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Problem description

The objective of this Master’s thesis is to perform a genotype-phenotype asso-
ciation analysis for maximal oxygen uptake and SNP data. The data set under
study consists of a cohort of 1472 men from the HUNT VO2max

study. No informa-
tion about relatedness of these individuals is available, and the challenging part
of the data analysis is to correctly account for unknown and cryptic relatedness
among the study participants and for possible population substructure. Failure
to properly account for this can lead to spurious association or reduced power.
Relatedness among the study participants will be estimated from the GWA data.
Then, two different statistical models will be pursued. Firstly, a reduced data set
is constructed by removing individuals that are estimated to have a high degree of
relatedness. This reduced data set is then assumed to be a sample of independent
individuals, and a multiple linear regression model is fitted, with maximal oxygen
uptake as the response, and age and physical activity index as covariates. Each
SNP is then tested for association with the response using a score test, and the
family-wise error rate is controlled using the method of Halle et al. (2016). Sec-
ondly, the original data set is analyzed using a linear mixed model with the same
fixed effects as in the multiple linear regression model, but including correlated
random effects for each individual and using twice the estimated kinship matrix
from GWA data as the covariance matrix of the random effect. Also for this model
each SNP is tested separately, along the same lines as for the first analysis. Finally,
the results from the two analyses are compared.
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Abstract

The main focus of this thesis is to investigate and compare different statistical
methods to perform genotype–phenotype association analyses of HUNT VO2max

data from 1472 men, while accounting for genetic confounding. The methods of
interest are fitting a linear regression model to a reduced sample of 1274 men, and
fitting a linear mixed model to the full sample, with maximal oxygen uptake as
response, and age and activity index as covariates. The covariance matrix of the
linear mixed model is a scaled version of an estimated genetic similarity matrix,
the kinship matrix, estimated from 102 477 SNPs. Each SNP is then tested for
association with the response using a score test. The analyses are performed using
GenABEL, which is an R-package for statistical analyses of genome-wide association
studies. We analyze only the 9069 SNPs on chromosome 1. The results from both
methods show no significant associations between any SNP and the VO2max

, when
controlling the family-wise error rate at level 0.05. Based on the results of the
most significant SNPs and estimation of the genomic control inflation factor for
both methods, we find that the preferred procedure for performing genotype–
phenotype association analyses is using linear mixed models. The incorporation of
the estimated kinship matrix accounts for the correlation between the individuals
caused by population structure and cryptic relatedness.
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Sammendrag

I denne oppgaven ser vi på ulike statistiske metoder for å utføre genetiske assosi-
asjonsanalyser samtidig som det tas hensyn til korrelasjonen mellom individene i
studien. Vi benytter et datasett fra HUNT (Helseundersøkelsen i Nord-Trøndelag)
med 1472 menn, for å se etter mulige sammenhenger mellom genetiske markører
og maksimalt oksygenopptak (VO2max

). Metodene vi undersøker er å tilpasse en
lineær regresjonsmodell til et redusert datasett med 1274 menn, og å tilpasse en
lineær mixed modell til det originale datasettet. Responsen er VO2max

, og kovari-
atene er alder og aktivitetsnivå. Kovariansmatrisen i den lineære mixed-modellen
er en skalert versjon av en estimert genetisk likhetsmatrise, også kalt kinship-
matrisen, estimert fra 102 477 SNPer. Hver SNP er testet for assosiasjon med
responsen ved å bruke en scoretest. Analysene er utført ved Ãě benytte GenABEL,
som er en R-pakke med funksjoner for å utføre statistiske analyser av genetiske
assosiasjonsstudier. Vi analyserer kun de 9069 SNPene på kromosom 1. Resul-
tatene fra begge metodene viser at det ikke er signifikant assosiasjon mellom noen
SNPer og VO2max

, når det korrigeres for multippel testing. Basert på resultatene
for de mest signifikante SNPene og estimert inflasjonsfaktor for genomisk kontroll
for begge metodene, mener vi at den foretrukne metoden for å analysere genetiske
assosiasjonsdata er å tilpasse en lineær mixed modell til datasettet. Modellen
inkorporerer den estimerte kinshipmatrisen, som fører til at korrelasjonen mellom
individene blir tatt i betraktning.
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Chapter 1

Introduction

1.1 Motivation

Genetic association studies are statistical studies of relationships between indi-
viduals’ genotypes and phenotypes, which seek to examine if genetic variants are
associated with the phenotype. It is common to exclude close family members
in a genome-wide association (GWA) analysis, to be able to analyze data from a
sample of independent individuals. However, GWA studies are sensitive to genetic
confounding, which can come in the forms of cryptic relatedness and population
structure.

Cryptic relatedness refers to the idea that some individuals in a sample might
actually be close relatives, in which their genotypes are not independent draws
from the population frequencies. Cryptic relatedness may be noticeable for small
and isolated populations. Population structure is used to describe the subdivision
of the population. Instead of a single, simple, panmictic population, the population
has large-scale systematic differences in ancestry, and groups of individuals share
more recent ancestors than expected (Astle and Balding, 2009).

The aim of this Master’s thesis is to study different statistical methods to
perform a GWA analysis to identify genetic loci associated with maximal oxygen
uptake, VO2max

. The data set from the HUNT VO2max
study contains information

for 1472 men, but no information about relatedness among the individuals is part
of the data set. The demanding part of the analysis is to properly account for cor-
relation between the individuals, arising from cryptic relatedness and population
structure. Failure to properly account for genetic confounding can lead to spurious
associations or reduced power.

Each pair of individuals’ degree of relationship will be estimated from the
GWA data, and all the coefficients are arranged in a genetic similarity matrix -
the kinship matrix. Based on the coefficients in this matrix it is possible to create
a reduced sample, by removing individuals with a high degree of relatedness. This
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2 CHAPTER 1. INTRODUCTION

reduced sample is then assumed to be a sample of independent individuals, which
can be analyzed using a linear regression model, with VO2max

as response, and
age and physical activity index as covariates. Each SNP will be tested separately
for association with VO2max

, and the family-wise error rate is controlled using the
method of Halle et al. (2016).

The original data set will be analyzed by fitting a linear mixed model to the
data, using the same fixed effects as in the analysis of the reduced sample, but
including correlated random effect for each individual. The covariance matrix
of the random effect is twice the estimated kinship matrix. Each SNP is tested
separately for association with the maximum oxygen uptake, using the same local
significance level as for the analysis of the reduced sample.

Lastly, it is of interest to compare the different methods for analyzing GWA
data, and their ability to correctly account for genetic confounding.

1.2 The HUNT study

The Nord-Trøndelag Health Study (the HUNT study) is one of the largest health
studies ever performed, and Norway’s biggest collection of health information from
a population. The data are obtained from three studies; HUNT1 (1984-1986),
HUNT2 (1995-1997) and HUNT3 (2006-2008), and altogether 120 000 people have
been a part of the studies1. The data from the HUNT studies are used in several
research projects within several subject areas concerning health and diseases.

The data set analyzed in this thesis is from the HUNT3 study, which had 58
000 participants2. The participants were asked to answer questionnaires, clinical
surveys were performed and different tests were taken. The participants in the
study are seen to be a good representation of trends in the Norwegian population.
All participants were inhabitants of Nord-Trøndelag county at the time of par-
ticipation, that means a limited geographical area. The population is relatively
homogeneous and stable and for some areas of research the trends could also be
valid for other Caucasian populations3.

Among the tests taken, blood tests were taken of each participant, in order
to analyze cholesterol, glucose level and metabolism. The blood samples are also
used for extraction of DNA, which is applied in research projects to investigate the
relation between inheritance and environment in the progress of a disease. The

1NTNU.no (2016). Om HUNT - Helseundersøkelsen i Nord-Trøndelag - NTNU. Available at:
http://www.ntnu.no/hunt/om [Accessed 15 Jun. 2016].

2NTNU.no(2016). HUNT3 - Helseundersøkelsen i Nord-Trøndelag - NTNU. Available at:
http://www.ntnu.no/hunt/hunt3 [Accessed 15 Jun. 2016].

3NTNU.edu (2016). HUNT Databank - NTNU. Available at:
http://www.ntnu.edu/hunt/databank [Accessed 15 Jun. 2016].
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participants were asked to be a part of one or several other tests, like breathing
test, urine specimen or physical test.

Physical fitness is important to be in good health. Until recently there has been
no robust material that describes the distribution of maximal oxygen uptake across
a healthy, adult population4. In order to discover this, and to further study the
connection between physical fitness and health, some HUNT3 participants were
asked to take part in the maximal oxygen uptake test. This test aimed at running
or walking on a tread mill until complete exhaustion. 3796 individuals was a part
of the physical test where the maximal oxygen uptake was measured. Firstly, 1472
men was genotyped, and then in the second round, 2324 men and women were
participating, but only the ones not related to others were genotyped. 295 people
were then excluded from the analysis.

In order to analyze both the sample including related individuals and the re-
duced sample of unrelated individuals, genotype data of all individuals are needed.
Consequently, only the 1472 men from the first round of genotyping are part of the
analysis in this thesis. When the Cardiac Exercise Research Group 5(CERG) an-
alyzed the HUNT3 VO2max

data, they used data from 3470 individuals not related
(Bye et al., 2016).

The data set analyzed in this thesis consists of maximal oxygen uptake (VO2max
),

age and physical activity for the 1472 men, and genotype data from 196 725 SNPs.
VO2max

is measured as millilitres of oxygen per minute (ml/min), and subsequently
calculated as VO2max

relative to the scaled body mass (ml/kg0.75/min).
The physical activity of a person is likely to be the most important behavioural

factor influencing VO2max
, and is therefore an important confounder to adjust for

when analysing the genetic contribution to the phenotype. The physical activity of
each participant was registered based on the responses from questionnaires. The
questionnaires included three questions and each participants’ responses to the
questions (i.e. numbers in parentheses) were multiplied to calculate a physical
activity index score:

• Question 1: How often do you exercise?, with the response options: Never
(0), Less than once a week (0), Once a week (1), 2-3 times a week (2.5) and
Almost every day (5).

• Question 2: If you exercise as frequently as once or more times a week, how
hard do you push yourself?, with the response options: I take it easy without
breaking a sweat or losing my breath (1), I push myself so hard that I lose
my breath and break into sweat (2) and I push myself to near exhaustion (3).

4NTNU.edu (2016). Fitness numbers - CERG - NTNU. Available at:
http://www.ntnu.edu/cerg/fitness-numbers [Accessed 15 Jun. 2016].

5NTNU.edu (2016). Cardiac Exercise Research Group - NTNU. Available at:
http://www.ntnu.edu/cerg [Accessed 15 Jun. 2016].
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• Question 3: How long does each session last? with the response options:
Less than 15 minutes (0.1), 16-30 minutes (0.38), 30 minutes to 1 hour
(0.75) and More than 1 hour (1.0).

As the second and third question only addressed people who exercised at least
once a week, both Never and Less than once a week as a response to question one
yielded an index score of zero. Participants with a zero score were categorized as
inactive, 0.05-1.5 as low activity, 1.51-3.75 as medium activity, and 3.76-15.0 as
high activity. We will use the scores as covariates in the analysis.

Maximal oxygen uptake

Maximal oxygen uptake is the highest oxygen (O2) uptake that can be achieved
by an individual during exercise with dynamic use of a large muscle mass. It
is considered as the best indication of cardiorespiratory capacity. The higher
VO2max

, the more O2 has been transported to and used by exercising muscles,
which increases the level of intensity at which the individual can exercise.

VO2max
is determined both by genetic and environmental factors. The un-

trained fitness level is partly based on genetic factors, but the genetic factors also
contribute to the potential of training-induced improvements (Bye, 2008). The
HERITAGE Family Study examined the genetic contribution to the individual
response to endurance training (Bouchard et al., 1999), and reported a signif-
icantly association between genetic components and the trainability of VO2max

.
This means that the variation in the human population’s ability to improve VO2max

by exercise is large. The heritability of the VO2max
response to training was esti-

mated to be 47%.
The CERG researchers observed that the mean maximal oxygen uptake in

women and men were 35 and 44ml/kg/min, respectively6. The material suggested
a ∼ 7% decline in maximal oxygen uptake with every 10 year raise in age in both
genders.

6NTNU.edu (2016). Fitness numbers - CERG - NTNU. Available at:
http://www.ntnu.edu/cerg/fitness-numbers [Accessed 15 Jun. 2016].
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1.3 Structure of the thesis
In Chapter 2 we give an introduction to the basics of genetics needed in order to
understand the estimators of the kinship coefficient and the results of the analyses
in Chapter 4. We explain the concept of linkage and define single nucleotide
polymorphisms (SNPs). We also introduce the expected kinship coefficient for
pedigree data, and the kinship coefficient estimated from SNP data.

In Chapter 3 we present the theory of the statistical models and methods used
in the analysis of the GWA data. We define linear models and linear mixed models,
hypothesis testing and methods to correct for multiple testing. A comparison of
principal components regression and linear mixed models is also presented, as well
as the method of genomic control.

In Chapter 4 we perform the analysis of the HUNT VO2max
data set, applying

the methods of linear model regression and linear mixed model regression presented
in Chapter 4. In the end of the chapter we compare the results of the different
methods, and give a genetic interpretation of the results.

Finally, the thesis ends with discussion and conclusions in Chapter 5.





Chapter 2

Introduction to genetics

This chapter will give an introduction to basic concepts of genetics. We will
introduce the concept of kinship, and present formulas to calculate the kinship
coefficient for a pair of individuals from a pedigree. The last section presents an
estimator for the kinship coefficient based on SNP data.

2.1 Genes and inheritance
The history of genetics started with the work of Gregor Mendel in the 19th century.
He postulated his first law in 1866, based on his analysis of pea plants. The first
law is the law of segregation (separation), which states that in gamete formation
the two copies of the same gene segregate so that each gamete receives only one
copy. One is a copy of a corresponding gene in the father of the individual, and the
other is a copy of a gene in the mother of the individual. The probabilistic process
of the random choice of genes to be copied is known as Mendelian segregation.
The biological process forming the chromosomes of the gamete (sperm or egg)
cell is known as meiosis. Mendel’s second law states that alleles at any one gene
segregate independently of alleles at any other gene (Thompson, 2000; Fletcher
and Hickey, 2013).

DNA contains the biological information needed by and organism to reproduce.
The information is encoded in the base sequence of the DNA and is organized as
a large number of genes. DNA is located in the nuclei of cells in individuals, and
consists of about 3 x 109 base pairs, which is packed into chromosomes. A human
individual has 46 chromosomes in each cell; 22 pairs of autosomes and a pair of
allosomes (sex chromosomes). The diploid cells have two homologous copies of
each chromosome. Homologous means that the chromosomses have the same size
and shape, and carries the same genes in the same order. One of the copies is from
the mother and one from the father, thus 46 chromosomes, while the haploid cells
have only one copy, thus 23 chromosomes. The genes occur at specific positions

7



8 CHAPTER 2. INTRODUCTION TO GENETICS

along the chromosome, defined as loci. The DNA at a locus may come in different
variants, or alleles. Any human has two chromosomes of a given pair, and thus
has two (possibly identical) alleles at each locus. A locus is a polymorphism if it
has two or more alleles at appreciable frequencies. The two most used definitions
of appreciable frequency is that the most frequent allele has a frequency of less
than 0.99, or less than 0.95 (Halliburton, 2004). A single homologous chromosome
or chromosomal region can be described in terms of the alleles it possesses, also
referred to as a haplotype (Thompson, 1986, 2000; Fletcher and Hickey, 2013).

A phenotype is any character (trait) that is inherited, such as body height, eye
color, leaf shape, or a disease. The genes carried by individuals may be labelled
according to type, depending on their effects on observed traits. The alleles at
each locus constitutes an individual’s genotype at that locus (Lange, 2003). A
homozygous locus is a locus with identical alleles, while a heterozygous locus has
two different alleles. To explain this more in detail, and to present the concepts
of recessive and dominant, an illustration of the Punnett square is shown Figure
2.1. The figure presents the crossing of two pea plants with violet flowers, both
heterozygous at the locus for flower color. The alleles for these two pea plants are
at the top edge and left edge of the square. It is clear that the genotype of the
offspring is either V V , V v or vv and the corresponding phenotype is either violet
or white. The V allele is dominant to the v allele, which is why the heterozygote
individuals exhibit the same phenotype as one of the homozygotes. The v allele is
said to be recessive to the V allele. The individuals with genotypes V V and V v at
this locus both have violet flowers as their phenotype, while the individuals with
genotype vv have white flowers (Fletcher and Hickey, 2013).

Figure 2.1: Punnett square for the crossing between two pea plants with violet
flowers, thus heterozygous for flower color. The phenotype ratio is (3 violet):(1
white), and the genotype ratio is (1V V ):(2V v):(1vv). Created with inspiration from
Fletcher and Hickey (2013).
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2.1.1 The Hardy-Weinberg principle

Mendel’s laws provided a mechanism of heredity that preserves genetic variation.
This was not immediately obvious, and many initially thought that the dominant
form would take over the population. In 1908 G. H. Hardy and Wilhelm Weinberg
derived a principle that is now known as the Hardy-Weinberg principle. Halliburton
(2004) defines the The Hardy-Weinberg principle as a proposition which says that,
under certain conditions, allele frequencies and genotype frequencies will remain
constant in a population, and that they are related in specific ways. Consider the
two alleles from Section 2.1, V and v, with frequencies p and q, respectively (p +
q = 1). The genotypes are V V , V v, and vv, with corresponding frequencies PV V ,
PV v and Pvv, respectively. The underlying conditions for the principle are:

1. The reproduction within the population is sexual.

2. The population is a panmictic population, which means that individuals
mate at random.

3. Natural selection is not affecting the locus.

4. Mutation is negligible.

5. Individuals do not move into or out of the population.

6. The population is infinitely large.

Figure 2.2: Random union of gametes at an autosomal locus with two alleles, V
and v. Created with inspiration from Halliburton (2004).

With these assumptions, we define the probability of a V sperm fertilizing a
V egg as p · p = p2. Similarly, the probability of a V sperm fertilizing a v egg is
p · q, and so forth for all possible combinations, shown in Figure 2.2, where the
entries in the square are the genotypes of the zygotes, and their frequencies. From
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this figure it is clear that the genotype V v will follow from two different matings.
Both the V sperm + v egg and V egg + v sperm will result in a heterozygote. A
new generation of zygotes are denoted (t+ 1), and thus it is seen from the square
in Figure 2.2 that the expected genotype frequencies are

PV V (t+ 1) = p2

PV v(t+ 1) = 2pq

Pvv(t+ 1) = q2.

From these equations it is clear that the genotype frequencies depend on the
allele frequencies. The allele frequencies in the zygotes will remain unchanged, as
seen in the following equation,

p(t+ 1) = PV V (t+ 1) +
1

2
PV v(t+ 1) = p2 +

1

2
(2pq) = p(p+ q) = p.

The allele frequencies and genotype frequencies will remain constant as long as
the assumptions above hold (Halliburton, 2004).

