 1.7. In the bottom panel, we also show a real-space
cut along the diagonal perpendicular to the stripes, rd, of both corre-
lation functions. It is shown that both the phase sum and the phase
difference are modulated by two oppositely aligned wave-vectors,
±Q, with equal magnitude. We have removed the reference point
r = 0 from the real space plots to improve visibility of the correla-
tions.

Unlike the single-q vector case, the phase-difference cor-
relation is also modulated. This may now be understood
as follows. The system is in a parameter-regime where λ
is large enough to induce staggering of the amplitudes of
the condensates, in order to minimize energy. The London-
approximation, Eq. (10), therefore no longer suffices to de-
scribe the system, and we revert to Eq. (9). It is the term with
the minus-sign in HSO that leads to the frustration of θ1− θ1.
Were this sign to be reversed, we would have had θ1−θ2 = 0.
Since the amplitudes are modulated, so are the gradients of
the amplitudes, and so is therefore the strength of the frustra-
tion in the phase-difference. This difference is therefore itself
modulated. The modulation of θ1 − θ1 therefore originates
with the modulation of amplitudes, which is a consequence
of strong inter-component density-density interactions. Re-
call from above that the modulation of θ1 + θ1 originates with
SOC.
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FIG. 7. Thermal amplitude averages in real space for component
1 (top row, left panel) and 2 (top, row, right panel), at parameters
β = 1.0, λ = 1.2 and κ = 1.7. The bottom panel shows a cut
of the amplitude averages along the diagonal perpendicular to the
stripe modulations, rd. Both amplitudes are modulated in this region
of parameter space, but around different mean values because of the
density imbalance. Furthermore, the amplitude of component 1 is
staggered compared to component 2. This minimizes the potential
energy from the inter-component density-density interaction, while
still minimizing the SOC interaction energy.

C. Interaction-induced destruction of modulated ground states

The mean field calculations presented in Section III predict
a breakdown of the modulated ground state shown in Fig. 4
when the inter-component interaction parameter, λ, reaches
the threshold shown in Fig. 2, provided κ . 1.5. Above
this threshold, the condensate transitions from a single-q con-
densate into a condensate modulated by two opposite wave
vectors. For γ = 0, and ∆ > 0, which we consider here,
component 1 is the minority component that collapses. The
mechanism for the collapse is that inter-component interac-
tions drive the minority component to zero to eliminate the
interaction energy. When the model collapses to an effective
one component model there will no effects of the SOC, as the
q-vectors of the modulation induced by it are proportional to
u1u2, at the mean field level.

To show this suppression, we compute the thermal am-
plitude averages of both components in the low temperature
phase, shown in Fig. 8, when β = 1.0, κ = 1.0 and λ = 2.0.
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FIG. 8. Thermal amplitude averages in real space for component
1 (top row, left panel) and 2 (top, row, right panel), at parameters
κ = 1.0, λ = 2.0 and β = 1.0.

That is, every parameter is identical to what is shown in Figs. 4
and 5, except the inter-component interaction is increased
above the critical value given by the mean field calculations.
It is evident that both amplitudes are now again unmodulated,
but the amplitude of component 1 has been almost completely
depleted. Its small finite value is only a remnant of the thermal
fluctuations included in the simulations.

To further explore the effect of the depletion, we compute
the phase correlation function Eq. (15) and its Fourier trans-
form, Eq. (15) and Eq. (16). Fig. 9 shows the real parts of
both the phase correlation function Eq. (15), and structure fac-
tor of both individual componentsThere are no modulations in
the either of the phase correlation function Eq. (15), and both
structure factors are isotropic. However, while the phase of
component 1 is completely uncorrelated, the phase of compo-
nent 2 is strongly correlated. The reasons for this is that: i) the
condensate amplitude of component 1 has been completely
depleted, leaving the phase of this component completely un-
correlated at all temperatures, and ii) the non-suppressed con-
densate has entered a low-temperature superfluid state, akin to
what we observe for κ = 0, even though we still have a finite
SOC, however ineffective.

Fig. 10 summarizes the results obtained in the Monte-Carlo
simulations, showing an overview of the different ground
states obtained at slow annealing from a random initial state
at high temperature down to β = 6.0, for different values
of (κ, λ). The size of region I was largely unaffected. For
intermediate values of κ and sufficiently large values of λ,
we observe that the spin-orbit induced modulations of both
the amplitudes and the phases are pinned to the crystal axes
of the numerical lattice. This is represented by the large er-
ror bars of the red points denoting the transition from region
II to region III obtained from the Monte-Carlo simulations.
We determine these particular error bars by finding the up-
per and lower limits in κ where we can confidently observe a
pure double q-vector condensate, or a pure single component
condensate. That aside, the mean-field and MC calculations
correspond remarkably well, even close to the area where the
three transition lines meet.
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FIG. 9. Real part of the phase correlation function Eq. (15) in real
space (top row) and reciprocal space(bottom row) for the phase of
component 1(left column) and component 2(right column), at pa-
rameters κ = 1.0, λ = 2.0 and β = 1.0. We have removed the
reference point r = 0 from the real space plots to improve visibility
of the correlations.
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FIG. 10. Phase diagram obtained from numerical Monte-Carlo sim-
ulations compared to mean field predictions. The points with error
bars correspond to observed transition points, blue points correspond
to the transition from region I to region II, green points the transition
from region I to region III, and red points the transition from region II
to region III. The dashed lines are the corresponding transition lines
obtained from mean field calculations, shown in Fig. 2

D. Thermal disordering of single-q modulated state

Thermal fluctuations of the superfluid phases are also ex-
pected to disorder the modulated ground state pattern induced
by the SOC. The modulation which appears in region I at low
temperatures is characterized by modulated superfluid order,
or superfluid order with a texture. The temperature driven dis-



11

ordering of this modulated superfluid state is expected to lie
in the KT-universality class. In order to examine the thermal
phase transition from the low temperature phase of region I
into the high temperature phase, we perform simulations of
the full Hamiltonian as written in Eq. (6) and in the London
limit. The London limit is employed here as it is the minimal
model which captures the effect of the SOC. As discussed in
section Section V B, in region I where the condensate is only
modulated by a single q-vector, we find that the amplitudes
are essentially uniform. Hence, the amplitude fluctuations are
largely irrelevant for this phase, and we may therefore em-
ploy the London limit. The London limit is taken by fixing
|ψr,i| = 1 ∀ r, i, which simplifies the Hamiltonian greatly.

In order to determine the nature of the thermal phase tran-
sition which disorders the modulated superfluid we measure
the helicity modulus of the phase sum variable, the exponent
ηQ, and the specific heat. The helicity modulus is modified
compared to the case with no SOC, due to the extra terms in
the Hamiltonian. The value of the exponent ηq is expected to
approach the limit 1/4 from below as the critical inverse tem-
perature is approached from above37 In Figs. 11 and 12 we
show the results of the simulations with and without ampli-
tude fluctuations included, respectively. The top panels show
the specific heat on the left axis, and the value of the exponent
ηQ on the right axis. We also show the scaling of the spe-
cific heat peak in the insets of the top panels, and we find its
exponent to be 0.8(2) with amplitude fluctuations included,
and 0.66(9) in the London limit. In the bottom panels we
show the helicity modulus of the phase sum variable, both of
which exhibit a sharp jump which coincides with the drop in
the scaling exponent and the specific heat peak. In both cases,
The sharp peak of the specific heat with its large scaling expo-
nent, the abrupt drop of the exponent ηQ, and the sharp jump
and large error bars of the helicity modulus all point towards
a strong de-pinning transition separating the modulated super-
fluid phase and the normal fluid phase. The similar behaviours
between the two cases of Fig. 11 and Fig. 12 suggests that the
London model is in fact a good effective model for this partic-
ular transition. We believe the main reason for the pinning is
the periodic boundary conditions applied to the model. This
biases the stripes to connect with themselves at the bound-
aries of the system, which in turn causes very slow equilibra-
tion at the critical point, as evident in the large error bars of
especially the helicity modulus. In particular, fluctuations as-
sociated with shifting or rotating the stripe configurations is
particularly hard to resolve in the Monte Carlo simulations, as
these are large scale movements, which in turn are made even
more difficult to resolve with periodic boundary conditions
applied.

