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Problem description
The overall aim in the thesis is to analyze factors that influence early neurological
deterioration after acute ischemic stroke based on data from the stroke unit
at St. Olav’s Hospital in Trondheim. The functional level of the patients is
measured with the European Progressing Stroke Study scale and it is of interest
to investigate how the scores are related to early neurological deterioration. We
want to include both time-dependent variables and measurements on admission
in a model where the response measures neurological deterioration, and we also
want to use as much of the information from the stroke study in Trondheim as
possible in a regression model. The data from the study in Trondheim contains
both variables with missing values and variables with imputed values for missing
data, and this problem must be considered prior to the statistical analyses.
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Abstract
A total of 368 patients treated at the stroke unit at St. Olavs hospital in
Trondheim were included in a study to analyze early neurological deterioration
after acute ischemic stroke. Bad prognosis is associated with early neurologi-
cal deterioration, and more research concerning the causes of early neurological
deterioration is needed. In a preliminary analysis the time-dependent variables
from the study were explored with unsupervised methods and quintile analysis.
Principal component analysis and clustering were used to explore any possible
groupings of the level of function measured with the European progression stroke
study scale. The preliminary analysis led to using a binary response and different
summary statistics for the time-dependent predictors. Potential factors influ-
encing early neurological deterioration were analyzed with the lasso-penalized
logistic regression method. Lasso regression uses a l1-penalty to shrink param-
eters to zero, and preforms variable selection automatically. Also, the lasso has
no limitations on the number of predictors and finds a sparse solution to com-
plex problems. Lasso is a relatively new method and in particular developments
towards statistical inference is still ongoing.

With the lasso method 22 predictors were included in the final model. Both
variables measured on admission and time-dependent variables were estimated
to be nonzero. The analysis also shows that both level and variability of the
time-dependent predictors are important, so that monitoring patients closely
the first few days after acute ischemic stroke is essential for the outcome. The
penalty parameter controls the strength of the shrinkage and was chosen with
cross-validation. Exact standard errors and confidence intervals for the regres-
sion parameters do not exist for the lasso method. Thus, inference about the
regression parameters was performed using bootstrapping. The limitation of
the lasso method is that it does not handle correlated variables very well, and
the limitation is visualized and analyzed for the stroke data from Trondheim.
In the field of medical statistics the lasso method has the potential to be very
useful as it handles data with numerous predictors, and finds a good model for
prediction.
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Sammendrag
En analyse er gjort på 368 pasienter fra slagavdelingen på St. Olavs Hospital i
Trondheim for å analysere nevrologisk forverring de første døgnene etter akutt
hjerneinfarkt. Prognosene er dårligere for pasientene med forverring enn de som
ikke opplever forverring de første døgnene, og det er nødvendig med mer omfat-
tende analyse av faktorer som har innvirkning på nevrologisk forverring. Som en
innledende analyse har vi gjort klyngeanalyse, prinsipal komponentanalyse og
kvintilanalyse på de tidsavhengige variablene. Klyngeanalyse og prinsipal kom-
ponentanalyse er gjort for å se om det er en naturlig inndeling av pasientene
basert på målingene av kroppens funksjonsevne. Den innledende analysen re-
sulterte i å bruke en binær responsvariabel og ulike oppsummeringsstatistikker
for de tidsavhengige prediktorene. Faktorer som potensielt påvirker nevrolo-
gisk forverring de første døgnene etter akutt hjerneinfarkt ble analysert med en
lasso-straffet logistisk regresjonsmodell. Lasso-metoden bruker en l1-straff for å
forminske parametere til null, og utfører derfor variabelseleksjon automatisk. I
tillegg takler metoden høydimensjonerte data og finner en modell med relativt
få regresjonsparametere som ikke er estimert til null. Lasso er en relativt ny
metode og utvikling spesielt innenfor statististik inferens pågår fortsatt.

Lasso-metoden inkluderte 22 prediktorer i den endelige modellen. Både vari-
abler basert på målinger ved innleggelse og variabler basert på målinger over tid
er med i modellen. Analysen viser også at både nivå og variabilitet i de tid-
savhengige prediktorene er viktig, og derfor er det nødvendig med nøye oppføl-
ging av pasientene de første døgnene etter akutt hjerneinfarkt. Straffeparame-
tret kontrollerer graden av krymping og kryssvalidering er brukt for å finne den
optimale verdien. Eksakte verdier for standardavviket og konfidensintervallet
til de ulike regresjonsparametrene finnes ikke for lasso-metoden. Inferens av
regresjonsparametrene er derfor basert på bootstrap-metoden. Ulempen med
lasso-metoden er at den ikke inkluderer flere korrelerte variabler i den endelige
modellen, og det er tilfeldig hvilken av de korrelerte variablene som blir inklud-
ert i modellen. Denne ulempen er visualisert og analysert nærmere med slag-
dataene fra Trondheim. Lasso-metoden har potensialet til å bli nyttig innenfor
medisinsk forskning, da metoden takler data med mange prediktorer og finner
en god modell for prediksjon som er enkel å fortolke.
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Chapter 1

Introduction

On a worldwide basis, 15 million people suffer a stroke every year. Almost six
million of these people die and five million people are left disabled. Stroke is the
second most common cause of death (Donnan et al., 2008). In Norway, 15 000
people suffer a stroke and almost 3100 die of stroke every year. Ischemic stroke
and hemorrhagic stroke are the two main stroke types. Ishcemic stroke accounts
for 85-90% of all stroke cases and occurs as a result of an obstruction within a
blood vessel supplying blood to the brain. As a result, the blood flow to the brain
is completely or partly blocked. Ischemic stroke can be divided into cerebral
embolism and cerebral thrombosis. The prognosis of stroke depends on the
stroke type, but for ischemic stroke one third of the patients will have the same
body function as before the stroke. Both inheritance and lifestyle can contribute
to the cause of stroke, and well-known exposure factors are high blood pressure,
smoking, degree of alcohol consumption, high cholesterol, diabetic, inactiveness
and obesity. Most patients gradually recover over days, weeks and months but
patients can also deteriorate. The deterioration have different causes and it is
incompletely understood.

Early neurological deterioration (END) is clinical worsening during the first
72 hours after an acute ischemic stroke. Despite the bad prognosis for patients
with END, it is not until recently possible predictors of END have been studied.
Many issues are unresolved and more research regarding predictors of END is
needed. Another important aspect of the study of END after an acute ischemic
stroke (AIS) is that available studies have used inconsistent definitions and time
frames so that the findings are not easy to generalize when it comes to clinical
guidance. In addition, due to the aging population in Norway the number of
stroke incidences are expected to increase and it is more important than ever
to optimize the treatment guidance after stroke. Factors influencing END after
AIS is analyzed in this thesis and the data comes from a study of AIS patients
conducted in Trondheim. The aim is to get a better understanding of END and
to identify factors that are useful for predicting END.
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Chapter 2 contains a presentation of the data and an explanation of the
medical terms we encounter during the analyses. Understanding the study pro-
cedure and medical terms are important for the statistical analyses, and also
useful when interpreting the result from the analyses. Chapter 2 also contains a
discussion of certain aspects and limitations of the data. Chapter 3 contains a
preliminary analysis of the time-dependent variables and a presentation of two
unsupervised learning methods. The main statistical theory on sparse modeling
is presented in Chapter 4. Both traditional statistical methods and also how it
is adapted to a new and evolving method for model selection are presented in
Chapter 4. Results from application of the statistical methods to the Trondheim
early neurological deterioration study are presented and analyzed in Chapter 5,
and Chapter 6 summarizes and discusses the medical and statistical findings
in this thesis. The statistical analyses are done R-Studio 0.98.1103 (R Core
Team, 2015). The core part of the R-code used in the statistical analyses is
found in Appendix A.



Chapter 2

The Trondheim early neurological
deterioration study

The data comes from a study conducted within the stroke unit at St. Olav’s
Hospital in Trondheim, and the following presentation of the data is based on the
study protocol of Helleberg et al. (2014). The stroke unit has a long experience of
treating stroke patients in both the acute phase and early rehabilitation phase
and has a personnel specialized in stroke therapy. On average, 325 patients
per year have been discharged from the hospital with a diagnosis of ischemic
stroke. A total of 368 patients from the time period May 2010 to December
2013 treated at St. Olav’s Hospital are included in the study. Initially 401
patients were included, but 39 patients were excluded due to exclusion criteria
and another 6 patients were added to the study with data from a pilot study
performed in 2009. Follow-up for the last patient was complete in April 2014.
The final inclusion criteria stated in the study protocol is that the patients had
to be admitted to the stroke unit with acute stroke symptoms, admitted to the
stroke unit within 24 after the stroke and previously living in their own home.
The exclusion criteria were previously known preexisting condition which could
confound follow-up, diagnosis other than acute ischemic stroke that could lead
to the same symptoms, no capacity to follow the patient, consent could not be
achieved and heamorrhage on native CT examination. The patients included in
the study are managed according to current procedures and national guidelines
as any other patient experiencing stroke, and the length of the stay and the
treatment decisions were not affected by inclusion in the study.

The study design is a single-center prospective observational study. As op-
posed to an experimental study design where the researcher intervenes to change
reality, the researcher studies what occurs and do not alter the study in an ob-
servational study. Every patient is exposed to the same treatment and mea-
surements and the outcome is observed. In this setting, prospective means that
the design of the study and the recruitment of patients are done before any of
the patients have developed the outcome of interest. A single-center study is
conducted at one location, and has some limitations compared to multi-center
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studies. In multi-center studies data from different locations is used and better
represents the general population. However, a single-center study is still very
useful for clinical guidance at the specific location and comparing results from
other studies are of interest.

People are affected by stroke in different ways. Both the symptom com-
bination and effect of stroke differs from person to person. Common stroke
symptoms are sudden loss in level of consciousness, facial droop, changes in
hearing or taste, confusion or loss of memory, vertigo, loss of coordination, mus-
cle weakness in arm or leg (usually on one side), emotional changes and trouble
in speaking (Knator, 2015). The effects of a stroke depend on the location and
the degree of affected brain tissue. For some people the effects are relatively
minor while others are left with serious long term problems. The most notice-
able effects are problems with movement and balance, problems with vision,
problems controlling the bladder and bowels and excessive tiredness. However,
stroke also causes hidden effects like problems with communication, problems
with memory and changes of the behavior. The main outcome of interest in this
analysis is the early neurological deterioration effect of stroke. Relevant defini-
tions and related measurement scales for the level of function will be presented
in the next sections.

2.1 Measurement scales

On admission to the stroke unit the level of function is measured to say some-
thing about the severity of the stroke. In addition, the level of function is
measured frequently during hospitalization to say something about the neuro-
logical improvement or deterioration. Birschel et al. (2004) discuss the issue that
several scales for measuring the level of function measurement exist and that
there are different definitions of neurological deterioration. Stroke scales are
useful when it comes to the diagnostic accuracy in the clinical routine settings.
In the mid-1990s a collaboration was set up to standardize the terminology, clas-
sifications, clinical assessments and outcome measures of stroke (Birschel et al.,
2004). The aim was to create a common clinical language to use in stroke stud-
ies. Different types of scales are of course needed to capture all the effects of
stroke, but scales with the same purpose should be standardized and no single
scale is suitable for all research situations.

2.1.1 Scandinavian Stroke Scale

The Scandinavian Stroke Scale (SSS) ranges from 0 to 58 points and measures
a patient’s condition after a stroke. The scale has nine items and quantifies the
level of consciousness, eye movements, arm movements, hand movements, leg
movements, language, orientation, gait and facial palsy. In general, higher score
means higher level of function but the different items have different maximum
score. The scale is a simple stroke scale and the rating can be performed in less
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than 5 minutes (Christensen et al., 2005). This aspect of the scale is important
in the acute phase of stroke.

2.1.2 European Progressing Stroke Study

The European Progressing Stroke Study (EPSS) group was a subgroup of the
collaboration working with definitions of deterioration, improvement and pro-
gression based on clinical assessments. They decided to use five of the nine
items from SSS. The exclusion of four of the categories was done to maximize
the reliability and to make it easier to be repeated by nursing staff every few
hours during the first three days. The EPSS scale includes the items level of
consciousness, conjugate gaze, speech and motor function in the affected arm
and leg (Birschel et al., 2004). The scale has been incorporated at several stroke
units as the standard measurement scale. The EPSS scale ranges from 0 to 32
points and as for the SSS, higher score means higher level of function. Both the
sum of the score from all the five items and the points in each separate item is
of interest when analyzing the data, but only the sum is used in the statistical
analysis of EPSS in Section 3.3.

2.2 Early neurological deterioration

Early neurological deterioration (END) is defined as clinical worsening during
the first 72 hours after an ischemic stroke. The short term and long term
consequences of END is associated with a worse functional outcome and higher
mortality rate (Thanvi et al., 2008). Identifying predictors of END can help to
prevent the condition because of early treatment. There are several causes of
END and no single intervention benefits all patients. However, the treatment in
a stroke unit is associated with reduced risk of END and recurrent stroke but
it is not known if it also reduces the impact of END (Govan et al., 2007). This
is why analyzing END is of great clinical importance, and there is still many
unanswered questions related to acute ischemic stroke and END.

Due to different stroke scales during many years of medical research, END
also has different definitions. In the Trondheim early neurological deterioration
study, END is defined according to the EPSS scale. END is either a decrease
during the first 72 hours of 2 or more SSS points in the conscious level, gaze
or movement level, or a change of 3 or more SSS points in the language level.
Consciousness was given precedence over the other measurements of functional
level.

A table of a selection of baseline characteristics in terms of patients with
END and patients without END (no END) can be seen in Table 2.1. From the
table it can be seen that in the Trondheim early neurological deterioration study
13.8% of the patients experienced END. The number is in agreement with other
studies, but the percentage is dependent on the definition used (Thanvi et al.,
2008). Of the patients with END 24% died and of those with no END, only
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4.3% died. The variable END is discussed and analyzed further in Section 3.1
and Chapter 5.

2.3 Early deterioration episode
Early deterioration episode (EDE) is defined in accordance with the EPSS defi-
nition of neurological deterioration. In contrast to END, EDE is only based on
the change between two consecutive assessments. Birschel et al. (2004) say that
the EPSS definition of EDE has a good prognostic validity, and that EDE hap-
pens more frequently than END. EDE and its relation to END will be discussed
in more detail in Section 3.3.

Table 2.1: Baseline characteristics of patients with END and patients with no
END. The numbers shown are either the mean with the corresponding standard
deviation or the total number of patients with the given characteristic and the
corresponding percentage.

No END (n=317) END (n=51)
Male 177 (55.8%) 25 (49.0%)
Female 140 (44.2%) 26 (51.0%)
Age(years), mean ± SD 76.01± 8.99 79.71± 7.94
History of hypertension 185 (58.4%) 17 (33.3%)
History of diabetes 45 (14.2%) 9 (17.6%)
History of stroke or TIA 98 (30.9%) 16 (31.8%)
History of atrial fibrillation 89 (28.1%) 24 (47.6%)
Initial SBP (mmHg), mean ± SD 145.73± 11.14 153± 15.36
Initial DBP (mmHg), mean ± SD 67.91± 10.88 86.27± 13.46
Thrombolytic treatment 84 (26.5%) 15 (29.4%)
Statins 234 (73.8%) 27 (52.9%)
Temperature (◦C), mean ± SD 37.00± 0.53 37.28± 0.65
Blood sugar (mmol/l), mean ± SD 6.35± 1.65 7.02± 2.07
Kidney function (ml/min/1.73 m2), mean ± SD 71.19± 18.83 65.28± 17.98
Potassium level (mmol/l), mean ± SD 4.00± 0.39 4.19± 0.41
CRP (mg/l), mean ± SD 11.28± 22.56 8.92± 15.65
Very severe stroke 24 (7.57%) 12 (23.5%)
Severe stroke 29 (9.15%) 15 (29.4%)
Moderate stroke 127 (40.1%) 17 (33.3%)
Mild stroke 84 (26.5%) 5 (9.80%)
Very mild stroke 53 (16.7%) 2 (3.92%)

2.4 Predictors of interest
Frequent neurological assessments, blood sample measurements, repeated imag-
ing and continuous monitoring are performed in order to analyze early neurologi-
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cal deterioration. The patients in the Trondheim early neurological deterioration
study (Trondheim END study) were followed for 3 months, but measurements
from 0-72 hours after being hospitalized are used in the analyses. A presentation
of predictors that is of interest when analyzing early neurological deterioration
is included in this section and is compared to results from other stroke studies.