2.1.2 Linkage

Along the human genome we find thousands of loci, which may interact with
one another to a greater or lesser degree. Recombination is defined according to
Halliburton (2004) as any process that creates new combinations of alleles in the
offspring. He also states that two loci are linked if they are on the same chromo-
some, close enough together that the frequency of recombination between them is
less than 50%. Pairs of genetic loci that are not tightly linked are unassociated
at the population level. Astle and Balding (2009) say that such a linkage equilib-
rium arises because recombination events ensure the independent assortment of
alleles when they are transmitted across generations, and that tightly linked loci
are generally correlated, or in linkage disequilibrium in the population. Linkage
disequilibrium is the non-random association of alleles at different loci. The as-
sociation is different from what would be expected if alleles were independently,
randomly samples based on their individual allele frequencies.

A convenient measure of the linkage disequilibrium is r2. Consider two biallelic
loci, in which locus 1 has alleles a andA and locus 2 has alleles b andB. We suppose
that the frequencies of the alleles a and A are pa and 1− pa, respectively, and the
frequencies of the alleles b and B are pb and 1 − pb, respectively. The frequency
of haplotypes having the a allele at locus 1 and the b allele at locus 2 is pab. The
linkage disequilibrium measure r2 is according to VanLiere and Rosenberg (2008)
defined as

r2 =
(pab − papb)2

pa(1− pa)pb(1− pb)
. (2.1)
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The measure ranges between 0 and 1, and a value of 0 indicates that the loci are
in perfect equilibrium, while a value of 1 indicates that the loci provide identical
information.

2.1.3 Single nucleotide polymorphisms

The organic molecules that serve as monomers, or subunits, of the DNA, are de-
fined as nucleotides. Each nucleotide is composed of a sugar, a nitrogen-containing
ring-structure called a base, and a phosphate group. The four possible bases for a
nucleotide are adenine (A), guanine (G), thymine (T) and cytosine (C). Adenine
and guanine are known as purines, while thymine and cytosine are called pyrim-
idines. DNA molecules are composed of two strands wrapped around each other
to form a double helix. The sugar-phosphate part of the molecule forms a back-
bone, while the bases face inwards and are stacked on top of each other. There are
hydrogen bonds between the bases on the two strands which stabilizes the double
helix. The available space between the strands restricts the bases that can interact
such that a purine always interacts with a pyrimidine. Thus, A interacts only with
T, and G only with C, and this is called complementary base pairing. This means
that the sequence of one strand determines and predicts the sequence of the other.

The human genome is a term used to describe the different types of sequences
that together make up all the DNA in a human cell. The DNA in the human
genome is about 3 billion base pairs long, and is estimated to contain 20 000 to
21 000 genes (Fletcher and Hickey, 2013, p.68). Mutations of a single base pair
which show variation in the population are called single nucleotide polymorphisms
(SNPs). The ’1000 genome project’ have identified 15 million SNPs, which corre-
sponds to one every 200 base pairs on average (Fletcher and Hickey, 2013).

Some SNP alleles are the actual functional variants that contribute to a specific
phenotype. Individuals with such a SNP allele have a higher chance of having that
phenotype than do individuals without that SNP allele. Most SNPs are not these
functional variants, but are useful markers for finding them. To find these regions
with genes that contribute to a phenotype, the frequencies of many SNP alleles
are compared in individuals with and without the specific phenotype. When a
particular region has SNP alleles that are more frequent in individuals with the
phenotype than in individuals without the phenotype, those SNPs and their alleles
may be associated with the phenotype (Fletcher and Hickey, 2013).

The term minor allele frequency (MAF) is used to describe the frequency of
the allele with the lowest frequency at a locus, within a population (Speed and
Balding, 2015).
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2.1.4 Identical by descent and identical by state

The attention is now restricted to a single Mendelian autosomal locus. The use
of the word relatives corresponds to blood relatives, individuals with a common
ancestor. Any given set of individuals may carry the same alleles; there are many
copies of an allele in the population. Two copies of the same allele are assumed
to have the same function, and such functionally equivalent alleles are designated
as identical by state (IBS). However, relatives are more likely to share the same
alleles, because they may carry copies of a single gene inherited from a common
ancestor. Alleles that are identical by descent (IBD) are matching DNA-segments
that two individuals share, inherited from a recent common ancestor without any
recombination occurred. If two alleles are IBD, it entails that they are aslo IBS
unless mutation has altered the function of one (Thompson, 1986; Halliburton,
2004). Halliburton (2004) provides the statement that whether two alleles are
considered identical by descent depends on how far back in time we follow the
population.

2.1.5 Inbreeding

Inbreeding is a term used to describe mating between related individuals. These
individuals share a common ancestor, and thus have alleles that are IBD. One of
the consequences of inbreeding in a population is increasing frequency of homozy-
gous genotypes. The probability that two copies of a gene are IBD is called the
inbreeding coefficient, symbolized by f , with subscript to indicate the individual
(Halliburton, 2004).

2.2 Kinship coefficient and kinship matrix from
pedigree data

2.2.1 Pedigree

A pedigree is a diagram that is used to record ancestry. Males are denoted by
squares and females by circles, as seen in the pedigree in Figure 2.3. A pair of par-
ents is connected by a horizontal line, and a vertical line descends to the offspring.
If there is more than one child of the same pair of parents, these are shown under
a second horizontal sibship line. Between two individuals, the degree of their rela-
tionship, deriving from a single ancestor or ancestral couple, relates to the number
of generations that separate the ancestor from the individuals (Thompson, 1986).

For the family of individuals in Figure 2.3, the individuals are numbered from 1
to 9, where individuals 1 and 2 are called founders, since they don’t have any par-
ents specified. The pedigree embodies several different relations between individ-
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Figure 2.3: Pedigree, cousin mating.

uals; parent-offspring, full siblings, grandparent-grandchild, first cousins, parent-
offspring (inbred), grandparents-grandchild (inbred) and great-grandparent-great-
grandchild (inbred). The individuals in the pedigree are numbered in such a way
that every parent precedes his or her children; every individual are numbered
higher than its ancestors. Take individual 7 for example; his parents are num-
bered 5 and 3, his aunt and uncle are numbered 4 and 6, and his grandparents are
numbered 1 and 2.

2.2.2 The kinship coefficient

To measure the degree of relationship between two individuals, the kinship coeffi-
cient is a useful measure. It is denoted by Φ, usually with subscripts to indicate
the individuals involved. The kinship coefficient Φij between two individuals i and
j is defined as the probability that an allele chosen randomly from i is identical
to a homologous allele chosen at random from j (Thompson, 1986). This is the
same for each autosomal locus, thus Φij = Φji. The coefficient of consanguinity,
coefficient of relatedness or the coefficient of coancestry are other terms used for
the kinship coefficient (Halliburton, 2004), but we will in the following use kinship
coefficient.

The kinship coefficient pertains to a generic autosomal locus and depends only
on the relevant pedigree connecting two relatives, and not on any phenotypes
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observed in the pedigree. When i and j are the same person, the same gene
can be drawn twice because kinship sampling is done with replacement. In the
following, necessary rules for computing the kinship coefficient will be specified,
and the kinship coefficient for each relation in the pedigree in Figure 2.3 will be
calculated.

The kinship coefficient can also be used to describe the inbreeding coefficient of
an individual i, fi, defined in Section 2.1.5. Since the alleles of an inbred individual
are chosen at random, one from each of its parents, the inbreeding coefficient of an
individual is the same as the kinship coefficient of its parents (Halliburton, 2004).

A systematic way of presenting the relationship between every possible pair
of individuals in a pedigree is by a genetic similarity matrix, the kinship matrix
Φ, with element Φij in row i and column j. Assuming that all pedigree founders
in Figure 2.3 are non-inbred and unrelated, then Φ11 = 1

2
, and Φ22 = 1

2
, since

the kinship sampling is done with replacement. The founders are assumed to be
unrelated, thus the kinship coefficient between them is Φ12 = Φ21 = 0 (Lange,
2003). To continue on the diagonal of the kinship matrix Φ, the formula for the
kinship coefficient for individual i with itself (Lange, 2003), when i is not a founder,
and i have parents k and l, is

Φii =
1

2
+

1

2
Φkl. (2.2)

This formula is easy to understand because in sampling the alleles of i we are
equally likely to choose either the same allele twice or both maternally and pa-
ternally derived alleles once. Looking at the formula, Φkl is recognized as fi, the
inbreeding coefficient of individual i. When the parents k and l are not related,
Φkl = fi = 0, thus Φii = 1

2
.

To compute the kinship coefficient Φ13 for the individuals 1 and 3 in the pedi-
gree in Figure 2.3, the following formula is needed (Halliburton, 2004). When i is
a founder, and the kinship coefficient between i and a descendant of i, j, depends
on n, the number of segregations between the individuals, then

Φij =

(
1

2

)n
(2.3)

It follows from Equation (2.3) that Φ13 =
(
1
2

)2 = 1
4
= Φ31, since there are

two segregations between the individuals. The kinship coefficient for all parent-
offspring relations are computed in the same way, when assuming that the parents
are not inbred.

The matrix Φ is fully defined with the elements

Φij = Φji =
1

2
Φjk +

1

2
Φjl, (2.4)
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which follows because we are equally likely to compare either the maternal allele
of i or the paternal allele of i to a randomly drawn allele from j (Lange, 2003).
This formula is also applicable for inbred individuals.

Many of the individuals in the pedigree are unrelated, which corresponds to a
kinship coefficient equal to zero. The full-sibling kinship coefficient follows from
Equation (2.4), e.g. Φ34 = Φ43 = 1

2
Φ41 + 1

2
Φ42 = 1

4
, similarly for the first cousins

kinship coefficient, e.g. Φ78 = Φ87 = 1
2
Φ83 + 1

2
Φ85, where Φ83 = 1

2
Φ34 + 1

2
Φ36 =

1
2
· 1
4

+ 1
2
· 0 = 1

8
and Φ85 = 0, so Φ78 = Φ87 = 1

2
· 1
8

= 1
16
.

For the pedigree in Figure 2.3, it is clear that there is a cousin-mating be-
tween individual 7 and 8, resulting in the offspring 9. Computing the kinship
coefficients for these individuals get more interesting. Using Equation (2.4), the
kinship coefficient for the relation parent-child, while the child has parents who are
cousins, as between individual 9 and individual 7, is Φ79 = Φ97 = 1

2
Φ77 + 1

2
Φ78 =

1
2
· 1

2
+ 1

2
· 1

16
= 9

32
. Using Equation (2.2) for individual 9, Φ99 = 1

2
+ 1

2
Φ78 =

1
2

+ 1
2
· 1

16
= 17

32
. For the relation grandparent-grandchild, while the grandchild

is inbred, like between individual 3 and individual 9, Equation (2.4) is applied
again; Φ39 = Φ93 = 1

2
Φ37 + 1

2
Φ38 = 1

2
· 1
4

+ 1
2
· 1
8

= 3
16
. The same procedure is

used to compute the kinship coefficient between a great-grandparent and a great-
grandchild, while the great-grandchild is inbred, as for individual 1 and individual
9. Φ19 = Φ91 = 1

2
Φ17 + 1

2
Φ18 = 1

2
· 1
8

+ 1
2
· 1
8

= 1
8
.

All this elements are used to construct the kinship matrix Φ in Equation (2.5).
A table of some common values of kinship coefficients Φ are displayed in Table 2.1.
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Φ =



1

2
0

1

4

1

4
0 0

1

8

1

8

1

8

0
1

2

1

4

1

4
0 0

1

8

1

8

1

8
1

4

1

4

1

2

1

4
0 0

1

4

1

8

3

16
1

4

1

4

1

4

1

2
0 0

1

8

1

4

3

16

0 0 0 0
1

2
0

1

4
0

1

8

0 0 0 0 0
1

2
0

1

4

1

8
1

8

1

8

1

4

1

8

1

4
0

1

2

1

16

9

32
1

8

1

8

1

8

1

4
0

1

4

1

16

1

2

9

32
1

8

1

8

3

16

3

16

1

8

1

8

9

32

9

32

17

32



(2.5)

Table 2.1: Kinship coefficients Φ for some relationships between individuals.

Relationship Φ

Parent-offspring
1

4

Full siblings
1

4

Grandparent-grandchild
1

8

Half siblings
1

8

First cousins
1

16
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2.3 Estimation of the kinship coefficient
Traditional relatedness coefficients, like the kinship coefficient described in Sec-
tion 2.2, are based on the probabilities of IBD from common ancestors, and depict
the expected proportion of shared alleles between the individuals in a pedigree.
The actual genome sharing coefficient can deviate substantially from the expected
value. Speed and Balding (2015) present a statement saying that human half-
siblings are expected to share half of each chromosome that they received from
their common parent, but the 95% credibility interval for their actual amount
shared genome ranges from 37% to 63%. Nowadays, it is possible to compare
the genomes of different individuals to get a measure of the genome sharing co-
efficient, directly from genome-wide SNP data. There are many different such
measures available, and the focus of this section will be on one of the estimators.

2.3.1 SNP-based measures of relatedness

Association studies are designed to identify genetic loci at which the allele is corre-
lated with a phenotype of interest. The associations of interest are causal, arising
at loci whose different alleles have different effects on phenotype. Association stud-
ies are susceptible to genetic confounding, in the forms of cryptic relatedness and
population structure, as presented in Chapter 1. These concepts cause correlation
between the individuals in the study.

The advent of GWA data means that the actual genome-sharing coefficient
can now be estimated accurately. It can be preferable to use these estimates in
association analyses even if pedigree-based estimates are available. There is a slight
difference between expectations computed from even a full pedigree, and realized
amounts of shared genomic material (Astle and Balding, 2009). For example, if
two individuals have a common ancestor many generations in the past, then this
ancestor will contribute (slightly) to the pedigree-based kinship coefficient, but
may or may not have passed any genetic material to both of them (Astle and
Balding, 2009).

The goal now is to estimate the kinship matrix like in Equation (2.5), which
was based on pedigree-data, but now based on SNP-data. If for example the minor
allele is A and the major allele is a, then the possible genotypes are aa, Aa and
AA. In the following, genotype data will be used, assuming that the genotype
aa corresponds to the case where the SNP has two major alleles. Conversely, the
genotype AA corresponds to the case where the SNP has two minor alleles, while
the genotype Aa is the case where the SNP contains one major allele and one
minor allele. The MAF is the frequency of the minor allele A in the population.
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The genotype of individual i at the kth SNP can be coded as

Gik =


0 if the genotype of individual i at SNP k is aa
1 if the genotype of individual i at SNP k is Aa
2 if the genotype of individual i at SNP k is AA.

(2.6)

Speed and Balding (2015) present three different estimators for the kinship
coefficient Φij, for a pair of individuals i and j, using the coding system in Equa-
tion (2.6), averaged over m SNPs. The motivation behind the estimators is to
indicate whether alleles drawn from each of i and j are some given allelic type
(Astle and Balding, 2009), in this case A. In this project we will only focus on one
of the estimators, Φ̂ij. In the project we did last semester, the different estimators
were analyzed, and their characteristics were examined while varying the number
of SNPs included, m, and the minor allele frequency at each SNP. This was done
by a simulation study, which showed that Φ̂ij is the best estimator for the kinship
coefficient.

The estimated kinship coefficient Φ̂ij

According to Speed and Balding (2015), the lower the MAF the greater evidence
for a recent common ancestor. This proposes giving more weight to the minor
shared alleles, which can be done by centering the genotypes around the mean.
The population MAF at the kth SNP, pk, is assumed to be known, and the genotype
frequencies are assumed to follow the Hardy-Weinberg principle from Section 2.1.1.
The expected value of Gik is calculated as

E[Gik] = µk = 0 · (1− p2k) + 1 · 2pk(1− pk) + 2 · p2k = 2pk − 2p2k + 2p2k = 2pk.

In order to make each SNP equally informative, Speed and Balding (2015)
standardize the genotypes in addition to centering. Thus, the variance of Gik is
needed, which can be calculated as

Var[Gik] = σ2
k = E[G2

ik]− µ2
k

= 0 · (1− p2k) + 1 · 2pk(1− pk) + 22 · p2k − (2pk)
2

= 2pk(1− pk) + 4p2k − 4p2k

= 2pk(1− pk).
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The estimated kinship coefficient Φ̂ij is defined by Speed and Balding (2015)
and Thornton and McPeek (2010) as

Φ̂ij =
1

2m

m∑
k=1

(
Gik − µk

σk

)(
Gjk − µk

σk

)

=
1

2m

m∑
k=1

(
Gik − 2pk√
2pk(1− pk)

)(
Gjk − 2pk√
2pk(1− pk)

)
=

1

2m
X iX

T
j (2.7)

where X i is a vector with Gik−2pk√
2pk(1−pk)

as the kth element, and X j is a vector with
Gjk−2pk√
2pk(1−pk)

as the kth element. In the case with SNP data from several individuals,

it is also of interest to arrange the estimated kinship coefficients between every pair
of individuals in a systematic matrix, similarly as for the pedigree-based kinship
coefficients in Section 2.2.2. The estimated kinship matrix can be computed as

Φ̂ =
1

2m
XXT (2.8)

where X is defined as a matrix with row i equal to X i (Speed and Balding, 2015).
As stated by Astle and Balding (2009), in practice we do not know the minor

allele frequencies pk, but it can be estimated from the same data as the kinship
coefficient, as

p̂k =
1TGk

2n
(2.9)

where Gk is a column vector over the n individuals. To reduce the overfitting
effect which can arise when estimating pk from the same data, Astle and Balding
(2009) suggests to iteratively re-estimate pk after making an initial estimate of Φ̂,
with

p̂∗k =
1TΦ̂

−1
Gk

1TΦ̂
−1

1
where Gk is a column vector over the m individuals.

The estimated kinship coefficient Φ̂ij in Equation (2.7) can according to Astle
and Balding (2009) be interpreted in terms of excess allele sharing beyond what is
expected for unrelated individuals, given the MAF. In this context, unrelatedness
is a notion used for two alleles that are not IBD, but regarded as random draws
from some allele pool.

When estimating the kinship coefficient Φ̂ij, some combinations of genotypes
can give negative coefficients. As presented by Astle and Balding (2009) this has
caused some authors to avoid such estimators of the kinship coefficient, because
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they can’t be interpreted as probabilities. Under the interpretation of Φ̂ij as excess
allele sharing, negative values correspond to individuals who share fewer alleles
than expected, given the MAF (Astle and Balding, 2009).

Moreover, low MAF gives greater indication of a common ancestor, so individ-
uals who both have two copies of the minor allele at a SNP, have a large estimated
kinship coefficient. According to Panagiotou et al. (2010), GWA studies are typi-
cally designed to exclude SNPs with MAF < 5%. Associations with minor variants
may even have substantial genetic effects, but it requires strong statistical power
to make meaningful statements about very minor alleles.

When it comes to the characteristics of the estimator Φ̂ij, one can show that it is
an unbiased estimator for the kinship coefficient. Speed and Balding (2015) claims
that it is an unbiased and efficient estimator for the kinship coefficient, under the
assumptions that alleles drawn from the global population are independent and
that pk are known. According to Thornton and McPeek (2010), the estimator
Φ̂ij provides a consistent estimator for Φij, if one assumes that the genotypes at
different SNPs are independent with m → ∞ and that pk is known.



