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Abstract

Semi-competing risks are a variation of competing risks where a terminal event
censors a non-terminal event, but not vice versa. This thesis describes and stud-
ies modelling of semi-competing risks using the illness-death model with shared
frailty suggested by Xu et al. (2010)[Biometrics, 66(3):716–725]. In their model
the dependency between the terminal and non-terminal failure time is incorpo-
rated through the use of a shared frailty, which gives a model with conditional
transition rates possessing the Markov property. We introduce the use of para-
metric models for the conditional transition rates and an expansion of the model
where an additional terminal event is included.

Maximum likelihood estimation is performed to fit the model to data sets. First,
a simulation study is carried out. Then the model is applied to two real data sets.
The first data set contains observations of leukaemia patients after bone marrow
transplantation, where the non-terminal event is relapse of the disease and the
terminal event is death. For this data set we compare the use of a power law func-
tion and a log-linear law function as model for the conditional transition rates and
find that relapse after bone marrow transplant for leukaemia patients is associated
with increased probability of death. The second data set contains observations
of patients admitted to hospital intensive care unit, where the non-terminal event
is hospital-acquired pneumonia and there are two terminal events, alive discharge
and death on the unit. For this data set we include an additional terminal state
and covariates in the model, and we find that hospital-acquired pneumonia is as-
sociated with decreased rate of discharge from intensive care unit stay, while the
probability of death increases as a consequence of prolonged stay. The method
makes good estimates for the model parameters and by incorporating frailties, it
is simple to construct a likelihood function, and to expand the model by adding
more states. The interpretation of the marginal and conditional transition rates
is different, which must be taken into account when interpreting the results. The
frailty of each subject is usually not accessible. Nevertheless, both the marginal
and conditional transition rates are of value and both should be considered in
modelling of semi-competing risk.
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Sammendrag

Semi-konkurrerende risikoer er en variant av konkurrerende risikoer der en ter-
minerende hendelse kan sensurere en ikke-terminerende hendelse, men ikke omvendt.
Denne avhandlingen beskriver og studerer modellering av semi-konkurrerende risikoer
ved bruk av en “illness-death” modell med s̊akalt “shared frailty” foresl̊att av Xu
et al. (2010)[Biometrics, 66 (3): 716-725]. I denne modellen blir avhengigheten mel-
lom den terminerende hendelsen og den ikke-terminerende hendelsen innlemmet
ved å bruke en “shared frailty”. Dette gir en modell med betingede hasardrater med
Markov-egenskap. Vi introduserer bruk av parametriske modeller for de betingede
hasardratene og en utvidelse av modellen der en ekstra terminerende hendelse er
inkludert.

Maksimal sannsynlighetsestimering blir brukt for å tilpasse modellen til ulike
datasett. Først blir et simuleringsstudie gjennomført. Deretter blir modellen
anvendt p̊a to ekte datasett. Det første datasettet inneholder observasjoner fra
leukemipasienter etter beinmargstransplantasjon, der den ikke-terminerende hen-
delsen er tilbakefall av sykdommen og den terminerende hendelsen er død. For
dette datasettet sammenligner vi bruk av “power law” og “log-linear law” som mod-
ell for de betingede hasardratene. Vi finner at tilbakefall etter beinmargstransplan-
tasjon for leukemipasienter er assosiert med økt sannsynlighet for død. Det andre
datasettet inneholder observasjoner for pasienter innlagt p̊a en intensivavdeling,
hvor den ikke-terminerende hendelsen er lungebetennelse og det er to terminerende
hendelser, utskriving fra intensivavdelingen og død. For dette datasettet inklud-
erer vi en ekstra terminerende hendelse og kovariater i modellen, og vi finner at
lungebetennelse er assosiert med redusert rate for utskriving fra intensivavdelin-
gen, mens sannsynligheten for død øker som følge av forlenget sykehusopphold.
Metoden gir gode estimater for modellparametrene og ved å inkludere en “frailty”
er det enkelt å konstruere sannsynlighetsmaksimeringsfunksjonen og å utvide mod-
ellen. Tolkningen av de marginale og betingede ratene er forskjellig og dette må tas
i betraktning n̊ar man skal tolke resultater. Hvert enkelt subjekts “frailty” er van-
ligvis ikke er tilgjengelig. Likevel, er b̊ade de marginale og betingede hasardratene
av verdi og begge bør vurderes i modellering av semi-konkurrerende risikoer
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Chapter 1

Introduction

In survival analysis the goal is usually to model the time until occurrence of an
event of interest, often called a failure. In some situations there are more than
one failure that can occur such that the event of interest is prevented from oc-
curring. This leads to a form of missing data problem which makes modelling
more complicated. The situation is called a competing risks situation, and today
the theory of competing risks has applications in many fields including reliability
and maintenance studies, medical research, demography, actuarial science, and in
econometrics. An example of competing risks is in cancer where death due to
cancer may be the event of interest, and death due to other causes such as surgical
mortality or old age are competing risks.

In competing risks each observation consists of time to failure and the cause
of the failure. The semi-competing risks situation is a generalisation of competing
risks and usually one considers only two events, one terminal and one non-terminal.
In this situation the terminal event censors the non-terminal event, while the
occurrence of the non-terminal event does not prevent the terminal event from
occurring. Because of this, each observation consists of either one or two failure
times and which events that occurred. For example, in medical research the non-
terminal event may be relapse of a disease and the terminal event may be death.
Some of the essential questions in semi-competing risks are how is the effect of the
non-terminal event on the terminal event, how to predict time to failure and how
to estimate failure rates for specific causes.

Semi-competing risks have not yet become as common in literature as compet-
ing risks. It was first introduced by Fine et al. (2001) and was modelled by a copula
model where it is assumed that the joint distribution of the terminal failure time
and the non-terminal failure time is given by a copula, for example the gamma
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2 CHAPTER 1. INTRODUCTION

frailty copula. This model assumes latent failure times, also known as analysis
by net quantities (Jiang et al., 2005), a representation in which only the failure
time of the occurring event is identified, and the other potential failure times are
not. Xu et al. (2010) argue that models involving latent failure times should be
avoided. This is because they make untestable assumptions, the interpretation of
the marginal distribution of the non-terminal event is hypothetical, and covariance
analysis is complicated.

Xu et al. (2010) therefore suggest a model for semi-competing risks which
avoids the use of latent failure times, and uses observable quantities instead, also
known as analysis by crude quantities (Jiang et al., 2005). The model they suggest
is an illness-death model with shared frailty. The illness-death model is a multi-
state model, a model that allows subjects to move among a number of states
over time. The functions of interest in a multi-state model are the transition
rates which provide the instantaneous probabilities of transition from one state to
another (Touraine et al., 2013). The illness-death model allows subjects to move
among the so-called ‘health’, ‘illness’ and ‘death’ states, or state 0, 1 and 2 which
we will use as state names. Subjects are initially healthy and then may become
diseased and die, or die disease-free, which is the situation we want to model in
semi-competing risks.

Furthermore, as the name of the model suggests, frailties are included. The
frailty is an unobservable multiplicative effect on a hazard function. This means
that subjects with a frailty higher than one will have a greater hazard of failure,
whereas subjects with frailty lower than one will have a decreased hazard of failure
(Gutierrez et al., 2002). In the shared-frailty illness-death model the frailty of
each subject is shared between the subject’s transition rates creating a conditional
model for the transition rates.

In this thesis we will investigate the illness-death model with shared frailty, by
modelling semi-competing risks data. While Xu et al. (2010) use non-parametric
models for the conditional transition rates, we introduce parametric models for
the conditional transition rates and we also introduce an expansion of the model
which allows for two competing terminal events. The model is tested on simulated
data sets and two real data sets by using maximum likelihood estimation in R
(R Development Core Team, 2008). The first data set contains observations of
patients after a bone marrow transplantation as treatment for acute leukaemia
where relapse of the cancer is the non-terminal event and death is the terminal
event. The second data set contains information about patients admitted to an
intensive care unit in hospitals where the non-terminal event is hospital-acquired
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pneumonia and there are two terminal events, death and discharge. With the last
data set we have also included covariates in the models which is described by Xu
et al. (2010).

The remainder of the thesis is organised as follows. In Section 2 we describe
theory of competing risks and semi-competing risks. The illness-death model with
shared frailty of Xu et al. (2010) is presented in Section 3, along with the paramet-
ric models and our expansion of the model. In Section 4 we present a simulation
study with the illness-death model with shared frailty and the expanded model.
The data analysis is presented in Section 5, and in Section 6 we make some con-
cluding remarks about the model and some recommendations for further work. In
Appendix A some more theory is described, including some basic theory of frailty
models. Some derivations are included in Appendix B and in Appendix C the
R-code for simulating semi-competing risks data and the log likelihood functions
for most of the models are given.
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Chapter 2

Theory

This chapter contains theory on standard survival analysis, competing risks and
semi-competing risks. Section 2.1 and 2.2 are edited versions from Selle (2015) and
contains theory from Lindqvist (2006) and Putter et al. (2007). In Appendix A
we present an introduction to the use of frailties should it not be known to the
reader, and we also present the likelihood ratio test as this is a test that will be
used frequently throughout the thesis to compare model fits.

2.1 Survival analysis
In survival analysis one is interested in modelling the time until a specific event.
This time is usually called the survival time, failure time or lifetime and is a random
variable represented by T . The failure time will here be thought of as continuous
with probability density function f(t) and cumulative distribution function F (t) =
P (T ≤ t), where f(t) = d

dt
F (t). The corresponding survival function is defined as

S(t) = P (T > t). The hazard function at time t, defined as

z(t) = lim
∆t→0

P (t < T ≤ t+ ∆t T > t)
∆t = f(t)

S(t) ,

is the rate of failure at time t given that the failure time is larger than t. The
cumulative hazard rate becomes Z(t) =

∫ t
0z(u) du.

In survival analysis, some failure times can be censored, meaning that some of
the failure times are only known to have occurred within a certain time interval.
The failure times can be right-, left- or interval-censored. In administrative censor-
ing, subjects who have not experienced failure beyond the closing of a study will

5



6 CHAPTER 2. THEORY

be censored. This date is fixed such that the censoring time will be independent
from the failure time.

A non-parametric estimator for S(t) is the Kaplan-Meier estimator. Let the
ith individual have potential failure time Ti and potential censoring time Ci for
i = 1, ..., k. If T1, ..., Tk are assumed to be independent and identically distributed
with survival function S(t) and the censoring distribution is independent from the
failure times, then the Kaplan-Meier estimator is the following

Ŝ(t) =
∏

i:T(i)≤t

ni − di
ni

where T(1) < T(2) < · · · are the times with at least one failure, ni is the number at
risk at T(i), and di is the number failing at T(i).

In some cases, there exists information from covariates which may help explain
the failure times or predict why some units fail quickly and some units survive a
long time. The failure time distribution can be related to covariates by regression
models. A well known model proposed by Cox is z(t; x) = z0(t) exp(βTx). This
is known as the proportional hazards model, or Cox model, and z0(t) is called the
baseline hazard function. This can be any positive function of t. The regression
parameter β can be estimated by maximizing the log partial likelihood of z(t; x)
which gives maximum partial likelihood estimators. The cumulative baseline haz-
ard function can be estimated by the Breslow estimator

Ẑ0(t) =
∑
T(j)≤t

1∑
j∈Rj exp(β̂Txi)

,

where Rj is the risk set at time T(j), and β̂ is the Cox partial likelihood estimator
of β.

2.2 Competing risks

In competing risks one observes a pair (T, ε), where T is the failure time and
ε ∈ {1, 2, ..., N} is the cause of failure. When studying time to failure from a
specific cause, failures from other causes are competing events. Since there may
be many causes of failure, one can consider the observed T as the smallest of
several latent failure times {T1, T2, ..., Tk}, where T = minj Tj and ε = e if T = Te.
This is called the latent failure time representation.
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2.2.1 The cumulative incidence function
The joint distribution of (T, ε) is specified by sub-distribution functions, or cumu-
lative incidence functions as they are also called,

Fj(t) = P (T ≤ t, ε = j), (2.1)

which are defined for t > 0, j ∈ {1, 2, ..., N}. By differentiation the sub-density
functions become

fj(t) = F ′j(t).

The marginal distribution of T is given by

F (t) = P (T ≤ t) =
k∑
j=1

Fj(t).

This can be expressed by the survival function, S(t) = 1 − F (t), which can be
interpreted as the probability of not having failed from any cause at time t.

2.2.2 The cause-specific hazard function
The distribution of (T, ε) can also be specified by sub-hazard functions, also known
as cause-specific hazard functions. The interpretation of the cause-specific hazard
function is that it is the failure rate of cause j at time t in the presence of the
other failure causes, given that the lifetime T is greater than t. The cause-specific
hazard function for cause j is defined as

λj(t) = lim
∆t→0

P (t < T ≤ t+ ∆t, ε = j | T > t)
∆t = fj(t)

S(t) , (2.2)

where S(t) is the survival function of T . The overall hazard function of T then
becomes

λ(t) =
N∑
j=1

λj(t).

A useful connection is
Fj(t) =

∫ t

0
λj(u)S(u) du, (2.3)

which is the cumulative incidence function in terms of the cause-specific hazard.
The cumulative cause-specific hazard functions are defined as

Λj(t) =
∫ t

0
λj(u) du.
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Using this, the cumulative hazard function of T is Λ(t) = ∑N
j=1 Λj(t). We now

have the following relationship

S(t) = e−Λ(t) = e−
∑N

j=1 Λj(t). (2.4)

2.2.3 The identifiability problem
In a competing risks analysis, one is often interested in the joint and marginal
distributions of the latent failure times T1, T2, ..., Tk. But in general, the distribu-
tions of the latent failure times are not identifiable from the distribution of the
observable pair (T, ε). This is because there are many different joint distributions
of T1, T2, ..., Tk, which can result in the same distribution of (T, ε).

It has been found (Tsiatis, 1975) that if the set of cumulative incidence functions
Fj(t) is given for some model with dependent risks, there exists a unique model, a
so-called independent-risks proxy model, with independent risks which gives rise
to the same Fj(t). Thus, one cannot know which of the two models is correct from
only the observations of (T, ε).

2.3 Semi-competing risks
The semi-competing risks problem was first introduced by Fine et al. (2001) and is
a variation of competing risks. The problem refers to a situation where a subject
can experience two types of failures, where one of the failure times censors the
other but not vice versa. The censoring failure is referred to as a terminal event
or terminal failure, while the other is referred to as the non-terminal event or
non-terminal failure. A non-terminal event can for instance be relapse of some
disease, while a terminal event can be death. A patient that has a relapse after
treatment can die, while a patient dying cannot have a relapse after death. An
overall independent censoring of all failure times is usually included in the semi-
competing risks problem. A simple semi-competing risks situation is presented
in Figure 2.1. State 0 is the initial state, state 1 is a transient state where the
non-terminal event has occurred and state 2 is the state where the terminal-event
has occurred.

Figure 2.2, adapted from Jiang et al. (2005), illustrates how semi-competing
risks data compares to bivariate right-censored data and right-censored competing
risks data. For the middle graph T1 is the time until the non-terminal event and
T2 is the time until the terminal event. For the right-censored bivariate data in the
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λ1(t1)

λ2(t2)

λ12(t2|t1)

Figure 2.1: A semi-competing risks situation. The hazard rate, also known as transition
rate, for each transition is included.

left figure both failure times can be observed, while for the ordinary competing
risks data in the right figure, T1 and T2 cannot be observed together and the
failure times can only be observed along the diagonal line. We note that for semi-
competing risks data both failure times can be observed as long as T1 is observed
before T2 such that the observations are restricted to t2 ≥ t1, which is called the
upper wedge (Xu et al., 2010; Jiang et al., 2005).
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Figure 2.2: This figure illustrates possible observations in bivariate data (left), semi-
competing risks data (middle) and competing risks data (right). A dot indicates that
both T1 and T2 has been observed, and an arrow indicates censoring of the failure time
in the pointing direction.
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Table 2.1: Possible orderings of the events and the four observable cases they lead to.

Order Y1 Y2 δ1 δ2 Case

T1, T2, C T1 T2 1 1 1
T2, T1, C T2 T2 0 1 2
T2, C, T1 T2 T2 0 1 2
T1, C, T2 T1 C 1 0 3
C, T1, T2 C C 0 0 4
C, T2, T1 C C 0 0 4

2.3.1 Notation
In this thesis we will mostly consider semi-competing risks situations with two
events, one terminal and one non-terminal. The time until the non-terminal event
and the time until the terminal event are T1 and T2 respectively, and the censoring
time is represented by C. The observation from each subject will be (Y1, Y2, δ1, δ2),
where Y1 = min(T1, Y2), Y2 = min(T2, C), δ1 = I(T1 ≤ Y2) and δ2 = I(T2 ≤ C).
Here, I is the indicator function.

To better understand this notation we have set up the different orderings of
the events in Table 2.1 and which observable cases they lead to. We see that Y1

refers to the first observed event time and δ1 indicates if this was T1 or not. Y2

refers to what was observed after Y1 or the same as Y1 and δ2 indicates whether
T2 was censored or not. In the derivation of the likelihood function in Appendix
B.2 the cases are explained in greater detail. The real data sets studied later in
this thesis are transformed into the format described here.



Chapter 3

The illness-death model with
shared frailty

An illness-death model is a multi-state model that is much used in the medical
literature to describe disease progression (Meira-Machado et al., 2008), and it was
first described by Fix and Neyman (1951). It can model a situation where there
is one terminal event and one non-terminal event, as the situation in Figure 2.1.
This means that each subject will have three possible transition rates. It can either
have a transition directly to the terminal event or it can have a transition to the
non-terminal event first and then to the terminal event.

We shall consider an illness-death model where the hazard rates, or transition
rates as they will be referred to, of each subject have a shared frailty. This model
is called the illness-death model with shared frailty. We will, for simplicity, from
now on also refer to this model as the illness-death model although we mean the
illness-death model with shared frailty. The model has been described and studied
by Xu et al. (2010), and in this section the model will be described. In addition,
parametric models for the transition rates and an expansion of the model will be
introduced.

3.1 Transition rates

Recall the notation from Section 2.3.1, where T1 is the non-terminal event time, T2

is the terminal event time and C is an independent censoring time. From Figure
2.2 we have already seen that in semi-competing risks the observation of the non-
terminal event is only available if t2 ≥ t1, in other words if it occurs before the

11
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terminal event. If a subject experiences a terminal failure before the non-terminal
failure has occurred, we define T1 =∞. This means that T1 is always defined even
though the terminal event occurs before the non-terminal event.

Furthermore, recall the semi-competing risks situation and the states presented
in Figure 2.1. The illness-death model is completely defined by the transition rates,
and these are

λ1(t1) = lim
∆t→0

1
∆tP (t1 ≤ T1 < t1 + ∆t|T1 ≥ t1, T2 ≥ t1),

λ2(t2) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t|T1 ≥ t2, T2 ≥ t2),

λ12(t2|t1) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t|T1 = t1, T2 ≥ t2),

(3.1)

where 0 < t1 < t2. Here λ1(t1) is the transition rate from state 0 to state 1
and λ2(t2) is the transition rate from state 0 to state 2. In fact λ1(t1) and λ2(t2)
are the same as the cause-specific hazards in competing risks. The transition
rate from state 1 to state 2, λ12(t2|t1), can in general depend on both t1 and
t2. If λ12(t2|t1) depends only on t2 it is called a Markov model since the future
and past are independent given the present. That is, the transition rate from
state 1 to state 2 is independent of the time state 1 was reached, which makes
λ12(t2|t1) = λ12(t2). The Markov model is most frequently used because of its
simplicity (Meira-Machado et al., 2008). If λ12(t2|t1) depends on the time since
state 1 was reached, t2 − t1, it is a semi-Markov model.

