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Abstract 

This thesis work focused partly on the sizing of a three phase vertical and 
horizontal separators without internals and with internals (mesh pad) at 
different pressures and the performance of internals to increase the 
capacity and efficiency of separation. The stage separation of oil, gas and 
water was carried out with a series of three separators operating at 
consecutively reduced pressures of 80bar, 15bar and 2bar. The physical 
separation of these three phases occurs at three different stages (steps) and 
the feed fluid to the separator was a volatile oil composition as depicted in 
Table 1-1. The purpose of the stage separation was to obtain maximum 
recovery of liquid hydrocarbon from the feed fluid coming to the separators 
and to provide maximum stabilization of both gas and liquid effluents. 

The work uses model as proposed by Monnery and Svrcek (1994) as a basic 
design for vertical and horizontal separators to obtain the diameters and 
lengths of these separators at different pressures.  The diameters for the 
vertical separators were assumed 2m for separators without mist 
eliminator and 2.15m with mist eliminator.  For the vertical separator 
without mist eliminator, the heights were obtained as 3.63m, 3.32m, and 
3.16m with height/diameter ratios of 1.8, 1.66 and 1.58. For the vertical 
separator with mist eliminator, the heights were obtained as 3.48m, 3.50m, 
and 3.37m with height/diameter ratios of 1.60, 1.63 and 1.57.   

The diameters for the horizontal separators were calculated as 1.42m, 
1.54m, 1.48m for separators without and with mist eliminator at those 
pressures.  For the horizontal separators without mist eliminator, the 
lengths were obtained as 6.0m, 6.0m, and 5.0m with height/diameter ratios 
of 4.2, 3.9 and 2.9. For the horizontal separator with mist eliminator, the 
lengths were obtained as 7.0m, 7.0m, and 6.0m with height/diameter ratios 
of 5, 4 and 3.  

 The properties of the fluid were determined using an engineering 
simulation software-HYSYS. The wire mesh pad was size in the horizontal 
separator at 80bar, the design velocity was obtained as 0.27m/s and a cross 
section area of 0.19m2. The separation capture efficiency of this pad was 
60% of a 0.09m thickness element of the mesh for removal of 5µm droplets 
size and 79% for removal of 10µm droplets. For a 0.15m thickness of the 
mesh element, the separation capture efficiency was 95% for the removal of 
5µm droplet and 99% for the removal 10µm droplets. Foamy crude, 
paraffin, sand, liquid carry over and emulsion were found as operating 
problems affecting separation.   
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Nomenclature 

Symbols Definitions and Units 

A Area of vessel,  m2 

   Downcomer cross-sectional area, m2 

   Gas cross sectional area, m2 

    Cross section area of light liquid, m2  

    Cross section area of heavy liquid, m2  

   Area of baffle, m2 

     Cross section area of normal liquid level,  m2 

     Cross section area of light liquid above 

bottom of vessel, m 

   Total cross sectional area, m2 

CD Drag coefficient 

D Vessel diameter, m 

   Vertical vessel internal diameter, m 

   Droplet diameter, µm, m 

   Nozzle diameter, m 

   Wire diameter, mm, m 

  Separation capture efficiency, % 

E Impaction efficiency fraction 
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F Frictional factor 

   Force of buoyancy, N 

   Drag force, N 

   Force of gravity, N 

    Fractional gas phase cross sectional area 

g Acceleration due to gravity, m/s2 

    Liquid height from above baffle to feed 

nozzle, m 

   Disengagement height, m 

   Gas space height, m 

   Hold up height, m 

   Height from liquid phase, m 

    Height of heavy liquid, m  

    Height of light liquid, m  

     Low liquid level in light liquid compartment, 

m 

     Normal liquid level, m 

   Height from light liquid nozzle to baffle, m 

   Surge  height, m 

   Total height of vertical vessel, m 
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   Weir height, m 

   Demister capacity factor 

    terminal settling velocity constant  

L Vessel length, m 

M Mass of particle, kg 

   Mass flow rate of gas, kg/s 

    Mass flow rate of light liquid, kg/s 

    Mass flow rate of heavy liquid, kg/s  

New Weber Number 

P Pressure, bara,  kPa 

Q Volume flow rate, m3/s,  Sm3/s 

   Gas (vapour) volume flow rate, m3/s  

     Light liquid volume flow rate, m3/s    

    Heavy liquid volume flow rate, m3/s,     

Re Reynolds Number 

   Corrected pad specific surface area, m2 

   Surge time, sec, min 

T Temperature, ˚C, K 

   Residence time, retention time, sec, min 
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TSV Terminal settling velocity,  m/s 

U Velocity of particle, m/s 

   Continuous phase velocity, m/s 

   Gas velocity, m/s 

    Actual vapour velocity, m/s 

   Velocity of droplet,  m/s 

     Settling velocity of light liquid out of heavy 

liquid phase, m/s 

     Settling velocity of heavy liquid out of light 

liquid phase, m/s 

V Volume,  m3 

   Hold up volume, m3 

   Surge volume, m3 

   Downcomer chord width, m 

Z Compressibility factor 

  Interfacial tension, N/m 

     Density of heavy liquid,  kg/m3 

    Density of light liquid, kg/m3 

   Density of vapour,  kg/m3 

   Density of continuous phase, kg/m3 
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µ Viscosity, Pa.s 

    Emulsion viscosity, Pa.s 

   Gas viscosity, Pa.s 

    Viscosity of light liquid, Pa.s 

    Viscosity of heavy liquid, Pa.s 

  Volumetric ratio of inner phase to outer 

phase 

  Phase dispersion co-efficient 

   Specific gravity difference 
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1 Introduction 

Separators in oilfield terminology designate a pressure vessel used for 

separating well fluids produced from oil & gas wells into gaseous and liquid 

components. The goal for ideal separator selection and design is to separate 

the well stream into liquid-free gas and gas free-liquid. Ideally, gas and 

liquid reach a state of equilibrium at the existing conditions of pressure and 

temperature within the vessel. Separators work on the principle that these 

components have different densities, which allows them to stratify when 

moving slowly with gas on top, water on the bottom and oil in the middle. 

Any solids such as sand will also settle in the bottom of the separator. These 

separating vessels are normally used on a producing lease or platform near 

the wellhead, manifold, or tank battery to separate fluids produced from oil 

and gas wells into oil, gas and water. 

 

Most separators are two-phase in design; separating the gas and total 

liquids, three-phase separators mainly needed in processing to separate 

gas, oil or other liquid hydrocarbons and free water. Most platforms have a 

series of production separators; starting with a high-pressure (HP) 

separators which separates the gas from the liquids. Liquids are then piped 

to a medium pressure (MP) separator which remove more gas and then 

pass the liquid to a low pressure (LP) separator that removes even more 

gas and then separates water from the oil (Arnold and Stewart 1999). 

 

Separators are built in various designs such as horizontal, vertical or 

spherical. Vertical separators are commonly used where the gas to oil ratio 

is high and where horizontal space is considered a barrier. Horizontal 
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separators are installed when volume of total fluid is available and large 

amount of dissolved gas in it. Proper design of separator is important in 

order to obtain satisfactory separation efficiency, and at the same time 

minimize size and weight. The processing will mainly be phase separation 

of oil, gas, water and perhaps sand normally performed in one to four 

stages where pressure is successively reduced for each stage as illustrated 

in Figure 1-1 below. 

 

 

 

Figure 1-1: Schematic of a three-stage separation system (Ken and Maurice 

2008) 

 

This thesis is a continuation of my project work on “Droplets in Production 

Tubing and Separators” the focus of this work has been on the performance 

of internals in three-phase tanks separators and emphasis put on horizontal 

separators, separating oil, gas and water. The sizing of separators is divided 

into two parts; the first part without internals (only original internals) and 

the second part with the proposed internals. Internals are the various types 
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of equipment put inside separators to increase the capacity and efficiency of 

separation. Internals are found in the separator inlet zone such as inlet 

cyclones, gravity/coalescing zones such as mesh pads, plate packs and the 

gas outlet zone such as the mist extractors which include wire mesh and 

vane type plates. The proposed internals for this work are wire mesh pads, 

vane type plates and cyclones but emphasis on sizing a wire mesh mist 

extractor at the gas outlet zone and calculating its separation capture 

efficiency. 

 

In the previous work a two-phase tank separator was used separating gas 

and water using a produced gas well fluid (Guo & Ghalambor 2005). 

In this work; Hysys is used to determine the properties of the fluid using the 

fluid composition of volatile oil in Table 1-1 in the appendix obtained from a 

typical molar composition of petroleum reservoir fluid (Pedersen et al 

1989).  Since a droplet size in separation is important, diameter of droplet 

sizes are assumed in sizing the wire mesh.  A three-phase tank separator is 

used and the processing is phase separation separating oil, gas, water. The 

separation is in two stages; gas – liquid and liquid – liquid separations. 

 

The liquid carryover in gas-liquid separation depends not only on the vessel 

configuration and operating conditions but also on droplet breakup and 

coalescence processes due to vessel internals. Normally, the separation 

efficiency of liquid - liquid separator is specified in terms of the "cut-off 

diameter". This is the diameter of the smallest droplets removed with an 

efficiency of 100%. 
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Because of the sensitivity of droplet size to the gravity settling process, a 

variety of vessel internals including (inlet cyclone, perforated baffles, vane 

packs, mesh pads, spiral flow demister) have been developed to enhance 

droplet coalescence and reduce liquid carryover involved in the separator. 

 

As part of this work; separation in three stages is assumed (at 80 bara, 15 

bara and 2 bara) and separators at these pressures are sized without 

internals and with internals based on the combination of API recommended 

practice and NORSOK  standard which is one of the purposes of this work. 

Based on Sounder-Brown equation (Sounders and Brown 2008), and API 

SPEC 12J (API specification 12J 2008) sizes a gas-liquid separator using 

maximum allowable gas velocity, at which the minimum droplet can settle 

out of a moving gas stream. To prevent re-entrainment of liquid droplets 

from the interface, a simplified Kelvin-Helmholtz criterion is practically 

used to estimate a critical interface velocity. If the actual velocity under a 

given operating condition exceeds the critical interface velocity, it is then 

assumed that the liquid droplet will be entrained into the gas stream from 

the interface and eventually leads to higher liquid carryover at gas outlet. 

The physical and chemical effects that make separation more difficult 

including foaming, emulsion and phase inversion are addressed. 
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2 Theory and literature review 

2.1 Separators  

The three phase separator works on the principle that the three 

components have different densities, which allows them to stratify when 

moving slowly with gas on top, water on the bottom and oil in the middle. 

Any solids such as sand will also settle in the bottom of the separator. These 

separating vessels are normally used on a producing lease or platform near 

the wellhead, manifold, or tank battery to separate fluids produced from oil 

and gas wells into oil, gas and water. 

 

Separators are often classified by their geometrical configuration; vertical, 

horizontal, and vertical (Saeid et al 2006) and their function; two-phase and 

three-phase separators. Separators are two-phase if they separate gas from 

the total liquid stream and three-phase if they also separate the liquid 

stream into its crude oil and water-rich phases (Ken and Maurice 1998). 

Additionally, separators can be categorized according to their operating 

pressure; high, medium and low. Low-pressure units handle pressure of 

about 0.7 to 12 bar (70 to 1200 kPa). Medium-pressure separators operate 

from about 15 to 48 bar (1500 to 4800 kPa). High-pressure units handle 

pressure of about 65 to 103 bar (6500 to 10300 kPa). In other words, they 

may be classified by applications (test, production, low temperature, 

metering, and stage separators) and by principles (gravity settling, 

centrifugation and coalescing).  
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For this work, only three-phase separators (vertical and horizontal) are 

used for design. The principle of gravity settling, centrifugation and 

coalescing are involved in separators. In the gravity settling section, 

gravitational forces control separation, and the efficiency of the gas-liquid 

separation is increases by lowering the gas velocity. Because of the large 

vessel size required to achieve settling, gravity separators are rarely 

designed to remove droplets smaller than 250  m (Taravera, 1990).  Also, 

residence time in the vessel is an important criterion for better separation. 

In centrifugal separators, centrifugal forces act on droplet at forces several 

times greater than gravity as it enters a cylindrical separator. Generally, 

centrifugal separators are used for removing droplets greater than 100 µm 

in diameter, and a properly sized centrifugal separator can have a 

reasonable removal efficiency of droplet sizes as low as 10 µm. They are 

also extremely useful for gas streams with high particulate loading 

(Talavera, 1990). 

Very small droplets such as fog or mist cannot be separated practically by 

gravity. However, they can be coalesced to form larger droplets that will 

separate out. Coalescing devices in separators force gas to follow a tortuous 

path. The momentum of the droplets causes them to collide with other 

droplets or with the coalescing device, forming larger droplets. These can 

then separate out of the gas phase due to the influence of gravity. Wire 

mesh screens, Vane elements, and Filter cartridges are typical examples of 

coalescing devices. 
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2.1.1 Horizontal separators 

Horizontal separators are almost always used for high GOR wells, for 

foaming well streams, and for liquid-liquid separation (Beggs, 1984). 

They are available for two-phase and three-phase operations. They vary in 

size (in diameter and in seam to seam). Figure 2-1 is a typical scheme of a 

three-phase horizontal separator. The fluid enters the separator and hits an 

inlet diverter. This sudden change in momentum generates the initial bulk 

separator of liquid and gas. In most designs, the inlet diverter contains a 

downcomer that directs the liquid flow below the oil-water interface. 

This forces the inlet mixture of oil and water to mix with the water 

continuous phase in the bottom of the vessel and rise through the oil-water 

interface. This process called ‘water-washing’ promotes the coalescence of 

water droplets that are entrained in the oil continuous phase. The inlet 

diverter assures that little gas is carried with the liquid, and the water-wash 

assures that the liquid does not fall on top of the gas-oil or oil-water 

interface, mixing the liquid retained in the vessel and making control of the 

oil-water interface difficult. The liquid-collecting section of the vessel 

provides sufficient time so that the oil and emulsion form a layer or oil-pad 

at the top. The free water settles to the bottom. The produced water flows 

from a nozzle in the vessel located upstream of the oil weir. An interface 

level controller sends a signal to the water dump valve, thus allowing the 

correct amount of water to leave the vessel so that the oil-water interface is 

maintained at the design height. 

The gas flows horizontally and outs through a mist extractor (normally 

known as a demisting device) to a pressure control valve that maintains 

constant vessel pressure. The level of gas-oil interface can vary from half 
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(50%) the diameter to 75% of the diameter depending on the relative 

importance of liquid-gas separation and what purpose the separator has.  

 

 

Figure 2-1: Typical scheme of a horizontal three-phase separator (Saeid et 

al 2006) 

 

In addition, as illustrated in Figure 2-2 below, four major functional zones 

can be generally identified in the horizontal three-phase separator (ken and 

Maurice 2008). The section between the inlet nozzle and first baffle can be 

considered as the primary separation zone, which is desired to separate the 

bulk liquid from the gas stream. Downstream from the primary separation 

zone is the gravity settling zone, which is used for the entrained droplets to 

settle from the wet gas stream. This section normally occupies a large 

portion of the vessel volume through which the gas moves at a relatively 

low velocity. Following the gravity settling zone is a droplet coalescing 

zone, which could be parallel plates, vane packs, mesh pads, and spiral flow 



24 
 

demisters. This zone helps to remove very small droplets based on 

impingement and inertial separation principles. In some designs, the 

droplets coalescing zone, and the gravity settling zone work sequentially. In 

other design, however, they are integrated together. The last section is the 

liquid collection zone may have a certain amount of surge volume over a 

minimum liquid level necessary for control system to function properly. 

However, the most common configuration is half full. 