2.4.1 Age

Age is the principal non-modifiable risk factor for stroke, and the stroke rate
increases significantly with age for both men and women (Sacco et al., 1997).
Half of all strokes occur in people over the age of 75, and one-third in the
population over the age of 85 (Falcone and Chong, 2007). A histogram of the
age distribution of patients in the Trondheim END study can be seen in Figure
2.1. The youngest person included in the study is 54 and the oldest is 95. In
comparison to the percentages above, 56% of the patients in the Trondheim early
neurological deterioration study is over age 75 and 17% over age 85. In addition,
Table 2.1 shows that patients with END is on average older than patients with
no END.

Figure 2.1: Histogram of the age of the patients in the Trondheim END study.

2.4.2 Gender

Similar to age, gender is an important non-modifiable risk factor for stroke and
is reasonable variable to include in a statistical analysis of END. The gender
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differences in stroke are complex, and there are differences in the incidence of
both stroke and END in age subgroups (Falcone and Chong, 2007). The death
rates are in general lower in women than in men, but the functional outcome
is higher for women. However, women are also older when presenting with first
stroke. From Table 2.1 it can be seen that 55% of the patients in the Trondheim
END study were men, 45% were women and that 12% of the men experienced
END and 19% of the women experienced END. In addition, the mean age for
women were higher than the mean age for men and probably explains the higher
rate of END.

2.4.3 Stroke severity

Stroke severity can be measured in different ways. One way is based on the
measurement of the SSS on admission and the scale is divided into five categories.
A very severe stroke has a SSS score on 0-14, a severe stroke has a SSS score on
15-29, a moderate stroke has a SSS score on 30-44, a mild stroke has a SSS score
on 45-51 and a very mild stroke has a SSS score on 52-58. From Table 2.1 it can
be seen that most of the patients in the Trondheim END study experienced a
moderate stroke. Stroke severity seems to be related to END since 50% of the
patients with a very severe stroke experienced END and only 4% of the patients
with a very mild stroke experienced END. The study of Thanvi et al. (2008) is
one of several studies that found that initial stroke severity increases the risk of
END. Neither the continuous SSS measurements or the categorical variable with
five levels are used in the statistical analysis in Chapter 4. In stead, the SSS
score is divided into three categories is used due to the log linear assumptions
of the predictors in logistic regression.

2.4.4 Blood sugar and body temperature

Hyperglycemia is defined as blood sugar level > 6 mmol/L, and is common
in the early phase of stroke. Two thirds of all ischemic stroke patients have
hyperglycemia on admission and an increasing number of studies have found that
blood sugar is associated with functional outcome (Lindsberg and Roine, 2011).
Temperature is also a factor of interest when it comes to neurological outcome
after acute ischemic stroke. Approximately one half of patients hospitalized for
stroke develop fever, and clinical studies have found that high body temperature
is associated with neurological outcome (Wrotek et al., 2014).

In the Trondheim END study, temperature and blood sugar were measured
every 6th hour during the first 48 hours, and after 60 and 72 hours. Temperature
and blood sugar vary between these time points and both are time-dependent
variables. The number of patients with hyperglycemia on admission in the
Trondheim END study is 184, and from Table 2.1 it can be seen that the average
blood sugar measurement on admission is higher in the patients with END. Table
2.1 also shows that the mean temperature on admission is higher for the patients



9

with END compared to the patients with no END. How temperature and blood
sugar are related to END in the Trondheim early neurological deterioration
study will be analyzed further in Section 3.1 and Chapter 5.

2.4.5 Blood pressure

High blood pressure is the most important risk factor for stroke, and it is of great
interest to look more closely into blood pressure in the analysis of END after
acute ischemic stroke. The role of long-term blood pressure control to improve
the outcome in patients with stroke is undisputed, but the management of the
blood pressure immediately after a stroke is controversial (Aiyagri and Gorelick,
2009). Several studies have looked at the effect of blood pressure level on the
outcome after stroke and some of the results are inconsistent.

Similar to blood sugar and temperature, blood pressure is a time-dependent
variable. In the Trondheim END study, the systolic blood pressure (SBP) and
the diastolic blood pressure (DBP) are measured 11 times. Five times the first
day, four times the second day and three times the third day. In Table 2.1
it can be seen that both the mean diastolic and the mean systolic initial blood
pressure is higher for the patients with END than for the patients without END.
In addition, 80% of the patients included in the study had high blood pressure
(SBP >140 and DBP >90). Usually, the blood pressure decreases over the
following days, and 63.9% of patients have lower blood pressure at 72 hours
than at baseline. This is in fact what characterizes a stroke patient and it may
be more interesting to look at blood pressure variability. Further analysis and
graphical representation of different blood pressure parameters will be presented
in Section 3.1 and Chapter 5. In addition to the systolic and diastolic blood
pressure, pulse pressure on admission is also included in the statistical analysis in
Chapter 5 and is the difference between the systolic and diastolic blood pressure.

2.4.6 Drugs

Thrombolytic drugs are used to dissolve blood clots and can be used in the
immediate treatment of ischemic stroke and heart attack. This is called throm-
bolysis. Not all patients can get the treatment and the decision to give the drug
is based upon a computerized tomography (CT) on admission to check for bleed-
ing, degree of the stroke and medical history. If possible, thrombolytic drugs
should be given within 3 hours of the stroke symptoms to help limit the possible
disability, and a number of large trials have confirmed the benefits of the treat-
ment in acute ischemic stroke (Bansal et al., 2004). However, the majority of
the patients with acute ischemic stroke do not receive thrombolytic drugs due to
late arrival to the emergency departments. From Table 2.1 it can be found that
approximately 27% of the 368 patients in the Trondheim END study got the
treatment. The small percentage is due to late arrival to the hospital and the
extensive decision process that has to be done to be approved for the treatment.
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From Table 2.1 it can also be seen that the percentage of patients receiving the
treatment is only 3% higher for END than no END.

Statins is a group of drugs that are used to reduce cholesterol levels and have
been found to decrease cardiovascular risk and to improve clinical outcome. In
recent years, clinical trials looking at statins as a part of the treatment of acute
ischemic stroke has increased (Zhao et al., 2014). From Table 2.1 it can be found
that statins were given to 70% of the patients in the Trondheim END study, and
the majority of the patients with no END were given statins.

2.4.7 Other predictors

In the Trondheim END study, both time from symptom onset to hospitalization
and time from symptom onset to admission to the stroke unit are registered.
This is called the prehospital delay time and would be interesting to include and
explore in a statistical model. However, with approximately 25% missing values
in the data and with no reasonable method to estimate the missing values this
will not be done. However, it can be noted that with exclusion of the missing
data, the mean prehospital delay time registered is approximately 4 hours. It
can also be noted that the patients with END have 80 minutes shorter mean
prehospital delay time compared to the mean time of the patients with no END.
This may indicate that the prehospital delay time is related to the stroke severity
and END.

Different blood sample measurements and medications given during the hos-
pitalization are measured and could have been included in the statistical anal-
ysis. However, the majority of these variables are excluded in the analysis due
to missing values. The blood sample measurements of potassium, glucose and
C-reactive protein (CRP) on admission are included in the statistical analysis.
Bazzano et al. (2001) suggest that low potassium intake is associated with an
increased risk of stroke. The CRP level is a marker of inflammation in the body
and a normal level is <10 mg/l. Data relating CRP to the prognosis after AIS
are sparse, but Napoli et al. (2001) found that CRP is a marker of increased
1-year risk in ischemic stroke. Table 2.1 shows that the patients with END in
the Trondheim END study had lower mean CRP level than the patients with
no END. However, both have a high standard deviation. Kidney function on
admission is also included in the analysis. Glomerular filtration rate (GFR) is
a kidney function test. Normal levels ranges from 90-120 ml/min/1.73 m2, but
older people have lower GFR levels. A GFR lower than 15 ml/min/1.73 m2 is
a sign of kidney failure (Martin, 2015). From Table 2.1 it can be seen that the
mean value of GFR in the Trondheim END study is lower for the patients with
END than for the patients with no END.

The data also contains several binary variables with information about ear-
lier or present conditions. History of stroke or transient ischemic attack (TIA),
history of atrial fibrillation, history of ischemic heart disease, history of hyper-
tension and history of diabetes mellitus are included in the statistical analysis.
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Another binary variable included in the analysis is clinical/ASPECTS mismatch
and is more complicated to classify. The Alberta Stroke Program Early CT
Score (ASPECTS) is a measurement scale the radiologist uses to grade early
CT-changes and ranges from 0 to 10. The National Institutes of Health Stroke
Scale (NIHSS) is also used in the valuation. The scale ranges from 0 to 42 and
has many of the same scoring categories as SSS and EPSS. A patient with an
ASPECT score ≥ 8 combined with a NIHSS score ≥ 8 has clinical/ASPECTS
mismatch. A NIHSS score ≥ 8 has been suggested to be used as a clinical in-
dicator of large volume of ischemic brain tissue (Tei et al., 2007). Based on the
ischemic stroke symptoms, the stroke episode can be classified as total anterior
circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar
infarct (LACI) or posterior infarct (POCI) (Tei et al., 2000). These variables
are also included in the analysis in Chapter 5.
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2.5 Quality of the data
An important part of the analysis of a data set is to investigate how the data was
collected. When doing this, significant omissions or biases which may influence
the analysis can be revealed. Procedures, definitions, measurements uncertainty
etc. can differ from research location to research location, and it is important to
keep in mind when comparing the result with published articles concerning the
same field of interest. In general, anomalies should be investigated, but espe-
cially when doing statistical analysis in the field of medicine, anomalies should
not be ignored. Often these anomalies provide useful information. Limitations
of the data are important to state to use the result in a bigger context. The
limitations and data quality of the Trondheim END study is presented below,
and the theory is mainly taken from Little and Rubin (2002).

2.5.1 Missing data

Due to several different reasons some entries in a data set can be missing. In
surveys the participants can for example refuse to answer some of the questions
or they can be unable to choose between the given alternatives. In medical trials
a patient can for example be too sick to go through with the planned measure-
ments or the patient can refuse to continue in the study. Missing data can be
handled by analyzing the available data and ignoring the missing values, by fill-
ing in the missing data with replacement values or by using statistical models to
allow for the missing data and make assumptions about the relationship to the
available data. Different methods exist to impute the values of the observations
that are missing, and alternative procedures are constantly under development.
Imputation can either be done by imputing one value for each missing item or
by imputing more than one value to allow for uncertainty of the value. Multiple
imputation is a risky procedure since it leads to a complete data set which in
reality is not complete. How the missing data are handled can have a crucial
influence on the final result and the certainty of the conclusion. There is no
universal best approach and the method and assumptions should be connected
to the nature and behavior of the variables in the study. On the contrary, sim-
ply removing the patients with missing data from the analysis will decrease the
sample size and again result in a reduction of the statistical power, and useful
measurements will be removed completely from the analysis. In addition, it is
for example likely that excluding missing data would have been excluding pa-
tients that represents the healthier part of the stroke patients since missing data
can occur when patients have left the hospital. This would lead to selection bias.

Both the pattern of missing data and the mechanisms that lead to missing
data is important to consider prior to statistical analyses. If the complete data
is defined to be M = (mij) and contains both the entries of the observed data,
Mobs, and the entries of the missing components, Mmis, the missing data can
depend on M , Mobs or none. When the missing data depends on the missing
values inMmis, the missing data is related to the data values and the mechanism
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is called missing not at random (MNAR). On the other hand, if the missing-
ness does not depend on M the data are called missing completely at random
(MCAR). A less restrictive mechanism than MCAR is that the missing data
does not depend on Mmis but only depends on Mobs, the data is called missing
at random (MAR). Analyzing data missing at random as there were no missing
data can give consistent and reliable results, but it is hard to obtain the same
reliable results if the data are MNAR. This is due to the fact that the missing
value contains important information and can not be ignored.

In a longitudinal study, each experimental or observational unit is measured
at baseline and repeatedly over time. Incomplete data are not unusual under
such designs, as many subjects are not available to be measured at all time
points. In addition, a subject can be missing at one follow-up time and then
measured again at one of the next, resulting in nonmonotone missing data pat-
terns. Such data present a considerable modeling challenge for the statistician.
It is also common that the subjects drop out prior to the final measurements
and do not return which result in a monotone missing data pattern. For the
Trondheim END study it is stated in the study protocol of Helleberg et al.
(2014) that missing values can be retrieved or estimated from medical records
and the former value is continued when estimation from clinical score sheet is
not reliable. Scores may also be adjusted if there is inconsistency between the
available clinical information and the value from the score sheet. In addition,
patients discharged before the time limit on 72 hours were scored in accordance
to their last measured values for the time-dependent variables. Often a data set
is handed to a statistician with missing values and the statistician have to decide
which imputation method to use. However, in the Trondheim END study the
data set it complete and contains imputed values for missing measurements.

Last observation carried forward (LOCF) is a single imputation method and
for each individual the missing values are replaced with the last observed value
of that variable. As a result, a potential source of bias is introduced and variance
in the data is most likely underestimated. In the Trondheim END study, LOCF
is used when a measurement is missing but we have no information of the entries
of the imputed values in the data set. For the majority of the time-dependent
variables the LOCF is not so easy to justify. Blood sugar, temperature and blood
pressure are expected to change over a six hour time interval and a measurement
of these variables equal to the previous measurement is expected to be a LOCF-
value. EPSS on the other hand, can be constant for stable patients and an
imputed value is hard to distinguish from an observed value. Uncertainty about
the score can also be a reason for LOCF-value in some of the EPSS entries.
Especially for the high EPSS scores it is likely that some of the missing values are
MNAR and a sign of improvement since it is likely that missing a measurement
is due to a stable patient that is not bedridden or dischargement. In this case
LOCF is reasonable. In addition, missing values are expected to some degree
due to the fact that inclusion in the study should not affect the treatment given,
and when the treatment provide no added benefit the patient is discharged.
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Missing data is also a frequent problem in the variables not dependent on
time. A reasonable value can probably be estimated based on other available
information about the patient, but this is a comprehensive procedure depending
on broad knowledge about medical conditions and association between clinical
measurements.

It is assumed that most of the missing values are MNAR and excluding the
patients with missing values will probably lead to selection bias. The sample size
and the statistical power would also decrease dramatically. As an alternative
solution to the problem, an algorithm to estimate the percentage of imputed
values is made. The percentages is useful when discussing the strength of the
statistical analysis. Values in possible unobserved entries are replaced with NA
(Not available) and the EPSS values have the strictest NA-rule since it is possible
that patients have a constant value over time. The algorithm is given by

• DBP - NA if the previous value is the same as the present value for the
SBP and DBP

• SBP - NA if the previous value is the same as the present value for the
SBP and DBP

• Blood sugar - NA if the previous value is the same as the present value
for the blood sugar

• Temperature - NA if the previous value is the same as the present value
and NA in blood sugar at the given position for the temperature

• EPSS - NA if the previous value is the same as the present for the EPSS
and NA for the SBP and DBP at the given position for the EPSS.

Table 2.2: The estimated percentages of imputed values in the time-dependent
variables based on the LOCF-algorithm above.