A dependent structure between T1 and T2 can be incorporated by using a shared
frailty, denoted by γ. For some more background theory about shared frailty mod-
els the reader is referred to Appendix A.1 and Gutierrez et al. (2002). In this model
it is not the subjects that share frailty, but the conditional transition rates for each
subject have the same frailty. The conditional transition rates corresponding to
(3.1) are defined as

λ1(t1|γ) = γλ01(t1), t1 > 0
λ2(t2|γ) = γλ02(t2), t2 > 0 (3.2)
λ12(t2|t1, γ) = γλ03(t2), 0 < t1 < t2

When λ02(t2) and λ03(t2) are arbitrary functions, this frailty model is described as
the ‘general model’, and if λ02(t2) = λ03(t2) it is referred to as the ‘restricted model’.
Since λ12(t2|t1, γ) in (3.2) is independent of the time state 1 was reached, the
conditional transition rates are Markovian. But as we will see, the corresponding
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marginal transition rates are not Markovian because of the dependent structure
between T1 and T2 incorporated by γ.

The frailty is assumed to follow a Gamma distribution with expectation 1 and
variance θ. This gives the following distribution function for γ

g(γ; 1/θ, θ) = 1
θ

1
θΓ(1

θ
)
γ

1
θ
−1e−

γ
θ , γ ≥ 0 (3.3)

We will refer to the distribution in (3.3) as g(γ). Since a distribution family for γ
has been assumed, models for the marginal transition rates can be derived. From
Xu et al. (2010) these are

λ1(t1) = (1 + θ[Λ01(t1) + Λ02(t1)])−1λ01(t1), t1 > 0 (3.4)
λ2(t2) = (1 + θ[Λ01(t2) + Λ02(t2)])−1λ02(t2), t2 > 0 (3.5)
λ12(t2|t1) = (1 + θ)(1 + θ[Λ01(t1) + Λ02(t2) + Λ03(t1, t2)])−1λ03(t2), (3.6)
0 < t1 < t2,

where Λ0i(t) for i = 1, 2, 3, are the cumulative conditional transition rates, and
Λ03(s, t) = Λ03(t)−Λ03(s). This definition will be used throughout the thesis. Our
derivation of the marginal transition rates from the conditional transition rates
can be found in Appendix B.1. The marginal transition rate from state 1 to state
2, λ12(t2|t1), in (3.6) depends on both t1 and t2 and is therefore not Markovian
as opposed to its corresponding conditional transition rate, unless γ is constant
which makes θ = 0.

The dependence of T2 on T1 can be described by two measures. Either by
the common frailty γ, or by the conditional explanatory hazard ratio which is
λ03(t2)/λ02(t2) when we have a Markov model for the conditional transition rates.
The explanatory hazard ratio describes how the risk of event 2 changes over time
given that event 1 has occurred (Lee et al., 2015a). With a semi-Markov it is not
obvious how to interpret the conditional explanatory hazard ratio since λ02(t2) and
λ03(t2 − t1) are of different time scales. For the restricted model, the conditional
explanatory hazard ratio is equal to 1 since the conditional transition rates to state
2 are the same. Therefore the dependence of T2 on T1 is fully captured by γ.

The main difference between marginal and conditional models is that marginal
models are population-average models, while conditional models are subject-specific
(Lee et al., 2004), or frailty-specific in our case. Since not all subjects have the
same frailty, the conditional transition rates are only comparable within subjects
sharing frailty. This causes the interpretation of the marginal and conditional tran-
sition rates to be different. We will sometimes, for simplicity refer to the marginal
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transition rates as the transition rates, while the conditional transition rates will
always be referred to as the conditional transition rates.

3.1.1 Parametric models for the transition rates

Now, we introduce two parametric models for the conditional transition rates. The
first parametric model is the power law and the conditional transition rates have
the following parametric model

λ0i(t) = αiβit
βi−1, i = 1, 2, 3, (3.7)

where αi, βi > 0, and the cumulative conditional transition rates will be on the
form

Λ0i(t) = αit
βi , i = 1, 2, 3.

Another choice for parametric model is a log-linear law. In this case the con-
ditional transition rates will have parametric model

λ0i(t) = eai+bit, i = 1, 2, 3, (3.8)

where −∞ < ai, bi < ∞, and the cumulative conditional transition rates will be
on the form

Λ0i(t) = eai

bi
(ebi − 1), i = 1, 2, 3.

3.2 The likelihood functions
Recall the notation for the observed data (Yi1, Yi2, δi1, δi2), i = 1, ..., n from Section
2.3.1, and let n be the number of subjects. The likelihood function for the general
illness-death model is based on the conditional transition rates and is as follows

Lg =
n∏
i=1

λ01(Yi1)δi1λ02(Yi2)δi2(1−δi1)λ03(Yi2)δi1δi2(1 + θ)δi1δi2

(
1 + θ[Λ01(Yi1) + Λ02(Yi1) + Λ03(Yi1, Yi2)]

)−1/θ−δi1−δi2
.

(3.9)

The likelihood function is found by first finding the conditional contributions from
each case and then integrating out γ using the distribution function g(γ). A simple
derivation can be found in Appendix B.2.
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The likelihood function for the restricted model based on the observed data
(Yi1, Yi2, δi1, δi2) is found by letting λ02 = λ03, and is

Lr =
n∏
i=1

λ01(Yi1)δi1λ02(Yi2)δi2(1 + θ)δi1δi2
(

1 + θ[Λ01(Yi1) + Λ02(Yi2)]
)−1/θ−δi1−δi2

.

(3.10)

3.3 Probability functions in the illness-death model
In this section we present some of the probability functions used later in the
thesis. The conditional survival functions are used for simulating semi-competing
risks data which is presented in Section 4.1. The corresponding marginal survival
functions are used in Section 5.1 to visualise parts of the results. Lastly, the
marginal transition probabilities are used in Section 5.2, also to visualise results
from the data analysis.

3.3.1 Conditional survival functions
In the next chapter we will simulate from the illness-death model. To do this we
need to know the probability of staying in a specific state until time t. Recall the
relation S(t) = e−

∑N

j=1 Λj(t) from equation (2.4) in the section about competing
risks. The same relation can be found for semi-competing risks in the illness-death
model using the conditional transition rates defined in (3.2). Then the conditional
probability of staying in state 0 until time t is

S(t|γ) = P (Still in state 0 at t|γ) = e−γ(Λ01(t)+Λ02(t)), (3.11)

where Λ01(t) and Λ02(t) are the cumulative transition rates out of state 0. If there
is a transition to state 1 at t1, the conditional probability of staying in state 1
until time t2 is

S12(t2|t1, γ) = P (Still in state 1 at t2|Transition to state 1 at time t1)

= exp
(
−γ

∫ t2

t1
λ03(u) du

)
= e−γΛ03(t1,t2) (3.12)
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3.3.2 Marginal survival functions
Using the known distribution family of γ, which is g(γ) from (3.3), the marginal
probability function for staying in state 0 is found by averaging S(t|γ) over γ and
using the relation in equation (B.1) to solve the integral. This gives

S(t) = P (Still in state 0 at t) = (1 + θ[Λ01(t) + Λ02(t)])−1/θ (3.13)

A function that will be used in Section 5.1 is the marginal survival function for
the time to the non-terminal event, S1(t). According to Xu et al. (2010) this is
given by

S1(t) = (1 + θΛ01(t))− 1
θ , (3.14)

which is what we get if we let Λ02(t) in (3.13) be zero.
Furthermore, we compute the marginal survival function for time to the ter-

minal event given the non-terminal event has occurred, S12(t2|t1). This is done by
averaging S12(t2|t1, γ) in equation (3.12) over all values of γ

S12(t2|t1) =
∫ ∞

0
exp (−γΛ03(t1, t2)) g(γ) dγ,

and by using the relation in equation (B.1), the survival function for time until
the terminal event given transition to the non-terminal event at t1 becomes

S12(t2|t1) = (1 + θ[Λ03(t1, t2)])−1/θ (3.15)

3.3.3 Marginal transition probabilities
In this section we describe the marginal transition probabilities in the illness-death
model, P01(t), P02(t) and P12(t2|t1). The marginal transition probability P01(t) is
the probability of being in state 1 at time t given that the previous state 0 was
entered at time 0. Moreover, the marginal transition probability P02(t) is the
probability of being in state 2 at time t given that the previous state was state 0
and that this was entered at time 0. Note that P02(t) is usually defined such that
the process can have had a transition to state 1 in between state 0 and state 2.
Finally, P12(t2|t1) is the probability of being in state 2 at time t2 given that the
previous state was 1 and this was entered at time t1. Note that in this context, t2
is not the time for the occurrence of the terminal failure, but is instead a time for
which we are interested in the probability of being in state 2.

First, the derivation of P01(t) is presented. The probability of being in state
1 at time t is given by the probability of having a transition to state 1 before t
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and staying in 1 until time t. One must also multiply with the probability of not
having had a transition out of state 0 before the transition of interest. We use the
conditional rates and must therefore average over γ. Since the time of transition
to state 1 is unknown we must also integrate over all t. This gives

P01(t) =
∫ ∞

0

∫ t

0
e−γ(Λ01(s)+Λ02(s))γλ01(s)e−γΛ03(s,t)g(γ) dsdγ,

that is, the probability of staying in state 0 until time s, having a transition at
time s to state 1, and staying in state 1 until time t. By solving the outer integral
the transition probability becomes

P01(t) =
∫ t

0
λ01(s)(1 + θ[Λ01(s) + Λ02(s) + Λ03(s, t)])−1/θ−1 ds (3.16)

The derivation of P02(t) is done in the same manner and gives

P02(t) =
∫ t

0
λ02(s)(1 + θ[Λ01(s) + Λ02(s)])−1/θ−1 ds (3.17)

In this function we do not have a contribution for staying in state 2 until time t,
since state 2 is absorbing.

We move over to the transition probability P12(t2|t1), which is conditional on
that state 1 was reached at time t1. Then the probability of being in state 2 at time
t2 is given by the probability of staying in state 1 until some time s and having
a transition to state 2 at time s ≤ t2. Again, since the time of transition from
state 1 to state 2 is unknown we integrate over possible transition times. Using
conditional transition rates and averaging over γ, this gives

P12(t2|t1) =
∫ t2

t1

∫ ∞
0
γλ03(s)e−γΛ03(t1,s)g(γ) dγds

After integrating out γ one gets

P12(t2|t1) =
∫ t2

t1
λ03(s)(1 + θΛ03(t1, s))−1−1/θ ds (3.18)

The integrals in equations (3.16), (3.17) and (3.18) will be solved numerically.
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3.4 Covariates in the illness-death model
Covariates are explanatory variables that may affect the survival times, and in this
model we assume that the effect of the covariates is the same at all times. It is sim-
ple to include covariates in the shared frailty illness-death model by incorporating
them in the conditional transition rates. Let x = (x1, x2, ..., xp)T be a vector of p
covariates, and let ϕ1,ϕ2,ϕ3 be three vectors of coefficients with length p. Then
the conditional transition rates with covariates become

λ1(t1|γ,x) = γλ01(t1) exp(ϕT1 x), t1 > 0
λ2(t2|γ,x) = γλ02(t2) exp(ϕT2 x), t2 > 0
λ12(t2|t1, γ,x) = γλ03(t2) exp(ϕT3 x), 0 < t1 < t2,

which are the conditional transition rates in equation (3.2) where each rate has
been multiplied by a transition-specific covariate term. The corresponding marginal
transition rates with covariates are the same as in equations (3.4) - (3.6) where λ01

and Λ01 are multiplied with exp(ϕT1 x), λ02 and Λ02 are multiplied with exp(ϕT2 x),
and λ03 and Λ03 are multiplied with exp(ϕT3 x).

Another modelling strategy would be to include the covariates in the marginal
transition rates by multiplying the transition rate in (3.4) with exp(ϕT1 x), the tran-
sition rate in (3.5) with exp(ϕT2 x) and the transition rate in (3.6) with exp(ϕT3 x).
This would give covariates with a different interpretation since the regression effect
on these marginal transition rates would not be the same as the conditional ap-
proach described first. However, with the conditional approach it is much simpler
to construct the likelihood function.

The likelihood function in the general model with covariates is presented in
equation (3.19) below. If we in addition to observing (Yi1, Yi2, δi1, δi2) for each
subject, also observe one vector of covariates xi for each subject, the likelihood
function becomes the following

Lcov =
n∏
i=1

λ01(Yi1)δi1λ02(Yi2)δi2(1−δi1)λ03(Yi2)δi1δi2

· exp[δi1ϕT1 xi + δi2(1− δi1)ϕT2 xi + δi1δi2ϕ
T
3 xi](1 + θ)δi1δi2 (3.19)

·
(

1 + θ[Λ01(Yi1)eϕT1 xi + Λ02(Yi1)eϕT2 xi + Λ03(Yi1, Yi2)eϕT3 xi ]
)−1/θ−δi1−δi2

Note that if we let the coefficients of the covariates be 0, we get the likelihood
function for the general model presented in equation (3.9).
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Figure 3.1: A semi-competing risks situation where the terminal failure consists of two
separate events, 2a and 2b. The transition rates for each transition are included.

3.5 Expansion of the illness-death model

In this section we introduce an expansion of the illness-death model with shared
frailty, by letting the terminal event consist of two competing events. We still
let T1 be the time to the non-terminal event and T2 be the time to the terminal
event. In Figure 3.1 the expanded semi-competing risks situation is presented. The
terminal event now consists of two events, event 2a and event 2b, and the model
now consists of five transition rates rather than three. The marginal transition
rates are defined as

λ1(t1) = lim
∆t→0

1
∆tP (t1 ≤ T1 < t1 + ∆t|T1 ≥ t1, T2 ≥ t1),

λ2a(t2) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t,J = a|T1 ≥ t2, T2 ≥ t2),

λ2b(t2) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t,J = b|T1 ≥ t2, T2 ≥ t2),

λ12a(t2|t1) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t,J = a|T1 = t1, T2 ≥ t2),

λ12b(t2|t1) = lim
∆t→0

1
∆tP (t2 ≤ T2 < t2 + ∆t,J = b|T1 = t1, T2 ≥ t2),



20 CHAPTER 3. THE ILLNESS-DEATH MODEL WITH SHARED FRAILTY

where 0 < t1 < t2, and J ∈ {a, b} indicates which event was the terminal event.
Furthermore, the corresponding conditional transition rates become

λ1(t1|γ) = γλ01(t1), t1 > 0
λ2a(t2|γ) = γλ02a(t2), t2 > 0
λ2b(t2|γ) = γλ02b(t2), t2 > 0
λ12a(t2|t1, γ) = γλ03a(t2), 0 < t1 < t2

λ12b(t2|t1, γ) = γλ03b(t2), 0 < t1 < t2

The likelihood function for the expanded model is given in equation (3.20)
below. We have defined two indicator functions δia and δib, one for each terminal
event. These indicate which event was the terminal event by having the value 1 if
the event occurred and 0 if the event did not occur. If there was censoring such
that neither of the terminal events occurred, the values of these indicators are of
no interest and can be set to be 0 since they will not contribute to the likelihood
function. Using the conditional transition rates, the likelihood for the expanded
model is

Lexp =
n∏
i=1

λ01(Yi1)δi1λ02a(Yi2)δi2(1−δi1)δiaλ02b(Yi2)δi2(1−δi1)δibλ03a(Yi2)δi1δi2δia

·λ03b(Yi2)δi1δi2δib(1 + θ)δi1δi2
(

1 + θ[Λ01(Yi1) + Λ02a(Yi1) + Λ02b(Yi1)

+Λ03a(Yi2)− Λ03a(Yi1) + Λ03b(Yi2)− Λ03b(Yi1)]
)−1/θ−δi1−δi2

(3.20)

It is possible to include covariates in the expanded illness-death model in the same
way as presented in Section 3.4. The conditional transition rates in the expanded
likelihood function are then multiplied with covariate specific terms exp(ϕTi x).

The marginal transition probabilities in the model with only one terminal event,
P01(t), P02(t), and P12(t2|t1), have already been presented in Section 3.3.3. The
same approach is used when we find the transition probabilities in the expanded
model which are P01(t), P02a(t), P02b(t), P12a(t2|t1) and P12b(t2|t1).

For the probability of being in state 1 at time t we have

P01(t) =
∫ t

0
λ01(s)(1+θ[Λ01(s)+Λ02a(s)+Λ02b(s)+Λ03a(s, t)+Λ03b(s, t)])−1/θ−1 ds,

where Λ02(s) in equation (3.11) has been replaced by Λ02a(s)+Λ02b(s) and Λ03(s, t)
has been replaced with Λ03a(s, t) + Λ03b(s, t). Similarly the probabilities of being
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in state 2a and state 2b at time t without having entered state 1 are

P02a(t) =
∫ t

0
λ02a(s)(1 + θ[Λ01(s) + Λ02a(s) + Λ02b(s)])−1/θ−1 ds,

and
P02b(t) =

∫ t

0
λ02b(s)(1 + θ[Λ01(s) + Λ02a(s) + Λ02b(s)])−1/θ−1 ds.

For the probability to be in state 2a and 2b at time t2 given that state 1 was
reached at time t1 we have

P12a(t2|t1) =
∫ t2

t1
λ03a(s)(1 + θ[Λ03a(s, t2) + Λ03b(s, t2)])−1/θ−1 ds,

and
P12b(t2|t1) =

∫ t2

t1
λ03b(s)(1 + θ[Λ03a(s, t2) + Λ03b(s, t2)])−1/θ−1 ds.
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Chapter 4

Simulation study

A simulation study with the illness-death model with shared frailty has been car-
ried out and will be presented in this chapter. By simulating data from the model
and then estimating the parameters, one can test the method. This will ensure
that the method is correct and give an indication of how good the estimates are
when the model is applied to real data sets.

The first section contains the algorithm used to simulate the data. The param-
eters used to generate data are estimated using maximum likelihood estimation
and the quality of the estimates are evaluated. This is presented in the second sec-
tion. In the third section we present the simulation algorithm and some simulation
results in the expanded illness-death model with shared frailty.

4.1 Simulation algorithm

A procedure for simulating data from a semi-competing risks situation as the one
presented in Figure 2.1 has been carried out. In this model the transition rates
are on the parametric form as presented in Section 3.1.1, which means we have
simulated data for both the power law model λ0i(t) = αiβit

βi−1, and the log-
linear law λ0i(t) = exp(ai + bit). The algorithm for simulating data from the
illness-death model with shared frailty is presented in Algorithm 1. The algorithm
starts with generating the frailty parameter γ. Next, on line 3 the first event time
is simulated. This is done by drawing from the probability of not having any
transitions before time t which is exp(−γ[Λ01(t) + Λ02(t)]) from equation (3.11).
This is done by equating the expression for the probability to a number uniformly
distributed between 0 and 1, and solving for t. Then, on line 4, the probability

23
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that the transition at time t is to state 1 is calculated from

p = P (Go to state 1| Transition from state 0 in [t, t+ ∆t)) =

P (Go to state 1 in [t, t+ ∆t))
P (Transition from state 0 in [t, t+ ∆t)) = λ01(t)

λ01(t) + λ02(t) .

If there is a transition to state 1, the second event time t2 is simulated on line 9.
This is calculated from exp(−γΛ03(t1, t2)) given in (3.12), by equating it to a
number uniformly distributed between 0 and 1, and solving for t2. Lastly, an
independent censoring time is simulated. The censoring distribution has been
chosen to be a mixture distribution as in Xu et al. (2010). This distribution has
equal weights on a uniform distribution between v and w, and a point mass at w.
The values of v and w can be chosen to get the preferred amount of censoring.

The algorithm has been implemented as the functions SimData.power() and
SimData.loglinear() which can be found in Appendix C.1.1 and C.1.2, respec-
tively. These functions call on other functions which are given below in the same
appendix.

4.2 Simulation results

Semi-competing risks data is generated using Algorithm 1 and maximum likeli-
hood estimation is used to estimate the parameters. This is done using the built-
in function optim() in R on the log likelihood functions for the models which
are presented in Appendix C.2. The likelihood function in the general and re-
stricted model are presented in equation (3.9) and (3.10) respectively. Further,
the censoring mechanism has v = 5 and w = 10.