 

 

Figure 2-2: Major functioning zones in a horizontal three-phase separator 

(ken and Maurice 2008) 

 

2.1.2 Vertical separators 

A vertical separator can handle relatively large liquid slugs without 

carryover into the gas outlet. It thus provides better surge control, and is 

often used on low to intermediate gas-oil ratio (GOR) wells and wherever 

else large liquid slugs and more sands are expected. 
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They are available for two-phase and three-phase operations. They also 

vary in size (in diameter and height). Figure 2-3 is a typical scheme of a 

three-phase vertical separator.  The flow enters the vessel through the side 

as in the horizontal separator and the inlet diverter separates the bulk of 

the gas. The gas moves upward, usually passing through a mist extractor to 

remove suspended mist, and then the dry gas flows out. A downcomer is 

required to transmit the liquid collected through the oil-gas interface so as 

not to disturb the oil-skimming action taking place. As illustrated by Powers 

et al (1990), vertical separators should be constructed such that the flow 

stream enters near the top and passes through a gas-liquid separating 

chamber even though they are not competitive alternatives unlike the 

horizontal separators. 

A chimney is needed to equalize gas pressure between the lower section 

and the gas section. The spreader or downcomer outlet is located at the oil-

water interface. From this point as the oil raises any free water trapped 

within the oil phase separates out. The water droplets flow countercurrent 

to the oil. Similarly, the water flows downward and oil droplets trapped in 

the water phase tend to raise countercurrent to the water flow. The 

horizontal separators have separation acting tangentially to flow, whereas 

vertical separators have separation acting parallel to flow. In the vertical 

separator, level control is not critical, where the liquid level can fluctuate 

several inches without affecting operating efficiency (GPSA, 1998). 

However, it can affect the pressure drop for the downcomer pipe (from the 

demister), therefore affecting demisting device drainage.  
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Figure 2-3: A typical scheme of a vertical three-phase separator (Saeid et al 

2006) 

2.1.3 Separator selection 

There are no simple rules for separator selection. Sometimes, both 

configurations (vertical and horizontal) should be evaluated to decide 

which is more economical. 

The relative merits and common applications of vertical and horizontal 

separators are summarized by Manning and Thompson (1995) as follow: 

Horizontal Separators are used most commonly in the following conditions; 

 Large volumes of gas and/or liquids. 

 High-to-medium gas/oil (GOR) streams. 

 Foaming crude 

 Three-phase separation 

Advantages of these separators are: 
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 Require smaller diameter for similar gas capacity as compared to 

vertical vessels. 

 No counter-flow (gas flow does not oppose drainage of mist 

extractor). 

 Large liquid surface area for foam dispersion generally reduces 

turbulence. 

 Larger surge volume capacity 

Vertical Separators are used in the following conditions; 

 Small flow rates of gas and/or liquids 

 Very high GOR streams or when the total volumes are low. 

 Plot space is limited. 

 Ease of level control is desired 

Advantages of these separators are as follow: 

 Have good bottom-drain and clean-out facilities. 

 Can handle more sand, mud, paraffin, and wax without plugging. 

 Fewer tendencies for entrainment. 

 Has full diameter for gas flow at top and oil flow at bottom. 

 Occupies smaller plot area. 

 

2. 2 Vessel internals 

Vessel internals are essential to enhance droplet coalescence processes in 

separators. Generally, gas-liquid separators without any enhancement 

internals can only remove liquid entrainment with sizes above 100 micron. 

By adding efficient internals, the corresponding droplet size can be reduced 

to 5-10 microns (Yaojun and John 2009). This indicates that the gas-liquid 

separation efficiency can be enhanced considerably by properly designed 



28 
 

vessel internals. It is for this reason that varieties of vessel internals have 

been developed which include; inlet devices, perforated baffles, mesh pads, 

vane packs, and spiral flow demisters.  The details of the various internals 

below are based on the SPE paper of Yaojun Lu and John Green of FMC 

Technologies Inc and and a research paper of Saeid Rahimi.  

 

2.2.1 Inlet devices 

A number of different inlet devices are available, with different working 

mechanisms. Their performances differ from each other, both in efficiency 

and complexity. The inlet devices have large impact on the overall 

separator efficiency. Inlet devices perform the following functions below; 

 Separate bulk liquids 

One of the main functions of the inlet device is to improve the primary 

separation of liquid from the gas. Any bulk liquids separated at the inlet 

device will decrease the separation load on the rest of the separator and 

thus improve the efficiency. Good bulk separation will also make the 

separator operation less sensitive to changes in the feed stream. When 

mist extractors (mesh or vane pads) are utilized to enhance the liquid 

droplet separation, the amount of liquid in gas in the face of mist extractor 

(liquid loading) adversely affects the performance of the mist extractor. 

Therefore using an appropriate inlet device plays a major role in 

achieving required separation. 

 Ensure good gas and liquid distribution  

A properly sized inlet device should reduce the feed stream momentum 

and ensure the distribution of the gas and liquid(s) phases entering the 
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vessel separation compartment, in order to optimize the separation 

efficiency. Mal-distribution of liquid can lead to a large spread in 

residence times, decreasing the separation efficiency. Also a gas mal-

distribution at the entrance of the mist extractor or cyclone deck can 

locally overload the demister and cause severe carryover.  

 Prevent re-entrainment and shattering 

Re-entrainment of liquid droplets can be caused by blowing gas down or 

across the liquid surface at very high velocities. This phenomenon often 

occurs when vessels with deflector baffles or half pipes are 

operated at the higher gas flow rates than what they were designed 

for. Liquid shattering inside the inlet device can also happen in a 

vessel with no inlet device or with a deflector baffle when the feed 

stream’s liquid smashes into the plate and is broken up in 

extremely small droplets. This can create smaller droplets than were 

present in the feed stream, making the separation in the rest of the 

separator even harder. Selecting a proper inlet device and following 

common design guidelines for setting the distance between the bottom of 

the inlet device and highest liquid level inside the vessel should 

minimize this problem. 

 Facilitate de-foaming 

If the feed stream has a tendency to foam, an inlet device that prevents or 

even breaks down foam can significantly improve the separation 

efficiency of the vessel, reduce the size of the vessel and the use of 

chemicals. 

Common types of inlet devices include: 
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 Diverter plate 

 Half pipe 

 Inlet Vane distributor 

  Inlet Cyclone 

 Slotted tee distributor 

 Tangential inlet with annular ring 

 Deflector baffle 

 

2.2.1.1 Diverter plate 

A diverter or baffle plate can be a flat plate, dish, cone that induce a rapid 

change in flow direction and velocity, causing separation of the two phases. 

Because the higher-density liquid possesses more energy than the gas at the 

same velocity it does not change direction as rapidly. The gas will flow 

around the diverter while the liquid strikes the diverter and falls down in 

the liquid section of the vessel. The design of such devices is relatively 

simple, it mainly needs to withstand the forces acting on it, but the 

geometry can vary according to fluid conditions. It can be used for flows 

with little gas load and little tendency for foaming. Figure 2-4 shows two 

examples of diverter plates, horizontal separator (left) and vertical 

separator (right). In addition to relatively poor bulk separation, problems of 

liquids droplets becoming shattered may occur. This creates small droplets 

which are more difficult to separate. 

 

 



31 
 

          

Figure 2-4: Showing examples of diverter plates (ken and Maurice 2008) 

 

 

2.2.1.2 Half pipe 

A half pipe inlet is a horizontally oriented cylinder where the bottom half is 

removed lengthwise. It has a simple design, but sends both gas and liquid 

downward into the separator and some gas may be entrained in to the 

liquid. Half open pipes are the modified versions of 90° elbow devices, 

suitable for both vertical and horizontal separators, with slightly 

improved bulk liquid removal and reasonable gas distribution. In this type, 

a piece of pipe with a length up to three times the inlet nozzle diameter 

is welded to the inlet 90° elbow. In horizontal vessels, the last 

section of the half open pipe should be horizontal; pointing 

opposite to the flow direction in the vessel and with its opening 

directed upward. In vertical vessels, the last section is closed and its 

opening is directed downward. The same configuration is used when 

the half open pipe is used for a horizontal vessel with a  side nozzle. 
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(a) Horizontal vessel-top entry                       (b) Vertical vessel 

 

 

(c)  Horizontal vessel-side entry     

Figure 2-5: Showing half open pipes installation configuration in 

horizontal and vertical vessels (Saeid 2013) 

 

2.2.1.3 Inlet vane distributor 

The simplest form of the inlet vane distributor is the dual vane inlet device 

as shown in Figure 2-6 which offers a reasonable flow distribution with 

low shear and pressure drop. In horizontal vessels, it i s suited for 

top entry only. The benefits of this device compared with simpler 

deflectors such as deflector plates include reduced agitation and hence 

improved phase operational performance, more stable level control, and 

reduced foaming. For liquid slugging applications, usually where there is a 

long incoming flow line, this device provides excellent mechanical 
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strength. The dual vane works by smoothly dividing the incoming flow 

into two segments using curved vanes to suit the overall geometry of the 

inlet nozzle. The gas phase readily separates and disperses along the 

vessel, whilst the liquid phase velocity is reduced and the flow directed to 

the vessel walls where it further disperses and falls into the bulk 

liquid layer at relatively low velocity.  For services where there is a high 

gas flow relative to the liquid flow, the multi-vane inlet device provides 

excellent vapour distribution allowing a reduced height to the mass 

transfer or mist eliminator internals. The i n l e t  vane distributors work 

by smoothly dividing the incoming flow into various segments using 

an array of curved vanes to suit the overall geometry of the  inlet 

nozzle and distributor length. To achieve this effect the vanes start with a 

wide spacing and gradually reduce the gap, giving the unit its 

characteristic tapering shape. It can be installed in both vertical and 

horizontal (top and side entry) three phase separators.    

 

                            

(a) Dual vane                                      (b)  Multi vane 
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(c)  Multi vane (for vertical vessel only)  

Figure 2-6: Showing the different types of inlet vane devices (Saeid 2013) 

 

2.2.1.4 Inlet cyclone 

The inlet cyclonic device is used in horizontal and some  vertical 

separators where there is a requirement for high momentum 

dissipation, foam reduction and high capacity. They work on the 

principle of enhanced gravity separation by accelerating any  

incoming stream to a high gravity force, which particularly helps foam to 

break down into separate liquid and gas phases. Unlike most inlet devices 

that are positioned in the gas phase, the inlet cyclone is partly submerged 

in the liquid phase. The liquid phases are also separated centrifugally 

through the perimeter of the cyclone tubes and fall down in to the bulk 

liquid layers, whilst the gas form s a central vortex core and escapes 

through a top outlet hole into the gas space. The mixing elements on top of 

the cyclone outlet section usually provide a proper distribution of the 

cleaned gas to downstream devices. The device has a high pressure drop 

associated with it. The designs of the inlet cyclones have evolved over 

the past decades from short single (conventional cyclones) or dual 

cyclones into multi-cyclone arrangements as shown in Figure 2 - 7 . The 

main characteristic of the cyclone inlet device is its high flow capacity, 
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meaning that more throughput is possible through any given size 

separator.  

 

 

Figure 2-7: Showing multi cyclone inlet device (Saeid 2013) 

 

2.2.1.5 Slotted tee distributor 

The slotted T-shaped distributor consists of a vertical pipe extended 

inside the vessel to bring the distributor to the right elevation and a 

slotted pipe with large holes or rectangular slots (perpendicular to 

the inlet pipe) ensuring a reduced feed stream velocity and 

minimized flow turbulence. As shown in Figure 2-8, it can be used in 

both vertical and horizontal (top entry only) separators. The openings 

of the slots are usually 120° (±60°) and towards the dish end and liquid 

interface in horizontal and vertical vessels, respectively.  
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Figure 2-8: Showing tee distributor (Saeid 2013) 

 

2.2.1.6 Tangential inlet with annular ring 

Tangential inlet devices have been exclusively developed for vertical 

vessels. The feed flow radially enters the vessel and accelerates passing 

through the inlet device, the cyclonic action of the inlet device helps 

the liquid droplets flow on the inner wall of the vessel and the stripped 

gas to flow through the central section of the inlet device (annular ring) to 

the gas outlet nozzle. The two options with regards to the inlet nozzle 

arrangements a r e  shown in Figure 2 - 9 . The round entry type generates 

higher centrifugal force and slightly better separation efficiency. 

However, it is not recommended for pressures higher than 5.0 bar 

( 5 0 0 k P a )  due to its construction difficulties at high pressures. 

Furthermore, both types can have a circular or rectangular inlet nozzle. A 

larger cross sectional area can be provided when a rectangular (with 

height larger than the width) nozzle is used. 
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(a) Round entry                                            (b)   Straight entry 

Figure 2-9: Tangential inlet entry arrangement (Saeid 2013) 

 

2.2.1.7 Deflector baffle 

Deflector baffles are historically one of the most common types of inlet 

devices in oil and gas industries before the advent of inlet devices with 

higher separation efficiency become so popular. This device simply uses a 

baffle plate in front of the inlet nozzle to change the direction of the inlet 

stream and separate the bulk of the liquid from the gas. Figure 2-10 

shows an horizontal baffle designed so that settled fluid flows to 

the inlet end of the drum and down of the drum wall to the bottom.  
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Figure 2-10: Showing a deflector baffle (Alvin & Ronaldo 2009) 

 

2.2.1.8 Comparison of performances of different inlet devices 

In order to make a proper selection of the inlet device to use, one needs to 

know how different types of inlet devices perform in similar conditions. 

When designing the inlet device, conservative liquid carry-over from 

upstream equipment (e.g. separators) shall be assumed. A typical number 

for an upstream separator, with moderate carry over, is 0.15 m3 

liquid/MSm3 gas. Different inlet devices exist. Operating outside their 

design point will have detrimental effect to the overall performance. A poor 

inlet separation will cause liquid overloading of the demisting section and 

result in carry-over. A good inlet device shall reduce the inlet momentum, 

separate bulk liquid with minimum creation or shattering of droplets, and 

create good vapour distribution.  Table 2-1 below evaluates the 

different functions of the inlet devices.  

Table 2-1: Comparison of performances of different inlet devices 

(NORSOK standard, P-100, Nov 2001) 

Inlet device 

functions 

None Inlet 

vane 

Cyclone Half pipe Baffle 

Momentum 

reduction 

Poor Good Good Good Good 

Bulk separation Good Good Good Average Poor 
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Prevent re-

entrainment 

Good Good Average Average Average 

Prevent liquid 

shatter 

Good Good Good Average Poor 

Ensure good gas 

distribution 

Poor Good Average/ 

poor 

Poor Poor 

 

Table 2-1 shows a comparison between the different inlet devices. Inlet 

cyclone and vane type are ranked to have the best performances.  It would 

always be necessary to install an inlet device such as vane type 

distributors or cyclones. Based upon the table above, the inlet vane 

arrangement is usually used. Inlet cyclones may provide high inlet 

separation, but the design is critical and the operating envelope is more 

limited than for the inlet vane. However, it should also be noted that the 

weakness of the inlet device can be compensated if proper 

engineering practices are taken into consideration.   

 

2.2.2 Mist extractors 

Mist extractors otherwise called demisters are a commonly used internal 

devices to eliminate mist (very small disperse droplets) from gaseous 

streams. They are used in oil and gas industry as internal devices to 

gravitational separators in primary oil processing unit, in order to minimize 

carryover by affluent gas stream. The gas drag force causes small liquid 

particles to follow the gas stream. Mist extractors must therefore somehow 
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intervene the natural balance between gravitational and the drag forces. 

This can be accomplished by reducing the gas velocity (hence reduce drag), 

introduce additional forces by use of cyclones or increase gravitational 

forces by boosting the droplet size (impingement). The selection of mist 

extractor is based on evaluation of: 

 Droplet sizes that must be removed. 

 Tolerated pressure drop. 

 Presence of solids and the probability or risk of plugging because of 

this. 

 Liquid handling in the separator. 

