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the initial diagonally scaled B-spline coefficients, while b′ optmn are the op-

timized diagonally scaled B-spline coefficients. . . . . . . . . . . . . . . 62

3.4 2D TTI synthetic model of a North sea reservoir. (a) VP0. (b) ε. (c) δ. (d) θ. 64

3.5 Initial and updated models used for the 2D synthetic data example. (a)

Initial VP0 model. (b) Updated VP0 model after 27 iterations. (c) Updated

ε model after 27 iterations. (c) Updated δ model after 27 iterations. The

θ model used in this example is shown in Figure 3.4d . . . . . . . . . . . 65

3.6 Images constructed using: (a) Initial model; (b) Optimized model; (c)

True model. Arrows are drawn to help visualize the changes in the spatial

positioning of the reflectors. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 CIGs constructed using: (a) Initial model; (b) Optimized model; (c) True

model. The black dotted lines mark the position of the zero subsurface

offset. The offsets range between -0.5 and 0.5 km. . . . . . . . . . . . . . 68

3.8 Results of 2D TTI WEMVA with a fixed VP0 model obtained by smooth-

ing the true model. (a) Smoothed VP0. (b) ε. (c) δ. . . . . . . . . . . . . . 69

3.9 Initial models used for the 2D field data example. (a) Initial VP0 model.

(b) θ model overlaid by the initial image. The tilt angles in (b) are esti-

mated from the reflector dips of the initial image. . . . . . . . . . . . . . 71

3.10 Optimized models after 47 iterations of 2D TTI WEMVA. (a) VP0. (b) ε.

(c) δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Images constructed using: (a) Initial model; (b) Optimized model. Ar-

rows are drawn at fixed positions in the images to mark changes in the

spatial positioning and focusing. . . . . . . . . . . . . . . . . . . . . . . 73

3.12 CIGs constructed using: (a) Initial model; (b) Optimized model. The

black dotted lines mark the position of the zero subsurface offset. The

offsets range between -0.5 and 0.5 km. . . . . . . . . . . . . . . . . . . . 74

4.1 Marmousi acoustic model. a) Velocity model. b) Density model. . . . . . 83

4.2 Migration velocity model for the Marmousi data set. . . . . . . . . . . . 84

4.3 Marmousi migrated a) zero-lag image, and b) CIGs at several selected

spatial positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Marmousi shot gathers a) original, b) reconstructed after 1 iteration of

demigration, c) reconstructed after 5 iterations of demigration. . . . . . . 86

vii



4.5 Comparison of traces of the Marmousi shot gather at source position 7.83

km a) at zero offset, b) at 1.65 km offset, c) at 3 km offset; d) Comparison

of amplitude spectra averaged over all traces of the shot gather. . . . . . . 87

4.6 CIG at position 6.325 km a) before mute, b) after mute to remove aliased

events. The black dotted lines in a) mark the position of the picked mute. 88

4.7 Shot gathers a) original, b) decimated, c) reconstructed shot gather after

5 iterations of demigration. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Migration velocity model for North Sea field data set. . . . . . . . . . . . 90

4.9 North Sea field data migrated a) zero lag image, and b) CIGs at selected

spatial positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 North Sea field data CIG at position 4 km a) original, b) after mute to

remove free surface multiples. . . . . . . . . . . . . . . . . . . . . . . . 92

4.11 North Sea field data shot gathers at position 5.5 km a) original, b) after 50

iterations of demigration of the muted CIGs, c) difference between shot

gathers a) and b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



Chapter 1

Introduction

The general goal of this thesis has been to improve seismic imaging over complex geolog-

ical settings. Seismic imaging, or seismic migration as it is also called, is the problem of

creating images of the upper part of the Earth’s crust using elastic waves. The physics of

wave-propagation is such that interfaces (or borders) between different geological units

exhibiting changes in mechanical properties give rise to reflected waves which can be

turned into images. The mathematical description of reflected seismic waves can be ap-

proximated by a set of linear equations, where the unknowns are the so-called reflec-

tion coefficients. The solution of the linear reflection coefficient problem, called prestack

depth migration (PSDM), is a structural image of the subsurface. PSDM is a trivial routine

practice in simple geological settings, and can be solved by relatively efficient algorithms

based on ray approximations to the wave equation, such as Kirchhoff migration (Schnei-

der, 1978). However, ray approximations have several shortcomings and often fail to be

adequately accurate in complex geological structures with large and sharp velocity con-

trasts (Arntsen et al., 2009). In these areas, the problem is more complicated, and is better

solved using more modern PSDM algorithms based on finite-frequency wavefield extrap-

olation, such as one-way wave equation migration (Berkhout, 1980), and reverse-time

migration (Baysal et al., 1983). Independent of the approximations used, PSDM requires

the knowledge of a "smooth" background approximation to the mechanical properties of

the subsurface. These background models are usually expressed in terms of wave veloc-

ities and the problem of estimating them is known as velocity analysis. In this thesis, I

combine state of the art PSDM by reverse-time migration (RTM) and velocity analysis in a

non-linear iterative process called wave equation migration velocity analysis (WEMVA).

The developed methods are explained in detail over two peer-reviewed papers included in

chapters 2 and 3. In chapter 4 I include a paper where I derive methods to process seismic

reflection data based on RTM with optimal application to WEMVA.

In this chapter, I present a brief introduction to the theory behind PSDM by RTM and

WEMVA in a broad and general sense. At the end, I present a summary of the individual

papers of the thesis.

1



1.1 The seismic experiment

In a seismic experiment, a wavefield is induced by a controlled source. Which can be

a source of volume injection or a body force applied on the earth. The resultant wave

propagates down into the earth, where part of the energy is backscattered due to reflection

and refraction at interfaces that mark contrasts in the elastic properties of the earth. The

wavefield is sampled in space and time by a limited number of pressure and/or displace-

ment recorders. The source and/or the receivers are repositioned many times increasing

the coverage area, as well as producing redundant data. There exist numerous different

setups to acquire seismic data both on land, and over the ocean. In this introduction, as

well as in this thesis, I will focus on marine seismic acquisition.

The most common acquisition method in marine seismic is the towed streamed setup. In

this case, the source(s) and one or more cables equipped with hydrophones are towed at

a shallow depth below the sea surface. The waves are induced by a source of volume

injection, typically an airgun (Parkes and Hatton, 1986). Because this source approxi-

mates a pressure source and because water is an acoustic medium, the resultant waves are

purely pressure waves (P-waves). Likewise the seismic data acquired at the water column

will consist only of P-waves. Depending on the number of towed hydrophone cables the

acquisition can be either of 2D or 3D data.

To acquire shear waves (S-waves) it is necessary to measure the seismic response at a

solid. This can be done by deploying receivers at the sea bottom, or in a borehole. The first

situation is generally called ocean bottom seismic acquisition (OBS), and typically uses

four component receivers, one hydrophone plus a 3-component geophone. The second

is called vertical seismic profiling (VSP), and uses three component geophones. In both

cases, the resultant data is multicomponent. In OBS and VSP acquisition, the source is

still deployed at the water column and therefore is a P-wave source. Which means that the

S-waves recorded at the sea bottom are generated purely through P- to S-wave conversion

(PS waves). Figure 1.1 shows snapshots of vertical particle displacement due to elastic

wave propagation over a layered elastic model. The snapshots are overlaid on a model

of P-wave velocity. The figure also illustrates the main types of marine seismic data

acquisition. Note the conversion of P-waves into S-waves at the interfaces of the model.

1.2 Seismic imaging

The recorded seismic data can be processed into an image of the subsurface reflectors

using PSDM. To achieve this, one need to have a model of wave propagation. The starting

point for any method of seismic imaging are the equation of motion and the generalized

Hooke’s law. The equation of motion in a continuum are given by

ρ(x)
∂2ui(x, t)

∂t2
=

∂τij(x, t)

∂xj

+ Fi(x, t), (1.1)

2



a)

b)

c)

d)

Figure 1.1: Snapshots of vertical particle displacement due to elastic wave propagation

over a model of marine seismic acquisition. The snapshots are overlaid on a model of

P-wave velocity. (a) Snapshot at 0.6 s; (b) Snapshot at 1.0 s; (c) Snapshot at 1.4 s;

(d) Snapshot at 1.7 s. The red dot indicates the source position, while the inverted red

triangles are receivers. There are three different acquisition geometries depicted. The

shallowest receivers represent a towed streamer acquisition, while the line of receivers

at 1 km depth represent an OBS acquisition line. Finally, the receivers in near vertical

orientation represent a VSP acquisition setup.
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Figure 1.2: Seismic shot records obtained at the receivers depicted in Figure 1.1. (a)

Towed streamer; (b) OBS acquisition; (c) VSP acquisition. DAW = distance along the

well.

where x = (x, y, z) is the Cartesian basis; t is the time; i, j = 1, 2, 3, under Einstein’s

summation convention; ρ is the density; ui are the particle displacements; τij are the

stresses; Fi is a body force vector acting as a seismic source.

The equation (1.1) is valid for any stress-strain relation including models of anelastic or

anisotropic media. In this thesis, I deal with models of elastic anisotropic media. For

these media the stress-strain relationship is approximated by the generalized Hooke’s law

τij(x, t) = cijkl(x)ekl(x, t), (1.2)

where the strains are related to the displacements by

eij(x, t) =
1

2

(
∂ui(x, t)

∂xj

+
∂uj(x, t)

∂xi

)
, (1.3)

and cijkl is a constant of proportionality known as the elasticity tensor.

The elasticity tensor contains information on how fast P- and S-waves travel as a function

of direction at one particular point in the subsurface. In general, the elasticity tensor has 81

components, however, due to natural symmetries, the number of independent components

is only 21, since cijkl = cklij = cjilk. Without loss of generality, the elasticity tensor can

be written as the symmetric 6×6 matrix of elastic coefficients C using the Voigt notation,
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11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6

[C] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.4)

It is important to state that to describe wave propagation over a fully heterogeneous and

anisotropic medium (triclinic symmetry) we need 21 independent quantities for each point

(x) in the subsurface. Fortunately, the geology of most sedimentary basins is such that

many simplifications (or symmetries) can be sought to reduce the number of parameters

that are needed to describe wave propagation over the medium. The simplest case of

all is that in which the medium is isotropic. In this case, C depends only on the Lamé

parameters λ and μ

[CISO] =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.5)

The Lamé parameters are related to the P- and S-wave velocities through vp =
√

λ+2μ
ρ

,

and vs =
√

μ
ρ
.

1.2.1 Acoustic wave equation

For an acoustic medium, the shear modulus μ is equal to zero, meaning that the equa-

tions (1.1), (1.2), and (1.3) can be simplified to[
1

ρ(x)v2p(x)

∂2

∂t2
−∇ ·

(
1

ρ(x)
∇
)]

p(x, t) = −∇ ·
[

1

ρ(x)
F(x, t)

]
, (1.6)

where p is the acoustic pressure, τij = −pδij , and δij is the Kronecker delta.