In this section the results from estimating the model parameters from simu-
lated data sets are presented. The standard deviations are found from taking the
square root of the inverse of the Hessian matrix of the log likelihood functions.
The confidence intervals are estimated using the fact that maximum likelihood
estimators are asymptotically normal (Casella and Berger, 2002, p. 472).
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Algorithm 1 Simulate data from the illness-death model with shared frailty.
1: for each subject do
2: γ ∼ Gamma(1

θ
, θ)

3: t1 ∼ first event time
4: p = probability of going to state 1
5: u ∼ uniform(0, 1)
6: if u ≤ p then
7: Y1 = t1
8: δ1 = 1
9: t2 ∼ second event time

10: Y2 = t2
11: else
12: Y1 = Y2 = t1
13: δ1 = 0
14: end if
15: C ∼ censoring distribution
16: if C > Y2 then
17: δ2 = 1
18: else if C ≥ Y1 and C ≤ Y2 then
19: Y2 = C

20: δ2 = 0
21: else
22: Y1 = Y2 = C

23: δ1 = δ2 = 0
24: end if
25: end for

4.2.1 The general model with power law

We will first simulate data and fit them to the general model with power law for
the conditional transition rates. The log likelihood function for this model is given
in C.2.1.

Constant transition rates

We first simulate a data set where all parameter values are 1. This means that
the three conditional transition rates are all constant and equal. The data set
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consists of 1000 observations and there is about 10% censoring. The initial values
in optim() are set to be 1 for all the parameters. The model parameters and the
results of estimating all seven parameters are presented in Table 4.1.

The maximum likelihood estimates from this model are close to the true param-
eter values, and all 95% confidence intervals cover the true values. The standard
deviations of the α̂’s and θ̂ are higher than for the β̂’s which indicates that these
parameters are harder to estimate.

Table 4.1: Maximum likelihood estimates of the parameters in the general model with
constant conditional transition rates described in Section 4.2.1. The standard deviations
(SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
α1 1 0.9778 0.1009 0.7799 1.1756
α2 1 1.0243 0.1071 0.8143 1.2343
α3 1 0.9244 0.0851 0.7576 1.0912
β1 1 1.0085 0.0499 0.9108 1.1063
β2 1 1.0751 0.0521 0.9729 1.1773
β3 1 0.9833 0.0708 0.8445 1.1219
θ 1 1.0629 0.1208 0.8262 1.2996

Time-varying transition rates

In this model the parameters have been chosen such that the conditional transition
rates from state 0 to state 1 and from state 0 to state 2 decrease with time, while
the conditional transition rate from state 1 to state 2 increases with time. The
simulated data set consists of 1000 observations and there is about 16% censoring.
Again, the initial values in optim() are set to be 1 for all the parameters. The
model parameters and the results of estimating all seven parameters are presented
in Table 4.2.

We find that all the parameters are estimated quite correctly despite the initial
values were not set to be the correct parameter values. We note that the standard
deviations are of the same magnitude as in Table 4.1 and that all confidence
intervals cover the true parameter value.
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Table 4.2: Maximum likelihood estimates of parameters in the general model with time-
varying conditional transition rates described in Section 4.2.1. The standard deviations
(SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
α1 1 1.1203 0.1143 0.8962 1.3444
α2 1 0.9956 0.1055 0.7888 1.2023
α3 1 1.0767 0.0775 0.9248 1.2287
β1 0.5 0.5244 0.0262 0.4729 0.5758
β2 0.5 0.5446 0.0280 0.4896 0.5995
β3 2 1.9531 0.0856 1.7854 2.1209
θ 1 0.9713 0.1210 0.7341 1.2085

4.2.2 The restricted model with power law

In this section we will simulate data and fit them to the restricted model, where
λ02 = λ03 is assumed. This means that α2 = α3 and β2 = β3 such that only five
parameters will be estimated. The log likelihood function for the model that is
maximized is given in C.2.2.

Constant transition rates

For comparison with the general model we first use the same data set as in Section
4.2.1 where the parameters are all set to be 1, which means that the conditional
transition rates are all constant and equal. The initial values in optim() are set to
be 1 for all the parameters. The model parameters and the results of estimating
all five parameters are presented in Table 4.3.

Again, all the estimates are good and the confidence intervals cover the true
parameter values. When comparing with the results in the general model in Ta-
ble 4.1 the parameters estimates in the restricted model are not outstandingly
better. For some parameters the estimates in the general model are closer to the
true parameter and for some parameters the estimates in the restricted model are
closer to the true parameter. However, the standard deviations in the restricted
model are lower than in the general model. This is as expected since there are
fewer parameters to estimate in the restricted model.
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Table 4.3: Maximum likelihood estimates of the parameters in the restricted model with
constant conditional transition rates described in Section 4.2.2. The standard deviation
(SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
α1 1 0.8973 0.0714 0.7573 1.0373
α2 1 0.9182 0.0585 0.8035 1.0329
β1 1 0.9659 0.0396 0.8884 1.0435
β2 1 0.9996 0.0337 0.9334 1.0657
θ 1 0.9593 0.0881 0.7867 1.1319

Constant and time-varying transition rates

In the last model with power law the conditional transition rates to state 2 have
been set constant, and the conditional transition rate from state 0 to state 1 is
decreasing with time. In the simulated data set there are 1000 observations and
about 20% censoring. The initial values in optim() are set to be 1 for all the pa-
rameters. The model parameters and the results of estimating all five parameters
are presented in Table 4.4. As seen earlier, the difference between the true param-
eter values and the estimates are relatively small, and the standard deviations are
good, especially considering the initial values were not the same as the true values.

Table 4.4: Maximum likelihood estimates of the parameters in the restricted model
with constant and time-varying conditional transition rates described in Section 4.2.2.
The standard deviation (SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
α1 2 2.0477 0.1946 1.6660 2.4291
α2 1 1.0158 0.0780 0.8628 1.1686
β1 0.8 0.8073 0.0294 0.7497 0.8649
β2 1 1.0067 0.0334 0.9412 1.0723
θ 2 1.9319 0.1335 1.6703 2.1935
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4.2.3 The general model with log-linear law

The log likelihood function for the general model with log-linear law is given in
C.2.3. Using the log-linear law for the conditional transition rates we have sim-
ulated 1000 observations, where the conditional transition rates are equal for all
transitions. The censoring is about 35% which is high. Here, all the initial values
in optim() have been set to be the true parameter value. The model parameters
and the results of estimating all seven parameters are presented in Table 4.5.

We find that all the parameters are estimated quite correctly except for b̂1 and
b̂2. They have been estimated to be negative, while they are actually positive. This
would mean that the estimated conditional transition rate would be decreasing
with time, rather than increase. But considering the high proportion of censoring,
the estimates and the confidence intervals are good.

Table 4.5: Maximum likelihood estimates of the parameters in the general model with
conditional transition rates following the log-linear law. The standard deviations (SD)
and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
a1 -1 -1.1041 0.0959 -1.2921 -0.9161
a2 -1 -1.1478 0.0971 -1.3383 -0.9574
a3 -1 -1.1808 0.1284 -1.4326 -0.9291
b1 0.01 -0.0413 0.0485 -0.1365 0.0538
b2 0.01 -0.0766 0.0509 -0.1764 0.0232
b3 0.01 0.0043 0.0357 -0.0657 0.0744
θ 2 1.7196 0.2740 1.1823 2.2568

4.2.4 The restricted model with log-linear law

For the same data set as in Section 4.2.3 above we fit the restricted model with
log-linear law for the transition rates. The log likelihood function for this model
is given in C.2.4. Again, the true values are used as initial values. The results are
presented in Table 4.6. We see an improvement in the estimates, especially for
θ̂, and a small decrease in standard deviation compared to the general model in
Table 4.5. This is as expected since there are fewer parameters to estimate in this
model.
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Table 4.6: Maximum likelihood estimates of the parameters in the restricted model
with conditional transition rates following the log-linear law. The standard deviations
(SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
a1 -1 -1.0594 0.0903 -1.2366 -0.8823
a2 -1 -1.1398 0.0806 -1.2979 -0.9818
b1 0.01 0.0098 0.0347 -0.0582 0.0778
b2 0.01 0.0006 0.0248 -0.0482 0.0493
θ 2 2.0253 0.1861 1.6607 2.3900

4.3 Simulating from the expanded model

In this section we present the simulation algorithm for semi-competing risks data
in the expanded illness-death model with shared frailty. We also use simulated
data to test the log likelihood function for the expanded illness-death model which
is given in Appendix C.2.6.

4.3.1 Simulation algorithm in the expanded model

A procedure for simulating data from the expanded illness-death model as the one
presented in Figure 3.1 has been carried out. The simulation algorithm is presented
in Algorithm 2. We have only simulated data using the power law model, since the
log-linear law is not used in the expanded model later. As in Algorithm 1, we start
by generating the frailty parameter γ. On line 3 the first event time is simulated.
This is done by drawing from the probability of not having any transitions before
time t which is exp(−γ[Λ01(t) + Λ02a(t) + Λ02b(t)]) in the expanded model. The
expression is set equal to a uniformly distributed number between 0 and 1, and
solved for t. The probability of the first event being event 1 given a transition at
time t is computed on line 4. This is calculated from

p1 = λ01(t)
λ01(t) + λ02a(t) + λ02b(t)

.

If there is a transition to state 1 at t, the second event time t2 is simulated on
line 9. This is calculated from exp(−γ[Λ03a(t, t2) + (Λ03b(t, t2)]), by equating it to
a uniformly distributed number and solving for t2. Whether the second transition
goes to state 2a or 2b is computed on lines 11-17 with p3 being the probability of
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going to state 2a from state 1 at time t2

p3 = λ03a(t2)
λ03a(t2) + λ03b(t2) .

If the first transition was not to state 1, the probability of going to state 2a from
state 0 at time t is computed. This is done on lines 21-26, where

p2 = λ02a(t)
λ02a(t) + λ02b(t)

,

is the probability of going to state 2a at time t when we know that state 1 is not
possible for this transition.

Lastly, an independent censoring time is simulated. The censoring distribution
has been chosen to be the same as the one described in Section 4.1, a mixture
distribution with equal weights on a uniform distribution between v and w, and a
point mass at w. The function for simulating the semi-competing risks data using
this algorithm has been implemented in R as SimData.expanded(). This function
is presented in Appendix C.1.3.

4.3.2 Simulation results in the expanded model
Semi-competing risks data from the expanded illness-death model with shared
frailty is generated using Algorithm 2 and maximum likelihood estimation is used
to estimate the parameters. Again, this is done using the built-in function optim()
in R, now on the log of the likelihood function from equation (3.20). The log like-
lihood function has been implemented in R and the function is given in Appendix
C.2.6. The standard deviations and condfidence intervals are computed using the
Hessian matrix as in Section 4.2

We begin by simulating a data set of 1000 observations where all the parameters
are set to have the value 1. The censoring mechanism is still v = 5 and w = 10
which gives about 6% censoring. The initial values in optim() are set to be 1 for
all the parameters. The estimated parameters are given in Table 4.7, and we see
that the estimates are close to the true values. The standard deviations are also
good.
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Table 4.7: Maximum likelihood estimates of the parameters in the expanded model
with constant conditional transition rates. The standard deviations (SD) and bounds
for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound

α1 1 0.9771 0.1210 0.7400 1.2143
α2a 1 1.0074 0.1248 0.7627 1.2520
α2b 1 1.0456 0.1262 0.7981 1.2931
α3a 1 0.9709 0.1144 0.7467 1.1951
α3b 1 0.9513 0.1114 0.7329 1.1697
β1 1 0.9817 0.0529 0.8780 1.0854
β2a 1 1.0083 0.0536 0.9033 1.1133
β2b 1 0.9540 0.0507 0.8547 1.0534
β3a 1 1.0240 0.0939 0.8400 1.2081
β3b 1 0.9675 0.0934 0.7845 1.1506
θ 1 1.0098 0.1168 0.7808 1.2388

Next, we simulate a data set of 1000 observations where λ01(t) = 0.2t, λ02a(t) =
λ02b(t) = t, λ03a(t) = λ03b(t) = 0.5, and θ = 2. With the same values in the
censoring mechanism, v = 5 and w = 10, the data set has about 10% censoring,
and the initial values are set to be the true values. The maximum likelihood
estimates of the parameters are given in Table 4.8. These estimates are not as
good as the ones in Table 4.7, probably due to that there is a little more censoring
and that there is more variation in this data set compared to the first data set
that was simulated. However, all the confidence intervals cover the true value.

4.4 Summary of the simulation study
From the simulation study we find that maximum likelihood estimation works
well to estimate the parameters in the illness-death model, both for the general
and restricted models, and the expanded model. The confidence intervals of the
estimated parameters all cover the true value. As we have fewer parameters in the
model, the estimates are closer to the true values and the standard deviations also
become lower, which is as expected.

When we in the next section use maximum likelihood estimation with optim()
in R to find the model parameters, we can trust that the results are good and that
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the estimation procedure works correctly. This of course assumes that the data
sets are large enough and without a high proportion of censoring.

Table 4.8: Maximum likelihood estimates of the parameters in the expanded model
with constant and non-constant conditional transition rates. The standard deviations
(SD) and bounds for the 95% confidence intervals are included.

Par. True value Est. SD Lower bound Upper bound
α1 0.1 0.1082 0.0178 0.0734 0.1431
α2a 0.5 0.5087 0.0591 0.3929 0.6245
α2b 0.5 0.4437 0.0532 0.3394 0.5479
α3a 0.5 0.3569 0.1431 0.0764 0.6374
α3b 0.5 0.5280 0.1510 0.2319 0.8242
β1 2 1.9785 0.1513 1.6819 2.2751
β2a 2 1.9694 0.1168 1.7405 2.1983
β2b 2 2.0817 0.1217 1.8432 2.3202
β3a 1 1.1753 0.2544 0.6766 1.6739
β3b 1 1.0914 0.1936 0.7119 1.4708
θ 2 1.8643 0.1978 1.4765 2.2520
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Algorithm 2 Simulate data from the expanded illness-death model with shared
frailty.

1: for each subject do
2: γ ∼ Gamma(1

θ
, θ)

3: t ∼ first event time
4: p1 = probability of going to state 1
5: u ∼ uniform(0, 1)
6: if u ≤ p1 then
7: Y1 = t

8: δ1 = 1
9: t2 ∼ second event time

10: Y2 = t2
11: p3 = probability of going to state 2a from state 1
12: u ∼ uniform(0, 1)
13: if u ≤ p3 then
14: δa = 1, δb = 0
15: else
16: δa = 0, δb = 1
17: end if
18: else
19: Y1 = Y2 = t

20: δ1 = 0
21: p2 = probability of going to state 2a from state 0 given that can not go

to state 1
22: if u ≤ p2 then
23: δa = 1, δb = 0
24: else
25: δa = 0, δb = 1
26: end if
27: end if
28: C ∼ censoring distribution
29: if C > Y2 then
30: δ2 = 1
31: else if C ≥ Y1 and C ≤ Y2 then
32: Y2 = C

33: δ2 = 0
34: else
35: Y1 = Y2 = C

36: δ1 = δ2 = 0
37: end if
38: end for



Chapter 5

Data analysis

In this chapter we will apply the illness-death model to real data sets consisting
of semi-competing risks data. We will fit the data to the likelihood functions
of the parametric models presented in Chapter 3 and tested in Chapter 4, to
study the model and compare the results with other research. The first data
set contains data on 137 bone marrow transplant patients and can be found in
Klein and Moeschberger (1997). This data set will be modelled using the general
and restricted model with both power law and log-linear law, and also some sub-
models. The second data set contains data from 1313 randomly chosen patients
from a cohort study from 2008 called SIR 3 (Spread of nosocomial Infections and
Resistant pathogens) and is aimed at analysing the effect of hospital-acquired
infections on the length of intensive care unit stay (Wolkewitz et al., 2008). This
data set will be modelled using the general model with power law and the expanded
model with power law. We also include covariates, and for the expanded model
we will test some sub-models.

To maximise the log likelihood functions we use the function optim() in R,
as done in the simulation study. In addition to the log likelihood functions used
in the simulation study we also use two log likelihood functions for models with
covariates. These are given in Appendix C.2 with the other log likelihood functions.
In some cases in the data analysis we test sub-models of the main models. The log
likelihood functions for these models are not presented, but have been implemented
in the same way as the other log likelihood functions with minor changes.

The standard deviations and confidence intervals for the parameter estimates
are mostly computed using the Hessian. However, in Section 5.2.3 and Section 5.2.4
the Hessian matrices of the log likelihood functions are not obtainable. In these
sections we have therefore used non-parametric bootstrapping to compute the

35
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standard deviations (Givens and Hoeting, 2012, p. 288-289) and the confidence
intervals are computed using the percentile method. For more about this see
(Givens and Hoeting, 2012, p. 292-294). In all the other sections, the standard
deviations and confidence intervals have been computed using the Hessian matrix.

5.1 Bone marrow transplant data
The data set for this section contains 137 observations of patients after a bone
marrow transplantation as treatment for acute leukaemia. It is included in the R-
library KMsurv as bmt, and in the R-library SemiCompRisks as BMT. The terminal
event in this data set is death and the non-terminal event is relapse of cancer. The
failure times are measured in days from the transplantation and for each of the
four possible cases described in Table 2.1 it has been observed

• 40 of case 1, death following a relapse

• 40 of case 2, only death

• 3 of case 3, censoring following a relapse

• 54 of case 4, censoring before any event

Recall that the conditional transition rate from state 0 to state 1, which is relapse
in this case, is modelled by λ01, the conditional transition rate from state 1 to
state 2, which is death here, is λ03, and the conditional transition rate from state 0
to state 2 is λ02, where all are multiplied with γ. This data set is small compared
to the ones used in the simulation study. Furthermore the proportion of censored
observations is larger than the data sets used to test the method. Because of this
we cannot expect the estimates to be as precise as in the simulation study.

Before we start with the data analysis we shortly present a study by Fine et al.
(2001) in which they have applied a copula model on the bone marrow transplant
data set. They have modelled the dependency between the two failure times by
assuming that the joint distribution of T1 and T2 follows a gamma frailty copula
with observations only available in the upper wedge. Using their method they
have made two estimates of the frailty variance. The frailty variance in their
model, θF , can be related to the frailty variance in the shared-frailty illness-death
model, θI by the relation θI = θF − 1. Their estimates of the frailty variance are
θ̂u,F = 8.79(2.15) and θ̂w,F = 8.61(2.15), where θ̂u,F is an unweighted estimate and
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θ̂w,F is a weighted estimate. The standard deviations are given in the parentheses.
These estimates correspond to frailty variances of 7.79 and 7.61 in our model. Fur-
thermore, they have estimated the marginal survival function for time to relapse,
Ŝ1(t1), the function presented in (3.14), which will be compared to our results.

In the following subsections we fit the bone marrow transplant data to the
illness-death model with shared frailty using maximum likelihood estimation. We
will test models with both the power law and the log-linear law, and have both
general and restricted models. We will also test whether some transition rates can
be modelled as constant to get a simpler model with fewer parameters. Finally,
we sum up with a comparison of the model fits, compare with the results of Fine
et al. (2001), and make a conclusion about which model gives the best fit.

5.1.1 The power law

The general model

In this section we assume the conditional transition rates can be modelled using
the power law from equation (3.7), and maximise the likelihood function in the
general model from (3.9). That means maximising the log likelihood function
in C.2.1. The obtained parameter estimates are presented in Table 5.1, and the
standard deviation and the 95% confidence intervals are included in the table.

The parameter values for the α̂is become small compared to the ones used in
the simulation study. This is because in the bone marrow transplant data set the
time until failure is much longer than the ones we simulated. We get negative
lower bounds for the α̂is. This is unrealistic since the transition rates cannot be
negative, so the lower bounds are set to be zero. We also note that the standard
deviation for θ̂ is large.