Chapter 3

Statistical models and methods

The main goal of this Master’s thesis is to study the statistical models and methods
used to perform a genotype–phenotype association analysis for cohort data. A
selection of models and methods to be used are presented in this chapter.

Population structure and cryptic relatedness cause correlations between genome-
wide SNPs, as presented in Chapter 1. GWA studies look for correlations between
the phenotype and a SNP linked to the causal variant. However, relatedness causes
correlations between genome-wide loci including causal and non-causal variants,
and may therefore lead to spurious associations between the phenotype and un-
linked SNPs (Lippert, 2013). Lippert states that as a result of confounding by
population structure, some associations reported in the literature could be ex-
plained by differences in allele frequencies between populations, and thus do not
replicate. Improvements in study design and exclusion of related individuals help
to somewhat alleviate the problem of population structure, but the problem of
cryptic relationships remains.

If the data is assumed to be a sample of independent individuals, a multiple
linear regression model can be fitted. Thus, close relatives must be detected based
on genotype data and removed from the study, which is assumed to reduce the
statistical power. A complementary way to account for confounding structure is
by ways of statistical modelling, an approach that is becoming more important
as larger data sets are used to increase power. A range of methods have been
proposed to correct for confounding in GWA studies, including genomic control,
linear mixed models and principal components analysis (Dadd et al., 2009).

In the following sections, the different methods to analyze GWA data will be
presented, and in that manner it is necessary to present the many R-functions
available for GWA studies. The functions we will apply to the GWA data are part
of GenABEL, which is an R package for GWA analysis (R Development Core Team,
2008). GenABEL will be presented in detail in Section 4.1.

21



22 CHAPTER 3. STATISTICAL MODELS AND METHODS

3.1 Linear models
We will first consider the linear model,

Y = Xeβe +Xg(k)
βg(k) + ε

where Y is the n × 1 random vector of continuous responses, Xe is the n × p
fixed effect design matrix, which represents p covariates corresponding to the fixed
effects, and βe is the p×1 fixed effects vector, consisting of the unknown regression
coefficients associated with the covariates from the design matrix Xe. Often the
first column of Xe is a column of ones, to allow for an intercept in the model.
Further, βg(k) is the regression coefficient associated with the n-dimensional vector
of genotypes, Xg(k)

for the k-th SNP. The error term ε is a random vector, which
is normally distributed with E(ε) = 0 and Var(ε) = σ2I.

For simplicity, we will use the following notation in the sequel:

Y = Xkβk + ε (3.1)

where Xk is defined as the n× (p+ 1) matrix

Xk =
[
Xe Xg(k)

]
(3.2)

and βk is the (p+ 1)-dimensional vector

βk =

[
βe
βg(k)

]
. (3.3)

The underlying assumptions of the linear model are that (Bingham and Fry,
2010):

• the mean E(Y ) is a linear function of the regressors;

• the errors are additive;

• the errors are independent;

• homoscedasticity of the errors;

• the errors are normally distributed.

Any or all of these assumptions may be inadequate, and it is needed to check the
adequacy of the assumptions.

From this model we assume that the random vector Y is multivariate normally
distributed with mean Xkβk and covariance matrix σ2I, in symbols:

Y ∼ N (Xkβk, σ
2I).

Given an observation Y = y, the probability density function at y is

f(y) =
1

(2π)n/2(σ2)n/2
exp
{
− 1

2σ2

(
y −Xkβk

)T(
y −Xkβk

)}
(3.4)
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3.1.1 The multivariate normal distribution

The multivariate normal distribution of an n-dimensional random vector Y =
(Y1, . . . , Yn) can be written as

Y ∼ N (µ,Σ)

with density function

f(y1, . . . , yn) = f(y) =
1

(2π)n/2|Σ|1/2
exp
(
− 1

2
(y − µ)TΣ−1(y − µ)

)
. (3.5)

Assume Y is partitioned into Y 1 and Y 2:

Y =

[
Y 1

Y 2

]
.

The expectation µ and the covariance matrix Σ are then also partitioned and
defined as

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

The conditional distribution of Y 1 given Y 2 = y2 is then a multivariate normal
distribution with

E(Y 1|Y 2 = y2) = µ1 + Σ12Σ
−1
22 (y2 − µ2) (3.6)

Cov(Y 1|Y 2 = y2) = Σ11 −Σ12Σ
−1
22 Σ21 (3.7)

3.1.2 Maximum likelihood estimation

In linear regression, the relationships are modelled using linear predictor functions
whose unknown model parameters are estimated from the data. The parameters
needed to be estimated are βk and σ2. The likelihood function corresponding to
Equation (3.4) is

L(βk, σ
2) =

(
1

2π

)n
2
(

1

σ2

)n
2

exp
{
− 1

2σ2

(
y −Xkβk

)T(
y −Xkβk

)}
and the log-likelihood function is

l(βk, σ
2) = −n

2
log(2π)− n

2σ2 log(σ2)− 1

2σ2

(
y −Xkβk

)T(
y −Xkβk

)
. (3.8)
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Taking the derivative of the log-likelihood function with respect to βk and setting
equal to 0,

∂l

∂βk
=

∂

∂βk

(
− n

2
log(2π)− n

2
log(σ2)− 1

2
(yTy − yTXkβk − (Xkβk)

Ty

+ (Xkβk)
T(Xkβk)

)
= 0,

gives the estimator for βk:

⇒−XT
ky + XT

kXkβk = 0

β̂k = (XT
kXk)

−1XT
ky.

The estimates for the environmental coefficients βe can be read off as the p
first elements of β̂k, and the estimate for the genetic coefficient βgk is found in
element p+ 1 of β̂k.

It can be shown that the estimator β̂k is unbiased:

E(β̂k) = βk.

We observe that if the observations are independent and have constant variance
σ2, then the covariance matrix of the maximum likelihood estimator is

Var(β̂k) = (XT
kXk)

−1σ2.

Finally it can be shown that the sampling distribution of the estimator β̂k
in large samples is multivariate normal with mean and covariance matrix given
above.

As a means of finding the estimator for σ2, we compute the derivative of the
log-likelihood function in Equation (3.8) with respect to σ2 and set the equation
equal to 0, which yields the following estimator:

∂l

∂σ2 = 0

0 = −n
2

1

σ2 +
1

2

1

σ4 (y −Xkβ̂k)
T(y −Xkβ̂k)

σ̂2 =
1

n

(
y −Xkβ̂k

)T(
y −Xkβ̂k

)
.

Defining the sum of squared differences between observed and predicted values, or
residual sum of squares (RSS), as

RSS(β̂k) =
(
y −Xkβ̂k

)T(
y −Xkβ̂k

)
,
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the expression for σ̂2 is abbreviated to

σ̂2 =
RSS(β̂k)

n
. (3.9)

It can be shown that this estimator is biased, and the method of restricted maxi-
mum likelihood estimation (REML) gives the unbiased estimator for σ2:

s2 =
RSS(β̂k)

n− p− 1
. (3.10)

3.1.3 Linear models in GenABEL - mlreg

The GenABEL package includes a function for performing linear regression for
genome-wide SNP data; the mlreg function. This function uses the standard
linear regression approach in Equation (3.1), which results in equivalent estimates
from the lm function in R and the mlreg function in GenABEL. The p-values may
differ, and the reason for this discrepancy is that while lm applies the t-test to test
significance, mlreg uses the Wald test. The differences between the results from
the hypotheses tests are usually small when the number of individuals is large.

3.2 Hypothesis testing
This section describes statistical tests for hypotheses regarding the unknown re-
gression parameters βk, as defined in Equation (3.3). A hypothesis test is a method
of statistical inference. The goal of a hypothesis test is to decide, based on a sam-
ple from the population, which of two complementary hypotheses is true.

Definition: The two complementary hypotheses in a hypothesis testing problem
are called the null hypothesis, H0 and the alternative hypothesis, H1 (Casella and
Berger, 2002).

The comparison of the two hypotheses is regarded as statistically significant if
the relationship between the data sets is an unlikely realisation of the null hypoth-
esis, given a significance level. Typically, a hypothesis test is specified in terms of
a test statistic W (Y ), a function of the sample (Casella and Berger, 2002).

The most common statistical hypotheses in linear models are (Fahrmeir et al.,
2013):

1. Test of significance:

H0 : βkj = 0 against H1 : βkj 6= 0.
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2. Composite test of a subvector βk1 =
(
βk1 . . . βkr

)T:
H0 : βk1 = 0 against H1 : βk1 6= 0.

3. Test of equality:

H0 : βkj − βkr = 0 against H1 : βkj − βkr 6= 0.

Each of these test problems can be treated as special cases of general linear
hypothesis tests, which are defined as

H0 : Cβk = d against H1 : Cβk 6= d,

where C is an r× (p+ 1) matrix with rank(C) = r ≤ (p+ 1). Accordingly, under
H0 there are a total of r linear-independent conditions.

In order to test the significance of one regression parameter (case 1), d = 0 and
C is a 1× (p+ 1) matrix given by C = (0, . . . , 0, 1, 0, . . . , 0), in which the one is in
the jth position. When testing the first r components of βk (case 2), one obtain
the r-dimensional vector d = 0 and the r × (p+ 1) matrix

C =


0 1 0 0 . . . 0 0 . . . 0
0 0 1 0 . . . 0 0 . . . 0
0 0 0 1 . . . 0 0 . . . 0
... . . . ...
0 0 0 0 . . . 1 0 . . . 0

 .

The last case, when testing the equality of two regression coefficients, one ob-
tains the scalar d = 0 and the 1×(p+1) matrix given by C = (0, . . . , 1, . . . ,−1, . . . , 0),
where the one is in the jth column and the minus one is in the rth column.

It can be shown that the test statistic for the general linear hypothesis is (Fahrmeir
et al., 2013):

Fobs =
1

r
(Cβ̂k − d)T(σ̂2C(XTX)−1CT)−1(Cβ̂k − d) ∼ Fr,n−p−1,

and we reject the null hypothesis H0 if the test statistic is larger than the (1−α)-
quantile of the F -distribution with r and n− p− 1 degrees of freedom, i.e.,

Fobs > Fr,n−p−1(1− α).

The test statistic of hypothesis test 1 (t-test) is then

tj =
β̂kj
sej
∼ tn−p−1,
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where sej denotes the unbiased estimated standard error of β̂kj , as given in Equa-
tion (3.10). Equivalently, squaring the test-statistic gives

t2j =
β̂2
kj

se2j
∼ F1,n−p−1.

It can be shown that the relationship between the F -test and the Wald test is

W = rF
a∼ X 2

r ,

where F is a F -test statistic with r and n − p − 1 degrees of freedom. Thus the
Fr,n−p−1-distribution converges in distribution with n→∞ to a X 2

r -distribution.

Score test

We present the score test in a more general context. The score test is a convenient
tool for testing whether one or more parameters equal some null value, whenever
the probability distribution can be assumed for the data. Suppose we have a
sample of independent random variables Y which is described by the parameters
β = (β1, . . . , βp), and the hypothesis to test isH0 : β = β0. Often it is of interest to
test whether a subset of β equals some null value, so β are partitioned into β1 and
β2, where β2 are the parameters to be tested, and β1 are regarded as unknown
nuisance parameters. The nuisance parameters are replaced by their maximum
likelihood estimates β̂1. The null hypothesis can be written as H0 : β2 = β2,0,
and we define β0 = (β̂1,β2,0).

The score vector for the parameter vector β0 is defined as the p-dimensional
vector (Bjørnland, 2014)

S(β0,Y ) =
∂l(β;Y )

∂β

∣∣∣∣
β=β0

.

According to Bjørnland (2014) it can be shown that by assuming necessary
conditions, S(β0,Y ) has an approximate N (0, I(β0))-distribution, where I(β0)
is the Fisher information matrix corresponding to S(β0,Y ) (Casella and Berger,
2002).

The score vector is separated according to derivatives of nuisance parameters
and parameters to be tested under H0:

S(β0,Y ) =

[
S1(β0,Y )
S2(β0,Y )

]
where S1 and S2 are defined as

S1 =
∂l

∂β1

, S2 =
∂l

∂β2

.
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The elements of S(β0,Y ) are distributed as

S(β0,Y ) =

[
S1(β0,Y )
S2(β0,Y )

]
∼ N

([
µ1 = 0
µ2 = 0

]
,
[
I(β0)11 I(β0)12
I(β0)21 I(β0)22

])
.

By definition, S1(β0,Y ) = ∂l
∂β1

∣∣∣
β=β0

= 0. The distribution of S2|1 = S2(β0,Y )|
(S1(β0,Y ) = 0) is given by the expressions for conditional normal distributed
variables in Equations (3.6) and (3.7),

µ2|1 = E(S2|1) = µ2 + I(β0)21I(β0)
−1
11 (S1 − µ1) = 0

Σ2|1 = Var(S2|1) = I(β0)12 − I(β0)21I(β0)
−1
11 I(β0)12.

Thus, the score test statistic answering to H0 : β2 = β2,0 is defined as

T2|1 = ST
2|1Σ

−1
2|1S2|1,

which can be shown to be asymptotically χ2-distributed with degrees of freedom
equal to the difference in the number of parameters between H0 and H1 (Lehmann
and Romano, 2005). In the case of testing only one parameter βk, the degrees of
freedom are 1.

3.3 Genomic control
Assume that we perform a hypothesis test with the aid of a test statistic that is
exactly, or asymptotically, χ2

1-distributed, and that population stratification and
cryptic relatedness have not been taken into account. This test might be the Wald
or score test for one regression coefficient βk. The basic idea of genomic con-
trol methods is to detect and correct for stratification based on the genome-wide
inflation of the statistics (Price et al., 2010). The empirical distribution of the
statistics is inflated from χ2

1 to λχ
2
1 (Dadd et al., 2009) because of several potential

confounders. The possible confounders are population stratification, cryptic relat-
edness and differential bias. Differential bias refers to the spurious differences in
allele frequencies between samples due to differences in sample collection, sample
preparation and/or genotyping assay procedures.

In order to determine the inflation λ in the test statistics, a set of unlinked
SNPs are used, and it is assumed that the test statistics are observed under the
complete H0: all null hypotheses are true. The inflation factor is then applied to
the test statistics to correct them as appropriate. The inflation factor λ does not
depend on the allele frequency, hence, λ is a constant, under the condition that
the amount of genetic variance that can be explained by population structure is
constant over the genome (FST constant) (Aulchenko, 2014). Therefore λ can be



CHAPTER 3. STATISTICAL MODELS AND METHODS 29

estimated from genomic data, using a set of random SNPs which are believed not
to be associated with the trait.

We assume that the inflation factor λ is constant for all SNPs across the
genome. Given the test statistics X2

k from a set of L unlinked SNPs not associated
with the trait, and spread across the genome, the estimator for λ is (Aulchenko,
2014; Dadd et al., 2009)

λ̂ =
median(X2

1 , X
2
2 , . . . , X

2
L)

0.4549
. (3.11)

The factor 0.4549 is the median of a χ2
1-distribution, P(χ2

1 < 0.5). For the tested
markers, the corrected value of the test statistic is obtained by simple division of
the original test statistic value by λ̂, X2

corrected = X2
original/λ̂.

The estimated value of λ, λ̂, is also used as a quality control for detection
of stratification. According to Price et al. (2010), a value of λ̂ ≈ 1 indicates no
stratification, whereas λ̂ > 1 indicates stratification or other confounders presented
above. However, values of λ̂ < 1.05 are generally acceptable.

The expected proportion of markers that are associated with the trait is gen-
erally small. Therefore, practically all loci are used to estimate λ. If very strong
associations are present, true associations will increase the average value of the test,
and genomic control correction will lead to too few significant findings. Aulchenko
(2014) suggests to use 95% of the least significant associations to estimate the in-
flation factor. However, there are several problems with using the genomic control
method to account for population stratification. The method assumes uniform
FST across the genome (Aulchenko, 2014), which may not be the case for some
genomic regions, and the method is highly variable and depend strongly on the
number of SNPs genotyped (Dadd et al., 2009). Both Aulchenko (2014) and Dadd
et al. (2009) recommend use of other methods to correct for genetic confounding,
which take the structure of the sample into account in a direct manner.

3.4 Linear mixed models

Among the methods to correct for confounding presented in the opening of this
chapter, only the linear mixed models have the ability to correct for population
structure and cryptic relatedness, while retaining sufficient power to detect true
associations (Lippert, 2013). The key idea behind using linear mixed models to
correct for confounding is that while it is hard to reliably give point estimates for
the effects of confounding genetic structure, it is often possible to describe these
in terms of random effects, for which covariation can be quantified in terms of the
degree of genetic relatedness between the samples (Lippert, 2013). In linear mixed
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models the phenotype vector Y is written as the mixed sum of linear terms in the
fixed effects βk and random effects Q and ε, i.e. a mixed model:

Y = Xkβk +Q+ ε (3.12)

where Y is a vector of n responses. The regression coefficients βk, defined in Equa-
tion (3.3), are fixed effects, corresponding to the design matrix Xk, defined in Equa-
tion (3.2). The vector Q is a vector of random effects, which is assumed to follow
the distribution Q ∼ N (0, 2σ2

gΦ), where Φ is the n×n matrix of pairwise kinship
coefficients. The errors ε are assumed to follow the distribution ε ∼ N (0, σ2

eI),
where I is the n×n identity matrix. The parameters σe and σg are to be estimated,
and are representing the environmental and genetic components of variance, where
the genetic variance is due to so called polygenes (Eu-ahsunthornwattana et al.,
2014). The matrix Φ is in general unknown and is replaced by the estimated
kinship matrix Φ̂.

When testing a marker for association with the phenotype, the variables of
interest are modelled as fixed, whereas the random effects account for nuisance
variation and are therefore not of interest (Lippert, 2013).

Lippert (2013) uses the notation

Y = Xβ + Ḡu+ ε

where the random effect is u and the n×m matrix Ḡ is the design matrix holding
all the loci. Lippert (2013) continues to define the total random genetic effect as in
Equation (3.12),Q = Ḡu, and he says thatQ ∼ N (0, 2σ2

gΦ), where the covariance

matrix is proportional to Φ =
1

2m
ḠḠT. We will not use the notation of Lippert,

but continue using the notation established in Equation (3.12).

3.4.1 The implied marginal model

Based on the normality assumption of the random effects and the errors, we can
derive the marginal distribution of the responses. The random effects and the
errors are assumed to be independent of each other. The marginal linear model is
defined as (Østgård, 2011)

Y = Xkβk + ε∗,

where
ε∗ = Q+ ε.

Thus, ε∗ is normally distributed with expected value

E(ε∗) = E(Q) + E(ε) = 0,
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and covariance matrix

V = Cov(ε∗) = Cov(Q) + Cov(ε)

= 2σ2
gΦ + σ2

eI. (3.13)

It follows that ε∗ is multivariate normally distributed,

ε∗ ∼ N (0,V).

Thus, the marginal distribution of Y is

Y ∼ N (Xkβk,V).