In an attempt to reduce the pinning effects present in
Figs. 11 and 12 and confirm their origin, we slightly alter
the model. Instead of taking the London limit with |ψr,i| =
1 ∀ r, i, we define a Thomas-Fermi trap which decouples the
stripes from the boundaries of the system. Specifically, we fix

|ψr,i| =
{

1−
(
r
R

)4
, r < R.

0, r > R.
(29)

However, this comes at the cost of not having a well defined
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FIG. 11. Phase-sum structure function at the first Bragg peak, Q, as
a function of β for system sizes L ∈ (16, 24, 32, 40, 48, 56, 64) as
well as specific heat CV /V for L = 64 (top), and helicity modulus
of the phase-sum variable, Υ+,⊥ (bottom), at κ = 1.0 in the London
limit. The inset of the top panel show the scaling of the peak of the
specific heat curves for the same system sizes used in the structure
function scaling. Note how the drop in the exponent ηQ as well as
the jump in the helicity modulus both coincide with the sharp peak
in the specific heat.

helicity modulus. This is the case for this particular model,
as the decoupling of the stripes from the system boundary is
the same as applying open boundary conditions. The helicity
modulus relies on calculating the free energy difference be-
tween the system with periodic boundary conditions, and the
system where an infinitesimal twist is applied to the phases at
the boundary38,39 The simulation results of the London model
in a Thomas-Fermi potential are shown in Fig. 13. Here we
show only the scaling of the first order peak in the phase sum
structure function and the specific heat. Fig. 13 shows that
the signs of pinning which we are able to examine, namely
the sharp peak of the specific heat and the sharp drop of ηQ is
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FIG. 12. Phase-sum structure function at the first Bragg peak, Q, as
a function of β for system sizes L ∈ (16, 24, 32, 40, 48, 56, 64) as
well as specific heat CV /V for L = 64 (top), and helicity modulus
of the phase-sum variable, Υ+,⊥ (bottom), at κ = 1.0 in the London
limit. The inset of the top panel show the scaling of the peak of the
specific heat curves for the same system sizes used in the structure
function scaling. Note how the drop in the exponent ηQ as well as
the jump in the helicity modulus both coincide with the sharp peak
in the specific heat.

greatly reduced when the Thomas-Fermi potential is present.
The specific heat curve still shows a peak which coincides
with the onset of scaling in the structure function, but the
height and sharpness of the peak is reduced. We also find
the peak to still exhibit scaling, with an exponent 0.17(4), as
shown in the inset of Fig. 13. Without the helicity modulus
we are unable to confidently determine the nature of the phase
transition, but it is evident that the signs of pinning is almost
removed. In all likelihood, the remaining pinning signatures
are associated with the aforementioned difficulty of moving
or rotating entire stripe configurations, and will disappear in
the continuum limit.
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FIG. 13. Specific heat ,CV /V , (left axis) and the exponent ηQ (right
axis). The inset shows a finite size scaling of the peak of the specific
heat for system sizes L ∈ (16, 24, 32, 40, 48, 56, 64) at κ = 1.0
in the London limit with a Thomas-Fermi potential applied. The
full specific heat curve shown in the main panel is for the largest
system sizes simulated, L = 64 Note how the peak of the specific
heat curves coincides with the jump in the exponent ηQ.

As a comparison, we show results for the specific heat and
the exponent ηQ taken from a simulation of the 2DXY -model
in Fig. 14. Here the exponent is measured by performing a fi-
nite size scaling of the height of the q = 0 peak in the phase
structure function. The defining characteristic which shows
that this is a KT-transition is the fact that the exponent ηQ
reaches the limiting value of 1/4 exactly at the KT-transition
temperature, βKT ≈ 1.12. We also show the scaling of the spe-
cific heat peak, which has an exponent of 0 within the errors
of our simulation.

Comparing the three different models of Figs. 11 to 13, we
may conclude that the thermal transition from region I of the
phase diagram shown in Fig. 10 into the disordered phase is a
transition from a modulated two-dimensional superfluid phase
into a normal fluid state. The transition has strong de-pinning
characteristics when we apply periodic boundary conditions.
These characteristics weakens and we approach a transition
consistent with a KT-transition when we remove the periodic
boundary conditions, but we are not able to rigorously char-
acterize the transition as such due to the lack of a well defined
helicity modulus.

VI. CONCLUSIONS

We have studied a model of an imbalanced two-component
Bose-Einstein condensate, with and without spin-orbit cou-
pling in two spatial dimensions, including density-density in-
teractions among the components. Specifically, we have ex-
amined the modulations in the phase-texture of the complex
order parameter components induced by the spin-orbit cou-
pling, its disordering and suppression by thermal fluctuations
and interaction effects, as well as the modulations of the
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FIG. 14. Finite size scaling of the height of the q = 0 peak in
of the structure function calculated in an XY-model. System sizes
L ∈ (16, 24, 32, 40, 48, 56, 64) have been used. The exponent
grows linearly with temperature to the predicted value of 1/4 (repre-
sented by the dotted line) at the critical temperature of KT-transition,
βKT ≈ 1.12.

amplitude-texture induced by a subtle interplay between spin-
orbit and inter-component interactions. We also examined the
phase transitions of the model in the parameter regime where
SOC is absent.

In the absence of SOC, we found that the phase transition
of the model is in the KT universality class for all values of
the inter-component interaction strength we have considered.
Here we observed a KT-transition in the non-suppressed su-
perfluid condensate. These conclusions are made based on fi-
nite size scaling of the helicity modulus at the transition point,
as well as extrapolation of the negative dip of the fourth order
modulus to a non-zero value in the thermodynamic limit. Both
methods strongly indicate a discontinuous jump in the super-
fluid density at the critical temperature.

In the presence of SOC, we observed a phase-modulated
ground state at finite momenta in Monte-Carlo simulations.
When the inter-component interactions are weaker than the
intra-component interactions, we find that the condensates oc-
cupies a single minimum at finite momentum, in agreement
with previous works. This manifests itself as a modulation of
the phases of the condensate ordering fields. For sufficiently
strong inter-component interactions and intermediate spin-
orbit interactions, we observed that the spin-orbit induced
modulation is completely supressed in favour of a completely
imbalanced condensate. For strong spin-orbit coupling and
sufficiently strong inter-component interactions, however, the
total interaction energy is minimized by keeping the phase-
modulation and introducing an additional, staggered modula-
tion of the amplitudes with the same period. In this phase we
observe that the condensate occupies two q-vectors of equal
magnitude but opposite alignment.

Finally, we examined the thermal phase transition of the
spin-orbit induced plane-wave modulated superfluid ground
state into the normal fluid state in the London approximation.