The rate of droplets following the gas stream is governed by simple laws of 

fluid mechanics. As gas flows upward, two opposing forces are acting on a 

liquid droplet namely a gravitational force (accelerates the droplet down) 

and a drag force (slows down the droplet’s rate of fall). An increase in gas 

velocity will increase the drag and when the drag force equals the 

gravitational force the droplet will settle at a constant velocity called the 

terminal velocity. Further increase in the gas velocity causes the droplet to 

move upwards and then follow the gas stream out of the separator. 

Mist extractors’ operations are usually based on a design velocity and 

depend on the demister type and the manufacturing company. The 

designed velocity is given by; 

 

   =    √
      

  
                                                                                             (2-1) 

Where   

    = design maximum velocity, m/s 
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    = the density of liquid, kg/m3 

    = the density of gas (vapour), kg/m3 

    = demister capacity factor, m/s and depends upon the demister type. 

It is in other words the   -factor that determines the operating gas velocity, 

where a too low factor can cause the droplets to remain in the gas 

streamlines and pass through the device uncollected while a too high value 

can cause re-entrainment because of droplet breakup.  

 

Some functions of mist extractors include 

 Collect/capture drops 

 Remove drops 

 Avoid maintenance problems 

 Keep cost as low as possible 

In order for a mist eliminator to work properly, it must be designed to 

collect and capture the droplets present in the system. Therefore, it is 

imperative to define the size of the droplets present. After the droplets have 

been captured, the mist eliminator must be able to remove the droplets 

from the system by draining effectively. Through the initial selection 

process, the most appropriate mist eliminator media must be selected so 

that liquid hold-up in the pad does not become an issue after the mist 

eliminator is installed. When designing a mist eliminator, engineers are also 

responsible for defining the environment the mist eliminator will operate in 

so that maintenance requirements are minimized. The mist eliminator must 

keep the operating costs of the system as low as possible and match the 

budget of the end user. 
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Common types of mist extractors are: 

 Wire mesh pads 

 Vane packs 

 Demisting cyclones 

 

2.2.2.1 Wire mesh pad 

The mesh pad demister captures small droplets with high efficiency. The 

mesh can be of metal (wire mesh) or plastic material, or a combination. 

Typical minimum droplet removal size is: 

Metal mesh: 10 micron 

Plastic/fibre: 3-5 micron 

The mesh depth is typically from 100-300 mm with typical pressure drop of 

0.1-3.0 millibar. High liquid load/flooding will increase the pressure drop 

significantly. For efficient operation the demister     value must generally 

be below 0.1 m/s.  

The most common impingement type mist extractor are the wire mesh 

type, as shown in Figure 2-11, where a large surface area is obtained by 

knitting wire together to a pad. The mesh pad is mounted close to the gas 

outlet of the separator. As the gas flows through, the inertia of the entrained 

droplets make them contact the wire surfaces and coalesce. Because of the 

dense structure of the pad it is best suited for low viscosity, non-congealing 

liquids with no solids present. Otherwise it may get clogged.  At    -values 

above 0.1m/s the mesh will be flooded. This causes loss of separation 

efficiency, and the element will then act as an agglomerator, coalescing 

small droplets into larger. In this service the mesh can act as a conditioner 
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for a secondary demisting element such as vanes or cyclones, as larger 

droplets will separate more easily in cyclones or vanes. 

At elevated pressures and in critical services, the    -factor value must be 

multiply by the following adjustment factor. 

  

Table 2-2: Scrubber conditions and adjustment factors (GPSA engineering 

data book, 1998, vol. 2) 

Scrubber condition Adjustment factor 

1 bar pressure 1.00 

20 bar pressure 0.90 

40 bar pressure 0.80 

80 bar pressure 0.75 

 

Also as shown in Figure 2-12, there are one-layered and multi layered mesh 

pads and are usually constructed from wire of diameter ranging from 0.1 to 

0.28mm, typical void fraction from 0.95 to 0.99, and thickness from 100 to 

300mm. During operation, gas stream carrying entrained droplet passes 

through the mesh pad. The gas moves freely from the mesh pad while the 

entrained droplets are forced to the wire surface and coalesced due to the 

inertial effect. Drops formed in the mesh pad ultimately drain and drop out 

of the mesh pad. It is evident that a well designed and operated mesh pad 

can effectively removed droplets larger than 3-5 microns from the gas 

stream, and corresponding pressure drops is less than 0.25kPa. In addition, 
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mesh pad can be operated between 30-110% of the design capacity, thus 

exhibits excellent turndown behaviour. 

 

 

Figure 2-11: Wire mesh extractor for vertical separator (NATCO, 2009) 

 

 

Figure 2-12: Typical configuration of mesh pads 

 

2.2.2.2 Vane packs 

Vane mist eliminators also known as plate types consist of closely spaced 

corrugated plates that force mist-laden gas to follow serpentine paths. 

These devices are generally not efficient for mist droplets smaller than 

about 20 microns, but they are sturdier than mesh pads and impose less 
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pressure drop. Vane arrays can be mounted horizontally or vertically. They 

are preferred in applications involving high vapour velocities, low available 

pressure drop, viscous or foaming liquids, lodging or caking of solids, slugs 

of liquid or violent upsets. Like mesh pads, vane units are usually round or 

rectangular.  The operating principle for a vane pack is that the feed stream 

passes through parallel vane plates and is forced to change direction 

several times. The droplets impinge and collect at the surface of the plates 

and create a liquid film which is drained through slits into a liquid sump 

and then further to the liquid compartment of the vessel. Figure 2-13 (a & 

b) show a vane pack design by Koch-Otto York for a horizontal and vertical 

gas flows. Here the collected liquid (green arrow) is guided into separate 

channels which move the liquid away from the gas. Because the liquid is 

isolated from the gas the chance for re-entrainment of liquid into the gas 

again is reduced. This is called a double pocket design. Simpler single 

pocket designs are also common, but here is the liquid drained with the gas 

flowing by, increasing the chance of re-entrainment of liquid. Hence, gas 

velocities can be much higher for double pockets (Koch-Glitsch 2007). 

 

Figure 2-13: (a) Horizontal gas flow in a vane pack (Koch-Glitsch 2007) 
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Figure 2-13: (b) Vertical gas flow in a vane pack (Koch-Glitsch 2007) 

 

Also as shown in Figure 2-14, it illustrates the vane pack with strategically 

designed slots or pocket hooks, which allows the coalesced liquid on the 

blade surface be collected and directed into the internal channels shielded 

from the gas flow. Once droplets gets into these channels, the collected 

liquid is directed to drain and lead to a liquid sump in the separator vessel. 

Since the liquid is isolated from the gas stream and less subject to re-

entrainment, the gas velocities can go significantly high both in horizontal 

and vertical applications. The space between the two adjacent blades 

ranges from 5 to 75mm with a total depth in the flow direction of 150 to 

300mm. By passing the wet gas through the vane pack, the mist droplet 

undergoes changes in momentum, causing impingement and coalescence 

on the vane blades. The coalescence droplets then drain down along the 

vane surfaces.  It is reported that the convectional vane pack can separate 

droplets larger than 40 micron, while the vane pack with pocket design can 

remove droplets down to less than 15 micron (Yaojun and John2009). In 

most cases, the drop through the vane pack ranges from 0.1 to 1.5 kPa. 

Double pocket vanes have higher efficiency and larger capacity as 

compared to single pocket vanes. Many different vane designs exist and a 
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general performance factor can not be given, but table 2-3 below gives 

some conservative values. 

Table 2-3: Sizing factors for demisting vane elements (NORSOK 

standard, P-100, Nov 2001) 

 Vertical gas flow Horizontal gas flow 

   
  (kg/ms2) 20 – 30 30 – 45 

K-value (m/s) 0.12 – 0.15 0.20 – 0.25 

 

Where    = superficial velocity, m/s 

Vanes give lower pressure drop than demisting cyclones and this may be an 

advantage at lower pressures such as in re-compressor scrubber 

applications (1 to 20 bar).  At higher pressures, careful design is required to 

limit re-entrainment problems, but vanes have been used at pressures 

above 100 bar. 

 

 

              

Figure 2-14: Showing vane pack with pockets (Yaojun 2009) 
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2.2.2.3 Demisting cyclones 

Demisting cyclones are sometime axial type cyclones, but some other 

designs are also based on multi-cyclones with tangential entry. For axial 

cyclones, typical minimum droplet removal size is 5-10 microns depending 

on swirl velocity. The typical pressure drop is 20-100 bar. The relatively 

high pressure drop requires a high drainage head, and is one of the critical 

parameters in cyclone design. The drainage is normally internal, into the 

vessel bottom, but should be routed externally in case of insufficient 

drainage height. The total differential pressure over the demisting section, 

measured in liquid height, shall not be more than 50% of the available 

drainage height related to LAHH (Level alarm high high). A cyclone based 

scrubber should usually have a mesh upstream the cyclones. The mesh will 

act as a demister at low gas rates, and as an agglomerator at high gas rates. 

The performance curves of the mesh and cyclones shall overlap to assure 

good demisting in the whole operating range. The liquid handling capacity 

of the cyclones may limit the gas capacity and performance. Sufficient 

separation in the inlet-mesh section is required to stay below the liquid 

capacity limits of the cyclones. 

In the cyclonic demisting device multiple cyclone tubes are mounted on a 

deck or into housing. Cyclone demisters can handle high gas capacities 

combined with efficient droplet removal, and are more efficient than mist 

extractors and vanes and less susceptible to clogging. Figure 2-15 shows a 

principle sketch of a cyclone mist extractor. Gas and mist enters the cyclone 

and goes through a swirl element. This induces high centrifugal forces 

causing the liquid droplets to move outwards and coalesce to a liquid film 

on the cylinder wall. The liquid is purged through slits in the wall together 
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with some gas into a chamber where the phases are separated. The purge 

gas, with some remaining mist is led to a low pressure zone of the cyclone 

where the remaining entrainment is removed. The main gas flow is 

discharged at the top of the cyclone while the liquid is drained at the 

bottom. 

         

                            

Figure 2-15: Cyclone mist extractor (Koch Glitsch 2007) 

 

2.2.2.4 Perforated baffles 

The perforated baffle can be just a single plate with uniformly distributed 

holes as shown in Figure 2-16. Some advance baffles are constructed with 

steel as double plate with varied hole-size and pattern or combination of 

the full and partial baffles property spaced. As the gas stream approaches 

the baffle surface, flow is force to change direction and spread along the 
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baffle surface. Due to the presence of perforated baffle, additional pressure 

drop is created, kinetic energy of the gas stream is dissipating, and flow 

across the baffle is re-distributed accordingly. Since the gravity setting 

process is closely related to the flow distribution, the perforated baffles are 

commonly used to manage the flow condition and further to control re-

entrainment of droplet from the gas-liquid interface. In conjunction with 

the inlet devices, the perforated baffle are frequently utilized to establish a 

primary separation section, where the momentum is reduced prior to 

entering the gravity setting zone where the condition are optimized for 

setting separation. 

 

  

Figure 2-16: Typical configuration of perforated baffles (Yaojun 2009) 

 

Common applications include; calming the inlet zone in horizontal 

Separators, liquid flow redistribution in long vessels, surge suppression in 

vessels, gas distribution upstream or downstream of mist eliminators. 

The flow distribution characteristic of perforated baffles is well established, 

but modern design tools such as CFD enable today’s designers to tailor the 

baffle design to achieve optimum distribution by adjusting the hole size, 

percentage of the open area, number of baffle and their overlap as 

illustrated below; 
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Figure 2-17: Showing CFD enabled baffle design (HAT International) 

 

2.2.2.5 Spiral flow demister 

Spiral flow demisters consist of multiple cyclone tubes mounted into 

housing. Figure 2-18 shows only one of the cyclone tubes. As can be seen, 

the gas stream enters the cyclonic inlet and flows through the spiral flow 

element that imparts a high centrifugal force. The droplets are then flung 

outward and are coalesce into a liquid film on the inner wall of the wall of 

the cyclone tube. The liquid film is purge out of the cyclonic unit through 

slit in the wall, along with a small portion of gas flow, into an outer chamber 

where most of the gas and liquid separate. The gas along with some 

remaining mist is educed back into a low pressure zone of the cyclone unit 

and the remaining entrainment is removed. The demisted gas is then 

discharge from the top and separation liquid is drained from the bottom. 

Depending on nominal diameter of the spiral element, droplets of 25 

micron and above can be effectively separated, and the corresponding 

pressure drop range from 2.5 to 7.5kPa. An important advantage of the 

spiral demister is the high gas handling capacity combined with excellent 

droplets removal efficiency even at elevated pressure. Its downside, 
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however, is sensitivity to flow change. Therefore, the spiral flow demister is 

more suitable for application where the flow fluctuation is not very 

significant.   

 

                                     

Figure 2-18: Showing spiral-flow demister (Yaojun 2009)  
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3 Determination of fluid properties using Hysys 

Hysys, an engineering simulation software developed by Aspen 

Technologies Incorporated was used in this work to determine the 

properties of the mixed fluid (volatile oil and water) using the fluid 

composition of volatile oil in Table 1-1 in the appendix obtained from a 

typical molar composition of petroleum reservoir fluid (Pedersen 1989). 

Hysys was started by first click on the start menu and select it among the 

various programs in the computer.  It already had a database of about 1500 

components making it easy to select the specific needed components with 

reference to Table 1-1. After specifying the components list, the 

composition of the fluid was directly put into the program and normalized 

to give a total mole fraction of one. Peng-Robinson equation of state was 

selected as the fluid package. The fluid package contains information about 

the physical and flash properties of components. It determines the relation 

between each component and how they react together. The Peng-Robinson 

fluid package is the preferred fluid package for hydrocarbon mixtures. It is 

recommended for oil, gas, water and petrochemicals because it calculates 

with a high degree of accuracy the properties of two-phase and three-phase 

systems. The simulation environment was entered and material streams 

added.  

The volatile oil was assumed to be the fluid at the bottom of the well was 

mixed with water using a mixer and the properties of the mixed fluids were 

obtained. The volatile oil was assumed to have a temperature of 90˚C (363 

K), a pressure of 300 bara (30000 kPa) and a mass flow of 36,000 kg/hr (10 

kg/s). The water was set at the same temperature and pressure of the 

volatile oil with a mass flow of 1300 kg/hr (0.36 kg/s). 
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The mixed fluid (volatile oil and water) was considered as the fluid from the 

reservoir which flows through a well of 2500 m with five different pipe 

segments of 500 m each representing the well to the surface through the 

tubing. The pipes had an outer diameter of 4.50" (0.114 m) and an inner 

diameter of 4.02" (0.102 m). The flow was distributed and assumed to be a 

mist flow throughout the different segments of the pipe. 

The fluid at the surface passed through the controlled valve-1 to the first-

stage separator. Three separation units were considered.  The drop in 

pressure caused flash vapourisation. Crude oil from the first stage flows to 

the second stage and then to the third stage. There is a pressure-reducing 

valve at the input of each separator vessel and the pressures used were 80, 

15, and 2 bar for first, second and third stages separation respectively. 

Tables 3-1, 3-2 and 3-3, are the fluid properties in first-stage (high 

pressure), second-stage (medium pressure) and third-stage (low pressure) 

respectively.  For convenient and ease calculations, some of the fluid 

properties are summarised in Table 3-4 (Appendix A) for gas, oil, and water 

in both field and SI units. 

 

3.1 Stage and phase separation 

Stage separation of oil and gas is carried out by a series of separators whose 

pressures gradually decrease. The fluid is discharged from a high pressure 

separator to the next low pressure separator. The purpose of stage 

separation is to get the highest amount of hydrocarbon liquid from the well 

fluid, and provide the highest stability of the streams of liquids and gas. 