LOCF
SBP 25.3%
DBP 25.3%
Temperature 11.4%
Blood sugar 16.0%
EPSS 28.8%

The percentage of the LOCF values for each variable from the algorithm
is given in Table 2.2. This leads to a total of 21.4% LOCF values for the
time-dependent variables. In the following statistical analysis the data with the
imputed values will be used, and in Chapter 6 the issues with the LOCF data
set will be discussed in a bigger context.
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2.5.2 Limitations

The measured value of the blood pressure, blood sugar and temperature is sen-
sitive to errors in the measurement tool and typing errors. Despite the fact that
all relevant personnel responsible for scoring according to the different scales
are experienced and trained, SSS and EPSS are to some degree a subjective
value. It is common procedure, but it still is a potential source of bias in the
data. Selection bias can also be suspected due to the fact that patients receiving
thrombolytic treatment are always admitted to the stroke unit and may be more
likely to be included in the study. On the other hand, patients with more subtle
symptoms are less likely to be included in the study.
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Chapter 3

Analysis of time-dependent
variables

The time-dependent variables from the Trondheim END study that will be an-
alyzed are systolic blood pressure, diastolic blood pressure, blood sugar, tem-
perature and EPSS. The variables will be analyzed with two different strategies.
The overall aim of this thesis is to develop a regression model to understand the
neurological outcome after AIS, and in this model systolic blood pressure, dias-
tolic blood pressure, blood sugar and temperature will be included as predictors.
For these variables we will in Section 3.1 look at summary statistics and con-
sider their marginal predictive potential in END as an alternative to modeling
the variables over time. Variability parameters and other summary statistics
can capture essential features of the response over time. Summary statistics
are an approach that simplifies longitudinal data to a single value. When it
comes to the analysis of the variable EPSS in time, the strategy is different.
END is defined as in Section 2.2 and is a binary variable constructed only from
the baseline measurement and 72hrs after stroke measurement of parts of the
EPSS score. By analyzing EPSS it is of interest to investigate if it is possible to
conceive more relevant information from EPSS that is not already contained in
the END-variable. The motivation for this preliminary analysis with summary
statistics and EPSS will be presented more in detail in Section 3.1 and 3.3

3.1 Time-dependent predictors

Due to the amount of imputed values, an alternative procedure than including
the time points in a regression model can give a more realistic prediction. In
addition, according to the results in Chung et al. (2015) it is more interesting to
look at the variability in the blood pressure than the level at each measurement,
and hopefully capture more information from different variability parameters
than modeling blood pressure over time. According to Pezzini et al. (2011) the
optimal management of blood pressure during acute ischemic stroke is contro-
versial. It is of this reason important to capture as much information as possible

17
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from the blood pressure measurements so that clinical guidance of blood pres-
sure management can be improved. A study performed in Bergen found that
low body temperature on admission were related to END (Nacu et al., 2016).
By analyzing summary statistics that measures level and the variability, both
of these findings will be explored further for the Trondheim END study. These
facts are the motivation for analyzing different summary statistics for the time-
dependent predictors.

The variability parameters calculated for each patient in Chung et al. (2015)
are the range (max-min), the standard deviation (sd) and coefficient of variation
(cv). The coefficient of variation is calculated as sd × 100/mean. In addition,
the mean, the minimum value (min) and the maximum value (max ) are also cal-
culated and represent different levels of the measurements. The same summary
statistics are calculated for the blood pressure and the other time-dependent
predictors in the Trondheim END study. The summary statistics based on the
minimum, maximum and range are not affected by the problems with the im-
puted values. However, the standard error is underestimated and the average
value of the measurements can either underestimate or overestimate the true
mean.

3.1.1 Quintile analysis of binary outcome

When analyzing measurements of a continuous variable it is sometimes useful
to group the subjects. The cut-off point for splitting the observations are called
quantiles (Altman and Bland, 1994). Example of quantiles are tertiles which
split the data in three and quintiles which split the data in five. To visualize
and explore the behavior of the different summary statistics, the patients are
divided into quintiles based on their value of the summary statistic and in each
quintile the percentage of patients with END is calculated. This is done for all
the time-dependent predictors. Dividing continuous variables into quantiles are
often used in epidemiologic research to illustrate the relationship to a binary
outcome (Bennette and Vickers, 2012). The calculation of the k-th quintile
cut-off point is

qi =
k(n+ 1)

5
i = 1, 2, 3, 4 (3.1)

where k = 1, 2, 3, 4 and n is the number of observations (Altman and Bland,
1994). If for example q1=73.8 and n = 368, the first cut-off point is the 0.8 value
of the way between the 73rd and 74th observation of the sorted observations in
increasing order. If the value of the 73rd sorted observations is 131 and the
value of the 74th sorted observations is 131.1, the 1st quintile is 0.8 ∗ (131.1 −
131) + 131 = 131.1.

In each quintile, the number of patients with END compared to the total
number of patients will be treated as a binomial proportion. Often, confidence
intervals for a binomial proportion is computed as a normal approximation in-
terval, but there are other choices. Here, the confidence interval is calculated in
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R with the binom.test-function which uses the Clopper-Pearson method and
is based on the cumulative probabilities of the binomial distribution. The con-
fidence interval is calculated by using the relationship between the binomial
distribution and the beta distribution (Bilder and Loughin, 2015), and is given
as

Beta(
α

2
;nEND, nq − nEND + 1) < θ < Beta(1− α

2
;nEND + 1, nq − nEND) (3.2)

where α is the confidence interval level, nq is the number of patients in each
quintile (trials) and nEND is the number of patients with END in each quintile
(events).

3.1.2 χ2-test for homogeneity and for trend

The χ2-test for trend is will be used to investigate linearity between END and
the different summary statistics. The test is closely related to the χ2-test for
homogeneity that will be presented first. It is often of interest to compare the
distribution of a categorical variable in one sample with a categorical variable of
another sample, and the χ2-test can be used for this purpose. The null hypthesis
is that the numbers in each cell are proportinately the same in both samples, and
the alternative hypothesis is that there is a significant difference. The statistical
theory in this section is from McHugh (2013).

The χ2 statistics is given by

χ2 =

∑
cells(Oi − Ei)2

Ei
(3.3)

where Oi is the observed value in each cell of the table and Ei is the expected
value in cell i of the table (Example given in Table 3.1). The expected value is
calculated as

Ei =
nri × nci

n

where nr is the row total for cell i, nc is the column total for cell i and n is the
total sample size. Asymptotically χ2 follows a χ2-distribution with parameter
df = (Number of rows-1) × (Number of columns-1). The underlying assump-
tions for using the test is that the data in the cells are frequencies or counts, the
levels of the variables are mutually exclusive, the study groups must be indepen-
dent, the value of Ei in each cell should be 5 or more in at least 80% of the cells
and all cells should have Ei ≥ 1. If the assumptions are met, the χ2-statistic
can be used to calculate a p-value and to reject or accept the null hypothesis.

If there is a meaningful order of the groups, Armitage (1955) presented an-
other test that can be used to perform a test for linear trend across the different
groups. It is a modification of the χ2-test to incorporate a suspected ordering
and will have higher power than the test in Equation (3.3) if the trend is cor-
rect. The test can be used on a k × 2 contingency table, and an example of a
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5× 2-table can be seen in Table 3.1. The test can be used when the response is
a two-level variable and the other variable is ordinal in k groups. The null hy-
pothesis is that the binomial proportion is the same for all levels and that there
are no linear trend. The Cochran-Armitage trend statistic is given in Agresti
(2002) and with the notation from Table 3.1, the test statics for trend is

z2 =

( ∑k
i=1(wi − w̄)ni

nc1

n
(1− nc1

n
)
∑k

i=1 nri(wi − w̄)2

)2

, (3.4)

where w = (1, 2, 3, 4, 5) are weights and w̄ = (
∑k

i=1 nriwi)/n. Asymptotically
this test statistic also follows a χ2-distribution, but now on 1 degree of freedom.

Table 3.1: An example of a 5 × 2-table of counts for the binary END-variable
for SBPmean divided in fifths.

END No END
Q1 n1 nr1 − n1 nr1
Q2 n2 nr2 − n2 nr2
Q3 n3 nr3 − n3 nr3
Q4 n4 nr4 − n4 nr4
Q5 n5 nr5 − n5 nr5

nc1 nc2

3.2 Results of the time-dependent predictor anal-
ysis

The patients in the Trondheim END study is divided into fifths with the quintile
cut-off point given in Equation 3.1 for the six summary statistics from each time-
dependent predictors. A confidence interval for the probability of END in each
quintile is calculated with the Clopper-Person method from Equation 3.2. The
CochranArmitageTest-function from Signorell (2015) in R is used to explore
significant trend between the quintile divided fifths for the summary statistics
for each time-dependent predictor. The function uses Equation (3.4) and find
the corresponding p-value. The result can be found in Table 3.2 and 3.3.

A plot of the percentage of END and the quintiles for the different blood
pressure parameters can be seen in Figure 3.1 and 3.2. For the SBPmax-min-
parameter there may be a trend, but the results from the trend test in Table 3.2
did not find any significant trends for the systolic blood pressure parameters.
For the diastolic blood pressure, Figure 3.2 shows a possible trend in DBPmax,
DBPmax-min, DBPsd and DBPcv, and using the trend test we found a signifi-
cant linear trend for the same parameters. As a comparison, Chung et al. (2015)
found significant p-values at a 0.05 level for all blood pressure quintiles expect
for SBPmin and DBPmean.
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How the percentage of END is associated with the quintiles of blood sugar
(BS ) parameters can be seen in Figure 3.3. There seems to be a possible in-
creasing trend in BSsd, BSmin and BSmean, and using the trend test we found
a significant linear trend for BSmean, BSsd, BSmin and BSmax. The results for
the different temperature (TEMP) parameters can be seen in Figure 3.4 and all
of the parameters show a possible linear trend. Also, using the trend test we
found a p-value below 0.05 for all of the temperature parameters.

Table 3.2: The results from the Cochran-Armitage trend test for the blood
pressure summary statistics. The *-marking indicates a significant trend at a
0.05 significance level.

SBPmean 0.2729 DBPmean 0.5734
SBPmax-min 0.1031 DBPmax-min 0.001238 *
SBPcv 0.5031 DBPcv 0.005058 *
SBPsd 0.3223 DBPsd 0.005058 *
SBPmin 0.7714 DBPmin 0.3521
SBPmax 0.1566 DBPmax 0.01302 *

Table 3.3: The results from the Cochran-Armitage trend test for the tempera-
ture and blood sugar summary statistics. The *-marking indicates a significant
trend at a 0.05 significance level.

TEMPmean 2.317 · 10−6 * BSmean 4.435 · 10−5 *
TEMPmax-min 0.007004 * BSmax-min 0.05119
TEMPcv 0.009598 * BScv 0.2729
TEMPsd 0.007004 * BSsd 0.03052 *
TEMPmin 0.007004 * BSmin 0.0001088 *
TEMPmax 8.151 · 10−8 * BSmax 0.002555 *
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Figure 3.1: Proportions of patients developing END in the quintiles for the
systolic blood pressure parameters together with the corresponding Clopper-
Pearson confidence interval.
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Figure 3.2: Proportions of patients developing END divided in the quintiles
for the diastolic blood pressure parameters together with the corresponding
Clopper-Pearson confidence interval.
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Figure 3.3: Proportions of patients developing END divided in the quintiles for
the blood sugar parameters together with the corresponding Clopper-Pearson
confidence interval.
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Figure 3.4: Proportions of patients developing END divided in the quintiles for
the temperature parameters together with the corresponding Clopper-Pearson
confidence interval.
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3.3 Analysis of EPSS
Exploration of factors influencing early neurological deterioration is of overall
interest. In our data a total of 11 measurements of the EPSS score have been
collected at different time points during 72 hours after admittance to the hos-
pital. Since END is defined based on EPSS, it is of interest to investigate the
behavior of the EPSS values. The 11 EPSS values for a random selection of 9
patients are shown in Figure 3.5, and for most of the patients the values does
not change drastically. A total of 42 of the 368 patients actually have the same
value of EPSS for all 11 measurements and because of the imputation problem
presented in Section 2.5 it is difficult to distinguish imputed values from actual
measurements. Thus, analyzing the data over time with EPSS as response may
not model the reality adequately. However, the classification between END or no
END only uses the first and last measurement, and information between these
time points are rejected. Of this reason a preliminary, unsupervised analysis of
all of the EPSS values is done to explore all information in the measurements.
Unsupervised means that there are no known answer, no quantitative response
variable and no direct measure of success. Prediction of a response is not the
goal of unsupervised analysis. Exploration of possible trend or groupings in
the data is often a good place to start. In addition, and on the contrary to
experimental studies, observational studies often rely on statistical techniques
to account for differences that result from lack of randomization and external
variations.

There are several classification possibilities based on the EPSS values. One
option is END vs no END, and other options are EDE or a combination of
EDE and END. A variable with three levels is already made. The patient is
classified as 0 if he or she did not experience END or any EDE, 1 if the patient
has experienced at least one EDE but no END and 2 if the patient has END.
A total of 13.9% of the patients are in group 2, 28.3% of the patients are in
group 1 and 57.8% of the patients are in group 0. The aim of this section is to
explore possible groups based on the EPSS values and compare the groups to
the three level classification rule and the binary END/no END variable. As a
result we want to find the dependent variable of primary interest when it comes
to modeling early neurological deterioration.

The focus in this chapter is not to present statistical methods in detail, but
rather to explore and visualize the EPSS values and the classification rules.
However, the fundamental idea and statistic behind each method is presented.
To do this and to see if there are patterns in the EPSS values that is in coor-
dination with one of the three classifications above, a linear model, principal
component analysis and clustering are used. The theory will be presented first
and then the results from the Trondheim END study follows.
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Figure 3.5: The development in the EPSS values over time for 9 randomly chosen
patients. The EPSS score ranges from 0-32, where 32 indicates that the patient
has the highest level of function.

3.3.1 Linear model

In general, the linear model is given as

Yi = x′iβ + εi, (i = 1, ..., n) (3.5)

where Yi is the response, n is the number of observations, p is the number of
predictor variables, xi is the value of the p predictors for the i-th observation,
β = (β1, β2, ...βp) are unknown parameters and ei ∼ N(0, σ2). With matrix
notation, minimizing the sum of the squared errors with respect to the model
parameters gives that

β̂ = (XTX)−1XTY, (3.6)

and is derived in Chapter 3 in Bingham and Fry (2010). The linear model is
not directly a part of unsupervised analysis, but will be used to look for a linear
trend and to explore the behavior of the response. EPSS will be used as the
response and time will be used as the predictor variable.

3.3.2 Principal component analysis

Principal components analysis (PCA) is a tool for exploratory data analysis and
can be used to give a low-dimensional representation of the data. PCA summa-
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rizes the correlated variables with a smaller number of representative variables
that explains most of the variability. Graphical representation is difficult with
data of high dimension and PCA is a powerful tool when it comes to visualizing
high dimensional data. PCA highlights similarities and differences in the data
and can also be used to explore hidden structures in the observations and to
find outliers, and is because of this a part of unsupervised learning. PCA uses
eigenvectors and eigenvalues of the covariance matrix to reduce the dimensions
without loosing too much information, and the eigenvector with the highest
eigenvalue is the principle component of the data. Singular value decomposition
(SVD) is directly related to PCA in the case where principal components are
calculated from the covariance matrix (Wall et al., 2003, Chapter 5). The SVD
of a matrix X is to express each xij as

xij =
r∑

k=1

θkukivkj (3.7)

where θ1 ≥ θ2 ≥ ... ≥ θr and r is the rank of X. In matrix notation the
expression is given as

X
n×p

= U
n×p

θ
p×p

VT

p×p
, (3.8)

where the matrix θ is a p × p diagonal matrix with positive or zero elements
called singular values, UTU = I and VθV = I. The columns of U are called
left singular values and the rows of VT is called the right singular vectors. The
principal components are the eigenvectors of the covariance matrix and with the
SVD of X the matrix can be written as

C =
1

n
XXT =

1

n
Uθ2UT (3.9)

which is often easier to work with than the covariance matrix itself (Madsen
et al., 2004) and

Interpretation of the principal components is based on finding which of the
original variables that are correlated with each component. The correlation val-
ues that are farthest from zero in either positive or negative direction is of most
importance. The first principal component is a linear combination of the original
variables which captures the maximum variance in the data set and determines
the direction of the highest variability in the data. The second component is
uncorrelated to the first one and the directions between the components are
orthogonal. Principal components can also be used as predictors in a regres-
sion model and to prepare the data for further analysis with other statistical
techniques.