We show that the inclusion of periodic boundary conditions
introduce a strong pinning effect, which weakens as we de-
couple the stripes from the edges of the system by applying a
Thomas-Fermi potential. In the presence of the potential, we
see signs of a Kosterlitz-Thouless transition, but we are not
able to confirm this.
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Appendix A: Classification of the KT-transition

The defining characteristic of a Kosterlitz-Thouless transi-
tion is the universal jump of 2/(πβc) of the superfluid den-
sity at the critical temperature, in the thermodynamic limit.
Consider the free energy, where the phase of component i
is twisted by an infinitesimal factor along the µ-direction,
F (∆i,µ). Technically, this amounts to replacing the phase of
component i by a twisted phase,

θi,r → θi,r − rµ∆i,µ (A1)

The superfluid density, or helicity modulus, is the second
derivative of the free energy with respect to the twist,

〈Υi,µ〉 ≡
1

V

∂2F (∆i,µ)

∂∆2
i,µ

. (A2)

Similarly, the fourth order modulus is the fourth derivative of
the free energy with respect to the twist,

〈Υ4,i,µ〉 ≡
1

V 2

∂4F (∆i,µ)

∂∆4
i,µ

. (A3)

Derivatives of odd order vanish due to symmetry.
In terms of amplitudes and phases of the Ginzburg-Landau

theory for a two-component condensate, the helicity modulus
is

V 〈Υi,µ〉 = 〈ci,µ〉 − β〈s2
i,µ〉, (A4)

while the fourth order modulus is

V 2〈Υ4,i,µ〉 = −3V 2β〈(Υi,µ − 〈Υi,µ〉)2〉
−4V 〈Υi,µ〉+ 3〈ci,µ〉+ 2β3〈s4

i,µ〉, (A5)

where we have defined

ci,µ ≡
∑
r

|ψi,r+µ| |ψi,r| cos
(
θi,r+µ − θi,r

)
, (A6)

si,µ ≡
∑
r

|ψi,r+µ| |ψi,r| sin
(
θi,r+µ − θi,r

)
. (A7)
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This similar to the expressions obtained when considering a
2DXY model. The amplitude fluctuations only influence the
moduli indirectly by weighting the terms in the sums. Hence,
the moduli of each component are coupled indirectly through
the potential.

At the critical temperature, the helicity modulus is expected
to scale as

Υi,µ(L) = Υ(∞)

(
1 +

1

2

1

logL+ C

)
(A8)

with system size35. We fit the data at finite size for different
values of β, and determining at which β the best fit is obtained
by using the Anderson-Darling test statistic. This allows an
extrapolation of the value of the jump, Υ(∞), which may be
compared to the KT-prediction. This will also result in an
estimate of the critical temperature.

By considering an expansion of the free energy in terms of

the phase twist,

F (∆i,µ)− F (0) = 〈Υi,µ〉
∆2
i,µ

2
+ 〈Υ4,i,µ〉

∆4
i,µ

4!
. (A9)

For the system to be stable, the change in the free energy has
to greater or equal to zero. If Υ4,i,µ is finite and negative
in the thermodynamic limit at the critical temperature, Υi,µ

cannot go continuously to zero at the critical temperature36.
Therefore, by calculating the negative dip in the fourth order
modulus for increasing system size, a finite value as L → ∞
signals a discontinuous jump in the helicity modulus. Further-
more, the temperature at which the dip is located should con-
verge to the critical temperature. Extrapolation of the location
of the dip may therefore be compared to the above estimate of
the critical temperature, as an additional consistency check.
However, this convergence is generally quite slow.
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The N -component London U(1) superconductor is expressed in terms of integer-valued supercurrents. We
show that the inclusion of inter-band Josephson couplings introduces instantons in the current fields, which
convert the phase transitions of the charge-neutral sector to crossovers. The instantons only couple to the
neutral sector, and leave the phase transition of the charged sector intact. The remnant non-critical fluctuations
in the neutral sector influence the one remaining phase transition in the charged sector, and may alter this phase
transition from a 3DXY inverted phase transition into a first-order phase transition depending on what the
values of the gauge-charge and the inter-component Josephson coupling are. This preemptive effect becomes
more pronounced with increasing number of components N , since the number of charge-neutral fluctuating
modes that can influence the charged sector increases with N . We also calculate the gauge-field correlator,
and by extension the Higgs mass, in terms of current-current correlators. We show that the onset of the Higgs-
mass of the photon (Meissner-effect) is given in terms of a current-loop blowout associated with going into the
superconducting state as the temperature of the system is lowered.

PACS numbers:

I. INTRODUCTION

Models with multiple U(1) condensates coupled by a vec-
tor potential are relevant to a variety of condensed matter sys-
tems. The number of possible interactions between the indi-
vidual condensates make the models much more complex than
single-band systems. Multiple, individually conserved con-
densates are applicable to systems of low temperature atoms,
such as hydrogen under extreme pressures1–6 and as effec-
tive models of easy-plane quantum anti-ferromagnets7,8. Su-
perconductors with multiple superconducting bands, such as
MgB2

9–11 and iron pnictides12 may also be described by a
model of multiple U(1) condensates, but in these systems the
individual condensates are not conserved. Inter-band Joseph-
son couplings must always be included, as they cannot a priori
be excluded on symmetry grounds.

Ginzburg-Landau models of N -component superconduc-
tors in the London limit host a rich variety of interesting
phenomena13–16. Each condensate supports topological vor-
tex line defects, which represent disorder in the condensate
ordering field. When the condensates are coupled through a
gauge field, the vortices carry magnetic flux quanta, and may
be bound into composite vortices with ±2π phase windings
in multiple condensates17. It turns out that this gives rise to
composite superfluid modes that do not couple to the gauge
field, even though their constituent vortices interact via the
gauge field. In addition to the superfluid modes, there will
be a single charged mode which is coupled by the gauge field.
This causes theN -component model without Josephson inter-
actions to haveN−1 superfluid phase transitions and a single
superconducting phase transition17. For certain values of the
gauge charge these transitions will interfere in a non-trivial
way, causing the transitions to merge in a single first-order
transition18,19.

The question of the nature of the phase transitions present in
Josephson-coupled multiband superconductors is of consider-
able interest. Symmetry arguments dictate that the inclusion

of the Josephson coupling breaks the [U(1)]
n symmetry down

to U(1), at any strength. The Josephson term locks the super-
fluid modes so that the phase transition in the neutral sector
is replaced by a crossover17, while the phase transition in the
gauge-coupled sector is expected to remain. If this transition
remains continuous, it is expected to be in the inverted 3DXY
universality class17. A recent study has observed a first or-
der transition in this model for weak Josephson coupling20,
suggesting a subtle interplay between the two length scales
dictated by the Josephson length and the magnetic field pene-
tration depth. Also of note is multiband superconductors with
frustrated inter-band couplings, which is U(1) × Z2 symmet-
ric. These systems have been shown to have a single first-
order transition in three dimensions from a symmetric state
into a state that breaks both U(1) and Z2 symmetry for weak
values of the gauge field coupling. For stronger values of the
charge, the transitions split21,22.