For the particular case where the density is constant[
1

v2p(x)

∂2

∂t2
−∇2

]
p(x, t) = −∇ · F(x, t). (1.7)

Equation (1.7) is the simplest wave equation that honors the kinematics of P-wave propa-

gation in the subsurface. It is by large the most commonly used approximation in seismic

imaging. This is mainly due to the fact that to solve this equation only the isotropic

P-wave velocity need to be estimated for each point in the subsurface.
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1.2.2 Acoustic reverse-time migration

In PSDM by reverse-time migration, wave propagation modeling is used to simulate the

source wavefield forward in time, as well as to propagate the recorded wavefield backward

in time. The acoustic wave equation (1.7) is solved by employing differential/spectral

methods, either explicitly or implicitly. Whereas reflectivity at each point in the sub-

surface can be estimated by applying an imaging condition involving both reconstructed

wavefields. The resultant reflectivity map of the subsurface is often referred to as the

migrated image.

Here we will develop the theory for acoustic reverse-time migration in the time domain.

The equations describing the forward- and reverse-time pressure modelings are given by[
1

v2p(x)

∂2

∂t2
−∇2

]
ws(x, t; s) = f(x, t; s), (1.8)

and [
1

v2p(x)

∂2

∂t2
−∇2

]
wr(x, t; s) = d(x, T − t; s) (1.9)

where, ws and wr are, respectively, the source and receiver acoustic wavefields; s is the

source index; f is the source function for a particular seismic experiment s; and d is the

recorded reflection data for that particular seismic experiment. Note that the recorded data

is time-reversed, indicating that the modeling is done in reverse-time. Each seismic exper-

iment, often referred to as a shot (firing of the source(s) and recording), is reconstructed

using the above equations. This is commonly done using well known finite difference

solutions to the wave equation (Virieux, 1986).

At each time step of the reconstruction, an image is constructed by employing an imaging
condition relating the source and receiver wavefields at that time step (Claerbout, 1971;

Rickett and Sava, 2002)

R(x; s) =

∫ T

0

ws(x, t; s)wr(x, T − t; s). (1.10)

This is explained by the fact that at the point of reflection, the forward propagated source

wavefield and the back propagated receiver wavefield will meet perfectly and produce

a peek in the zero time lag of the cross-correlation. However, this is only true if the

velocities along the wave paths from the source and receiver to the imaging point are

correct, otherwise the peek will lie in some vicinity of the imaging point. Interestingly,

in the context of non-linear inversion theory (Tarantola, 1984), this imaging condition

appears as the sensitivity kernel of the least squares norm of the difference between the

observed data and the data modeled over a smooth background medium.

A key component of WEMVA used in this thesis is the analysis of common image point

gathers (CIGs). These gathers represent the reflectivity as a function of offset or angle.

These can be used to build semblance or differential semblance error measures that cap-

ture the deviation of the maximum of cross-correlation from the actual imaging point. To

6
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Figure 1.3: Wavefield reconstruction causes reflection energy to move towards the imag-

ing points. The peeks in the cross-correlation of the source and receiver wavefields reveal

the reflectors. (a) The zero spatial lag cross-correlation leads to an image of the reflectors;

(b) Lagged cross-correlation produces CIGs as a function of space x and subsurface offset

h.

build CIGs, the imaging condition is extended to a lagged cross-correlation. The lags can

be either spatial, temporal, or both (Sava and Vasconcelos, 2011). In this thesis, we use

CIGs constructed using horizontal spatial lags

R(x,h; s) =

∫ T

0

ws(x− h, t; s)wr(x+ h, T − t; s) (1.11)

In the resultant image, the offset coordinates h = (h1, h2, 0) refer to the effective subsur-

face offset between the source and receiver wavefields (Figure 1.3). The resultant offset

dependent images are commonly displayed as offset-depth panels. One important prop-

erty of these CIGs is that if velocities are correctly estimated the energy from the sum of

the images for all shots will be focused at zero lag, i.e. h = (0, 0, 0). That is, all peaks in

cross-correlation will properly stack at the correct reflection points (Figure 1.4b-d). There

are also imaging conditions that produce migrated images which are a function of angle

of incidence instead of offset (deBruin, 1990), and methods that can be used to convert

offset dependent images to angle dependent images (Rickett and Sava, 2002; Biondi and

Symes, 2004). These images are displayed as angle-depth panels, and are referred to as

angle domain CIGs (Figure 1.4c-e). In ADCIGs, the velocity accuracy is measured by the

flatness of the migrated reflections (Shen and Symes, 2008).

1.2.3 Elastic anisotropic wave equation

The acoustic wave equation (1.7) has a long and productive history in seismic imaging

(Gray et al., 2001; Etgen et al., 2009). However, theoretical studies, laboratory measure-

ments and field studies have shown that many sedimentary rocks are anisotropic (Levin,

1979; Thomsen, 1986; Larner, 1993). Ignoring anisotropy in seismic imaging and veloc-

ity analysis often lead to significant differences between the spatial positions observed

7



a)

x (km)

z 
(k

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

b)

z 
(k

m
)

hx (km)
−0.2 0 0.2

0.6

0.8

1

1.2

c)

z 
(k

m
)

Angle (degrees)
0 20 40 60

0.6

0.8

1

1.2

d)
z 

(k
m

)

hx (km)
−0.2 0 0.2

0.6

0.8

1

1.2

e)

z 
(k

m
)

Angle (degrees)
0 20 40 60

0.6

0.8

1

1.2

Figure 1.4: Images and CIGs constructed with RTM. (a) Zero lag cross-correlation image;

(b) CIG at the position given by the vertical red line in (a), after migration with a wrong

velocity model; (c) Angle domain CIG produced by slant stack of the CIG in (b); (d) CIG

at the position given by the vertical red line in (a), after migration with the correct velocity

model; (e) Angle domain CIG produced by slant stack of the CIG in (d).
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in the seismic images and the actual geological positions observed in boreholes (Banik,

1984; Ball, 1995). The anisotropy of sedimentary rocks can be well approximated by

a transverse isotropic medium (TI), with a symmetry axis perpendicular to the bedding

plane (Byun, 1984; Audebert et al., 2006). In the case of TI media the matrix of elastic co-

efficients has five independent parameters plus two angles which control the direction of

the symmetry axis. The simplest form of the matrix of elastic coefficients for TI medium

corresponds to the case where the symmetry axis is vertical (VTI)

[CV TI ] =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C11 − 2C66 C13 0 0 0
C11 − 2C66 C11 C13 0 0 0

C11 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.12)

The tilted TI matrix CTTI can be obtained by rotating the VTI matrix along x and y, or in

index notation along x1 and x2. This can be most efficiently done using the Bond matrix

[M] =

⎛
⎜⎜⎜⎜⎜⎜⎝

r211 r212 r213 2r12r13 2r13r11 2r11r12

r221 r222 r223 2r22r23 2r23r21 2r21r22

r231 r232 r233 2r32r33 2r33r31 2r31r32

r21r31 r22r32 r23r33 r22r33+r23r32 r21r33+r23r31 r22r31+r21r32

r31r11 r32r12 r33r13 r12r33+r13r32 r13r31+r11r33 r11r32+r12r31

r11r21 r12r22 r13r23 r12r23+r13r22 r13r21+r11r23 r11r22+r12r21

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.13)

where r = (rij) is the product of two elementary rotation matrices

[r] =

⎛
⎝ cos θ 0 sin θ

− sinφ sin θ cosφ sinφ cos θ
− cosφ sin θ − sinφ cosφ cos θ

⎞
⎠ , (1.14)

and θ, and φ are the rotation angles about respectively the y-, and the x-axis. Using the

Bond matrix the TTI matrix can be obtained from the VTI matrix according to

CTTI = MCV TIM
T . (1.15)

To honor anisotropy in wave propagation it is necessary to use the elastic wave equation.

Combining equations (1.1), (1.2), and (1.3) leads to the elastodynamic wave equation for

the displacement field

ρ(x)
∂2ui(x, t)

∂t2
− ∂

∂xj

[
cijkl(x)

∂uk(x, t)

∂xl

]
= Fi(x, t). (1.16)

Most useful for seismic imaging and velocity analysis is the density normalized version

of the equation (1.16)

∂2ui(x, t)

∂t2
− ∂

∂xj

[
aijkl(x)

∂uk(x, t)

∂xl

]
=

1

ρ
Fi(x, t), (1.17)
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where aijkl = cijkl/ρ is the density normalized elasticity tensor.

The elastic wave equation (1.17) accurately models the kinematics of both P- and S-

waves in general heterogeneous anisotropic media. In 3D anisotropic media, the solution

of the elastic equation leads to the propagation of three distinct, but in general coupled,

wave modes: The quasi-P, quasi-SV, and quasi-SH waves. An alternative wave equation,

called the pseudo-acoustic wave equation has been derived from the VTI elastic wave

equation by (Alkhalifah, 2000), extended to TTI media by Zhang et al. (2003), and to

orthorhombic media by Song and Alkhalifah (2012). The purpose of the pseudo-acoustic

wave equation is to accurately, and efficiently, model the kinematic behavior of only the

qP-waves, avoiding the qS-waves altogether. However, doing so, prescribes the possibility

of using this equation in the emerging realm of multicomponent data. In this thesis,

all anisotropic wave propagation is carried out using the elastic wave equation (1.17).

Figure 1.5 show a comparison of snapshots of the solution of wave propagation using

equation (1.17) over homogeneous isotropic, VTI and TTI models.

1.2.4 Elastic reverse-time migration

Similar to acoustic PSDM by RTM, elastic RTM is a two step process consisting of wave-

field reconstruction and imaging condition. The main difference is that the wavefield

reconstruction yields a displacement vector. The equations describing the wavefield re-

construction in an elastic anisotropic media are given by

∂2us
i (x, t)

∂t2
− ∂

∂xj

[
aijkl(x)

∂us
k(x, t)

∂xl

]
= fi(x, t), (1.18)

∂2ur
i (x, t)

∂t2
− ∂

∂xj

[
aijkl(x)

∂ur
k(x, t)

∂xl

]
= di(x, T − t), (1.19)

Before applying the imaging condition, scalar wavefields can be computed from the dis-

placement vector wavefields such as to separate P- and S-waves. This can be used to

generate separate images for P- and S-waves. Over isotropic media the P- and S-waves

can be separated according to

wp(x, t) = ∇ · ui(x, t), (1.20)

and

ws(x, t) = ∇× ui(x, t), (1.21)

where wp, and ws represent, respectively, the P and S wavefields. In anisotropic media,

the above equations do not perfectly separate the quasi-P, quasi-SV and quasi-SH wave

modes. In this case, to achieve a better separation, more expensive methods must be used

(Dellinger and Etgen, 1990; Yan and Sava, 2011). Once the scalar wavefields have been

computed, an imaging condition relating both wave fields can be applied. For example, an
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Figure 1.5: Comparison of 2D snapshots of elastic wave propagation over homogeneous

(a) isotropic medium, (b) VTI medium, (c) TTI medium. The source is located at the

center of the model.
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a) b)

Figure 1.6: Example of P- and S-wave separation in wavefields using equations (1.20)

and (1.21). (a) Scalar P-wave wavefield in snapshot of Figure 1.1b; (b) Scalar S-wave

wavefield in snapshot of Figure 1.1b.

extended imaging condition producing subsurface horizontal offset CIGs of PS reflections

is given by

R(x,h; s) =

∫ T

0

ws
p(x− h, t; s)wr

s(x+ h, T − t; s) (1.22)

1.3 Wave equation migration velocity analysis

When summing all seismic experiments redundant information is gathered, such as those

derived from waves reflecting at the same points in the subsurface from different angles.