3.4.2 Maximum likelihood estimation

As in the case of linear regression, the likelihood is maximized by equating the
gradient with respect to all parameters to zero, and jointly solving the resulting
equations. When defining the variance parameters θ =

[
σ2
e , σ

2
g

]
and the corre-

sponding covariance term Vθ, the marginal distribution of Y is the multivariate
probability density function given in Equation (3.5)

f(y|βk,θ) =
1

(2π)n/2|Vθ|1/2
exp
(
− 1

2

(
y −Xkβk

)T
V−1θ

(
y −Xkβk

))
.

Given the observed data Y = y, the likelihood function is defined as

L(βk,θ) =
1

(2π)n/2|Vθ|1/2
exp
(
− 1

2

(
y −Xkβk

)T
V−1θ

(
y −Xkβk

))
,

and the log-likelihood function is

l(βk,θ) = −n
2
log(2π)− 1

2
log|Vθ| −

1

2

(
y −Xkβk

)T
V−1θ

(
y −Xkβk

)
. (3.14)

Taking the derivative of the log-likelihood function with respect to βk and
setting the equation equal to 0, yields the corresponding estimator, which is the
same procedure as for linear regression,

∂l

∂βk
=

∂

∂βk

(
− n

2
log(2π)− 1

2
log|Vθ| −

1

2
(yTV−1θ y − y

TV−1θ Xkβk

− (Xkβk)
TV−1θ y + (Xkβk)

TV−1θ Xkβk

)
= 0
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⇒−XT
kV−1θ y + XT

kVXkβk = 0

β̂k = (XT
kV−1θ Xk)

−1XT
kV−1θ y (3.15)

While for linear regression the maximum likelihood parameters can be found
in closed form from the gradient equations, this is not the case for linear mixed
models. The log marginal likelihood function is not jointly convex in the variance
parameters, rendering it hard to ensure global maximization of the likelihood (Lip-
pert, 2013). Lippert (2013) proposes a simplified version of maximum likelihood
estimation, where the log-likelihood in Equation (3.14) is written as a function of
the ratio γ =

σ
2
g

σ
2
e

:

l(γ, σ2
e ,βk) = −n

2
log(2πσ2

e)−
1

2
log|Hγ|−

1

2σ2
e

(
y−Xkβk

)T
H−1γ

(
y−Xkβk

)
(3.16)

where the matrix Hγ is defined as Hγ = I + γΦ. The estimator of the fixed effect
βk is computed in the similar way as for the estimators in Equation (3.15)

β̂kγ = (XT
kH−1γ Xk)

−1XT
kH−1γ y. (3.17)

In order to find the estimator of the environmental variance σ2
e as a function of

γ, the estimator β̂kγ from Equation (3.17) is substituted into the log-likelihood in
Equation (3.16). Taking the derivative with respect to σ2

e and setting this equal
to 0, yields

∂l

∂σ2
eγ

= − n

2σ2
eγ

+
1

2σ4
eγ

(
y −Xkγ

β̂kγ
)T

H−1γ
(
y −Xkγ

β̂kγ
)

= 0,

which gives that the estimator for the environmental variance given γ is

σ̂2
eγ

=
1

n

(
y −Xkγ

β̂kγ
)T

H−1γ
(
y −Xkβ̂kγ

)
.

The expression can be further simplified as

σ̂2
eγ

=
1

n
yTPT

γH−1γ Pγy (3.18)

where
Pγ = I−Xe(X

T
kH−1γ Xk)

−1XT
kH−1γ y.

When plugging the estimators of σ2
eγ

and βkγ back into the log-likelihood in
Equation (3.16), we obtain the profile log-likelihood as

l(γ) = −n
2
log(2πσ̂2

eγ
)− 1

2
log|H−1γ | −

1

2σ̂2
eγ

(
y −Xkβ̂k

)T
H−1γ

(
y −Xkβ̂k

)
.



CHAPTER 3. STATISTICAL MODELS AND METHODS 33

The profile log-likelihood can be simplified by using the expressions from Equa-
tions (3.17) and (3.18),

l(γ) = −n
2
log(2π

1

n
yTPT

γH−1γ Pγy)− 1

2
log|H−1γ |

− 1
2
n
yTPT

γH−1γ Pγy

(
yTPT

γH−1γ Pγy
)

= −n
2

(1 + log
2π

n
)− 1

2
log|H−1γ | −

n

2
log(yTPT

γH−1γ Pγy).

In principle, a local optimum with respect to γ of this profile log-likelihood
could be obtained by the use of gradient descent methods. Alternatively, a grid
search can be used to find an optimum for γ (Lippert, 2013).

According to Lippert (2013), the maximum likelihood estimate underestimate
the variances, because it is biased as for the estimator in Equation (3.9). He states
that restricted maximum likelihood estimation has been proposed to overcome this
problem, but this will not be of focus here.

3.4.3 Best linear unbiased prediction

The best linear unbiased predictor (BLUP) is a minimum variance predicted value
of the random effectsQ in a linear mixed model (Lippert, 2013), similar to the best
linear unbiased estimator (BLUE) of fixed effects. The BLUP Q̂i of an individual
i is obtained by maximizing the joint distribution of the vector of all observed
phenotypes Y and the random genetic effect Qi of that individual of interest. Let
V be the total covariance term of Y as in Equation (3.13), Φ:i is the 1× n vector
of genetic relatedness between individual i and all observed individuals, and the
genetic relatedness of individual i with itself is Φii. The joint distribution of Y
and Qi is given as [

Y
Qi

]
∼ N

([
Xkβk

0

]
;
[

V σ2
gΦ

T
:i

σ2
gΦ:i σ2

gΦii

])
.

In order to find the BLUP for Qi, the results for conditional distributions of
multivariate normal vectors in Equation (3.6) and (3.7) are used, and the BLUP
Q̂i is equal to the expected value of the conditional distribution of Qi given Y ,

Qi|Y ∼ N
(
σ2
gΦ:iV

−1(Y −Xkβk); σ
2
gΦii − σ2

gΦ:iV
−1σ2

gΦ
T
:i

)
so that

Q̂i = σ̂2
gΦ:iV

−1(Y −Xkβ̂k).

In practice, Φ:i is replaced by the estimated matrix Φ̂:i.
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3.4.4 Linear mixed models in GenABEL

There are several R-packages available for fitting linear mixed effects models, like
nlme and lme4. lme4 is a newer version to nlme, which is more efficient and uses
restricted maximum likelihood estimation. In GWA studies, in which hundreds
of thousands of SNPs are to be analyzed, it is quite time consuming to use these
packages. The gold standard of genetic association analysis is a likelihood ratio
test-based method using variance component analysis applied to a mixed effects
model. However, the method requires estimation of all the model parameters
for every tested SNP k in Equation (3.12), and is thus computationally demand-
ing (Svishcheva et al., 2012). Instead, the focus is on fast approximate tests which
were developed for the purposes of GWA analysis in samples of relatives. The
GenABEL package include functions for efficient GWA analysis, which will be de-
scribed in the following sections.

polygenic

polygenic is a GenABEL function which estimates the linear mixed (polygenic)
model based on trait and covariates data, and includes the estimated kinship ma-
trix. The function maximizes the likelihood of the data, given in Equation (3.14),
and reports twice the negative maximum likelihood estimates. The main use of
this function is to estimate regression coefficients, environmental residuals and
the inverse of the covariance matrix for further use in analysis with mmscore and
GRAMMAR. It is difficult to compute the inverse of the covariance matrix given in
Equation (3.13), so the eigenvectors of the inverse of Φ̂ are used instead of taking
the inverse. This method is partly based on the paper of E. A. Thompson (1990),
and by taking the Moore-Penrose generalized inverse of Φ̂.

mmscore

The polygenic and mmscore functions together allow implementation of the family
based score test approximation (FASTA) method proposed by Chen and Abecasis
(2007), based on the estimated kinship matrix Φ̂. The FASTA approach divides
the model parameters into two categories; segregation parameters related to trait
heritability and parameters describing the effects of SNPs on this trait. The seg-
regation parameters are estimated, and the covariance matrix for the phenotypes
of the study participants is computed once for a given trait. This step corresponds
to the polygenic-step. The next step involves evaluating the effect of every SNP,
making corrections for the covariance matrix. This approach approximates the
likelihood ratio test well if many loci of small effects are involved in trait determi-
nation. This approach is much less computationally complex than the likelihood
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ratio test-based method, but it becomes rather slow when millions of SNPs are
analyzed in large samples (Svishcheva et al., 2012).

GRAMMAR

In order to increase the computation speed, Aulchenko et al. (2007) proposed the
GRAMMAR method using environmental residuals estimated from the polygenic
function. The basic idea is to perform a single linear mixed model analysis using all
the individuals, but ignoring genotype data. Subsequently, we use residuals from
this analysis, which are now adjusted for polygenic covariation and fixed effects, as
a novel quantitative trait for association analyses with each of many SNPs using
classical methods for unrelated individuals (Aulchenko et al., 2007).

In the initial step, a reduced version of linear mixed model is fitted, similar to
Equation (3.12)

Y = Xeβe +Q+ ε,

including only the environmental regression covariates. The residuals from this
analysis are given by

Y ∗ = Y −
(
Xeβ̂e + Q̂

)
(3.19)

where β̂e is the estimate of the fixed effect and Q̂ is the estimated contribution
from the polygenes (Aulchenko et al., 2007). In the second step, these residuals
are used as the predictor in a simple linear regression model for each SNP k,

Y ∗ = Xg(k)
β̃g(k) + ε,

where Y ∗ is a vector of residuals from Equation (3.19), Xg(k)
is the vector of

genotypes at the SNP under study, β̃g(k) is the effect of SNP k, and ε is the vector of
random errors. This analytical approach is called GRAMMAR (Aulchenko et al.,
2007). Estimation of β̃g(k) can be accomplished through maximum likelihood or
least squares approaches (Eu-ahsunthornwattana et al., 2014), and testing of the
null hypothesis that β̃g(k) = 0 is done by applying the score test. Subsequent to the
GRAMMAR analysis, SNPs showing test statistics greater than some predefined
threshold are selected for a final analysis using the linear mixed model

Y = Xeβe +Xg(k)
βg(k) +Q+ ε.

This version of GRAMMAR is shown to produce a conservative test and bi-
ased estimates of the regression coefficients. In order to fix these problems, Amin
et al. (2007) proposed a genomic control corrected version of GRAMMAR which
is denoted GRAMMAR-GC. The method involves the same steps as the original
GRAMMAR, but the final score test statistic is re-inflated by multiplying by an
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appropriate estimated correction factor. This is analogous to the deflation of χ2
1-

statistic in the method of genomic control in Section 3.3, and result in a final
test statistic with the appropriate null distribution (Eu-ahsunthornwattana et al.,
2014). Thus, the conservativity of the test is solved, but the method generates
biased estimates of the regression coefficients and the genomic control λ is by
definition 1, and can not serve as an indicator of goodness of the model.

Svishcheva et al. (2012) present an extremely fast variance components-based
two-step method, which solves all the problems of the original GRAMMAR and
GRAMMAR-GC. According to Svishcheva et al. (2012), this new method called
GRAMMAR-gamma produces a correct distribution of the test statistics, inter-
pretable values of the genomic control λ, and unbiased estimates of the regres-
sion coefficients. We will not go into details of the method, but it involves cal-
culating a correction factor which is used to adjust a test statistic. The new
GRAMMAR-gamma statistic can be shown to be approximately equivalent to the
FASTA statistic (Eu-ahsunthornwattana et al., 2014) of the mmscore function,
but more efficiently calculated. Details for the GRAMMAR-gamma method can
be seen in Svishcheva et al. (2012).

All the different methods are applied by using the GenABEL-function GRAMMAR,
and choosing method raw, gc or gamma.

3.5 Comparison of principal components regres-
sion and linear mixed models

It has been standard practice to include principal components of the genotypes
constructed from a genotype matrix in a regression model in order to account
for population structure. However, more recently the linear mixed model has been
shown to be a powerful method to account for both population structure and cryp-
tic relatedness, which the principal components method fails to account for (Price
et al., 2010). Hoffman (2013) examines the relationship between the principal com-
ponents method and the linear mixed model, and the statistical theory underlying
the differences in empirical performance between modelling principal components
as fixed versus random effects.

When handling a large set of correlated variables, the principal components
epitomize the set using a smaller number of variables that taken together explain
most of the variability in the original set. To perform principal regression, in gen-
eral we simply use principal components as predictors in a regression model in
place of the original larger set of variables. Principal component analysis (PCA)
refers to the statistical procedure by which principal components are computed,
and the subsequent use of these components in understanding the data (James
et al., 2013). It involves an orthogonal transformation to convert a set of obser-
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vations of possible correlated variables into a set of linearly uncorrelated variables
called principal components.

PCA provides a tool to find a low-dimensional representation of a data set that
contains as much as possible of the total variance. Suppose we have a n×m data
matrix X, with columns X1,X2, . . . ,Xm, which is centered to have column-wise
zero empirical mean, resulting in X∗. The idea is that each of the n observations are
in a m-dimensional space, but not all of these dimensions are equally interesting.
The first principal component has the largest possible variance, and thus accounts
for as much of the variability in the data as possible.

3.5.1 The data matrix X

In our case, the data matrix X (n×m) consists of genotype data for n individuals
at m SNPs, where Xi,k ∈ {0, 1, 2}, equivalently to Gik in Equation (2.6). In order
to apply the tool of principal components, the data matrix needs to have column-
wise zero mean. According to Patterson et al. (2006), this is done by subtracting
the column mean for each entry. The column mean for column k is:

Xk =

∑m
i=1 Xi,k

n
.

In addition to subtracting the mean, Patterson et al. (2006) include a normal-
izing step, which normalizes each data column to have the same variance. By
setting pk = Xk/2 as an estimate of the minor allele frequency, equivalently as
done in Equation (2.9), each entry in the corrected matrix X∗ is

X∗i,k =
Xi,k −Xk√
2pk(1− pk)

.

The matrix X∗ is identical to the matrix X in Equation (2.8), which means
that an estimator for the kinship matrix is

Φ̂ =
1

2m
X∗X∗T ∝ X∗X∗T

and an estimator for the matrix of correlations between the SNP data is propor-
tional to X∗TX∗.

3.5.2 Singular value decomposition

We define the principal components of X∗ by taking the singular value decomposi-
tion of the data matrix X∗. The singular value decomposition separates the n×m
matrix X∗, into the following matrices (Ripley, 1996)

X∗ = UΛVT (3.20)
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where U is an n×m matrix with orthonormal columns, V is an m×m orthogonal
matrix of principal directions and Λ is an m × m diagonal matrix of decreasing
non-negative singular values si of X∗. Normally, the number of SNPs is larger
than the number of individuals in a study, m > n, so it can be shown that the
rank of X∗ is at most n − 1. Thus, the diagonal elements si for i > (n − 1) are
0. The principal components of X∗ are defined by Ripley (1996) as the columns
of the PCA score matrix T, which is defined as

T = X∗V = UΛVTV = UΛ.

There is a connection between the principal components and both the matrices
X∗TX∗ and X∗X∗T. The matrix X∗X∗T is an n × n symmetric matrix, and can
thus be diagonalized in the following way:

X∗X∗T = WLWT (3.21)

where W is a matrix of eigenvectors (each column is an eigenvector), and L is a
diagonal matrix with eigenvalues λi in decreasing order on the diagonal. The same
can be done for the matrix X∗TX∗ since it is an m×m symmetric matrix,

X∗TX∗ = MCMT (3.22)

where M is a matrix of eigenvectors (each column is an eigenvector), and C is a
diagonal matrix with eigenvalues ci in decreasing order on the diagonal.

Using the singular value decomposition of X∗ from Equation (3.20) on the
matrix X∗X∗T, it is clear that

X∗X∗T = UΛVTVΛUT = UΛ2UT. (3.23)

It follows from Equation (3.21) that the columns of U are the eigenvectors of
X∗X∗T, and the corresponding eigenvalues are the diagonal elements of Λ2, λi = s2i .

Applying the same procedure to the matrix X∗TX∗, we get

X∗TX∗ = VΛUTUΛVT = VΛ2VT. (3.24)

It follows from Equation (3.22) that the columns of V are the eigenvectors of
X∗TX∗, and that the eigenvalues are the diagonal elements of Λ2, ci = s2i , corre-
spondingly as for the matrix X∗X∗T.

It can be shown that

rank(X∗) = rank(X∗X∗T) = rank(X∗TX∗). (3.25)

From Equation (3.23), (3.24) and (3.25) it is clear that X∗X∗T and X∗TX∗

have the same non-zero eigenvalues but different eigenvectors, and that the PCA
scores of X∗TX∗ are the eigenvectors of the matrix X∗X∗T.
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3.5.3 Modelling principal components as fixed versus ran-
dom effects

The kinship matrix can be directly used as a part of the model for the correlations
between outcomes in the random effects method. The principal components ap-
proach involves extraction of the leading eigenvectors of the kinship matrix, and
usage of these components as additional fixed effects in the model for the outcomes.

Hoffman (2013) includes the first i principal components as fixed effects in a
linear model, which takes the form

Y = Xkβk + T1:iτ + ε (3.26)

where Y is a vector of phenotype values, βk is an unkown vector of fixed effects,
Xk is the design matrix relating to βk, T1:i are the first i principal components
with coefficient vector τ and ε is the normally distributed error term with variance
σ2
e . The principal components are treated as fixed effects, such that maximizing

the likelihood involves directly estimating all parameters.
If we now consider the linear mixed model,

Y = Xkβk + Q + ε

as defined in Equation (3.12), we have that Q ∼ N (0, 2Φ̂σ2
g). Using Equa-

tion (3.23) we get

Φ̂ =
1

2m
X∗X∗T = U

Λ2

2m
UT = U

Λ√
2m

(
U

Λ√
2m

)T
= RRT (3.27)

so that the columns of R are the principal components of X∗. Using the property
of a multivariate Gaussian, z ∼ N (µ,Σ)⇒ Bz ∼ N (Bµ,BΣBT), and the decom-
position in Equation (3.27), it is clear that α ∼ N (0, 2σ2

gI)⇒ Rα ∼ N (0, 2Φ̂σ2
g),

so that the linear mixed model can be written as

Y = Xeβe + Xgβg + Rα+ ε. (3.28)

Hoffman (2013) claims that based on the relationship between Equation (3.26)
and (3.28), it is apparent that modelling principal components as fixed or random
effects share the same underlying regression model.
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3.6 Multiple testing
The number of tests performed when doing GWA studies are ranging from ten to
hundreds of thousands, which makes it important to control the type I error rate.

Table 3.1: Possible situations for testing a statistical hypothesis (Walpole et al.,
2012).

H0 true H0 false

Do not reject H0
Correct decision
1-α

Type II error
β = P(type II error)

Reject H0
Type I error
α = P(Type I error)

Correct decision
1-β

As presented in Table 3.1, rejection of the null hypothesis when it is true is
called a type I error, and nonrejection of the null hypothesis when it is false is called
a type II error (Walpole et al., 2012). Traditionally, type I errors are considered
more problematic than type II errors. If a rejected hypothesis allows publication of
a scientific finding, a type I error brings a false discovery and the risk of publication
of a potentially misleading scientific result (Goeman and Solari, 2014). Type II
errors, on the other hand, mean missing out on a scientific result. As the type I
errors are likely to be the most surprising and novel findings, they have a high risk
of finding their way into publications (Goeman and Solari, 2014).