In this paper we present an alternate approach to the multi-
band superconductor which has certain advantages over stan-
dard formulations, and which allows further analytical in-
sights to be made. In particular, we are able reconcile the
different results for the character of the phase transition in
the charged sector found in Refs. 17 and 20 in the presence
of interband Josephson-couplings. By applying a character
expansion23,24 to the action, we replace the phases of the or-
der parameter with integer-current fields. These currents are
the actual supercurrents of the model. Section II presents the
details and basic properties of the multiband superconductor
in the London limit. In Section III A we present the charac-
ter expansion, apply it to the model with no Josephson cou-
pling, and compare the resulting representation to the original
model. We apply the character expansion to the multiband su-
perconductor with Josephson couplings in Section III B and
discuss it in the light of the current representation. In Sec-
tion IV we present the calculation of the Higgs mass in terms
of current-correlators. We present our conclusions in Sec-
tion V.
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II. STANDARD REPRESENTATION OF THE MODEL

We consider a model of N bosonic complex matter fields
in three dimensions. The matter fields are given by ψα(r) =
|ψα(r)| exp iθα(r), interacting through a single non-compact
U(1) gauge field, A(r). We also allow inter-band Josephson
couplings of the matter fields. In the general case, this is de-
scribed by a partition function

Z =

∫
DA

(∏
α

∫
Dψα

)
e−S , (1)

where the action is

S = β

∫
d3r

{
1

2

∑
α

(|∇ − ieA(r))ψα(r)|2

+ V ({|ψα(r)|}) +
1

2
(∇×A(r))

2

−
∑
α<β

λα,β |ψα(r)| |ψβ(r)| cos (θα(r)− θβ(r))

}
. (2)

The potential V contains terms that are powers of |ψα|. At this
point we employ the phase-only, or London, approximation
and choose all bare stiffnesses, |ψα|, equal to unity. Hence,
V is an unimportant constant. We will also focus on equal
couplings between all bands, i.e. λα,β = λ ∀ α, β. The action
is then given by

S = β

∫
d3r

{
1

2

∑
α

(∇θα(r)− eA(r))
2

+
1

2
(∇×A(r))

2

− λ
∑
α<β

cos (θα(r)− θβ(r))

}
(3)

We regularize this action on a cubic lattice of size L3

by defining the fields on a discrete set of coordinates rµ ∈
(1, . . . , L), that is θα(r) → θr,α and A(r) → Ar. On the
lattice, the action reads

S = β
∑
r

{
−
∑
µ,α

cos (∆µθr,α − eAr,µ) +
1

2
(∆×Ar)

2

− λ
∑
α<β

cos (θr,α − θr,β)

}
. (4)

Here, we use the cosine function to represent the kinetic term
of the continuum Hamiltonian in a way that preserves the pe-
riodic nature of the phases. Alternatively, one may arrive at
Eq. (4) by directly replacing the derivatives in Eq. (2) with the
gauge invariant forward difference,

(∇− ieA(r))ψα(r)→ ψr+µ̂,αe
−ieAr − ψr,α, (5)

and then taking the London limit as described above. We dis-
cuss the two-dimensional case in Appendix B.

In the formulation of Eq. (4) with λ = 0, the model is
known17,19 to have one phase transition from a normal state to

a superconducting state in one composite degree of freedom,
andN−1 phase transitions from a normal fluid to a superfluid
in the remaining degrees of freedom. The reason for this divi-
sion into one superconducting andN−1 superfluid degrees of
freedom becomes apparent when one correctly identifies the
relevant combinations of the phase fields. The part of the con-
tinuum action describing the coupling between the phases and
the gauge field is

S′ = β

∫
dr

{
1

2

∑
α

(∇θα(r)− eA(r))
2

}
. (6)

This can be rewritten into17

S′ = β

∫
dr

{
1

2N

(∑
α

∇θα(r)−NeA(r)

)2

+
1

2N

∑
α<β

[∇ (θα − θβ)]
2

}
. (7)

Hence, the phase combination
∑
α θα will couple to the gauge

field, and is identified as the single charged mode, while all
other combinations θα − θβ do not couple, and are neutral.
Note that forN = 1 only the charged mode remains. Two im-
portant points need to be emphasized. Firstly, the composite
variables are not compact in the same sense that the individ-
ual phases are. This means that the composite variables do
not support topological defects by themselves, only compos-
ite topological defects. Secondly, the last term in the action of
Eq. (7) has N(N − 1)/2 terms. Therefore, one may not in-
terpret the phase differences θα − θβ as independent degrees
of freedom. This is because of the multiple connectedness of
the physical space, fluctuations in a single individual phase
induce fluctuations inN−1 composite neutral modes, as well
as in the charged mode.

In the present form, with λ = 0 and e sufficiently large, this
model is known to have one phase transition in the inverted
3dXY -universality class, andN−1 transitions in the 3dXY -
universality class at a higher temperature17,19. These transi-
tions correspond to proliferations of the composite charged
mode and the composite neutral modes, respectively. If the
charge is lowered, the charged and neutral transitions will
approach each other in temperature. When they merge, the
proliferation of neutral vortices will trigger proliferation of
the charged mode. Consequently, the N phase transitions
collapse into a single first-order transition. This interplay
between the charged and neutral sector has been coined a
preemptive phase transition25, and has been verified numer-
ically in two-component systems in the absence of inter-
component Josephson-coupling in several detailed large-scale
Monte Carlo simulations18,19,25.

In the following Section, we reformulate the model in terms
of integer-valued current fields, considering first the case with
zero Josephson-coupling and then move on to include Joseph-
son coupling. The first case is useful to consider in connecting
the results of previous works mentioned above to the current-
formulation.
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III. CURRENT REPRESENTATION OF THE MODEL

A. Zero intercomponent Josephson coupling

The basis of the expansion used is a character
expansion23,24.

eβ cos γ =
∞∑

b=−∞

Ib(β)eibγ , (8)

where Ib(β) are the modified Bessel functions of integer or-
der. We apply this to the terms expβ cos(∆µθr,α − eAr) for
each value of r, µ, and α. This introduces integer vector fields
br,α, representing supercurrents. The low-temperature phase
is characterized by a state with proliferated current-loops on
all length scales, while the high-temperature phase only fea-
tures small current-loops.

By applying Eq. (8) to the partition function with Eq. (4) as
the action, and integrating out the phases and the gauge field,
details of which may be found in Appendix A, we arrive at the
partition function

Z =
∑
{b,m}

∏
r,α

δ∆·br,α,0
∏
r,µ,α

Ibr,α,µ(β)

∏
r,r′

e−
e2

2β

∑
α,β br,α·br′,βD(r−r′). (9)

This is a model of N current fields, with contact intra-
component interactions parametrized via the Bessel functions,
and long-range intra- and inter-component interactions origi-
nating with the gauge-field fluctuations, D(r − r′). The con-
straint ∆ · br,α = 0 forces the currents, br,α to form closed
loops, and implies a non-analytical behavior of each individ-
ual component, and an associated phase transition.

In the current language, the interpretation of the phase tran-
sitions explained in the previous Section is as follows. Con-
sider first a single component model. In the high tempera-
ture state, only the lowest term in the Bessel-function expan-
sion will contribute, and only small loops of supercurrents
will be present in the system. As the temperature is low-
ered all orders of the expansion contribute, and the integer
currents will proliferate, filling the system with loops of su-
percurrent. In the low temperature state all b-fields have pro-
liferated. As temperature is increased, the proliferated current
loops in the charged sector will collapse. Only the neutral su-
perfluid currents fill the system, and the state is therefore a
metallic superfluid15. As temperature is lowered further the
superfluid currents collapse as well, and the system is in the
normal metallic state.