3.3.3 Clustering

Cluster analysis is also a part of unsupervised learning and can be used to
investigate if the observations can be grouped in clusters, such that the objects
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within each cluster are more closely related to one another than objects in
a different cluster. There exist different clustering methods, but all methods
attempt to group the objects based on a measure of similarity supplied to it. The
clusters are believed to reflect the underlying structure of the data. Clustering
can for example be based on the correlation or the Euclidean distance between
the observations, and the choice of similarity measure must be made based on
prior knowledge of the data (Tibshirani, 2013). The k-means algorithm is a
popular clustering method and partitions the observations into a pre-specified
number of clusters, where k is the number of clusters. Hierarchical clustering is
a popular method when the number of clusters is not known in advance. The
different approaches both have their advantages and disadvantages, and the
clustering method used in this section is the k-mediods method which is more
robust and more computationally intensive than k-means. A mediod is a data
point where the average dissimilarity to all the other data points is minimal.

3.4 Results of the analysis of EPSS
Visualization of the behavior of the EPSS values over time is done with the linear
model presented in Section 3.3.1. The function lm in R is used to estimate the
intercept β̂0 and the slope β̂ for each patient and the result is given in Figure 3.6.
The color coding is based on the three level classification presented in Section
3.3. The spread of points around the constant slope in the figure indicates that
little change is observed in the EPSS values over time. Most of the patients
with high EPSS values experience little change, and this is the clustering in the
right half in the figure. Often, the trend of the regression line is of interest and
deviating points can be treated as outliers from the trend. In this case, on the
other hand, the patients that deviate from the regression line are the one of
interest.

When defining X presented in Section 3.3.2 to be the 368× 11-matrix of the
EPSS values, the result from the PCA on the EPSS values from the Trondheim
END study can be seen in Figure 3.7. The data are projected onto the first
two principal components. The color coding in the plot is based on the same
classification as above, and it does not seems to highlight any structure of the
data that we didn’t see in Figure 3.6. Also, the first principal component explains
91.1% of the total variance. The value of the four first principal components
for each time point can be seen in the R-output below. PC1 is just a linear
combination of the average values of EPSS which is not very informative when
it comes to significance of the variables. James et al. (2013) say that if no
interesting patterns are found in the first few principal components, then it is
unlikely that other principal components are of interest.

1 > eps s . p c a $ r o t a t i o n
2 PC1 PC2 PC3 PC4
3 ep s s1 −0.2744192 0.5330892 −0.75648373 −0.13040522
4 ep s s2 −0.2944197 0.4118888 0.23147770 0.17063754
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Figure 3.6: Linear model with EPSS as response and time as predictor. The
points represents the n = 368 patients and is colored according to the three level
classificiation.

5 ep s s3 −0.2977366 0.3842571 0.26701083 0.16324996
6 ep s s4 −0.3009821 0.2420529 0.47251699 0.07700169
7 ep s s5 −0.3095214 −0.1281256 0.05406679 −0.32120095
8 ep s s6 −0.3089475 −0.1480964 −0.03519635 −0.40300270
9 ep s s7 −0.3088352 −0.1942365 0.04775780 −0.31423267

10 ep s s8 −0.3096448 −0.1913885 0.06499454 −0.24624445
11 ep s s9 −0.3066234 −0.2619321 −0.04957589 0.06112270
12 eps s10 −0.3044499 −0.2711949 −0.14380508 0.37968161
13 eps s11 −0.2992574 −0.2916492 −0.21395930 0.59029117

The function pamk (partitioning around mediods) from the library cluster
in R is used to assign the observations to different clusters. A pre-specified num-
ber of cluster must also be done in the k-mediods method, and the pamk-function
also solves the problem of finding k. Regarding the EPSS values in the Trond-
heim early neurological deterioration study, both level differences measured by
Euclidean distance and shape of the observation profiles measured by correlation
is of interest. The correlation can not be calculated for patients with the same
value over the 11 measurements of EPSS, and the cluster analysis with correla-
tion as similarity measure uses 326 of the 368 patients. The result of the cluster
analysis can be seen in Figure 3.4 and 3.9, and we see that both methods chose
two clusters. In spite of the two clusters, it is hard to see very clear differences
between the observations in the different clusters and the cluster regions are
overlapping. Interpreting the results according to the END/no END variable,
we find that 270 patients with no END are the cluster group 1 based on the
Euclidean distance, and that 214 patients with no END are in cluster group 1
based on the correlation. All in all, this is a total of 70% of the patients and
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Figure 3.7: Plot of the EPSS values over time projected onto the first two
principal components.The points represents the n = 368 patients and is colored
according to the three level classificiation

can indicate that a binary representation of the EPSS values is adequate.

3.5 Conclusion of the analysis of the time-dependent
variables

For the blood sugar, temperature and diastolic blood pressure both summary
statistics measuring level and variability were significant. The mean, minimum,
maximum, range and standard deviation are included in the statistical analysis
in Chapter 5. It especially of interest to look at the behavior of the highly
significant parameters from Table 3.2 and 3.3 when other predictors are also
included in the analysis, and this will be done in Chapter 6. The coefficient of
variation is not included in further analysis since it is based on the value of the
mean and the standard deviation.

The aim of the EPSS section was twofold: 1) To explore possible groups
based on the 11 EPSS values for each patient 2) comparison of the groups found
in 1) to the classification rules based on END and EDE. We have seen good cor-
respondence with the linear regression slope and intercept and the classification
rules with 3 levels, that the PCA result didn’t show any new information and
that the clustering analysis and the END/no END variable were in agreement
for the majority of the patients. After doing the unsupervised analysis of EPSS,
we choose to use the binary classification between END or no END as dependent
variable of primary interest in further statistical analysis
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Figure 3.8: The patients divided into k = 2 clusters with corre-
lation as similarity measure.
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Figure 3.9: The patients divided into k = 2 clusters with Eu-
clidean distance as similarity measure.



Chapter 4

Sparse modeling in logistic
regression

Logistic regression is and has for a long time been popular in medical and epi-
demiological research since binary variables such as alive/dead, diseased/healthy
or medication/placebo are of general interest. The goal of logistic regression is
to find the best model to describe the relationship between the binary data and
independent predictors. Logistic regression permits the use of both continuous
and categorical predictors. The motivation for using a logistic regression model
in this analysis is the binary variable END/no END. In medical research and
trials there are often numerous predictors that is interesting to include in a sta-
tistical model, and the best ratio between number of predictors and number of
events for a stable model is not known. Including many perdictors in a logistic
model may lead to a overfitted model. The outcome in logistic regression is
usually coded as 0 or 1, and 1 is often referred to as "event" and is usually
the least common of the two. Different simulation studies have evaluated the
effect of the number of events per variable (EPV) in logistic regression. Peduzzi
et al. (1996) found that when EPV > 10, no problems with overestimation and
underestimation of the variance and biased regression coefficients occurred. In
the Trondheim END study we have 51 events (END) and 40 possible predictors.
The corresponding EPV-value is 1.3, and including all predictors may lead to
imprecise coefficient estimates. In the high-dimensional setting when p > N
the logistic regression model cannot be used at all without regularization. In
addition, a common problem in statistical analysis is which selection procedure
to use for finding variables that might influence the outcome variable. Forward
selection, backward selection and stepwise selection can be used to select vari-
ables where each variable is evaluated individually, and each method have their
has advantages and disadvantages. To overcome the issues with the number of
predictors and the choice of the variable selection procedure an alternative to
traditional logistic regression is presented in this chapter.

The Least Absolute Shrinkage and Selection Operator (lasso) is a shrinkage
and selection method for regression models. We have chosen to use this method

31
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instead of traditional logistic regression due to our low EPV-value and the model
selection property. The method was originally applied to ordinary least squares
(OLS) regression, but has in the recent years been extended to logistic, multi-
nomial, Poisson and Cox regression models. Interpretability of the final model
and accuracy of prediciton is the motivation for finding alternatives to OLS.
The method was first introduced in Tibshirani (1996) and is becoming more
and more popular as the method has been expanded and improved upon. The
lasso is a central part of the rapidly evolving field of sparse statistical modeling
which in our setting means that only a small number of predictors are included
in the final model. Variable selection becomes increasingly important in modern
data analysis as we want to find the predictors giving the best prediction model
among numerous possible predictors in big data sets. The lasso estimation of
the parameters is done using R and the package glmnet from Friedman et al.
(2010), and the underlying mathematical and statistical theory is presented in
this chapter. Concepts and algorithms from optimization theory is also an im-
portant part of the lasso and some of the most fundamental optimization theory
used in the lasso methods are also presented in this chapter. In the field of
medical statistics lasso has the potential to be very useful as it handles data
with numerous predictors.

This chapter begins with a presentation of generalized linear models, the
logistic regression model and then the theory behind the lasso regression and
lasso-penalized logistic regression follows. Statistical terms and methods for
understanding the lasso and for presenting the result are also presented in this
chapter. The generalized linear model theory is taken from Rodríguez (2007)
and the main reference for the statistical methods presented in Section 4.2 and
4.3 is Hastie et al. (2015). In Chapter 5, the theory presenten in this chapter is
applied to the data from the Trondheim early neurological deterioration study.

4.1 Generalized linear models
Let Y1, ...Yn be random variables in a sample of size n and let x′i = (xi1, ..., xip)
be the value of the predictors for the i-th observation where p is the number of
the predictors. The linear model presented in Section 3.3.1 assumes that the
random variable Yi has a normal distribution with mean µi and variance σ2,

Yi ∼ N(µi, σ
2), (4.1)

and that the expected value µi is a linear function of p predictors and a vector
of unknown parameters β, such that

µi = x′iβ.

The normality assumption and the assumption of a linear relationship be-
tween the response and the predictors are not always reasonable. Two gener-
alization of the linear model can be done to obtain a more applicable model
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and this is what is called generalized linear model (GLM). The first part of the
generalization is that it is assumed that observations can follow any distribution
belonging to the exponential family. A probability distribution function that
can be written as

f(yi) = exp{yiθi − b(θi)
ai(φ)

+ c(yi, φ)}

where θi and φ are parameters and ai(φ), b(θi) and c(yi, φ) are known func-
tions is a member of the exponential family. Examples of exponential families
are the normal, binomial, Poisson, exponential, gamma and inverse Gaussian
distributions. The second part of the generalization is the focus of modeling a
transformed mean ηi instead of the mean µi, that is,

ηi = g(µi). (4.2)

The function g(µi) is called a link function and needs to be one-to-one continuous
differentiable. The transformed mean is assumed to have a linear relationship
to the predictors, so that

ηi = x′iβ, (4.3)

and
µi = g−1(x′iβ).

Maximum likelihood estimation is used to estimate the parameters rather
than ordinary least squares, and an iterative computational procedure is used
in the estimation.

4.1.1 Logistic regression

The binomial distribution belongs to the exponential family and the logistic
regression model is a generalized linear model with a so called logit link function.
The logistic regression model is used when the response variable is binary, and
is the most popular model for binary data. The logit link function is given as

ηi = logit(πi) = log
πi

1− πi
, (4.4)

where πi is the probability that Yi takes the value 1 and 1−πi is the probability
that Yi takes the value 0. The distribution of the random variable Yi then follows
a binomial distribution with size 1. This special case of the binomial distribution
is the same the Bernoulli distribution given as

Pr{Yi = yi} = πyii (1− π)1−yi . (4.5)

The expected value of a Bernoulli distributed random variable is

E[Yi] = Pr{Yi = 1} · 1 + Pr{Yi = 0} · 0 = πi · 1 + (1− πi) · 0 = πi
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and the variance is

Var[Yi] = E[Y 2
i ]− E[Yi]

2 = Pr{Yi = 1} · 12 + Pr{Yi = 0) · 02 − π2
i

= πi − π2
i = πi(1− πi).

We observe that the variance of Yi is dependent on the parameter πi. This
motivates that linear model in Equation (3.5) that assumes constant variance
across Yi will not be adequate when analyzing binary data.

From the relationship in Equation (4.3) and (4.4) we find that

ηi = logit(πi) = x′iβ (4.6)

and

πi = logit−1(ηi) =
eηi

1 + eηi
=

ex
′
iβ

1 + ex
′
iβ

The unknown parameters (β) are estimated with maximum likelihood esti-
mation and the estimated value of the j-th predictor βj represents the change in
the logit of the probability with a unit change in the predictor when the other
predictors are constant. The exponentiated coefficient eβj represents an odds
ratio and is often a useful representation of the result. The likelihood function
for n independent Bernoulli observations is

L(β) =
n∏
i=1

πyii (1− πi)1−yi (4.7)

and the log-likelihood is given as

logL(β) =
n∑
i=1

(yilog(πi) + (1− yi)log(1− πi)). (4.8)

Based on the relationships in Equation (4.3) and (4.6), the log-likelihood can be
expressed as

logL(β) =
n∑
i=1

yilog(πi) + log(1− πi)− yilog(1− πi)

=
n∑
i=1

(yi(log(πi)− log(1− πi)) + log(1− πi))

=
n∑
i=1

(yilogit(πi) + log(1− πi))

=
n∑
i=1

(yix
′
iβ + log(

1

1 + ex
′
iβ

))

=
n∑
i=1

(yix
′
iβ − log(1 + ex

′
iβ)). (4.9)
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From this equation it can be seen that the log-likelihood function is a concave
function. Due to the fact that ex and log(x) are convex, log(1 + ex

′
iβ) is also

convex and then −log(1 + ex
′
iβ) is a concave function. This is a motivation for

using the negative log-likelihood in the lasso-penalized logistic model and will
be discussed further in Section 4.3.

4.1.2 Deviance

If the number of parameters equals the number of observations, the fitted model
is called a saturated model and in a saturated model the log-likelihood achieves
its maximum value. It is useful to compare any proposed model to the saturated
model. The saturated model is the most complex model possible and provides
a perfect fit. The deviance D is defined as

D = −2(logL(proposed model)-logL(saturated model)) (4.10)

and should be small if the proposed model is a good approximation to the
true model. The asymptotic sampling distribution of the deviance follows a
χ2-distribution with n− p degrees of freedom. The binomial deviance is

D = 2
n∑
i=1

{yilog(
yi
µ̂i

) + (1− yi)log(
1− yi
1− µ̂i

)} (4.11)

where yi is the observed value and µ̂i is the fitted value for the i-th observation.
The derivation of the deviance is based on the log-likelihood functions of the
saturated model and the fitted model and can be seen in Rodríguez (2007).
From Equation (4.11) it is clear that zero deviance is a perfect fit due to the
fact that µ̂i = yi . The deviance can also be used as a test statistic for the
hypothesis that all parameters that are in the saturated model but not in the
fitted model are zero (Agresti, 1966).