In hypothesis tests, researchers have bounded the probability of making a type
I error by α, an acceptable risk of type I errors, conventionally set at 0.05. How-
ever, problems arise when researchers perform many tests, because each test has a
probability of producing a type I error. Performing a large number of hypothesis
tests in practice guarantees the presence of type I errors among the findings, as
seen in the following equations, if we assume independence between tests.

P(not making an error in m tests) = (1− α)m

P(making at least 1 error in m tests) = 1− (1− α)m

For example, if m = 10000 and α = 0.05 this gives P(not making an error in m
tests) = 0 and P(making at least 1 error in m tests) = 1.

There are many methods of dealing with type I errors when performing mul-
tiple tests: those that estimate the false discovery proportion, those that control
the false discovery rate (FDR) and those that control the family-wise error rate
(FWER). In this study, the focus will be on the methods that control the FWER.
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3.6.1 Family-wise error rate

We have a collection H = (H1, . . . , Hm) of null hypotheses which we would like to
investigate. Assume that m0 of these hypotheses are true, and m1 = m−m0 are
false. The collection of true hypotheses is called T and the remaining collection of
false hypotheses F = H\T . The goal of multiple testing is to choose a collection
of hypotheses to reject, R. If the p-values for each of the hypotheses H1, . . . , Hm

are p1, . . . , pm, a straightforward choice of R is all the hypotheses with a p-value
less than a threshold T , R = {Hi : pi ≤ T}. The numbers of errors occurring in a
multiple hypothesis testing procedure can be summarized in a contingency table,
as in Table 3.2. The total number of hypotheses m and the number of rejected
hypotheses R = #R are observable, but all the other elements of the table are
unobservable.

Table 3.2: Contingency table for multiple hypothesis testing (Benjamini and
Hochberg, 1995).

True False Total
Rejected V U R
Not rejected m0 m1 − U m−R
Total m0 m1 m

The multiple testing methods attempt to reject as many hypotheses as possible
while controlling the type I errors. The standard approaches to measure the type I
errors is the number V of type I errors or the false discovery proportion Q, defined
as

Q =

{
V/R, if R > 0

0, otherwise.

The FWER method controls

FWER = P(V > 0) = P(Q > 0),

and the FDR method controls

FDR = E(Q).

The FDR method has its focus on the expected proportion of errors among the
rejections, whereas the FWER method looks at the probability that the rejected
set contains any error (Goeman and Solari, 2014).

The Bonferroni procedure is the most known method for control of the FWER,
and it is popular because of its simplicity (Goeman and Solari, 2014). The Bonfer-
roni method controls the FWER at level α for all types of dependence structures
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between the tests, by rejecting hypotheses only if they have a p-value smaller than
T = α/m.

Another method that controls the FWER is the Šidák method, in which one
assumes that all the individual tests are independent. The threshold T is then
T = 1− (1− α)1/m.

The method of Halle et al. (2016) is a competitor to the Bonferroni and Šidák
methods. The method is constructed for use in a generalized linear model where
hypothesis testing is performed using the score test, and is intended for use in the
GWA setting. Further, the vector of score tests for the multiple hypotheses (one for
each SNP) is asymptotically multivariate normal, and Halle et al. (2016) calculate
T using approximations to a m-dimensional multivariate normal distribution. The
method takes into account the correlation between test statistics from neighbouring
SNPs.



Chapter 4

Analysis

In this chapter we perform the analysis of the HUNT VO2max
data.The analysis is

executed using the GenABEL package, which provides several important methods
to analyze genome-wide association studies. By estimating the kinship matrix for
all the individuals, using the estimator in Section 2.3.1, it is possible to create
a new data set; a reduced sample including only individuals with an estimated
kinship coefficient below a defined value. The individuals in the reduced sample
are then assumed to be independent, and a multiple linear regression can be fitted,
as presented in Section 3.1. The original sample containing all the individuals can
be analyzed using a linear mixed model, which was introduced in Section 3.4.

The outline of Chapter 4 is as follows: In Section 4.1 the GenABEL package
is presented, Section 4.2 consider summaries of quality controls of the data, Sec-
tion 4.3 presents the VO2max

trait and the covariates age and activity level, while
Section 4.4 comprise estimation of the kinship matrix and construction of the two
data sets. Moreover, Section 4.5 presents results from the methods to control
FWER, and Sections 4.6 and 4.7 embody the analyses using linear models and
linear mixed models, respectively. Finally, in Section 4.8 the results of the differ-
ent analyses are compared, as well as the performance of the different statistical
methods.

4.1 GenABEL

GenABEL is an R package for performing statistical analyses of genome-wide associ-
ation (GWA) studies. Important challenges of the modern computational genetics
are to store, handle and analyze GWA data as effectively as possible. In gen-
eral, the amount of data generated in GWA studies are enormous, as hundreds of
thousands of SNPs are genotyped in hundreds or thousands of individuals. The
GenABEL-package makes it possible to do GWA analysis on standard desktop com-
puters. The library addresses minimization of the amount of rapid access memory

43
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(RAM) used and the time required for data transactions, and maximization of the
throughput of GWA analysis1. The use of the GenABEL package gives access to a
wide range of statistical analysis functions. GenABEL will be used in the subsequent
data analysis.

4.2 Quality control of genetic data
Performing cleaning and quality control of GWA data is important. To do this
we use the GenABEL function check.marker, which does genotypic quality control.
This function helps selecting the SNPs of sufficient quality to enter into GWA
analysis based on call rate, minor allele frequency (MAF) and p-value of the X 2-
test for Hardy Weinberg equilibrium (HWE). Call rate is defined as the proportion
of genotypes per SNP with non-missing data. We choose to filter out the SNPs
which have call rate below 90%, and use 90% as a cut-off for individual call rate as
well (maximum proportion of missing genotypes in a person). The cut-off p-value
in assessing HWE is selected so that the FDR is controlled at level 0.2. For the
MAF, the cut-off is set to 0.05, so that SNPs with an estimated MAF less than
0.05 are filtered out. This means that SNPs with less than 5% copies of the minor
allele are removed. The MAF is estimated using the estimator in Equation (2.9).
The quality check is repeated until no further errors are found. The quality check
needs to be done in this iterative way because as soon as you exclude a SNP or an
individual, other statistics change and need to be computed again and re-checked.

The output from the quality control is listed in Appendix B.1. In total there
are 196 725 SNPs and 1472 individuals in the original sample. The number of
individuals excluded due to low call rate and SNPs excluded due to low call rate
and low MAF, can be found in the summary below. The output shows that in
total 102 477 SNPs and 1459 people passed all criteria.

The summary of SNPs and individuals which did not pass the quality control
is as follows:

$‘Per -SNP fails statistics ‘
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 1891 2410 688 0 0
NoMAF NA 83918 1798 0 0
NoHWE NA NA 3382 0 0

1Genabel.org (2016). GenABEL: an R package for Genome Wide Association Analysis. Avail-
able at: http://genabel.org/genabel/genabel-package.html [Accessed 13 Jun. 2016]
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$‘Per -person fails statistics ‘
IDnoCall HetFail IBSFail isfemale ismale

IDnoCall 13 0 0 0 0
HetFail NA 0 0 0 0
IBSFail NA NA 16 0 0

From this output we can see that some SNPs fail both call rate and HWE.
This result is natural because poor call rate of a SNP often is a sign of problems
during genotyping, which also can cause SNPs to be out of HWE.

Descriptive summary tables for the markers that passed the quality control can
be seen in Appendix B.2. The tables show that more than 50% of the markers
have a MAF>0.2, and the remaining markers have a MAF between 0.05 and 0.2.
Moreover, 100 367 SNPs, or 97.9% of all SNPs, had a proportion of 99% successful
genotypes, and all individuals had a proportion of 99% successful genotypes. The
mean heterozygosity for a SNP is 0.3374 with a corresponding standard deviation
of 0.1288, while the mean heterozygosity for a person is 0.3368 with a standard
deviation of 0.0075.

4.3 VO2max
, age and activity level

The data set contains information of VO2max
, age and activity level for each of the

1459 individuals. Figure 4.1 displays a histogram of the maximal oxygen uptake
(VO2max

) of each of the 1459 individuals. The VO2max
data has a mean of 136.434

ml/kg0.75/min with associated standard deviation of 25.812, as shown in Table 4.1.
The minimum value of VO2max

is 65.15 ml/kg0.75/min and the maximum is 222.06
ml/kg0.75/min. The blue curve in the figure represents a normal distribution with
mean and standard deviation corresponding to the VO2max

data. The data follows
the normal distribution well, but deviations from the normal distribution is easier
to see from a Q-Q plot, which will be presented in Section 4.6.

Table 4.1 also presents summaries for age and activity level for each of the
individuals. The age of the individuals ranges from 19.6 years to 84.4 years, with
a mean of 49.483 years. The activity level ranges from 0 to 15, and the mean is
3.409.

Table 4.1: Descriptive summary statistics of the data for the 1459 individuals
including VO2max

, age and activity level.

n Mean SD Min Max
Age 1459 49.483 12.749 19.6 84.4
Activity level 1447 3.409 2.950 0 15
VO2max

1458 136.434 25.812 65.15 222.06
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Figure 4.1: Histogram of the VO2max
for all the 1459 individuals. The blue line

represents a normal distribution with mean of 136.434 and standard deviation of
25.812.
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4.4 Estimation of the kinship matrix for the VO2max
data

To investigate the possible relatedness between the individuals we estimate the
kinship matrix for the individuals. To estimate the kinship matrix, the GenABEL

function ibs is applied. The function computes a matrix of kinship coefficients for
a group of individuals, based on a set of SNPs. The function has some arguments,
including the argument weight, which can either be assigned to no, eVar or freq.
In this thesis, freq is used, which means what the allelic frequency is applied, and
the kinship coefficient is estimated in a similar way as in Equation (2.7). The only
difference is that the genotype of an individual at a SNP is coded as 0, 1/2 and
1, while we used the coding 0, 1 and 2 in Equation (2.6). This is made up for
in the ibs function by using the following expression for estimating the kinship
coefficient:

Φ̂ij,ibs =
1

m

m∑
k=1

(xik − pk)(xjk − pk)
pk(1− pk)

(4.1)

where xik and xjk are the genotypes of individual i and j, respectively, at the
kth SNP, coded as 0, 1/2 and 1. Using Equation (4.1) is equivalent to using
Equation (2.7).

The estimated kinship matrix is a 1459× 1459 matrix, and the the total time
to compute it was 9.1 minutes on a computer of the type Intel Core i7-4770 (quad
core, 3.4 GHz). Figure 4.2 shows a histogram of all the estimated pairwise kinship
coefficients (not including the diagonal elements). In total the histogram includes
1459·1458

2
=1 063 611 estimated kinship coefficients. From the histogram it is clear

that many pairs of individuals have an estimated kinship coefficient that is neg-
ative, which correspond to individuals sharing fewer alleles than expected. Very
negative coefficients may indicate that there is population structure between the
individuals, and is therefore not set to 0.

Plots of the largest, second largest and third largest estimated kinship coef-
ficients for each individual are displayed in Figure 4.3. The largest estimated
kinship coefficient for each individual i ∈ 1, . . . n, is the maximum of Φ̂ij for one
j ∈ 1, . . . n, j 6= i. The plots show that some individuals have an estimated kinship
coefficient of 0.3. The histogram of the third largest estimated kinship coefficients
indicates that there are not that many individuals that are closely related to sev-
eral others, as the estimated kinship coefficients are much smaller than for the
largest estimated kinship coefficients.
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Figure 4.2: Histogram of the estimated kinship coefficients for the 1459 individuals
based on 102 477 SNPs.
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Figure 4.3: Histogram of the largest, second largest and third largest estimated
kinship coefficient for each of the 1459 individuals based on 102 477 SNPs. In total
1 063 611 kinship coefficients are estimated.
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Figure 4.4: Box plots of all the estimated kinship coefficients, the largest, second
largest and third largest estimated kinship coefficients for each individual.

Figure 4.4 displays box plots of all the estimated kinship coefficients and the
largest, second largest and third largest estimated kinship coefficients for each
individual. The box plot of all coefficients shows that the median is 0, and that
many coefficients are negative, and that some pairs of individuals seem to be closely
related. The box plots of the largest, second largest and third largest coefficients
indicate that the median decreases when going from largest to second largest and
third largest, as expected. Moreover, there is a reduction in the number of pairs of
individuals that are closely related going from the box plot of the largest coefficients
to the box plot of the third largest coefficients.

The mean of the estimated kinship coefficients, not including the diagonal ele-
ments and setting the negative coefficients to 0, are 0.003345. The minimum esti-
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mated kinship coefficient is 0 and the maximum is 0.3035. The standard deviation
of the estimated kinship coefficients is 0.00605933. Out of 1 063 611 estimated kin-
ship coefficients, 561 162 was estimated to be negative, and thus set to 0. The fact
that many of the estimated kinship coefficients are low and several are negative,
means that many individuals in the population are not related.

Table 4.2 is a table of estimated kinship coefficients for 5 individuals of the
sample. The individuals are chosen to illustrate the largest values of the estimated
kinship matrix, because each of them have a large estimated kinship coefficient
with at least one of the other. The diagonal elements are close to the expected
value of 0.5. It is clear that person 1 and person 2 are closely related, with an
estimated kinship coefficient Φ̂12 = 0.303518, which is the maximum estimated
kinship coefficient. The same is the case for person 3, 4 and 5, in which Φ̂34 =
0.301800, Φ̂35 = 0.257851 and Φ̂45 = 0.250882.

Table 4.2: Table of the estimated kinship coefficients for 5 selected individuals of
the sample.

Person 1 Person 2 Person 3 Person 4 Person 5
Person 1 0.498258 0.303518 -0.000452 -0.013020 0.013236
Person 2 0.303518 0.493042 -0.002097 -0.012986 0.006839
Person 3 -0.000452 -0.002097 0.502639 0.301800 0.257851
Person 4 -0.013020 -0.012986 0.301800 0.493582 0.250882
Person 5 0.013236 0.006839 0.257851 0.250882 0.511947

The two data sets

The main focus of this subsection is to create two data sets, to be referred to as the
full sample and the reduced sample, where the full sample includes all the 1459
individuals in this study, and the reduced sample only contains the individuals
that are not closely related. In this context, not closely related is interpreted as
being further apart than cousins, which means having a kinship coefficient less
than 0.125. Since the estimated kinship coefficient for cousins can vary around
0.125 (Speed and Balding, 2015), the threshold for the kinship coefficient is set to
be 0.1. This ensures that every pair of individuals are not closely related. Only
one of the individuals in a pair of individuals with estimated kinship coefficient
>0.1 is included in the reduced sample. So for every pair of individuals i and j, the
estimated kinship coefficient is computed, and if Φ̂ij > 0.1, one of the individuals
is removed from the reduced sample, and the other one is included in the reduced
sample. Which of the individuals i and j is removed, is chosen randomly, and if
the individual chosen to be removed is already removed then the other individual
are kept in the reduced sample. This procedure removed 185 individuals, and thus
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included 1274 individuals in the reduced sample. Since the removed individuals
are chosen randomly, this procedure does not ensure uniqueness of the reduced
sample.

Descriptive summary statistics for the reduced sample are presented in Table
4.3, and descriptive summary statistics for the removed individuals are presented
in Table 4.4. The summaries for the full sample are found in Table 4.1.

Table 4.3: Summaries of the data for the reduced sample including VO2max
, age

and activity level.

n Mean SD Min Max
Age 1274 49.488 12.621 19.6 84.4
Activity level 1264 3.427 2.956 0 15
VO2max

1273 136.397 25.701 65.15 222.06

Table 4.4: Summaries of the data for the removed individuals including VO2max
,

age and activity level.

n Mean SD Min Max
Age 185 49.454 13.636 20.7 77.9
Activity level 183 3.283 2.911 0 15
VO2max

185 136.690 26.632 65.81 205.17

The results show that the means of the age, activity and VO2max
measurement

are approximately equal for the different samples. It is of interest to check this
statistically, by applying t-tests with the null-hypothesis that the population means
of the reduced sample and the removed individuals are equal. The outputs from
the t-tests are listed in Appendix B.3. The results show that there is no evidence
suggesting rejection of the null hypotheses that the means of activity level, age and
VO2max

are equal for the reduced sample and the sample of the removed individuals,
using significance level α = 0.05.

4.5 Choice of local significance level

In this section the results from multiple testing are presented, which sets local
significance levels. The theory behind and the different methods to control the
FWER are discussed in Section 3.6.1. The different methods are Bonferroni, Šidák
and the two methods of Halle et al. (2016). All the approaches produce a threshold
T , for which hypotheses with a p-value lower than T are rejected. The threshold
is also named αloc.
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Table 4.5: The local significance level αloc produced by the different methods to
contol FWER.

αloc
Bonferroni 5.513287e-06
Šidák 5.655877e-06
αloc2 6.853087e-06
αloc3 7.694294e-06

The methods of Halle et al. (2016) utilize SNP data, and takes into considera-
tion the linkage or correlation between neighbouring SNPs. In order to make the
analysis less complex and time consuming when performing hypotheses tests on
each SNP, the focus will only be on SNPs on chromosome 1. In total there are
m = 9069 SNPs on chromosome 1.

Table 4.5 shows the values of the local significance level αloc for the different
methods to control FWER. It is clear from the table that the Bonferroni method
is more strict than the other methods, and that the methods of Halle et al. (2016)
(αloc2 and αloc3) are the least stringent. The significance levels αloc2 and αloc3 are
based on SNP data of chromosome 1 from the individuals in the reduced sample,
since the method of Halle et al. (2016) is constructed for generalized linear models
and score tests. We choose to control the FWER with the use of the threshold
αloc = 7.694294 · 10−6 for the analyses of the linear models and the linear mixed
models.

4.6 Analysis using linear models

In this section the reduced sample will be analyzed, first without including any
genetic covariates. This is done to check if the data set with only age and activity
level as covariates fits a linear model. Subsequently, the genetic covariates will be
included, one at a time. Finally, a linear model will be fitted to the full sample
in order to compare the results of the reduced and the full sample using linear
regression models.

4.6.1 No genetic covariates

It is of interest to check if the variables for the reduced sample fits a linear model.
The response yi is the maximal oxygen uptake for individual i, i = 1, . . . , n, where
n = 1274, in which yi is treated as a realization of a random variable Yi. The
random variable Yi is assumed to follow the distribution given in Equation (3.4),
in which the covariates are age and activity level for each individual. The vector of
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regression coefficients, βk, is a 3-dimensional vector consisting of the intercept β0,
βage and βact. Figure 4.5 shows scatterplots for all pairs of variables. Note that,
not surprisingly, VO2max

is positively associated with activity level and negatively
associated with age.
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Figure 4.5: Scattergrams of age, activity level and VO2max
for the reduced sample.