B. Non-zero intercomponent Josephson couplings

The expansion of Eq. (8) may also be applied to the Joseph-
son term. This introduces an additional N(N − 1)/2 integer
fields mr,α,β . After expanding both the kinetic terms and the

Josephson terms, the partition function reads

Z =

∫
DA

(∏
α

∫
Dθα

)

×
∏
r,µ,α

∞∑
br,µ,α=−∞

Ibr,µ,α(β)eibr,µ,α(∆µθr,α−eAr,µ)

×
∏
r,α<β

∞∑
mr,α,β=−∞

Imr,α,β
(βλ)eimr,α,β(θr,α−θr,β)

×
∏
r

e−
β
2 (∆×Ar)2 (10)

The effect of the Josephson coupling becomes apparent when
we integrate out the phase fields. The divergences of the b-
fields will no longer be constrained to zero, but may take any
finite integer value, determined by the value of the m-fields.
The new constraints read

∆ · br,α =
∑
β 6=α

mr,α,β ∀ α, r, (11)

where we have defined mr,α,β = −mr,β,α. The gauge-term
is not coupled directly to the m-fields, and we may integrate
it out in the same fashion as before. The resulting partition
function is

Z =
∑
{b,m}

∏
r,α

δ∆·br,α,
∑
β 6=αmr,α,β∏

r,µ,α

Ibr,α,µ(β)
∏
r,α<β

Imr,α,β (βλ)

∏
r,r′

e−
e2

2β

∑
α,β br,α·br′,βD(r−r′) (12)

C. Instantons and phase transitions

The effect of the m-fields is to introduce instantons into
the closed loops of b-currents. A current of a particular com-
ponent (color) may now terminate at any site. However, this
termination must always be accompanied by a current of an-
other color originating at the same site. Termination of a cur-
rent of one component, and the appearance of a current of
another component at the same site represents an excitation
of ±1 in m. An important observation is that if one adds the
constraints, we have∑

α

∆ · br,α = 0 ∀ r. (13)

This reflects the color changing event stated above, the total
current when summing over all colors is conserved at all sites.
It also shows that there is a particular combination of currents,
the sum of all components, which will be divergence-free. The
net effect of the Josephson coupling, pictorially, is to chop
up the closed currents of the individual components and glue
them together into closed loops that may change color on any
site.
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We may expand the partition function first in terms of m-
fields, and then in terms of λ, by using the Bessel-function
representation

Iν(z) =
(z

2

)ν ∞∑
k=0

(
z
2

)2k
k!(ν + k)!

(14)

This demonstrates that the partition function consists of a sin-
gle term with zero divergence on all sites, which we know has
one or more phase transitions from a superconducting super-
fluid state into a non-superconducting normal fluid, and many
terms where the divergence of br,α is finite on any number of
sites.

Let us now consider two limits, and assume e is large, so
that there is no preemptive effect for λ = 0. For λ = 0, it is
evident that only m = 0 will contribute, and we are left with
only divergenceless terms, and hence the behaviour described
previously. The other limit is λ → ∞. In this case we must
examine the asymptotic form of the Bessel functions, which
to leading order in the argument is

Im(z) ∼ ez√
2πz

, (15)

i.e. independent of m, and the instanton field will fluctuate
strongly, causing the zero-divergence constraint on each com-
ponent to be removed. The only remaining constraint on the
current fields pertains to the composite current

∑
α bα, which

is divergence-free. The interpretation of this is that the phase
transitions in the N − 1 superfluid modes are converted to
crossovers by the Josephson coupling, while the single super-
conducting mode still undergoes a genuine phase transition.
The neutral crossover will be far removed from the charged
phase transition in this limit, and the remaining fluctuations in
the neutral sector will be almost completely suppressed. There
is no possibility of any interference between the sectors, and
therefore no preemptive phase transition. The phase transition
in the charged sector will therefore be in the universality class
of the inverted 3DXY phase transition.

For intermediate and small values of λ, the effect of the
Josephson coupling on the interplay between the charged and
neutral sectors is quite subtle in the present formulation. We
therefore choose to recast the individual currents into compos-
ite charged and neutral currents in the following.

D. Charged and neutral currents

The partition function presented in Eq. (12) is not partic-
ularly well suited for illuminating the interplay between the
neutral superfluid and charged superconducting modes. A
more direct approach is to start with the action where the
phase sum and phase differences have been separated, Eq. (7),
with a Josephson coupling included. To simplify the nota-
tion, we introduce composite fields Θ ≡

∑
α θα and ϑαβ ≡

θα − θβ . Then we have the lattice action

S = β
∑
r

{
−
∑
µ

cos (∆µΘr −NeAr,µ)

−
∑
µ,α<β

cos (∆µϑr,αβ)− λ
∑
α<β

cos (ϑr,αβ)

+
1

2
(∆×Ar)

2

}
. (16)

One may arrive at this form by defining the composite fields
in Eq. (7), then use the Villain approximation on the original
action of Eq. (4), rewrite the resulting action into one with the
composite fields, then reverse the Villain approximation.

Note that in Eq. (16), there is one charged mode andN(N−
1)/2 neutral modes, while the original theory has N degrees
of freedom. There are therefore (N − 1)(N − 2)/2 variables
too many. (Note that there are no redundant modes for N = 1
and N = 2). Therefore, not all of the phase differences are
independent when N > 2. Consider the case N = 3, where
one may form the phase differences θ1−θ2, θ2−θ3 and θ1−θ3,
but θ1 − θ3 = (θ1 − θ2) + (θ2 − θ3). It suffices to include the
phase differences ϑ12 and ϑ23.

This may be generalized to arbitrary N . Identify all θαβ
where

{(α, β)|α ∈ (1, . . . , N − 1) ∧ β = α+ 1}. (17)

Then, all θαβ where

{(α, β)|α ∈ (1, . . . , N − 2) ∧ β ∈ (α+ 2, . . . , N)} (18)

may be constructed by adding up the intermediate phase dif-
ferences, that is ϑαβ = ϑα,α+1+ϑα+1,α+2+· · ·ϑβ−1,β . With
this in mind, we may write out the partition function in terms
of the charged and neutral modes

Z =

∫
DΘ

∏
α<β

∫
Dϑαβ


×

N−1∏
α=1

N∏
β=α+2

δ

(
ϑαβ −

β−1∑
η=α

ϑη,η+1

) eS (19)

where S is the action of Eq. (16).
As an illustration, we perform the character expansion on

the model where the charged and neutral sectors have been
separated, for the special cases N = 2 and N = 3.

For N = 2 there are no redundant variables, and we have
the two composite variables Θ ≡ θ1 + θ2 and ϑ ≡ θ1 − θ2.
Using the identity Eq. (8), and integrating out the phases and
gauge field, we obtain

Z =
∑

{B,B,m}

∏
r

δ∆·Br,0δ∆·Br,mr∏
r,µ

IBr,µ(β)IBr,µ(β)
∏
r

Imr (βλ)

∏
r,r′

exp

{
− (Ne)

2

2β
Br ·Br′D(r − r′)

}
. (20)
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Here, B is the charged current field associated with Θ, while
B is the neutral current field associated with ϑ.

In this formulation, it is immediately clear that the model
features two integer vector-field degrees of freedom, one
which has long-range interactions mediated by the gauge field,
and one with contact interactions. The neutral current field has
its constraint removed by the m-field, while the charged field
is still constrained to be divergenceless. Hence, the model will
feature a single phase transition in the charged sector driven
by the collapse of closed loops of charged currents, while the
transition of the neutral sector is converted to a crossover by
the complete removal of constraints on B.

Let us consider this in a bit more detail. In Eq. (20), we may
perform the summation over the fields m ∈ Z. Since we have
that ∆·Br ∈ Z as well, the summation over them’s will guar-
antee that the constraint is satisfied for some value of m, such
that the summation overm effectively removes the constraints
on ∆ · Br. Hence, we have

∑
{m} δ∆·Br,mr

∏
r Imr (βλ) =∏

r I∆·Br (βλ), with no constraints on ∆ · Br. We may thus
perform the now unconstrained summation of the field Br,
namely

∑
{B}

(∏
r,µ

IBr,µ(β)

)(∏
r

I∆·Br (βλ)

)
= F (β, λ), (21)

where F is an analytic function of its arguments. This may
be seen by mapping the left hand side of Eq. (21) to a Villain
model, using the approximation23

Ib(x)

I0(x)
≈ 1

|b|!
elog(β/2)|b|. (22)

This may be rewritten as a gaussian provided β is sufficiently
small so that contributions |b| > 1 are small,

Ib(x)

I0(x)
≈ e

−b2
2β′ , (23)

where β′ is a renormalized coupling constant, and we find

F (β, λ) =
∑
{B}

(∏
r,µ

exp
−B2

r,µ

2β′

)(∏
r

exp
− (∆ ·Br)

2

2λβ′

)
, .

