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Figure 5.13: Combined plots of the cumulative difference functions for the differ-
ences between the power functions in each possible pair of power functions when
n1 = 60,no = 240,k = 8. The differences are long the abcissa and the values of the
cumulative difference functions are along the ordinate. To the right of the plot there
is a legend specifying which color has been used in plotting each cumulative difference
function. For instance the black dot in front of “CM vs. C” means the cumulative dif-
ference function of yoar — ¢ has been plotted using black color. In the title of the plot
the number of points where we have taken the differences between the power functions
in each pair of power functions are shown. This number corresponds to the number of
points where at least one of the power functions has power 80 % or greater.
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5.2.4 Median power differences

In Table 5.4 the median differences between the power functions in each pair of
power functions are shown. We have only taken the median of power differences in
points where the power of at least one of all of the power functions is equal to or
greater than 80%. We observe that median power differences only are substantially
greater than 0 when one of the power functions considered is 7o. We also observe
that the median power increase is greatest for the two smallest designs considered,
i.e (10,10) and (4,16). When considering the median power differences in the
balanced design the number of points studied is below 50 when k£ = 5,6,7,8 and
in the unbalanced design when k = 4,...,8, so that these cases are most likely
of no practical importance (since the points in parameter space corresponding to
these points are most likely of no practical importance). However, for the other
values of k the power increase compared to ¢ is quite large and may be of practical
importance.

One sensible question to ask is why we have chosen the median to summarize the
differences in power between power functions. When the differences are unique
and there is an odd number of points, the median can be shown to minimize the
following total loss function (proof not given)

Liot(s) = ZLl(xia s), (5.1)

where s is the number summarizing the numbers x;, 1 = 1,...,n and
Li(x;, 8) = |s — x4 (5.2)

is called the absolute error loss and gives the cost of summarizing the number x;
with s, i.e the cost incurred by the potential discrepancy between s and x;. The
loss function given in Equation (5.2) is not the only possible loss function. Another
possible loss function is the squared error loss function

Ly(zi,8) = (5 — x;)*

(Casella & Berger 2002, p. 348-349). The minimizer of Equation (5.1) when
replacing L, with L, is the mean of z;,7 = 1,...,n, which is also a commonly used
summary statistic (proof not shown).

We now compare the two loss functions L; and L, to better understand why we use
the median and not the mean as a summary statistic. All loss functions are non-
negative and L(a,a) = 0, meaning no cost occurs when summarizing the number a
with itself. For the two considered loss functions L(a, z;) = L(z;,a), which means
summarizing the number x; with s; is equally bad as summarizing the number x;
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with the number sy when 1 > x;, s9 < 25 and |z; — s1| = |x; — $2|. In fact, Ly and
Ly are metrics. However, loss functions need not be metrics in general since they
need not be symmetric, i.e L(x;,s) = L(s,x;) does not need to hold. This occurs
for instance when it considered to be more imprecise to summarize the number
with s than with s; in the example given. Since |e| > €2 when € € (—1,1) we have
that Ly > Ly when |z; — s| < 1. And since |e| < € when € € (—o0, —1) U (1, c0),
we have that L; < Ly when |z; — s| € (1,00). This means L; places more weight
on small differences compared to Ly which places relatively more weight on larger
differences. Alternatively, if we increase the distance between x; and s by one
unit the increase in cost by using L, is 1 and is independent of the initial distance
between s and x;. However, when using Lo the loss is greater if the original distance
between z; and s is large compared to when it is small. We do not regard values of
(01, 05) that give large differences in power between two power functions as more
likely values of (6, 02) under H;. We therefore consider L; as a better cost function
than Ly and therefore use the median and not the mean as the summary statistic.
We could of course weigh the different L;(z;, s) differently than done in Equation
(5.1). One possibility would be to weigh them according to some prior belief of the
true values of (01, 05) under H;, where we place more weight on more likely values
and less weight on the remaining values of (6, 65). By using the expression for the
total loss in Equation (5.1) we regard each value of (6, 65) in which we consider
the differences in power as an equally likely value of (61, 6y) under Hj.

5.3 Example (d) in Section 4.1.1 revisited

In this section we create the realisations of the different p-values in example (d) in
Section 4.1.1. Since the A and E p-values are not valid, we should not use these
p-values to create a level a-test. We choose o = 0.05. In Table 5.6 the different
realisations of the valid p-values considered in this thesis are shown. From Section
5.2.3 we know that vour = ¢ & Yem = yar when ny = 97,ny = 103,k = 2 in
points where the power of at least one of the power functions is above or equal
to 80%. Which one of the p-values should then be used? Is it in general wise to
calculate the different realisations of the different p-values, as we have done in this
example, and then choose the p-value that has the lowest realisation since the power
functions are almost equal in (hopefully) the interesting part of the parameter
space? Could this procedure be used when performing multiple hypothesis tests?
Since each p-value is valid is seems at first glance reasonable that the new p-value
should be valid.

If we always choose the smallest realisation of the p-values for all outcomes we are

132



Table 5.4: Median power differences of the power functions in all of the points where
the power of at least one power function is equal to or larger than 80 %. Column 1
gives the sample sizes in the experiment, column 2 gives the significance level specified
as 5- 107 and k ranges from 2 to 8, column 3 gives the number of points in which we
evaluate the differences of the power functions (which means we consider the same points
when taking the differences of all of the possible power functions) columns 4 to 9 each
give the median power differences where we consider the difference between the leftmost
power function in the column and the rightmost power function in the same column.
For instance “EM vs. C” means we consider the median of ygps(01,02; o) — yc (01, 02; @)
over the grid of (61, 602) under H; where the power of at least one test for the specified
values of n1,ns and k is above or equal to 80 %.