To achieve good separation between gas and liquid phases and maximizing 

hydrocarbon liquid recovery, it is necessary to use several separation 
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stages at decreasing pressures in which the well stream is passed through 

two or more separators arranged in series. The operating pressures are 

sequentially reduced, hence the highest pressure is found at the first 

separator and the lowest pressure at the final separator. In practice, the 

number of stages normally ranges between two and four, which depends on 

the gas-oil ratio (GOR) and the well stream pressure, where two-stage 

separation is usually used for low GOR and low well stream pressure, three-

stage separation is used for medium to high GOR and intermediate inlet 

pressure, and four-stage separation is used for high GOR and a high 

pressure well stream. The main objective of stage separation is to provide 

maximum stabilization to the resultant phases (gas and liquid) leaving the 

final separator, which means that the considerable amount of gas or liquid 

will not evolve from the final liquid and gas phases, respectively. The 

quantities of gas and liquid recovered at a given pressure are determined 

by equilibrium flash calculation using an appropriate equation of state 

(EOS). This helps optimize the value of pressure that is set for each 

separator. The pressures are often staged so that the ratio of the pressure in 

each stage is constant. Therefore, if the pressure in the first separator 

(which is normally fixed by specification or economics) and the pressure in 

the final separator (which will be near the atmospheric pressure) are 

known, the pressure in each stage can be determined. In this work, 

pressures at the three different stages are given as 80, 15 and 2 bar. The 

different stages of separation are completed using the principles of; 

momentum, gravity settling, and coalescing. Momentum force is utilized by 

changing the direction of flow and is usually employed for bulk separation 

of the fluid phases. The gravitational force is utilized by reducing velocity so 

the liquid droplets can settle out in the space provided. Gravity settling is 

the main force that accomplishes the separation, which means the heaviest 
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fluid settles to the bottom and the lightest fluid rises to the top. However, 

very small droplets such as mist cannot be separated practically by gravity. 

These droplets coalesced to form larger droplets and settle by gravity. 

 

3.1.1 Gas-liquid separation 

Gas liquid separation is often based on the principle of gravity settling, 

when liquid droplets suspended in rising gas vapours settle down at the 

bottom of the separation vessel and are eventually taken out through the 

bottom. Gas stream separated from liquid is taken out from the top of the 

separation vessel.  

Gas-liquid separation is usually accomplished in three stages. The first 

stage; primary separation, uses an inlet diverter to cause the largest 

droplets to impinge by momentum and then drop by gravity. The next 

stage; secondary separation, is gravity separation of smaller droplets as the 

vapour flows through the disengagement area. Gravity separation can be 

aided by utilizing distribution baffles that create an even velocity 

distribution in the fluid, thus allowing enhanced separation. The final stage; 

is mist elimination, where the smallest droplets are coalesced on an 

impingement device, such as a mist pad or vane pack, followed by gravity 

settling of the larger formed droplets. In the liquid-liquid separation, the 

volume must be sufficiently large to allow sufficient time for the dispersed-

phase drops to reach the liquid-liquid interface and coalescence. Thus, the 

residence time has two components. These are the time required for the 

droplets to reach the interface and the time required for the droplets to 

coalesce. 
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The separation of liquid droplets from vapour phase can be explained with 

the help of equation for terminal velocity of liquid droplets. 

In the gravity settling section of a separator, liquid droplets are removed 

using the force of gravity. Liquid droplets will settle out of a gas phase if the 

gravitational force acting on the droplet is greater than the drag force of the 

gas flowing around the droplet. These forces can be described 

mathematically using the terminal or free settling velocity. Figure 3-2 (a 

and b) show the forces on liquid droplet in gas stream and gravity settling 

theory where small droplets are entrained in the gas vapour, droplet of 

critical sizes stay in suspension and large droplet settled. 

A liquid drop in a gas stream will be carried upward if the gas velocity is 

higher than the terminal settling velocity (TSV).  According to 

Gudmundsson (2000), the TSV of a liquid droplet in a gas stream is given by 

the equation; 

 

   = √
    

   
 √
     

  
                                                                                                (3-1)  

 

Where √
    

   
   =                                                                                                   (3-2) 

 

   =    √
      

  
                                                                                                       (3-3) 

Also; 
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The drag coefficient is a function of the Reynolds number for liquid droplet 

which is expressed as; 

    
      

  
                                                                                                             (3-4) 

The gaseous mass flow rate is given as; 

   =           =          √
       

  
                                                                   (3-5) 

And the gaseous volume flow rate is given as; 

   =        =        √
       

  
                                                                                (3-6) 

At standard conditions, the gaseous volume flow rate is given as 

      =        √
       

  
  (

 

   
) (

   

 
)
 

 
                                                                     (3-7) 

 

                           (API 12J SPEC for vertical separators.) 

 

Most vertical separators are sized based on equation (3-3) which have been 

developed using the terminal settling velocity equation and the drag 

coefficient expressed as a function of Reynolds number. The drag coefficient 

has been found to be a function of the shape of the particle and the 

Reynolds number of the flowing gas. For the purpose of this equation 

particle shape is considered to be a solid, rigid sphere.  

For smaller horizontal vessels (length less than 3m), equation (3-3) given 

above can be used for sizing. For horizontal vessels larger than 3m 

equations (3-8 & 3-9) given below have to be followed. 
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    =    √
       

  
(
 

 
)
    

        (For NORSOK standard)                           (3-8) 

 

    =    √
       

  
(
 

    
)
    

          (For API 12J SPEC.)                                (3-9)                                                 

 

    =        =          √
       

  
(
 

 
)
    

                                                  (3-10)                                               

 

    =       √
       

  
(
 

 
)
    

                                                                            (3-11) 

 

0.12 m/s <    < 0.15 m/s (API 12J SPEC) 

   = 0.137 m/s (NORSOK standard) 

 

Where; 

   = area of the gas particle, m2 

   = mass flow rate of gas, kg/s 

     = drag co-efficient 

   = droplet diameter, m, µm 

   = volume flow rate of gas, m3/s 

     = volume flow rate of gas at standard conditions, Sm3/s 
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L = effective length of separator, m 

    Reynolds’s number 

  = Gas viscosity, Pa.s 

 

 

 

(a) Forces (drag and gravitation) on liquid droplet in gas stream 
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(b) Showing gravity settling theory 

 

Figure 3-1: 2001 ASHRAE Meeting in Cincinnati, Nestle USA   

 

3.1.2 Liquid-liquid (oil-water) separation 

Two immiscible liquids can be separated using the difference between 

densities of the two phases. Similar to gas-liquid separation principles, 

liquid-liquid separation is also governed by settling of heavier phase 

droplets or rise of the droplets of lighter liquid phase. In the liquid-liquid 

separation, the volume must be sufficiently large to allow sufficient time for 

the dispersed-phase drops to reach the liquid-liquid interface and 

coalescence. Thus, the residence time has two components. These are the 

time required for the droplets to reach the interface and the time required 

for the droplets to coalesce. The separation of liquids in this ways is also 

governed by the equation of the terminal settling velocity of the droplets. 

For a liquid droplet in another phase Reynolds number is expressed and for 

low Reynolds numbers (less than 2), the drag coefficient (  ) has a linear 

relationship with Reynolds number (  ). Then the terminal settling velocity 

equation can then be reduced to the Stokes law. 

The difference between two liquid densities is often low and viscosities are 

high, resulting in low terminal velocities. Hence, for liquid-liquid separation, 

the residence time required for the separation is much higher than often 

required for gas-liquid separation. Thus for high degrees of separation, 

liquid-liquid separation requires a big size. 
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According to Stewart et al (1998), the oil-water separation is governed by 

Stoke’s law for terminal velocity of spheres in a liquid medium. The 

terminal velocity of the continuous phase is defined by; 

 

   = 
 

  
   

 (       )

  
                                                                                         (3-12) 

Where g = gravitational constant, 9.8m/s2 

 

From equation 3-12 above, the terminal velocity is a function of an 

emulsion (oil-water) viscosity that takes into account an oil-rich or a water-

rich system. The viscosity of an emulsion as given by Taylor is given by; 

 

    =   [      (
     ⁄

   
)]                                                          (3-13) 

 

 

Where p = 
              

            
                                                                        (3-14) 

 

As production goes on, inversion from oil-dominant to water-dominant 

emulsion takes place and is estimated by; 

 

  = (
   

   
) (

      

      
)
   

                                                                      (3-15) 
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Where; 

    = emulsion viscosity, Pa.s 

   = continuous phase viscosity, Pa.s 

  = volumetric ratio of inner phase to outer phase 

  = phase dispersion coefficient 

    = flow rate of light liquid (light phase), m3/s 

    = flow rate of heavy liquid (heavy phase), m3/s 

    = density of light liquid, kg/m3 

    = density of heavy liquid, kg/m3 

     = viscosity of heavy liquid, Pa.s 

    = viscosity of light liquid, Pa.s 

 

Table 3-5 below summarized the types of emulsion based on the phase 

dispersion coefficient,   

 

Table 3-5: Emulsion type resulting from phase dispersion coefficient 

(Boukadi et al 2012) 

Phase dispersion coefficient,   Result 

< 0.3 Light phase always dispersed 
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0.3 – 0.5 

0.5 – 2.0 

2.0 – 3.3  

> 3.3 

Light phase probably dispersed 

Phase inversion possible 

Heavy phase probably dispersed 

Heavy phase always dispersed 

 

For practical purposes, phase dispersion of 0.5 is used as an inversion point. 

The emulsion viscosity obtained from the above procedure can only be used 

to calculate the minimum capacity of the separator. There is no limit on the 

size of the separator as viscosity does not directly influence the capacity of 

a separator. For this purpose, a new retention time is used that is calculated 

using the formula below to yield a more direct correlation to the size. 

  (      ) = 
       

     
  (    )                                                       (3-16) 

Where    = retention time, sec 

Figure 3-2 below illustrates the new methodology of sizing separators. 

 

 

Figure 3-2: Showing separator sizing methodology (Boukadi et al 2012) 
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4 Separator sizing 

Based on engineering design guidelines, separator sizing must satisfy 

several criteria for good operation during the lifetime of the producing field. 

These include; 

 Providing sufficient time to allow the immiscible gas, oil, and water 

phases to separate by gravity. 

 Providing sufficient time to allow for the coalescence and breaking of 

emulsion droplets at the oil–water interface. 

 Providing sufficient volume in the gas space to accommodate rises in 

the liquid level that result from the surge in the liquid flow rate. 

 Providing for the removal of solids that settle to the bottom of the 

separator. 

 Allowing for variation in the flow rates of gas, oil, and water into the 

separator without adversely affecting separation efficiency. 

Gas-liquids separators may be sized for horizontal or vertical operation, but 

Younger (1955) found that for seven separators in use, with L/D varying 

from 1.7 to 3.6, all were installed vertically. This is consistent with the rule 

given by Branan (1994) that if L/D > 5, a horizontal separator should be 

used. Scheiman (1963) recommends that the settling length should be to 

0.75D or a minimum of 12in (0.305 m) whereas Gerunda (1981) specifies a 

length equal to the diameter or a minimum of 3ft (0.914 m). Also, to prevent 

flooding the inlet nozzle, Scheiman (1963) allows a minimum of 6in (0.152 

m) from the bottom of the nozzle to the liquid surface or a minimum of 12in 

(0.305 m) from the center line of the nozzle to the liquid surface. Branan 

(1994) recommends using 12in (0.305 m) plus half of the inlet nozzle 

outside diameter or 18in (0.4570 m) minimum. Gerunda (1981) specifies a 

length equal to 0.5 D or 2 ft (0.610 m) minimum. 



66 
 

Scheiman (1963) recommends a surge time in the range of 2 to 5 min, 

whereas Younger (1955) recommends 3 to 5 min. There is a minimum 

liquid height required to prevent a vortex from forming. The design of the 

separator will have to include a vortex breaker. The minimum liquid level 

should cover the vortex breaker plus an additional liquid height. 

Experiments conducted by Patterson (1969) showed that the lower liquid 

level varies slightly with the liquid velocity in the outlet nozzle. For a 

velocity of 7ft/s (2.13 m/s) in the outlet piping of a tank, with no vortex 

breaker, a vortex forms at a liquid level of about 5in (0.127 m). The flow 

should be turbulent to break up any vortex. Thus, Gerunda's (1981) 

recommendation, allowing a 2ft (0.610 m) minimum liquid level, should 

suffice. The thickness of the mist eliminator must be specified, which must 

be thick enough to trap most of the liquid droplets rising with the vapour. 

The thickness of the eliminator is usually 6in (0.152 m). An additional 12in 

(0.305 m) above the eliminator is added to obtain uniform flow distribution 

across the eliminator. If the eliminator is too close to the outlet nozzle, a 

large part of the flow will be directed to the center of the eliminator, 

reducing its efficiency. The total length of the separator can be calculated by 

summing up the dimensions. According to Branan (1994), if L/D is greater 

than 5, use a horizontal separator. Also, Branan states that if L/D < 3, 

increase L in order that L/D > 3, even if the liquid surge volume is 

increased. Increasing the surge volume is in the right direction. 
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4.1 Factors affecting separation 

Characteristics of the flow stream greatly affect the design and operation of 

a separator. The following factors must be determined before separator 

design; 

 Gas and liquid flow rates (minimum, average, and peak) 

 Operating and design pressures and temperatures 

 Surging or slugging tendencies of the feed streams 

 Physical properties of the fluids such as density viscosity and 

compressibility 

 Designed degree of separation (e.g., removing 100% of particles 

greater than 10 microns) 

 Presence of impurities (paraffin, sand, scale, etc.) 

 Foaming tendencies of the crude oil 

 Corrosive tendencies of the liquids or gas. 

4.1.1 Sizing considerations 

The following must be considered in designing separator vessel based on 

engineering design guideline. 

 The volumes of the dished heads are negligible as compared with the 

volume of the cylinder. 

 Unless specifically stated the length/diameter (L/D) is considered to 

be acceptable when it is in the range 1.5 to 6.0. There is not a great 

change in cost over this ranger and other factors such as foundations, 

plant layout, and symmetry are significant. 

 For a vertical separator, the gas flows through the entire cross section 

of the upper part of the vessel. The feed enters the separator just 

above the vapor-liquid interface, which should be at least 2ft (0.61m) 
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from the bottom and at least 4ft (1.22m) from the top of vessel. The 

interface does not have to be at the center of the vessel. 

 For a horizontal separator, the interface does not have to be at the 

centerline of the vessel. In some cases, a smaller-diameter vessel may 

be obtained by making the interface location off-center and a design 

variable. The feed enters at the end of separator just above the vapor-

liquid interface, which should be at least 10in (0.25m) from the 

bottom and at least 16in (0.41m) from the top of the vessel. 

 

4.2 Sizing procedures 

This section addressed the basics of three-phase separator (vertical and 

horizontal) design and provides step-by-step procedures for three-phase 

gas/liquid/liquid separator design.  

In the separator design, it is also worthwhile to clarify two definitions; 

holdup and surge times. Holdup is the time it takes to reduce the liquid level 

from normal (NLL) to Low (LLL) while maintaining a normal outlet flow 

without feed makeup. Surge time is the time it takes for the liquid level to 

rise from normal (NLL) to high (HLL) while maintaining a normal feed 

without any outlet flow. Holdup time (  ) is based on the stream facilities, 

whereas surge time (  ) is usually based on requirements to accumulate 

liquid as a result of upstream or downstream variations or upset. Table 4-1 

shows typical values of holdup time and surge time (Svrcek and Monnery, 

1994).    

 

Table 4-1: Typical values of holdup (  ) and surge (  ) times (Monnery and 

Svrcek 1994) 
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 Service   , min    , min 

A. Unit feed drum 

B. Separator 

 Feed to column 

 Feed to other drum or tankage with pump or 

through exchange 

 Without pump 

 Fee to fire heater 

10 

 

5 

 

5 

2 

10 

5 

 

3 

 

2 

1 

3 

 

Also, the separator    factors based on York Demister and Gas Processors 

Suppliers’ Association is obtained from table 4-2 below.  