(24)
Since ther are no constraints B, this demonstrates that Eq. (21)
essentially is a discrete Gaussian theory, and the neutral sector
therefore does not suffer any phase transition. This point may
be further corroborated by going back to the formulation of
Eq. 16. The neutral sector of the action is seen to be identi-
cal to that of an XY spin-model in an external magnetic field,
with field strength λ. Any λ 6= 0 converts the phase tran-
sition, from a low-temperature ferromagnetic state to a high-
temperature paramagnetic state, into to a crossover from an
ordered to a disordered system. Note also that in the limit
λ = 0, the Bessel function will revert to I∆·B(0) = δ∆·B,0,
and the non-analytical constraint is re-introduced.

The total partition function for the entire system is thus

given by

Z = F (β, λ)
∑
{B}

∏
r

δ∆·Br,0
∏
r,µ

IBr,µ(β)

∏
r,r′

exp

{
− (Ne)

2

2β
Br ·Br′D(r − r′)

}
. (25)

The phase-transition in the neutral sector is converted to a
crossover, and there are no longer any critical fluctuations as-
sociated with disordering the neutral sector, unlike the case
λ = 0. This occurs as soon as λ is finite, however small.
However, even without a phase transition and associated criti-
cal fluctuations, there will still be a crossover with associated
fluctuations in its vicinity. Hence, the preemptive first-order
phase transition in the charged sector, which occurs for λ = 0,
may still take place provided λ sufficiently small.

The argument is as follows. In the preemptive scenario for
λ = 0, fluctuations in the neutral and charged sectors increase
as T is increased from below in the fully ordered state. The
charged sector influences the fluctuations in the neutral sector
and vice versa, such that the putative continuous transitions
in these sectors are preempted by a common first order phase
transition17,19. The important point to realize is that neither of
the sectors actually reach criticality, since there are no critical
fluctuations at the preemptive first-order phase transition.

We may have the same scenario occurring with finite but
small λ. A necessary requirement is that the gauge-charge e
is not too large, such that gauge-field fluctuations are not so
large as to separate the phase-transitions in the charged and
the neutral sector too much17,19. The key point is that the
inclusion of Josephson-couplings converts the phase transi-
tion in the neutral sector to a crossover in exactly the same
way that the ferromagnetic-paramagnetic phase transition in
the 3DXY model is converted to a crossover by the inclu-
sion of a magnetic field coupling linearly to the XY -spins,
cf. Eq 16. This leaves only a phase-transition in the charged
sector, but it does not completely suppress fluctuations in the
neutral sector. It merely cuts the fluctuations off on a length-
scale given by the Josephson-length 1/λ, thereby preventing
them from becoming critical. As temperature is increased, the
neutral sector approaches its crossover region, with increas-
ingly large fluctuations. At the same time, the charged sector
approaches its putative inverted-3dXY fixed point. Provided
that the crossover region of the neutral sector and the fixed
point of the charged sector are sufficiently close, the fluctua-
tions in both sectors may still strongly influence each other,
and a first-order preemptive phase transition may still occur
in the charged sector. This is consistent with recent numer-
ical work20, which observed a first order phase transition in
multi-band superconductors with weak Josephson-coupling in
Monte-Carlo simulations using the original U(1) phases.

For N = 3 we must consider carefully the redundant vari-
able, ϑ13 = ϑ12 + ϑ23. The partition function, prior to inte-
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gration of the phases and the gauge field reads

Z =

∫
DΘ

∏
α<β

∫
Dϑαβ

 δ(ϑ13 − ϑ12 − ϑ23)

×
∏
r,µ

∞∑
Br,µ=−∞

IBr,µ(β)eiBr,µ(∆µΘr−NeAr,µ)

×
∏
r,µ
α<β

∞∑
Br,µ,αβ=−∞

IBr,µ,αβ (β)eiBr,µ,αβ∆µϑr,αβ

×
∏
r,α<β

∞∑
mr,αβ=−∞

Imr,α,β
(βλ)eimr,α,βϑαβ

×
∏
r

e−
β
2 (∆×Ar)2 . (26)

Again, B is the charged current associated with Θ, while Bαβ
are the neutral currents associated with ϑαβ . The δ-function
is included to account for the redundancy of the composite
phase representation.

We now proceed with the integration of phases and gauge
field, taking care to integrate out the redundant phase first.
The partition function may then be written as

Z =
∑

{B,B,m}

∏
r

δ∆·Br,0
∏
r,µ

IBr,µ(β)

∏
r

δ∆·Br,12+∆·Br,13,mr,12+mr,13∏
r

δ∆·Br,23+∆·Br,13,mr,23+mr,13∏
r,µ
α<β

IBr,µ,αβ (β)
∏
r

α<β

Imr,αβ (βλ)

∏
r,r′

exp

{
− (Ne)

2

2β
Br ·Br′D(r − r′)

}
. (27)

This is a model of a single gauge coupled supercurrent B
which are constrained to form closed loops, and three super-
fluid currents B12, B23 and B13 which are not constrained to
form closed loops. The three superfluid currents are not inde-
pendent, as is seen from the two constraints on them. As in
the case N = 2, the summation over the m-fields may be per-
formed, eliminating the constraints on the fields Br,µ,αβ , af-
ter which the unconstrained summation over these fields may
be performed. As for N = 2, this yields multiplicative ana-
lytic factors in the partition function, and the phase transitions
in the neutral sectors will be converted to crossovers. Given
that the crossovers in the neutral sectors and the charged fixed
point have sufficient overlap, the system may still feature a
single preemptive first-order phase transition arising from the
interplay between the charged and neutral modes. Further-
more, the inclusion of the additional degree of freedom en-
hances the combined fluctuations of the neutral mode at a
given Josephson coupling, λ, and therefore strengthens the
preemptive first-order transition. This is consistent with the
results of recent numerical work20.

IV. CURRENT CORRELATIONS AND THE HIGGS
MECHANISM

The defining characteristic of the inverted 3DXY -
transition in the charged sector is a spontaneous U(1) gauge-

symmetry breaking associated with the gauge field A becom-
ing massive as the system crosses the transition point of the
metallic state into the superconducting state. In this section,
we investigate how the onset of the mass mA of the photon
(the Higgs mass), which is equivalent to the Meissner effect
of the superconductor, comes about as result of a non-analytic
change in the infrared properties of the current-correlations of
the system. mA is found from the limiting form of the gauge-
field correlation function

〈AµqAν−q〉 ∼
1

q2 +m2
A

. (28)

To calculate 〈AµqAν−q〉, we consider the action of the charged
sector given on the form Eq. (A7) before integrating out the
gauge field, and insert source terms source Jq ,

SJ =
∑
q

[
ie

2

∑
α

bq,α ·A−q +
ie

2

∑
α

b−q,α ·Aq

+
β

2
|Qq|2 Aq ·A−q

+
1

2
(Jq ·A−q + J−q ·Aq)