This information can be used to estimate seismic velocities. However, velocity analysis

is one the most challenging and time consuming steps in seismic processing. In practice,

the problem requires large amount of computation time and human effort to converge to

a solution. There is, therefore, a big interest in automatic methods that can solve the

problem both accurately and efficiently.

1.3.1 The error function

WEMVA methods propose to automate the velocity analysis through non-linear mini-

mization of an error function based on the seismic image domain (Chavent and Jacewitz,

1995; Shen et al., 2003; Mulder and ten Kroode, 2002; Sava and Biondi, 2004), as op-

posed to the data domain (Tarantola, 1984; Mora, 1987; Pratt, 1999). One the greatest

challenges of non-linear minimization is exactly the non-linearity of the error function.

In that respect, the image domain has the advantage that its error function is much more

linear. One simple explanation for this fact is that in the image domain the error function
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explores the redundancy of the seismic data acquisition better than in the data domain.

The disadvantage of image domain methods is that they are based purely on reflected

data, and assume single scattering (Mulder and van Leeuwen, 2008). Which means that

valuable information contained in refractions and multiple reflections is not used.

Implementation of WEMVA differ widely with respect to the way seismic imaging is car-

ried out, and with respect to the way the error is quantified (Sava and Biondi, 2004). Under

the isotropic assumption, WEMVA has been implemented based on ray-based Kirchhoff

migration (Chauris and Noble, 2001; Mulder and ten Kroode, 2002), one-way wave equa-

tion migration (Sava and Vlad, 2008; Shen and Symes, 2008) or RTM (Chavent and Jace-

witz, 1995; Mulder, 2008). Similarly, for anisotropic media, there are WEMVA imple-

mentations based on ray-based Kirchhoff migration (Brandsberg-Dahl et al., 2003; Behera

and Tsvankin, 2009), one-way wave equation migration (Li and Biondi, 2011), or RTM

(Li et al., 2012; Weibull et al., 2012). The misfit functions are typically a combination

of semblance (a.k.a stack-power, or image-power), and differential semblance. Which, in

turn, can be computed based on surface coordinates (Symes and Carazzone, 1991; Symes

and Kern, 1994), or on subsurface coordinates (Shen et al., 2003; Shen and Symes, 2008;

Mulder, 2008). In this thesis, I implement an error function for WEMVA using subsurface

oriented differential semblance, semblance, and RTM. The error function can be written

as (Shen and Symes, 2008; Weibull and Arntsen, 2011)

J (m) =
1

2

∥∥∥∥h∂R
∂x3

(x,h)

∥∥∥∥
2

− γ

2

∥∥∥∥∂R∂x3

(x, 0)

∥∥∥∥
2

, (1.23)

where m is a vector containing the velocity parameters, R(x,h) =
∑

s R(x,h; s) are the

stacked CIGs, ‖·‖2 corresponds to the least squares norm, and γ is a constant that balances

the contribution between differential semblance, given by the first term on the RHS of

the equation, and semblance, given by the second term in the RHS of the equation. In

principle, the error will be minimum when the energy in the CIGs is maximally focused at

the zero subsurface offset. In chapters 2 and 3, I use this objective function to implement

WEMVA over, respectively, acoustic and TTI media.

1.3.2 Optimization

The minimization problem can be solved using gradient based optimizers, such as steep-

est descent, non-linear conjugate gradient or quasi-Newton methods (Nocedal and Wright,

2000). These methods consist in iteratively moving in a descent direction until some con-

vergence criteria is met. At the kth iteration the updated velocity parameters are calculated

by

mk+1(x) = mk(x)− αiΔmk(x), (1.24)

where k ∈ (1, 2, ..., N) is the iteration index, αk is a positive step length, and Δmk is a

descent direction.

The descent direction Δm is computed from the gradient of the misfit function with

respect to the velocity parameters ∇mJ . The relationship between the gradient and the
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descent direction depends on the optimization method. The simplest relationship is found

in the steepest descent method. In this case, the direction is given by

Δm(x) = −∇mJ (x). (1.25)

Once the direction is computed, the step length α can be computed using a line search

(Nocedal and Wright, 2000).

1.3.3 Gradient computation

In problems with a large number of parameters, computing the gradient can be very ex-

pensive. However, the adjoint state method (Chavent and Lemonnier, 1974; Plessix, 2006)

allows to compute the gradient at a similar cost as that of evaluating the objective func-

tion. In the adjoint state method, the optimization of the objective function is seen as a

constrained optimization problem. The first step is to set up a Lagrangian function

L(m, u, u′) = J (m, u) + 〈e(m, u), u′〉 . (1.26)

Then the gradient is given by

〈∇J , δm〉 = ∂L
∂m

(m, u, u′)δm, (1.27)

where u is the solution of the state equation

e(m, u) = 0, (1.28)

and u′ is the solution of the adjoint state equation

∂L
∂u

(m, u, u′)δu = 0. (1.29)

In the above equations, u is called the state, and u′ is called the adjoint state, and the state

equation e(m, u) is the equation describing the forward map, for example, the acoustic, or

the elastic wave equations. Further detail, and practical implementation of the adjoint state

method for acoustic and elastic WEMVA can be found in Chapters 2 and 3 respectively.

1.3.4 Regularization

A problem common to most inverse problems is the inherent ambiguity in the solution.

The effect of simplified physics, incomplete acquisition, lack of sensitivity, and the pres-

ence of noise, all limit the ability of the inversion to uniquely resolve the subsurface

parameters. To mitigate the effects of the non-uniqueness, regularization is often applied

(Tikhonov and Arsenin, 1977). The role of regularization is twofold: To avoid solutions
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that are far from the initial model, and to guide the solution towards the simplest model

of the subsurface that explains the data. A typical regularization term is thus given by

JR =
ε

2

∥∥∥∥∂m∂xi

(x)− ∂m0

∂xi

(x)

∥∥∥∥
2

, (1.30)

where ε > 0 is a weighting constant, and m0 represents the initial model of the velocity

parameters.

1.3.5 Implementation

A typical organization of WEMVA can be seen in Figure 1.7. At the initial stage of the

velocity analysis, the initial model minit is provided to the optimizer. At each iteration

or line search step the optimizer asks for the value of the error function and its gradient

with respect to the model parameters. This process continues until a convergence criteria

is met, at which point a final model mopt is output.

WEMVA is a very computer intensive method, because it requires many iterations of

PSDM. Fortunately, migration can be easily parallelized. Since each seismic experiment

is independent of each other, parallelization scales with the number of shots. Also, the

number of iterations required to converge to a solution can be reduced by using sophisti-

cated optimizers such as the L-BFGS method (Nocedal and Wright, 2000).

1.4 Thesis Structure

This thesis consists of five chapters including this introduction. The core of the thesis

are three independent peer-reviewed journal papers. These papers have their own intro-

ductions, conclusions and appendixes. Finally, the last chapter presents some concluding

remarks and suggestions for possible future work.

1.4.1 Chapter 2 – Automatic velocity analysis with reverse-time mi-
gration

In this paper we implement a WEMVA method based on acoustic reverse-time migration.

The error function measure the velocity inconsistency with help of differential semblance

and semblance misfit functions. To improve the convergence properties of the error func-

tion, we introduce a vertical derivative operator which removes low frequency noise from

the reverse-time migrated CIGs. The implemented method is tested in 2D synthetic and

field data sets based on marine surface seismic acquisition. To improve the results of

velocity analysis in the field data case, we introduced a reverse-time migration based de-

multiple procedure. This work has been presented at the ROSE Meeting in Trondheim in
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Figure 1.7: Simple flowchart showing the organization of the non-linear optimization in

WEMVA.
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2011 and at the 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC in

June 2011. Paper accepted for publication in Geophysics 2013.

1.4.2 Chapter 3 – Anisotropic migration velocity analysis using reverse-
time migration

In this paper we extend WEMVA to anisotropic media using elastic reverse-time migra-

tion. The method uses simple wavefield separation to create P-wave images that are input

to an error function based on depth-oriented semblance and differential semblance misfit

functions. The method is developed to estimate seismic velocities over 2D TTI media

from marine surface seismic data. We show results of the 2D TTI WEMVA method on

realistic 2D synthetic and 2D field data sets based on marine surface seismic acquisition.

The introduction of anisotropy significantly complicates the ambiguity problem of the

solution of the velocity analysis. This problem can not be solved with regularization. In-

stead the method must be provided with an additional source of information to achieve

a unique solution. The method is a first step toward estimation of velocities from ocean

bottom seismic data sets. This work has been presented at the ROSE Meeting in Trond-

heim 2012, at the 74th EAGE Conference and Exhibition incorporating SPE EUROPEC

in June 2012, at the SEG/EAGE Summer Research Workshop in July 2012, and at the 81st

SEG Annual International Meeting in September 2012. Paper submitted to Geophysics

2013.

1.4.3 Chapter 4 – Reverse-time demigration using the extended imag-
ing condition

In this paper we present a method based on least squares inversion to reconstruct seis-

mic reflection data from reverse-time migrated images. Using reverse-time migration

makes the method applicable to complex geological media. Whereas migration using

the extended imaging condition preserves the amplitude and phase information of both

primaries and multiples, even in case of migration with an inaccurate velocity model.

Applications of the method in seismic data reconstruction and image-based demultiple

of seismic data are presented. The paper is scheduled for presentation at the 82nd SEG

Annual International Meeting in September 2013. Paper submitted to Geophysics 2013.
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Chapter 2

Automatic velocity analysis with
reverse-time migration

Wiktor Weibull and Børge Arntsen
Norwegian University of Science and Technology, Trondheim, Norway

Abstract

In this paper we apply a method to automatically estimate the background velocities us-

ing reverse-time migration. The method uses a combination of differential semblance

and similarity-index (a.k.a. semblance or stacking-power) to measure the focusing error

in imaging and a non-linear optimization procedure to obtain the background velocities.