 

Table 4–2 Separator   - factors (Monnery and Svrcek, 1994) 

 

Vendor: Otto H. York Company Inc. 

With mist eliminator 

1≤P≤15               = 0.1821 + 0.0029P + 0.0461InP 

15≤P≤40                 = 0.35 

40≤P≤5,500            = 0.430 - 0.023InP 

Where P is in Psia 
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Gas Processing Suppliers’ Association 

0≤P≤1500                  = 0.35 – 0.0001(P – 100) 

For most vapours under vacuum,     = 0.20 

For glycol and amine solutions, multiply     by 0.6 to 0.8 

For vertical vessel without demister, divide     by 2 

For compressor suction scrubber, mole sieve scrubbers, and expander inlet 

separators, multiply     by 0.7 to 0.8 where P is in psig. 

 

Theoretically, equation (3-2) can be used to obtain    for separators 

without mist extractors or typically one-half (½) of that used for vessels 

with mist extractors. 

Separators can be any length, but the ratio of seam-to-seam length to the 

diameter of the vessel, L/D is usually in the range of 2:1 to 4:1 or in the 

range of 1.5 to 6.0. Table 4-3 below shows the L/D ratio guidelines as 

proposed by Monnery and Svrcek 1994. 

 

Table 4–3  L/D ratio guidelines (Monnery and Svrcek, 1994) 

Vessel operating pressure, psig L/D 

0 < P ≤ 250 (18 bar) 

250 (18 bar) < P  < 500 (35 bar) 

 P > 500 (35 bar) 

1.5 – 3.0 

3.0 – 4.0 

4.0 – 6.0 
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4.2.1 Vertical separator design procedure 

For a three-phase vertical separator, the total height can be broken into 

different sections, as shown in Figure 4-1. The separator height is then 

calculated by adding the height of these sections. If a mist eliminator pad is 

used, additional height is added. The design is based on the methodology of 

a basic design of three phase vertical separator (Monnery and Svrcek 

1994). 
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Figure 4-1: Basic design of three phase vertical separator (Monnery and        

Svrcek 1994) 

 

The calculations of diameter and height based on the methodology of 

Monnery and Svrcek (1994) are detailed as follow; 

 

1. Calculating the terminal settling velocity (TSV) of droplets using 

Equation 3-3  

     

            =   √
     

  
  

           And setting       
 

 
    (            )                                    (4-1) 

 

2. Calculating the vapour (gas) volumetric flow rate,     

                = 
  

    
                                                                       (4-2) 

 

3.  Calculating the vessel internal diameter,    : 

    = (
   

   
)  
 
 ⁄                                                           (4-3) 

            If there is a mist eliminator;    + 3-6 inch (0.08 – 0.15m) 

            If there is no mist eliminator, D =   . 
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4. Calculating the settling velocity of the heavy liquid out of the light 

liquid. (the maximum is 10in./min (0.0042m/s) 

       

           = 
  (       )

   
                                                                                      (4-4) 

 

5. Similarly, calculating the rising velocity of the light liquid out of the 

heavy liquid phase 

    

              = 
  (        )

   
                                                                                  (4-5)      

 

6. Calculating the light and heavy liquid volumetric flow rates,     and 

        

 

     =  
   

     
                                                                                                            (4-6) 

              

                  =  
   

     
                                                                                             (4-7) 

 

7. Calculating the settling times for the heavy liquid droplets to settle 

through a distance,    (minimum 1ft, 0.3042m) and for the light 

liquid droplets to rise through a distance,     (minimum 1ft, 

0.3042m). 
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       = 
    

   
                                                                                (4-8) 

       

                  = 
    

   
                                                                                    (4-9) 

 

8. Calculating the area of a baffle plate (if any); AL,  which is the settling 

area for the light liquid  

 

    = A -                                                                     (4-10) 

            Where A is vertical vessel cross-sectional area, and    is downcomer 

           cross-sectional area given as; 

 

           A= 
   

 
                                                                                          (4-11)      

                                                                            

        AD =  (
        

 
)                                                                       (4-12) 

 

Where the baffle liquid loads (G) be obtained from Figure 4-1 below; 
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Figure 4-2: Determining the downcomer allowable flow (Monnery and        

Svrcek 1994) 

 

Or using equation 4-13 below; 

 

 
  

 
 ,                            (

  

 
)           (

  

 
)      

         (
  

 
)               (

  

 
)    -  ,             (

  

 
)  

         (
  

 
)              (

  

 
)               (

  

 
)   -            (4-13) 

 

Where D is the vessel diameter and the downcomer chord width (  ) is 

assumed 4in (0.1016m).   

 

9. Calculating the residence time (  ) of each phase based on the 

volumes occupied by the light and heavy phases as; 
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                       = 
     

   
                                                        (4-14) 

  

                  = 
     

   
                                                                                        (4-15) 

         

            Where    = A 

 

      If        <     or         <       this implies that liquid separation is 

controlling, the diameter needs to be increasing and procedure repeated 

from step 7.  

 

10. Calculating the height of the light liquid above the outlet 

(holdup height)    based on the required holdup time (  ) as  

         

                  = 
      

  
                                                                           (4-16) 

  Check this value with that assumed in step 7 to ensure that the assumed 

value is reasonable. 

11.  If surge is not specified, calculating the surge height (  ) based 

on surge time (  ) 

 

                 = (
  (           )

 
)                                                  (4-17) 
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12. Calculating the vessel total height (  ) as 

 

                 =                                                        (4-18) 

Where     is liquid level above baffle, which is 6 in. (0.15m) minimum, and 

    is liquid height from above baffle to feed nozzle. 

 

    = 
 

 
      greater of 2 ft (0.61m) or      0.5 ft (0.15m) 

   = 0.5D or a minimum of; 36in (0.91m) +  
 

 
    (without mist eliminator) 

Or 24 in (0.61m) + 
 

 
    (with mist eliminator) 

Where the nozzle diameter (  ) is calculated using the following criterion: 

  

          [
   

   √ 
 

⁄
]
   

                         (4-19) 

 

   and    are inlet mixture volume flow rate and density of mixture 

respectively.    is disengagement height. 

If a mist eliminator pad is used, additional height is added as shown in 

Figure 4-1. 
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Using the design procedure outlined above and the fluid properties in Table 

3-4, the design calculations and results are shown in Table 4-4 (Appendix 

A) at 80, 15 and 2bar for the vertical separators. 

The following assumptions are made; 

 No mist eliminator 

 Setting      
 

 
    (            )                            

 Vessel is half filled 

 Vessel internal diameter     (vessel diameter) = 2m if less that. 

 Height from liquid interface to light liquid nozzle,    = 1ft (0.3042m) 

 Downcomer width (  ) = 1in (0.1016m) 

 Holdup time (  ) = 5min (300s) and surge time (  ) = 3min (180s) 

 Liquid level above baffle (  ) = 6in (0.15m) 

 Disengagement height (  ) = 0.5D 

 

The ratio of the total height to the diameter of the separators is in the range 

of 1.5 to 6.0, which is the acceptable range.  

 

With mist eliminator, the design calculations and results are shown in Table 

4-5 (Appendix A) at 80, 15 and 2bar. 

The following assumptions are made; 

 With  mist eliminator 

 Setting      
 

 
    (            )                            

       = 2m + 6in (0.15m) . 

 Height from liquid interface to light liquid nozzle,    = 1ft (0.3042m) 
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 Downcomer width (  ) = 1in (0.1016m) 

 Holdup time (  ) = 5min (300s) and surge time (  ) = 3min (180s) 

 Liquid level above baffle (  ) = 6in (0.15m) 

 Disengagement height (  ) = 0.5D 

 

The ratio of the total height to the diameter of the separators is in the range 

of 1.5 to 6.0, which is the acceptable range for 80bar. Additional height 

(0.3042m) is added to the separators at 15 and 2 bara. 

 

 

4.2.2 Horizontal separators design procedure 

For a three-phase horizontal separator, the horizontal design procedures 

incorporate optimizing the diameter and the length. Wall thickness, surface 

area and approximate vessel weight are obtained from Table 4-6 below. 

 

 

Table 4-6: Wall thickness, surface area and approximate vessel weight 

(Monnery & Svrcek 1994) 

Components Wall thickness Surface area 
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Shell 

 

 

2:1 Eliptical heads 

 

 

Hemispherical heads 

 

Dished heads 

  

        
    

 

  

        
    

 

  

        
    

 

  

        
    

 

πDL 

 

 

       

 

 

        

 

       

 

 

Approximate vessel weight is given by; 

 

 (
     

   
) (

    

  
) (             )                                                       ( 4-20) 

 

Selection of the horizontal separator heads is based on Table 4-7 below. 

 

Table 4-7: Selection of horizontal separator separator heads (Monnery & 

Svrcek 1994) 
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Conditions Typical heads used 

D < 15ft (4.57 bar) and P < 100psig 

(7.9bar) 

D < 15ft and P > 100psig  

D > 15ft regardless of pressure 

Dished with knuckle radius = 0.6D 

 

2:1 Eliptical 

Hemispherical 

 

Figure 4-2 is a basic design of horizontal three-phase separator with weir. 

 

 

Figure 4-3: Basic design of three phase horizontal separator with weir 

(Monnery and Svrcek 1994) 

 

The horizontal design procedures with weir are detailed as follow: 

1. Calculating the vapour volumetric flow rate 
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    = 
  

    
  from equation 4-2 

 

2. Calculating the light and heavy liquid volumetric flow rates,     and 

    

 

                 =  
   

    
     from equation 4-6 

 

          And      =  
   

    
        from equation 4-7 

 

3. Calculating the terminal settling velocity using equation 3-3  

         

          =   √
     

  
   

 

      And setting       
 

 
    (Tamagna 2012) from equation 4-1 for a       

conservative design and    from Table 4-2. 

 

4. Selecting hold up and surge times from Table 4-1, and calculate the 

holup and surge volumes,           . 

 

                 =                                                                              (4-21) 
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                 =                                                                               (4-22) 

 

5. Obtaining   ⁄  from Table 4-3 and initially calculate the diameter 

according to  

   

             D =  (
 (      )

    (  ⁄ )
)

 
 ⁄

                                        (4-23)  

 

Then calculating the total cross-sectional area, using    = 
   

 
 

 

6. Setting the vapor space height,   , to the largest of 0.2D or 2 ft            

(1 ft if there is no mist  eliminator).                                                         

Using 
  

 
  in equation 4-13 (replacing with  

  

 
) obtain 

  

 
 and calculate 

   

7. Calculating the low liquid level in the light liquid component in the 

vessel 

 

                   = 0.5D + 7                                                                          (4-24) 

 If D ≤ 4.0ft (1.2m), then      = 9in (0.23m) 

 

8. Calculating the cross-sectional area of the light liquid above the 

bottom of the vessel,      Using 
    

 
 (instead of   

  

 
) in equation 4-13. 

9. Calculating the weir height 
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                = D -                                                                                           (4-25) 

If     < 2ft, increase D and repeat the calculation from step 6. 

 

10. Calculating the minimum length,    to accommodate the liquid 

hold/surge. 

 

           = 
      

            
                                                                       (4-26) 

Round to the nearest 
 

 
 ft. The minimum for for     =         (0.3m) 

11. Setting the interface at the height  
  

 ⁄  obtaining the heights of the 

heavy and light liquids     and      

12. For the liquid settling compartment, calculating the cross-sectional area, 

    of the heavy liquid using  
   

 ⁄   (instead of   
  

 
) in equation 4-13 and 

the cross-sectional area of the light liquid from;                                          

                                                                          (4-27) 

13. Calculating the settling velocities of the heavy liquid out of the light 

liquid phase    , and the light out of the heavy phase    , using equations 

4-4 and 4-5. 

14. Calculating the settling times of the heavy liquid out of the light liquid 

phase and the light liquid out of the heavy liquid phase; 

 

      = 
     

   
                                                                         (4-28)                                                               
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      = 
     

   
                                                                        (4-29)            

 

 

15. Calculating the minimum length,    to facilitate liquid-liquid separation 

as the larger of; 

 

      (
         

   
    

        

   
)                                                           (4-30) 

Round to the nearest 
 

 
ft (0.15m) 

 

16. Finding L 

L = L1 +L2                                                                                                                      (4-31)            

17. Calculating the liquid dropout time,    , using the following equation: 

 

                  = 
  

  
                                                                                            (4-32) 

 

18. Calculating the actual vapor velocity,    , as 

           = 
  

  
                                                                                              (4-33)  

19.  Calculating the minimum length required for vapor/liquid separation, 
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                                                                               (4-34) 

20.  If L <     , then set L =      (vapor/liquid separation controls).  

If L         increase   , and recalculate    

 If L >     , the design in acceptable for vapor/liquid separation.  

If L         , (liquid separation and holdup controls).                                           L 

can only be reduced and       increase if    is reduced.  

    may only be reducing if greater than the minimum specified in step 6. 

With reduced  , recalculate    and repeat from step 10. 

21.   Calculating L/D, If L/D   1.5, then decrease D (unless it is already at a 

minimum) and repeat from step 6.    

If L/D    6.0, then increase D and repeat from step 5 

22. Calculating the thickness of the shell and heads according to table 4-6. 

23. Calculating the surface area of the shell and head according to table 4-6 

24. Calculating the approximate vessel weight according to equation 4-20 

25. Increase or decrease the diameter by 6 in. increment and repeat the 

calculations until   ⁄  ranges from 1.5 – 6.0 

26. With the optimum vessel size (minimum weight), calculate normal and 

high liquid levels: 

 

                                                                                           (4-35) 

 

                ⁄                                                                    (4-36) 
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Obtain      with replacing       ⁄  with 
  

 
 in equation 4-13. 

 

Using the design procedure outlined above and the fluid properties in Table 

3-4, the design calculations and results are shown in Table 4-8 (Appendix 

A) at 80, 15 and 2bar for the horizontal separators. 

The following assumptions are made; 

 No mist eliminator 

    = 0.0305m/s (Silla 2003) without mist eliminator 

 Setting      
 

 
    (            )                            

 Vessel is half filled 

 Holdup time (  ) = 10min (600s) and surge time (  ) = 5min (300s) 

 Gas disengagement area height (  ) = 1ft (0.3042m) 

 L/D = 4 for P >  30bar 

 L/D = 3 for P <  30bar 

 

The following assumptions are made for the design of horizontal separator 

with mist eliminator; 

    = 0.137m/s (typical NORSOK standard) 

 Setting      
 

 
    (            )                            

 Holdup time (  ) = 10min (600s) and surge time (  ) = 5min (300s) 

 Gas disengagement area height (  ) = 2ft (0.6084m) 

 L/D = 4 for P >  30bar 

 L/D = 3 for P <  30bar 
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The design calculations and results are shown in Table 4-9 (Appendix A) at 

80, 15 and 2bar for the horizontal separators. 
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5 Droplet settling theory 

In gravity settling, the dispersed phase drops/bubbles will settle at a 

velocity determined by equating the gravity force on the drop/bubble with 

the drag force caused by its motion relative to the continuous phase. In 

horizontal vessels, a simple ballistic model can be used to determine a 

relationship between vessel length and diameter. In the vertical vessels, the 

settling theory results in a relation for the vessel diameter. 