]
. (29)

which in turn may be written on form

SJ =
∑
q

[(
Aq +

1

2

(
Jq + ie

∑
α

bq,α

)
D−1
q

)
Dq

×
(
A−q +

1

2

(
J−q + ie

∑
α

b−q,α

)
D−1
q

)
+−1

4

(
Jq + ie

∑
α

bq,α

)
D−1
q

×
(
J−q + ie

∑
β

b−q,β

)]
. (30)

Here, Dq = β |Qq|2 /2 as before. After shifting and integrat-
ing the gauge field, we have

SJ = −
∑
q

[
1

2β |Qq|2
(
Jµq P

µν
T Jν−q − e2

∑
αβ

bµq,αb
µ
−q

+ ie
∑
α

(
Jµ−qb

µ
q,α + Jµq b

µ
−q,α

) )]
, (31)

where repeated indices are summed over, and PµνT is the trans-
verse projection operator

PµνT = δµν −
QµqQ

ν
−q

|Qq|2
(32)

The gauge-field correlator is then given by
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〈AµqAν−q〉 =
1

Z0

δ2ZJ
δJ−q,µδJq,ν

∣∣∣∣∣
J=0

=
1

Z0

∑
{b,m}

∏
r,α

δ∆·br,α,
∑
β 6=α εαβmr,α,β

∏
r,µ,α

Ibr,α,µ(β)
∏
r,α<β

Imr,α,β (βλ)

×
(
− δ2SJ
δJµ−qδJ

ν
q

− δSJ
δJµ−q

δSJ
δJνq

)
e−SJ

∣∣∣∣∣
J=0

(33)

Here, Z0 is the partition function with the sources set to zero.
The functional derivatives of the action is given by

− δSJ
δJνq

=
1

β |Qq|2
(Jν−qP

µν
T + ie

∑
α

bν−q,α) (34)

and

− δ2SJ
δJµ−qδJ

ν
q

=
1

β |Qq|2
PµνT . (35)

Inserting this into Eq. (33) and setting the currents to zero, we
have

〈AµqAν−q〉 =
PµνT

β |Qq|2
− e2

β2 |Qq|4
〈
∑
αβ

bµq,αb
ν
−q,β〉 (36)

Setting ν = µ and summing over µ yields the relevant corre-
lator

〈Aq ·A−q〉 =
1

β |Qq|2

(
2− e2

β |Qq|2
〈Bq ·B−q〉

)
, (37)

where we have defined 〈Bq ·B−q〉 = 〈
∑
αβ bq,α · b−q,β〉

The effective gauge field mass is given by the zero momen-
tum limit of the inverse propagator,

m2
A = lim

q→0

2

β〈AqA−q〉
(38)

As is seen from Eq. (37), the relevant combination of current-
field correlators is the superconducting current, while charge-
neutral currents do not appear in the expression. The current-
correlator may be interpreted as the helicity modulus, which at
a charged fixed point has a non-analytic behavior of the term
proportional to q2. We expect the leading behavior to be26

lim
q→0

e2

2β
〈Bq ·B−q〉 ∼

(1− C2(T ))q2, T > TC .
q2 − C3(T )q2+ηA , T = TC .
q2 − C4(T )q4, T < TC .

(39)
The result given above is dual to an expression for the gauge-
mass in terms of correlation function of topological defects
of the superconducting order, i.e. vortices17,26,27, since vor-
tices are dual objects to the currents b. In 3D, it is known
that the dual of a superfluid is a superconductor, and vice

versa17,24,26,27. Therefore, the above result for the current-
correlator of a superconductor features the same behavior as
the vortex-vortex correlator at a neutral fixed point, since a
neutral fixed point in the original theory is a charged fixed
point in the dual theory. Here, C2 is the helicity modulus of
the system, C3 is a critical amplitude, and C4 is essentially
the inverse mass of the gauge-field. The physical interpreta-
tion of limq→0

e2

2β 〈Bq · B−q〉 is that when this quantity is
zero, there are no long-range correlations of current-loops in
the system, i.e. there are no supercurrents threading the en-
tire system which is therefore normal metallic. Conversely,
when T < Tc this correlator is non-zero. There are super-
currents threading the entire system, which is therefore super-
conducting. When T > TC , the gauge mass will be zero in
the long wavelength limit. When T < TC , however, the fac-
tors of q2 will cancel, and the gauge correlator obtains a finite
expectation value, and hence a mass. The Higgs-mechanism
(Meissner effect) in anN -component superconductor is there-
fore a result of a blowout of closed loops of charged currents
as the temperature is lowered through the phase transition.
Conversely, the transition to the normal state is driven by a
collapse of closed current loops, which is dual to a blowout of
closed vortex loops. In either way of looking at the problem,
the Higgs-mechanism is fluctuation driven.

Note that the above result is valid for any number of compo-
nents N ≥ 1, and any value of the Josephson coupling λ ≥ 0.

The preemptive scenario described in the previous section
impacts the temperature-dependence of the Higgs-mass at the
transition from the superconducting to the normal metallic
state. The mass vanishes continuously in an inverted 3DXY
phase transition if the value of the gauge-charge is large
enough for the preemptive scenario to be ruled out for any
λ, including λ = 0. For small enough gauge-charge, such that
fluctuations in the neutral sector strongly affect fluctuations
in the charged sector, and vice versa, the preemptive effect
comes into play. In that case, the Higgs-mass vanishes dis-
continuously at the phase transition.

A schematic phase-diagram for the case N = 2 is shown in
Fig. 1.

V. CONCLUSION

We have formulated an N -component London supercon-
ductor with intercomponent Josephson couplings as a model
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FIG. 1: A schematic phase diagram for the model with N = 2. The
top panel shows the case λ = 0, while the lower panel shows the
case with λ > 0. Top panel, λ = 0: Phase I is the fully sym-
metric normal phase with no superfluidity and no superconductivity.
Phase III is the phase with no superconductivity, but non-zero su-
perfluid stiffness in the neutral mode (metallic superfluid). Phase II
is the low-temperature fully ordered state with finite Higgs mass in
the charged sector and finite superfluid density in the neutral sec-
tor, a superconducting superfluid. The solid line separating phase I
from phase II is a first-order phase transition line. The dotted line
separating phase II from phase III is a critical line in the inverted
3DXY universality class. The solid line separating phase I from
phase III is a critical line in the 3DXY universality class. Bottom
panel, λ > 0: Phase I’ is the high-temperature phase with no super-
conductivity. The entire phase is analytically connected with only
a crossover regime separating the high-temperature phase from the
lower-temperature phase. There is no spontaneous symmetry break-
ing in the neutral sector, since the Josephson coupling effectively acts
as an explicit symmetry-breaking term in this sector, analogous to a
magnetic field coupling linearly to XY spins. Phase II’ is the low-
temperature superconducting state. The solid part of the line separat-
ing phase I’ from phase II’ is a first-order phase transition line. The
dotted part is a critical line in the inverted 3DXY universality class.
Both for λ = 0 and λ > 0, the line separating the superconducting
states (II and II’) from the non-superconducting state changes char-
acter from a first-order phase transition (solid line) to a second-order
phase-transition (dotted line) as via a tricritical point. The 3DXY
critical line separating phase I from phase III for λ = 0, is converted
to a crossover line in phase I’ for λ > 0.