A challenge in this procedure is that, for media consisting of complex and strongly re-

fracting velocities, artifacts in the reverse-time migrated image (low-frequency noise) can

cause the velocity analysis to diverge. We successfully overcome this issue by applying

a simple vertical derivative filter to the image that is input to velocity analysis. The re-

sultant velocity analysis method is tested in two 2D synthetic examples and one 2D field

data example. Due to the assumptions inherent to prestack depth migration, the data that

are input to velocity analysis must be singly scattered. In order to apply the method to

multiple-rich data, we propose an image-based demultiple method. The method consists

in muting events in the subsurface offset common image point gathers constructed with

reverse-time migration, and remodeling the data using a kinematic demigration. A field

data example shows how the image-based demultiple of the data helps to improve the

velocity analysis in the presence of multiple scattering.

Presented at the ROSE Meeting in Trondheim in 2011 and at the 73rd EAGE Conference
and Exhibition incorporating SPE EUROPEC in June 2011; Paper accepted for publica-
tion in Geophysics 2013.
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2.1 Introduction

An accurate estimate of the distribution of the subsurface seismic velocities is an indis-

pensable component for obtaining an accurate image of Earth’s reflectivity by prestack

depth migration. Methods for velocity estimation in routine use today are often based on

ray tomography and, although usually semi-automatic, requires time consuming picking

of gathers and quality control. Due to the shortcomings of ray-theoretical depth migration

approaches in areas with complex geology (Arntsen et al., 2009), one-way and more re-

cently two-way wave equation imaging methods have become popular. These approaches

are often combined with velocity estimation based on ray-theory. For consistency and

improved resolution, velocity model building and seismic imaging should preferably be

based on wave equation methods.

Wave equation migration velocity analysis (WEMVA) is based on focusing of seismic

reflection data in the image domain and uses an automatic optimization procedure to

estimate the velocity field, avoiding manual picking. The approach consists in formulating

an objective function measuring to what extent subsurface offset- or angle-gathers are,

respectively, focused or flattened, and then minimizing the objective function with respect

to the velocity field.

Chavent and Jacewitz (1995) implemented WEMVA by using a similarity-index and

reverse-time migration (RTM) to compute the velocity field. The procedure utilizes the

complete wavefield and requires no picking. Biondi and Sava (1999) used one-way migra-

tion operators and image perturbations for computing corrections to the initial wavefield

and Sava and Biondi (2004) extended this approach to a fully non-linear iterative scheme.

The numerical implementation is described in detail by Sava and Vlad (2008).

Shen et al. (2003) used the Double Square Root approach to depth migration and an ob-

jective function based on differential semblance (Symes and Carazzone, 1991) to estimate

the velocity field. The approach was extended to shot-profile migration based on one-way

migration operators, through an objective function consisting of the difference between

differential semblance and similarity-index (Shen and Symes, 2008). Mulder (2008)

used depth migration based on the two-way wave equation in the frequency-domain and

an objective function related to the differential semblance cost function divided by the

similarity-index cost function to implement a non-linear scheme for computing the veloc-

ity field. Gao and Symes (2009) proposed to use a differential semblance cost function

and RTM to solve the velocity estimation problem, and also gave an initial theoretical

framework.

We implement an objective function for wave-equation migration velocity analysis using

differential semblance, similarity-index, and RTM. In order to minimize problems related

to amplitude-sensitivity caused by the two-way wave equation, we choose to modify the

image by a spatial differentiation operator, similar to but simpler than the filter proposed

by Mulder (2008). As we will show, this leads to an objective function with improved

convergence properties. We also give complete expressions for computing the gradient

20



of the cost function with respect to the velocity field, and show how the gradient can be

used in a full non-linear optimization scheme illustrated with both synthetic and real data

examples.

One challenge in applying WEMVA to field data is the presence of free-surface multiples

(van Leeuwen and Mulder, 2008; Mulder and van Leeuwen, 2008). To overcome this

problem, Mulder and van Leeuwen (2008) proposed to modify their objective function

with an asymmetric weighting function. We extend this idea and develop a method of

multiple attenuation based on reverse-time migration, muting and data reconstruction,

and show how this method helps in improving the results of velocity analysis in the case

of multiple-rich data.

Reverse-time migration and velocity analysis

2.1.1 Migration

In RTM, a Common Image Point gather (CIG), R, can be produced by crosscorrelating a

forward modeled source wavefield (D) with a reverse-time modeled scattered wavefield

(U )

R(x,h) =
∑
s

∫
dt Us(x+ h, t)Ds(x− h, t), (2.1)

where x = (x1, x2, x3) is the subsurface mid-point coordinate, with x3 being the vertical

depth axis coordinate, h = (h1, h2, 0) is the subsurface horizontal half-offset, t is the time

and s is the source index.

This imaging condition is an extension of Claerbout’s principle (Claerbout, 1971; Rickett

and Sava, 2002). According to this principle, given an accurate estimate of the material

velocities, the crosscorrelation of the reconstructed source and receiver wavefields will

have a maximum at zero lag in time and space. By parameterizing the image with an

additional lag parameter we can capture the deviation of the maximum in crosscorrelation

from zero lag, and use this to quantify the error in the estimates of the velocities. In this

paper we only consider horizontal spatial lags in the crosscorrelation, however vertical

spatial lags, and even temporal lags can be incorporated in the image (Biondi and Shan,

2002; Biondi and Symes, 2004; Sava and Fomel, 2006). The Us and Ds wavefields are

obtained through

Ds(x, t) =

∫
dx′ G(x, t;x′, 0) ∗

Nsou∑
sou=1

δ(x′ − xsou)Ss(x
′, t), (2.2)

and

Us(x, t) =

∫
dx′ G(x, 0;x′, t) ∗

Nrec∑
rec=1

δ(x′ − xrec)Ps(x
′, t), (2.3)
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where G is the Green’s function for the constant-density two-way acoustic wave equation,

and ∗ means time convolution. Here, P is the recorded reflection data and S is the source

data, while xsou are source datum coordinates for one shot, and xrec are the receiver datum

coordinates for one shot.

2.1.2 Velocity analysis

The velocity analysis is based on the optimization of the following objective function

J = DS − SI + Jreg. (2.4)

The objective function is composed of three parts, the differential semblance misfit (DS),

the similarity-index (SI) and a regularization term (Jreg).

An important assumption in WEMVA is that when the velocity model is optimum, the

CIGs are maximally focused at zero subsurface offset. Thus any deviation from perfect

focus can be taken as an indication that the background velocity model must be improved.

The differential semblance misfit represents a simple and direct way of quantifying the

deviation from focus of CIGs

DS =
1

2

∥∥∥∥h∂R
∂x3

(x,h)

∥∥∥∥
2

=
1

2

∫
dx

∫
dh h2

[
∂R
∂x3

(x,h)

]2
. (2.5)

This differential semblance formulation is similar to that in Shen and Symes (2008). How-

ever, the fact that we use RTM to construct the image makes a fundamental difference.

The solution of the one-way wave equation neglects any scattering from vertical contrasts

in the velocities, while the same is not true for the solution of the two-way wave equation.

The scattering during wavefield reconstruction produces undesired artifacts in the final

RTM image. In the context of velocity analysis it is desirable to remove these artifacts,

since they are coherent events and particularly sensitive to changes in the velocities, thus

affecting the results of the optimization. Due to the low-wavenumber character and the

predominantly vertical orientation of this effect, a simple vertical derivative filter acting

over the image is sufficient to remove it (Guitton et al., 2007). A similar procedure, albeit

involving multiplication in the wavenumber domain, has been applied by Mulder (2008)

in his implementation of WEMVA using the two-way wave equation.

The differential semblance measure is based solely on kinematic considerations. To ex-

ploit the dynamic effect that the velocities can have through the improvement of the

stack quality, the objective function can be augmented with the similarity-index (a.k.a.

stacking-power or semblance) (Chavent and Jacewitz, 1995)

SI =
γ

2

∥∥∥∥∂R∂x3

(x, 0)

∥∥∥∥
2

=
γ

2

∫
dx

[
∂R
∂x3

(x, 0)

]2
. (2.6)

where, γ is a constant that balances the weight of SI over DS . Ideally, the weight should

be chosen such that the similarity-index only acts as a regularization.
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Finally, to further improve the wellposedness of the velocity analysis we also apply regu-

larization (Tikhonov and Arsenin, 1977)

Jreg =
α

2

∥∥∥∥∂v∂x(x)
∥∥∥∥
2

+
β(x)

2
‖v(x)− vprior(x)‖2 , (2.7)

where α is a scalar constant, β is a vector of constant weights, and vprior is the vector

containing a priori known values of velocity.

The optimization of equation 2.4 is performed using a gradient-based non-linear method

(Byrd et al., 1995; Nocedal and Wright, 2000). The gradient of the misfit-function with

respect to velocity is then required.

The gradient of equation 2.4 is given by

∇vJ (x) = ∇vDS(x)−∇vSI(x) +∇vJreg(x). (2.8)

The adjoint state method (Lions and Magenes, 1972; Chavent and Lemonnier, 1974;

Chavent, 2009) offers an exact and efficient way to compute the gradients of the dif-

ferential semblance misfit and the similarity-index functions. In Appendix A, we show

how to derive the gradient of equations 2.5 and 2.6 with respect to the acoustic velocities

by the adjoint state method. In this case the gradient is given by

∇v(DS − SI)(x) = −
∑
s

∫
dt

2

v3(x)

∂2Ds

∂t2
(x, t)D′

s(x, t)

−
∑
s

∫
dt

2

v3(x)

∂2Us

∂t2
(x, t)U ′s(x, t). (2.9)

The wavefields D′
s and U ′s are adjoint states associated with the constraints that the direct

states (Ds and Us), satisfy the constant density acoustic wave equation. These wavefields

can be computed by the following adjoint modelings

D′
s(x, t) =

∫
dx′ G(x, 0;x′, t) ∗

∫
dh (h2 − γδ(h))

∂2R
∂x′23

(x′ + h,h)Us(x
′ + 2h, t),(2.10)

and

U ′s(x, t) =
∫

dx′ G(x, t;x′, 0) ∗
∫

dh (h2 − γδ(h))
∂2R
∂x′23

(x′ − h,h)Ds(x
′ − 2h, t),(2.11)

where δ is the Kronecker delta.

The cost of computing the gradient in this way is approximately the same as that of eval-

uating the misfit function, however, it requires the state variables (D and U ) to be stored

for each shot, which can be expensive. In the discussion we suggest some measures to

reduce this cost.
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To complete the gradient of J we need to compute the gradient with respect to the regu-

larization term

∇vJreg(x) = β(x)(v(x)− vprior(x))− α
∂

∂x

[
∂v

∂x
(x)

]
, (2.12)

where ∂v
∂x

is taken to be zero at the boundaries.