For horizontal separators; droplet settling theory using a ballistic model 

results in the relationship for liquid drops in gas phase as shown below; 

      
     

  
  = 

    

 
*(

  

     
)
  

  
+

 

 
                                             (5-1) 

Where  

     = effective length of vessel where separation occurs, m 

    = fractional gas phase cross sectional area 

  = gas compressibility  

   = droplet diameter, m  

   = drag coefficient 

   = vessel internal diameter, m 

For bubbles or liquid drops in liquid phase is given by; 

      
     

  
  =   *(

  

     
)
  

  
+

 

 
                                             (5-2) 
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Where   

    = fractional continuous phase cross sectional area 

   = continuous liquid phase space height, m  

   = continuous liquid phase density, kg/m3 

   = dispersed liquid phase density, kg/m3 

   = continuous liquid phase flow rate, m3/s 

For low Reynolds number flow, the continuous liquid phase space height    

can be obtained by; 

     
   (  )  

 

  
                                                                                (5-3) 

Where  

    = continuous phase retention time, s 

   = continuous phase viscosity, Pa.s 

   = specific gravity difference (heavy/light) of continuous and dispersed 

phases   

For vertical vessels; droplet settling theory using a ballistic model results in 

the relationship for liquid drops in gas phase as shown below; 

  
   = 

    

 
*(

  

     
)
  

  
+

 

 
                                             (5-4) 

For bubbles or liquid drops in liquid phase is given by;  
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 =   *(

  

     
)
  

  
+

 

 
                                                     (5-5) 

Assuming a low Reynolds number flow, the vertical vessel internal diameter 

is obtained as; 

  
  = 

    

(  )  
                                                                       (5-6) 

 

5.1 Retention time of liquid phase 

For horizontal vessels, the retention time of the liquid phase is obtained 

from the relationship of vessel diameter and length given by; 

  
      = 

               

   
                                                         (5-7) 

Where  

    = retention time of light liquid, s 

     = retention time of heavy liquid, s  

   = fraction of vessel cross section area filled by liquid 

Similarly for vertical vessels, the retention time of the liquid phase is 

obtained from the relationship of vessel diameter and liquid pad heights 

given by; 

  
 (     )  =                                                    (5-8) 

Where  

   =oil (light liquid) pad height, m 
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   = water (heavy liquid) pad height, m 
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6 Internal sizing 

Separation of a gas-liquid stream in a vessel is assisted by process internals 

which provide additional separation beyond that of gravity. 

As mentioned previously, many types of demisters and other internals are 

limited by a maximum velocity given by equation 2-1 and depend upon 

their types and the manufacturer specifications. Therefore sizing internals 

Droplets are removed from a vapor stream through a series of three stages; 

collision and adherence to a target, coalescence into larger droplets, and 

drainage from the impingement element. Knowing the size distributions is 

important because empirical evidence shows that the target size is 

important in the first step of removal and must be in the order of magnitude 

as the particles to be removed. These steps are shown schematically in 

Figure 6-1 for mist elimination using wire mesh mist elimination.  

 

 

 Figure 6-1: Mist elimination using wire mesh mist extractor (AMACS 

process tower internals) 
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This work is limited to sizing wire mesh pad internal and calculating its 

efficiency.  

6.1 Sizing wire mesh pads 

The sizing procedures are detailed below. 

 Determination of the optimum design gas velocity. The Souders-

Brown equation/equation 2-1 is used to determine this velocity 

based on the physical properties of the liquid droplets and carrying 

vapour.  

The recommended value of    varies and depends upon several factors 

such as liquid viscosity, surface tension, liquid loading, and operating 

pressure. Each manufacturer has its own recommended values. For general 

sizing, a     value of 0.1 m/s can be used as a guideline.  

 Obtaining the capacity factor using Table 6-1 below. 

This is influenced by type and style of mesh or vane targets used, and the 

geometry of the targets (vertical or horizontal relative to the vapour flow). 

 

Table 6-1 Standard Sounder’s Brown coefficient (k-factor) for mesh and 

plate packs (AMACS process tower internals, Houston) 

Pad arrangement k, m/s 

1. Horizontal style 4CA pad 

2. Style 4CA mistermesh pad 

3. Horizontal plate pack 

4. Vertical plate pack 

0.107 

0.128 

0.152 
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0.198 

  

 Determination of the cross-sectional area.  

After selecting the appropriate capacity factor and calculating the ideal 

vapour velocity, the cross-sectional area of mist eliminator is readily 

determined by dividing the volumetric flow rate by the velocity.  

 Predicting the efficiency of the mesh pad. 

Having established the design velocity for the application, the efficiency of 

the mesh pad for droplet of a particular size can be predicted by calculating 

the inertial parameter k as follows;   

   
(     )    

 

    
                                                                                    (6-1) 

Where  

   = wire diameter or thickness, m 

   = design velocity of the wire mesh, m/s 

Using this calculated k value with Figure 6-2 below to find the 

corresponding value of the impaction efficiency fraction, E. 
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Figure 6-2: Determining impact efficiency fraction, E using inertial 

parameter, k  (AMACS process tower internals, Houston)  

 

 From Table 6-2 below, we can find the specific surface area, S for the mesh 

style of interest and determine SO, the area of the area of the mist 

eliminator perpendicular to vapour flow and with a correction factor of 

0.67 to remove that portion of the knitted wire not perpendicular to the gas 

flow. 

 

Table 6-2: Wire and plastic mesh styles (AMACS process tower internals, 

Houston)  
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Table 6-2 shows a few of the more common mesh styles available, together 

with mesh density and void fraction, and most importantly, the diameter 

and specific surface area (i.e. the target density) of filaments used. It is the 

amount of targets per unit volume which influences removal efficiency, not 

the density of mesh (the greater the number of targets the greater the 

probability of a successful collision).  

  

  

         
 

 
                                                                                        (6-2) 
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 Calculating the capture efficiency as given in equation 6-3 below; 

 

  ( )         (
   

    
)                                                                           (6-3) 

Where 

  = the capture efficiency,     

SO = corrected pad specific surface area 

E = impaction efficiency fraction 

 

Using the procedures and guidelines above, the design velocity is obtained 

using equation 2-1 as; 

 

   = 107√
      

  
 = 0.27m/s (0.89ft/s) for horizontal style 4CA mesh 

pad. 

 

The cross sectional area is obtained as; 

A = 0.05/0.27 = 0.19m2 

Calculating the removal efficiency at 5µm droplet size and obtaining the 

value of k using equation 6-1 

 

 

    
(      )    (      ) 

                     
 = 0.095m/s (0.3ft/s) 
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From Figure 6-2, the corresponding impaction efficiency fraction E ~ 0.12 

Applying 0.3ft (0.09m) and 0.5ft (0.15m) of the thick element of the mesh 

   = 0.67*
 

     
*0.3*85+36 = 7.7 

  =100-
   

         
 = 60.3% 

Also for 0.5ft thick; 

   = 0.67*
 

     
*0.5*85+36 = 12.9 

  =100-
   

          
 = 79% 

 Calculating the removal efficiency at 10µm droplet size; 

    
(      )    (       ) 

                     
 = 0.36m/s (1.18ft/s) 

From Figure 6-2, the corresponding impaction efficiency fraction E ~ 0.40 

Applying 0.3ft (0.09m) and 0.5ft (0.15m) of the thick element of the mesh  

    = 0.67*
 

     
*0.3*85+36 = 7.7 

   =100-
   

         
 = 95.4% 

Also for 0.5ft thick; 
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   = 0.67*
 

     
*0.5*85+36 = 12.9 

  =100-
   

         
 = 99.4% 

The plot of separation (capture) efficiency versus the droplet diameter in 

micron is shown in figure 6-3 below; 

     

 

Figure 6-3: Separation (capture) efficiency versus droplet diameter, µm 

The efficiency of a separator is defined here as the fraction (or percentage) 

of the liquid entering the vessel that is separated off. 

The design settling velocity of the mesh pad versus the droplet diameter is 

shown in Figure 6-4 below.  
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Figure 6-4: Design settling velocity of the mesh and the droplet diameter at 

80bar for the horizontal separation 

 

Also the separating efficiency of a vane mist extractor depends on:  

 The number of vanes in the element  

 Distance between the vanes  

 Angle of the vanes and 

 Size of liquid particles  
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 6.2 Predicting pressure drop  

Operating pressure loss across the pad within the above design range is 

normally less than 0.5 kPa depending upon mesh density, pad thickness, 

liquid loading and vapour rate. An approximate pressure drop can be 

estimated from equation 6-4 below; 

 

     (kPa) = C(     ) 
                                                             (6-4)          

 Where 

      = Wet pressure drop, (kPa). Dry pressure drop is about half of the 

wet figure.  

 C = 0.20 for a typical style mesh demister 

    = is the pad thickness, m 

The overall pressure drop is the sum of the head loss incurred as the gas 

travels through the mesh, as well as that due to the resistance to captured 

liquids. Liquid accumulates as a pool in the bottom of the mist eliminator. 
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7 Operating problems 

 Problems occasionally occurred in the operation of 

separators (Arnold and Stewart, 1998) are as follows; 

 Foamy crude 

 Paraffin  

 Sand  

 Liquid carryover and gas blowby  

 Emulsions  

 

 7.1 Foamy crude 

The major cause of foam in crude oil is the appearance of impurities, other 

than water, that are impractical to remove before the stream reaches the 

separator. Foam presents no problem within a separator if the internal 

design assures adequate time or sufficient coalescing surface for the foam 

to "break." Problem of foaming in a separating vessel is as follows;      

 Mechanical control of liquid level is aggravated because any control 

device must deal with three liquid phases, an emulsion is the third 

phase, and instead of two-phases. 

 Foam has a large volume-to-weight ratio. Therefore, it can occupy 

much of the vessel space that would otherwise be available in the 

liquid-collecting or gravity-settling sections. 

 In an uncontrolled foam bank, it becomes impossible to remove 

separated gas or degassed oil from the vessel without entraining 

some of the foamy material in either the liquid or the gas outlets. 

Essentially as the foam is dispersed, it creates very small liquid droplets, 

which carry over. The amount of foam is dependent on the pressure drop to 
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which the inlet liquid is subjected, as well as the characteristics of the liquid 

at separator conditions. In some cases, the effect of temperature may be 

significant. Foam will often be effective in increasing the capacity of a given 

separator. 

 Foam can be reduced by; 

 Using a defoaming pack 

 Using defoaming chemicals, and 

 Utilizing heat to break it down.  

 

7.2 Paraffin  

Coalescing plates in the liquid section and mesh pad mist extractors in the 

gas section are particularly prone to clogging by accumulations of paraffin 

waxes. Hand holes, and nozzles should be provided to allow steam, solvent, 

or other types of cleaning of the separator internals.  

Also, the bulk temperature of the liquid should always be kept above the 

cloud point of the crude oil to prevent paraffin wax formation in the 

separators.  

 

 7.3 Sand 

Sand is often troublesome in separators by causing cutout of valve trim, 

plugging of separator internals, and accumulation in the bottom of the 

separator, thus leading to level control problems. Traditionally, sand has 

only been removed once it has collected in the main production separators. 

However, removal of sand upstream of these separators reduces sand 

problems to a minimum, giving substantial operational benefits.  
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To meet these needs, the Mozley Wellspin desander has been developed to 

remove sand effectively in simple, compact systems based on solid/liquid 

hydrocyclones, which remove the sand before it enters the separator. Sand 

problems may be solved by using a filter or desanding cyclone before the 

separator. However, filters will quickly block in sandy service and are not 

often used.  

  

 7.4 Liquid carryover and gas blowby 

Liquid carryover occurs when free liquid escapes with the gas phase and 

can indicate high liquid level, thus causing damage to vessel internals, foam, 

improper design, plugged liquid outlets, or a flow rate that exceeds the 

design rate of the vessel. Gas blowby occurs when free gas escapes with the 

liquid phase and can be an indication of low liquid level, vortexing, or level 

control failure.  

   

 7.5 Emulsion 

Emulsions are often troublesome in the operation of three-phase 

separators. Over a period of time an accumulation of emulsified materials 

and/or other impurities usually will form at the interface of the water and 

oil phases. In addition to adverse effects on the liquid level control, this 

accumulation will also decrease the effective oil or water retention time in 

the separator, with a resultant decrease in water-oil separation efficiency. 

The addition of chemicals and/or heat often minimizes this difficulty. Also; 

lowering the settling time needed for oil-water separation by either the 

application of heat in the liquid section of the separator, or the addition of 

demulsifying chemicals.  
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 8 Discussions 

Separating vessels in oil and gas processing service are of two kinds; those 

substantially without internals and those with internals. The main functions 

of the first kind, called drums or tanks, are intermediate period for storage 

or to provide a phase separation by settling. Their sizes may be established 

by definite process calculations or by general rules based on experience. 

The second category comprises the shells of equipment whose housing can 

be designed and constructed largely independently of whatever internals 

are necessary.  

 

8.1 Separating vessel without internals (no mist extractor)  

The separators without internals were designed for different pressures (80, 

15 2bar). For an oil and gas separator to accomplish its primary functions, 

pressure must be maintained in the separator so that the liquid and gas can 

be discharged into their respective processing or gathering systems. 

Pressure was maintained in the separator by use of a gas backpressure 

valve on each separator. For the vertical separators without internals, the 

terminal settling velocities of the droplets for the three separators were 

obtained as 0.102m/s, 0.35m/s, and 0.79m/s  for 80, 15 and 2 bar 

respectively. The settling velocities of the heavy liquid out of the light liquid 

were 0.0006m/s, 0.00025m/s, 0.00019m/s and that of the rising velocities 

of the light liquid out of the heavy liquid phase were 0.00041m/s, 

0.00022m/s, and 0.00018m/s. The surge times for the high light liquid 

were 8.45, 20 and 27 minutes while that of the heavy liquid were 12.4, 23 

and 28 minutes. The retention time for the light liquid (oil) was 

approximate 2 minutes for the three separators while that of the heavy 

liquid (water) were 46, 80 and 106 minutes. These were greater than the 



107 
 

surge time and the calculation was proceeded to obtain the total height as 

3.63m, 3.32m and 3.16m. The height/diameter ratios were 1.82, 1.66, and 

1.58 which were acceptable in the range of 1.5 to 6.0.  

 For the horizontal separators without internals, the terminal settling 

velocities of the droplets for the three separators were obtained as 

0.085m/s, 0.206m/s, and 0.439m/s  for 80, 15 and 2 bar respectively. The 

settling velocities of the heavy liquid out of the light liquid were 

0.00049m/s, 0.000149m/s, 0.000103m/s and that of the rising velocities of 

the light liquid out of the heavy liquid phase were 0.00034m/s, 

0.000127m/s, and 0.00010m/s which were less than maximum of 

0.0042m/s. The surge times for the high light liquid were 19, 69 and 95 

minutes while that of the heavy liquid were 27, 81 and 98 minutes. The 

total length was obtained as 6m, 6m and 5m. The length/diameter ratios 

were 4.2, 3.9, and 2.9 which were acceptable in the range of 1.5 to 6.0.  

  

 8. 2 Separating vessel with internals (mist extractor)  

The separators with internals were also designed for different pressures 

(80, 15 2bar). Difference in density of the liquid and gaseous hydrocarbons 

accomplished acceptable separation in the oil and gas separation. However, 

it is necessary to use mechanical devices commonly referred to as "mist 

extractors" to remove liquid mist from the gas before it is discharged from 

the separator.  

For the vertical separators with internals, the terminal settling velocities of 

the droplets for the three separators were obtained as 0.205m/s, 0.70m/s, 

and 1.57m/s  for 80, 15 and 2 bar respectively. The settling velocities of the 

heavy liquid out of the light liquid were 0.00012m/s, 0.00050m/s, 

http://en.wikipedia.org/wiki/Crude_oil
http://en.wikipedia.org/wiki/Gas


108 
 

0.00037m/s and that of the rising velocities of the light liquid out of the 

heavy liquid phase were 0.00082m/s, 0.00043m/s, and 0.00035m/s. The 

surge times for the high light liquid were 6.2, 11.8 and 14.5 minutes while 

that of the heavy liquid were 4.2, 10 and 13.7 minutes. The retention times 

for the light liquid (oil) was 1.6, 2, and 2.26 minutes for the three separators 

while that of the heavy liquid (water) were 52, 91 and 122 minutes. These 

were greater than the surge time and the calculation was proceeded to 

obtain the total height as 3.48m, 3.21m and 3.07m. The height/diameter 

ratios were 1.6, 1.49, and 1.42. Additional heights of 1ft (0.3042) were 

added to the second and third stage separators.   