(ni,ng) k No. points EM vs. C CM vs C M vs. C EM vs. M CM vs. M EM vs. CM
(10,10) 2 977 8.048 8.048 8.048 0.000 0.000 0.000
3 384 11.459 11.459 11.459 0.000 0.000 0.000
4 136 20.787 20.787 20.787 0.000 0.000 0.000
5 45 33.720 33.720 33.720 0.000 0.000 0.000
6 6 86.114 86.114 86.114 0.000 0.000 0.000
7 0
8 0
(25, 25) 2 2160 0.367 0.365 0.367 0.000 0.000 0.000
3 1531 0.991 0.898 0.898 0.001 0.000 0.001
4 1081 1.976 1.885 1.885 0.000 0.000 0.000
5 745 1.024 1.024 0.738 0.003 0.003 0.000
6 512 2.177 2.177 0.884 0.213 0.213 0.000
7 362 1.935 1.935 1.935 0.000 0.000 0.000
8 242 5.541 5.541 5.541 0.000 0.000 0.000
(50, 50) 2 2966 0.023 0.020 0.021 0.000 -0.000 0.000
3 2394 0.036 0.033 0.033 0.000 0.000 0.000
4 1987 0.104 0.104 0.104 0.000 0.000 0.000
5 1650 0.112 0.112 0.063 0.000 0.000 0.000
6 1400 0.255 0.250 0.165 0.000 0.000 0.000
7 1178 0.250 0.137 0.013 0.051 0.019 0.025
8 988 0.353 0.312 0.091 0.039 0.000 0.020
(97,103) 2 3571 0.000 0.000 0.000 0.000 0.000 0.000
3 3135 0.000 0.000 0.000 0.000 0.000 0.000
4 2800 0.000 0.000 0.000 0.000 0.000 0.000
5 2520 0.000 0.000 0.000 0.000 0.000 0.000
6 2289 0.000 0.000 0.000 0.000 0.000 0.000
7 2091 0.001 0.001 0.000 0.000 0.000 0.000
8 1907 0.001 0.001 0.000 0.000 0.000 0.000
(150, 150) 2 3836 0.000 0.000 0.000 0.000 0.000 0.000
3 3470 0.000 0.000 0.000 0.000 0.000 0.000
4 3192 0.000 0.000 0.000 0.000 0.000 0.000
5 2952 0.000 0.000 0.000 0.000 0.000 0.000
6 2755 0.000 0.000 0.000 0.000 0.000 0.000
7 2568 0.000 0.000 0.000 0.000 0.000 0.000
8 2415 0.000 0.000 0.000 0.000 0.000 0.000
(4,16) 2 642 6.669 6.669 6.669 0.000 0.000 0.000
3 194 9.895 9.895 9.895 0.000 0.000 0.000
4 25 20.074 20.074 20.074 0.000 0.000 0.000
5 8 86.838 86.838 86.838 0.000 0.000 0.000
6 0
7 0
8 0
(10,40) 2 1731 0.861 0.426 0.758 0.003 0.000 0.008
3 1064 1.539 0.562 0.178 0.082 0.013 0.323
4 653 3.462 3.462 0.710 0.116 0.116 0.000
5 414 4.514 4.514 1.770 0.044 0.044 0.000
6 241 6.438 5.947 3.589 0.008 0.008 0.000
7 129 8.635 9.698 5.678 0.035 0.040 -0.005
8 60 7.067 5.112 7.067 0.000 -0.556 0.556
(20,80) 2 2535 0.102 0.030 0.064 0.004 -0.000 0.012
3 1916 0.253 0.086 0.003 0.061 0.004 0.050
4 1484 0.380 0.191 -0.484 0.990 0.611 0.027
5 1167 0.583 0.312 -0.082 0.817 0.369 0.071
6 910 0.731 0.575 -0.021 0.512 0.364 0.091
7 718 0.884 1.019 -0.005 0.449 0.449 0.000
8 555 0.897 1.210 -0.002 0.125 0.146 -0.042
(60,240) 2 3538 0.000 0.000 0.000 0.000 0.000 0.000
3 3110 0.000 0.000 0.000 0.000 0.000 0.000
4 2767 0.000 0.000 -0.000 0.001 0.001 0.000
5 2483 0.000 0.000 -0.000 0.002 0.001 0.000
6 2246 0.001 0.000 -0.005 0.009 0.005 0.000
7 2046 0.001 0.001 -0.001 0.006 0.004 0.000
8 1869 0.001 0.002 -0.003 0.010 0.007 0.000
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Table 5.6: The different realisation of either of the C, M, Co M or E o M p-values.
In the first row the different P-values considered are shown and on the second row the
realisations of the p-values are given.

p-value pbc Pom Pm PEM
p(a:) 0.101 0.0897 0.0914 0.0864

Table 5.7: Type I error probabilities of the level 0.05 test based on ppin(X) when
n1 = 97,no = 103 at the grid of #-values used under H

] 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Pry(pmin(X) < 0.05) 0 5.01 4.72 4.99 5.08 5.09 5.09 5.13 4.82 4.76 4.94

in fact using the test statistic

Pmin(X) = min(pa (X)), pem (X)), por (X), pe(X))

When calculating Prg(ppmi»(X)) we sum over least as many outcomes by con-
struction as when calculating each of the corresponding probabilities for the other
p-values. So, if Pry(p(X) < a) = « for one of the p-values and we sum over one
additional outcome with positive probability when calculating Prg(pmi.(X) < a)
compared to when calculating Pry(p(X) < a) we have that pyim(X) is not valid.
In Table 5.7 we show the type I error probabilities when ny = 97,1, = 103,k = 2
and when using pyin(X) to create the level 0.05 test. We see that py;, (X)) is not
valid.

We see that yonr = Yo = vem = 7va in points where the power of at least
one of the tests is above 80 % does not necessarily mean that the realisations
of the p-values are the same when evaluated in the same outcomes. What does
then vonr = Yo = yppm = 7y mean? Given that the true values of the success
probabilities are in the considered region over parameter space, i.e the region where
at least one of the power functions has power at least 80 %.,vonmr & Yo & YErm & Y
means the long frequencies we observe realisations of the p-values below or equal
to 0.05 for all of the p-values will almost be the same. So in the long run we will
get almost the same estimates of the type II error probabilities using either one of
the tests (given that the (6, 6,) is in the considered region of the parameter space)
(also recall that Pry(type I error) = 1 — ). To sum up, we must choose one valid
p-value in a given set-up. In this example we have chosen o = 0.05. We therefore
will not reject the null hypothesis using any of the p-values. We note that Zhao
et al. (2011) use a lower significance level than we do since they perform multiple
tests.
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5.4 Further work

In this section we present topics that can be part of further work.