2.1.3 Velocity preconditioning

The solution of differential semblance optimization is notoriously rough. Fei and Williamson

(2010) indicated that the updated velocities can have artificial roughness features (verti-

cal stripes). To ensure a smooth solution to the velocity analysis, we precondition the

velocity model. In addition to speeding up the convergence, preconditioning also helps to

make the velocity analysis well-posed, as it reduces the space of possible solutions and

the number of parameters to be estimated. A popular choice of representing a velocity

model is given by the cubic B-spline representation (Dierckx, 1993)

v(x) =
∑
i

ciBi(x), (2.13)

where Bi are cubic splines defined at predetermined control points and ci are coefficients

to be determined by the velocity analysis. One advantage of using this representation

is that it ensures continuous second derivatives, which is important for the derivative

regularization implementation. At the same time, due to the local support of the cubic

spline functions, this representation is also well suited to describe the spatial variations

necessary for velocity analysis. When using the B-spline representation for optimization,

the gradient must be transformed from the Cartesian to the spline basis

∇cJ (i) =

∫
dx Bi(x)∇vJ (x). (2.14)

Results

2.1.4 Synthetic data examples

We present the results of optimizing two 2D synthetic data sets. Both synthetic data sets

were generated using 2D finite difference modeling, with synthetic density and acous-

tic velocity models. The geometry simulates a typical marine acquisition. We use a

monopole point source and a Ricker wavelet with a peak frequency of 25Hz. The mod-

eling was carried out with an algorithm that is 8th order accurate in space and 2nd order

accurate in time (Virieux, 1986). The modeling aperture is taken as twice the cable length.

To avoid reflections from the boundaries of the models, PML absorbing boundary condi-

tions were implemented at all sides (Qin et al., 2009). This way, the resulting data sets
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are devoid of free-surface multiples. Although interbed multiples are still present in the

data, they are significantly weaker than the primaries and are neglected in these examples.

Preprocessing of the data sets consisted in muting the direct wave and the refracted waves

at the receiver level.

Optimization is carried out with a L-BFGS method (Byrd et al., 1995). In both examples,

the regularization parameter α was spatially invariable, and its value was chosen such that

the initial derivative regularization error value was 1% of the initial DS value. The value

of parameter β was chosen in a similar way as α, but it was set to zero outside of the

topmost layer.

Shallow gas accumulation and leakage model

The first example consists of a 4-km long and 1-km deep model shown in Figure 2.1. This

model simulates a dipping layered sediment succession with a small ’reef’ like structure

in the center. The density varies between 1800 and 2400 kg/m3. The velocity model has

the same structure as the density model, but with a localized low velocity lens (Gaussian

with a peak of −500 m/s) under the reef structure.

This model simulates a scenario of shallow gas accumulation and leakage, a typical sit-

uation that, if not accurately predicted by the velocity model, can produce significant

distortion on depth images.

The acquisition geometry simulates a 2D marine acquisition with a 311 sources separated

by 20 m. The cable length is 3.2 km with 10-m channel interval, with minimum offset

of 500 m. Recording time length is 2 s. The initial model used for migration consists of

a linear 1D velocity profile varying from 1.8 km/s to 2.4 km/s as shown in Figure 2.2a.

For optimization, a bicubic B-spline spline with control points every 40 m in both x and

z directions was then fitted to this initial model. The parameter γ was chosen so that the

initial SI value was 20% of the initial DS value.

The CIGs are produced according to equation 2.1 with the half-offset axis varying be-

tween ±400 m (81 offset samples).

The quality of our initial estimate of the velocity can be quantified by looking at the initial

image shown in Figure 2.2b and the CIGs output by RTM displayed in Figure 2.2c. The

image is obtained from the CIGs by taking only the zero subsurface offset component

(i.e. zero lag crosscorrelation), and shows significant distortion, especially below the low

velocity lens. At the same time, the energy in CIGs is significantly spread across the offset

axis.

To justify the use of the spatial derivative in our modified differential semblance misfit

function, we make two attempts at estimating velocities from this data. One without the

spatial derivative, and other with our modified differential semblance objective.

In the first attempt, we did not apply the spatial derivative. Optimization was stopped

after 30 iterations because, despite the decrease in value of the objective function, the
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Figure 2.1: Shallow gas accumulation and leakage synthetic model: (a) Density model

(kg/m3). (b) Acoustic velocity model (m/s).
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Figure 2.2: (a) Initial velocity model (m/s). (b) Initial image. (c) Initial subsurface offset

CIGs.
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quality of the migrated image was getting worse with increasing number of iterations.

This was taken as an indication that velocity analysis was converging to a non-optimal

minimum. The updated velocities are shown in Figure 2.3a, the updated image is shown

in Figure 2.3b and the updated subsurface CIGs are shown in Figure 2.3c. The optimiza-

tion fails here because we allow too strong spatial variations in the updated velocities.

These introduce artifacts in the reverse-time migrated image that are more sensitive to the

velocities than the kinematic errors that we want to correct for.

In the second attempt we introduce the spatial derivative in the image. Now optimization

converges after 17 iterations. The optimized velocity model is shown in Figure 2.4a, and

it is clear that the low velocity lens and the layered structure of the velocity model are

successfully detected.

Figure 2.4b shows the results of the optimization on the image, while Figure 2.4c shows

the optimized CIGs. The image migrated with the updated velocities is much better fo-

cused and the reflectors are now well positioned. At the same time, the CIGs are well

focused at zero subsurface offset, indicating that the velocities are adequate to describe

the kinematics of the data.

Figure 2.5a shows a comparison of the initial, updated and true traces of velocity at dif-

ferent spatial positions, while Figure 2.5b does the same for the reflectivity. The velocity

traces show that, locally, the updated velocities can deviate significantly from the true

velocities, though without compromising the reflectivity fit. This demonstrates the non-

uniqueness inherent to the solution of this type of problem. From the reflectivity, we can

see that the method is able to correct mispositioning errors that are, at times, larger than

half-wavelength (see for example Figure 2.5b at x = 2 km).

In yet another experiment with this dataset, we compare the results of velocity analysis

using the differential semblance misfit alone, the similarity-index alone and their combi-

nation. For this test, a bicubic B-spline with control points every 100 m in x direction

and 50 m in the z direction was fitted to the initial model. In the combination result,

the parameter γ Âăis chosen such that the initial SI value is equal to 50% of the initial

DS Âăvalue.

The updated velocities obtained with the three different objective functions are shown in

Figure 2.6, while the updated images are displayed in Figure 2.7. The results show that, in

this example, all three objective functions converge to models that improve the quality of

the initial migrated image. As can be seen in Figures 2.6a-b, the velocities obtained from

velocity analysis based on SI and DS can be quite different. This reflects, in part, the fact

that these objective functions have different sensitivities to the initial model. However, it

is also a consequence of using different sources of information to constrain the velocity

model.

Combining both objective functions seems to have the effect of averaging out artifacts

and strengthening similarities between the different velocity models (Figure 2.6c). This

helps to improve the quality of the final migrated image, as can be seen in Figure 2.7c.
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Figure 2.3: Updated velocity model (a), updated image (b), and updated subsurface offset

CIGs (c) after 30 iterations of velocity analysis using the objective function without the

spatial derivative.
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Figure 2.4: Updated velocity model (a), updated image (b), and updated subsurface CIGs

(c) after 17 iterations of velocity analysis with the spatial derivative.
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Figure 2.5: (a) Comparison of velocity traces. (b) Comparison of reflectivity traces. Up-

dated 1 corresponds to the updated model and reflectivity from the optimization of the

objective function without the vertical derivative, while updated 2 comes from the opti-

mization of the objective function with the vertical derivative.
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Figure 2.6: Updated velocity model using: (a) Similarity-index alone; (b) Differential

semblance alone; (c) Differential semblance and similarity-index combined.
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Figure 2.7: Updated image using: (a) Similarity-index alone; (b) Differential semblance

alone; (c) Differential semblance and similarity-index combined.
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Gullfaks model

The second data set is generated from a 2D synthetic model of the Gullfaks oil field,

located in the Norwegian margin of the North Sea. The model is 3 km deep and 4 km

across. At the top of the model there is a 200-m deep water layer. Beneath the water layer

and down to about 1.8 km, the model consists largely of a layered sediment succession.

The layered overburden unconformably overlies a set of rotated fault blocks. The density

varies between 1200 and 2400 kg/m3 (Figure 2.8a), while the velocity varies between 1.48

and 3.4 km/s (Figure 2.8b).

The geometry of the data in this example is a half-spread marine setup with with offsets

ranging from 0 to 6 km, and spaced every 12.5 m. The recording time length is 4 s.

The initial model used for migration consists of a 1D velocity profile linearly varying from

1.48 to 3.4 km/s (Figure 2.9a). This model carries large deviations from the true model,

and these stretch over several hundred meters. This results in significant traveltime errors

(more than one wavelength at the considered frequencies). For optimization, a bicubic

B-spline with control point spacings of 150 m in x direction and 50 m in z direction was

fitted to this model. The parameter γ was chosen so that the initial SI value was 20% of

the initial DS value. Migration and optimization are carried out in a similar way as in the

first example.

The results of migration with the initial model are shown in Figures 2.9b and 2.9c.

Despite the simplicity of the Gullfaks model, consisting mostly of flat layers with only

mild variations in velocity, the convergence rate for this example is relatively slow. We

interpret this as a consequence of the fact that there are not many reflectors in the upper

1.8 km of the model, which makes the inversion poorly constrained. Nevertheless, the op-

timization is stopped after 50 iterations, at which point the CIGs were deemed sufficiently

focused.

The optimized velocity model is shown in Figure 2.10a. The results of optimization show

that again, in this case the method is capable of improving the kinematics of the velocity

model. This can be clearly seen if we compare the initial images, shown in Figures 2.9b

and 2.9c, to the updated images, shown in Figures 2.10b and 2.10c. At the same time,

Figures 2.11a and 2.11b show that the updated velocities and reflectivities are close to

their true value (from the synthetic model).

2.1.5 Field data example

The method is tested on a field data set taken off the Norwegian North Sea. The data

are originally a 3D data set, from which we extracted a 2D line. The geometry of the

data consists of a line with minimum offset of 150 m and maximum offset of 5 km.

The original receiver interval is 25 m and the original shot interval is 18.7 m. The data

processing included multiple removal, and muting of direct wave, wide-angle reflections
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Figure 2.8: Gullfaks synthetic model: (a) Density model (kg/m3). (b) Acoustic velocity

model (m/s).
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Figure 2.9: (a) Initial velocity model (m/s). (b) Initial image. (c) Initial subsurface offset

CIGs.
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Figure 2.10: Updated velocity model (a), updated image (b), and updated subsurface CIGs

(c) after 50 iterations of velocity analysis.
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Figure 2.11: (a) Comparison of velocity traces. (b) Comparison of reflectivity traces.
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and refractions. To increase the contribution from far offsets and deeper events, a power

of 2 time gain (t2) is applied to the data. The maximum frequency of the data was filtered

down to 30 Hz, so that a grid of 20 by 20 m could be used for modeling and migration.

However, for display purposes, the updated images are migrated on a finer grid of 10 by

10 m using frequencies up to 80 Hz. The choice of regularization parameters (α, β and

γ) for optimization follow the same guidelines as in the synthetic examples.