The estimated marginal transition rates for the transitions out of state 0 are
presented in Figure 5.1a. We note that the rate to death is higher than the
rate to relapse, but that the rates themselves are low. The estimated marginal
survival function for time to relapse, Ŝ1(t1), is given in Figure 5.2a. Here, the 95%
confidence interval is included, along with 50 bootstrapped survival functions found
by re-sampling from the data set and estimating the parameters. The confidence
intervals are estimated by linearising the logarithm of the survival function and
computing the variance. This is described in Appendix B.3 and the equation for
the limits are given in equation (B.11). As expected, some of the survival functions
found by bootstrapping are outside the 95% confidence interval.
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Table 5.1: Maximum likelihood estimates of parameters in the general illness-death
model with the power law for the bone marrow transplant data set. The standard
deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

α1 0.000200 0.000239 0 0.000668
α2 0.000420 0.000466 0 0.001333
α3 0.000517 0.001101 0 0.002675
β1 1.426809 0.251797 0.933287 1.920331
β2 1.287615 0.235588 0.825863 1.749368
β3 1.488679 0.364924 0.773428 2.203932
θ 3.984286 1.118510 1.792006 6.1765666

The restricted model

Now, we estimate the parameters in the restricted model by maximising the log
likelihood function in C.2.2, which corresponds to maximising the restricted likeli-
hood function given in equation (3.10). The obtained parameter estimates together
with the standard deviations and the 95% confidence bounds are presented in Ta-
ble 5.2. Again, the lower limits for the α̂is are negative so they are set to be zero.
Furthermore we note that the α̂is in this model are ten times smaller than the
ones in Table 5.1. This is however compensated by much higher β̂is and a higher
θ̂ in the restricted model.

The transition rates out of state 0 in the restricted model are presented in
Figure 5.1b. As in the general model, the rate to death is higher than the rate
to relapse. Compared to the general model, both rates are lower in the restricted
model. The estimated survival function for time to relapse, Ŝ1(t1), in the restricted
model is given in Figure 5.2b. Here, the 95% confidence interval is included, along
with 50 bootstrapped survival functions. Again as expected, some of the survival
functions found by bootstrapping are outside the 95% confidence interval. We see
that the restricted and the general model give similar estimates for the marginal
survival from relapse.

The two model fits can be compared using the maximum log likelihood values in
each model as a measure. The maximum log likelihood values in the general model
and restricted model with a power law are −942.61 and −950.24, respectively. We
perform a likelihood ratio test with the null hypothesis being that the restricted
model is the true model and the alternative hypothesis being that the general
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Table 5.2: Maximum likelihood estimates of parameters in the restricted illness-death
model with the power law for the bone marrow transplant data set. The standard
deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

α1 0.000021 0.000025 0 0.000070
α2 0.000033 0.000036 0 0.000104
β1 1.987193 0.252473 1.492346 2.482040
β2 1.934969 0.230151 1.483872 2.386066
θ 6.515850 1.233012 4.099146 8.932554
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(a) The general model.
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(b) The restricted model.

Figure 5.1: Estimated marginal transition rates for the transition to relapse (full line)
and the transition to death (dashed line) not following relapse in the general and re-
stricted model using the power law.

model is the true model. The likelihood ratio test and the formula of the test
statistic are presented in Appendix A.2. The test statistic is 15.26, chi-squared
distributed with 2 degrees of freedom. This means that we can reject the null
hypothesis with a 5% significance level.
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(a) The general model.
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(b) The restricted model.

Figure 5.2: Estimated survival functions for time to relapse, Ŝ1(t1), for the bone
marrow transplant data set using the power law. The solid lines are the estimated
probabilities, the dotted lines are estimates obtained from non-parametric bootstrap
samples and the dashed lines are the 95% confidence intervals.

Lastly, we compute the estimated survival function for time to death given that
a patient has had a relapse at a specific time, Ŝ12(t2|t1) from (3.15), in the general
model. A plot of this survival function is presented in Figure 5.3 for different
relapse times. From this figure it seems that the time of relapse has little impact
on the chances of survival. It seems that with this model the chances of survival are
a little lower for patients that experience a relapse after a long time compared to
the ones who relapse early after transplantation, since the curves become steeper as
the relapse time increases. However, the curves converge to a common probability
such that the time of relapse only affects the survival probability the first year or
so after relapse. We have not computed the estimated survival function for time
to death given relapse in the restricted model since we believe the general model
is a better fit due to the result of the likelihood ratio test.
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Figure 5.3: Estimated marginal survival functions for time to death given that a patient
has had a relapse, Ŝ12(t2|t1), for the power law. Each curve in this figure presents the
probability for survival given that there was a relapse at the time given on top of the
curve.

5.1.2 The log-linear law

The general model

In this section we assume that the conditional transition rates can be modelled
using the log-linear law from (3.8). First, the likelihood function for the gen-
eral model is maximised, which is done by maximising the log likelihood function
in C.2.3. The obtained parameter estimates along with the standard deviations
and the bounds for the 95% confidence intervals are presented in Table 5.3. We
note that the estimated frailty variance θ̂ is much lower than in the other models
considered so far.

The marginal transition rates out of state 0 in the general model with log-linear
law are presented in Figure 5.4a. As opposed to the power law, the rate to relapse
is now a little higher than the rate to death, and both rates are higher here than
with the power law. The estimated marginal survival function for time to relapse,
Ŝ1(t1), is presented in Figure 5.5a. Here, the 95% confidence interval is included,
along with 50 bootstrap survival functions. The confidence interval is estimated
in the same way as for the power law. This is described in Appendix B.3 and the
equation for the limits is given in equation (B.12).
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Table 5.3: Maximum likelihood estimates of parameters in the general illness-death
model with the log-linear law for the bone marrow transplant data set. The standard
deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

a1 -6.541741 0.223584 -6.979967 -6.103515
a2 -6.814524 0.236918 -7.278884 -6.350163
a3 -4.410459 0.342400 -5.081563 -3.739355
b1 -0.002298 0.000686 -0.003643 -0.000953
b2 -0.001593 0.000578 -0.002728 -0.000459
b3 -0.001189 0.000824 -0.002806 0.000427
θ 0.555935 0.455088 0 1.447908

The restricted model

We also estimate the parameters in the restricted model with log-linear law by
maximising the restricted likelihood function. The log likelihood function for this
model is given in C.2.4, and maximising this results in the parameter estimates
presented in Table 5.4, together with the standard deviations and the 95% confi-
dence bounds.

Table 5.4: Maximum likelihood estimates of parameters in the restricted illness-death
model with the log-linear law for the bone marrow transplant data set. The standard
deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

α1 -6.285297 0.271566 -6.817567 -5.753027
α2 -6.074593 0.244646 -6.554099 -5.595087
β1 0.000749 0.000836 -0.000888 0.002387
β2 0.001139 0.000697 -0.000227 0.002506
θ 4.061232 1.021664 2.058769 6.063694

The transition rates in the restricted model with log-linear law are presented
in Figure 5.4b. The two transition rates are almost equal in this model. The
estimated marginal survival function for time to relapse, Ŝ1(t1), is given in Fig-
ure 5.5b. The 95% confidence interval is included, along with 50 bootstrapped
survival functions. The curves are steeper than the ones for the general model in
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Figure 5.5a.
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(a) The general model.
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(b) The restricted model.

Figure 5.4: Estimated marginal transition rates for the transition to relapse (full line)
and the transition to death (dashed line) not following relapse in the general and re-
stricted model using the log-linear law.

The general and the restricted model with log-linear law can be compared
using a likelihood ratio test, which is described in Appendix A.2. The maximum
log likelihood values in the general model and restricted model with log-linear
law are −939.66 and −964.80, respectively. A likelihood ratio test with the null
hypothesis being that the restricted model is the true model and the alternative
hypothesis being that the general model is the true model, gives a test statistic
with value 50.28 being chi-squared distributed with 2 degrees of freedom. The null
hypothesis is therefore rejected with a significance level of 5%, which means that
the general model gives a statistically significant improvement on the maximum
likelihood value compared to the restricted model.

Finally, we present the estimated survival function for time to death given that
a patient has had a relapse, Ŝ12(t2|t1). A plot of this in given in Figure 5.6. In this
model, the curves have about the same shape for all relapse times which means
that a patient with a late relapse has about the same survival chances as a patient
with an early relapse. Compared to the curves from the power model in Figure
5.3 the estimated survival probability in the log-linear is much lower. Again, we
have not computed the estimated survival function for time to death given relapse
in the restricted model since we believe the general model is a much better fit.
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(a) The general model.
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(b) The restricted model.

Figure 5.5: Estimated survival functions for time to relapse, Ŝ1(t1), for the bone
marrow transplant data set using the log-linear law. The solid lines are the estimated
probabilities, the dotted lines are estimates obtained from 50 non-parametric bootstrap
samples and the dashed lines are the 95% confidence intervals.
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Figure 5.6: Estimated marginal survival functions for time to death given that a patient
has had a relapse, Ŝ12(t2|t1), for the log-linear law. Each curve in this figure presents
the probability for survival given that there was a relapse at the time given on top of
the curve.
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5.1.3 Sub-models with constant conditional transition rates

Before we compare the model fits we want to investigate the possibilities of having
some or all conditional transition rates constant. This corresponds to having
bi = 0 in the log-linear law or βi = 1 in the power law. This would give constant
conditional transition rates λ0i(t) = exp(ai), and cumulative conditional transition
rates Λ0i(t) = t exp(ai), i = 1, 2, 3, when we base on using the log-linear law. This
assumption is reasonable since the estimated bis in the log-linear law and the
estimated βis in the power law have confidence intervals indicating possibilities of
constant conditional transition rates.

A log likelihood function with bi = 0, i = 1, 2, 3 in the log-linear law in both the
general and restricted model has been implemented in R. The result from max-
imising the log likelihood function in the general model with constant conditional
transition rates for the bone marrow transplant data is presented in Table 5.5.
The parameter estimates are close to the ones for the general log-linear model
with bi 6= 0 given in Table 5.3, except for θ̂ which has increased. The maximum
log likelihood in this model is −944.48.

Table 5.5: Maximum likelihood estimates of parameters in the general illness-death
model with the log-linear law where all bi = 0 for the bone marrow transplant data set.
The standard deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

a1 -6.555849 0.240859 -7.027934 -6.083764
a2 -6.626798 0.244386 -7.105795 -6.147801
a3 -4.724115 0.260679 -5.235046 -4.213184
θ 2.457795 0.467264 1.541958 3.373631

We perform a likelihood ratio test with the null hypothesis being that all bi = 0
and the alternative hypothesis being all bi 6= 0. The log likelihood in the alternative
hypothesis was −939.66, which is the general log-linear law model, and −944.48
in the null hypothesis. This gives a test statistic of 9.64 which is chi-squared
distributed with 3 degrees of freedom, and leads to a rejection of the null hypothesis
with 5% significance level.

The same is done for the restricted log-linear law with constant conditional
transition rates, and the result from maximising the log likelihood is presented in
Table 5.6. The parameter estimates are almost the same as in the restricted log-
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linear model with all bi 6= 0 given in Table 5.4, except for θ̂ which has decreased.
The maximum log likelihood in this model is −966.58.

Table 5.6: Maximum likelihood estimates of parameters in the restricted illness-death
model with the log-linear law where all bi = 0 for the bone marrow transplant data set.
The standard deviations (SD) and limits for the 95% confidence interval are included.

Par. Estimate SD Lower bound Upper bound

a1 -6.363778 0.238929 -6.832079 -5.895477
a2 -5.994624 0.212429 -6.410985 -5.578263
θ 2.960120 0.494791 1.990330 3.929911

Again, we perform a likelihood ratio test with the null hypothesis being that
all bi = 0 and the alternative hypothesis being that all bi 6= 0. Since the restricted
power law performed better than the restricted log-linear law, we use the restricted
power law as alternative hypothesis. The maximum log likelihood value in the
alternative hypothesis was −950.24, and −966.58 in the null hypothesis. This
gives a test statistic of 32.68 which is chi-squared distributed with 2 degrees of
freedom. We reject the null hypothesis with 5% significance level, which means
that the improvement in the likelihood is statistically significant when going from
a restricted model with all bi = 0 to a restricted power law model with all βi 6= 1.

Lastly, we test two general models where λ03 = const and the other conditional
transition rates follow the power law and the log-linear law. We test the general
model because up until this point all general models have performed statistically
significantly better than the restricted models. Furthermore, in both Table 5.1 and
5.3 the estimates have indicated that λ03 is not statistically significantly different
from being constant.

In Table 5.7 the parameter estimates for a general power law model with β3 = 1
are presented. The maximum log likelihood for this model is −943.55. We note
that the maximum log likelihood for the general power law model from Section 5.1.1
was −942.61, a model with one parameter more than the one tested here. Again,
we perform a likelihood ratio test. The null hypothesis is the general power law
model with β3 = 1 and the alternative hypothesis is the general power law model.
This gives a test statistic of 1.88 chi-squared distributed with 1 degree of freedom.
With 5% significance level the null hypothesis cannot be rejected, and one can
conclude that the improvement in the maximum log likelihood value in the general
model from Section 5.1.1 is not statistically significant compared to the general
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power law model with β3 = 1.

Table 5.7: Maximum likelihood estimates of parameters in the general illness-death
model with the power law for the bone marrow transplant data set with assumption
β3 = 1. The standard deviations (SD) and limits for the 95% confidence interval are
included.

Par. Estimate SD Lower bound Upper bound

α1 0.000419 0.000414 0 0.001231
α2 0.000817 0.000747 0 0.002281
α3 0.009503 0.002703 0.004204 0.014803
β1 1.244138 0.191385 0.869023 1.619254
β2 1.119950 0.177662 0.771730 1.468169
θ 3.122930 0.793938 1.566810 4.679050

In Table 5.8, the maximum log likelihood estimates of the parameters in the
general log-linear law model with assumption b3 = 0 are presented. The maximum
log likelihood value in this model is −940.63. We note that this is close to the
maximum log likelihood value in the general log-linear law model in Section 5.1.2,
which was −939.66. A likelihood ratio test then has a test statistic of 1.94 chi-
squared distributed with one degree of freedom. We therefore do not reject the
null hypothesis with 5% level of significance. The conclusion from this is that
going from the general log-linear law model with b3 = 0 to the general model in
Section 5.1.2 does not give a statistically significant improvement in the maximum
log likelihood value.
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Table 5.8: Maximum likelihood estimates of parameters in the general illness-death
model with the log-linear law for the bone marrow transplant data set with assumption
b3 = 0. The standard deviations and limits for the 95% confidence interval are included.

Parameter Estimate SD Lower bound Upper bound

a1 -6.481748 0.000414 -6.482560 -6.480937
a2 -6.736707 0.000747 -6.738171 -6.735243
a3 -4.798302 0.002703 -4.803601 -4.793002
b1 -0.001864 0.191385 -0.376980 0.373251
b2 -0.001224 0.177662 -0.349443 0.346995
θ 1.056057 0.793938 0 2.612176

5.1.4 Conclusion and comparing results
Eight variations of the illness-death model with shared frailty have now been fitted
to the bone marrow transplant data set. In this subsection we summarise the
results and findings from the model fitting. We start by giving an overview of the
maximum log likelihood values for the models in Table 5.9.

As we have already seen, all the general models perform significantly better
than the corresponding restricted models. Furthermore, from the table we can
also note that a general model with all constant conditional transition rates gives
a better fit than a restricted model with non-constant conditional transition rates,
both with the power law and the log-linear law. This indicates that a relapse affects
survival probability, and that the conditional transition rate to death should be
different after a relapse. Moreover, by looking at the results in Table 5.1, Table 5.3,
Table 5.5, Table 5.7 and Table 5.8 the conditional transition rate λ03 is higher than
λ02 in all three models, which indicates that a relapse increases the probability of
death. This result agrees with conclusions from other literature, where it has been
found that the prognosis of relapsed disease is poor (Nguyen et al., 2008; Oriol
et al., 2010).

In Figure 5.7, the estimated marginal survival probability from relapse, Ŝ1(t1),
in the different models are displayed together. We see that the three power law
models (blue, green, cyan) give similar results. The models with constant condi-
tional transition rates also give similar curves (black, brown). The magenta and
red curve are general log-linear law models where the magenta curve is from the
model with λ03 being constant. The orange curve is the restricted log-linear law
model. The magenta and red differ from the other curves in that the probability
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Table 5.9: Maximum log likelihood values for the models in Section 5.1.

Model Max log L

General power law −942.61
Restricted power law −950.24
General log-linear law −939.66
Restricted log-linear law −964.80
General constant rates −944.48
Restricted constant rates −966.68
General power law, λ03 = const −943.53
General log-linear law, λ03 = const −940.63

of not having a relapse in these models is higher.
There could be many reasons for why the models give different results when it

comes to the estimated survival function for time to relapse as we see in Figure 5.7.
First of all, the tables with parameter estimates show that there is uncertainty in
all the parameters, and in some cases the 95% confidence intervals capture values
which will have different impact on the functions we want to estimate. For example,
in Table 5.1, the confidence intervals for all the β̂s in the general power law model
contain values both lower and higher than 1. Furthermore, most of the event times
are between 0 and 500 days, which causes the estimates to be better at these time
points and less good elsewhere. The data set also has many censored observations.
In fact as much as about 40 % of the observations belong to case 4, where the
observations are censored before any events occur.

In Section 5.1.3 we concluded that the general models with λ03 = const gave
model fits which were not statistically significantly improved on with the same
models having λ03 non-constant. Because of this we would suggest that a general
model with λ03 being constant gives the best fit for the bone marrow transplant
data set. Since these models have fewer parameters we can expect that the pa-
rameter estimates are more precise, even though they are less flexible. In other
words, we prefer models that sharply make correct estimates over models that
accommodate a wide range of possible results.

We now compare the two best model fits from our data analysis to the result
from Fine et al. (2001). This is done in Figure 5.8, and we see that our two
estimated survival functions flatten out more than the curve estimated by Fine
et al. (2001). Their non-parametric estimate is much steeper in the beginning
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Figure 5.7: Estimated marginal survival function for time to relapse, Ŝ1(t1), for all
eight models.

and seems to stabilise at a probability of about 0.4. Of the two models we have
included in the figure, the general power law model with constant λ03 is closest to
the non-parametric estimate. A cause for the difference can be that in our models
we have used parametric models for the conditional transition rates which could
be forcing the curves to be higher than the non-parametric estimate. Furthermore,
it is not only the time to relapse we have modelled. We have also modelled the
transitions to death from both the initial state and the relapsed state. This may
cause a trade-off between getting the estimates as precise as possible in all three
transition rates.

If we had included the restricted power law model in Figure 5.8, we would have
seen that this resembles the curve estimated by Fine et al. (2001) most of all our
models. In fact, according to Xu et al. (2010) the restricted illness-death model is
essentially equal to the copula model used in Fine et al. (2001). However, in this
section we have found that a general model is a better fit for the bone marrow
transplant data than a restricted model. This strengthens our results in Figure
5.8 compared to the curve estimated by Fine et al. (2001), and is also another
explanation for why the parametric marginal survival curves are not more similar
to the result from Fine et al. (2001).
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Figure 5.8: Estimated marginal survival function for time to relapse, Ŝ1(t1), in the
general model with the assumption λ03 = const, for both the power law (cyan) and the
log-linear law (magenta). Included is also the estimate from Fine et al. (2001) in solid
lines (black), the dashed lines (black) are the 95% confidence limits, and the dotted,
upper line (black) is the Kaplan-Meier estimate.

In all the models, the estimated frailty variance has been different and it has
not been as high as in the model of Fine et al. (2001). Overall, θ̂ has been lower in
the general models than the restricted models. It seems that the frailty therefore
varies more when there are fewer parameters in the model, as if the frailty has
more variation to describe when two transition rates are assumed to be equal.
This may explain the θ̂ in the general log-linear law model in Table 5.3 which was
only ∼ 0.56. Since the model was a good fit, there was not much more variation
in need of modelling and therefore the frailty variance was low.

From the results in this section it is clear that the interpretation of the con-
ditional and marginal transition rates is not the same. In the power law model
the conditional transition rates all increase with time, whereas the marginal tran-
sition rates given in Figure 5.1 have a peak at about 10-20 days and then decrease
with time. For the log-linear law, some of the conditional transition rates de-
crease with time and some conditional transition rates increase with time, while
the marginal transition rates in Figure 5.4 decrease with time. The reason for this
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difference between the marginal and the conditional transition rates is that the
conditional transition rates are person-specific and the marginal transition rates
are population-specific. A person-specific curve will usually increase with time
because sooner or later a person must have a transition. The population-specific
rates decrease with time because the most frail subjects have a transition first and
the more robust are left behind and have a long time before having a failure. This
will cause the the marginal transition rates to decrease even though the conditional
transition rates are increasing.