5.4.1 Better comparison of power functions under H

In Section 5.1 we did simple comparisons of the power functions under Hy. The
main focus was to show that the A and E p-values in general not are valid and
that the remaining p-values are. In many situations we observed that the power
functions vys, Yenm and yops take almost the same values and that these values are
higher than the values taken by v¢. It is of interest to quantify the power increase
also under Hy and see if 7o &~ yon & vey holds in general under Hy or if patterns
similar to the ones observed under H; also hold under Hy. One possible approach
would be to use the same grid along 6; = 6, as the grid increment used under H;
and thereafter create similar tables and figures for the power functions as the ones
created under H;.

5.4.2 More smaller, balanced and unbalanced designs

We have observed that the power functions ygas, Your, Yar are significantly greater
than v¢ for small unbalanced and balanced designs. These changes were greatest
for the two designs (10,10) and (4,16). It is of interest to know if similar results
hold for smaller designs than (10,10) and (4,16) and if so how large the power
increases are. We could also study other unbalanced designs than n, = 4n4, for
instance ny = 3n; and ny = 2n;.

5.4.3 The Berger and Boos p-value

When calculating the realisations of the M p-value we maximize the tail probability
over the entire parameter space possible for the nuisance parameter # under Hj.
Berger & Boos (1994) suggest instead maximizing over a confidence set for § under
Hy. The p-value is given by

pee(x) = sup Pry(T(X > T(x)) + 5,
0eCs

where Cp is a 1 — 3 confidence set for 6 under the null hypothesis. One possible
confidence set for 6 under Hy in our case is the Pearson-Clopper confidence interval,
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see for instance Casella & Berger (2002, p. 454). Berger & Boos (1994) show that
this p-value is valid. This method may be preferred over the M method when the
set of values possible for § under Hj is unbounded, since maximization over the
entire parameter space may be impossible. If we use —pc(X) as test statistic in
the BB method we get

peps(T) = GSEUCP Pro(—pc(X) > —pc(x)) + B

= sup Pry(pc(X) < pc(x)) + 5
9605

SpC(m) +6a

since Pry(pc(X) < ) < « holds for all a € [0,1] as po(X) is valid and we can
replace a with po(x). Therefore applying a BB step on the C p-value does not
necessarily give a test with uniformly at least as high power as the test with the
same level test based on the C p-value. This is one potential drawback with the
method. However, applying the BB method on any test statistic will result in
a valid p value since the p-value is valid, meaning it is possible to make the A
p-value and E p-value valid by applying a BB step on them (or to be more correct
we use the negative of either the A p-value and E p-value as test statistic in the
BB method).

5.4.4 Different null and alternative hypothesis

Instead of the null hypothesis in Equation (4.1), one could consider
HO . "91 — 62| S €,

where € is the magnitude of the biggest difference of no practical significance. The
alternative hypothesis then takes the form

H1 . ‘91 —62’ > €,

and all (01,6,) € ©F are of practical importance. When we consider different
hypothesis tests testing the above null hypothesis against the alternative hypoth-
esis we want tests with as high power as possible for all (61,6:) € ©f since all
(01,605) € OF now are practically important. With the new null hypothesis there
is therefore no need to check that the power is low at parameter values that are
not practically significant.
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Under the new null hypothesis the joint pmf is

T 2

:0191952(1 . 91)n1fs1<1 . 92>n2732 <n1> <n2>

T T2

n n
f(.il?; 917 92) _ ( 1) <x2> 9101052(1 _ el)nl—m(l . 9)n2—:c2

so that S(X7, Xs) = (X3, X») is sufficient for (61, 6,) by the factorization theorem.
The entire data set is always sufficient. We then have

1 ifﬂ?l:Sl,.I'Q:SQ

Y

Pr(X; =2, Xo =22 | S(X) = (51,52)) = {

0 else
which means the C p-value realisations are 1 for any test statistic. This means
the power of the test based on the C p-value will be 0 for all (6,,6;) under the
alternative hypothesis. We therefore should try to find another sufficient statistic
for (61,02) under the null hypothesis that gives a test with better power proper-
ties.
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Chapter 6

Short discussion and conclusion

In this chapter we give a short overall discussion and conclusion. We have done
most of the discussion in the previous chapters so that the discussion and conclu-
sion presented in this chapter are meant to give an overview.

We know the p-value is a random variable and not a constant probability, see
Section 3.3. This may be hard to understand since many introductory texts in
statistics teach that the p-value is a probability. For instance Devore et al. (2012,
p. 456) define the p-value as “The P-value is the probability, calculated assuming
that the null hypothesis is true, of obtaining a value of the test statistic at least
as contradictory to Hy as the value calculated from the available sample.” and
they emphasize that “The P-value is a probability.”. Another example has already
been given in Section 3.3, where we said that Walpole et al. (2012, p. 333-334)
clearly view the test statistic as a random variable and the p-value as not. One
may question if introductory texts is the first place students should be taught
that the p-value is a random variable. One of the reasons is that students may
not understand the distinction between a random variable and the realisations
of the random variable. This if fairly easy to understand, where for instance a
discrete random variable X takes the different possible realisations x according
to a probability distribution. This means before an experiment the outcome is
undecided and that in the experiment the random variable X takes the different
realisations with certain probabilities. With this knowledge it should be easy to
understand that when obtaining two different outcomes in two runs of an experi-
ment we potentially sum over different outcomes when calculating the realisations
of a particular p-value, so that the realisations of the p-value may not be the same
value. Perhaps the most straightforward exercise would be to evaluate the p-value
in all the possible outcomes when the set of outcomes is finite, as done in Section
3.3.
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Casella & Berger (2002, p. 397-399) define the p-value as a random variable and
also define validity. This is a commonly used book in theoretical statistics courses?.
The section in the book is fairly short and the book is written at a high theoretical
level. This may make it harder for the students to realise that the p-value is not
a probability but a random variable, even if they are at a more advanced level.
One issue with first introducing the p-value as a random variable in a theoretical
statistics course is that far from all users of statistics take such a course. If one does
not understand that the p-value is a random variable it is highly likely that one
neither understands the concept of validity and that not all p-values are valid. It
is also highly unlikely that one understands that there exist different p-values and

that the tests based on these p-values may have different power functions.

We have seen in Section 5.1 that the concept of validity is important. It is the
foundation for creating tests that never exceed the chosen significance level under
the null hypothesis. We have seen that pys, po, ponr, pen are valid and that py
and pg are not. The most severe examples where either of the test based on p4 or
pr exceed the significance levels are found in unbalanced designs. The maximum
relative type I probability found for the A p-value is 1.2054 - 107% and occurs
when n; = 60,179 = 240, = 5-107% and § = 0, = 0, = 0.05. The maximum
relative type I probability found for the E p-value is 5.60 - 107% and occurs when
ny =97,n9 = 103, =5-10"% and 0 = 6, = 0, = 0.15.