4.2 Lasso regression

To present the lasso regression model, we start with the idea of parameter es-
timation by the ordinary least squares (OLS) method. It is now convenient
to include the intercept in the notation to follow the notation in Hastie et al.
(2015), and the linear model can be written as

Yi = β0 +

p∑
j=1

xijβj + εi

where Yi is the response, p is the number of predictor variables, xij is the value
of the j-th predictor for the i-th observation, n is the number of observations
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and β0 and β = (β1, β2, ...βp) are unknown parameters as before. The ordinary
least squares problem is given as

minimize
β0,β

n∑
i=1

(Yi − β0 −
p∑
j=1

xijβj)
2 (4.12)

The estimated parameters from Equation (4.12) will typically be nonzero with
OLS. When p > n the least-squares estimates are not unique and the solutions
will almost surely overfit the data. A constraint is needed to overcome this
problem. In the lasso method all p predictors are initially included in the model
and the parameters are estimated by solving the constrained problem

minimize
1

2n

n∑
i=1

(Yi − β0 −
p∑
j1

xijβj)
2 subject to ||β||1 ≤ t (4.13)

where ||β||1 =
∑p

j=1 |βj| is the l1 norm of β and is called the lasso penalty.
The factor 1/2n is useful for unequal sized splitting of the data in the cross-
validation. The factor makes no difference in the optimization result and the
factor is replaced by 1/2 and 1 in many formulations of the lasso. The maximum
number of coefficient selected by the lasso is min(N, p). Using the l1 instead of
for example the l2 norm has the advantage of forcing some of the coefficients
to be zero and this is the most important property of the l1-constraint. As
a result, lasso does variable selection automatically. The final model is then
easier to interpret and the computational advantages are also an important
aspect of the l1-penalty. The parameter t is user-specified and limits the sum
of the absolute values of the parameter estimates. Smaller values of t mean a
stricter bound and leads to a sparser model than larger values of t. A sparser
model means that more βj’s are set to zero. Of course, a too small value of t
can prevent the inclusion of important predictors and too large values can lead
to overfitting. Cross-validation can be used to find the best value of t and is
discussed in Section 4.4.

To understand the model selection property of the lasso, a geometric compar-
ison with the ridge regression is useful. Ridge regression is similar to the lasso
method, but instead of using the l1-norm as constraint, the l2-norm is used. The
minimization problem is given as

minimize
β0,β

{ 1

2n

N∑
i=1

(Yi − β0 −
p∑
j=1

xijβj)
2
}

subject to ||β||2 ≤ t2ridge (4.14)

where ||β||2 =
∑p

i=1 β
2
j and tridge is a user-specified parameter for the ridge

regression model. On the contrary to lasso, ridge regression only shrinks the
coefficients and none of the coefficients are shrunken to zero. When p = 2
the constraint region for the ridge regression and lasso is β2

1 + β2
2 ≤ t2ridge and

|β1|+ |β2| ≤ t, respectively. Figure 4.1 contrasts the difference in the constraints
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in the two methods. The solution to both methods is the point where the
elliptical contours hit the constraint region. For the l1-penalty the solution
often occurs in a corner, and βj is equal to zero. This can only happen for lasso
regression since the ridge regression constraint is a disk because of the quadratic
terms.

Figure 4.1: Estimation picture for the lasso and ridge regression. The blue areas
are the constraint regions and the ellipses are the contour of the residual sum of
squares. The picture is taken from (Hastie et al., 2015, Ch. 2, p. 11)

Now, let Y = (Y1, ...Yn) denote the n-vector of responses and let X be an
n×p matrix of predictors. The minimization problem in Equation 4.13 can then
be re-expressed using matrix-vector notation as

minimize
β0,β

{ 1

2n
||y − β01−Xβ||22

}
subject to ||β||1 ≤ t (4.15)

where 1 is a n×1 vector of ones, and ||·||2 is the usual Euclidean norm on vectors.
To make the lasso solutions independent on the units of the predictors, the
predictors are standardized so that each column is centered ( 1

n

∑n
i=1 xij = 0) and

has unit variance ( 1
n

∑n
i=1 x

2
ij = 1). The centering and standardization is needed

since the constraint on the size of the coefficient associated with each predictor
will depend on the magnitude of each predictor. This is also an advantage in
the optimization part of the lasso method. In addition, the response value Yi
is centered ( 1

n

∑n
i=1 Yi = 0) for convenience. Since the data is centered the

intercept can be omitted in the following lasso presentation and can found by
calculating

β̂0 = Ȳ −
p∑
j=1

x̄jβ̂j
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where Ȳ and x̄1, ...x̄p are the means and β̂j is the optimal lasso solution for the
j-th predictor.

On Lagrangian form1 the problem from Equation 4.15 is rewritten as

minimize
β

{ 1

2n
||Y −Xβ||22 + λ||β||1

}
(4.16)

for some λ ≥ 0 and when β0 is omitted. This formulation of the problem is
convenient for numerical computation of the solution. There is a one-to-one
correspondence between the optimization problem given in Equation (4.15) and
the Lagrangian form given in Equation (4.16). In general this means that for
each t where the constraint in Equation (4.13) is active, there exist a corre-
sponding λ that solves the Lagrangian form of the problem. Estimation of the
lasso method relies on numerical optimization approaches and a brief overview of
possible procedures for solving the minimization problem is presented in Section
4.6.

Another important aspect of the lasso method is the bias-variance trade-off.
The prediction error contains both a bias-part and a variance-part. Ideally,
both bias and variance should be reduced as much as possible simultaneously.
Traditionally, the focus have been on unbiased estimators and the least square
estimate that has the minimum variance among all linear unbiased estimators.
However, there can be a lot of variability in the least squares fit and the predic-
tions may be poor. The lasso method trades off an increase in the bias with a
decrease in the variance and will be discussed later in the chapter.

4.3 Lasso-penalized logistic regression
As discussed in Section 4.1, maximum likelihood is used to estimate the unknown
parameters β. Fitting a generalized linear model based on maximizing the log-
likelihood is the same as minimizing the negative log-likelihood, and the lasso
method for a generalized linear model is given as

minimize
β0,β

{
− 1

n
logL(β0,β;Y,X) + λ||β||1

}
.

The log-likelihood for the logistic model is given in Equation (4.9). The resulting
negative log-likelihood with l1-penalty is

− 1

n

n∑
i=1

(Yi(β0 + x′iβ)− log(1 + eβ0+x′iβ)) + λ||β||1.

Lasso for logistic models are similar to lasso for linear models expect that the
response variable Yi can only take two possible values and that the negative log-
likelihood is minimized instead of error sum of squares. Finding a model with

1Nocedal and Wright (2006) say that the Lagrangian form of the minimization problem
min f(x) subject to c1(x) ≤ t is L(x, λ) = f(x) + λc1(x)
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few important predictors among numerous possible predictors is also possible
for logistic regression models and this is known as sparse logistic regression.
By introducing a penalty on the maximum likelihood estimation, the logistic
regression model can be used in the high-dimensional setting when p > n. The
log-likelihood given in Equation (4.9) was shown to be a concave function, so
then the minimization problem

minimize
β0,β

n∑
i=1

(− 1

n

n∑
i=1

Yi(β0 + x′iβ)− log(1 + eβ0+x′iβ)) subject to ||β||1 ≤ t

has the benefits of being a convex optimization problem. The Lagrangian form
of the lasso-penalized logistic model is

minimize
β0,β

{
− 1

n

n∑
i=1

(Yi(β0 + βTxi)− log(1 + eβ0+βT xi)) + λ||β||1
}
.

4.4 Cross-validation

A crucial part of the lasso is to choose the regularization parameter λ since it
controls the strength of shrinkage and thereby the model complexity. This can
done with the cross-validation method. The method is basically to use one part
of the available data to fit the model and the rest of the data to evaluate the
model fit on the new data and then repeat the procedure. Analysis is performed
on the train subsets and the remaining subset is the validation subset. There are
different ways to divide the the data. K-fold cross-validation for example divides
the data into K roughly equal-sized parts. A model is fitted to K − 1 parts of
the data, and one part is used to evaluate the fitted model. The procedure is
repeated for k = 1, 2, ..., K and for each k a prediction error is calculated. In
this way, K different estimates of the prediction error is obtained and is then
averaged for each value of λ. Often K = 5 or K = 10 is used, but choosing
K involves different considerations. Visualization of the scenario when K = 5
can be seen in Figure 4.2. With K = N the method is called leave-one-out
cross-validation and the chosen λ is approximately unbiased but the variance
can be high (Hastie et al., 2008). For large data sets, the computational burden
of choosing K = N is considerable. On the other hand, choosing K = 5 or
K = 10, the cross-validation has lower variance but bias can be a problem.

The function cv.glmnet from the glmnet-package returns two values of λ,
both the value for that minimizes the deviance (λ̂min) and the largest value
of λ such that the error is one standard error from the minimum (λ̂1se). The
latter includes the fewest predictors in the final model of the two and with
numerous predictors λ̂1se will find the most interpretable model. In the case of
a binary response and lasso-penalized logistic regression, the deviance is used as
prediction error measure and to find λ̂min and λ̂1se. The formula for the deviance
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Figure 4.2: Example of cross-validation when K = 5.

was given in Equation (4.11) so in this is case

D̂(λ) =
K∑
k=1

D̂−k(λ) (4.17)

where D̂−k is the deviance of the training set where set k is left out.

4.5 Bootstrap

Bootstrapping is a technique that uses the observed data for making inference
on parameters, and the goal of the bootstrap method is computer-based imple-
mentation of basic statistical concepts (Sartori and Miliani, 2010). The basic
idea behind the bootstrap method is to draw b = 1, ..., B samples with size n
by random sampling with replacements from the original data set. Because of
the replacement an observation can be chosen several times. In each bootstrap
sample an observation weight w∗i = k/n is assigned to each observation, where k
is the number of times the observation is chosen in the given bootstrap sample.
For each bootstrap sample the quantity of interest is calculated, and based on
the B replicates of the quantity it is possible to assess aspects of the distribu-
tion. The bootstrap replicates can for example be used to estimate the standard
deviation

ŜDbootstrap =
(∑B

b=1(s(x
∗b)−

∑B
b=1 s(x

∗b)

B
)2

B − 1

)1/2 (4.18)
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where s(x∗b) is the statistic calculated for each bootstrap sample. The bootstrap
replicates can also be used to find a 95% confidence interval for each parameter
by sorting the B values for each coefficient and cutting off the lowest 2.5% and
the highest 2.5% of the values. The remaining smallest and largest value are the
95% confidence limits. This is called a bootstrap percentile confidence interval.

Three classes of bootstrap methods exist for GLMs. The first class is para-
metric bootstrap which involves simulating from a fitted parametric model. The
second class is semiparametric and involves sampling of model error. The third
class and the one that is used in the following analysis is nonparametric boot-
strap which involves simulating new data without any distribution assumptions
of the original data, and is used in this analysis.

The cross-validation method presented in the previous section is run in each
bootstrap sample when doing inference on estimated parameters from lasso-
penalized logistic regression. In the cross-validation the n observation is used
together with the observation weights and the result is B λ-values that minimizes
the deviance for each b. It is also possible to find B values of λ such that the
error is 1 standard error from the minimum. A pseudo-code of the bootstrap
method with cross-validation is given below.

1: for b = 1 : B do
2: Draw a sample from the data with replacements of the same size as the

data
3: Run cross-validation to choose λ
4: Find the regression coefficients for the given λ
5: end for
6: Compute the standard deviation of the parameters
7: Sort and find the 0.025 and 0.975 percentile of the parameters

4.6 Convex optimization

In general a convex optimization problem is

minimize
x∈Rn

f(x) = g(x) + h(x),

where g is convex and continuously differentiable function and h is a convex,
continuous, but not necessarily differentiable function (Lee et al., 2014). Con-
vex optimization problems have the advantages of being efficiently and reliable
solved. Both the lasso regression for linear models and the logistic lasso regres-
sion are convex optimization problems since the above requirements holds and
the penalty function is not differentiable. Since the lasso method can be used
in domains with very large data set, the algorithm for solving the optimiza-
tion problem needs to be fast and efficient. Implementation of new methods
and methods adapted for different l1-penalized regression models are currently
evolving. Least angle regression was earlier the most popular algorithm, but
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the pathwise coordinate descent is a new and more efficient method. The path-
wise coordinate descent for the lasso start with a large value for λ and slowly
decrease the value. The coordinate descent method is defined in Nocedal and
Wright (2006) to be a method that cycles through n coordinate directions and
performs line search along each direction to obtain new iterates. The method is
useful because it does not require the calculation of the gradient of the objective
function. Each step is fast and there is an explicit formula for each minimization
step. The glmnet-package in R uses a proximal-Newton iterative approach. The
method is also a line search method and computes search directions by minimiz-
ing local models f̂k where the subscript denotes the k-th step. The advantage
of the proximal-Newton method is that it converges rapidly near the optimal
solution (Lee et al., 2014).

4.7 Limitations of the lasso method

Strong theoretical backing and fast algorithms is the reason for the popularity
of the lasso, but there are also major gaps when it comes to the estimation pro-
cedure and significance testing (Lockhart et al., 2013). Exact p-values, standard
deviations and confidence intervals for the lasso is difficult to find because of the
nature of the estimation procedure and since the l1-penalty is not differentiable.
In addition, cross-validation is a random procedure and the value of the chosen
λ will vary every time and also the predictors selected by the lasso. The ma-
jority of the inference of the regression coefficient is based on resampling of the
original data and data splitting. Standard errors and confidence intervals for
the parameters from the lasso method can be found using the bootstrap method
presented in Chapter 4.5. According to Goeman (2010) the standard errors are
not very meaningful since the estimated coefficients are not unbiased, and the
standard errors will not tell the whole story. The bias introduced by the lasso
itself is therefore a major component of the squared error, and it is impossible
to precisely estimate the bias.

Lockhart et al. (2013) propose a significance test of the coefficient in the
lasso model that does not employ resampling of the data. The test statistic is
based on the fitted values from the lasso method and follows an Exp(1) asymp-
totic distribution under the null hypothesis that all variables are included in
the current lasso model. As no published rigorous theory exist for the logistic
models, this will not be explored further in this thesis.

Another shortcoming of the lasso method is that it does not handle highly
correlated predictors well. The true model can be recovered if there are no high
correlations between relevant predictors and irrelevant predictors. If there is
group of highly correlated predictors, the lasso tends to only choose one of the
predictors (Zou and Hastie, 2005). It is also arbitrary which of the correlated
predictors that is selected. The elastic net penalty can be used as an alternative,
and uses a compromise between the ridge penalty from Equation (4.14) and the
lasso penalty from Equation (4.13). The elastic net minimization problem is
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given as

minimize
β0,β

{1

2

n∑
i=1

(Yi − β0 − x′iβ)2 + λ(
1

2
(1− α)||β||22 + α||β||1)

}
, (4.19)

where α ∈ [0, 1] and has to be determined in addition to λ. When α = 1 the
minimization problem corresponds to the lasso method and when α = 0 the
minimization problem corresponds to the ridge method. The elastic net tends
to select the whole group of highly correlated predictors if one predictor in the
group is selected, and is particularly useful when p >> n (Zou and Hastie, 2005).
The limitations of the lasso method will be discussed further when presenting
the results from the Trondheim END study and in Chapter 6.
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Chapter 5

Analysis of the Trondheim early
neurological deterioration study
with the lasso-penalized logistic
regression model

In this chapter, the lasso-penalized logistic regression model and related meth-
ods presented in Chapter 4 are used to analyze 368 binary responses and 40
centered and standardized predictors from the Trondheim END study. The re-
sponse vector Y is a binary variable of length n = 368 with Yi = 1 if the i-th
patient has END and with Yi = 0 if the i-th patient does not have END. The
predictors can be seen in Table 5.1. Figure 5.1 shows the correlation between
the predictors. For each summary statistic it can be seen that the standard
deviation is correlated to the range. Also, BSmax-min is correlated to BSmax,
and BSsd is correlated to BSmax. As discussed in Section 4.7, if two predictor
are highly correlated, the lasso method only tends to pick one of the correlated
predictors. This will be discussed further in Section 5.4 and Chapter 6.