Usually, the frailty of a specific person is not accessible, which means that we
cannot say anything about the conditional transition rate of a specific patient. We
can only use the marginal transition rates which tells us something about the whole
population with the frailty averaged out. Therefore as long as we do not know the
frailty of a person, the marginal rates may be useful for drawing conclusions.

In summary, we have found that relapse increases the probability of death due
to the general models giving the best model fits, and the estimated conditional
transition rates to death after relapse are higher than without relapse. This result
corresponds with other studies which have found that prognosis of relapsed disease
is poor (Nguyen et al., 2008; Oriol et al., 2010). The general model with λ03

constant is the best model fit for the bone marrow transplant data. The maximum
log likelihood values for the models with power law and log-linear law are −943.53
and −940.63 respectively. Of these two models, the power law model resembles the
result found by Fine et al. (2001) in survival from relapse more than the log-linear
law.

5.2 Hospital-acquired pneumonia

In this section we will analyse the effect of hospital-acquired pneumonia on the
length of intensive care unit stay and hospital mortality using the data set icu.pneu
from the cohort study SIR 3. The data set can be found in the kmi library in R as
icu.pneu. Hospital-acquired pneumonia is the most commonly reported infection
in intensive care units (Wolkewitz et al., 2008), and it is of great interest to the
health care to understand how infections are associated with increased length of
hospital stay and the impact on the morbidity and mortality (Safdar et al., 2005).
For more about the cohort study the reader is referred to Wolkewitz et al. (2008).

The non-terminal event in this data set is hospital-acquired pneumonia, while
there are two terminal events, discharge from the hospital and death on the in-
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tensive care unit. We will consider both a model where these two are merged to
one terminal event, and the expanded model where the two terminal events are
considered separately, as presented in Section 3.5. We will refer to the illness-death
model with combined terminal events as the ordinary model, and the illness-death
model with two competing terminal events as the expanded model.

The failure times are measured in days from admittance on intensive care unit,
and for each of the four possible cases for observations in competing risks described
in Table 2.1 it has been observed

• 103 of case 1, out of these 82 were discharged alive and 21 died

• 1189 of case 2, out of these 1063 were discharged alive and 126 died

• 5 of case 3

• 16 of case 4

In this data set most of the failure times are between 1 and 20 days, and we
therefore expect that the parametric models will give best results in this interval.

The data set has been analysed in several chapters of a book by Beyersmann
et al. (2011). They have studied the impact of hospital-acquired pneumonia on
length of intensive care unit stay and the impact on intensive care unit mortality,
using a Markovian model. The main result from their study is that hospital-
acquired pneumonia increases the hospital mortality via prolonged stay (Beyers-
mann et al., 2011, p. 182-192, p. 202-206, p. 216-217).

In Section 5.2.1 the data will be modelled using the ordinary model and in
Section 5.2.3 the data will be modelled using the expanded model. The data set
contains information about age and sex of the patients. This information will be
included in the models as covariates in the ordinary and expanded model presented
in Section 5.2.2 and Section 5.2.4 respectively. For the data analysis in this section
we will only use the general model and one parametric model for the conditional
transition rates since we are mostly interested in comparing the ordinary and
expanded model, and this will reduce the number of analyses. The parametric
model we will use is the power law.
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5.2.1 The ordinary model

We first fit the ordinary illness-death model with power law to the pneumonia
data by maximising the log likelihood function given in C.2.1. The parameter
estimates are given in Table 5.10, and the standard deviations and limits for the
95% confidence intervals are included. From the parameter estimates it would
seem that most patients have a transition to end of stay rather than pneumonia.
Furthermore, we note that the conditional transition rate to end of stay with prior
pneumonia infection will be small in the beginning, but grow much faster than the
other rates due to the big β̂3.

Table 5.10: Maximum likelihood estimates of parameters in the ordinary illness-death
model with the power law for the pneumonia data set. The standard deviations (SD)
and limits for the 95% confidence interval are included.

Par. Est. SD Lower bound Upper bound

α1 5.42957e-04 1.97523e-04 1.55813e-04 9.30102e-04
α2 3.48583e-03 7.71232e-04 1.97422e-03 4.997445e-03
α3 4.40665e-05 3.86585e-05 0 1.19837e-04
β1 2.54557 0.17339 2.20573 2.88542
β2 2.76053 0.13678 2.49244 3.02863
β3 3.13487 0.26087 2.62356 3.64617
θ 1.74072 0.16168 1.42383 2.05762

To study the results visually, the marginal transition rates are computed. In
Figure 5.9 the transition rates for pneumonia infection and end of stay without
prior pneumonia infection are presented. The transition rate to hospital-acquired
pneumonia is small, and since the transition rate for end of stay is much higher
than the infection rate, most patients have an end of stay without pneumonia
infection. The estimated transition rate for end of stay after pneumonia infection
is given in Figure 5.10. This transition rate depends on the time of pneumonia
infection t1 in addition to the time since admission, and the curves are drawn for
different infection times s. Included are also the estimated transition rates for
end of stay without pneumonia infection for comparison. For all infection times s,
an infection of pneumonia decreases the transition rate to end of stay compared
to not being infected with pneumonia. Furthermore, as the time of pneumonia
infection increases, the transition rate to end of stay with pneumonia infection
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becomes more similar to the transition rate to end of stay without pneumonia
infection. This means that the effect of pneumonia is less prominent for patients
being infected late in the admission. Since we in this model do not distinguish
between the two terminal events, it is not possible to draw conclusions regarding
the two terminal events. We will study the probabilities for the terminal events
more closely in the Section 5.2.3 and Section 5.2.4 with the expanded model.
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Figure 5.9: Estimated transition rate for pneumonia infection (left) and for end of stay
prior to pneumonia infection (right) in the ordinary model.

The estimated probability of being in the infected state at time t, P̂01(t1) from
equation (3.16), is presented in Figure 5.11, along with 50 bootstrap estimates.
This probability has also been estimated by using the Aalen-Johanson estimator
(Beyersmann et al., 2011, p. 185-186), and the estimate of Beyersmann et al. (2011)
is included in Figure 5.11. As already seen in Figure 5.9, the rate to pneumonia
infection is small and so is the probability. We see that the probability is highest
at 10 to 15 days after admission, which coincides well with the transition rate in
the left plot in Figure 5.9, where the transition rate for pneumonia infection is at
its highest after 10 days.

The parametric estimate of the probability follows the non-parametric estimate
closely and is inside the confidence intervals of Beyersmann et al. (2011) at all
times. The bootstrap curves are also inside the confidence intervals most of the
time. This indicates a good model fit for the infection of pneumonia.
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Figure 5.10: Estimated transition rates for end of stay with prior pneumonia infection
at time s (black). Included is also the estimated transition rate for end of stay without
prior pneumonia infection (red).

5.2.2 Including covariates in the ordinary model

In this section we include covariates in the ordinary model. As described in Sec-
tion 3.4, to include covariates in the model, each conditional transition rate is
multiplied with a transition-specific covariate term.

Since we have information about age and sex of the patients in the data set
we include covariates for this. Each conditional transition rate then has two coef-
ficients, ϕi,age and ϕi,sexM , in addition to θ and the parameters in the power law.
The likelihood function for this model is given in equation (3.19), and the log like-
lihood function for this model is presented in C.2.5. This function is maximised,
and in Table 5.11 the parameter estimates for this model are presented along with
the standard deviations and limits for the 95% confidence bounds.

The covariate coefficient for age, ϕ1,age indicates that increasing age increases
the conditional transition rate for pneumonia infection. Age also slightly increases
the conditional transition rate to end of stay without pneumonia, while it has
a slight decreasing effect on the conditional transition rate to end of stay after
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Figure 5.11: Estimated transition probability P̂01(t1) for pneumonia infection in the
general model (red) and 50 bootstrap estimates (blue). Included is the Aalen-Johanson
estimator (black) (Beyersmann et al., 2011, p. 186) with 95% confidence intervals (dot-
ted) based on a complementary log-log transformation.

pneumonia infection.
The covariate coefficients for sex indicate that men have an increased condi-

tional transition rate to pneumonia infection compared to women, while they have
a decreased conditional transition rate to end of stay compared to women. For
end of stay after pneumonia infection, men have an increased conditional transi-
tion rate. We will look closer into the effects of covariates on end of stay when
using covariates in the expanded model in Section 5.2.4. The remaining parameter
estimates in Table 5.11 and their standard deviations have not changed much from
the model without covariates in Table 5.10.

We perform a hypothesis test on the effect of the covariates. The null hypothesis
is that there is no effect of the covariates, ϕ = 0, and the alternative hypothesis is
ϕ 6= 0. The test statistic, Z, for each covariate is the estimated covariate coefficient
divided by the standard deviation of the estimate. The p-values are then found
by computing the probability that a standard normal random variable is greater
than Z or smaller than −Z. This is a two-sided test, and the Z-statistic and the
p-values for the covariates are presented in Table 5.12. From the p-values in the
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Table 5.11: Maximum likelihood estimates of parameters in the ordinary illness-death
model with covariates for the pneumonia data set. The standard deviations (SD) and
limits for the 95% confidence interval are included.

Par. Est. SD Lower bound Upper bound

α1 2.32649e-04 1.52349e-04 0 5.31252e-04
α2 3.47003e-03 1.23334e-03 1.05268e-03 5.88738e-04
α3 5.89920e-05 6.48255e-05 0 1.86050e-04
β1 2.54457 0.17414 2.20326 2.88588
β2 2.76202 0.13718 2.49314 3.03089
β3 3.17824 0.26624 2.65641 3.70008
θ 1.73758 0.16217 1.41973 2.05542

ϕ1,age 1.01057e-02 6.21834e-03 -2.08226e-03 2.22936e-02
ϕ2,age 4.10830e-03 3.27232e-03 -2.30544e-03 1.05220e-02
ϕ3,age -9.21382e-03 9.87593e-03 -2.85706e-02 1.01430e-02
ϕ1,sexM 1.63175e-01 2.25482e-01 -2.78769e-01 6.05120e-01
ϕ2,sexM -1.49466e-01 1.20292e-01 -3.85238e-01 8.63063e-02
ϕ3,sexM 6.79684e-02 3.27536e-01 -5.74001e-01 7.09938e-01

table we see that none of the covariates are statistically significant with 5% level
of significance.

We use a likelihood ratio test to see if the model with covariates gives a statis-
tically significant improvement on the maximum likelihood value compared to the
ordinary model without covariates from Section 5.2.1. The maximum likelihood
value for the model with covariates is −5189.87, which is the alternative hypoth-
esis. The null hypothesis is the ordinary model with no covariates which has a
maximum likelihood value of −5193.88. The theory for likelihood ratio tests and
the test statistic are presented in Appendix A.2. The test statistic has a value of
8.02 and is chi-squared distributed with 6 degrees of freedom, since there are six
more parameters in the model with covariates. This means that we do not reject
the null hypothesis with 5% significance level. In other words adding covariates to
the ordinary model does not improve the maximum likelihood value enough to be
statistically significant.

Now, we take a closer look at the covariate for age for the conditional transition
rate to pneumonia infection, ϕ1,age. Several sources state that the elderly have a
higher risk of being infected with pneumonia (Koivula et al., 1994; Paul et al.,
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Table 5.12: The Z-statistics and p-values for the covariates in the ordinary illness-death
model for the pneumonia data set.

Par. Z p-value

ϕ1,age 1.6251 0.1041
ϕ2,age 1.2555 0.2093
ϕ3,age -0.9329 0.3509
ϕ1,sexM 0.7237 0.4692
ϕ2,sexM -1.2425 0.2141
ϕ3,sexM 0.2075 0.8356

2015). With this information available, it will be natural to perform a one-sided
hypothesis test with the null hypothesis being ϕ1,age = 0, and the alternative
hypothesis being ϕ1,age > 0, which is that increasing age increases the conditional
transition rate to pneumonia infection. The Z-statistic for ϕ1,age will still be the
same as in Figure 5.12, but the p-value will be half of the p-value for ϕ1,age in
Table 5.12. This is because the p-value is now found by computing the probability
that a standard normal random variable is greater than Z. The p-value for ϕ1,age

is then about 0.0521, which is not far from being statistically significant with a
significance level of 5%.

Even though the covariates are not statistically significant with a significance
level of 5%, it does not mean that there is no difference in the conditional transition
rates for different ages or between male and female patients. It only means that we
cannot with enough certainty reject the null hypothesis which says that there is no
difference for different covariate values. There may still be effects of the covariates
and it should be kept in mind that the high p-values do not imply that there are
no differences between groups of patients (Rothman et al., 2008).

We have computed P̂01(t1) using the estimates in Table 5.11 for different values
of the covariates even though they are not statistically significant. This is presented
in Figure 5.12. In Figure 5.12a we have estimated the transition probability for
pneumonia infection for three men aged 30, 60 and 90 years, and find that the
probability of being infected with pneumonia is higher for older patients, which
corresponds to the results in Table 5.11. Figure 5.12b compares the transition
probability for a man and a woman both 60 years old, and it shows that men have
a higher probability of being infected with pneumonia than women.
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(a) Three men aged 90 (black), 60 (red)
and 30 (green) years old.
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(b) Man (black) and woman (red) both
60 years old.

Figure 5.12: Transition probabilities for being in the infected state at time t using
the estimates in the ordinary model with covariates. Note that the covariate for sex is
not statistically significant, while the covariate for age is close to statistically significant
with a one-sided test.

5.2.3 The expanded model

In this section the pneumonia data set is modelled using the expanded model such
that death and discharge can be studied separately. Recall the expanded model
in Figure 3.1, and that in this model the conditional transition rate to pneumonia
infection is γλ01. Moreover, γλ02a and γλ02b are the conditional transition rates
to discharge and death respectively prior to pneumonia infection, and γλ03a and
γλ03b are the conditional transition rates to discharge and death respectively after
pneumonia infection.

We begin by fitting the expanded model to the data using the log likelihood
function given in C.2.6. The parameter estimates for the model are presented in
Table 5.13. The Hessian matrix in this model is non-invertible and therefore the
standard deviations have been calculated using bootstrapping, and the confidence
intervals have been estimated using the percentile method. These have been cal-
culated using 200 bootstrap estimates, which is usually a sufficient amount (Efron
and Tibshirani, 1994). The parameter estimates in the expanded model are similar
to the estimates in the ordinary model in Table 5.10, in the sense that λ̂01, λ̂02, λ̂03
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in the ordinary model are approximately equal to λ̂01, λ̂02a+ λ̂02b, λ̂03a+ λ̂03b in the
expanded model.

Table 5.13: Maximum likelihood estimates of parameters in the expanded illness-
death model with power law for the pneumonia data set. The standard deviations from
bootstrapping (SDB) and limits for the 95% percentile confidence intervals are included.

Par. Est. SDB Lower boundB Upper boundB
α1 5.30027e-04 2.03684e-05 5.29565e-04 5.40682e-04
α2a 3.38892e-03 1.89421e-05 3.38668e-03 3.42467e-03
α2b 1.35486e-04 4.65512e-06 1.35300e-04 1.38724e-04
α3a 4.40643e-05 5.29643e-05 1.21220e-05 1.79707e-04
α3b 3.18628e-06 1.65178e-04 4.44203e-09 1.58845e-04
β1 2.56097 0.05588 2.45723 2.67052
β2a 2.73386 0.04468 2.64599 2.82567
β2b 3.14435 0.05496 3.02925 3.24641
β3a 3.07312 0.18628 2.67806 3.38627
β3b 3.42693 0.70983 2.37545 5.14524
θ 1.75650 0.08734 1.57816 1.91565

Before we visualise the results, we test some sub-models and compare their
maximum log likelihood values to the maximum log likelihood value in the ex-
panded model which is −5641.35. The β̂is in Table 5.13 all have confidence inter-
vals that do not cover the value 1. Therefore, it is not likely that a model with
constant conditional rates is suitable. The parameter estimates for λ01 and λ2b

are most similar with regards to α̂1 and α̂2b. We therefore fit a model with the
restriction λ01 = λ02b. The log likelihood function for this model is not given. We
find a maximum log likelihood value of −5648.49. Using a likelihood ratio test
with null hypothesis being the sub-model and the alternative hypothesis being the
expanded model, the test statistic is 14.28 chi-squared distributed with 2 degrees
of freedom. This leads to a rejection of the null hypothesis with 5% significance
level.

The second sub-model we test has the restriction λ02b = λ03a, which is the null
hypothesis. It gives a maximum log likelihood value −5655.31. A likelihood ratio
test then gives a test statistic with value 27.92 which is chi-squared distributed with
2 degrees of freedom. The alternative hypothesis is still the expanded model. This
test statistic is high so the null hypothesis is rejected with 5% level of significance.
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Since we did not find any reasonable sub-models that were almost as good as
the expanded model itself, we continue our analysis with the expanded model. In
Figure 5.13 the estimated transition rates for pneumonia infection, and discharge
and death prior to pneumonia infection are presented. From this, we find that
most patients who has an end of stay without pneumonia are discharged. The
transition rate to death without pneumonia is about the same as the transition
rate to pneumonia infection, although a little higher.
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Figure 5.13: Estimated transition rates in the expanded model for pneumonia infection
(left) and end of stay prior to pneumonia infection (right) caused by discharge (full line)
and death (dashed line).

The transition rates to death and discharge after pneumonia infection at a
specific time s are given in Figure 5.14. Included are also the transition rates for
death and discharge without pneumonia infection. Recall that what is presented
here are the instantaneous rates at which patients experience failure, given that
they have survived up to time t, and possibly was infected at time s. This makes
the curves a little hard to interpret and compare. However, we find that as s
increases the transition rates to discharge and death after pneumonia infection
decrease and become more similar to the rates to discharge and death without
pneumonia. This means that the effect of pneumonia is less apparent for patients
who are infected with pneumonia late in their hospital stay than patients being
infected early, as we also saw in Section 5.2.1.

Furthermore, for all s the curves without infection are higher than the curves
with pneumonia infection. This means that the patients who are infected with
pneumonia have a lower transition rate to both discharge and death for the first
15 to 20 days after infection compared to patients who have not been infected.
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After about 15 to 20 days after infection, the curves cross. However, as we will see
in the next paragraph this does not mean that the probability of being discharged
is bigger for patients who have experienced pneumonia infection.
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Figure 5.14: Estimated transition rates for discharge (full line) and death (dashed line)
with prior pneumonia infection at time s in black. The red curves are the transition rates
to discharge (full line) and death (dashed line) without prior pneumonia infection.

In Figure 5.15 we have plotted the estimated transition probabilities which
were presented in Section 3.5. These are the probabilities of being discharged
and dead at time t for patients who have been infected at time s, P̂12a(t|s) and
P̂12b(t|s). In the same plots are also P̂02a(t) and P̂02b(t), the probabilities of being
discharged and dead without pneumonia infection. From this figure we clearly see
that pneumonia infection decreases the probability of being discharged, especially
right after infection. Furthermore, pneumonia infection increases the probability
of death for patients being hospitalised more than 20-30 days.

For death, the difference in the estimated transition probability between in-
fected and non-infected patients is not as big as the difference between the dis-
charge transition probabilities for infected and non-infected patients for the first
30 days. This indicates that the effect of pneumonia is bigger on discharge than
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Figure 5.15: Estimated transition probabilities for death (black, dashed) and discharge
(black, full line) with prior pneumonia infection at time s. Included are also the estimated
transition probabilities for death (red, dashed) and discharge (red, full line) without prior
pneumonia infection.

in death.
As s increases, the curves for infected patients become steeper. This means

that the effect of pneumonia infection is smaller as the time of infection increases.
This corresponds to what we saw from the transition rates in Figure 5.10 and
Figure 5.14 where the transition rates with and without pneumonia become more
similar as s increases.

The non-parametric transition probabilities have been estimated using the
Aalen-Johansen estimators (Beyersmann et al., 2011, p. 187-188). These are the
transition probabilities for end of stay in the model where the two terminal events
are taken together, P02(t2) and P12(t2|t1). Note that P02(t2) in Beyersmann et al.
(2011) is the transition probability of end of stay where end of stay after acquiring
pneumonia is included, as opposed to our model where the pneumonia infected are
not included in P02(t2). However, since the probability of acquiring pneumonia is
low, the difference will be small. When we add together the black, dashed curve
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with the black, full curve from Figure 5.15, we should get the same as the Aalen-
Johansen estimators, and when we add the red, dashed curve with the red, full
curve we should get almost the same results as the Aalen-Johansen estimators.
We have not presented our curves together with the non-parametric estimates,
but in fact the curves look similar. After about 30 days however, our parametric
estimates underestimate the probabilities compared to the Aalen-Johansen esti-
mators, which is not surprising since there is less data after 30 days than before
30 days.