Under the alternative hypothesis, the E o M and C o M p-values are found in
general to give level « tests with highest power (only tests based on valid p-values
studied). We have also observed that the power differences occur in the region(s)
of the points considered that most likely is(are) of greatest scientific importance.
In balanced designs for the largest designs studied, i.e (97,103) and (150, 150), the
level « tests based on all the studied p-values, i.e the Eo M, Co M, C and M
p-values have power functions that take almost identical values in the majority of
parameter points studied. In unbalanced designs the differences between E o M,
C oM, C are found to be small in the largest studied design, (60,240). For the
two smallest designs studied, (nq,n2) = (4,16) and (nq,n2) = (10, 10) the power
increase of yoy, compared with 7o can be quite substantial. So the M step may
increase the power substantially for designs with small sizes. We get similar results
when compare vgps or vy with v¢ as when comparing oy, with e

The M step is theoretically optimal since (1) it makes a invalid p-value valid (if we
let the negative of the p-value serve as test statistic in the M method) and (2) if we

!This book has for instance been used in STAT210 at the University of Bergen in the spring
of 2016, in the course TMA4295 Statistical Inference at NTNU in numerous of past years, see re-
spectively http://www.uib.no/emne/STAT210 and http://www.ntnu.edu/studies/courses/
TMA4295#tab=omEmnet for further information.
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let the negative of a valid p-value serve as test statistic in the M method the power
function of the level a test based on the resulting p-value will be uniformly least as
high as the power function of the test with same level based on the original p-value.
We have seen that the M step maintains the ordering of the test statistic. This
means that it is the ordering induced by the test statistic that determines if the
power of the level a test based on the p-value will have good or bad properties. The
C p-value also have a good property; it is valid. The C method is in general also
faster to compute than the M method since in the M method we must calculate the
tail probability in a grid of values of #; = 6, and we must consider more outcomes
when calculating the tail probabilities. The E o M and C o M methods are also
more time consuming than the C method since all the realisations of the E or
C p-values must be calculated when considering respectively the Eo M or Co M
methods. For instance it takes 36 seconds, 7 minutes and 42 seconds, 11 minutes
and 39 seconds and 8 minutes and 16 seconds to calculate all the realisations of
respectively the C, M, Eo M, C o M p-values when n; = ny = 150. Using the R
implementation of the M method takes 5 hours, 21 minutes and 44 seconds. When
using the R implementation the grid on [0, 1/2] has increment 0.05, which gives a
much sparse grid than the grid used in the power study. We see that the M method
is quite computationally intensive and clearly benefits from parallel programming.
However, due to better and better computers the M step becomes more and more
relevant.

Since the C method is quicker than the M method and v¢ = vyon = yey for the
largest study designs, we recommend using the C step for large sample sizes. For
medium to small sample sizes we recommend using either the Eo M or C o M
p-value as they in general are found to give tests which are the most powerful and
more powerful than the test with the same level based on the C p-value. It might
be tempting to calculate the realisations of all studied p-values in this thesis and
choose the one with the smallest realisation. In Section 5.3 we have seen that this
approach gives a p-value that is not valid. We therefore not recommended using
the “minimum” p-value.

When comparing the studied power functions we have used both tables and graph-
ical aids. By plotting where in parameter space the differences in power occur, we
can easily see if the points are of scientific interest. For instance if most of the
points where there are great differences in power had been close to (1,0), then the
power differences would most likely be of little practical importance. However, we
have seen that among the studied points the power differences are in the interesting
part of the parameter space. This is much harder to do by only comparing power
functions in the same grid point and trying to eyeball which points in parameter
space are of interest. The dataset quickly becomes unmanageable if one shrink
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the grid increment in the power study. Also, by only doing this comparison of the
power functions, one can only make a table with a selection of values of the power
functions showing interesting features or differences between the power functions.
There is limited amount of information in such tables. Only Table D.1 in this
thesis has been constructed in this way. The reason we have included the table,
when we know there is limited information in such a table, is that the purpose of
it is to show each case where one of the power functions exceeds the significance
level. We note that the entries in Table D.1 may not reflect the overall trends of
the power functions. Table 5.2 and the difference plots provide much more infor-
mation about the differences between the power functions than Table D.1 does.
Increasing the parameter points under H; will not make it any harder to construct
the difference plot or Table 5.2, but increasing the dataset under H, will make
it more time consuming to make Table D.1. Constructing tables similar to Table
D.1 with the aim of power comparisons will be infeasible with increasing number
of parameter points.

When comparing power functions we have also plotted the cumulative difference
functions. The plots of the cumulative difference functions carry much more infor-
mation about the differences than Table 5.2. For instance if the fraction of points
that give differences in the interval 0 to 2 % is 1, we do not know the distribution
of the differences within this interval. It could be that most points give differ-
ences close to 0 or that most differences are close to 2. The use of difference plots
and plots of the cumulative difference functions have proved to be quite helpful
in comparing power functions. We therefore recommend using these tools when
comparing power functions. We note that it does take time to create the plots of
the cumulative difference functions, where one needs to set the dot sizes and plot-
ting order so that each function is visible in the figure. We also note that it takes
times to construct the difference plots and the plots of the power functions. The
hardest part is to understand how to create a matrix of the differences or power
values that the plotting function will accept. Despite the mentioned difficulties,
we strongly recommend creating these plots.
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Appendix A

Basic definitions and concepts in
biology and population genetics

In this appendix we give a short introduction to the definitions and concepts needed
to understand example (d) in Section 4.1.1. This introduction is a revised version
of Appendix B in the projet’s thesis Aanes (2016).

DNA DNA (deoxyribonucleic acid) is a long sequence made up of the four bases
adenine (A), guanine (G), cytosine (C) and thymine (T). Two sequences of
DNA lines up with one another to form a spiral that is called a double helix.
The two sequences lines up so that A or T from one sequence is paired up with
respectively C or G from the other sequence. Given one of the sequences we
can tell the other one (i.e if we look at the excerpt ATCG from one sequence,
we know that it is paired up with TAGC). We therefore only consider one of
the sequences (National Human Genome Research Institute 2015b).