 For the horizontal separators with internals, the terminal settling velocities 

of the droplets for the three separators were obtained as 0.379m/s, 

0.928m/s, and 1.97m/s  for 80, 15 and 2 bar respectively. The settling 

velocities of the heavy liquid out of the light liquid were 0.0015m/s, 

0.00057m/s, 0.00044m/s and that of the rising velocities of the light liquid 

out of the heavy liquid phase were 0.0015m/s, 0.00057m/s, and 

0.00044m/s which were less than maximum of 0.0042m/s. The terminal 

settling velocity is inversely proportional to the viscosity of the continuous 

phase. Therefore the bigger the viscosity of the continuous phase is, the 

more difficult would be to settle droplets out of the continuous phase.  The 

surge times for the high light liquid were 3, 11.7 and 16 minutes while that 

of the heavy liquid were 4.5, 13.7 and 16.7 minutes. The total length was 

obtained as 7m, 7m and 5m. The length/diameter ratios were 5, 4, and 3 

which were acceptable in the range of 1.5 to 6.0. It is observed that the 

terminal settling velocity in separators with internals are higher than that 

with no internals. 
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 The effect of the mist eliminator is to increase the maximum allowable 

velocity and therefore to reduce the drum diameter. 

  

8.3 The wire mesh pads  

Wire-meshs or Meshpads are used to separate liquid from gas phase. 

Wire Mesh mist extractors are made by knitting wires into tightly 

packed layers which are stacked to achieve the thickness needed. They 

are installed horizontally in vessels with gas stream flowing vertically 

upwards through the pad. Meshpads can be installed in both vertical 

and horizontal vessels.  

Meshpads removes liquid droplets by impingement of droplets onto the 

wire by coalescing them into larger droplets. These larger and heavier 

droplets will subsequently disengage and drop to the bottom leaving 

drier gas moving out of the vessel. 

In this work, the designed velocity for horizontal style 4CA mesh pad was 

obtained as 0.27m/s with a cross sectional area of 0.19m2.  

The separation efficiency of 0.09m thickness of the thick element of the 

mesh was 60% for the removal of 5µm droplet size and 95% for the 

removal of 10 µm droplet size. Also the separation efficiency of 0.15m 

thickness of the thick element of the mesh was 79% for the removal of 5µm 

droplet size and 99% for the removal of 10 µm droplet sizes as depicts in 

Figure 6-3.  

 This shows that for the effective removal of 5µm droplet size and above, a 

0.15m thick element of the mesh should be used. 
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9 Conclusion 

The most important gas/liquid separations that take place in oil and gas 

processing fields operation are; gas-liquid and liquid separations. The 

conditions under which the separations have to take place and 

requirements are to be fulfilled. The present available separator types have 

to be sized with or without internals and evaluated with respect to the 

suitability to fulfill the separation requirements and perhaps in stages.  

The number of stages in stage separation is actually determined by the form 

and the quantity of the liquids offered to the separator and the maximal 

amount of liquid quantity permitted in the outlet of the separator.  

 

The effectiveness of stage separation resulted in the maximum stabilization 

of the resultant phases; gas, oil and water leaving the separator. The 

terminal settling velocities of the droplets increases in the separators as the 

pressure decreases in the different stages of the separators. 

 

In the vertical three-phase separators with mist extractor (mesh pad), the 

retention time which is the effective time available for each phase droplets 

to be separated from the other phase of the heavy liquid (oil) is more than 

100% higher than that of the vertical separator without mist extractor. Also 

the surge time which is the time the vessel can accommodate inlet flow rate 

if outgoing flow rate cuts off was greater in in vertical vessels without mist 

extractor than in the vessel with mesh. 
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In the horizontal three-phase separators with mist extractor (mesh pad), 

the surge time was less than that in horizontal vessels without mesh. The 

values are depicted in Tables 4-4, 4-5, 4-8 and 4-9 above. 

 

The designed length of the three phase vertical separators without mesh 

was in the range of 1.5 to 6.0 at the different pressures showing that the 

design standard was acceptable. For vertical separators with mesh, only the 

separator at 80bar was in the acceptable range. Additional height of 1ft 

(0.3042) was added to the design height of the separators at 15 and 2 bar. 

For the horizontal separators without mesh, the length/diameter ratios 

were obtained as 4.2, 3.9 and 2.9 for the separators at 80, 15 and 2bar 

respectively.  

 Also, for the horizontal separators without mesh, the length/diameter 

ratios were obtained as 5, 4 and 3 for the separators at 80, 15 and 2bar 

respectively.  

 

The designed settling velocity for horizontal style 4CA mesh pad used in the 

horizontal separator at 80bar  was 0.27m/s with a cross sectional area of 

0.19m2. The separation capture efficiency of 0.09m thickness of the thick 

element of the mesh was 60% for the removal of 5µm droplet size and 95% 

for the removal of 10 µm droplet size. 

Also the separation efficiency of 0.15m thickness of the thick element of the 

mesh was 79% for the removal of 5µm droplet size and 99% for the 

removal of 10 µm droplet sizes as depicts in Figure 6-3.  
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 This shows that for the effective removal of 5µm droplet size and above, a 

0.15m thick element of the mesh should be used. 
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Appendix  

 

Appendix A: Showing Tables 

 

Table 1-1: Typical molar composition of petroleum reservoir fluid 

(Pederson 1989) 
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Table 3-1: Table 3-1: Fluid properties at first stage separation (80 bara) 

using Hysys 
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Table 3-2: Fluid properties at second-stage separation (15 bar)  
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Table 3-3: Fluid properties at the third-stage separation (2 bar)  
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Table 3-4: Summary of some fluid properties at first-stage (80 bar), 

second-stage (15 bar) and third-stage (2 bar) separation using Hysys 

Parameters          80 bar      15 bar             2 bar 

   

   

 

   

           - 

9.76 dyne/cm = 

0.00976 N/m 

62.83 dyne/cm = 

0.06283 N/m 

           - 

14.36 dyne/cm = 

0.01436 N/m 

64.20 dyne/cm = 

0.06420 N/m 

             - 

17.13 dyne/cm = 

0.01713 N/m 

65.78 dyne/cm = 

0.06578 N/m 
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69.38 kg/m3 

 (4.33 Ib/ft3) 

597.59 kg/m3 

 (37.30 Ib/ft3) 

969.81 kg/m3 

 (60.54 Ib/ft3) 

14.45 kg/m3 

 (0.90 Ib/ft3) 

657.44 kg/m3 

 (41.04 Ib/ft3) 

822.60 kg/m3 

 (51.35 Ib/ft3) 

3.26 kg/m3  

(0.20 Ib/ft3) 

680.0 kg/m3 

 (42.43 Ib/ft3) 

827.95 kg/m3 

 (51.68 Ib/ft3) 

 

  80 bar = 8000 kPa 

 (1161 psia) 

15 bar = 1500 kPa 

 (217 psia) 

2 bar = 200 kPa  

(29 psia) 

 

  77˚C = 350K (626˚R) 70˚C = 343K  

( 613˚R) 

61˚C = 334K  

(598˚R) 

 

   

   

   

0.86 

0.38 

0.051 

0.95 

0.087 

0.012 

0.98 

0.013 

0.0016 
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1.56E-02cp = 1.56-

05Pas 

2.30E-01cp = 2.30-

04Pas 

3.36E-01cp = 3.36-

04Pas 

1.30E-02cp = 1.30E-

05Pas 

3.40E-0cp = 3.40-

04Pas 

4.00E-01cp = 4.00-

04Pas 

1.0E-02cp = 1.0E-

05Pas 

4.40E-01cp = 

4.40-04Pas 

4.60E-01cp = 

4.60-04Pas 

 

           

 

   

 

   

 

181.68m3/h = 

0.05m3/s 

39.30m3/h = 

0.011m3/s 

1.25m3/h = 

0.00035m3/s 

166.25m3/h = 

0.046m3/s 

32.07m3/h = 

0.009m3/s 

0.72m3/h = 

0.00020m3/s 

434.21m3/h = 

0.12m3/s 

28.93m3/h = 

0.008m3/s 

0.54m3/h = 

0.00015m3/s 

 

  

 

 

Table 4-4: Showing design calculations and results for a three phase 

vertical separator with no mist eliminator using fluid property in Table 3-4 

Input and 

notes 

Calculations and 

results at 80 bar 

Calculations and 

results at 15 bar 

Calculations and 

results at 2 bar 
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From Hysys 

     

   (   ) 

   (   ) 

   

   (   ) 

   (   ) 

   

   (   ) 

   (   ) 

 

From GPSA 

value in Table 

4-2 

   = 0.3 –

0.001(P-100) 

P in Psig 

 

   ⁄  (no mist 

eliminator) 

 

 

69 kg/m3 

598 kg/m3 

970 kg/m3 

1.56-05Pas 

2.30-04Pas 

3.36-04Pas 

0.05m3/s  

0.011m3/s  

0.000035m3/s  

 

 

 

   = 0.3 –

0.001(1160 -100)= 

0.244ft/s 

(0.074m/s) 

 

0.074/2 =0.037m/s 

 

 

 

14 kg/m3 

657 kg/m3 

823 kg/m3 

1.30-05Pas 

3.40-04Pas 

4.00-04Pas 

0.046m3/s  

0.009m3/s  

0.0002m3/s  

 

 

 

   = 0.3–0.001(217-

100)=0.338ft/s 

(0.103m/s) 

 

 

0.103/2 = 0.052m/s 

 

 

3.26 kg/m3 

680 kg/m3 

828 kg/m3 

1.00-05Pas 

4.40-04Pas 

4.6-04Pas 

0.012m3/s  

0.0008m3/s  

0.00015m3/s  

 

 

 

   = 0.3–0.001(29-

100)=0.357ft/s 

(0.109m/s) 

 

 

0.109/2 =0.055m/s 
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   =   √
     

  
 

 

 

     
 

 
   

 

 

   = (
   

   
)  
 
 ⁄  

Where      

 

 

    = 

  (       )

   
      

   

      = 

  (       )

   
 

 

      = 
    

   
  

 

0.037√
      

  
  

= 0.102m/s 

 

 

 
(     ) = 

0.068m/s 

 

(
      

           
)

 
 

 

= 0.97m 

Using    = 2.0m 

 

     (       )

    
     

= 0.0006m/s 

 

     (       )

    
     

= 0.0004m/s 

 

      

      
  = 507s 

(8.45min) 

 

0.052√
      

  
  

= 0.35m/s 

 

 

 
(    ) = 0.023m/s 

 

 

(
       

          
)

 
 

 

= 0.51m 

Using    =2.0m 

 

     (       )

   
     

0.00025m/s 

 

     (       )

   
     

= 0.00022m/s 

 

      

       
  = 1217s 

 

0.055√
     

   
  

= 0.75m/s 

 

 

 
(    ) = 0.49m/s 

 

 

(
      

          
)

 
 

 

= 0.56m 

Using    =2.0m 

 

     (       )

   
     

= 0.00019m/s 

 

     (       )

   
     

= 0.00018m/s 

 

      

       
  = 1601s 
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      = 
    

   
     

 

A= 
   

 
                                                                                                                                                                           

 

  

 
 (Using 

equation 4-

13) 

 

   = 
  

 
( ) 

       

  

     = A -        

 

          = 
     

   
 

 

 

        = 
     

   
 

where 

 

      

      
  = 742s 

(12.4min) 

 

       

 

 
= 3.14m2 

 

Replacing 
  

 
 with 

      

 
 , 
  

 
 = 0.0194 

 

0.0194(    ) = 

0.06m2 

 

3.14 – 0.06= 3.08m2 

 

           

     
 = 85s 

(1.4min) 

 

           

       
 = 2731s 

(46min) 

since      >      , 

(20min) 

 

      

       
  = 1383s 

(23min) 

 

       

 

 
= 3.14m2 

 

Replacing 
  

 
 with 

      

 
 , 
  

 
 = 0.0194 

 

0.0194(    ) = 

0.06m2 

 

3.14 – 0.06= 3.08m2 

 

           

     
 = 104s 

(1.7min) 

 

           

       
 = 4779s 

(80min) 

(27min) 

 

      

       
  = 1690s 

(28min) 

 

       

 

 
= 3.14m2 

 

Replacing 
  

 
 with 

      

 
 , 
  

 
 = 0.0194 

 

0.0194(    ) = 

0.06m2 

 

3.14 – 0.06= 3.08m2 

 

           

     
 = 117s 

(1.95min) 

 

           

       
 = 6372s 

(106min) 
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HR = 
      

  
 

 

    = 

(
  (           )

 
) 

 

   =    

+0.15m 

 

         

 

 

   =     

        

       

           

                                   

Checking; 

proceeding to the 

next step 

 

         

    
 = 1.07m 

 

   (             )

    
 

= 0.65m 

 

 

0.65 + 0.15 = 0.8m 

 

0.5(2)=1.0m 

 

 

0.3042 + 0.3042 + 

1.07 + 0.15 

+ 0.8 + 1.0 = 3.6m 

 

 

3.6/2 = 1.80  

since      >      , 

proceeding to the 

next step 

 

         

    
 = 0.88m 

 

   (            )

    
 

= 0.53m 

 

 

0.53 + 0.15 = 0.68m 

 

0.5(2)=1.0m 

 

 

0.3042 + 0.3042 + 

0.88 + 0.15 

+ 0.68 + 1.0 = 3.3m 

 

 

since      >      , 

proceeding to the 

next step 

 

         

    
 = 0.78m 

 

   (             )

    
 

= 0.47m 

 

 

0.47 + 0.15 = 0.62m 

 

0.5(2)=1.0m 

 

 

0.3042 + 0.3042 + 

0.78 + 0.15 

+ 0.62 +1.0 = 3.2m 
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 ⁄                                                  3.3/2 = 1.65 3.2/2 = 1.60 

  

 

 

Table 4-5: Showing design calculations and results for a three phase 

vertical separator with mist eliminator using fluid property in Table 3-4  

 

Input and 

notes 

Calculations and 

results at 80 bar 

Calculations and 

results at 15 bar 

Calculations and 

results at 2 bar 

  from Table 

4-5 above 

   =   √
     

  
 

 

 

     
 

 
   

 

    +0.15m 

 

    = 

  (       )

   
      

 0.074m/s 

 

0.074√
      

  
  

= 0.205m/s 

 

 

 
(     )= 0.14m/s 

 

2.0m + 0.15m 

=2.15m 

 

     (       )

    
     

0.103m/s 

 

0.103√
      

  
  

= 0.70m/s 

 

 

 
(    ) = 0.47m/s 

 

2.0m + 0.15m 

=2.15m 

 

     (       )

   
     

0.109m/s 

 

0.109√
     

    
  

= 1.57m/s 

 

 

 
(    ) = 1.05m/s 

 

2.0m + 0.15m 

=2.15m 

 

     (       )
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      = 

  (       )

   
 

 

 

      = 
    

   
  

 

 

      = 
    

   
     

A= 
   

 
                                                                                                                                                                           

 

  

 
 (Using 

equation 4-

13) 

 

   = 
  

 
( ) 

       

 

     = A -        

= 0.0012m/s 

 

     (       )

    
     

= 0.00082m/s 

 

      

      
  = 254s 

(4min) 

 

      

       
  = 371s 

(6.2min) 

          

 

 
= 3.6m2 

 

Replacing 
  

 
 with 

      

    
 , 
  

 
 = 0.00829 

 

 

0.000829(   ) = 

0.03m2 

 

0.0005m/s 

 

     (       )

   
     

= 0.00043m/s 

 

      

      
  = 608s 

(10min) 

 

      

       
  = 707s 

(11.8min) 

          

 

 
= 3.6m2 

 

Replacing 
  

 
 with 

      

    
 , 
  

 
 = 0.00829 

 

 