5.2.4 Including covariates in the expanded model

In this section we include covariates in the expanded model by multiplying the
conditional transition rates and the conditional cumulative transition rates in the
likelihood function from (3.20) with transition-specific covariate terms as described
in Section 3.4. Since there are five conditional transition rates, we get ten covariate
coefficients in the model, two for each conditional transition rate describing the
effect of age and sex.

The log likelihood function for this model, which is given in Appendix C.2.7, is
maximised for the pneumonia data set, and the parameter estimates are presented
in Table 5.14. Since the Hessian is non-invertible, the standard deviations and
confidence intervals have been calculated using 200 bootstrap samples.

We start by looking at the coefficients for age. From the table, high age seems
to have an increasing effect on the conditional transition rate to pneumonia in-
fection. Moreover, the coefficient is close to the same coefficient in the ordinary
model presented in Table 5.11, which is as expected. Furthermore, age also seems
to increase the conditional transition rate to death without pneumonia infection
and slightly increase the conditional transition rate to discharge without pneumo-
nia. However, increasing age seems to have a decreasing effect on the discharge
conditional transition rate and a slight decreasing effect on the conditional tran-
sition rate to death with pneumonia infection. The decreasing effect here is ten
times bigger on the conditional transition rate to discharge than the conditional
transition rate to death.

The table also shows the coefficients for sex. The conditional transition rate to
pneumonia infection is higher for men than women. Men have a lower conditional
transition rate to discharge than women, but a higher conditional transition rate
to death. However, for the ones who are infected with pneumonia, the men have a
higher conditional transition rate to discharge and a lower conditional transition
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Table 5.14: Maximum likelihood estimates of parameters in the expanded illness-death
model with covariates for the pneumonia data set. The bootstrap standard deviations
(SDB) and bounds for the 95% percentile confidence interval are included.

Par. Est. SDB Lower boundB Upper boundB
α1 2.16086e-04 1.55495e-04 5.87773e-05 6.26368e-04
α2a 3.84399e-03 1.30667e-03 1.82886e-03 7.032831e-03
α2b 2.30373e-05 2.03631e-05 4.69397e-06 7.58126e-05
α3a 4.72314e-05 1.29020e-04 2.42308e-06 3.35065e-04
α3b 7.84645e-06 5.76185e-04 1.98458e-08 9.35666e-04
β1 2.56516 0.13816 2.33456 2.84209
β2a 2.73627 0.13441 2.52208 3.04728
β2b 3.17108 0.17253 2.87368 3.51829
β3a 3.12801 0.30497 2.66782 3.79347
β3b 3.46747 0.72497 2.21358 5.04740
θ 1.75684 0.14952 1.50786 2.07809

ϕ1,age 1.06046e-02 6.37346e-03 -1.60974e-03 2.35827e-02
ϕ2a,age 2.34243e-03 3.40434e-03 -4.59823e-03 9.06632e-03
ϕ2b,age 2.62833e-02 6.79551e-03 1.33539e-02 3.98136e-02
ϕ3a,age -1.07193e-02 1.32614e-02 -3.58406e-02 1.47958e-02
ϕ3b,age -2.49579e-03 2.13658e-02 -4.50545e-02 4.33985e-02
ϕ1,sexM 1.69696e-01 2.23558e-01 -2.88141e-01 5.74772e-01
ϕ2a,sexM -1.68873e-01 1.27475e-01 -4.05406e-01 7.68661e-02
ϕ2b,sexM 8.60188e-02 2.36424e-01 -3.53856e-01 5.66228e-01
ϕ3a,sexM 2.34488e-01 4.07662e-01 -5.09044e-01 9.92058e-01
ϕ3b,sexM -5.71287e-01 6.71115e-01 -2.02984 7.30264e-01

rate to death than women.
Of the remaining parameter estimates, α̂2b is the only estimate that has changed

much from the estimates in the expanded model without covariates in Table 5.13.
This is because the estimated covariate coefficient for age, ϕ̂2b,age, is quite large
and the scaling of λ̂02b must therefore be changed. The standard deviations in this
model are bigger than in the expanded model without covariates in Table 5.13,
because there are ten more parameters in this model.

We perform a hypothesis test where the null hypothesis is that there is no
effect of the covariates, ϕ = 0, while the alternative hypothesis is ϕ 6= 0. The



5.2. HOSPITAL-ACQUIRED PNEUMONIA 67

Table 5.15: The Z-statistics and p-values for the covariates in the expanded illness-
death model for the pneumonia data set.

Par. Z p-value

ϕ1,age 1.6639 0.0961
ϕ2a,age 0.6881 0.4914
ϕ2b,age 3.8677 0.0001
ϕ3a,age -0.8083 0.4189
ϕ3b,age -0.1168 0.9070
ϕ1,sexM 0.7591 0.4478
ϕ2a,sexM -1.3248 0.1853
ϕ2b,sexM 0.3638 0.7159
ϕ3a,sexM 0.5752 0.5652
ϕ3b,sexM -0.8513 0.3946

Z-statistic and p-values for the covariates in the expanded model are computed
as in the ordinary model, by dividing the estimated coefficients by their standard
deviation. The Z-statistics and p-values are presented in Table 5.15. The p-values
indicate that only the covariate for age on the conditional transition rate to death
without pneumonia, ϕ̂2b,age, is statistically significant with 5% significance level.

If we use the same argumentation as in Section 5.2.2, which is that the elderly
have an increased risk of pneumonia infection, a one-sided hypothesis test gives
a p-value of about 0.0481 for ϕ̂1,age. This indicates statistical significance of the
covariate for age for the conditional transition rate to death without pneumonia.

To compare the expanded model with covariates to the expanded model with-
out covariates, we again use a likelihood ratio test where we let the former be
the alternative hypothesis and the latter be the null hypothesis. The maximum
likelihood value in the models are −5641.35 and −5626.71 in the null hypothesis
and alternative hypothesis respectively. This gives a test statistic of 29.28 with 10
degrees of freedom, which suggest a rejection of the null hypothesis with a signif-
icance level of 5%. This means that the expanded model with covariates gives a
significantly better fit than the expanded model without covariates.

In Figure 5.16 the effect of the covariates on P̂02a(t) and P̂02b(t) is presented.
We start by exploring the statistically significant covariate ϕ2b,age. Figure 5.16a
shows P̂02b(t) for three men aged 30, 60 and 90 years. We find that older patients
have a higher probability of being dead than young patients, which corresponds
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to that age has an increasing effect on the conditional transition rate to death
without pneumonia.
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(a) Three men aged 90 (black), 60 (red)
and 30 (green) years old.
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(b) Man (black) and woman (red), both
60 years old.

Figure 5.16: Transition probability P̂02a(t) (full line) and P̂02b(t) (dashed line) using
the estimates in the expanded model with covariates. Only the covariate for age on the
transition rate to death is statistically significant here.

Furthermore, Figure 5.16a also contains P̂02a(t) for male patients of different
ages. We see that young male patients have a higher probability of being discharged
than old patients after they have been admitted for more than about 10 days.
This does not correspond with the result in Table 5.14, where we saw that higher
age is slightly increasing the conditional transition rate to discharge. However,
age increases the conditional transition rate to death more than it increases the
conditional transition rate to discharge. This means that the conditional transition
rate to death for young patients is much lower than for old patients, while the
conditional transition rate to discharge for young patients is only slightly lower
than for old patients. Since the conditional transition rate to discharge is higher
than the conditional transition rate to death regardless of age, young patients will
have a higher probability of discharge than old patients.

In the Figure 5.16b, P̂02a(t) and P̂02b(t) are presented for one man and one
woman both 60 years old. The probability of being discharged is higher for women
than men and the probability of being dead is higher for men than women, which
corresponds to the covariate coefficients for the conditional transition rates. Never-
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theless, the effect of sex is small, especially for death which is far from statistically
significant, and is not showing before a few days after admission.

The effect of the covariates on P̂12a(t|s) and P̂12b(t|s) is also presented. In
Figure 5.17, P̂12a(t|s) and P̂12b(t|s) are presented for different times s for men aged
30, 60 and 90 years old. For discharge we find the same as we did in Figure 5.16a,
that older patients have a decreased probability of being discharged compared to
young patients, although this effect is not statistically significant.

For death we also find the same as we did in 5.16a, which is that older patients
have an increased probability of dying compared to young patients. However, the
coefficients from Table 5.14 indicate that increasing age has a decreasing effect
on the conditional transition rate to death. Here we get the same effect as we
did for P̂02a(t), which is that increasing age decreases the conditional transition
rate to discharge more than it decreases the conditional transition rate to death.
This means that the ratio between the conditional discharge and death rate for
older patients is smaller than for young patients, and by this, older patients have
a higher probability of dying after pneumonia than young patients.

In Figure 5.18, P̂12a(t|s) and P̂12b(t|s) are presented for different times s for a
man and a woman both 60 years old. Here, the results are such that a man has a
higher probability of being discharged after pneumonia infection, while a woman
has a higher probability of dying after pneumonia infection. This corresponds to
the fact that men has a lower conditional transition rate to death after pneumonia
than women, and that men have a higher conditional transition rate to discharge
than women. However, this effect is not statistically significant.

5.2.5 Conclusion and comparing results

In this section we compare the four model fits together and see if we can make a
conclusion about the effect of hospital-acquired pneumonia on hospital mortality
and morbidity.

With the expanded model, we find that hospital-acquired pneumonia reduces
the transition rate to discharge and the probability of discharge, and also increases
the probability of dying on the intensive care unit. From other literature (Bey-
ersmann et al., 2011, p. 190) it has already been concluded that the increased
probability of death after pneumonia infection is a cause of the prolonged stay
in the hospital and that the death hazard remains more or less unchanged. We
compute the conditional explanatory hazard ratio for the dependence of discharge
and death on hospital-acquired pneumonia in Figure 5.19. The curves show how
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Figure 5.17: Estimated transition probabilities P̂12a(t|s) (full line) and P̂12b(t|s)
(dashed line) using the estimates in the expanded model with covariates for three men
aged 90 (black), 60 (red) and 30 (green) years old. None of the covariates here are
statistically significant.

many times the risk of getting discharged or dying is increased over time by acquir-
ing pneumonia. We find that the conditional risk of dying is actually decreased
by acquiring pneumonia, however not as much as discharge. Since this measure
is a conditional measure and also Markov, we can only interpret it on a person-
specific level. For the population-specific interpretation we therefore also consider
the marginal transition rates for discharge and death.

The marginal transition rates in Figure 5.14 show a similar result as the one
found by Beyersmann et al. (2011). The difference between the two transition
rates to death for patients with and without pneumonia infection are not equal,
but they are similar when we compare with the difference between the transition
rates to discharge with and without pneumonia. This supports the conclusion
drawn by Beyersmann et al. (2011), that pneumonia does not have a direct effect
on the hospital mortality, at least not a strong one. The increased probability of
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Figure 5.18: Estimated transition probabilities P̂12a(t|s) (full line) and P̂12b(t|s)
(dashed line) using the estimates in the expanded model with covariates for a man
(black) and a woman (red) both 60 years old. None of the covariates here are statisti-
cally significant.

death is mostly caused by a prolonged stay for the infected patients.
We have included covariates for age and sex in the models. Using a likelihood

ratio test it was found that the ordinary model without covariates was a statisti-
cally significantly better fit than with covariates. However, in the expanded model
the model with covariates was a better fit than the model without covariates. This
is because it was only the age-covariate for death without prior pneumonia ϕ2b,age

that was statistically significant, and age turned out to have larger effect on death
without pneumonia than on discharge without pneumonia. In the ordinary model,
the covariates for the combined endpoints had to explain both death and discharge,
and since these were quite different, the covariate was not significant.

Furthermore, the coefficients for the covariates must be interpreted carefully
as they only apply on a subject-specific level. In the analysis in Section 5.2.4 we
saw that the sign of the covariate coefficient for the conditional transition rates are
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Figure 5.19: The conditional explanatory hazard ratio (EHR) for the dependence of
discharge (left) and death (right) on pneumonia infection.

not directly associated with increased or decreased probability in the population.
Even though increasing age had a slight positive effect on the conditional transition
rate to discharge, that is we found ϕ̂2a,age > 0, young patients still had a higher
probability of being discharged. This is because the probability of being discharged
also depends on the conditional transition rate to death prior to pneumonia and
the conditional transition rate to pneumonia infection.

The analysis of the pneumonia data set with the expanded model with covari-
ates could be improved by trying to reduce the amount of covariates in the model.
Some of the covariates in the model have high p-values, and a model without these
can therefore be tested out. Reducing the parameters in the model will give pa-
rameter estimates that are more precise. A likelihood ratio test could then tell if
the model with covariates for all transition rates is statistically significantly better
than a model with covariates for only a few conditional transition rates.



Chapter 6

Concluding remarks

In this thesis we have explored the illness-death model with shared frailty intro-
duced by Xu et al. (2010). Parametric functions for the conditional transition
rates have been included, whereas Xu et al. (2010) use non-parametric conditional
transition rates, and the model has been expanded by including an additional ter-
minal state. We have also included covariates in the model using the conditional
approach. In this chapter the main results from the thesis with regards to the
model are discussed, and we present some suggestions for further work with the
model.

6.1 Conclusion and main results

The illness-death model with shared frailty has a good way to handle the de-
pendency between the non-terminal failure time and the terminal failure time by
incorporating a frailty. With the conditional approach, the transition rates are
Markov which makes it easy to construct a likelihood function. Since this ap-
proach does not go beyond the observable data, the problem with latent failure
times is avoided.

Moreover, the simulation study in Chapter 4 shows that maximum likelihood
estimation produces good estimates for the model parameters. The estimates for
the real data sets also seem reasonable and produce sensible probability functions.
Furthermore, it is simple to add more terminal states to the model and to include
covariates. Because of this, the structure of the model can be simply customised
to fit other situations than the ones studied in this thesis. For example a model
with two non-terminal states.
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It it important to note that the conditional transition rates and the marginal
transition rates have different interpretations. In our opinion the conditional tran-
sition rates are not as useful as the marginal transition rates since γ is usually
not known. Furthermore, the conditional transition rates only apply on a subject-
specific level and not for the whole population of subjects. To make interpretation
simpler the frailty can be integrated out of probability functions found using the
conditional approach, which gives marginal measures. Marginal measures are often
of interest to the health care, who wants to understand how non-terminal events
like disease relapse or infections can affect other events for a population On the
other hand, a patient may be more interested in the conditional measures as this
has a person-specific interpretation. Since the interpretation of the marginal and
conditional measures are different we recommend to use both side by side to obtain
a full understanding of the semi-competing risks situation.

Finally, we have not performed a simulation study with the models where
covariates have been included. This should be done so that we can evaluate the
quality of the estimates and use the method with confidence, also when including
covariates. However, since the estimates with covariates were close to the estimates
without covariates, we can assume that the estimates are trustworthy.

6.2 Further work

A possible further expansion of the model could be to use another distribution
class for the frailty. In frailty models, the standard assumption is to use a Gamma
distribution for the frailty. The Gamma distribution is well known and has simple
distributions, but there are no biological reasons for this choice (Hougaard, 1995).
Other distribution classes that are used for the frailty, and could be possible to try
are the lognormal distribution, the inverse Gaussian distribution and the positive
stable distribution (Duchateau and Janssen, 2007).

A modelling framework for analysis of semi-competing risks based on the
shared-frailty illness-death model by Xu et al. (2010) has recently been imple-
mented in R, in the library SemiCompRisks. This modelling framework is pro-
posed in Lee et al. (2015a) and Lee et al. (2015b), and allows for estimation and
inference for regression parameters, the investigation of dependence structure, and
prediction given covariates. The underlying model to characterise the dependency
between T1 and T2 is the illness-death model with shared frailty, which means that
they use the same definitions of the marginal and conditional transition rates as
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we have in this thesis. Furthermore, the novel modelling framework supports both
frequentist and Bayesian analysis. Prior distributions must therefore be chosen for
the frailty variance, the covariates and some other additional parameters of the
model in the Bayesian analysis. The framework permits cluster-correlated data
and both parametric and non-parametric specifications for a range of components
which gives much flexibility in the model. The framework also allows for both the
Markov model and the semi-Markov model for the conditional transition rates.
Because this modelling framework essentially is the same as what we have im-
plemented in this thesis, it would be interesting to study the framework more in
detail. It would also be interesting to apply it to the bone marrow transplant data
set analysed in Section 5.1 and the pneumonia data set analysed in Section 5.2 to
see if we obtain the same results as in this thesis.



76 CHAPTER 6. CONCLUDING REMARKS



Bibliography

Beyersmann, J., Allignol, A., and Schumacher, M. (2011). Competing risks and
multistate models with R. Springer Science & Business Media.

Casella, G. and Berger, R. L. (2002). Statistical inference, volume 2. Duxbury
Pacific Grove, CA.

Duchateau, L. and Janssen, P. (2007). The frailty model. Springer Science &
Business Media.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC
press.

Fine, J. P., Jiang, H., and Chappell, R. (2001). On semi-competing risks data.
Biometrika, 88(4):907–919.

Fix, E. and Neyman, J. (1951). A simple stochastic model of recovery, relapse,
death and loss of patients. Human Biology, 23(3):205–241.

Givens, G. H. and Hoeting, J. A. (2012). Computational statistics, volume 710.
John Wiley & Sons.

Gutierrez, R. G. et al. (2002). Parametric frailty and shared frailty survival models.
Stata Journal, 2(1):22–44.

Hougaard, P. (1995). Frailty models for survival data. Lifetime data analysis,
1(3):255–273.

Jiang, H., Fine, J. P., and Chappell, R. (2005). Semiparametric analysis of survival
data with left truncation and dependent right censoring. Biometrics, 61(2):567–
575.

77



78 BIBLIOGRAPHY

Klein, J. P. and Moeschberger, M. L. (1997). Survival analysis Techniques for
Censored and truncated data. Springer Science & Business Media.

Koivula, I., Sten, M., and Makela, P. H. (1994). Risk factors for pneumonia in the
elderly. The American journal of medicine, 96(4):313–320.

Lee, K. H., Dominici, F., Schrag, D., and Haneuse, S. (2015a). Hierarchical models
for semi-competing risks data with application to quality of end-of-life care for
pancreatic cancer. arXiv preprint arXiv:1502.00526.

Lee, K. H., Haneuse, S., Schrag, D., and Dominici, F. (2015b). Bayesian semipara-
metric analysis of semicompeting risks data: investigating hospital readmission
after a pancreatic cancer diagnosis. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 64(2):253–273.

Lee, Y., Nelder, J. A., et al. (2004). Conditional and marginal models: another
view. Statistical Science, 19(2):219–238.

Lindqvist, B. H. (2006). Competing risks. Department of Mathematical Sciences,
Norwegian University of Science and Technology.
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Appendix A

Additional theory

A.1 Shared frailty models

A frailty is an unobservable multiplicative effect on a hazard function which is
assumed to be individual or group-specific (Gutierrez et al., 2002). It is a random
variable with unit mean and a variance which can be estimated along with the
other model parameters. The distribution of the frailty is often assumed to belong
to a known distribution class, usually the Gamma distribution. Subjects with a
frailty greater than one experience a greater hazard of failure than subjects with
a frailty less than one.

There are two main types of frailty models. They are the frailty model and
the shared frailty model. The frailty model is used with univariate data, while
the shared frailty model is used with multivariate data and the frailty is shared
among individuals such that it models intra-group correlation (Nielsen et al., 1992).
Sharing a frailty generates dependency between the subjects. In the illness-death
model with shared frailty however, the frailty is shared between the transition
rates of each subject generating dependency between the transition rates.