Fitting the two-covariate model, with VO2max
as response and age and activity

level as linear coefficients, produces the output from Listing 4.1.
From the output in Listing 4.1 the estimates of the coefficients, standard errors,

test of hypotheses, residual standard error and coefficient of determination R2 can
be read off. The residual standard error is σ̂ = 19.14, which provides a measure
of the extent to which individuals with the same age and level of activity can
experience different declines in the VO2max

. The degrees of freedom is the number
of observations minus the number of parameters estimated. Starting with 1274
observations, 11 was deleted due to missing values, which results in 1263 observa-
tions. The estimated parameters are the intercept, age and activity coefficients,
which yield a total of 1260 degrees of freedom.
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Listing 4.1: Results from lm of reduced sample without genetic covariates.
Call:
lm(formula = vo2max ~ age + act)

Residuals:
Min 1Q Median 3Q Max

-67.73 -12.82 0.51 12.97 63.32

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 182.57263 2.32070 78.67 <2e-16 ***
age -1.13098 0.04287 -26.38 <2e-16 ***
act 2.88328 0.18273 15.78 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

1

Residual standard error: 19.14 on 1260 degrees of freedom
(11 observations deleted due to missingness)

Multiple R-squared: 0.4457 , Adjusted R-squared: 0.4448
F-statistic: 506.5 on 2 and 1260 DF, p-value: < 2.2e-16

The intercept is estimated to be 182.57263, which is interpreted to be the value
of the VO2max

in the case when both age and activity level is 0. This is not a mean-
ingful interpretation, since the age of the individuals ranges from 19 to 85 years.
We find that for every additional year of age we expect the VO2max

to decrease
by an average of 1.13098, while holding the activity level constant. The estimated
standard error of the regression coefficient is 0.04287, and the corresponding t-test
(t-statistics is -26.38 on 1260 degrees of freedom) is highly significant. Similarly,
we expect the VO2max

to increase by an average of 2.88328 for each one-unit dif-
ference in the activity level, if the age remains constant. The estimated standard
error of the regression coefficient is 0.18273, and the t-test (t-statistic is 15.78 on
1260 degrees of freedom) yields a significant linear association between activity
level and maximal oxygen uptake.

The coefficient of determination is R2 = 0.4457 and the adjusted R2
adj = 0.4448

are useful summaries of the proportion of the variation in the data set explained by
the regression. The value of R2 illustrate that 44.57% of the variance is explained
as linear effects of age and activity level.

It is necessary to evaluate if the data meets the assumptions of the linear
model listed in Section 3.1. Figure 4.6 shows results from the analysis of the
reduced sample using lm.
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Figure 4.6: Plots from the analysis of the reduced sample using lm, including
studentized residuals (upper left panel), studentized residuals against fitted values
(upper right panel), studentized residuals versus activity level (lower left panel) and
studentized residuals versus age (lower right panel).
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The upper left panel displays the studentized residuals, which illustrates that
the residuals appear independent and that they fluctuate around 0. Since the
residuals are estimates of the errors, we conclude that the errors are independent.

In the upper right panel the studentized residuals are plotted against the fitted
values, in which the points are centered around a horizontal line. This gives an
indication of linearity.

The model is assumed to be additive, in the sense that the effect of each co-
variate on the response is assumed to be the same for all values of the other
covariate. In terms of our data, the model assumes that the effect of age is exactly
the same at every activity level. Non-linearity and non-additivity may also be
revealed by systematic patterns in plots of the studentized residuals versus indi-
vidual independent variables. The plots of studentized residuals versus activity
level and studentized residuals versus age in Figure 4.6, lower left panel and lower
right panel, respectively, show no patterns, which again are signs of linearity and
additivity.

Moreover, to check the assumption of equal variance (homoscedasticity) of the
errors, the plots of studentized residuals as a function of the fitted values (upper
right panel) and the studentized residuals as a function of the independent variables
(lower left and right panel) are applied again. The fact that the residuals don’t
increase or decrease as a function of the fitted values or independent variables, is
a verification of homoscedasticity of the errors.
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Figure 4.7: Q-Q plot of the residuals from fitting a linear model to the reduced
sample in the left panel, and full sample in the right panel.
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Finally, the assumption of normality of the error distribution is assessed by a
quantile-quantile plot (Q-Q plot). The Q-Q plot of the residuals is displayed in
the left panel of Figure 4.7, and it is clear that the points are close to the red line
which is a sign that the distribution fits the data well. Comparing to the right
panel of Figure 4.7, which shows the Q-Q plot of the residuals from fitting the
same linear model to the full sample, the tails do not follow the line as good as
for the reduced sample, which is a sign of deviation from the normal distribution.

The Anderson-Darling normality test is also applied to discover the normality
of the error distribution. The test gives a statistic A = 0.51681 and p-value p=
0.1894 for the reduced sample, which indicates that the normal distribution fits the
data well. When analyzing the full sample using linear regression, the result gave
an Anderson-Darling test statistic A = 0.75227 with a p-value p = 0.05015. This
resulted in accepting the null hypothesis that the full sample follows the normal
distribution. Comparing the two results from the Anderson-Darling normality test
show that the reduced sample follows the normal distribution slightly better than
the full sample. The results from the Anderson-Darling normality test and the Q-
Q plots are part of the motivation to analyze the full sample using a linear mixed
regression model.

Figure 4.8 shows the estimated regression equation ŷ = β̂0 + β̂ageXage + β̂actXact
evaluated for the reduced sample. The regression plane may be considered as an
infinite set of regression lines. For any fixed value of age, the expected VO2max

incline is a linear function of activity level with slope 2.88. Correspondingly, for
any fixed value of activity level, the expected VO2max

decline is a linear function
of age with slope -1.13.
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Figure 4.8: Fitted model from multiple linear regression of VO2max
on activity level

and age, for the reduced sample.
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4.6.2 Including genetic covariates

To analyze the reduced sample including one genetic covariate at the time, the
GenABEL function mlreg is applied. The aim is to perform a hypothesis test for
each SNP. The total number of genetic covariates to check for association with
the response is m = 9069. As for the analysis without genetic covariates, the
response yi is the maximal oxygen uptake for individual i, i = 1, . . . , n, where
n = 1274, in which yi is treated as a realization of a random variable Yi. The
random variable Yi is assumed to follow the distribution given in Equation (3.4),
in which the covariates are age, activity level and genotype data for the kth SNP for
each individual. The vector of regression coefficients, βk, is a 4-dimensional vector
consisting of the intercept β0, βage, βact and βgk , where k ∈ 1, . . . ,m, m = 9069.

The summary for the top 10 results of the mlreg regression, sorted by p-values,
"P1df", is found in Table 4.6. The results show that the top 3 most significant
SNPs to be associated with maximal oxygen uptake are rs10921875, rs1218592 and
rs155902.

Table 4.6: Results from fitting a linear model to the reduced sample using mlreg,
sorted by p-values "P1df".

Position n effB se_effB chi2.1df P1df Pc1df
rs10921875 187604620 1263 -3.001139 0.7477329 16.10940 0.0000597867 0.0002331088
rs1218592 153156109 1260 3.158232 0.8911609 12.55960 0.0003941767 0.0011562126
rs155902 187843884 1263 -2.567510 0.7517374 11.66519 0.0006368039 0.0017383949

chr1:74819417 74819417 1262 -4.015202 1.2031892 11.13645 0.0008464761 0.0022146012
chr1:74823928 74823928 1260 -4.015720 1.2043753 11.11740 0.0008552151 0.0022340389
chr1:74812647 74812647 1263 -3.994218 1.2013972 11.05326 0.0008853159 0.0023007686
chr1:74813852 74813852 1263 -3.994218 1.2013972 11.05326 0.0008853159 0.0023007686
chr1:74832901 74832901 1263 -3.994218 1.2013972 11.05326 0.0008853159 0.0023007686
chr1:74840649 74840649 1263 -3.994218 1.2013972 11.05326 0.0008853159 0.0023007686
chr1:74841681 74841681 1263 -3.994218 1.2013972 11.05326 0.0008853159 0.0023007686

As for the analysis without genetic covariates in Section 4.6.1, some individuals
are deleted from the analysis due to missingness. The column "n" gives the number
of individuals included for the analysis of each SNP, and it is clear that for most
SNPs 1263 individuals are part of the analysis, as for the case without genetic
covariates. The column "effB" gives the estimates of the coefficients for each SNP,
β̂g(k) , with standard errors in column "se_effB ". The χ2

1-statistics, Tk, in column
"chi2.1df" are computed from dividing each regression coefficient by its standard
deviation, and then squaring the result:

Tk =

(
βg(k)
sek

)2

∼ F1,n−p−1
n→∞−−−→ X 2

1 . (4.2)

Equation (4.2) shows that Tk is asymptotically X 2
1 -distributed. The p-values
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corresponding to the test statistics are found by calculating

Pk = P(F1,n−p−1 > Tk) ≈ P(χ2
1 > Tk),

and the p-values from the 1-degree of freedom test for association between each
SNP and trait are found in column "P1df". In order to find the p-value of the top
SNP rs10921875, we first compute the test statistic T = (−3.001139/0.7477329)2 =
16.10940, which is used to calculate the p-value p = P(χ1 > 16.10940) = 5.978655 ·
10−5.

The genomic control inflation factor from fitting a linear model using mlreg to
the reduced sample, is estimated to be λ̂ = 1.16864. The function estlambda of the
GenABEL-package is used to estimate λ, applying the method median equivalently
as in Equation (3.11). The column "Pc1df" gives p-values of the same test for
association, as in column "P1df", only that the test statistics are corrected for
possible inflation. Dividing the test statistics in column "chi2.1df" by λ̂ estimated
using the function estlambda with the method regression, and then computing the
corresponding p-values, gives the elements in column "Pc1df". The estimate using
the regression method is λ̂ = 1.189464, so the differences in the estimates using
median and regression are not big. We will continue using the median method.
Sorting the results from fitting a linear model to the reduced sample using mlreg

by "Pc1df" gives the same SNPs as in Table 4.6.
The mlreg function doesn’t provide estimates of the environmental regression

coefficients, as a matter of problems with storage of the enormous amounts of data
produced by the GWA analyses. The estimates of the coefficients of the SNPs and
testing of each SNP are the main priorities.

Manhattan plots are used to illustrate which SNPs are the most associated to
the response. The horizontal axis displays the genomic coordinates of chromosome
1, while the vertical axis represents the negative (base 10) logarithm of the asso-
ciation p-value for each SNP. Thus, each point on the plot signifies one SNP. The
most significant associations correspond to the largest negative logarithm values.

The upper panel of Figure 4.9 displays a Manhattan plot for the single SNP
analyses, while a Manhattan plot of SNPs with -log10(p) > 1.5 is shown in the
lower panel, which makes it easier to see the SNPs that have the smallest p-values.
Moreover, the roughly blue lines of SNPs make it clear that many of the SNPs
with the smallest p-values are positioned in the same region on the chromosome.
The red line represents the local significance level αloc = 7.694294 · 10−6, while the
green line intersects the 10th most significant SNP. Accordingly, it is clear from
the plot that many of the top SNPs are at the same position of the chromosome.
Moreover, both the plots and Table 4.6 demonstrate that none of the SNPs have
a p-value below the local significance level, and thus can’t be considered to have a
significant association to the trait.



62 CHAPTER 4. ANALYSIS

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

0
1

2
3

4
5

Map position

−
lo
g 1
0(
P
−
va
lu
e)

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

2
3

4
5

Map position

−
lo
g 1
0(
P
−
va
lu
e)

Figure 4.9: Manhattan plots for the single SNP analyses of the reduced sample
using mlreg. The red lines represent the local significance level αloc, while the green
lines intersect the 10th most significant SNP. The upper panel displays all SNPs,
while the lower panel for simplicity only displays SNPs with -log10(p) > 1.5.
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The five last SNPs in the top 10 list all share the same estimated coefficient,
standard error, test statistic and p-value. The reason for this is that the genotype
data for the individuals are the same at these SNPs. That is, all the 1263 individ-
uals have the exact same genotype data at these 5 SNPs. Consequently, fitting a
linear model including each of these SNPs gives identical results.

Furthermore, the fact that only three SNPs are above the green line in Fig-
ure 4.9, and that the rest are clumped and intersected by the green line, are
evidences of that these SNPs are correlated or in linkage disequilibrium. In order
to demonstrate this, the R package cgmisc is utilized. The package is useful for
visualizing results of GWA analyses. The function plot.manhattan.LD plots local
linkage disequilibrium pattern on a Manhattan plot resulting from a GWA anal-
ysis, relative to a pre-selected SNP. Each of the SNPs in the fixed interval of the
chromosome, is coloured according to its linkage disequilibrium r2 (see Equation
(2.1)) with the reference SNP. The colour codes are not continuous, but the linkage
disequilibrium is discretized into intervals, as can be seen in the top left corner.
In addition, the MAFs are plotted in the lower panel.

First, the neighbouring SNPs of the top SNP of Table 4.6, rs10921875, will be
studied. Figure 4.10 shows the local linkage disequilibrium pattern of rs10921875,
which is plotted as a black circle. It is clear from the plot that there are 2 SNPs
relatively close and highly correlated to the SNP, the red and orange SNPs. The
SNP that is coloured red have a linkage disequilibrium coefficient 0.8 < r2 < 1,
which corresponds to high level of linkage. Using the function choose.top.snps it
is possible to find the SNPs with highest r2 to a given reference SNP. Table 4.7
gives the names of the 2 SNPs highest correlated with SNP rs10921875, the value
of r2 and the coordinates of their position on the chromosome.

Table 4.7: Top SNPs linked with the index SNP rs10921875.

SNP r2 coord
rs10921875 INDEX SNP 187604620
rs1935660 0.809637719224218 187509749
rs516084 0.633792841245244 187822397
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Figure 4.10: Plot of local linkage disequilibrium pattern relative to the pre-selected
SNP rs10921875, on a Manhattan plot. Each SNP is coloured according to its linkage
disequilibrium with the reference SNP, and the legend in the top left corner represents
the colour codes of the linkage r2. The lower panel displays the MAFs, which are
relatively constant for the most correlated SNPs.

Moreover, it is of interest to check the linkage disequilibrium of the SNPs from
Table 4.6 which produced the exact same regression coefficients and consists of
identical genotype data. Using the SNP chr1:74812647 as reference SNP, the plot
of linkage disequilibrium pattern on a Manhattan plot is displayed in Figure 4.11.
The reference SNP is barely visible, because a cluster of SNPs highly correlated to
the reference SNP is positioned on top of it. The cluster consists of SNPs coloured
red, which means that they are in high linkage disequilibrium with the reference
SNP.
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There are several clusters of SNPs coloured both red, orange and blue, which
means that many of the SNPs in this region are in linkage disequilibrium with
the reference SNP. The lower panel shows that the MAFs fluctuate for the SNPs
around the index SNP. Table 4.8 presents the top 9 SNPs with highest correlation
coefficient r2 with the index SNP chr1:74812647. We recognize that the third to
tenth top SNPs of Table 4.6 are representative in Table 4.8, with linkage dise-
quilibrium coefficient r2 = 1. This indicates that these SNPs are in high linkage
disequilibrium and provide nearly identical information.
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Figure 4.11: Plot of local linkage disequilibrium pattern relative to the pre-selected
SNP chr1:74812647, on a Manhattan plot. Each SNP is coloured according to its
linkage disequilibrium with the reference SNP, and the legend in the top left corner
represents the colour codes of the linkage r2. The lower panel displays the MAFs,
which fluctuate for the SNPs in the region around the reference SNP.
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Table 4.8: Top SNPs linked with the index SNP chr1:74812647.

SNP r2 coord
chr1:74812647 INDEX SNP 74812647
chr1:74819417 1 74819417
chr1:74847576 1 74847576
chr1:74844626 1 74844626
chr1:74841681 1 74841681
chr1:74840649 1 74840649
chr1:74832901 1 74832901
chr1:74823928 1 74823928
chr1:74813852 1 74813852
chr1:74791630 0.880729101281149 74791630

Finally, we want to fit a linear regression model to the reduced sample including
the covariates age, activity level and the top SNP rs10921875. The summary for
the linear regression is shown in Listing 4.2. The top SNP has an estimated
regression coefficient of -3.00114, which means that when going from 0 to 1 copy
of the minor allele, the VO2max

decreases on average by 3.00114.

Listing 4.2: Results from lm of reduced sample including SNP rs10921875.
Call:
lm(formula = vo2max ~ age + act + top_SNP)

Residuals:
Min 1Q Median 3Q Max

-67.296 -12.416 0.531 12.628 63.804

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 185.15348 2.39485 77.313 < 2e-16 ***
age -1.13179 0.04261 -26.560 < 2e-16 ***
act 2.87759 0.18165 15.842 < 2e-16 ***
top_SNP -3.00114 0.74773 -4.014 6.33e-05 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

1

Residual standard error: 19.03 on 1259 degrees of freedom
(11 observations deleted due to missingness)

Multiple R-squared: 0.4527 , Adjusted R-squared: 0.4514
F-statistic: 347.1 on 3 and 1259 DF, p-value: < 2.2e-16
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The mlreg function doesn’t provide the estimates for the environmental regres-
sion coefficients, but the above procedure including each SNP gives the estimates.
The estimated coefficient for the intercept is β̂0 = 185.15348, the estimated coef-
ficient for age is β̂age = −1.13179 and the estimated coefficient for activity level is
β̂act = 2.87759. Comparing the results with the summary of the reduced sample
without including the top SNP, in Listing 4.1, we see that the estimated coefficient
for the intercept is larger for the analysis including the genetic covariate, while the
other coefficients are almost the same for the two analyses. From Listing 4.2 it is
clear that the coefficient of determination is R2 = 0.4527, which is slightly greater
than for the analysis in Listing 4.1, which was R2 = 0.4457. Thus, the model
including the top SNP is preferable to the model with only age and activity level
as covariates.

It is also of interest to compare the summary in Listing 4.2 with the results of
analyzing the reduced sample using mlreg, as these results should be equivalent.
From Table 4.6 we see that the estimated coefficient for the SNP rs10921875 is
-3.0011391, with standard deviation of 0.7477329. These values are approximately
equal to the estimates in Listing 4.2. Moreover, the χ2

1-statistic of the top SNP in
Table 4.6 is the squared t-statistic of the top SNP in Listing 4.2.

The left panel of Figure 4.12 shows a plot of the studentized residuals from
the analysis, which looks ok. The right panel presents a box plot of the SNP
rs10921875, and the effects of having 0, 1 or 2 copies of the minor allele, on
VO2max

. It is clear that this SNP has a negative effect, in the meaning that it is
not favourable for the VO2max

to have 2 copies of the minor allele.
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Figure 4.12: Plot of studentized residuals in left panel, and box plot of the SNP
rs10921875 in the right panel, showing the effects of having 0, 1 or 2 copies of the
minor allele on VO2max

.
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Comparison with fitting a linear model to the full sample

Additionally to the analysis of fitting a linear model to the reduced sample, it
is of interest to compare the analysis of the reduced sample and the full sample.
Thus, we fit a linear model to the full sample without taking into consideration
the confounding components. Confounding is the fact that a subset of the sample
contain individuals that seem to be related, i.e. not independent. Fitting a linear
model to the full sample including genetic covariates using mlreg, gives the results
in Table 4.9, similarly as for the reduced sample in Table 4.6, sorted by p-values
"P1df". The results are the same when sorting by "Pc1df".