5.1 Fitted model

In Figure 5.2, the coefficient path for each predictor as a function of log(λ) can
be seen. The regularization parameter is uniformly spaced on the log scale. The
number of nonzero coefficients in each model can be seen on along the top in the
figure, and as log(λ) increases the number of predictors in the model decrease.
The coefficients can also be plotted against the fraction of deviance explained
and the result can be seen in Figure 5.3. The fraction of deviance explained is
calculated as

D2
λ =

Dnull −D
Dnull

(5.1)

where D is given in Equation (4.10) and Dnull is the deviance computed when
only the intercept is included in the proposed model. The fraction of deviance

45



46

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ag
e

ge
nd

er
tr

om
bo

ce
re

b
is

kh
ea

rt
st

at
in

m
bp

sy
s

sd
bp

sy
s

m
bp

di
a

sd
bp

di
a

ra
ng

ed
ia

ra
ng

es
ys

m
in

sy
s

m
in

di
a

m
ax

di
a

m
ax

sy
s

m
bs

uk
ke

r
sd

bs
uk

ke
r

m
in

bs
m

ax
bs

ra
ng

eb
s

m
te

m
p

sd
te

m
p

m
in

te
m

p
m

ax
te

m
p

ra
ng

et
em

p
cr

p
cl

m
is

LA
C

I
PA

C
I

TA
C

I
P

oC
I

pp
ad

m
po

ta
dm

gl
uk

ad
m

ki
dn

ad
m

st
ro

ke
3

at
ria

lfi
b

hy
pe

rt
en

di
ab

et
es

age
gender
trombo

cereb
iskheart

statin
mbpsys
sdbpsys
mbpdia
sdbpdia

rangedia
rangesys

minsys
mindia

maxdia
maxsys

mbsukker
sdbsukker

minbs
maxbs

rangebs
mtemp
sdtemp

mintemp
maxtemp

rangetemp
crp

clmis
LACI
PACI
TACI
PoCI

ppadm
potadm

glukadm
kidnadm
stroke3
atrialfib

hyperten
diabetes

Figure 5.1: Correlation plot of the 40 predictors. The figure is symmetric, dark
blue dots or dark red dots correspond to highly correlated predictors and larger
dots also correspond to higher correlation.

explained increases as the number of predictors in the model increases.
A plot of the deviance for different values of log(λ) can be seen in Figure 5.4.

The red dots in the figure corresponds to the deviance averaged over the 10 folds
in the cross-validation at the given value of log(λ), and the error bars are plus
and minus one empirical standard deviation of the cross-validated estimates of
the deviance. The 10-fold cross-validation method presented in Section 4.4 is
used to find the value of λ̂min that minimizes the deviance over a sequence of
different λ-values and the value of λ̂1se such that the error is 1 standard error of
the minimum value. The blue vertical line in Figure 5.4 corresponds to log(λ̂min)
and the green vertical line to the right corresponds to log(λ̂1se). The numbers
along the top is the number of nonzero coefficient. Choosing the penalty λ̂min
results in a model with 22 nonzero coefficients and choosing λ̂1se results in a
model with 8 nonzero coefficients.

The 8 predictors that are included in the model from λ̂1se can be seen in
Table 5.1. A total of 18 coefficients are estimated to be zero with λ̂min, and the
22 remaining predictors in the model can be also be seen in the table. The model
with the 1 standard deviation error rule is the sparsest of the two and is the
easiest to interpret. However, since the analysis of END is relatively new and
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Figure 5.2: Coefficient path for different values of log(λ). To the left there is no
penalty on the negative log-likelihood and all covariates are included, and the
model complexity decreases as log(λ) increases.

not to exclude any possible important predictors or new predictors, inference
is done for the regression coefficients estimated by the less sparse model using
λ̂min. The value of the estimated coefficients based on λ̂min can be seen in Table
5.2 and is termed β̂(λ̂min). Note that this is the chosen model, but due to the
randomness in the cross-validation using the same strategy a second time could
result in another choice of λ̂min and thus a different final model. This is what is
exploited in the analysis presented in the next section.
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Table 5.1: A summary table of the predictor variables included in the model
when λ = λ̂min and when λ = λ̂1se. The penalty parameter λ = λ̂min estimates
8 regression parameters to be nonzero and λ = λ̂1se estimates 22 regression
parameters to be nonzero.

Predictor variable λ̂min λ̂1se Predictor variable λ̂min λ̂1se
Age TEMPmean × ×
Gender × TEMPsd
Thrombolysis × TEMPmax-min
Cerebr. TEMPmax × ×
Iskheart. × TEMPmin ×
Statins × CPR ×
SBPmean Clinical mismatch × ×
SBPsd LACI
SBPmax-min × PACI ×
SBPmax TACI × ×
SBPmin POCI
DBPmean × Pulse pressure
DBPsd × Potassium × ×
DBPmax-min Glucose
DBPmax Kidney function ×
DBPmin Stroke severity × ×
BSmean × Atrial fib. ×
BSsd Hypertension × ×
BSmax-min × Diabetes
BSmax BSmin × ×
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Figure 5.3: Coefficient path where the coefficients are plotted as a function of
the fraction of deviance explained.

Figure 5.4: Binomial deviance as a function of different values for log(λ). The
blue line is the value of λ that minimizes the deviance and the green line is the
value of λ such that the error is 1 standard error of the minimum.
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5.2 Post-selection inference for the regression pa-
rameters

As pointed out earlier, the lasso method is attractive due to its ability to combine
variable selection with parameter fitting. Research on approaches for inference
for the regression coefficients are currently ongoing and there is not one standard
procedure for presenting the result. Thus, the presentation of the result is not
as straight forward as for logistic regression and other traditional statistical
methods. Since the cross-validation is a random procedure, both the number
of selected predictors and the selected predictors will vary if the procedure is
repeated. Inference for the estimated parameters is therefore an important part
after choosing the model. The behavior of the estimated parameters are explored
with the bootstrap method presented in Section 4.5.

For each bootstrap sample the full model fitting procedure is performed,
including the cross-validation to choose λ, so we have λ̂bmin and regression pa-
rameters β̂b(λ̂bmin). We have saved the results of the B bootstrap samples in a
B×p-matrix where each column corresponds to the estimated value of a specific
parameter for all the bootstrap samples and each row corresponds to one boot-
strap replicate. We have also saved B values for λ that minimizes the deviance.
Visualization of the result for all predictors from B = 1000 bootstrap realiza-
tions of β̂b(λ̂bmin) can be seen in Figure 5.5. Estimated parameters with boxes
away from zero represents the predictors that most often are estimated not to
be zero by the lasso-penalized logistic regression method, and boxes with the
median at approximately zero are most often not selected by the method. The
number of times each parameter is estimated to zero can also be used to analyze
the importance of each predictor. Figure 5.6 shows the proportion of times each
of the 40 regression parameters were shrunken to zero in the bootstrap samples
and Figure 5.7 shows the same, but only for the 22 nonzero parameters of the
final model. Table 5.2 shows the percentage each of the parameter estimated
to be nonzero, and the intuition is that high percentage means association with
END.

From Figure 5.6 it is seen that the maximum blood sugar predictor is al-
most always estimated to be zero, and that the clinical mismatch predictor is
estimated to be nonzero for almost all bootstrap simulations. In the rest of the
section the focus will be on β̂(λ̂min), but Figure 5.6 is useful for comparison. For
example, the range of the blood sugar is included in β̂(λ̂min), but the predic-
tor is only estimated to be nonzero in 9.1% of the 1000 bootstrap simulations.
Also, from Figure 5.6 it can be seen that there are other predictors estimated
to be zero more seldom than the range of the blood sugar and is not included in
β̂(λ̂min). Because of this, it is expected that the range of the blood sugar is one
of the predictors that will shift between inclusion and exclusion of the model
for different values of λ. The same holds for the upper predictors in Figure 5.7.
To summarize, the similarity between Figure 5.6 and 5.7 is that the predictors
at the bottom in the figure is almost always among the predictors selected by
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Table 5.2: The first column contains the regression parameters not estimated
to be zero, and the other columns represent results based on the 1000 bootstrap
samples. The standard deviation is calculated from Equation (4.18) and the CI
is the 95% percentile interval presented in Section 4.5.

β̂(λ̂min) % not 0 ŜD 95% percentile CI
Clinical mismatch 0.063 97.3% 0.025 (0, 0.10)
BSmin 0.057 96.8% 0.021 (0, 0.087)
Hypertension -0.047 93.6% 0.019 (-0.0723, 0)
Potassium - admission 0.026 82.2% 0.015 (0, 0.050)
TEMPmax 0.044 81.2% 0.024 (0, 0.078)
Stroke severity -0.0205 70.8% 0.016 (-0.053, 0)
CRP -0.027 67.8% 0.015 (-0.048, 0)
Statins -0.020 64.2% 0.015 (-0.049, 0)
BSmean 0.018 63.2% 0.016 (0, 0.052)
SBPmax-min 0.027 60.2% 0.019 (0, 0.055)
TEMPmean 0.012 55.0% 0.020 (0, 0.065)
Atrial fibrillation 0.013 53.2% 0.012 (0, 0.040)
TACI 0.0022 47.5% 0.013 (0, 0.044)
Ischemic heart disease 0.0060 40.7% 0.0095 (0, 0.031)
DBPsd 0.0065 34.9% 0.012 (0, 0.033)
Kidney function - admission -0.0047 30.7% 0.0073 (-0.025, 0)
TEMPmin 0.0070 29.5% 0.0098 (0, 0.032)
PACI -0.0093 28.2% 0.0092 (-0.031, 0)
Gender 0.0033 25.5% 0.0070 (-0.0049, 0.023)
DBPmean 0.0076 24.9% 0.012 (0, 0.040)
Thrombolysis -0.0056 23.4% 0.0077 (-0.028, 0)
BSmax-min -0.0045 9.1% 0.048 (-0.0178,0)

the lasso to be included in the final model. The difference is that the upper
predictors in Figure 5.6 will almost always be excluded from the final model,
but the upper predictors in Figure 5.7 will fluctuate between inclusion in the
model and being estimated to zero.

The percentile confidence intervals and standard deviations based on the
bootstrap samples can be seen in Table 5.2. As discussed in the previous chapter,
the standard deviations must be used with caution. The standard deviation can
give an impression of great precision, but the bias introduced by the penalization
must also be accounted for.
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Figure 5.5: Boxplots of 1000 nonparametric bootstrap simulations. The plot vi-
sualizes the distribution of the estimated parameters for each predictor variable.
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Figure 5.6: The percentage of 1000 bootstrap samples each of the 40 regression
parameters are estimated to be zero.

Figure 5.7: The percentage of 1000 bootstrap samples each of the regression
parameters selected by the lasso when λ = λ̂min is estimated to be zero.

5.3 The shrinkage parameter

It is also of interest to explore how the optimal λ is chosen by the 10-fold cross-
validation for each bootstrap sample due to the fact that this is the parameter
that controls the sparsity of the model. A boxplot and a density plot of log(λ̂bmin)
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that is based on the bootstrap samples can be seen in Figure 5.8. The boxplot
shows the median of log(λ̂bmin) is approximately -4, and both figures show that
log(λ̂bmin) is estimated to be around −4 in most cases. However, the minimum
value of log(λ̂bmin) = −6 and from Figure 5.4 it can be seen that 29 regression
parameters are estimated to nonzero and the maximum value of log(λ̂bmin) =
−2.26 only includes the intercept. Running the cross-validation procedure and
ending up with a value of λ near these extreme cases do not predict an adequate
model.

Figure 5.8: Left: A boxplot based on the B = 1000 different λ̂bmin-values. Right:
The density distribution of λ̂bmin from the 1000 bootstrap samples.

5.4 The correlation problem

A correlation plot of the predictors included in the final model when λ = λ̂min
can be seen in Figure 5.10. Comparing this correlation plot with the correlation
plot in Figure 5.1, we see that there are no longer any predictor highly correlated
predictors. Thus, figure 5.10 visualizes the fact that the lasso method includes
predictors that have low pairwise correlation in the final model. The regression
coefficient for BSmax-min for example is estimated to be nonzero. As mentioned
earlier, this predictor is correlated with BSmax and BSsd, and as expected
these coefficients are estimated to be zero. In comparison, the results from
Table 3.3 showed that BSmax and BSsd were linearly related to END, and it
is a possibility that these covariates should also have been included. However,
the predictor BSmax-min was not shown to be significant. Both DBPmax-min
and DBPsd showed a significant linear trend in Table 3.2. They are correlated
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predictors, and only the coefficient for DBPsd is estimated to be nonzero in the
lasso regression. For the systolic blood pressure, the coefficient SBPmax-min is
estimated not to be zero, but in this case Table 3.2 showed that the correlated
predictor SBPsd had a nonsignificant p-value.

To explore the correlation limitation further, TEMPsd and TEMPmax-min
can be used to illustrate this. A plot of the estimated parameters for TEMPsd
against the estimated parameters for TEMPmax-min can be seen in Figure 5.9.
Both coefficients are often estimated to be zero at the same time, but when one
coefficient is not estimated to be zero, the other coefficient is almost always zero.

Figure 5.9: The estimated parameters from the bootstrap simulations for
TEMPsd against the estimated parameters for TEMPmax-min.

Another interesting part of the correlation problem is how much correlation
the lasso method handles before it ignores a correlated predictor. The correlation
between TEMPmax and TEMPmean is 0.75 and both coefficients are estimated
to be nonzero when λ = λ̂min. This is also the highest correlation between
to predictors in the chosen model, and may indicate that correlations higher
than this will produce problems for the lasso method. Investigation of the
correlation between predictors prior to regression coefficient estimation can be
used to choose the best method for prediction.
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Figure 5.10: Correlation plot of the predictors in the chosen model. The figure
is symmetric, dark blue dots or dark red dots correspond to highly correlated
predictors and larger dots correspond to higher absolute correlation.



Chapter 6

Discussion and conclusions

In this final chapter we focus on the statistical issues and the medical results.
The issue with missing data, the correlation and issues concerning presentation
of the result are summarized and discussed in this chapter. In spite of these
statistical issues, the medical result and applicability is discussed in the next
section.

6.1 Statistical issues

We start by adressing the LOCF imputation issue presented in Section 2.5.
The issue is that missing values are imputed with the former value for the
time-dependent variables in the Trondheim END study. The LOCF-imputation
problem must also be taken into account when discussion the results since our
algorithm estimated approximately 1/4 of imputed values of the time-dependent
measurements. Because of the imputation there are less variability in the data
compared to the reality. Assuming that the LOCF values were removed cor-
rectly, the problem is not solved. Logistic lasso regression do not handle data
with missing values, and an estimation of the missing values had to be done.
Data NMAR is difficult to deal with analytically and the results are often sen-
sitive to the model chosen to impute the missing value. The summary statistics
presented in Section 3.1 can be calculated by omitting missing values, but this
will not reflect the reality. Another way of dealing with missing data is to remove
the patients with missing values would lead to biased estimates and misleading
results since the date is not assumed to be MCAR.

When analyzing high dimensional data, the focus is more on prediction than
addressing the cause. In predictive studies the power of the predictive model is
more important than accurate coefficient estimates. As a result, high correlation
between predictors is not problematic if the predictive model as a whole explains
the reality in a good way. The elastic net could have been used to overcome the
problem with correlated predictors, but then an estimation of the parameter α
had to be performed. However, in this analysis the correlation problem is not
that crucial since the majority of the highly correlated predictors are measuring
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the variability in the same predictor (e.g. blood sugar, temperature and blood
pressure). In addition, the preliminary analysis of the summary statistics give
an indication of the association to END for the predictors that is not chosen due
to high correlation with another predictor.