of N integer-current fields bα and N(N − 1)/2 instanton
fields, mα,β . These instantons allow supercurrents of a partic-
ular condensate component to be converted to a supercurrent
of a different component, i.e. currents may change ”color”
at any site. For zero Josephson coupling, λ, only configura-
tions where all the instanton fields are zero contribute, and
the model reverts to an N -component gauge-coupled 3dXY-
model. This model is known to have either i)N−1 transitions
in the XY -universality class and a single phase transition
in the inverted XY-universality class, or ii) a single preemp-
tive first-order phase transition for intermediate values of the
charge. For any λ > 0, the N −1 phase transitions in the neu-
tral sector are converted to crossovers. In the limit λ → ∞,
all orders of instanton excitations will contribute. This effec-
tively removes the constraints ∆ · bα = 0 on each individ-
ual component. There is only one particular composite mode,∑
α bα which is still divergenceless, and which thus features a

phase transition. This transition is known to be in the inverted
3dXY-universality class for λ = 0. For small, but finite λ,
fluctuations in the neutral sector are still substantial although
the phase transitions are all converted to crossovers. These
charge-neutral non-critical fluctuations nonetheless substan-
tially influence the putative critical fluctuations in the charged
sector, particularly at temperatures close to the λ = 0 3DXY
critical point. This converts the inverted 3DXY critical point
into a first-order phase-transition via a preemptive effect. The
degree to which the charge-neutral fluctuations influence the
fluctuations in the charged sector for small λ, increases with
the number of composite charge-neutral fluctuating modes. In
the parameter regime (e, λ) where one may have a preemptive
effect, the first-order character of the superconductor-normal
metal phase transition will therefore be more pronounced with
increasing N .

As a byproduct of our analysis, we have recast the onset
of the photon Higgs-mass in the superconductor (Meissner ef-
fect) in terms of a blowout of current loops associated with the
onset of superconductivity. This analysis goes beyond mean-
field theory and takes all critical fluctuations of the theory into
account. The description giving the onset of the Higgs-mass
of the photon in terms of a current-loop blowout going into
the superconducting state as temperature is lowered, is dual
to the description of the vanishing of the Higgs-mass of the
photon in terms of vortex-loop blowout going into the normal
metallic state as the temperature is increased.
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Appendix A: The character expansion

We apply the expansion

eβ cos γ =
∞∑

b=−∞

Ib(β)eibγ , (A1)

to the cosine terms of Eq. (4), with λ = 0. This gives the
action

Z =

∫
DA

(∏
α

∫
Dθα

)

×
∏
r,µ,α

∞∑
br,µ,α=−∞

Ibr,µ,α(β)eibr,µ,α(∆µθr,α−eAr,µ)

×
∏
r

e−
β
2 (∆×Ar)2 (A2)

By performing a partial integration of each phase component,
θr,α, we move the lattice derivative from the phase to the in-
teger field b in the first term. Then we factorize the terms
dependent on the phases on each lattice site, which may then
be integrated separately.

Zθ =
∏
r,α

∫ 2π

0

dθr,αe−iθr,α(
∑
µ ∆µbr,µ,α). (A3)

This constrains the b-fields to have zero divergence,

∆ · br,α = 0 ∀ r, α. (A4)

The partition function then reads

Z =

∫
D(A)

∑
{b}

∏
r,α

δ∆·br,α,0
∏
r,µ,α

Ibr,µ,α(β)

∏
r

e−[ie
∑
α br,α·Ar+ β

2 (∆×Ar)2] (A5)

This represents N integer-current fields which must form
closed loops individually, coupled by a single gauge field, A.

The next step is to integrate out the gauge degrees of free-
dom. To this end we Fourier transform the action

S =
∑
r

[
ie
∑
α

br,α ·Ar +
β

2
(∆×Ar)

2

]
(A6)

into

S =
∑
q

[
ie

2

∑
α

bq,α ·A−q +
ie

2

∑
α

b−q,α ·Aq

+
β

2
(Qq ×Aq)(Q−q ×A−q)

]
. (A7)

Here, we have symmetrized the b · A-term, and Qq is the
Fourier representation of the lattice differential operator, ∆.
We can further simplify the expression by choosing the gauge

∆ · Ar = 0, which translates to Qq · Aq = 0 in Fourier
space. This reduces the last term to β |Qq|2 Aq · A−q/2,
where |Qq|2 =

∑
µ (2 sin qµ/2)

2. Now we complete the
squares in Aq , to facilitate the Gaussian integration

S =
∑
q

[(
Aq +

ie

2

∑
α

bq,αD
−1
q

)
Dq

×
(
A−q +

ie

2

∑
α

b−q,αD
−1
q

)
+
e2

4

(∑
α

bq,α

)
D−1
q

(∑
β

b−q,β

)]
, (A8)

where Dq = β |Qq|2 /2. Now we can shift and integrate out
the gauge field, Aq , which leaves us with

S =
∑
q

e2

2β |Qq|2
(∑

α

bq,α

)
·
(∑

β

b−q,β

)
, (A9)

or in real space

S =
∑
r,r′

e2

2β

(∑
α

br,α

)
·
(∑

β

br′,β

)
D(r − r′). (A10)

Here,D(r−r′) is the Fourier transform of 1/ |Qq|2. Inserting
this into the action, we arrive at

Z =
∑
{b,m}

∏
r,α

δ∆·br,α,0
∏
r,µ,α

Ibr,α,µ(β)

∏
r,r′

e−
e2

2β

∑
α,β br,α·br′,βD(r−r′), (A11)

which is Eq. (9)

Appendix B: Two-dimensional multiband superconductors

In a thin-film superconductor, the effective magnetic pen-
etration depth is inversely proportional to the film thickness.
Hence, in a two-dimensional system, the magnetic penetra-
tion depth becomes infinite, and the effective charge of the
charge carriers become zero. This effectively freezes out the
gauge-field fluctuations of the interior of the film, in turn elim-
inating the long-range gauge-field mediated vortex-vortex in-
teractions. In this case the relevant lattice action will be

S = −β
∑
r

∑
µ,α

cos (∆µθr,α)

−βλ
∑
r

∑
α<β

cos (θr,α − θr,β) . (B1)

That is, it is effectively a neutral condensate.
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We may apply the character expansion of Eq. (8) to
Eq. (B1), which results in the partition function

Z =
∑
{b,m}

∏
r,α

δ∆·br,α,
∑
β 6=αmr,α,β∏

r,µ,α

Ibr,α,µ(β)
∏
r,α<β

Imr,α,β (βλ). (B2)

This is of course very similar to Eq. (12), with the differences
being as follows. The integer-current field, br is now a two-
component vector, as is naturally the position vector, r, and
the gauge-field mediated interaction has disappeared.

We may apply the same reasoning to Eq. (B2) as we did
in the main text. There will be a single mode,

∑
α br which

is divergenceless, and N(N − 1)/2 modes with finite diver-
gence. The only difference now in the two-dimensional case
is the lack of gauge-field mediated interactions in the diver-
genceless mode. Hence, the single remaining phase transi-
tion is expected to be a Kosterlitz-Thouless transition from a
two-dimensional superfluid to a normal fluid. This prediction
could be verified in Monte-Carlo simulations, as the partition
function of Eq. (B2) is particularly well suited for worm-type
algorithms.

1 J. E. Jaffe and N. W. Ashcroft, Phys. Rev. B 23, 6176 (1981).
2 J. Oliva and N. W. Ashcroft, Phys. Rev. B 30, 1326 (1984).
3 K. Moulopoulos and N. W. Ashcroft, Phys. Rev. Lett. 66, 2915

(1991).
4 K. Moulopoulos and N. W. Ashcroft, Phys. Rev. B 59, 12309

(1999).
5 N. W. Ashcroft, Journal of Physics A: Mathematical and General

36, 6137 (2003).
6 N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).
7 T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.

Fisher, Phys. Rev. B 70, 144407 (2004).
8 O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104

(2004).
9 F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D.

Jorgensen, Phys. Rev. Lett. 87, 047001 (2001).
10 A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005

(2001).
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