Chromosome The structure in which a single DNA molecule is stored is called
the chromosome. A human has 46 chromosomes. The chromosomes pairs
up so that each human has 23 pairs. In each pair, one chromosome is inher-
ited from the father and one is inherited from the mother (National Human
Genome Research Institute 2015a). One of the pairs consists of the sex chro-
mosomes. The rest of the pairs are called autosomes (Ziegler & Konig 2010,

p. 3).
Gene A gene is a sequence of DNA that codes for a protein (Ziegler & Konig
2010, p. 7).

Locus A locus (plural loci) is a sequence of DNA that may or may not code for
a protein (Halliburton 2004, p. 28). An autosomal locus is a locus on one of
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the autosomes.

Allele: An allele is an alternative form (i.e alternative sequence) of a locus (Hal-
liburton 2004, p. 28).

Genotype: The chromosomes are ordered in pairs. When we consider the same
locus on each of the two chromosomes in a pair, two alleles are present.
The pair of alleles (considered unordered) is said to be the genotype for a
particular individual at the locus. For instance, if a locus has two alleles
labelled R and T and if an individual has the two alleles R and R, the
genotype of the individual will be RR (Thompson 1986, p.2).

SNP In a SNP, single nucleotide polymorphism, a single base in one sequence of
DNA is substituted with another base. For instance the base A could be
replaced by G. Since for a SNP one base is replaced by another, four alleles
are possible. However, most SNPs have only two alleles (we say that they are
diallelic) (Ziegler & Konig 2010, p. 54). We only consider diallelic SNP-loci
in this thesis.

Law of segregation The law of segregation states that for a particular locus in
an individual, one allele is inherited from the mother and the other allele is
inherited from the father (Thompson 1986, p. 1).

Phenotype A phenotype is the expression of a trait in an individual, i.e the trait
we can observe (Genetics Home Reference 2015). There are two types of
traits, qualitative traits and quantitative traits (Halliburton 2004, p. 525).
Qualitative traits show discrete phenotypes and are controlled by mostly one
gene. Quantitative traits show a continuous distribution of phenotypes and
are controlled by many genes and by environmental factors. Eye color is an
example of a qualitative trait and blue eyes is then a possible phenotype.
Weight is an example of a quantitative trait and the actual weight of an
individual is then the phenotype for that individual.

Gametes A gamete is the reproductive cell of an organism (The Editors of En-
cyclopeedia Britannica 2016). Humans have either sperm cells or egg cells.
Each gamete carry only one copy of one of the chromosomes in each pair.

Genetic marker A genetic marker is a locus with known location and that is
polymorphic (Ziegler & Koénig 2010, p. 47), i.e there exists more than one
allele at the locus in the population (Halliburton 2004, p. 28).

Law of independent assortment When an indivudal passes on a gamete to an
offspring, the law of independent assortment states that which of the two
chromosomes is passed on in one pair is independent of which of the two
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chromosomes that is passed on in the other(Ziegler & Konig 2010, p. 22).

Recombination Recombination is any process that results in the set of alleles an
individual passes on to an offspring is not the same as the set of alleles the
individual inherited from either the mother or the father(Halliburton 2004,
p. 91). For instance, we know that an offspring gets for each of the auto-
somal chromosomes one of the chromosomes from the father and the other
from the mother. If we consider two different pairs of chromosomes the law
of independent assortment tells us that which of the two chromosomes is
passed on in one pair is independent of which of the two chromosomes that
is passed on in the other. This means the individual may pass on one chro-
mosome inherited from the father and another chromosome inherited from
the mother, so that new combinations of alleles are passed on. Other types
of recombination are also possible. Let us consider two loci on a chromosome
which is passed on to an offspring. It is possible that the allele on one of
the two loci on this chromosome and the allele at the same loci in the other
chromosome (i.e the other chromosome in the pair) have been swapped dur-
ing meiosis (the process where gametes are made) but the alleles at the other
considered loci have not been swapped (Ziegler & Konig 2010, p. 9). This
means the chromosome in the individual and the copy of it which is passed
on to the offspring differ by one allele (assuming the alleles that have been
swapped are different).

Linkage When we consider two loci on the same chromosome and if the alleles
at these two loci are not passed on to an individual according to the law of
independent assortment (so that which allele is passed on to the offspring is
not independent of which allele is passed on at the other loci), we say the
two loci are linked (Halliburton 2004, p. 94). Otherwise they are unlinked.
The closer the two loci are, the less likely it is the two loci will act according
to the law of independent assortment. This means the closer the two loci are
the more likely it is that the alleles at the two loci are inherited together.

Linkage disequilibrium Two loci are in linkage disequilibrium if the alleles at
one of the loci are not randomly associated with the alleles at the other
loci, i.e they do not act according to the law of independent assortment
(Halliburton 2004, p. 93-94). Note that the two loci can be on two different
chromosomes, so that linkage is not a necessary condition to have linkage
disequilibrium. This means the law of independent assortment does not
always hold, even if the two loci considered are on two different chromosomes.
The four forces of evolution can cause gametic disequilibrium.

Association study The goal of an association study is to determine if any of
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the considered genetic markers are associated with the disease under study.
These studies are based on historical recombination. The recombination
uncouples all but the most tightly linked markers from the causal locus.
When one finds a genetic marker that is associated with a disease, it is
hopefully tightly linked to the causal locus, since if so further studies may
localize the causal locus. If not, so that the genetic marker and locus only
are in linkage disequlibirum, the localization will be much harder, if not
impossible Mackay et al. (2009).
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Appendix B

New coordinates of point rotated
180 degrees around (1/2,1/2)

In this section we show that the new coordinates of a point (1, 6;) that has been
rotated 180 degrees around (1/2,1/2) is given by (1 — 61,65). From Lay (2012,
p. 140) the new coordinates of a point (6;,62) that has been rotated x degrees
counter-clockwise around the origin is

(3) = (ny ) () .

To find the new coordinates of the rotated point we do three steps: 1) make a shift
of coordinates where we move the original point to the origin, 2) use Equation
(B.1) on the translated point and 3) transform the coordinates of the rotated
point, which are expressed in the new coordinate system, to coordinates in the
original system.