Only the 4 of the 22 nonzero parameters in the lasso-penalized logistic re-
gression model from Chapter 5 have issues with imputed values, and it is tempt-
ing to draw the conclusion that the issues is not as extensive in this analysis.
However, the correlation problem restricts the exploration of the impact of the
variables based on imputed values since a variable based on imputed values can
be excluded from the model due to high correlation with another variable. In
Chapter 3, there are no correlation problems and the imputed values reduce the
statistical validity of the result for the variables based on imputed values.

Since there are no single correct way to present the result from the logistic
lasso regression, different approaches is discussed here. The mean value over all
bootstrap simulations β̂boot = 1

B

∑B
i=1 β̂b(λ

b
min) can also be used to estimate the

regression parameters and to overcome the randomness of one cross-validation
simulation. This is problematic in two ways. The first problem is that variable
selection is not done automatically. The second problem is that the predictors
are underestimated compared to the parameters in β̂(λ̂min) since β̂ is included
in the mean. Counting the nonzero regression parameters based on all boot-
strap simulations can also be done to measure the importance of the different
predictors. The problem is that there are cut-off rule to distinguish between
predictors that should be included in the final model and predictors not to be
included in the final model.

6.2 Medical results
Since the selection of the shrinkage parameter involves a random procedure,
the parameters in β̂(λ̂min) do not represent the whole picture. Some of the
nonzero parameters will probably be estimated to zero if we have repeated the
cross-validation procedure. However, the bootstrapping say something about
the probability of being included in the final model and the parameters included
in most of the simulations are associated with END. The parameters included in
over 900 of the 1000 bootstrap simulation are clinical mismatch, the minimum
value of the blood sugar over 11 measurements, history of hypertension and
potassium level measured on admission, and are variables that most definitely
should be included in a predicative model for END.

As mentioned in Section 3.1, a study in Bergen found that early neurologi-
cal deterioration (defined according to NIHSS) and serious consequences for the
short-term outcome were associated with low body temperature on admission.
Other studies have also found association between measurements on admission
and END. In this anslysis, the BSmin predictor is the minimum value of 11
measurements and was included in the final model, but only 12% of the pa-
tient experienced the minimum value at the first measurement. The TEMPmax
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predictor was also included in the final model, and only 9.5% of the patient ex-
perienced the maximum body temperature on admission. The TEMPmin was
also included in the final model, and only 27% of the patients had the lowest
body temperature on admission. The results from Chapter 5 also shows the
importance of monitoring patients closely the first few days after acute ischemic
stroke, and that both level and variability of the time-dependent predictors are
important. The variability in the blood pressure was of great interest due to
the findings in Chung et al. (2015). However, due to the imputed values, the
variability in the blood pressure is underestimated and therefore not as impor-
tant in the analysis as expected. The medical analysis of the Trondheim END
study can be extended by looking at different definitions for early neurological
deterioration and compare regression parameters from this analysis and results
from other studies.

To conclude, Section 3.1 and Chapter 5 show both new results and results in
accordance with other studies. Due the amount of missing data the result has
limited applicability, but the same important parameters are interesting to look
at when planning and analyzing future stroke studies.



60



Bibliography

Agresti, A. (1966), An Introduction to Categorical Data Analysis, first edn, John
Wiley and Sons, INC.

Agresti, A. (2002), Categorical Data Analysis, second edn, John Wiley and Sons,
INC.

Aiyagri, V. and Gorelick, P. B. (2009), ‘Management of blood pressure for acute
and recurrent stroke’, Stroke 40, 2251–2256.

Altman, D. G. and Bland, J. M. (1994), ‘Statistics notes: Quartiles, quintiles,
centiles and other quantiles’, BMJ .

Armitage, P. (1955), ‘Tests for linear trends in proportions and frequencies’,
Biomatrics 11(3), 375–386.

Bansal, S., Sangha, K. S. and Khatri, P. (2004), ‘Drug treatment of acute is-
chemic stroke’, Stroke 35, 1085–1091.

Bazzano, L. A., He, J., Ogden, L. G., Loria, C., Vupputuri, S., Myers, L. and
Whelton, P. K. (2001), ‘Dietary potassium intake and risk of stroke in us men
and women’, Stroke 32, 1473–1480.

Bennette, C. and Vickers, A. (2012), ‘Against quantiles: categorization of conti-
nous variables in epidemiologic research, and its discontents’, Medical research
methodology .

Bilder, C. R. and Loughin, T. M. (2015), Analysis of categorical data with R,
CRC Press.

Bingham, N. H. and Fry, J. M. (2010), Regression - Linear models in statistics,
Springer.

Birschel, P., Ellul, J. and Barer, D. (2004), ‘Progressing stroke: Towards and
internationally agreed definition’, Cerebrovascular Diseases 17(2-3), 242–252.

Christensen, H., Boysen, G. and Truelsen, T. (2005), ‘The scandinavian stroke
scale predicts outcome in patients with mild ischemic stroke’, Cerebrovascular
Diseases 20(1), 46–48.

61



62

Chung, J.-W., Kim, N., Kang, J., Park, S. H. and Wook-JooKim (2015), ‘Blood
pressure variability and the development og early neurological deterioration
following acute ischemic stroke’, Journal of Hypertension 33(1).

Donnan, G. A., Fisher, M., Macleod, M. and Davis, S. M. (2008), ‘Stroke’, The
Lanclet 371(9624), 1612–1623.

Falcone, G. and Chong, J. Y. (2007), ‘Gender differences in stroke among older
adults’, Geriatrics and Aging 10(8), 497–500.

Friedman, J., Hastie, T. and Tibshirani, R. (2010), Regularization paths for
generalized linear models via coordinate descent.
URL: URL http://www.jstatsoft.org/v33/i01/

Goeman, J. (2010), ‘L1 penalized estimatin in the Cox proportional hazards
model’, Biomatrical Journal (52), 70–84.

Govan, L., Langhorne, P. and Weir, C. J. (2007), ‘Does the prevention of compli-
cations explain the survival benefit of organized inpatient(stroke unit) care?’,
Stroke 38, 2536–2540.

Hastie, T., Tibshirani, R. and Friedman, J. (2008), The Elements of Statistical
Learning, second edn, Springer.

Hastie, T., Tibshirani, R. and Wainwright, M. (2015), Statistical Learning with
Sparsity, The Lasso and Generalizations, CRC Press.

Helleberg, B. H., Ellekjær, H., Rohweder, G. and Indredavik, B. (2014), ‘Mech-
anisms, predictors and clinical impact of early neurological deterioration: the
protocol of the trondheim early neurological deterioration study’, BMC Neu-
rology 14(201).

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), An Introduction to
Statistical Learning, Springer.

Knator, D. (2015), ‘Stroke’, https://www.nlm.nih.gov/medlineplus/ency/
article/000726.htm. [Online; accessed 22-May-2016].

Lee, J. D., Sun, Y. and Saunders, M. A. (2014), ‘Proximal newton-type methods
for minimizing composite functions’.
URL: https://arxiv.org/pdf/1206.1623v13.pdf

Lindsberg, P. J. and Roine, R. O. (2011), ‘Hyperglycemia in acute stroke’, Phar-
macotherapy 31(11), 363–364.

Little, R. J. A. and Rubin, D. B. (2002), Statistical analysis with missing data,
second edn, John Wiley and Sons, INC.



63

Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2013), ‘A signifi-
cance test for the lasso’.

Madsen, R. E., Hansen, L. K. and Winther, O. (2004), ‘Singular value decom-
position and principal component analysis’.

Martin, L. J. (2015), ‘Glomerular filtration rate’.
URL: https://www.nlm.nih.gov/medlineplus/ency/article/007305.htm

McHugh, M. L. (2013), ‘The chi-square test of independence’, Biochemia medica
23(2), 143–149.

Nacu, A., Bringeland, G., Khanevski, A., Thomassen, L., Waje-Andreassen, U.
and Naess, H. (2016), ‘Early neurological worsening in acute ischaemic stroke
patients’, Acta Neurologica Scandinavia 133, 25–29.

Napoli, M. D., Papa, F. and Bocola, V. (2001), ‘C-reactive protein in ischemic
stroke’, Stroke 32, 917–924.

Nocedal, J. and Wright, S. J. (2006), Numerical Optimization, second edn,
Springer.

Peduzzi, P., Concato, J., Kemper, E., Holford, T. R. and Feinstein, A. R. (1996),
‘A simulation study of the number of event per variable in logistic regression
analysis’, Journal of Clinical Epidemoiology 49(12), 1373–1379.

Pezzini, A., Grassi, M., Zotto, E. D., Volonghi, I., Giossi, A., Costa, P., Cap-
pellari, M., Magoni, M. and Padovani, A. (2011), ‘Influence of acute blood
pressure on short- and mid-term outcome of ischemic and hemorrhagic stroke’,
Journal of Neurology 258(4), 634–640.

R Core Team (2015), R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org/

Rodríguez, G. (2007), ‘Lecture notes on generalized linear models’.
URL: http://data.princeton.edu/wws509/notes/

Sacco, R. L., Benjamin, E. J., Broderick, J. P., Dyken, M., Easton, D., Feinberg,
W. M., Goldstein, L. B., Gorelick, P. B., Howard, G., Kittner, S. J., Manolio,
T. A., Whisnat, J. P. and Wolf, P. A. (1997), ‘Risk factors’, Stroke 28, 1507–
1517.

Sartori, S. and Miliani, S. (2010), ‘Penalized regression: Bootstrap confidence
intervals and variable selection for high dimensional data sets’.

Signorell, A. (2015), DescTools: Tools for Descriptive Statistics. R package
version 0.99.11.
URL: http://CRAN.R-project.org/package=DescTools



64

Tei, H., Uchiyama, S., Ohara, K., Kobayashi, M., Uchiyama, Y. and Fukuzawa,
M. (2000), ‘Deteriorating ischemic stroke in 4 clinical categories classified by
the oxfordshire community stroke project’, Stroke 31, 2049–2054.

Tei, H., Uchiyama, S. and Usui, T. (2007), ‘Clinical-diffusion mismatch defined
by nihss and aspects in non-lacunar anterior circualtion infraction’, Journal
of Neurology 254, 340–346.

Thanvi, B., Treadwell, S. and Robinson, T. (2008), ‘Early neurological deteri-
oration in acute ischaemic stroke: predictors, mechanisms and management’,
Postgraduate Medical Journal 84, 412–417.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal
of the Royal Statistical Society 58(1), 267–268.

Tibshirani, R. (2013), ‘Clustering 1: K-means, k-mediods’.
URL: http://www.stat.cmu.edu/ ryantibs/datamining/lectures/04-clus1-
marked.pdf

Wall, M. E., Rechtsteiner, A. and Rocha, L. M. (2003), A practical approach to
microarray data analysis.

Wrotek, S. E., Kozak, W. E., Hess, D. C. and Fagan, S. C. (2014), ‘Treatment
of fever after stroke: Conflictiong evidence’, Am J Cardiovasc Drugs 13(1).

Zhao, J., Zhang, X., Dong, L., Wen, Y. and Cui, L. (2014), ‘The many roles of
statins in ishcemic stroke’, Current neuropharmacolocy 12(6), 564–574.

Zou, H. and Hastie, T. (2005), ‘Regularization and variable selection via the
elstic net’, Journal of the Royal Statistical Society 67(2), 301–320.



Appendix A

R-Code

1

2 #Gene r a t i on o f the data
3 ds <− r ead . c s v ( "/ Use r s /MARTHE/Desktop /10 . s emes t e r / s l a gda t a

−01022016. c s v " , sep=" ; " , dec=" , " )
4 bakgr=read . c sv ( "/ Use r s /MARTHE/Desktop /10 . s emes t e r / s l a gda t a−

bakgr . c s v " , sep=" ; " , dec=" , " )
5

6

7 age=ds [ , 4 ]
8 gender=ds [ , 3 ]
9 bsukke r=ds [ , 2 6 9 : 2 7 9 ] #Blood suga r

10 mbsukker=app l y ( bsukker , 1 , mean )
11 sdb sukke r=app l y ( bsukker , 1 , sd )
12 maxbs=app l y ( bsukker , 1 , max)
13 minbs=app l y ( bsukker , 1 , min )
14 d i f f b s=maxbs−minbs
15 c o e f f v a r b s =( sdb sukke r ∗100) /mbsukker
16 temp <− ds [ , 2 8 0 : 2 9 0 ] #Body tempe ra tu r e
17 temp [81 ,1 ]=37 .1
18 temp [74 ,5 ]=36 .6
19 temp [290 ,8 ]=37 .1
20 temp [314 ,8 ]=37 .4
21 temp=as . mat r i x ( temp )
22 mtemp=app l y ( temp , 1 , mean )
23 sdtemp=app l y ( temp , 1 , sd )
24 maxtemp=app l y ( temp , 1 , max)
25 mintemp=app l y ( temp , 1 , min )
26 d i f f t emp=maxtemp−mintemp
27 co e f f v a r t emp=(sdtemp ∗100) /mtemp
28 bpsys=ds [ , seq (93 ,115 , by=2) ] [ , −2 ] #S y s t o l i c b lood p r e s s u r e
29 bpd ia=ds [ , seq (94 ,116 , by=2) ] [ , −2 ] #D i a s t o l i c b lood p r e s s u r e
30 bpd ia [35 ,11 ]= bpd ia [ 3 5 , 1 0 ]
31 mbpsys=app l y ( bpsys , 1 , mean )
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32 sdbpsy s=app l y ( bpsys , 1 , sd )
33 mbpdia=app l y ( bpdia , 1 , mean )
34 sdbpd i a=app l y ( bpdia , 1 , sd )
35 maxsys=app l y ( bpsys , 1 , max)
36 minsys=app l y ( bpsys , 1 , min )
37 maxdia=app l y ( bpdia , 1 , max)
38 mind ia=app l y ( bpdia , 1 , min )
39 d i f f s y s=maxsys−minsys
40 d i f f d i a=maxdia−mind ia
41 c o e f f v a r s y s =( sdbpsy s ∗100) /mbpsys
42 c o e f f v a r d i a =( sdbpd i a ∗100) /mbpdia
43 trombo=ds [ , 2 5 ] #Thrombo l y s i s
44 s t r o k e 5=ds [ , 3 3 3 ] #St roke s e v e r i t y , f i v e c a t e g o r i e s
45 s t a t i n=ds [ , 3 3 ] #S t a t i n s
46 c e r eb=ds [ , 3 6 9 ] #Ce r e b r o v a s c u l a r d i s e a s e
47 i s k h e a r t=ds [ , 3 7 1 ] #I s ch em i c h e a r t d i s e a s e
48 p a c i l a c i=as . ma t r i x ( ds [ , 3 8 3 : 3 8 6 ] ) #C l a s s i f i c a t i o n o f s t r o k e

symptoms
49 c lm i s=ds [ , 3 9 0 ] #C l i n i c a l mismatch
50 ppadm=ds [ , 3 8 1 ] #Pu l s e p r e s s u r e
51 potadm=ds [ , 3 7 ] #Potass ium l e v e l on adm i s s i on
52 potadm [279 ]=4 .1
53 glukadm=ds [ , 4 5 ] #Glucose l e v e l on adm i s s i on
54 kidnadm=ds [ , 4 1 7 ] #Kidney f u n c t i o n on adm i s s i on
55 sssadm=ds [ , 2 9 1 ] #SSS l e v e l on adm i s s i on
56 s t r o k e 3=n t i l e ( sssadm , 3 ) #SSS on adm i s s i on i n t h r e e c a t e g o r i e s
57 a t r i a l f i b=bakgr [ , 2 0 ] #A t r i a l f i b r i l l a t i o n
58 hype r t en=bakgr [ , 2 1 ] #H i s t o r y o f h y p e r t e n s i o n
59 d i a b e t e s=bakgr [ , 2 5 ] #H i s t o r y o f d i a b e t e s
60 c rp=ds [ , 4 6 ] #CRP l e v e l on adm i s s i on
61