Let the frailty be denoted by γ. Since it is a multiplicative effect, the hazard
function conditional on the frailty is λ(t|γ) = γλ0(t). λ(t|γ) is then a conditional
hazard function. The frailty γ can be integrated out by using the known distri-
bution class of γ. Then the resulting hazard function, λ(t), is called the marginal
hazard function and is a function of the parameters in the frailty distribution and
λ0(t).
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A.2 Likelihood ratio test
In Chapter 5, the likelihood ratio test is used to compare the goodness of fit of
two models, where one is a special case of the other. These two models are often
referred to as the null hypothesis and the alternative hypothesis, where the null
hypothesis is a special case of the alternative hypothesis.

The test is based on a test statistic, λ(x) which is the likelihood ratio between
the two models, and it expresses how many times more likely the data are under
one model than the other,

λ(x) = supΘ0 L(µ|x)
supΘ L(µ|x) (A.1)

where Θ0 are the possible parameter values under the null hypothesis, and Θ
are the possible parameter values under the alternative hypothesis (Casella and
Berger, 2002).

The test statistic can be used to compute a p-value, or compared to a critical
value to decide whether to reject the null hypothesis in favour of the alternative
model. A result by Wilks (1938), says that as the sample size n approaches ∞,
the test statistic −2 log λ(x) will be asymptotically chi-squared distributed with
degrees of freedom equal to the difference in parameters in the null hypothesis and
the alternative hypothesis. In this thesis we use −2 log λ(x) as test statistic in the
likelihood ratio tests we perform.



Appendix B

Derivations

This appendix contains derivations and explanations for some of the equations in
the thesis.

B.1 Deriving the marginal transition rates
In this section we will derive the formulas in equations (3.4)-(3.6). Since the
derivation of λ1(t1) and λ2(t2) will be the same, we will not make the derivation
for λ2(t2).

All the integrals in this section have the same form
∫ ∞
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(B.1)

To develop the solution further we use the identity Γ(t+ 1) = tΓ(t). To show how
we arrive at the solution we solve the integral on the left side of (B.1). We start
by doing a substitution and let z = γ(κ+ 1

θ
), dz/dγ = κ+ 1

θ
. This gives∫ ∞

0
γreκγ

1
θ

1
θΓ(1

θ
)
γ

1
θ
−1e−

γ
θ dγ = 1

θ
1
θΓ(1

θ
)

1
(κ+ 1

θ
) 1
θ

+r

∫ ∞
0
z

1
θ

+r−1e−z dz (B.2)

The integral on the right side of (B.2) is the well-known definition of the Gamma
function, Γ(t) =

∫∞
0 xt−1e−xdx, which makes

1
θ

1
θΓ(1

θ
)

1
(κ+ 1

θ
) 1
θ

+r

∫ ∞
0
z

1
θ

+r−1e−z dz =
Γ(1

θ
+ r)

θ
1
θΓ(1

θ
)(κ+ 1

θ
) 1
θ

+r

which is what we wanted to show.
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We start with the definition of λ1(t1), which is

λ1(t1)dt1 = P (t1 ≤ T1 < t1 + dt1|T1 ≥ t1, T2 ≥ t1).

Next, we use the law of total probability and integrate over γ, which gives

λ1(t1)dt1 =
∫ ∞

0
P (t1 ≤ T1 < t1 + dt1|T1 ≥ t1, T2 ≥ t1, γ)P (γ|T1 ≥ t1, T2 ≥ t2) dγ.

This is the same as integrating the conditional transition rate γλ01(t1) and the
density of γ given T1 and T2, so we get

λ1(t1)dt1 =
∫ ∞

0
γλ01(t1)dt1 · f(γ|T1 ≥ t1, T2 ≥ t1) dγ. (B.3)

Now, we want to find an expression for the conditional density of γ. We use Bayes
theorem which gives

f(γ|T1 ≥ t1, T2 ≥ t1) = g(γ)P (T1 ≥ t1, T2 ≥ t1|γ)
P (T1 ≥ t1, T2 ≥ t1) . (B.4)

Here, g(γ) is the Gamma distribution given in (3.3),

P (T1 ≥ t1, T2 ≥ t1|γ) = e−γ(Λ01(t1)+Λ02(t1)),

since the transition rate out of state 0 at time t1 is γ(λ01(t1) + λ02(t1)), and by
averaging P (T1 ≥ t1, T2 ≥ t1|γ) over γ using (B.1) with r = 0 we get

P (T1 ≥ t1, T2 ≥ t1) = [1 + θ(Λ01(t1) + Λ02(t1)])−1/θ.

Inserting f(γ|T1 ≥ t1, T2 ≥ t1) into (B.3) this yields

λ1(t1)dt1 =
∫ ∞

0
γλ01(t1)dt1g(γ)e−γ(Λ01(t1)+Λ02(t1))(1 + θ[Λ01(t1) + Λ02(t1)])1/θdγ,

which is on the same form as (B.1) with r = 1. Finally, after solving the integral,
the unconditional transition rate from state 0 to state 1 becomes

λ1(t1) = (1 + θ[Λ01(t1) + Λ02(t1)])−1λ01(t1), t1 > 0.

Next, we will do the derivation of λ12(t2|t1). Again, we start with the definition
of the transition rate and integrate over γ

λ12(t2|t1)dt2 =
∫ ∞

0
P (t2 ≤ T2 < t2 + dt2|T1 = t1, T2 ≥ t2, γ)P (γ|T1 = t1, T2 ≥ t2) dγ
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where t1 < t2. This is the same as integrating the conditional transition rate
γλ03(t2) from (3.2) and the density of γ given T1 and T2, so we get

λ12(t2|t1)dt2 =
∫ ∞

0
γλ03(t2)dt2 · f(γ|T1 = t1, T2 ≥ t2) dγ. (B.5)

Now, we want to find an expression for the conditional density of γ,

f(γ|T1 = t1, T2 ≥ t2) = g(γ)P (t1 ≤ T1 < t1 + dt1, T2 ≥ t2|γ)
P (t1 ≤ T1 < t1 + dt1, T2 ≥ t2) . (B.6)

Again, g(γ) is the Gamma distribution g(γ; 1/θ, θ),

P (t1 < T1 < t1 + dt1, T2 ≥ t2|γ) = e−γ(Λ01(t1)+Λ02(t1)+Λ03(t1,t2))γλ01(t1)dt1,

and the denominator of (B.6) comes from integrating out γ from P (t1 < T1 <

t1 + dt1, T2 ≥ t2|γ) using (B.1) with r = 1,

P (t1 ≤ T1 < t1 + dt1, T2 ≥ t2) = λ01(t1)
(1 + θ[Λ01(t1) + Λ02(t1) + Λ03(t1, t2)])1/θ+1 .

By inserting f(γ|T1 = t1, T2 ≥ t2) into (B.5) and solving the integral using the
integral in equation (B.1) with r = 2, the unconditional transition rate from state
1 to state 2 becomes

λ12(t2|t1) = (1 + θ)(1 + θ[Λ01(t1) + Λ02(t1) + Λ03(t1, t2)])−1λ03(t2), 0 < t1 < t2.

B.2 Deriving the likelihood function
In this section we show how the likelihood in the general model is constructed.
Recall the cases in Table 2.1. The contribution to the likelihood function from
each subject will be one of these cases. To get a better understanding of why
the likelihood is as it is we will go through all four cases and show the likelihood
contribution from each case given the frailty γ. We have also integrated out the
frailty to see the marginal contribution.

Case 1

In this case a subject will have a transition to state 1 at Y1 and then a transition
to state 2 at Y2. None of the event times are censored i.e. δi1 = δi2 = 1. One must
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therefore consider the probability of no events until Y1, then a transition to state
1 at Y1 and the probability of transition to state 2 at Y2 after Y1 which is

Li,1|γ = e−γ(Λ01(Yi1)+Λ02(Yi1))γλ01(Yi1)e−γΛ03(Yi1,Yi2)γλ03(Yi2).

When averaging out γ the likelihood contribution becomes

Li,1 = λ01(Yi1)λ03(Yi2)(1+θ)(1+θ[Λ01(Yi1)+Λ02(Yi1)+Λ03(Yi1, Yi2)])−1/θ−2 (B.7)

Case 2

In this case a subject will have a transition to state 2 at Y1 and no events until
this, which means that Yi1 = Yi2, δi1 = 0 and δi2 = 1. One must therefore consider
the probability of no events until Y1, then a transition to state 2 at Y1 which is

Li,2|γ = e−γ(Λ01(Yi1)+Λ02(Yi1))γλ02(Yi2).

Note that we have used both Y1 and Y2 even though they are the same in this case.
This is only for simplicity later. When averaging out γ the likelihood contribution
becomes

Li,2 = λ02(Yi2)(1 + θ[Λ01(Yi1) + Λ02(Yi1)])−1/θ−1 (B.8)

Case 3

In this case a subject will have a transition to state 1 at Y1 and then censoring
at Y2, which means that δi1 = 1 and δi2 = 0. One must therefore consider the
probability of no events until Y1, then a transition to state 1 followed by no events
until Y2 which is

Li,3|γ = e−γ(Λ01(Yi1)+Λ02(Yi1))γλ01(Yi1)e−γΛ03(Yi1,Yi2).

When averaging out γ the likelihood contribution becomes

Li,3 = λ01(Yi1)(1 + θ[Λ01(Yi1) + Λ02(Yi1) + Λ03(Yi1, Yi2)])−1/θ−1 (B.9)

Case 4

In this case a subject will be censored before having any events. This means that
δi1 = δi2 = 0. In this case as in case 2, Y1 = Y2. One must consider the probability
of no events until Y1 which is

Li,4|γ = e−γ(Λ01(Yi1)+Λ02(Yi1)).
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When averaging out γ the likelihood contribution becomes

Li,4 = (1 + θ[Λ01(Yi1) + Λ02(Yi1)])−1/θ (B.10)

By multiplying together the results from equations (B.7)-(B.10), raising to
appropriate powers of δi1 and δi2 and taking the product over all i = 1, ..., n, the
likelihood in the general model becomes the one in equation (3.9) which is

Lg =
n∏
i=1

λ01(Yi1)δi1λ02(Yi2)δi2(1−δi1)λ03(Yi2)δi1δi2(1 + θ)δi1δi2

(
1 + θ[Λ01(Yi1) + Λ02(Yi1) + Λ03(Yi1, Yi2)]

)−1/θ−δi1−δi2
.

B.3 Confidence intervals for the survival func-
tion of state 1

In this section we describe how the confidence intervals of the marginal survival
function for time to state 1 are calculated for the power law and the log-linear
law. Recall the marginal survival function for time to relapse S1(t) from equation
(3.14). The logarithm of this survival function is

logS1(t) = −1
θ

log(1 + θΛ01(t)),

and the estimate is l̂ogS1(t) = −1
θ̂

log(1 + θ̂Λ̂01(t)). To compute the variance of
this, we linearise by expanding around the true parameters of Λ01 and θ. For the
power law, the logarithm of the marginal survival function is

logSp1(t) = −1
θ

log(1 + θα1t
β1)

Expanding around the true parameters θ, α1 and β1 gives

̂logSp1(t) '− 1
θ

log(1 + θα1t
β1)− (α̂1 − α1) d

dα1

1
θ

log(1 + θα1t
β1)

− (β̂1 − β1) d

dβ1

1
θ

log(1 + θα1t
β1)− (θ̂ − θ) d

dθ

1
θ

log(1 + θα1t
β1)
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By computing the derivatives and taking the variance of ̂logSp1(t) we find

Var( ̂logSp1(t)) '
(
− tβ1

1 + θα1tβ1

)2

Var(α̂1) +
(
− α1t

β1 log t
1 + θα1tβ1

)2

Var(β̂1)

+
(

log(1 + θα1t
β1)

θ2 − α1t
β1

θ(1 + θα1tβ1)

)2

Var(θ̂)

+
(
− tβ1

1 + θα1tβ1

)(
− α1t

β1 log t
1 + θα1tβ1

)
Cov(α̂1, β̂1)

+
(
− tβ1

1 + θα1tβ1

)(
log(1 + θα1t

β1)
θ2 − α1t

β1

θ(1 + θα1tβ1)

)
Cov(α̂1, θ̂)

+
(
− α1t

β1 log t
1 + θα1tβ1

)(
log(1 + θα1t

β1)
θ2 − α1t

β1

θ(1 + θα1tβ1)

)
Cov(β̂1, θ̂)

In practice the variance and covariance are found from the Hessian and the esti-
mated parameters are used for the parameters.

Next, we look at the logarithm of the marginal survival function in the log-
linear law, which is

logSl1(t) = −1
θ

log
(
1 + θ

b1
(ea1+b1t − ea1)

)

Again, an approximation is done by expanding around the estimates θ̂, â1 and b̂1.
The linearisation of logSl1(t) is

̂logSl1(t) '− 1
θ

log
(
1 + θ

b1
(ea1+b1t − ea1)

)
− (â1 − a1) d

da1

1
θ

log
(
1 + θ

b1
(ea1+b1t − ea1)

)
− (b̂1 − b1)1

θ
log

(
1 + θ

b1
(ea1+b1t − ea1)

)
− (θ̂ − θ)1

θ
log

(
1 + θ

b1
(ea1+b1t − ea1)

)
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By computing the derivatives and taking the variance of ̂logSl1(t) we find

Var( ̂logSl1(t)) '
(
− ea1(eb1t − 1)
b+ θea1(eb1t − 1)

)2

Var(â1) +
(
−b1te

a1+b1t − (ea1+b1t − ea1)
b1(θ(ea1+b1t − ea1) + b1)

)2

· Var(b̂1) +

 log θ(ea1+b1t−ea1 )+b1
b1

θ2 − ea1+b1t − ea1

b1θ
(
θ(ea1+b1t−ea1 )

b1
+ 1

)


2

Var(θ̂)

+
(
− ea1(eb1t − 1)
b+ θea1(eb1t − 1)

)(
−b1te

a1+b1t − (ea1+b1t − ea1)
b1(θ(ea1+b1t − ea1) + b1)

)
Cov(â1, b̂1)

+
(
− ea1(eb1t − 1)
b1 + θea1(eb1t − 1)

) log θ(ea1+b1t−ea1 )+b1
b1

θ2 − ea1+b1t − ea1

b1θ
(
θ(ea1+b1t−ea1 )

b1
+ 1

)
Cov(â1, θ̂)

+
(
−b1te

a1+b1t − (ea1+b1t − ea1)
b1(θ(ea1+b1t − ea1) + b1)

) log θ(ea1+b1t−ea1 )+b1
b1

θ2 − ea1+b1t − ea1

b1θ
(
θ(ea1+b1t−ea1 )

b1
+ 1

)


· Cov(b̂1, θ̂)

The limits for the confidence intervals for the marginal survival time to relapse
are then

exp
[
logS1(t)± 1.96

√
Var( ̂logSp1(t))

]
(B.11)

in the power law and

exp
[
logS1(t)± 1.96

√
Var( ̂logSl1(t))

]
(B.12)

in the log-linear law.
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Appendix C

R code

C.1 Simulation functions

C.1.1 The power law

The function for simulating data from the illness-death model with the power law
as model for the conditional transition rates. The function calls on four other
functions which are given below SimData.power().

SimData.power=function(alpha1,alpha2,alpha3,beta1,beta2,beta3,theta,n){
# Simulate n observations of semi-competing risks data with
# censoring. The conditional transition rates have parametric formula
# lambda(t) = alpha*beta*tˆ(beta-1)
# The censoring distribution is a mixture distribution with equal
# weights on a uniform distribution between 5 and 10, and a
# point mass at 10
# Input:
# alpha1: the alpha parameter in lambda_01
# alpha2: the alpha parameter in lambda_02
# alpha3: the alpha parameter in lambda_03
# beta1: the beta parameter in lambda_01
# beta2: the beta parameter in lambda_02
# beta3: the beta parameter in lambda_03
# theta: the variance of the frailty parameter
# n: the number of observations
# Output:

91
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# a data frame with the components Y1, Y2, delta1, delta2

data_sim = matrix(data=NA, nrow = n, ncol = 4)
for (i in 1:n){

# Generate a frailty for each subject
if (theta == 0){

gamma = 1
}
else {

gamma = rgamma(1, shape = 1/theta, scale = theta)
}
# Simulate the first event time
t0 = 0
while(t0 ==0){

u0 = runif(1)
f0 =function(t){Find_t0(t,alpha1,alpha2,beta1,beta2,gamma,u0)}
t0 = uniroot(f0, c(0,1000000000000))$root
}

# Find the first transition
prob = lambda(alpha1,beta1,t0) / (lambda(alpha1, beta1, t0) +

lambda(alpha2, beta2, t0))
uni = runif(1)
if (uni <= prob){

# Transition to state 1
Y1 = t0
delta1 = 1
# Simulate the second event time
u2 = runif(1)
f2 = function(t2) {Find_t2(t2, t0, alpha3, beta3, gamma, u2)}
t2 = uniroot(f2, c(t0, 10000000000))$root
Y2 = t2

}
else{

# Transition directly to state 2
Y2 = t0
Y1 = Y2
delta1 = 0
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}
# Include independent censoring
cens_time = cens_time_sim()
if(cens_time > Y2){

delta2 = 1
}else if(cens_time >= Y1 && cens_time<=Y2){

delta2 = 0
Y2 = cens_time

}else{
Y1 = cens_time
Y2 = cens_time
delta2 = 0
delta1 = 0

}
data_sim[i,1] = Y1
data_sim[i,2] = Y2
data_sim[i,3] = delta1
data_sim[i,4] = delta2

}
return(data.frame(Y1 = data_sim[,1], Y2 = data_sim[,2],

delta1 = data_sim[,3], delta2 = data_sim[,4]))
}

Find_t0 = function(t, alpha1, alpha2, beta1, beta2, gamma,u){
# The root of this function is the first faliure time
alpha1*tˆbeta1 + alpha2*tˆbeta2 + log(u)/gamma

}

Find_t2 = function(t2,t0, alpha3, beta3, gamma,u){
# The root of this function is the second faliure time
alpha3*t2ˆbeta3 - alpha3*t0ˆbeta3 + log(u)/gamma

}

lambda = function(alpha, beta, t){
# The conditional transition rate
lam = alpha*beta*tˆ(beta-1)
return(lam)

}
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cens_time_sim = function(){
# A function that generates the censoring time
uniform = runif(1)
if(uniform < 0.5){

cens = runif(1, min = 5, max =10)
return(cens)

}
else{

cens = 10
return(cens)

}
}

C.1.2 The log-linear law

The function for simulating data from the illness-death model with the log-linear
law as model for the conditional transition rates. The function calls on four other
functions which are given below SimData.loglinear().