The coordinate in the new coordinate system are given by
1 1

(Y1, %2) = (01 — 3 02 — 5) (B.2)
If we want to go back to original coordinates we use the formula
1 1
(01,62) = (¢1 + 57% + 5) (B.3)

When we rotate the point in the new coordinate system 180 degrees around the
origin, the new coordinates become from Equation (B.1)

(o) =i, ] ()= ] (o) - (o)
(B.4)
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In Equation (B.4) the coordinates of the rotated point are in the new coordinate
system, but we have written them as a function of the original point (6, 6,). By
using Equation (B.3) we get the coordinates of the rotated point in the original

coordinate system 3 3
o [ N (1-6
()= ()= () -(=5) &
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Appendix C

R-code used in Section 5

In this appendix we show an excerpt of the code used in the the power calculations.
We show for instance how the A and C p-values can be calculated. For the E and

M p-values we recommend using parallel programming.

cases=c(10,10)

cases=rbind (cases,c(25,25))
cases=rbind (cases,c(50,50))
cases=rbind(cases,c(97,103))
cases=rbind (cases,c(150,150))
cases=rbind(cases,c(4,16))
cases=rbind(cases,c(10,40))
cases=rbind (cases,c(20,80))
cases=rbind(cases,c(60,240))

for(kn in 1:dim(cases) [1])
{
nl=cases[kn,1]
n2=cases [kn, 2]

# Create all possible tables

y<-expand.grid(seq(from=0,to=nl1),seq(from=0,to=n2))

# write tables to file, which later will be used by the E,
and power programs
write.table(y,"tab.txt",row=F,col=F)

#Create table of the values of the test statistic
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25
26

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43

44

45

46

47

48

49

t2<-0

t2=(y[,11/n1-y[,2]1/n2)72/((y[,11+y[,2])/(n1+n2)*x(1-(y[,1]+y
[,2]1)/(n1+n2))*(1/n1+1/n2))

t2[is.na(t2)]1=-999

write.table(t2,"z.txt",row=F,col=F)

# Calculate p_A and p_C and write to files that later will
be used in power calculations:

# Calculate A:
avals=1-pchisq(t2,df=1)

#Calculate C:

cvals=rep(NA,length=length(t2))
for (i in 1:length(t2))

{
sufficient_statistic=y[i,1]+y[i,2]
T observed=t2[i]
cond_outcomes_bool=y[,1]+y[,2]==sufficient_statistic & t2
>=T _observed-10~(-10)
cvals[il= sum(dhyper (y[cond_outcomes_bool,1],nl,n2,
sufficient _statistic))
}
write.table(-avals,paste("Z-",n1,"-",n2,"-","A. txt",sep=""),
row=F,col=F)
write.table(-cvals,paste("Z-",nl1,"-",n2,"-","C.txt",sep=""),

row=F, col=F)
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Appendix D

Table of type I error
probabilities

In Table D.1 we show the type I error probabilities at selected values of § = 6, = 6,
and nq, ns, k studied in Chapter 5.

Table D.1: Type I error probabilities at selected §# = 6; = 6, and significance
levels 5 - 107%, where k can take the values 2,3,...,8. When the significance level
is 5 x 107% the probabilities of type I error are divided by 107*. The first col-
umn specifies the sample sizes nmi; and no, the second column gives 6 - 100, the
third column gives the value of k in 5 - 107 and column 4 to 9 gives respectively
YE(0,0; ), ve (0, 05 ), va (0, 05 ), e (0,05 ), vem (0,605 ) and year (6, 0; ). We show
all cases where one of the power functions exceeds the level and also a selection of other
points. The different values are calculated using enumeration.

(n1,m2) k6 E A M C CM EM
(10,10) 2 5 0.00 0.00 0.00 0.00 0.00 0.00
15 0.04 0.04 0.04 0.00 0.04 0.04

25 0.58 0.58 0.58 0.04 0.58 0.58

35 2.18 2.18 218 0.19 2.18 2.18

45 3.77 3.77 3.7 037 3.777 3.77

50 4.02 4.02 4.02 0.40 4.02 4.02

6 5 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00

25 0.11 0.00 0.11 0.00 0.11 0.11

35 0.74 0.00 0.74 0.00 0.74 0.74

45 1.72 0.00 1.72 0.00 1.72 1.72

50 191 0.00 191 000 191 1.91
Continued on next page
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(n1,me) k 6 E A M C CM EM
(25,25) 2 15 3.81 546 3.81 1.89 3.08 3.81
20 3.92 549 391 222 377 391

25 4.18 5.41 4.16 2.18 4.14 4.16

30 4.63 5.37 448  2.29 448 4.48

35 5.06 5.60 4.63 2.60 4.63 4.63

40 5.08 6.02 4.36 295 4.36 4.36

45 4.72 6.36 3.93 3.20 3.93 3.93

50 4.49 6.49 3.73 3.28 3.73 3.73

3 40 4.99 5.71 497 224 497 4.99

45 4.89 6.36 4.89 2.50 4.89 4.89

o0 4.76 6.61 4.76 2.61 4.76 4.76

8§ 5 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00

25 0.32 0.02 032 0.04 0.32 0.32

35 3.07 0.21 3.07 048 3.07 3.07

45 4.98 0.45 498 094 498 4.98

50 4.99 0.48 499 096 4.99 4.99

(50,50) 2 10 4.84 5.06 3.83 1.79 3.22 4.84
15 4.74 5.00 4.18 239 3.61 4.74

20 4.85 5.22 427 282 4.04 485

25 4.74 5.07 447 3.02 4.08 4.74

40 5.05 5.24 488 3.21 4.87 4.88

45 4.93 5.57 452  3.43 4.52 4.52

50 4.69 5.69 419 3.52 4.19 4.19

3 25 4.83 5.06 4.18 2.62 4.18 4.83

30 4.67 5.23 439 2.80 4.39 4.66

35 4.80 5.25 4.68 2.81 4.68 4.72

40 5.17 5.52 481 3.03 4.81 4.81

45 4.85 5.45 432 337 4.32 4.32

50 4.45 5.18 3.97 3.52 3.97 3.97

5 30 5.00 3.40 4.19 218 4.26 4.26

8§ 5 0.00 0.00 0.00 0.00 0.00 0.00

15 0.25 0.01 0.02 0.06 0.25 0.33

25 251 0.64 0.85 0.82 232 3.74

35 4.48 1.80 2.75 1.50 2.98 4.55

45 4.37 238 4.01 1.59 4.02 4.37

50  4.20 2.19 411 166 4.11 4.20

(150,150) 2 5 4.84 4.84 4.84 243 344 484
10 4.79 4.98 4.79 3.30 3.87 4.79
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(n1,m2) k6 E A M C CM EM
15 4.76 4.93 4.76 3.41 4.36 4.76
20 4.90 5.03 4.75 3.55 448 4.74
25 4.90 5.04 4.83 3.73 4.64 4.68
30 4.97 5.03 4.78 3.77 4.74 4.74
35 4.89 4.89 471 3.69 4.71 4.71
40 5.16 517 494 391 494 4.94
45 5.16 5.53 4.48 4.21 4.48 4.48
50 4.64 5.66 4.33 4.31 4.33 4.33