The top 10 SNPs of Table 4.9 are not identical to the top 10 SNPs of Table 4.6.
The top SNP of the results for the reduced model is rs10921875, while this SNP
is number 3 of the results for the full model. Correspondingly, the top SNP
of the results for the full model is rs1218592, and this SNP is number 2 of the
results for the reduced model. The resulting regression coefficients, χ2

1-statistics
and corresponding p-values are slightly different for the two models.

Table 4.9: Summary for fitting a linear model to the full sample using mlreg, sorted
by p-values P1df.

Position n effB se_effB chi2.1df P1df Pc1df
rs1218592 153156109 1443 3.302019 0.8359170 15.60389 0.0000780939 0.0003402991
rs499689 227632355 1446 -2.753119 0.7077048 15.13372 0.0001001582 0.0004185045

rs10921875 187604620 1446 -2.697045 0.7014743 14.78267 0.0001206390 0.0004885243
rs12036597 39302307 1446 -4.541835 1.1885722 14.60197 0.0001327754 0.0005290619
rs155902 187843884 1446 -2.579056 0.7077675 13.27824 0.0002685050 0.0009505222

chr1:160611918 160611918 1446 2.781605 0.7788025 12.75664 0.0003547482 0.0011985854
rs516084 187822397 1446 -2.531598 0.7198733 12.36737 0.0004369021 0.0014256262

chr1:55278035 55278035 1446 -3.368577 1.0247369 10.80608 0.0010116729 0.0028702560
chr1:55278514 55278514 1446 -3.368577 1.0247369 10.80608 0.0010116729 0.0028702560
chr1:55278691 55278691 1446 -3.368577 1.0247369 10.80608 0.0010116729 0.0028702560

Figure 4.13 presents the Manhattan plot for the results from the analysis of
the full sample using mlreg. As for the Manhattan plot for the analysis of the
reduced sample in Figure 4.9, the red line illustrates the local significance level
αloc, and the green line intersect the 10th most significant SNP. From the plot it is
clear that none of the SNPs are above the red line, which means that there are no
SNPs that have a p-value lower than αloc. Thus, none of the SNPs are significant.

The genomic control inflation factor from fitting a linear model using mlreg

for the full sample, is estimated to be λ̂ = 1.205695. According to the theory of
genomic control in Section 3.3, this estimate indicates stratification. The result
also shows that the genomic control inflation factor was somewhat smaller for the
reduced sample, which was λ̂ = 1.16864, and this is an indication of that the
full sample should be analyzed with consideration of confounders. However, the
estimate of the inflation factor for the reduced sample is not acceptable.



CHAPTER 4. ANALYSIS 69

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

0
1

2
3

4
5

Map position

−
lo
g 1
0(
P
−
va
lu
e)

Figure 4.13: Manhattan plot for the single SNP analysis of the full sample using
mlreg. The red line represents the local significance level αloc, while the green line
intersects the 10th most significant SNP.

To further compare the results from the analyses using the mlreg function,
histograms of the χ2

1-statistics of the reduced and full sample are presented in
Figure 4.14, in the left panel and right panel, respectively. The histograms show
that the χ2

1-statistics of the reduced sample follow the theoretical distribution a
little better than the statistics of the full sample.

Figure 4.15 shows Q-Q plots of the observed χ2
1-statistics versus the expected

χ2
1-statistics for the reduced and full sample in the left and right panel, respectively.

The black lines show the theoretical slope without any stratification, while the red
lines represent the fitted slope for the data, λ̂. From the plots we can see that for
the reduced sample the red line falls slightly closer to the black line, than for the
full sample. However, the results from the Q-Q plots are that either the data sets
don’t fit the expected distribution perfectly, or the test statistics are correlated (or
there are many SNPs with association to the trait). The genomic control inflation
factors also indicate that the data sets don’t fit the model well. Nonetheless, based
on Figure 4.11 and Table 4.8 it is reasonable to think that the deviations from the
theoretical distribution are arising from correlated test statistics.
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Figure 4.14: Histograms of the χ2
1-statistics from the analyses of the reduced (left

panel) and full sample (right panel) using mlreg. The blue lines represent a theo-
retical χ2 distribution with 1 degree of freedom.
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Figure 4.15: The observed χ2
1-statistics plotted against the expected χ2

1-statistics,
from the analyses of the reduced (left panel) and the full sample (right panel).
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4.7 Analysis using linear mixed models
Based on the analyses in Section 4.6, there are no substantial indications of the
need to analyze the full sample by taking into consideration the confounding com-
ponents, except the high values of the genomic inflation factor. However, since we
based on estimated kinship coefficients know that the full sample consists of sev-
eral close relatives, it is necessary to analyze the full sample utilizing the GRAMMAR
method to account for genetic substructure.

The first step of the analysis is to fit a linear mixed model to the trait VO2max

and the environmental covariates age and activity level, using the estimated kinship
matrix to give Φ. This is done by first applying the polygenic function, which
gives the inverse of the covariance matrix and estimates of the residuals of the
trait. The environmental residuals are the residuals in which both the effect of the
covariates and the estimated polygenic effect are factored out. The environmental
residuals are plotted in Figure 4.16, which shows that the residuals are centered
around a horizontal line. To total time for the polygenic analysis was 8.6 minutes
on a computer of the type Intel Core i7-4770 (quad core, 3.4 GHz).
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Figure 4.16: Environmental residuals from fitting a linear mixed model to the trait
and the environmental covariates, by applying plygenic.
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The results from fitting a linear mixed model to the trait and the environmental
covariates also give the maximum likelihood estimates:

β̂0 = 182.7785472

β̂age = −1.1318525

β̂act = 2.8573193. (4.3)

As stated in Section 3.4.4, there are three different approaches of the GRAM-
MAR method. The summary of the top 10 results sorted by p-values, "P1df",
of the ordinary GRAMMAR, GRAMMAR-GC and GRAMMAR-gamma tests are
found in Table 4.10, 4.11 and 4.12, respectively. The results are the same when
sorting each table by p-values of adjusted χ2

1-statistics, "Pc1df".

Table 4.10: Summary for fitting a linear mixed model to the full sample using
ordinary GRAMMAR, sorted by p-values P1df.

Position n effB se_effB chi2.1df P1df Pc1df
rs10921875 187604620 1446 -2.004059 0.5137388 15.21725 0.0000958243 0.0000958242
rs155902 187843884 1446 -1.936447 0.5180952 13.96986 0.0001857653 0.0001857653
rs1218592 153156109 1443 2.198052 0.6124970 12.87858 0.0003323635 0.0003323635
rs516084 187822397 1446 -1.887392 0.5268318 12.83454 0.0003402784 0.0003402784
rs499689 227632355 1446 -1.845267 0.5182980 12.67533 0.0003705110 0.0003705110

rs12036597 39302307 1446 -3.075682 0.8695578 12.51083 0.0004045999 0.0004045999
rs2274165 156327667 1446 2.994822 0.9095253 10.84208 0.0009921942 0.0009921942
rs560145 232500695 1445 2.751356 0.8708699 9.98130 0.0015813784 0.0015813784
rs1935660 187509749 1446 -1.627586 0.5196101 9.81144 0.0017342933 0.0017342933

chr1:160611918 160611918 1446 1.745662 0.5690435 9.41086 0.0021570445 0.0021570445

Table 4.11: Summary for fitting a linear mixed model to the full sample using
GRAMMAR-GC, sorted by p-values P1df.

Position n effB se_effB chi2.1df P1df Pc1df
rs10921875 187604620 1446 -2.004059 0.5137388 15.21725 0.0000958243 0.0000509804
rs155902 187843884 1446 -1.936447 0.5180952 13.96986 0.0001857653 0.0001038149
rs1218592 153156109 1443 2.198052 0.6124970 12.87858 0.0003323635 0.0001939168
rs516084 187822397 1446 -1.887392 0.5268318 12.83454 0.0003402784 0.0001988803
rs499689 227632355 1446 -1.845267 0.5182980 12.67533 0.0003705110 0.0002179159

rs12036597 39302307 1446 -3.075682 0.8695578 12.51083 0.0004045999 0.0002395166
rs2274165 156327667 1446 2.994822 0.9095253 10.84208 0.0009921942 0.0006274166
rs560145 232500695 1445 2.751356 0.8708699 9.98130 0.0015813784 0.0010346520
rs1935660 187509749 1446 -1.627586 0.5196101 9.81144 0.0017342933 0.0011423613

chr1:160611918 160611918 1446 1.745662 0.5690435 9.41086 0.0021570445 0.0014435612
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Table 4.12: Summary for fitting a linear mixed model to the full sample using
GRAMMAR-gamma, sorted by p-values P1df.

Position n effB se_effB chi2.1df P1df Pc1df
rs10921875 187604620 1446 -3.009576 0.7317368 16.91612 0.0000390684 0.0000509804
rs155902 187843884 1446 -2.908040 0.7379418 15.52947 0.0000812291 0.0001038149
rs1218592 153156109 1443 3.300904 0.8724016 14.31637 0.0001545157 0.0001939168
rs516084 187822397 1446 -2.834373 0.7503856 14.26741 0.0001585872 0.0001988803
rs499689 227632355 1446 -2.771112 0.7382306 14.09042 0.0001742285 0.0002179159

rs12036597 39302307 1446 -4.618876 1.2385426 13.90755 0.0001920252 0.0002395166
rs2274165 156327667 1446 4.497445 1.2954698 12.05250 0.0005172300 0.0006274166
rs560145 232500695 1445 4.131823 1.2404115 11.09563 0.0008653154 0.0010346520
rs1935660 187509749 1446 -2.444212 0.7400995 10.90681 0.0009581163 0.0011423613

chr1:160611918 160611918 1446 2.621530 0.8105093 10.46150 0.0012188852 0.0014435612

From the tables it is clear that all the methods give the same SNPs as the
most significant ones. However, the GRAMMAR-gamma method estimates larger
regression coefficients for the SNP covariates than the other methods, and thus
also different χ2

1-statistics and p-values. We will continue using the GRAMMAR-
gamma method, because this method gives the most correct results, see Sec-
tion 3.4.4.

Figure 4.17 displays a Manhattan plot for the single SNP analysis of the full
sample using GRAMMAR-gamma. The red line illustrates the local significance level
αloc, while the green line intersects the 10th most significant SNP. The plot shows
that there are no SNPs above the red line, thus no SNPs have a p-value lower than
αloc.

The estimated genomic control inflation factor of fitting a linear mixed model
to the full model is λ̂ = 0.9919442. The low value of λ indicates that the model
correctly accounts for population structure and cryptic relatedness.

A histogram of the χ2
1-statistics of the analysis is plotted in the left panel of

Figure 4.18, and it shows that the statistics follow the theoretical distribution,
represented by the blue curve, very well.

Moreover, the right panel of Figure 4.18 is a Q-Q plot of the observed χ2
1-

statistics versus the expected χ2
1-statistics. The red line represents the fitted slope

of the data, while the black line shows the theoretical slope λ̂. It is clear from the
plot that the data follows the theoretical slope quite well, which is an indication
that the linear mixed model fits the full sample.
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Figure 4.17: Manhattan plot for the single SNP analysis of the full sample using
GRAMMAR-gamma. The red line represents the local significance level αloc, while the
green line intersects the 10th most significant SNP.
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Figure 4.18: The left panel is a histogram of the χ2
1-statistics from the analysis

of the full sample using GRAMMAR-gamma. The blue line represents a theoretical
χ2-distribution with 1 degree of freedom. The right panel shows the observed χ2

1-
statistics from the analysis of the full sample using Grammar-gamma plotted against
the expected χ2

1-statistics.
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4.8 Comparison of the analyses of the reduced and
full sample

Analyzing samples of unrelated individuals using a linear model, as done for the
reduced sample in this thesis, is the most commonly and easiest approach to
analyze GWA data. However, in order to utilize the data from all the individuals
in the study, and probably attain higher statistical power, one can analyze the
full sample using a linear mixed model approach. This section will consider one
of the main purposes of this thesis, which is to compare the results from the two
methods to see if they agree.

Table 4.13: Results from mlreg analysis of the reduced and the full sample, and
GRAMMAR-gamma analysis of the full sample. The results show the top 10 SNPs to
be associated with VO2max

sorted by p-values ("P1df"), and the estimated regression
coefficients of each SNP ("effB").

mlreg reduced sample mlreg full sample
SNP effB P1df SNP effB P1df
rs10921875 -3.001139 0.0000597867 rs1218592 3.302019 0.0000780939
rs1218592 3.158232 0.0003941767 rs499689 -2.753119 0.0001001582
rs155902 -2.567510 0.0006368039 rs10921875 -2.697045 0.0001206390

chr1:74819417 -4.015202 0.0008464761 rs12036597 -4.541835 0.0001327754
chr1:74823928 -4.015720 0.0008552151 rs155902 -2.579056 0.0002685050
chr1:74812647 -3.994218 0.0008853159 chr1:160611918 2.781605 0.0003547482
chr1:74813852 -3.994218 0.0008853159 rs516084 -2.531598 0.0004369021
chr1:74832901 -3.994218 0.0008853159 chr1:55278035 -3.368577 0.0010116729
chr1:74840649 -3.994218 0.0008853159 chr1:55278514 -3.368577 0.0010116729
chr1:74841681 -3.994218 0.0008853159 chr1:55278691 -3.368577 0.0010116729

GRAMMAR-gamma full sample
SNP effB P1df
rs10921875 -3.009576 0.0000390684
rs155902 -2.908040 0.0000812291
rs1218592 3.300904 0.0001545157
rs516084 -2.834373 0.0001585872
rs499689 -2.771112 0.0001742285

rs12036597 -4.618876 0.0001920252
rs2274165 4.497445 0.0005172300
rs560145 4.131823 0.0008653154
rs1935660 -2.444212 0.0009581163

chr1:160611918 2.621530 0.0012188852
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Table 4.13 shows the results from the mlreg analyses of the reduced and the
full sample, and the GRAMMAR-gamma analysis of the full sample. It is clear that the
analysis of the reduced sample using mlreg gives approximately equal top SNPs
as the analysis of the full sample using GRAMMAR-gamma, only that the SNPs from
Table 4.8 that are in high linkage disequilibrium are not present in the table of the
top 10 most significant SNPs for the full sample using GRAMMAR-gamma. However,
these SNPs are also identical for the full sample.

The SNP that gives the most significant test result in both methods is rs109218-
75, with an estimated regression coefficient of -3.001139 for the reduced sample
using mlreg and -3.009576 for the full sample using GRAMMAR-gamma. Correspond-
ingly, this SNP is listed in the third row of Table 4.13 for the analysis of the full
sample using mlreg, with an estimated regression coefficient of -2.697045.

The estimates of the regression coefficient for each SNP, β̂g(k) , are approximately
equal for the different methods. When comparing the estimates of Table 4.13 to the
estimates in Table 4.10 and 4.11, we see that the estimates from original GRAMMAR
and GRAMMAR-gc for the full sample are different from the estimates from mlreg for
reduced and full sample and GRAMMAR-gamma of full sample.

The genomic inflation factor was estimated for all the different models, using
the median approach. The analysis of the reduced sample using a linear model re-
sulted in an estimated inflation factor λ̂ = 1.16864, while the corresponding factor
for the analysis of the full sample using a linear model was λ̂ = 1.205695. These
values indicates presence of stratification, as stated in Section 3.3. The factor is
considerably reduced when fitting a linear mixed model to the full sample, where
λ̂ = 0.9919442. This value is below 1.05, and thus considered benign according
to Price et al. (2010). This shows that the linear mixed model approach is capable
of correcting for population structure and cryptic relatedness.

As presented in Section 4.6.2 the mlreg-function does not provide the user
with estimates of the regression coefficients β̂0, β̂age and β̂act, and the same is
the case for all the GRAMMAR approaches. In order to compare the effect of each
SNP to the environmental covariates, it is favourable to have these estimates.
For the case of analyzing the reduced sample using mlreg, it is possible to fit a
linear model to the reduced sample using lm including a SNP of choice, as seen
in Section 4.6.2, to get the estimates of the environmental regression coefficients.
However, performing the same step for the full sample using a linear mixed model
is complex and time consuming because of the large number of individuals and
SNPs, and the corresponding size of the covariance matrix. The polygenic step
prior to GRAMMAR gives the estimates β̂0, β̂age and β̂act as seen in Equation (4.3),
but these are the estimates from fitting a linear mixed model without a genetic
covariate. Comparing these results to the estimates from fitting a linear model
to the reduced sample without including any genetic covariates in Listing 4.1 and
to the estimates from fitting a linear model to the reduced sample including SNP
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rs10921875 in Listing 4.2, we see that β̂age and β̂act are approximately equal for
all analyses. The estimates of the intercept, β̂0, are similar for the polygenic

analysis and the lm analysis without a genetic covariate, but when including a
genetic covariate the estimate of the intercept increases.
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Figure 4.19: Mean-difference plot of β̂g(k) estimated from mlreg analysis of the
reduced sample and GRAMMAR-gamma analysis of the full sample in the left panel, and
mean-difference plot of standard error of β̂g(k) in the right panel, for k = 1, . . . , 9069.

Figure 4.19 shows mean-difference plots for the results of the mlreg and GRAMMAR-
gamma analyses. The left panel shows a plot of β̂g(k),grammarγ

− β̂g(k),mlreg
plotted

against 1
2
(β̂g(k),mlreg

+ β̂g(k),grammarγ
) for all SNPs k = 1, . . . , 9069, and it shows that

the points are centered around zero. The right panel of the figure shows the mean-
difference plot of the estimated standard errors from the two methods for all SNPs.
It illustrates that the standard error of β̂g(k),mlreg

is larger than the standard error
of β̂g(k),grammarγ

for almost all SNPs.

4.9 Genetic interpretation of the results
The main goal of this thesis is to evaluate the different statistical methods for
GWA analysis, but the results from the analysis are as well interesting. The 3
most significant SNPs from Table 4.13 are rs10921875, rs155902 and rs1218592.
Even though none of the SNPs have a statistically significant association to the
VO2max

trait based on data on chromosome 1, it is of relevance to investigate the
genetic interpretation of the SNPs.
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Global MAFs calculated from the 1000 Genomes Project2 of the SNPs rs109218-
75, rs155902 and rs1218592 are 0.3920, 0.4916, and 0.0960, respectively3. Based
on data from the HUNT study, the MAFs of the SNPs rs10921875, rs155902 and
rs1218592 are 0.4208362, 0.4064428 and 0.2445055, respectively. The reason for
the difference in MAF of rs1218592 for the 1000 Genomes project and for the
HUNT study, may be that the HUNT study only contains data from men from
a single population, while the 1000 Genomes project had both male and female
participants from different populations all over the world.

The SNPs rs10921875 and rs155902 are located on the same gene, a gene with
unknown function for the time being. When finding a SNP associated with a
specific trait, it is possible that the SNP can affect the gene it is located on, and
in addition genes nearby. It is therefore also necessary to check the surroundings
of the SNPs.