SimData.loglinear=function(alpha1,alpha2,alpha3,beta1,beta2,beta3,
theta,n){

# Simulate n observations of semi-competing risks data with
# censoring
# The conditional transition rates have parametric formula
# lambda(t) = exp(alpha+beta*t)
# The censoring distribution is a mixture distribution with equal
# weights on a uniform distribution between 5 and 10, and a
# point mass at 10
# Input:
# alpha1: the alpha parameter in lambda_01
# alpha2: the alpha parameter in lambda_02
# alpha3: the alpha parameter in lambda_03
# beta1: the beta parameter in lambda_01
# beta2: the beta parameter in lambda_02
# beta3: the beta parameter in lambda_03
# theta: the variance of the frailty parameter
# n: the number of observations
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# Output:
# a data frame with the components Y1, Y2, delta1, delta2
# NOTE: the function is not suited for using beta’s = 0

data_sim = matrix(data=NA, nrow = n, ncol = 4)
for (i in 1:n){

# Generate a frailty for each subject
if (theta == 0){

gamma = 1
}
else {

gamma = rgamma(1, shape = 1/theta, scale = theta)
}
# Simulate first event time
t0 = 0
while(t0 ==0){

u0 = runif(1)
f0 =function(t){Find_t0_2(t,alpha1,alpha2,beta1,beta2,gamma,u0)}
t0 = uniroot(f0, c(0,1000000000000))$root

}
# Find first transition
prob = lambda2(alpha1,beta1,t0) / (lambda2(alpha1, beta1, t0) +
lambda2(alpha2, beta2, t0))
uni = runif(1)
if (uni <= prob){

# Transition to state 1
Y1 = t0
delta1 = 1
# Simulate second event time
u2 = runif(1)
f2 = function(t2) {Find_t2_2(t2, t0, alpha3, beta3, gamma, u2)}
t2 = uniroot(f2, c(t0, 10000000000))$root
Y2 = t2

}
else{

# Transition directly to state 2
Y2 = t0
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Y1 = Y2
delta1 = 0

}
# Include independent censoring
cens_time = cens_time_sim()
if(cens_time > Y2){

delta2 = 1
}else if(cens_time >= Y1 && cens_time<=Y2){

delta2 = 0
Y2 = cens_time

}else{
Y1 = cens_time
Y2 = cens_time
delta2 = 0
delta1 = 0

}
data_sim[i,1] = Y1
data_sim[i,2] = Y2
data_sim[i,3] = delta1
data_sim[i,4] = delta2

}
return(data.frame(Y1 = data_sim[,1], Y2 = data_sim[,2],
delta1 = data_sim[,3], delta2 = data_sim[,4]))

}

Find_t0_2 = function(t, alpha1, alpha2, beta1, beta2, gamma,u){
# The root of this function is the first faliure time
(exp(alpha1+t*beta1)-exp(alpha1))/beta1 + (exp(alpha2+t*beta2) -
exp(alpha2))/beta2 + log(u)/gamma

}

Find_t2_2 = function(t2,t0, alpha3, beta3, gamma,u){
# The root of this function is the second faliure time
(exp(alpha3 + t2*beta3)-exp(alpha3))/beta3 - (exp(alpha3+
t0*beta3)- exp(alpha3))/beta3 + log(u)/gamma

}

lambda2 = function(alpha, beta, t){
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# The condtitional transition rate
lam = exp(alpha + beta*t)
return(lam)

}

cens_time_sim = function(){
# A function that generates the censoring time
uniform = runif(1)
if(uniform < 0.5){

cens = runif(1, min = 5, max =10)
return(cens)

}
else{

cens = 10
return(cens)

}
}

C.1.3 The expanded model with power law
The function for simulating data from the expanded illness-death model with the
power law for the conditional transition rates. The function calls four other func-
tions which are given below SimData.expanded().

SimData.expanded = function(alpha1, alpha2, alpha3,alpha4,
alpha5, beta1, beta2, beta3,beta4, beta5, theta, n){

# Simulate n observations of semi-competing risks data for the
# expanded illness-death model with censoring
# The conditional transition rates have parametric formula
# lambda(t) = alpha*beta*tˆ(beta-1)
# The censoring distribution is a mixture distribution with equal
# weights on a uniform distribution between 5 and 10, and a
# point mass at 10
# Input:
# alpha1: the alpha parameter in lambda01
# alpha2: the alpha parameter in lambda02a
# alpha3: the alpha parameter in lambda02b
# alpha4: the alpha parameter in lambda03a
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# alpha5: the alpha parameter in lambda03b
# beta1: the beta parameter in lambda01
# beta2: the beta parameter in lambda02a
# beta3: the beta parameter in lambda02b
# beta4: the beta parameter in lambda03a
# beta5: the beta parameter in lambda03b
# theta: the variance of the frailty
# parameter
# n: the number of observations
# Output:
# a data frame with the components Y1, Y2, delta1, delta2,
# delta_a, delta_b

data_sim = matrix(data=NA, nrow = n, ncol = 7)
for (i in 1:n){

# Generate a frailty for each subject
if (theta == 0){

gamma = 1
}
else {

gamma = rgamma(1, shape = 1/theta, scale = theta)
}
# Simulate the first event time
t0 = 0
while(t0 ==0){

u0 = runif(1)
f0 = function(t) {Find_t0_exp(t, alpha1, alpha2,alpha3 ,beta1,
beta2, beta3,gamma,u0)}

t0 = uniroot(f0, c(0,1000000000000))$root
}
# Find the first transition
prob1 = lambda(alpha1,beta1,t0) / (lambda(alpha1, beta1, t0) +

lambda(alpha2, beta2, t0) +lambda(alpha3, beta3, t0))
uni = runif(1)
if (uni <= prob1){

# Transition to state 1
Y1 = t0



C.1. SIMULATION FUNCTIONS 99

delta1 = 1
# Simulate the second event time
u2 = runif(1)
f2 = function(t2) {Find_t2_exp(t2, t0, alpha4,alpha5, beta4,
beta5, gamma, u2)}
t2 = uniroot(f2, c(t0, 10000000000))$root
Y2 = t2
# Find which was the terminating event - 2a or 2b
prob3 = lambda(alpha4,beta4,t2) / (lambda(alpha4, beta4, t2) +

lambda(alpha5, beta5, t2))
uni = runif(1)
if(prob3 <= uni ){ # 2a
event1 =1
event2 = 0
}
else{ # 2b

event1 = 0
event2 = 1

}
}
else{ # If did not have a transition to state 1

# Find which was the terminating event - 2a or 2b
prob2 = lambda(alpha2,beta2,t0) / (lambda(alpha2, beta2, t0) +
lambda(alpha3, beta3, t0))

uni = runif(1)
if(uni <= prob2){
# Transition directly to state 2a
Y2 = t0
Y1 = Y2
delta1 = 0
event1 = 1
event2 = 0
}
else{
# Transition directly to state 2b

Y2 = t0
Y1 = Y2
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delta1 = 0
event1 = 0
event2 = 1

}
}
# Include independent censoring
cens_time = cens_time_sim()
if(cens_time > Y2){

delta2 = 1
}else if(cens_time >= Y1 && cens_time<=Y2){

delta2 = 0
Y2 = cens_time

}else{
Y1 = cens_time
Y2 = cens_time
delta2 = 0
delta1 = 0

}
data_sim[i,1] = Y1
data_sim[i,2] = Y2
data_sim[i,3] = delta1
data_sim[i,4] = delta2
data_sim[i,5] = event1
data_sim[i,6] = event2

}
return(data.frame(Y1 = data_sim[,1], Y2 = data_sim[,2],

delta1 = data_sim[,3], delta2 = data_sim[,4], event1 =
data_sim[,5], event2 = data_sim[,6] ) )

}

Find_t0_exp = function(t, alpha1, alpha2, alpha3, beta1,
beta2,beta3, gamma,u){

# The root of this function is the first faliure time in the
# expanded model
alpha1*tˆbeta1 + alpha2*tˆbeta2+ alpha3*tˆbeta3 +
log(u)/gamma
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}

Find_t2_exp = function(t2,t0, alpha4,alpha5,beta4,
beta5, gamma,u){

# The root of this function is the second faliure time in
# the expanded model
alpha4*t2ˆbeta4 - alpha4*t0ˆbeta4 +alpha5*t2ˆbeta5 -
alpha5*t0ˆbeta5 + log(u)/gamma

}

lambda = function(alpha, beta, t){
# The transition rate
lam = alpha*beta*tˆ(beta-1)
return(lam)

}

cens_time_sim = function(){
# A function that generates the censoring time
uniform = runif(1)
if(uniform < 0.5){

cens = runif(1, min = 5, max =10)
return(cens)

}
else{

cens = 10
return(cens)

}
}

C.2 The log likelihood functions
The functions for computing the log likelihood in the general model and the re-
stricted model with both the power law and the log-linear law.

C.2.1 The general model with power law
LogLikelihood.power = function(par, datasett){
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# A function that computes the log likeihood in the general model
# where the transition rates have parametric formula
# lambda(t) = alpha*beta*tˆ(beta-1)
# Input:
# par: a vector containing the parameters of the conditional
# transition rates in the following sequence alpha1, alpha2,
# alpha3, beta1, beta2, beta3, theta
# datasett: a data frame with columnwise components in the
# following sequence Y1, Y2, delta1, delta2
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
alpha3 = par[3]
beta1 = par[4]
beta2 = par[5]
beta3 = par[6]
theta = par[7]

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]

temp = (alpha1*beta1*Y1ˆ(beta1-1))ˆd1*(alpha2*beta2*Y2ˆ
(beta2-1))ˆ(d2*(1-d1))*(alpha3*beta3*Y2ˆ(beta3-1))ˆ
(d1*d2)*(theta + 1)ˆ(d1*d2)*(1 + theta*(alpha1*Y1ˆ(beta1) +
alpha2*Y1ˆ(beta2) + alpha3*Y2ˆ(beta3) - alpha3*Y1ˆ(beta3)))ˆ
(-d1-d2- 1/theta)

lglik = sum(log(temp))
return(lglik)

}
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C.2.2 The restricted model with power law

LogLikelihood.power_res = function(par, datasett){
# A function that computes the log likeihood in the restricted
# model where the conditional transition rates have parametric
# formula lambda(t) = alpha*beta*tˆ(beta-1)
# Input:
# par: a vector containing the parameters of the conditional
# transition rates in the following sequence alpha1, alpha2,
# beta1, beta2, theta
# datasett: a data frame with columnwise components in the
# following sequence Y1, Y2, delta1, delta2
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
beta1 = par[3]
beta2 = par[4]
theta = par[5]

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]

temp = (alpha1*beta1*Y1ˆ(beta1-1))ˆd1 *(alpha2*beta2*Y2ˆ
(beta2-1))ˆd2 * (theta + 1)ˆ(d1*d2) * (1 + theta*(alpha1*Y1ˆ
(beta1) + alpha2*Y2ˆ(beta2)))ˆ(-d1-d2- 1/theta)

lglik = sum(log(temp))
return(lglik)

}

C.2.3 The general model with log-linear law

LogLikelihood.loglinear = function(par, datasett){
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# A function that computes the log likelihood in the general model
# where the conditional transition rates have parametric formula
# lambda(t) = exp(alpha + beta*t)
# Input:
# par: a vector containing the parameters of the conditional transition
# rates in the following sequence alpha1, alpha2, alpha3, beta1, beta2,
# beta3, theta
# datasett: a data frame with columnwise components in the
# following sequence Y1, Y2, delta1, delta2
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
alpha3 = par[3]
beta1 = par[4]
beta2 = par[5]
beta3 = par[6]
theta = par[7]

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]

temp = log( exp( d1*(alpha1 + beta1*Y1) )*exp( d2*(1-d1)*
(alpha2 + beta2*Y2) )*exp( d1*d2*(alpha3 + beta3*Y2) ) *
(1+theta)ˆ(d1*d2) *(1+ theta*( (exp(alpha1 + beta1*Y1) -
exp(alpha1))/beta1 + (exp(alpha2 + beta2*Y1) - exp(alpha2))/
beta2 + (exp(alpha3 + beta3*Y2) -exp(alpha3))/beta3 -
(exp(alpha3 + beta3*Y1)- exp(alpha3))/beta3))ˆ(-d1-d2-1/theta))

lglik = sum(temp)
return(lglik)

}
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C.2.4 The restricted model with log-linear law

LogLikelihood.loglinear_res = function(par, datasett){
# A function that computes the log likelihood in the
# restricted model where the conditional transition rates
# have parametric formula lambda(t) = exp(alpha + beta*t)
# Input:
# par: a vector containing the parameters of the conditional
# transition rates in the following sequence alpha1, alpha2,
# alpha3, beta1, beta2, beta3, theta
# datasett: a data frame with columnwise components in
# the following sequence Y1, Y2, delta1, delta2
# Output:
# the log likelihood
alpha1 = par[1]
alpha2 = par[2]
beta1 = par[3]
beta2 = par[4]
theta = par[5]

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]

temp =log( exp( d1*(alpha1 + beta1*Y1) + d2*(alpha2 +
beta2*Y2))*(1+theta)ˆ(d1*d2) * (1+ theta*( (exp(alpha1+
beta1*Y1)- exp(alpha1))/beta1+(exp(alpha2 + beta2*Y2)-
exp(alpha2))/beta2 ))ˆ(-d1-d2-1/theta))

lglik = sum(temp)
return(lglik)

}
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C.2.5 The general model with power law and covariates

LogLikelihoodFun_cov = function(par, datasett){
# A function that computes the log likeihood in the general
# model with covariates where the conditional transition
# rates have parametric formula
# lambda(t) = alpha*beta*tˆ(beta-1)*exp(cov * coeff)
# Input:
# par: a vector containing the parameters of the conditional
# transition rates in the following sequence alpha1, alpha2,
# alpha3,beta1, beta2, beta3, theta, cov1, cov2, cov3, where
# each cov is a vector with parameter for age and sex
# datasett: a data frame with columnwise components in
# the following sequence Y1, Y2, delta1, delta2, x, y,
# where x and y are the age and sex
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
alpha3 = par[3]
beta1 = par[4]
beta2 = par[5]
beta3 = par[6]
theta = par[7]
cov1 = c(par[8], par[11])
cov2 = c(par[9], par[12])
cov3 = c(par[10],par[13])

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]
x = datasett[,8]
y = datasett[,9]
if(alpha1 > 0 & alpha2 > 0 & alpha3 > 0){

temp = (alpha1*beta1*Y1ˆ(beta1-1))ˆd1*(alpha2*
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beta2*Y2ˆ(beta2-1))ˆ(d2*(1-d1))*(alpha3*beta3*
Y2ˆ(beta3-1))ˆ(d1*d2)*exp(d1*t(cov1[1])*x +
d1*cov1[2]*y + d2*(1-d1)*cov2[1]*x +d2*(1-d1)*
cov2[2]*y +d1*d2*cov3[1]*x + d1*d2*cov3[2]*y)*
(theta + 1)ˆ(d1*d2) *(1 + theta*(alpha1*Y1ˆ(beta1)*
exp(cov1[1]*x + cov1[2]*y) + alpha2*Y1ˆ(beta2)*
exp(cov2[1]*x + cov2[2]*y) + alpha3*Y2ˆ(beta3)*
exp(cov3[1]*x +cov3[2]*y) -alpha3*Y1ˆ(beta3)*
exp(cov3[1]*x + cov3[2]*y)))ˆ(-d1-d2- 1/theta)

lglik = sum(log(temp))
return(lglik)

}
else{

return(-Inf)
}

}

C.2.6 The expanded model with power law

LogLikelihoodFun.exp = function(par, datasett){
# A function that computes the log likeihood in the expanded
# model where the
# transition rates have parametric formula: lambda(t) =
# alpha*beta*tˆ(beta-1)
# For the terminal event there are two events, 2a and 2b
# Input:
# par: a vector containing the parameters of the transition
# rates in the following sequence
# alpha1: the alpha parameter in lambda_01
# alpha2: the alpha parameter in lambda_02a
# alpha3: the alpha parameter in lambda_02b
# alpha4: the alpha parameter in lambda_03a
# alpha5: the alpha parameter in lambda_03b
# beta1: the beta parameter in lambda_01
# beta2: the beta parameter in lambda_02a
# beta3: the beta parameter in lambda_02b
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# beta4: the beta parameter in lambda_03a
# beta5: the beta parameter in lambda_03b
# theta: the variance of the frailty parameter
# datasett: a dataframe with columnwise components in
# the following sequence
# Y1, Y2, delta1, delta2, di, de.
# di (discharge) and de (death) are 0 and 1 depending on
# which is the terminal event
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
alpha3 = par[3]
alpha4 = par[4]
alpha5 = par[5]
beta1 = par[6]
beta2 = par[7]
beta3 = par[8]
beta4 = par[9]
beta5 = par[10]
theta = par[11]

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]
di = datasett[,5]
de = datasett[,6]

if(alpha1 > 0 & alpha2 > 0 & alpha3 > 0 & alpha4 >0 &
alpha5 > 0){
temp = log( (lam(alpha1, beta1, Y1))ˆd1 * (lam(alpha2,
beta2, Y2))ˆ(d2*(1-d1)*di) *(lam(alpha3, beta3, Y2))ˆ
(d2*(1-d1)*de)*(lam(alpha4, beta4,Y2))ˆ(d1*d2*di) *
(lam(alpha5, beta5,Y2))ˆ(d1*d2*de)*(1 + theta)ˆ(d1*d2)*
(1 + theta*( Lam(alpha1,beta1, Y1) + Lam(alpha2, beta2,
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Y1) + Lam(alpha3, beta3, Y1) +Lam(alpha4,beta4,Y2) -
Lam(alpha4, beta4, Y1) + Lam(alpha5, beta5, Y2) -
Lam(alpha5, beta5, Y1) ) )ˆ(-d1-d2-1/theta) )

lglik = sum((temp))
return(lglik)

}
else {

temp = -Inf
return(temp)

}
}

lam = function(alpha, beta,t){
temp = alpha*beta*tˆ(beta-1)
return(temp)

}

Lam = function(alpha, beta,t){
temp = alpha*tˆ(beta)
return(temp)

}

C.2.7 The expanded model with power law and covariates

LogLikelihoodFun_exp_cov = function(par, datasett){
# A function that computes the log likelihood in the
# expanded model where the conditional transition rates have
# parametric formula
# lambda(t) = alpha*beta*tˆ(beta-1)*exp(coeff * cov)
# For the terminal event there are two categories
# Input:
# par: a vector containing the parameters of the conditional
# transition rates in the following sequence alpha1, alpha2,
# alpha3, beta1, beta2, beta3, theta, cov1, cov2, cov3, cov4,
# cov5, where each cov is a vector with coefficients for age
# and sex
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# datasett: a data frame with columnwise components in
# the following sequence Y1, Y2, delta1, delta2,
# di, de, x, y, where di and de are 0 and 1 depending on
# which is the terminal event
# x and y are covariates for age and sex
# Output:
# the log likelihood

alpha1 = par[1]
alpha2 = par[2]
alpha3 = par[3]
alpha4 = par[4]
alpha5 = par[5]
beta1 = par[6]
beta2 = par[7]
beta3 = par[8]
beta4 = par[9]
beta5 = par[10]
theta = par[11]
cov1 = c(par[12], par[17])
cov2 = c(par[13], par[18])
cov3 = c(par[14], par[19])
cov4 = c(par[15], par[20])
cov5 = c(par[16], par[21])

Y1 = datasett[,1]
Y2 = datasett[,2]
d1 = datasett[,3]
d2 = datasett[,4]
di = datasett[,5]
de = datasett[,6]
x = datasett[,7]
y = datasett[,8]

if(alpha1 > 0 & alpha2 > 0 & alpha3 > 0 & alpha4 >0 &
alpha5 > 0){
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temp = log( (lam(alpha1, beta1, Y1))ˆd1 * (lam(alpha2,
beta2, Y2))ˆ(d2*(1-d1)*di) *(lam(alpha3, beta3, Y2))ˆ
(d2*(1-d1)*de)*(lam(alpha4, beta4,Y2))ˆ(d1*d2*di)*
(lam(alpha5, beta5,Y2))ˆ(d1*d2*de)*exp(d1*cov1[1]*x +
d1*cov1[2]*y + d2*(1-d1)*di*cov2[1]*x +d2*(1-d1)*di*
cov2[2]*y + d2*(1-d1)*de*cov3[1]*x + d2*(1-d1)*de*
cov3[2]*y + d1*d2*di*cov4[1]*x +d1*d2*di*cov4[2]*y +
d1*d2*de*cov5[1]*x + d1*d2*de*cov5[2]*y) * (1+
theta)ˆ(d1*d2)*(1 + theta*(Lam(alpha1, beta1, Y1)*
exp(cov1[1]*x + cov1[2]*y) + Lam(alpha2,beta2, Y1)*
exp(cov2[1]*x+ cov2[2]*y) + Lam(alpha3, beta3, Y1)*
exp(cov3[1])*x + cov3[2]*y) +Lam(alpha4,beta4,Y2)*
exp(cov4[1]*x+cov4[2]*y) - Lam(alpha4, beta4, Y1)*
exp(cov4[1]*x+ cov4[2]*y) + Lam(alpha5, beta5, Y2)*
exp(t(cov5[1])*x+ cov5[2]*y) - Lam(alpha5,beta5, Y1)*
exp(t(cov5[1])*x+ cov5[2]*y) ) )ˆ(-d1-d2-1/theta) )

lglik = sum((temp))
return(lglik)

}
else {

temp = -Inf
return(temp)

}
}

lam = function(alpha, beta,t){
temp = alpha*beta*tˆ(beta-1)
return(temp)

}

Lam = function(alpha, beta,t){
temp = alpha*tˆ(beta)
return(temp)

}