3 30 4.88 506 4.81 348 4.81 4.18
35 5.00 5.02 4.82 348 4.82 4.32
40 5.04 5.17 4.88 3.61 4.88 4.24

4 10 5.06 3.54 354 233 3.54 4.71
25 5.02 4.86 4.60 3.07 4.46 4.46
40 5.08 5.05 491 330 491 4.83
45 5.05 4.85 4.65 3.54 4.65 4.46

5 45 5.12 491 4.69 3.52 4.69 4.69

6 35 5.01 455 4.79 294 479 4.79
40 5.10 463 494 295 494 494

7 15 5.35 1.89 2.19 224 3.75 4.89
20 5.07 270 3.29 248 447 4.15

& 5 0.19 0.00 0.00 0.05 0.05 0.19
15 3.80 1.12 1.70 1.83 348 3.80
25 4.79 297 3.21 231 4.08 4.75
30 5.03 3.27 396 256 4.28 4.69
35 4.85 3.60 4.19 257 470 4.71
45 5.06 4.03 499 283 4.99 4.99
50 4.60 3.46 4.60 3.19 4.60 4.60

(4,16) 2 5 1.15 8.69 1.15 0.64 1.15 1.15
10 2.85 825 2.85 1.19 2.85 2.85
15 3.73 6.47 3.73 142 3.73 3.73
20 3.86 5.07 3.86 148 3.86 3.86
45 3.34 5.36 3.34 1.41 3.34 3.34
50 3.39 5.57 3.39 142 3.39 3.39

3 5 0.39 6.35 0.39 0.22 0.39 0.39
10 1.95 1095 195 0.75 1.95 1.95
15 3.66 1090 3.66 1.14 3.66 3.66
20 4.56 888 4.56 1.28 4.56 4.56
25 4.56 6.67 4.56 1.24 456 4.56

4 10 0.51 7.19 0.51 0.19 0.51 0.51
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(ny,no) 0 E A M C CM EM
15 1.44 996 144 038 1.44 1.44
20 2.25 9.46 2.25 045 225 2.25
25 248 718 248 0.39 248 248

5 0.28 0.28 0.28 0.00 0.28 0.28
15 3.76 3.76  3.76  0.00 3.76 3.76
25 3.92 3.92 392 0.00 3.92 3.92
35 1.52 1.52 1.52 0.00 1.52 1.52
45 0.31 0.31 0.31 0.00 0.31 0.31
50 0.19 0.19 0.19 0.00 0.19 0.19

(10,40) 5 3.79 7.84 379 177 1.77 3.79
25 4.70 4.70 4.09 3.35 4.29 4.70
40 4.75 5.11 425  2.67 4.39 4.75
45 4.68 5.40 4.16 2.66 3.78 4.68
50 4.61 5.51 411 268 3.49 4.61

5 205 1449 205 044 1.79 2.05
10 4.10 11.04 4.10 1.65 2.51 4.10
15 4.13 7.06 412 2.25 2.67 4.13
20 3.71 5.27 359 231 3.16 3.71

5 0.90 15.02 090 0.040 0.90 0.90
10 3.50 21.73 3.50 0.59 3.50 3.50
15 3.88 15.06 3.87 1.13 3.88 3.88
20 3.82 10.56 3.70 143 3.82 3.82
25 3.60 7.78 3.08 1.55 3.60 3.60
30 3.49 5.48 228 154 349 3.49

5 090 15.02 090 0.04 0.90 0.90
10 3.71 3212 3.71 042 3.71 3.71
15 482 26.22 481 1.04 4.82 4382
20 4.84 1774 477 145 484 484
25 436 1224 399 154 436 4.36
30 3.78 8.04 278 1.49 3.78 3.78

5 0.38 8.95 0.38 0.01 0.38 0.38
10 290 3527 290 0.22 290 2.90
15 463 36.39 463 0.69 4.63 4.63
20 4.72 2464 4.69 1.06 4.72 4.73
25 4.08 1530 3.83 1.17 4.08 4.22
30 3.34 9.05 2,51 1.16 3.34 4.00
10 1.63 2827 163 0.07 1.63 1.63
15 335 3895 335 031 3.37 3.36
20 3.45 28.07 3.45 0.59 3.74 3.58
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(n1,m2) k6 E A M C CM EM
25 2.62 1552 2.62 0.74 3.95 3.13
30 1.56 769 1.56 0.66 4.31 2.45

& 10 0.74 16.25 0.74 0.08 0.62 0.74
15 291 3341 291 047 1.80 291
20 4.52 33.67 4.52 0.80 2.36 4.52
25 3.74 2364 3.74 086 233 3.74
30 1.86 11.99 1.8 0.51 1.76 1.86
40 0.13 1.04 0.13 0.05 0.31 0.13
50 0.00 0.04 0.00 0.00 0.02 0.00

(20,80) 2 15 5.19 4.67 419 2.84 3.98 4.75
20 4.79 5.01 4.58 3.23 4.23 4.69
25 4.85 506 4.59 3.22 4.60 4.83
35 4.97 497 435 3.16 4.65 4.72
45 4.74 5.01 4.18 3.86 3.95 4.69
50 4.63 5.07 4.08 3.96 397 4.62