62 y=ds [ , 4 0 1 ] #end
63 x=cb ind ( age , gender , trombo , cereb , i s k h e a r t , s t a t i n , mbpsys , sdbpsys

, mbpdia , sdbpd ia , d i f f d i a , d i f f s y s , minsys , mindia , maxdia ,
maxsys , mbsukker , sdbsukke r , minbs , maxbs , d i f f b s , mtemp ,
sdtemp , mintemp , maxtemp , d i f f t emp , crp , c l d i f f , p a c i l a c i ,
ppadm , potadm , glukadm , kidnadm , s t r oke3 , a t r i a l f i b ,
hype r ten , d i a b e t e s )

64 x s tand=s c a l e ( x , c e n t e r=TRUE, s c a l e=TRUE)
65

66 #LOCF−a l g o r i t hm
67

68 b p d i a d i f f=mat r i x (NA, n co l =10, nrow=n )
69 b p s y s d i f f=mat r i x (NA, n co l =10, nrow=n )
70 b s u k k e r d i f f=mat r i x (NA, n co l =10, nrow=n )
71 t empd i f f=mat r i x (NA, n co l =10, nrow=n )
72 e p s s d i f f <−mat r i x (NA, n co l =10, nrow=n )
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73 f o r ( i i n 1 : 10 ) {
74 b p s y s d i f f [ , i ]= bpsys [ , i +1]−bpsys [ , i ]
75 b p d i a d i f f [ , i ]= bpd ia [ , i +1]−bpd ia [ , i ]
76 b s u k k e r d i f f [ , i ]= bsukke r [ , i +1]−bsukke r [ , i ]
77 t empd i f f [ , i ]=temp [ , i +1]−temp [ , i ]
78 e p s s d i f f [ , i ]= epssmat [ , i +1]−epssmat [ , i ]
79 }
80

81 agreebp <− ( b p d i a d i f f ==0)∗( b p s y s d i f f ==0)
82 ag ree sukke r t emp <− ( b s u k k e r d i f f==0)∗( t empd i f f==0)
83 a g r e e d i f f 5 <− ( b p d i a d i f f ==0)∗( b p s y s d i f f ==0)
84

85 nbpd ia <− bpd ia [ , 2 : 1 1 ]
86 nbpsys <− bpsys [ , 2 : 1 1 ]
87 nbsukke r <− bsukke r [ , 2 : 1 1 ]
88 ntemp <− temp [ , 2 : 1 1 ]
89 neps s <− epssmat [ , 2 : 1 1 ]
90

91 i d 0 bpd i a <− ( agreebp==TRUE)
92 i d 0 bp s y s <− ( agreebp==TRUE)
93 i d 0 b s u kk e r <− ( ( b s u k k e r d i f f==0)==TRUE)
94 id0temp <− ( ag ree sukke r t emp==TRUE)
95 i d 0 e p s s <− ( a g r e e d i f f 5==TRUE)
96

97 nbpd ia [ i d 0bpd i a==TRUE]=NA
98 nbpsys [ i d 0bp s y s==TRUE]=NA
99 nbsukke r [ i d 0b s ukk e r==TRUE]=NA

100 ntemp [ id0temp==TRUE]=NA
101 neps s [ i d 0 e p s s==TRUE]=NA
102

103 nbpd ia <− cb ind ( bpd ia [ , 1 ] , nbpd ia )
104 nbpsys <− cb ind ( bpsy s [ , 1 ] , nbpsys )
105 nbsukke r <− cb ind ( b sukke r [ , 1 ] , nbsukke r )
106 ntemp <− cb ind ( temp [ , 1 ] , ntemp )
107 neps s <− cb ind ( epssmat [ , 1 ] , neps s )
108

109 sum( i s . na ( nbpd ia ) )
110 sum( i s . na ( nbpsys ) )
111 sum( i s . na ( nbsukke r ) )
112 sum( i s . na ( ntemp ) )
113 sum( i s . na ( neps s ) )
114

115 #Q u i n t i l e a n a l y s i s
116 l i b r a r y ( d p l y r )
117 l i b r a r y ( Hmisc )
118 l i b r a r y ( binom )
119
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120 p l o t t r e n d <− f u n c t i o n ( var1 , var2 , va r3 ) {
121 gruppe=n t i l e ( var1 , 5 )
122 gruppe2=n t i l e ( var2 , 5 )
123 gruppe3=n t i l e ( var3 , 5 )
124 p ro s=c ( )
125 pros2=c ( )
126 pros3=c ( )
127 confupp=c ( )
128 con f l ow=c ( )
129 confupp2=c ( )
130 con f l ow2=c ( )
131 confupp3=c ( )
132 con f l ow3=c ( )
133 f o r ( i i n 1 : 5 ) {
134 p r o s e n t=sum( sub s e t ( end , gruppe==i ) ) / l e n g t h ( s ub s e t ( end , gruppe

==i ) ) ∗100
135 p ro s en t 2=sum( sub s e t ( end , gruppe2==i ) ) / l e n g t h ( s ub s e t ( end ,

gruppe2==i ) ) ∗100
136 p ro s en t 3=sum( sub s e t ( end , gruppe3==i ) ) / l e n g t h ( s ub s e t ( end ,

gruppe3==i ) ) ∗100
137 confupp [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe==i ) ) , l e n g t h ( s ub s e t

( end , gruppe==i ) ) , p r o s e n t /100) $con f . i n t [ 2 ]
138 con f l ow [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe==i ) ) , l e n g t h ( s ub s e t

( end , gruppe==i ) ) , p r o s e n t /100) $con f . i n t [ 1 ]
139 confupp2 [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe2==i ) ) , l e n g t h (

s ub s e t ( end , gruppe2==i ) ) , p r o s en t 2 /100) $con f . i n t [ 2 ]
140 con f l ow2 [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe2==i ) ) , l e n g t h (

s ub s e t ( end , gruppe2==i ) ) , p r o s en t 2 /100) $con f . i n t [ 1 ]
141 confupp3 [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe3==i ) ) , l e n g t h (

s ub s e t ( end , gruppe3==i ) ) , p r o s en t 3 /100) $con f . i n t [ 2 ]
142 con f l ow3 [ i ]=binom . t e s t ( sum( sub s e t ( end , gruppe3==i ) ) , l e n g t h (

s ub s e t ( end , gruppe3==i ) ) , p r o s en t 3 /100) $con f . i n t [ 1 ]
143 p ro s [ i ]= p r o s e n t
144 pros2 [ i ]= p ro s en t 2
145 pros3 [ i ]= p ro s en t 3
146 }
147 p l o t ( seq (1 , 5 ) , pros , t ype=" l " , y l im=c (0 ,40 ) , y l a b="END (%)" ,

x l a b=" Q u i n t i l e s " , lwd=5)
148 e r r b a r ( seq (1 , 5 ) , pros , confupp ∗100 , con f l ow ∗100 , add=TRUE)
149 l i n e s ( seq ( 1 . 1 , 5 . 1 ) , pros2 , t ype=" l " , y l im=c (0 ,40 ) , c o l=" red " ,

lwd=5)
150 e r r b a r ( seq ( 1 . 0 5 , 5 . 0 5 ) , pros2 , confupp2 ∗100 , con f l ow2 ∗100 , add=

TRUE, c o l=" red " )
151 l i n e s ( seq ( 1 . 1 , 5 . 1 ) , pros3 , t ype=" l " , y l im=c (0 ,40 ) , c o l=" green "

, lwd=5)
152 e r r b a r ( seq ( 1 . 1 , 5 . 1 ) , pros3 , confupp3 ∗100 , con f l ow3 ∗100 , add=

TRUE, c o l=" green " )
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153 }
154

155 par ( mfrow=c (1 , 2 ) )
156 p l o t t r e n d ( meansys , maxsys , minsys )
157 l e g end ( " t o p l e f t " , c ( "SBPmean" , "SPBmax" , "SBPmin" ) ,
158 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
159 p l o t t r e n d ( d i f f s y s , sd sy s , c o e f f v a r s y s )
160 l e g end ( " t o p l e f t " , c ( "SBPmax−min" , "SBPsd" , "SBPcv" ) ,
161 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex=1,

t e x t . f o n t =2)
162

163 par ( mfrow=c (1 , 2 ) )
164 p l o t t r e n d ( meandia , maxdia , mind ia )
165 l e g end ( " t o p l e f t " , c ( "DBPmean" , "DPBmax" , "DBPmin" ) ,
166 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
167 p l o t t r e n d ( d i f f d i a , sdd ia , c o e f f v a r d i a )
168 l e g end ( " t o p l e f t " , c ( "DBPmax−min" , "DBPsd" , "DBPcv" ) ,
169 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
170

171 par ( mfrow=c (1 , 2 ) )
172 p l o t t r e n d (meanbs , maxbs , minbs )
173 l e g end ( " t o p l e f t " , c ( "BSmean" , "BSmax" , "BSmin" ) ,
174 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
175 p l o t t r e n d ( d i f f b s , sdbs , c o e f f v a r b s )
176 l e g end ( " t o p l e f t " , c ( "BSmax−min" , "BSsd" , "BScv" ) ,
177 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
178

179 par ( mfrow=c (1 , 2 ) )
180 p l o t t r e n d (meantemp , maxtemp , mintemp )
181 l e g end ( " t o p l e f t " , c ( "TEMPmean" , "TEMPmax" , "TEMPmin" ) ,
182 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
183 p l o t t r e n d ( d i f f t emp , sdtemp , co e f f v a r t emp )
184 l e g end ( " t o p l e f t " , c ( "TEMPmax−min" , "TEMPsd" , "TEMPcv" ) ,
185 c o l=c ( " b l a c k " , " r ed " , " g reen " ) , cex =0.9 , pch=20, pt . cex

=1, t e x t . f o n t =2)
186

187

188

189 #Trend t e s t
190 t r e nd <− f u n c t i o n ( summarystat ) {
191 mat r i s e=mat r i x (NA, nrow=5, n co l =2)
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192 gruppe=n t i l e ( summarystat , 5 )
193 f o r ( i i n 1 : 5 ) {
194 a=sum( sub s e t ( end , gruppe==i ) )
195 b=l e n g t h ( s ub s e t ( end , gruppe==i ) )−a
196 mat r i s e [ i ,1 ]= a
197 mat r i s e [ i ,2 ]=b
198

199 }
200 CochranArmitageTest ( x=ma t r i s e )
201 }
202

203 #L i n e a r model
204 t e p s s=c (0 , 6 , 12 , 18 , 24 ,30 ,36 , 42 , 48 ,60 ,72 )
205 epssmat<− as . mat r i x ( ds [ , c (187 ,189 :198 ) ] )
206

207 r egrmat=mat r i x ( n co l =2,nrow=nn )
208 f o r ( i i n 1 : n )
209 {
210 t h i s e p s s=u n l i s t ( epssmat [ i , ] )
211 t h i s d s=data . f rame ( " ep s s "=t h i s e p s s , " t ime "=t e p s s )
212 t h i s r e s=lm ( ep s s~time , t h i s d s )
213 r egrmat [ i , ]= t h i s r e s $ c o e f f
214 }
215

216 #PCA
217

218

219 ep s s . pca=prcomp ( s c a l e ( epssmat ) )
220 summary ( ep s s . pca )
221 pca=cb ind ( ep s s . pca$x [ , 1 ] , e p s s . pca$x [ , 2 ] )
222 p l o t ( pca , x l a b="PC1" , y l a b="PC2" )
223 p o i n t s ( pca [ mdet==0 ,] , c o l=" red " , pch=20)
224 p o i n t s ( pca [ mdet==1 ,] , c o l=" green " , pch=20)
225 p o i n t s ( pca [ mdet==2 ,] , c o l=" b l u e " , pch=20)
226 l e g end ( 8 , 6 . 5 , c ( " n e i t h e r END or EDE" , "EDE on l y " , "END" ) ,
227 c o l=c ( " red " , " g reen " , " b l u e " ) , cex =0.9 , pch=20, pt . cex

=2)
228

229 #C l u s t e r i n g
230 l i b r a r y ( c l u s t e r )
231 l i b r a r y ( f p c )
232

233 rows = app l y ( epssmat , 1 , f u n c t i o n ( i ) l e n g t h ( un ique ( i ) ) > 1)
234 epssmat_2=sub s e t ( epssmat , rows==TRUE) #Removing p a t i e n t s w i th

11 equa l measurements
235 epssmat_2=as . mat r i x ( epssmat_2 )
236
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237 d i s t c o r <− as . d i s t (1− co r ( t ( epssmat_2 ) , method=" pea r son " ) )
238 nc=pamk( d i s t c o r ) $nc
239 c l u s p l o t (pam( d i s t c o r , nc ) , main=" C l u s t e r p l o t − c o r r e l a t i o n " ,

sub="" , c o l . p=" red " , p l o t c h a r=TRUE)
240

241 d i s t e u c=d i s t ( epssmat , method=" e u c l i d e a n " )
242 nc=pamk( d i s t e u c ) $nc
243 c l u s p l o t (pam( d i s t e u c , nc ) , main=" C l u s t e r p l o t − e u c l i d e a n

d i s t a n c e " , sub="" , c o l . p=" red " )
244

245 #Lasso
246 l i b r a r y ( g lmnet )
247

248 c v r e s=cv . g lmnet ( xstand , y , n f o l d s =10)
249 c o e f f=coe f ( c v r e s , s=" lambda . min" )
250 names=rownames ( ( c o e f f ) ) [ which ( c o e f f !=0) ]
251

252 #Boot s t r app i ng
253

254 npar=1+dim ( xs tand ) [ 2 ]
255 B=1000
256 l ambdaminres=rep (NA,B)
257 betamat=mat r i x (NA, n co l=npar , nrow=B)
258 f o r ( b i n 1 :B)
259 {
260 t h i s=sample ( x=1:n , s i z e=n , r e p l a c e=TRUE)
261 t h i sw=rep (0 , n )
262 f o r ( i i n 1 : n ) t h i sw [ i ]=sum( t h i s==i )
263 t h i s c v r e s=cv . g lmnet ( xstand , y , n f o l d s =10, we i gh t s=th i sw , lambda=

lambdas )
264 l ambdaminres [ b]= t h i s c v r e s $ l ambda . min
265 betamat [ b , ]=( co e f ( t h i s c v r e s , s=t h i s c v r e s $ l ambda . min ) ) [ 1 : npar ]
266 }
267 co lnames ( betamat )=c ( " I n t e r c e p t " , co lnames ( x s tand ) )
268

269 boxp l o t ( betamat , l a s =2, h o r i z o n t a l=TRUE)
270 pe rc0=app l y ( betamat==0,2,mean )
271 b a r p l o t ( s o r t ( perc0 , d e c r e a s i n g=FALSE) , l a s =1, h o r i z=TRUE, cex .

names=0.8 , x l im=c (0 , 1 ) )
272

273 #P e r c e n t i l e b oo t s t r a p c o n f i d e n c e i n t e r v a l
274 p=l e n g t h ( which ( c o e f f !=0) )
275 u l=rep (NA, p )
276 l l =rep (NA, p )
277 f o r ( i i n 1 : p ) {
278 u l [ i ]= q u a n t i l e ( betamat [ , which ( c o e f f !=0) [ i ] ] , p robs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) ) [ 2 ]



72

279 l l [ i ]= q u a n t i l e ( betamat [ , which ( c o e f f !=0) [ i ] ] , p robs=c
( 0 . 0 2 5 , 0 . 9 7 5 ) ) [ 1 ]

280 }
281 cb ind ( names , l l , u l )
282

283 #I n f e r e n c e o f the s h r i n k a g e paramete r
284 boxp l o t ( l o g ( lambdaminres ) , y l a b=" l og ( lambda ) " )
285 p l o t ( d e n s i t y ( l o g ( lambdaminres ) , a d j u s t =2) , main="" , x l a b=" l og (

lambda ) " )