The starting point for the velocity analysis is a 1D velocity model shown in Figure 2.12a.

The model is constructed from a smoothed well log of P-wave velocities. For optimiza-

tion, this initial model was fitted to a B-spline representation using a grid of control points

spaced 600 m in the x direction and 100 m in the z direction.

The initial image is shown in Figure 2.12b. Due to the approximately plane layered over-

burden, the initial image shows relatively well focused reflectors. Indeed the biggest

challenge for velocity analysis in this data is the presence of resilient free-surface mul-

tiples that were not properly attenuated in preprocessing. To overcome this problem we

developed a method based on identifying and muting the multiples directly on the subsur-

face offset CIGs. The muted CIGs are used in a demigration procedure that kinematically

reconstructs the reflection data. The resultant demultipled data can then be used as input

for the velocity analysis.

To identify the free-surface multiples in the subsurface offset CIGs, we first note that that

these multiples focus at lower velocities than the primaries (Mulder and van Leeuwen,

2008). Thus, when migrating a data with free-surface multiples using an initial veloc-

ity model that is closer to the primaries, the multiples will, in general, appear as ’smiling

events’. However, in the particular case of single-spread acquisition, events migrated with

non-optimal velocities are also asymmetrically shifted relative to the zero subsurface off-

set. In the case of a source to the left of the streamer, the events that require lower velocity

to focus will be shifted to the left, while those requiring higher velocity will be shifted

to the right. Whereas Mulder and van Leeuwen (2008) introduce a bias towards higher

velocities in the penalization of CIGs, we propose to mute the multiples and reconstruct

the data as a preprocessing step. This is similar to the multiple attenuation procedure

proposed by Sava and Guitton (2005), where multiples are attenuated by a dip filter in the

subsurface angle gathers. The main differences here are that the multiple attenuation is

carried out by a mute in the subsurface offset domain, and that, after the CIGs are muted,

the data are reconstructed by ’demigrating’ the muted subsurface offset CIGs. The data

can be reconstructed from the muted CIGs according to

Us(xrec, t) =

∫
dx′ G(xrec, t;x

′, 0) ∗
∫

dh
∂2Rm

∂x′23
(x′ − h,h)Ds(x

′ − 2h, t), (2.15)

where Us(xrec, t) is the demigrated demultipled data at the receiver positions xrec, and

Rm are the muted subsurface offset CIGs.

The data reconstruction avoids possible instabilities associated with the energy in the

CIGs being moved in and out of the mute during the optimization procedure, which can
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Figure 2.12: (a) Initial velocity model (m/s). (b) Image constructed using initial velocity

model.
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occur in the case of a ’static’ weighting applied directly in the objective function (Mulder

and ten Kroode, 2002; Mulder and van Leeuwen, 2008).

Note that the demultiple procedure is be done only once, as a preprocessing step, and

requires no modification of the objective function. The cost of the demultiple is equivalent

to the cost of one and a half reverse-time migrations, since the source wavefields, Ds, can

be stored during the migration step (equation 2.1), and reaccessed later during the data

reconstruction (equation 2.15).

The demultiple procedure requires picking a mute that separates multiple from primary

events in the CIGs. One way to pick this mute is to perform an initial velocity analysis,

where the goal is to converge to a velocity in between primaries and multiples. The

primaries and multiples could then be separated in the resultant CIGs by a vertical mute at

zero subsurface offset (Li and Symes, 2007). Here, we follow a more subjective approach,

and pick a mute based on our own interpretation. As an example of the application of

the demultiple procedure, Figure 2.13a shows a set of subsurface offset CIGs generated

using the initial velocity shown in Figure 2.12a. The CIGs are separated by red vertical

lines, while the black vertical lines show the position of the zero subsurface offset, and

the dotted red lines show the position of picked mutes. The mutes are picked to the left

of the strongest events in the CIGs, which are interpreted to be primaries. However, our

experience with this data suggests that some strong events, in particular those between 2.5

and 3 km depth, are multiples and are, therefore, also included in the mute. Figure 2.13b

shows the CIGs after the mute is applied. Whereas, Figures 2.14a-b show the data before

and after the demultiple procedure. Note how low velocity events, indicated by steep

moveouts, have been attenuated while the kinematics of primary events are preserved.

This example shows that, although subjective, picking the mute based on interpretation

allows great flexibility, and can be used to remove multiples and any other events that can

be prejudicial to the velocity analysis.

To demonstrate the efficiency of the demultiple method in reducing the sensitivity of

WEMVA to free-surface multiples, we compare the results of velocity analysis using the

original field data with those obtained using the demultipled data. The initial model used

in both cases is the one shown in Figure 2.12a. For better comparison of the results, all

updated images are constructed using the original data.

The updated velocities after 19 iterations of optimization using the original data are shown

in Figure 2.15a, while the updated image is shown in Figure 2.15b. The results show that

as expected the velocities updated by WEMVA represent a compromise, as the method

attempts to simultaneously focus both primaries and multiples. As a consequence the

final migrated image is locally distorted, and some reflectors that were well focused in the

initial image (Figure 2.12b) are now clearly mispositioned.

In comparison, the velocities obtained after 26 iteration of velocity analysis using the

demultipled data are shown in Figure 2.16a. The updated image (Figure 2.16b) now

shows a slight improvement over the initial image (Figure 2.12b), as we would expect in

this case.
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Figure 2.13: (a) Subsurface offset CIGs constructed using the initial velocity model in

Figure 2.12a. The CIGs are separated by red vertical lines, while the dotted red lines

mark the mute picks, and the black vertical lines mark the zero subsurface offset. (b)

Subsurface offset CIGs after mute.
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(a)

(b)

Figure 2.14: (a) 5 shots taken from the original data. (b) 5 shots taken from the data

obtained from demigration of muted subsurface offset CIGs.
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Figure 2.15: (a) Updated velocities from original data (m/s). (b) Image constructed using

updated velocities in (a).
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Figure 2.16: (a) Updated velocities from image-based demultipled data (m/s). (b) Image

constructed using updated velocities in (a).
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2.2 Discussion

RTM based WEMVA provides an automatic way of improving the quality of depth mi-

grated images. However, artifacts in reverse-time migration which occur in presence of

strong and sharp velocity contrasts can cause the method to diverge. In the first synthetic

example we show how modifying the image with a vertical derivative operator improves

the stability of the velocity analysis. In this example, the modification was necessary to

ensure convergence and an adequate result. In general, we predict that this modification

of the objective function is most significant when the velocity field has large velocity con-

trasts and/or is locally characterized by strong refracting mediums. In other cases, where

one can accurately describe the kinematics of the acoustic medium with a more trans-

parent velocity model (i.e. with only small acoustic impedance contrasts), such as in the

second synthetic example, this modification may not significantly change the results.

The wellposedness of the velocity analysis is strongly dependent on the velocity precon-

ditioning, and the regularization. To guarantee a stable solution, the number of parameters

to be estimated needs to be adjusted to the quantity of information present in the image. In

our numerical examples, we controlled the number of optimized parameters by choosing

different grid spacings for the B-spline coefficients. In the first example, where we have

well illuminated evenly distributed reflectors, the B-spline grid spacing could be made

quite small (40×40 m). Whereas in the second example, with a scarcer number of re-

flectors to constrain the upper 2 km of the velocity field, the grid was purposely chosen

more sparse (150×50 m). In the field data example, where there are large differences in

the continuity and illumination of the reflectors a very sparse B-spline grid was adopted

(600×100m). At the same time, the derivative regularization was used to prevent large

artificial spatial velocity variations. These can appear during optimization due to the fact

that the gradient of the differential semblance misfit and the similarity-index are scaled

by the reflection coefficients of the image. However, it tends to slow down optimization.

Therefore the regularization parameter should be chosen as small as possible. The choice

of 1% of the initial differential semblance misfit value seemed to be satisfactory for all

the examples.

Free-surface multiples have long been a problem for automatic velocity analysis methods

(Mulder and ten Kroode, 2002; Li and Symes, 2007; van Leeuwen and Mulder, 2008;

Mulder and van Leeuwen, 2008). Even if multiple attenuation is used as a part of pre-

processing, some multiple energy might still remain and bias the velocity analysis (Li

and Symes, 2007). Different methods have been proposed to reduce the sensitivity of

WEMVA to the multiples. These methods are either based on including a filter in the

objective function that bias the optimization towards higher velocities (Mulder and ten

Kroode, 2002; Mulder and van Leeuwen, 2008), or iteratively modeling and subtract-

ing the multiples as part of the velocity analysis (van Leeuwen and Mulder, 2008). We

developed and tested a new preprocessing method where we mute the free-surface multi-

ples in the subsurface offset CIGs. Instead of modifying the objective function, we use

the muted CIGs to construct demultipled data, that is then used in the velocity analysis.
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The distinction between multiples and primaries is done based on their focusing veloci-

ties, and might require interpretation. On the other hand, the procedure is very flexible

and can also be used to remove other events from the data, such as steep dips and ’fast’

interbed multiples, which are known to cause problems to WEMVA (Biondi and Shan,

2002).

In all examples, the initial models used as starting point for optimization, although 1D,

were approximating well the true background trends of the actual velocities. These mod-

els could be found, in a first instance, by preconditioning the velocity model to the space

of 1D velocity models or to the space of linear 1D models. This approach works here

because, in the examples shown, the geology consisted approximately of plane layered

overburdens. In more complicated geological environments, with strong and sharp con-

trast velocity variations, more refined initial models are likely to be required in order to

avoid converging to non-optimal minima.

The high computational cost, both in terms of computation and storage, is currently limit-

ing the method to 2D and low-frequency data sets. There are, however, several measures

that can be used to reduce these costs. First in terms of computational cost, we suggest

some strategies to improve the runtime of the method on large data sets.

The cost of RTM can be reduced significantly if shots can be combined and migrated

together. If only two shots are combined the cost of migration is already halved. The

speedup does not come for free though, since this approach introduces crosstalk in the

result image. The crosstalk can be attenuated by using some sort of source encoding

(Romero et al., 2000) . This approach has been widely experimented in RTM and FWI

(Ben-Hadj-Ali et al., 2011). It is, however, not clear how the crosstalk artifacts could

affect the results of WEMVA. Alternatively, the number of shots can be reduced through

subsampling (Diaz and Guitton, 2011). In this case, only a subsample of the shots is taken

and used for updating the velocity model at each iteration. By updating the subsampling

along the iterative procedure, all shots are eventually used. A drawback of this procedure

for WEMVA is that it may introduce aliasing in the subsurface offset CIGs, which may

deteriorate the results.

In RTM a typical problem has been the need to model separately the incident wavefield

and the scattered wavefield, which means that one of the two wavefields must be stored

and reacessed later for the imaging step (checkpointing). In the case of differential sem-

blance optimization, both fields need to be stored and accessed during gradient computa-

tion. Therefore the cost of storage is double of that of RTM. In this case, the cost of storing

these fields can be reduced by optimal checkpointing, as suggested in Symes (2007).