3 5 3.36 840 3.36 0.95 1.88 3.36
4 5 347 18.76 3.41 0.78 1.21 347
10 4.39 12.67 2.74 1.87 2.64 4.39
15 4.89 10.05 1.77 235 2.72 4.89
20 4.36 743 1.09 229 3.44 4.36
25 4.33 5.31 0.85 225 4.22 4.33
40 4.65 3.93 0.41 241 4.69 4.65
50 4.43 3.95 0.33 255 4.01 4.43
5 5 459 29.78 459 0.83 0.88 4.59
10 3.85 16.69 3.27 1.70 2.59 3.85
15 4.76 12.39 254 205 287 4.76
20 4.89 9.25 1.92 2.02 3.32 4.89
25  4.77 6.91 1.25 1.92 3.50 4.77
30 4.82 5.79 0.75 195 3.70 4.82
50 4.21 251 0.15 235 453 4.21
6 5 083 4589 083 0.61 0.79 0.83
10 3.86 32.74 3.85 144 2.56 3.86
15 4.57 2540 4.18 1.52 3.41 4.57
20 4.32 19.18 2.41 1.54 357 4.32
25 4.26 1251 1.24 1.61 329 4.26
30 3.90 7.54 0.75 1.67 3.15 3.90
50 4.47 1.50 0.05 1.59 4.42 4.47
7 5 063 57.07 0.63 0.04 0.63 0.63
10 3.29 5787 3.29 0.60 3.30 3.30
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(n1,me) k 6 E A M C CM EM
15 3.74 4280 3.69 1.61 4.04 4.04
20 3.35 24.07 2.60 201 4.39 4.39
25 392 1236 1.52 1.63 4.60 4.60
30 4.26 7.51 0.78 1.39 4.40 4.40
o0  3.58 0.54 0.02 195 4.78 3.58

8§ 5 041 57.84 041 0.02 041 0.41
10 3.79 9249 3.79 0.51 3.51 3.51
15 5.00 71.00 497 1.18 3.49 3.45
20 3.79 42.03 336 138 3.31 2.84
25 291 19.81 1.42 148 3.74 2.58
30 3.23 1045 0.55 1.35 3.97 2.50
35 3.37 5.35 0.22  1.36 4.28 2.57
50 1.84 0.29 0.00 1.29 277 1.84

(60,240) 3 5 5.57 449 3.66 3.12 3.45 4.49
35 4.96 5.01 455 411 4.88 4.71
40 4.95 5.01 451 3.71 4.69 4.78
45 5.05 5.18 453  3.92 4.03 4.69
50 4.87 5.29 462 4.02 4.02 4.63

3 5 391 5.98 3.656 205 296 391
10 5.02 5.09 3.61 3.02 3.78 4.75
15 4.99 5.03 345 339 4.07 4.93
35 4.93 4.85 340 391 440 4.93
50 4.92 491 338 3.38 4.16 4.92

4 5 428 1062 2.92 194 299 4.28
10 4.58 732 1.73 243 3.29 4.58
15 4.79 590 141 290 3.78 4.78
20 5.10 546 1.15 3.06 4.14 4.80
25 4.75 5.24 099 328 4.33 4.61
40 4.86 4.69 0.78 3.43 4.73 4.86
50  4.65 4.40 0.81 4.25 4.26 4.65

5 5 494 1776 412 1.83 3.14 4.69
10 420 10.28 236 2.33 3.27 3.96
15 5.11 8.25 1.67 271 3.63 4.35
20 4.67 6.74 1.18 2.84 4.08 4.59
25 4.40 5.83 085 3.11 4.37 4.39
30 4.81 5.02 0.67 3.18 4.30 4.68
40 4.81 441 0.53 3.07 487 4.74
50 4.86 3.88 0.43 3.73 3.79 4.85

6 5 4.65 3062 359 1.64 1.64 4.65
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(n1,n2) 0 E A M C CM EM
10 5.18 18.20 1.52 272 273 4.86
15 4.61 13.38 1.02 2.38 2.83 4.48
20 4.76 948 0.54 254 321 4.66
25 5.24 7.63 036 260 3.70 4.93
30 5.00 6.38 0.24 271 3.52 4.75
40 4.77 3.92 0.13 3.28 4.05 4.72
50 4.77 3.39 0.09 2.66 499 4.57

5 5.00 54.01 490 1.50 257 3.64
10 4.08 35.27 2.71 1.93 3.73 4.06
15 4.61 2033 1.64 227 3.94 4.61
20 4.63 13.57 0.82 243 3.84 4.62
25 4.79 9.12 0.49 256 3.86 4.51
30 4.97 721 0.31 258 4.18 4.77
40 4.72 3.72 0.11 293 495 4.72
50 4.64 293 0.07 283 4.65 4.64

5 4.61 120.54 4.61 1.10 2.79 4.61
10 4.64 60.03 3.10 217 3.81 4.54
15 488 31.20 1.36 244 4.13 4.49
20 4.57 20.01 0.71 224 457 4.56
25 492 13.16 042 223 492 4.59
30 4.78 762 024 232 4.80 4.46
40 4.63 3.55 0.07 274 494 4.10
50 4.34 2.16 0.03 3.54 4.73 4.31

(97,103) 5 5.01 5.08 4.89 2.85 352 4.51
15 4.98 498 480 390 4.46 4.59
25 4.95 5.06 4.92 4.09 4.89 4.70
30 4.98 5.15 4.79 4.16 4.87 4.58
45 4.84 494 475 4.64 4.66 4.62
50 4.96 5.26 4.94 476 4.76 4.59
30 5.06 506 4.74 3.88 4.75 4.75
35 5.15 523 4.84 3.95 492 497
50 4.84 526 4.83 459 4.60 4.84
40 4.95 506 4.75 3.79 493 4.78
45 4.96 5.06 4.81 3.66 4.64 4.81
50 5.02 5.05 4.96 3.74 4.08 4.96
10 5.46 1.90 151 261 343 454
15 5.09 291 261 3.18 3.54 4.68
20 5.12 3.58 344 316 4.08 4.44
35 4.82 4.40 4.12 3.61 4.59 4.25
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(n1,me) k 6 E A M C CM EM
45 4.98 498 4.85 3.54 4.66 4.26

50  5.03 5.03 5.00 3.58 4.10 4.46

6 15 5.60 2.03 228 290 3.86 4.82

7 15 5.06 1.05 1.26 258 3.61 4.51

25 5.02 277 3.66 3.25 4.29 4.84

35 5.03 3.79 4.75 333 4.29 4.97

45 4.85 4.06 4.85 3.27 4.774 4.75

o0 4.72 4.06 4.72 297 471 4.71
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