0.000829(   ) = 

0.03m2 

 

= 0.00037m/s 

 

     (       )

   
     

= 0.00035m/s 

 

      

       
  = 822s 

(13.7min) 

 

      

       
  = 869s 

(14.5min) 

          

 

 
= 3.6m2 

 

Replacing 
  

 
 with 

      

    
 , 
  

 
 = 0.00829 

 

 

0.000829(   ) = 

0.03m2 
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          = 
     

   
 

 

 

        = 
     

   
 

where 

      

 

 

 

HR = 
      

  
 

 

    = 

(
  (           )

 
) 

 

   = 

    +0.15m 

 

         

   =     

3.6 – 0.03= 3.57m2 

 

           

     
 = 99s 

(1.6min) 

 

          

       
 = 3152s 

(52min) 

since      >      , 

proceeding to the 

next step 

 

         

    
 = 0.92m 

 

   (             )

   
 

= 0.57m 

 

 

0.57 + 0.15 = 0.72m 

 

0.5(2.15) = 1.08 

3.6 – 0.03= 3.57m2 

 

           

     
 = 121s 

(2min) 

 

          

       
 = 5476s 

(91min) 

since      >      , 

proceeding to the 

next step 

 

         

    
 = 0.76m 

 

   (            )

   
 

= 0.46m 

 

 

0.46 + 0.15 = 0.61m 

 

0.5(2.15) = 1.08 

3.6 – 0.03= 3.57m2 

 

           

     
 = 136s 

(2.3min) 

 

          

       
 = 7301s 

(122min) 

since      >      , 

proceeding to the 

next step 

 

         

    
 = 0.67m 

 

   (             )

   
 

= 0.41m 

 

 

0.41 + 0.15 = 0.56m 

 

0.5(2.15) = 1.08 
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Checking; 

  
 ⁄                                                  

 

0.3042 + 0.3042 + 

0.92 + 0.15 

+ 0.72 + 1.08 = 

3.48m 

 

3.48/2.15 = 1.62  

 

0.3042 + 0.3042 + 

0.76 + 0.15 

+ 0.61 + 1.08 = 

3.21m 

 

3.21/2.15 = 1.49 

Adding 1ft 

(0.3042m) to    

3.21+0.3042 = 3.5m 

Check; 3.5/2.15 

=1.63m 

 

0.3042 + 0.3042 + 

0.67 + 0.15 

+ 0.56 +1.08 = 

3.07m 

 

3.07/2.15 = 1.43  

Adding 1ft 

(0.3042m) to    

3.07+0.3042=3.37m 

Check; 3.37/2.15 

=1.57m 

 

 

 

 

Table 4-8: Design calculations and results for a three phase horizontal 

separator with no mist eliminator using fluid property in Table 3-4  

 

Input and 

notes 

Calculations and 

results at 80 bar 

Calculations and 

results at 15 bar 

Calculations and 

results at 2 bar 
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   =   √
     

  
 

 

 

     
 

 
   

 

 

      =          

  

     =        

                         

D =  

(
 (      )

    (  ⁄ )
)

 
 ⁄

 

  

   =  
   

 
                                                                                                                                                                           

      

 

 

  

  
 (Using 

0.0305√
      

  
  

= 0.085m/s 

 

 

 
(     )= 

0.057m/s 

 

10*60*0.011=6.6m3 

 

5*60*0.00035 

=0.105m3 

.
 (         )

           
/

 
 

 

 = 1.42m 

 

 

          

 

 

 

= 1.58m2 

 

Replacing 
  

 
 with 

0.0305√
      

  
  

= 0.206m/s 

 

 

 
(     ) = 

0.138m/s 

 

10*60*0.009=5.4m3 

 

5*60*0.00020 

=0.060m3 

.
 (        )

           
/

 
 

 

 = 1.54m 

 

 

          

 

 

 

= 1.86m2 

 

Replacing 
  

 
 with 

0.0305√
        

    
  

= 0.439m/s 

 

 

 
(     ) = 

0.294m/s 

 

10*60*0.008=4.8m3 

 

5*60*0.00015 

=0.045m3 

.
 (        )

           
/

 
 

 

 = 1.48m 

 

 

          

 

 

 

= 1.72m2 

 

Replacing 
  

 
 with 
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equation 4-

13) 

 

   
  
  
(  ) 

         

     = 0.5D 

+7 (in)     

                                                    

   
    

  
  (Using 

equation 4-

13) 

 

 

    

 
    
  

(  ) 

   = D -      

 

 

   = 

      

            
                                                                                                                                                

  

        

  
 ⁄         

  

 
( 
      

    
) ,  

 
  

  
 = 0.158 

 

0.158(1.58) = 

0.250m2 

 

9.3in (0.24m) 

 

 

Replacing 
  

 
  with  

( 
    

    
) ,  

 
    

  
 = 0.0083 

 

0.0083(1.58) = 

0.013m2 

 

1.42 – 0.3042 = 

1.12m 

 

        

               
 

= 5.09m ~ 5m 

 

  

 
 (
      

    
 ), 

 
  

  
 = 0.139 

 

0.139(1.86) = 

0.259m2 

 

9.5in (0.24m) 

 

 

Replacing 
  

 
 with 

    

 
( 
    

    
) ,  

 
    

  
 = 0.075 

 

0.075(1.86) = 

0.14m2 

 

1.54 – 0.3042 = 

1.24m 

 

         

               
 

= 3.7m ~ 4m 

 

  

 
( 
      

    
 ) 

, 
  

  
 = 0.147 

 

0.147(1.72) = 

0.252m2 

 

9.42in (0.24m) 

 

 

Replacing 
  

 
 with 

    

 
( 
    

    
) ,  

 
    

  
 = 0.078 

 

0.078(1.72) = 

0.13m2 

 

1.48 – 0.3042 = 

1.18m 

 

        

               
 

= 3.62m ~ 4m 
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Table 4-9: Design calculations and results for a three phase horizontal 

separator with mist eliminator using fluid property in Table 3-4  

 

Input and 

notes 

Calculations and 

results at 80 bar 

Calculations and 

results at 15 bar 

Calculations and 

results at 2 bar 

   =   √
     

  
 

 

 

     
 

 
   

 

 

      =          

  

     =        

                         

D =  

0.137√
      

  
  

= 0.379m/s 

 

 

 
(     )= 

0.253m/s 

 

10*60*0.011=6.6m3 

 

5*60*0.00035 

=0.105m3 

 

0.137√
      

  
  

= 0.928m/s 

 

 

 
(     ) = 

0.619m/s 

 

10*60*0.009=5.4m3 

 

5*60*0.00020 

=0.060m3 

 

0.137√
        

    
  

= 1.97m/s 

 

 

 
(    ) = 1.31m/s 

 

 

10*60*0.008=4.8m3 

 

5*60*0.00015 

=0.045m3 
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(
 (      )

    (  ⁄ )
)

 
 ⁄

 

  

 

   =  
   

 
                                                                                                                                                                           

      

 

 

  

  
 (Using 

equation 4-

13) 

 

   
  
  
(  ) 

   

       

     = 0.5D 

+7 (in)     

                                                    

   
    

  
  (Using 

equation 4-

.
 (         )

           
/

 
 

 

 = 1.42m 

 

          

 

 

 

= 1.58m2 

 

Replacing 
  

 
 with 

  

 
( 
      

    
)  

 
  

  
 = 0.357 

 

0.357(1.58) = 

0.564m2 

 

9.3in (0.24m) 

 

 

Replacing 
  

 
  with  

( 
    

    
) ,  

.
 (        )

           
/

 
 

 

 = 1.54m 

 

          

 

 

 

= 1.86m2 

 

Replacing 
  

 
 with 

  

 
 (
      

    
 ) 

 
  

  
 = 0.473 

 

0.473(1.86) = 

0.88m2 

 

9.5in (0.24m) 

 

 

Replacing 
  

 
 with 

    

 
( 
    

    
) ,  

.
 (        )

           
/

 
 

 

 = 1.48m 

 

          

 

 

 

= 1.72m2 

 

Replacing 
  

 
 with 

  

 
( 
      

    
 ) 

 
  

  
 = 0.315 

 

0.315(1.72) = 

0.54m2 

 

9.42in (0.24m) 

 

 

Replacing 
  

 
 with 

    

 
( 
    

    
) ,  
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13) 

 

    

 
    
  

(  ) 

 

   = D -      

 

 

   = 

      

            
                                                                                                                                                

  

        

  
 ⁄         

 

   

  
  (Using 

equation 4-

13) 

    

   

 
   
  

(  ) 

 
    

  
 = 0.0083 

 

0.0083(1.58) = 

0.013m2 

 

1.42 – 0.6084 = 

0.81m 

 

         

               
 

= 6.68m ~ 7m 

 

 

0.81/2 = 0.41m 

 

 

Replacing 
  

 
  with  

( 
    

    
)   

 
   

  
 = 0.205 

 

 
    

  
 = 0.075 

 

0.075(1.86) = 

0.14m2 

 

1.54 – 0.6084 = 

0.93m 

 

         

              
 

= 6.5m ~ 7m 

 

 

0.93/2 = 0.47m 

 

 

Replacing 
  

 
  with  

( 
    

    
)  

 
   

  
 = 0.199 

 

 
    

  
 = 0.078 

 

0.078(1.72) = 

0.13m2 

 

1.48 – 0.6084 = 

0.87m 

 

        

              
 

= 4.6m ~ 5m 

 

 

0.87/2 = 0.44m 

 

 

Replacing 
  

 
  with  

( 
    

    
)  

 
   

  
 = 0.249 
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    = 

  (       )

   
      

   

      = 

  (       )

   
 

 

      = 
     

   
  

 

 

      = 
     

   
     

 

 

   
        
   

 

    

 

L =       

 

 

0.205(1.58) = 

0.32m2 

 

 

     (       )

    
     

= 0.0022m/s 

 

     (       )

    
     

= 0.0015m/s 

 

    

      
  = 186s 

(3min) 

 

    

      
  = 273s 

(4.5min) 

 

           

    
 

= 0.30m 

 

0.199(1.86) = 

0.370m2 

 

 

     (       )

    
     

0.00067m/s 

 

     (       )

   
     

= 0.00057m/s 

 

    

       
  = 701s 

(11.7min) 

 

    

       
  = 825s 

(13.7min) 

 

           

     
 

= 0.45m 

 

0.249(1.72) = 

0.428m2 

 

 

     (       )

   
     

= 0.00046m/s 

 

     (       )

   
     

= 0.00044m/s 

 

    

       
  = 957s 

(16min) 

 

    

       
  = 957s 

(16.7min) 

 

            

     
 

= 0.35m 
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        = 
   

  
 

 

      = 
  

  
  

 

    

        

     

       

 

 

 
 ⁄  

                     

Checking; 

 
 ⁄  

   From AMSE 

(1986) 

E=0.85, 

S=17,500psi 

(1207bar), 

  = 0.0625in 

 

7+0.30 = 7.3m~7m 

 

      

     
 = 2.4s 

 

    

     
 = 0.089m/s 

 

 

0.089*2.4 = 0.2m  

L >      

(acceptable for 

vapour-liquid 

separation) 

 

7/1.42= 4.9 

 

 

Acceptable range of  

1.5 to 6.0 

 

 

7+0.45= 7.45m~7m 

 

      

     
 = 0.98s 

 

     

    
 = 0.052m/s 

 

 

0.052*0.98 = 0.05m  

 

 

 

 

 

7/1.54= 4.5 

 

 

Acceptable range of  

1.5 to 6.0 

 

5+0.35= 5.35m~5m 

 

      

    
 = 0.46s 

 

     

    
 = 0.22m/s 

 

 

0.22*0.46 = 0.10m  

 

 

 

 

 

5/1.72= 2.9 

 

 

Acceptable range of  

1.5 to 6.0 
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(0.00159m)  

     

  

        

    

     

     

  

        

    

 

 

        

 

 

   

        

 

   (Using 

equation 4-

20) 

 

 

P = 80+8(10%) = 

88bar 

 

 

 

 

       
           
       

 +0.00159 

= 0.0653m 

 

Using 2:1 elliptical 

head 

       
           
       

 +0.00159 

= 0.063m 

 

3.142*1.42*7  

= 31m2 (334ft2) 

 

1.09*(1.42)2 = 

2.2m2(ft2) 

 

 

P = 15+3(30psig) = 

18bar 

 

 

 

 

       
           
       

 +0.00159 

= 0.0152m 

 

Using 2:1 elliptical 

head 

       
           
       

 +0.00159 

= 0.0029m 

 

3.142*1.54*7  

= 31m2(334ft3) 

 

1.09*(1.54)2 = 

 

 

P = 2+3(30psig) = 

5bar 

 

 

 

 

      
           
      

 +0.00159 

= 0.0036m 

 

Using dished head 

 

            
         
      

 +0.00159 

= 0.00634m 

 

3.142*1.48*5  

= 23m2(247.6ft2) 
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  (Using 

equation 4-

13) 

                  

 

     

    

  
(  )         

 

490*
    

  
(334+2*24) 

= 40025Ib 

(18115kg) 

 

1.42-0.6084 = 

0.81m 

 

0.013+
   

 
  

= 0.956m2 

 

Replacing 
  

 
  with  

( 
     

    
)   

  
    

  
   = 0.715 

 

 

0.715(1.58) = 

1.13m 

 

2.6m2(28ft2) 

 

490*
    

  
(334+2*28) 

= 88950Ib 

(40358kg) 

 

1.54 -0.6084 = 

0.93m 

 

0.14+
   

 
  

= 0.91m2 

 

Replacing 
  

 
  with  

( 
    

    
)   

  
    

  
   = 0.719 

 

 

0.719(1.86) = 1.34m 

 

0.842*(1.48)2 = 

1.8m2(19.4ft2) 

 

 

490*
    

  
(248+2*19) 

= 2919Ib  

 

(1324kg) 

 

 

1.48-0.6084 = 

0.87m 

 

 

0.13+
   

 
  

= 0.93m2 

 

 

Replacing 
  

 
  with  

( 
    

    
)   

  
    

  
   = 0.798 
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0.798(1.72) = 

1.37m 

 

 

 

 

 

 

Appendix B : Development of terminal settling velocity (TSV) of 

droplet  

 

The force of gravity FG, buoyancy FB and drag FD on the droplet may be 

determined from the following equations: 

FG =   V[N]                                                                                                              (B-1) 

    =   gVd                                                                                                                  (B-2) 

The force of buoyancy of the drop is 

FB =   gVd                                                                                                                                                                           (B-3) 

The drag force on the drop is 



142 
 

FD = 
 

 
        2                                                                                                      (B-4) 

Where 

 FD = drag force, lbf, N 

CD = drag coefficient 

Ad = cross-sectional area of the droplet, ft2,  m2 

ρ = density of the continuous phase, lb/ft3,  kg/m3 

   = terminal (settling velocity) of liquid droplet, ft/s,  m/s 

g = gravitational constant, 32.2 lbmft/lbf s2 ,  m/s2). 

When the liquid drop acquires a steady speed defined as the settling speed, 

the drag force is just the same as gravity. This state could be described as; 

 FD = FG – FB                                                                                                                (B-5) 

That is; 

     
 

 
        2 = gVd(ρL - ρG )                                                                               (B-6) 

Where Vd  is the volume of the drop given as; 

Vd  = 
   

 
                                                                                                            (B-7) 

And A = 
   

 
                                                                                                              (B-8) 
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Therefore the terminal settling velocity (TSV) of a liquid droplet in a gas 

stream is given by; 

   = √
    

   
 √
     

  
                                                                                                (B-9) 

 

Where √
    

   
   =                                                                                                   (B-10) 

 

In practical situation in gas - liquid separation, TSV can be written as; 

   =   √
     

  
                                                                                                          (B11) 

Where     is the separation constant; ranging between 0.05 to 0.11 as 

recommended by API. 
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