2.3 Conclusion

We implemented a WEMVA method that can be used to estimate migration velocity fields

from prestack seismic reflection data. The method estimates the velocities by minimiz-
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ing an objective function based on differential semblance and similarity-index of subsur-

face offset CIGs constructed by reverse-time migration. Artifacts of reverse-time migra-

tion (low-frequency noise) can be very sensitive to changes in the velocities and cause

WEMVA to diverge. We showed that by modifying the image with a simple spatial differ-

entiation operator helps to stabilize the velocity analysis in the presence of strong velocity

contrasts. We showed that multiples can be attenuated in a procedure based on reverse-

time migration, muting and demigration, with optimal application for WEMVA.
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2.5 Appendix A: Gradient computation

We now present the main steps required to derive the gradient of equations 2.5 and 2.6

by the adjoint state method (Lions and Magenes, 1972; Chavent and Lemonnier, 1974;

Chavent, 2009).

The objective function function is given by

J (U,D,v) =
1

2

∫
dh

∫
dx ĥ

[
∂R
∂x3

(x,h)

]2
, (2.16)

where R(x,h) =
∑

s

∫
dt Us(x+ h, t)Ds(x− h, t), and ĥ = h2 − γδ(h).

A Lagrangian function associated with the problem of minimizing equation 2.16 with

respect to v can be written as

L(U,D,U′,D′,v) = J (U,D,v)

+
∑
s

〈
U′

s, H
TUs −Ps

〉
x,t

+
∑
s

〈D′
s, HDs − Ss〉x,t , (2.17)

where U ′s(x, t) and D′
s(x, t) are Lagrange multipliers (adjoint states). The operator H(v) =(

1
v2(x)

∂2

∂t2
−∇2

)
is the acoustic wave equation forward time marching operator. The

transpose, HT (v), leads to a backward time marching scheme.
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Here L is related to J by

J = L(Uv,Dv,U
′,D′,v), (2.18)

where Uv, Dv denote one realization of the direct states for a particular shot with a

velocity vector v.

Implicit differentiation of the above equation with respect to v gives

δJ =
∂L
∂U

(Uv,Dv,U
′,D′,v) · δU+

∂L
∂D

(Uv,Dv,U
′,D′,v) · δD

+
∂L
∂v

(Uv,Dv,U
′,D′,v) · δv. (2.19)

Now, if we assume U′ and D′ to satisfy

∂L
∂U

(Uv,Dv,U
′,D′,v) · δU = 0, (2.20)

and
∂L
∂D

(Uv,Dv,U
′,D′,v) · δD = 0, (2.21)

for all δU and δD, then equation 2.19 reduces to

δJ =
∂L
∂v

(Uv,Dv,U
′,D′,v) · δv. (2.22)

The problem now is to solve equations 2.20 and 2.21 for the adjoint states for each shot.

Starting with equation 2.21. Noting that ∂
∂x3

T
= − ∂

∂x3
, and that

∫
dh R(x)U(x+ h)δD(x− h) =

∫
dhR(x+ h)U(x+ 2h)δD(x), (2.23)

the stationay points of the Lagragian ∂L
∂D

= 0 lead to the reverse-time problem

HT (v)D′
s(x, t) =

∫
dh ĥ

∂2R
∂x2

3

(x+ h,h)Us(x+ 2h, t), (2.24)

which can be be solved through a backward time marching scheme, starting from a final

condition of rest, i.e. D′
s(x, T ) = 0.

While equation ∂L
∂U

= 0 leads to the forward-time problem

H(v)U ′s(x, t) =
∫

dh ĥ
∂2R
∂x2

3

(x− h,h)Ds(x− 2h, t), (2.25)

which can be solved through a forward time marching scheme, starting from an initial

condition of rest, i.e. U ′s(x, 0) = 0.
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The solutions to equations 2.24 and 2.25 can be expressed in the form of Green’s functions

as

D′
s(x, t) =

∫
dx′ G(x, 0;x′, t) ∗

∫
dh ĥ

∂2R
∂x′23

(x′ + h,h)Us(x
′ + 2h, t), (2.26)

and

U ′s(x, t) =
∫

dx′ G(x, t;x′, 0) ∗
∫

dh ĥ
∂2R
∂x′23

(x′ − h,h)Ds(x
′ − 2h, t), (2.27)

where ∗ means time convolution.

Finally we turn to the problem of finding the derivative of J with respect to velocity

(v). Differentiating equation 2.17 with respect to v, and noting that
〈
D′, ∂H

∂v
D
〉
t
=〈

D′, ∂H
∂v

T
D
〉
t
=
〈
D′,− 2

v3
∂2D
∂t2

〉
t
, yields

δJ = −
∑
s

〈
D′

s,
2δv

v3

∂2Ds

∂t2

〉
x,t

−
∑
s

〈
U′

s,
2δv

v3

∂2Us

∂t2

〉
x,t

, (2.28)

from which we obtain the gradient by picking the coefficients of δv:

∇vJ (x) = −
∑
s

∫
dt

2

v3(x)

∂2Ds

∂t2
(x, t)D′

s(x, t)

−
∑
s

∫
dt

2

v3(x)

∂2Us

∂t2
(x, t)U ′s(x, t). (2.29)
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Chapter 3

Anisotropic migration velocity analysis
using reverse-time migration

Wiktor Weibull and Børge Arntsen
Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Seismic anisotropy, if not accounted for, can cause significant mispositioning of the re-

flectors in depth migrated images. Accounting for anisotropy in depth migration requires

velocity analysis tools that can estimate the anisotropic background velocity field. We ex-

tend wave equation migration velocity analysis to deal with 2D tilted transverse isotropic

media. The velocities are obtained automatically by non-linear optimization of the fo-

cusing and stack-power of common image point gathers constructed using an extended

imaging condition. We use the elastic two-way wave equation to reconstruct the wave-

fields needed for both the image, and gradient computations. This leads to an anisotropic

migration velocity analysis algorithm based on reverse-time migration. We illustrate the

method with synthetic and field data examples based on marine surface seismic acqui-

sition. The results show that the method significantly improves the quality of the depth

migrated image. However, as it is common in the case of velocity analysis using surface

seismic data, the estimation of anisotropic parameters seems to be strongly non-unique.

Presented at the ROSE Meeting in Trondheim 2012, at the 74th EAGE Conference and Ex-
hibition incorporating SPE EUROPEC in June 2012, at the SEG/EAGE Summer Research
Workshop in July 2012, and at the 81st SEG Annual International Meeting in September
2012; Paper submitted to Geophysics 2013.
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3.1 Introduction

WEMVA can be described as a non-linear least squares inversion of prestack seismic

reflection data in the image domain (Sava and Biondi, 2004). The procedure consists in

setting up an objective function that can measure the misfit in the image due to a prestack

depth migration with a non-optimal velocity model, and then minimize this function with

respect to the velocity parameters. The objective function for WEMVA is typically based

on the focusing of common image point gathers (Symes and Kern, 1994; Shen et al.,

2003), stacking-power (Toldi, 1989; Chavent and Jacewitz, 1995), or a combination of

both (Mulder, 2008; Shen and Symes, 2008). The procedure can be made fully automatic,

and is, to a certain extent, robust against poor initial guesses of the velocity field (Shen

and Symes, 2008). But due to the assumptions in the model of prestack depth migration,

WEMVA is restricted to kinematic inversion of single scattering reflection data (Mulder

and van Leeuwen, 2008).

Most implementations of WEMVA are based on the acoustic isotropic approximation

(Sava and Vlad, 2008). However, in cases where the velocity field is anisotropic, veloc-

ity analysis under an isotropic assumption will ultimately lead to images that are well-

focused, but mispositioned in space (Isaac and Lawton, 1999). In an attempt to overcome

this problem, some research have been devoted to implement WEMVA under anisotropic

assumptions. Li and Biondi (2011) proposed a method based on the depth-oriented exten-

sion of the differential semblance objective function (Shen et al., 2003) and one-way wave

equation migration in a vertically transverse isotropic (VTI) medium. Li et al. (2012) also

presented a method based on a similar objective function, but using the pseudo-acoustic

two-way wave equation for a VTI medium (Alkhalifah, 1998). Weibull et al. (2012)

presented a method where they use an objective function based on the depth-oriented

extension of differential semblance combined with stacking-power maximization (Toldi,

1989), and elastic reverse-time migration to estimate anisotropic parameters over a VTI

medium.

A VTI model can be a good approximation to some horizontally or nearly horizontally

layered sequences (Levin, 1979; Banik, 1984; Sayers, 1994). But for tectonically de-

formed geological settings, such as fold thrust belts or at the flanks of salt diapirs, a tilted

transverse isotropic (TTI) model is a better approximation (Isaac and Lawton, 1999). A

general 2D TTI medium can be described by five spatially varying parameters, the P-wave

velocity along the symmetry axis VP0, the S-wave velocity along the symmetry axis VS0,

Thomsen (1986) parameters ε and δ, and the tilt θ of the symmetry axis with respect to

the vertical. However, some assumptions can be used to reduce the number of parameters

needed to describe the kinematics of the medium. In the context of P-wave velocity anal-

ysis, Tsvankin and Thomsen (1994) and Alkhalifah and Larner (1994) demonstrated that

VS0 can be arbitrarily chosen. Also, a popular assumption, often referred to as structural

transverse isotropy (STI), further reduces the number of parameters by assuming that θ is

always perpendicular to the structure of the reflectors (Audebert et al., 2006).

In this paper, we extend WEMVA to deal with a 2D TTI model of the subsurface, and test
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it on synthetic and field surface seismic data. To account for anisotropy in the kinematics

of wave propagation, we use a density normalized elastic wave equation. This is stable

and accurately propagates waves at all angles, which is important for the estimation of

anisotropic parameters. We use WEMVA to simultaneously estimate VP0, ε, and δ. The

parameter VS0 is assumed to have negligible influence on P-wave propagation and chosen

arbitrarily, and θ is assumed to conform to the geology, and is estimated from the structure

of the reflectors in the migrated image.

A major difficulty in the estimation of anisotropic velocities from the kinematics of sur-

face reflection data is the inherent non-uniqueness related to the positioning of the reflec-

tors in the subsurface and/or to the tradeoff between the different parameters (Vestrum

et al., 1999; Grechka et al., 2002). The tradeoff between heterogeneity and anisotropy

can, in principle, be reduced by considering the images in vertical time instead of depth,

as suggested by Alkhalifah et al. (2001), or by considering a stretched depth axis as in

Plessix and Rynja (2010). In this work, we use regularization to constrain the models

to a physical set, and a coarse bi-cubic B-spline grid to confine the models to a sparse

solution space. These measures help to obtain a convergent WEMVA algorithm, but are

not sufficient to obtain a unique geological model of the subsurface. In practice, substan-

tial additional information in the form of well logs and check shot surveys are required

to narrow down the range of possible solutions to the problem (Yan et al., 2004; Bakulin

et al., 2010).