The closest gene to the SNP rs10921875 with known function is BRINP3.
Polymorphisms that increase expression of this gene have been shown to increase
vascular inflammation, and an association of this gene with myocardial infarction
has been demonstrated4. This is relevant for the VO2max

phenotype, since VO2max

is an important marker of risk for cardiovascular diseases.
Moreover, the SNP rs1218592 is also located in a gene with unknown func-

tion. A gene nearby is KCNN3, that is among other things associated with atrial
fibrillation5. This is relevant for VO2max

, as it is shown that athletes have an in-
creased occurrence of atrial fibrillation. The gene is also generally associated to
cardiovascular diseases, as the gene BRINP3.

It is standard of GWA studies to perform the first analysis in a discovery
cohort, which is then followed by an independent validation cohort including only
the most significant SNPs. In a GWA study of VO2max

by Bye et al. (2016) similar
to the analysis of the reduced sample, the SNP rs1218592 was a candidate SNP
from the exploration cohort that failed to be replicated in the validation cohort.

21000genomes.org (2016). 1000 Genomes | A Deep Catalog of Human Genetic Variation.
Available at: http://www.1000genomes.org [Accessed 13 Jun. 2016].

3National Center for Biotechnology Information, U.S. National Library of Medicine (2016).
Available at: https://www.ncbi.nlm.nih.gov/snp [Accessed 13 Jun. 2016].

4National Center for Biotechnology Information, U.S. National Library of Medicine
(2016). BRINP3 BMP/retinoic acid inducible neural specific 3. Available at:
https://www.ncbi.nlm.nih.gov/gene/339479 [Accessed 13 Jun. 2016].

5National Center for Biotechnology Information, U.S. National Library of Medicine
(2016). KCNN3 potassium calcium-activated channel subfamily N member 3. Available at:
https://www.ncbi.nlm.nih.gov/gene/3782 [Accessed 13 Jun. 2016].
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Discussion and conclusions

5.1 Statistical issues

When performing a GWA analysis there are several confounding factors that can
cause correlations between the study participants. In this Master’s thesis we have
studied statistical methods of analyzing GWA data, and performed a GWA analy-
sis for the SNPs on chromosome 1 of the HUNT VO2max

study by applying different
statistical models.

The comparison of the models in Section 4.8 showed that the results from us-
ing the GenABEL function mlreg to analyze the reduced sample are similar to the
results from the GRAMMAR-gamma analysis of the full sample. We would expect
the results to be more equal, as the reduced sample are assumed to the a sample
of independent individuals. The reduced sample consists of individuals with a
pairwise estimated kinship coefficient below 0.1, and when analyzing the sample
without a genetic covariate it seemed like the model fitted the data very well,
based on examining residual plots. Nonetheless, the estimated genomic control
inflation factor from the analysis including a genetic covariate was λ̂ = 1.16864,
which indicates the presence of population and family stratification in the data.
The genomic control inflation factor is based on results from performing hypoth-
esis tests, so examining the residuals versus the inflation factor is two different
approaches. While the residuals from the analysis show a good model fit to the
reduced sample, the genomic control inflation factor indicates that maybe the re-
duced sample is not reduced enough, and we should include only individuals with
an estimated kinship coefficient below 0.05 in the reduced sample.

Fitting a linear regression model to the full sample including each genetic co-
variate, one at a time, did not give very dissimilar results to the reduced sample,
rather than that the estimated genomic control inflation factor for the full sam-
ple, λ̂ = 1.205695, was higher than for the reduced sample. However, since the
estimated kinship matrix for the full sample reveals close relatives in the sample,

79
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the preferred method for analyzing GWA data is fitting a linear mixed model to
the full sample, with a scaled estimated kinship matrix as covariance matrix. This
ensures that the model captures the correlation and corresponding population and
family structure of the data. The estimated genomic control inflation factor from
the analysis of the full sample using GRAMMAR-gamma was λ̂ = 0.9919442, which is
considerably lower than for the other methods.

Genomic control is used to detect confounding components in the data, but we
don’t apply the method of deflation of test statistics, because it is more important
to take the relatedness between the participants into account than to adjust the test
statistics by a factor. As presented in Section 3.3, Aulchenko (2014) suggested to
use 95% of the least significant SNPs to estimated the inflation factor. If we apply
this restriction, the estimated inflation factors for mlreg analyses of the reduced
sample and full sample, and GRAMMAR-gamma for the full sample, are λ̂ = 1.03168,
λ̂ = 1.077178 and λ̂ = 0.8903894, respectively. The estimated inflation factors
from the mlreg analyses are much closer to 1 when using this method, while the
estimate from the GRAMMAR-gamma analysis is very low. However, this restricted
method to estimate the genomic control inflation factor is not applied in this
analysis, as none of the SNPs show significant associations to the phenotype.

The function mlreg use χ2
1-statistics to compute p-values for each β̂g(k) . How-

ever, as seen in Section 4.6.2, the test statistics of testing each SNP’s association
in the linear model to the trait are actually F1,n−p−1-distributed, and only asymp-
totically χ2

1-distributed.
Moreover, the amount of data in GWA studies is in general enormous, and

even though we have decided on a statistical model to analyze the data, we have
to apply numerical optimization methods and complex programming tricks to be
able to perform the analysis. Using generic functions to perform linear mixed
model regression, like lme4 and nlme, is impossible for this enormous amount of
data, because of the many tests that have to be performed and the inversion of the
covariance matrix. There is also a problem of storage, as there is not enough space
to save everything, so only the most important and necessary information is saved.
As presented in Section 4.8, the functions in the GenABEL-package give priority to
the genetic components of the model, and do not give access to the estimates of
the environmental components. Another difficulty, and time consuming part of the
analysis, with using a package like the GenABEL-package, is to process the data into
a format that is manageable for the functions of the package, and to understand
how to utilize the different functions.

In Section 3.5 we presented a comparison of principal components regression
and linear mixed models. The method of including principal components in a
linear regression model is not studied in this thesis, because we think applying a
linear mixed model is the best method to analyze GWA data with consideration
of genetic confounding.
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5.2 Discussion of the genetic results
The results from Chapter 4 show that there are no SNPs with statistically sig-
nificant associations to the phenotype, when using the local significance level
αloc = 7.694294 · 10−6 to control the FWER at level 0.05. In spite of this, as pre-
sented in Section 4.9, the most significant SNPs from all the methods, rs10921875,
rs155902 and rs1218592, are positioned on genes close to other genes that are
highly relevant to the VO2max

trait. The fact that none of the SNPs show statis-
tically significant association to the phenotype is believed to be partially because
of the small sample size.

We applied the same local significance level for both the analysis using a linear
model and the analysis using a linear mixed model, because we assumed that the
distribution of the test statistics is similar for the reduced and the full sample.

It is unknown how many individuals that should be included in a study to ob-
tain statistically significant associations between SNPs and the VO2max

phenotype,
and if it is numerically possible to analyze samples of ten thousands of individuals
using linear mixed models. Maybe the best approach to analyze samples of this
size is to use linear regression models of a strictly reduced sample.

The results presented in Table 4.8 in Section 4.6.1 showed that there are some
highly correlated SNPs. If we should have studied the HUNT VO2max

data set in
more detail, including SNPs from all chromosomes, we would have removed the
highly correlated SNPs.
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Appendix A

R-code for use of the GenABEL

package

In order to use the functions in the GenABEL-package we had to convert PLINK
data into GenABEL-package format. First, we converted the PLINK .ped files into
PLINK .tped files, and PLINK .fam files into PLINK .tfam files. Then we used the
GenABEL function convert.snp.tped to convert genotypic data from .tped format
to GenABEL-package binary .raw format:

convert.snp.tped(paste(filelocation ,"filname.tped",sep=""),
paste(filelocation ,"filname.tfam",sep=""),"genotype_data.
raw")

genotype_data=paste(filelocation ,"genotype_data.raw", sep="")

The covariates are in .txt format, and we want to have this in .dat format:

covariates=read.table(paste(filelocation ,"filname.txt",
sep=""),sep="",header=TRUE ,dec=",")

write.table(covariates ,"phenotype_data.dat",col.names=TRUE ,
row.names=FALSE)

phenotype_data=paste(filelocation ,"phenotype_data.dat",sep=""
)

The data can then be loaded into the GenABEL-package. The function
load.gwaa.data loads data (genotypes and phenotypes) from files to a gwaa.data
object:

data=load.gwaa.data(phenotype_data ,genotype_data ,makemap=F)
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The gwaa.data class contains objects holding all GWA analysis data - phenotypes
and genotypes. The class uses slots to give genotype and phenotype data, so in
order to get information about the genotype data we use: data@gtdata, and
correspondingly for the phenotype data: data@phdata. data@phdata is a data
frame containing information about the phenotype, and for the HUNT data set it
gives information about family ID, ID names of the individuals, age, sex, activity
level and VO2max

.

data@phdata$age
data@phdata$activity_level
data@phdata$vo2max

The object data@gtdata is an object of the snp.data class. This class gives
information about number and ID names of SNPs and individuals, chromosome
and strand data of the SNPs.

data@gtdata@nids
data@gtdata@nsnps
table(chromosome(data))

Quality check of the data is performed by using the function check.marker:

qc=check.marker(data , call =0.90, perid.call =0.90 , p.level=-1,
fdrate = 0.2, maf =0.05)

summary(qc)
data_qc=data[qc$idok , qc$snpok]
nids(data_qc)
nsnps(data_qc)
summary(data_qc@phdata)
descriptives.marker(data_qc)
descriptives.trait(data_qc)

The kinship matrix is estimated using the function ibs;

kinshipmatrix=ibs(data_qc[,autosomal(data_qc)], w="freq")

R-code for fitting a linear model to the reduced sample:
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age=data_reduced@phdata$age
act=data_reduced@phdata$act
vo2max=data_reduced@phdata$vo2max

lm_nogen=lm(vo2max~age+act)
summary(lm_nogen)

R-code for extracting chromosome 1 data for the reduced sample, and fitting a
linear model including genetic covariates to the data:

chr1data_reduced=data_reduced@gtdata@snpnames[data_
keep@gtdata@chromosome =="1"]

data_reduced_chr1 <- data_reduced[,chr1data_reduced]

age=data_reduced_chr1@phdata$age
act=data_reduced_chr1@phdata$act
vo2max=data_reduced_chr1@phdata$vo2max

lm_reduced_allsnps=mlreg(vo2max~age+act , data_reduced_chr1 ,
trait="gaussian")

summary(lm_reduced_allsnps)
estlambda(lm_reduced_allsnps[,"P1df"], plot=TRUE , method="

median")
plot(lm_reduced_allsnps)

The data for the top SNP is extracted, and a linear model is fitted to the data:

top_SNP=as.double.snp.data(data_reduced_chr1@gtdata[,"
rs10921875"])

lm_top_SNP=lm(vo2max~age+act+top_SNP)
summary(lm_top_SNP)

R-code for extracting chromosome 1 data for the full sample, and fitting a linear
model including genetic covariates to the data:

chr1data_full=data_qc@gtdata@snpnames[data_
qc@gtdata@chromosome =="1"]

data_full_chr1=data_qc[,chr1data_full]

age=data_full_chr1@phdata$age
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act=data_full_chr1@phdata$act
vo2max=data_full_chr1@phdata$vo2max

lm_full_allsnps=mlreg(vo2max~age+act , data_full_chr1 , trait="
gaussian")

summary(lm_full_allsnps)
estlambda(lm_full_allsnps[,"P1df"], plot=TRUE , method="median

")
plot(lm_full_allsnps)

R-code for fitting a linear mixed model including genetic covariates to the chro-
mosome 1 data of the full sample, using the different GRAMMAR methods:

poly <- polygenic(formula=vo2max~age+act , kinship.matrix=data
_kinship , data=data_full_chr1 , llfun="polylik")

grammar_gc=grammar(poly , data_full_chr1 , method="gc")
summary(grammar_gc)
estlambda(grammar_gc[,"P1df"], plot=TRUE , method="median")

grammar_raw=grammar(poly , data_full_chr1 , method="raw")
summary(grammar_raw)
estlambda(grammar_raw[,"P1df"], plot=TRUE , method="median")

grammar_gamma=grammar(poly , data_full_chr1 , method="gamma")
summary(grammar_gamma)
estlambda(grammar_gamma[,"P1df"], plot=TRUE , method="median")

plot(grammar_gamma)

R-code for calculating the MAF of a SNP:

find_maf=function(snpname){
genotypes=as.double.snp.data(data_qc@gtdata[,snpname ])
maf=sum(na.omit(genotypes))/(2*length(na.omit(genotypes)))

}
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R-output

B.1 Quality control

> qc = check.marker(data , call =0.90, perid.call = 0.90, p.
level = -1, fdrate = 0.2, maf = 0.05)

Excluding people/markers with extremely low call rate ...
196725 markers and 1488 people in total
13 people excluded because of call rate < 0.1
692 markers excluded because of call rate < 0.1
Passed: 196033 markers and 1475 people

RUN 1
196033 markers and 1475 people in total
87954 (44.86694%) markers excluded as having low (<5%) minor

allele frequency
4297 (2.191978%) markers excluded because of low (<90%) call

rate
5868 (2.993374%) markers excluded because they are out of HWE

(FDR <0.2)
0 (0%) people excluded because of low (<90%) call rate
Mean autosomal HET is 0.3364606 (s.e. 0.007519463)
0 people excluded because too high autosomal heterozygosity (

FDR <1%)
Mean IBS is 0.7280533 (s.e. 0.008871439) , as based on 2000

autosomal markers
16 (1.084746%) people excluded because of too high IBS

( >=0.95)
In total , 102649 (52.36312%) markers passed all criteria
In total , 1459 (98.91525%) people passed all criteria
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RUN 2
102649 markers and 1459 people in total
172 (0.1675613%) markers excluded as having low (<5%) minor

allele frequency
0 (0%) markers excluded because of low (<90%) call rate
0 (0%) markers excluded because they are out of HWE (FDR

<0.2)
0 (0%) people excluded because of low (<90%) call rate
Mean autosomal HET is 0.3367832 (s.e. 0.00752099)
0 people excluded because too high autosomal heterozygosity (

FDR <1%)
Mean IBS is 0.7302109 (s.e. 0.008353749) , as based on 2000

autosomal markers
0 (0%) people excluded because of too high IBS ( >=0.95)
In total , 102477 (99.83244%) markers passed all criteria
In total , 1459 (100%) people passed all criteria

RUN 3
102477 markers and 1459 people in total
0 (0%) markers excluded as having low (<5%) minor allele

frequency
0 (0%) markers excluded because of low (<90%) call rate
0 (0%) markers excluded because they are out of HWE (FDR

<0.2)
0 (0%) people excluded because of low (<90%) call rate
Mean autosomal HET is 0.3367832 (s.e. 0.00752099)
0 people excluded because too high autosomal heterozygosity (

FDR <1%)
Mean IBS is 0.7278335 (s.e. 0.008325251) , as based on 2000

autosomal markers
0 (0%) people excluded because of too high IBS ( >=0.95)
In total , 102477 (100%) markers passed all criteria
In total , 1459 (100%) people passed all criteria

B.2 Descriptive summary tables

For the markers that passed the quality control

> data_qc = data[qc$idok , qc$snpok]
> descriptives.marker(data_qc)
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$‘Minor allele frequency distribution ‘
X <=0.01 0.01<X <=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 0 0 17345 26409 58723
Prop 0 0 0.169 0.258 0.573

$‘Cumulative distr. of number of SNPs out of HWE , at
different alpha ‘

X<=1e-04 X <=0.001 X <=0.01 X <=0.05 all X
No 0 0 517 4630 102477
Prop 0 0 0.005 0.045 1

$‘Distribution of proportion of successful genotypes (per
person)‘

X<=0.9 0.9<X <=0.95 0.95<X <=0.98 0.98<X <=0.99 X>0.99
No 0 0 0 0 1459
Prop 0 0 0 0 1

$‘Distribution of proportion of successful genotypes (per SNP
)‘

X<=0.9 0.9<X <=0.95 0.95<X <=0.98 0.98<X <=0.99 X>0.99
No 0 262 778 1070 100367
Prop 0 0.003 0.008 0.01 0.979

$‘Mean heterozygosity for a SNP ‘
[1] 0.3373553

$‘Standard deviation of the mean heterozygosity for a SNP ‘
[1] 0.1288184

$‘Mean heterozygosity for a person ‘
[1] 0.3367832

$‘Standard deviation of mean heterozygosity for a person ‘
[1] 0.00752099

For the markers on chromosome 1 that passed the quality
control

> descriptives.marker(data_all_chr1)
$‘Minor allele frequency distribution ‘

X <=0.01 0.01<X <=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2
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No 0 0 1479.000 2320.000 5270.000
Prop 0 0 0.163 0.256 0.581

$‘Cumulative distr. of number of SNPs out of HWE , at
different alpha ‘

X<=1e-04 X <=0.001 X <=0.01 X <=0.05 all X
No 0 0 44.000 344.000 9069
Prop 0 0 0.005 0.038 1

$‘Distribution of proportion of successful genotypes (per
person)‘

X<=0.9 0.9<X <=0.95 0.95<X <=0.98 0.98<X <=0.99 X>0.99
No 0 0 0 0 1459
Prop 0 0 0 0 1

$‘Distribution of proportion of successful genotypes (per SNP
)‘

X<=0.9 0.9<X <=0.95 0.95<X <=0.98 0.98<X <=0.99 X>0.99
No 0 26.000 95.00 119.000 8829.000
Prop 0 0.003 0.01 0.013 0.974

$‘Mean heterozygosity for a SNP ‘
[1] 0.3402256

$‘Standard deviation of the mean heterozygosity for a SNP ‘
[1] 0.1281584

$‘Mean heterozygosity for a person ‘
[1] 0.3399593

$‘Standard deviation of mean heterozygosity for a person ‘
[1] 0.02427776

B.3 Results from t-tests

> t.test(data_keep@phdata$act , data_remove@phdata$act , var.
equal = TRUE)

Two Sample t-test

data: data_keep@phdata$act and data_remove@phdata$act
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t = 0.61713 , df = 1445, p-value = 0.5372
alternative hypothesis: true difference in means is not equal

to 0
95 percent confidence interval:
-0.3137388 0.6017587

sample estimates:
mean of x mean of y
3.427453 3.283443

> t.test(data_keep@phdata$vo2max , data_remove@phdata$vo2max ,
var.equal = TRUE)

Two Sample t-test

data: data_keep@phdata$vo2max and data_remove@phdata$vo2max
t = -0.14428, df = 1456, p-value = 0.8853
alternative hypothesis: true difference in means is not equal

to 0
95 percent confidence interval:
-4.278374 3.692135

sample estimates:
mean of x mean of y
136.3968 136.6899

> t.test(data_keep@phdata$age , data_remove@phdata$age , var.
equal = TRUE)

Two Sample t-test

data: data_keep@phdata$age and data_remove@phdata$age
t = 0.034046 , df = 1457, p-value = 0.9728
alternative hypothesis: true difference in means is not equal

to 0
95 percent confidence interval:
-1.934152 2.002478

sample estimates:
mean of x mean of y
49.48768 49.45351