This paper starts by explaining the method and showing what can be expected in the ideal

condition. The method is then tested on 2D synthetic and field data sets. Next we discuss

the main results and suggest potential ways forward. Finally, we present our conclusions.

3.2 2D TTI reverse-time migration

The basis for WEMVA is prestack depth migration. To build common image point gathers

(CIGs) for velocity analysis, we use reverse-time migration with an extended imaging

condition (Rickett and Sava, 2002)

R(x,h) =

∫
ds

∫
dt W s(x− h, t, s)W r(x+ h, T − t, s), (3.1)

where W s are the forward modeled source wavefields, W r are the reverse-time modeled

receiver wavefields, x = (x, z) are the spatial coordinates, with z being the depth axis,

h = (hx, 0) is the subsurface horizontal half-offset, t is the time, and s is the source index.

The computation of the W s and W r wavefields depend on the choice of the wave equa-

tion. To take anisotropy into account, an anisotropic wave equation must be used in the

reconstruction of the wavefields. We model the wave propagation in a 2D TTI medium,

using a density normalized elastic wave equation (Ikelle and Amundsen, 2005)

∂2ui

∂t2
(x, t)− ∂

∂xj

[
aijkl(x)

∂ul

∂xk

(x, t)

]
= Fi(x, t), (3.2)
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where ui is the displacement field, aijkl is the density normalized elasticity tensor, Fi

is a source term, and i, j, k, l = x, z are indexes under the Einstein summation conven-

tion. The elastic wave equation and the density normalized elastic parameters aijkl are

described in more detail in Appendix A.

To obtain the W s and W r wavefields using equation 3.2, we first model the displacement

vector wavefields, us
i and ur

i , according to the following equations

∂2us
i

∂t2
(x, t)− ∂

∂xj

[
aijkl(x)

∂us
l

∂xk

(x, t)

]
=

∂S

∂xi

(xs, t, s), (3.3)

and,
∂2ur

i

∂t2
(x, t)− ∂

∂xj

[
aijkl(x)

∂ur
l

∂xk

(x, t)

]
=

∂P

∂xi

(xr, T − t, s), (3.4)

for respectively the source and receiver displacements. In equation 3.3, S is the source

time function for source s, at location xs. Whereas in equation 3.4, P is the time-reversed

recorded seismic reflection data for source s at receiver positions given by xr. Also note

that equation 3.3 is to be solved forward in time, while equation 3.4 is to be solved in

reverse-time.

We then extract a scalar wavefield from the source and receiver displacement wavefields

by taking the divergence of the displacement vector scaled by the density normalized bulk

modulus

W s(x, t, s) = V 2
P0(x)

∂us
i

∂xi

(x, t, s), (3.5)

and,

W r(x, t, s) = V 2
P0(x)

∂ur
i

∂xi

(x, t, s). (3.6)

Note that, different from the pseudo-acoustic approximation of Alkhalifah (1998), equa-

tion 3.2 requires VS0 to be provided. However, if only the kinematics of P-wave prop-

agation are considered, the S-wave velocities are of minor importance (Alkhalifah and

Tsvankin, 1995). In this work, the S-wave velocities are heuristically chosen to be 0.9

km/s, and spatially invariant.

3.3 WEMVA

We quantify a misfit in the prestack depth migrated image using the same objective func-

tion as described by Shen and Symes (2008). The objective function consists of a combi-

nation of the depth oriented extension of differential semblance optimization (Shen et al.,

2003) with stack-power maximization (Toldi, 1989; Chavent and Jacewitz, 1995; Zhou

et al., 2009). The objective function can be written as

J =
1

2

∥∥∥∥h∂R∂z (x,h)

∥∥∥∥
2

− γ

2

∥∥∥∥∂R∂z (x, 0)

∥∥∥∥
2

=
1

2

∫
dx

∫
dh ĥ

[
∂R
∂z

(x,h)

]2
, (3.7)
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where ĥ = h2 − γδ(h), with δ being the Kronecker delta and γ being a constant weight

that balances the contribution of differential semblance and stack-power to the total value

of the objective function. The spatial derivative operator ∂z attenuates the low vertical

wavenumber components in the RTM image (Guitton et al., 2007). This helps to im-

prove the stability and convergence properties of WEMVA using the two-way wave equa-

tion (Mulder, 2008; Weibull and Arntsen, 2011). We use the vertical derivative operator

for its simplicity and robustness. There are more sophisticated noise-reducing imaging

conditions available, which also attenuate horizontally oriented noise, as well as better

preserves vertical reflectors (Douma et al., 2010; Whitmore and Crawley, 2012).

In addition to quantifying the misfit in the CIGs, we use regularization to constrain the

parameters to a feasible set, and also to prevent excessive roughness in the solution

(Tikhonov and Arsenin, 1977). The regularization is implemented by adding the fol-

lowing term to the objective function

JR =
α1

2

∥∥∥∥∂VP0

∂xi

(x)− ∂V 0
P0

∂xi

(x)

∥∥∥∥
2

+
β1(x)

2

∥∥VP0(x)− V 0
P0(x)

∥∥2

+
α2

2

∥∥∥∥ ∂ε

∂xi

(x)− ∂ε0

∂xi

(x)

∥∥∥∥
2

+
β2(x)

2

∥∥ε(x)− ε0(x)
∥∥2

+
α3

2

∥∥∥∥ ∂δ

∂xi

(x)− ∂δ0

∂xi

(x)

∥∥∥∥
2

+
β3(x)

2

∥∥δ(x)− δ0(x)
∥∥2 , (3.8)

where V 0
P0, ε0, δ0 represent initial values of the target parameters; and αn and βn, with

n = 1, 2, 3 are constant weights, one for each spatially varying parameter.

One limitation of the objective function given by equation 3.7 is that it is strictly valid

under the single scattering assumption. Because multiples and primaries will focus at

different velocities in the CIGs, the presence of multiples will introduce local minima

in the objective function. One of the simplest solutions to this problem is to include

multiple attenuation as a part of the preprocessing of the data used for velocity analysis,

and use absorbing boundary conditions at all sides for the source and receiver wavefield

reconstructions. In case multiple attenuation fails, there are other approaches that might

be useful. Mulder and van Leeuwen (2008) propose to reduce the influence of the low

velocity free-surface multiples by modifying the objective function with an asymmetric

weighting function. Another proposed method consists in modeling and subtracting the

multiples as a part of the velocity analysis (van Leeuwen and Mulder, 2008).

To check the sensitivity of the objective function to the parameters VP0, ε and δ, we

evaluated it in a simple 1D 3-layer model, as shown in Figure 3.1a. In a first stage, we

used this acoustic model to simulate surface seismic data using a split-spread geometry

with maximum offset of 1.4 km. We used a monopole point source, consisting of a Ricker

pulse with dominant frequency of 15 Hz. No free surface was used in the modeling. The

preprocessing of the data was limited to muting the direct wave and wide angle reflections.

The resulting data are shown in Figures 3.1b-c. The data is virtually single scattering and

therefore ideal within the assumptions of the method. Next, we perturbed the magnitude
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of the true parameters in the second layer for different values of VP0, ε and δ, and migrated

the data. In this procedure, only one parameter is perturbed at each time, leaving the other

parameters set at their true value. The tests were conducted two times, one time with

θ fixed to zero degrees, and a second time with θ fixed at 45 degrees. We then used the

resulting images to compute the objective function values for three different combinations

of the misfit functions: For stack-power alone, for differential semblance alone, and for

the combination of stack power and differential semblance.

The results in Figure 3.2 show a comparison of the variation of the values of the different

objective functions for each parameter. Figures 3.2a-c, show the results with θ fixed at

zero degrees, while Figures 3.2d-f show the results with θ fixed at 45 degrees. What this

idealized experiment shows is that the misfit functions are quasi-convex for a wide range

of model perturbations, and may therefore be amenable for gradient based optimization.

Another fact shown is that, in this ideal case, if all but one parameter are known precisely,

the unknown parameter can be uniquely determined. Within the Thomsens’s parameters,

the objective functions are more sensitive to errors in ε, than they are to errors in δ. The

effect of having the wrong θ model is largest for δ, than it is for ε. And because the test

model is isotropic, the sensitivity to the choice of θ is zero for the VP0 tests.

3.3.1 Gradient computation

To minimize the objective function, we use a L-BFGS method (Byrd et al., 1995; Nocedal

and Wright, 2000). This method requires the evaluation of the objective function and its

gradient with respect to the parameters at each iteration or line search step. We compute

the gradient of equation 3.7 using the adjoint state method (Lions and Magenes, 1972;

Chavent and Lemonnier, 1974; Plessix, 2006). This method gives the following equations

for the gradients with respect to VP0(x), ε(x), and δ(x)

∂J
∂VP0

(x) =

∫
ds

∫
dt

∂aijkl
∂VP0

(x)
∂us

l

∂xk

(x, t, s)
∂ũs

i

∂xj

(x, T − t, s)

+

∫
ds

∫
dt

∂aijkl
∂VP0

(x)
∂ur

l

∂xk

(x, T − t, s)
∂ũr

i

∂xj

(x, t, s)

+

∫
ds

∫
dt 2VP0(x)

∂us
i

∂xi

(x, t, s)

∫
dh

∂2R
∂z2

(x+ h,h)W r(x+ 2h, T − t, s)

+

∫
ds

∫
dt 2VP0(x)

∂ur
i

∂xi

(x, T − t, s)

∫
dh

∂2R
∂z2

(x− h,h)W s(x− 2h, t, s), (3.9)

∂J
∂ε

(x) =

∫
ds

∫
dt

∂aijkl
∂ε

(x)
∂us

l

∂xk

(x, t, s)
∂ũs

i

∂xj

(x, T − t, s)

+

∫
ds

∫
dt

∂aijkl
∂ε

(x)
∂ur

l

∂xk

(x, T − t, s)
∂ũr

i

∂xj

(x, t, s) (3.10)
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Figure 3.1: Model and data used to generate the sensitivity plots in Figure 3.2. (a) 1D

Velocity model. (b) Synthetic shotgather modeled using the model in (a). (c) Shotgather

in (b) after mute to remove direct wave and post-critical reflections.
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Figure 3.2: Objective function value computed from migrating the data in Figure 3.1c

using the model in Figure 3.1a modified by perturbations in: (a) VP0; (b) ε; (c) δ; (d), (e),

and (f) are similar to (a), (b), and (c) but with θ set to 45 degrees. DS corresponds to

the differential semblance misfit function, while SP corresponds to stack-power, with c
being a constant added so that the minimum of −SP is equal to the minimum of DS
.
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and,

∂J
∂δ

(x) =

∫
ds

∫
dt

∂aijkl
∂δ

(x)
∂us

l

∂xk

(x, t, s)
∂ũs

i

∂xj

(x, T − t, s)

+

∫
ds

∫
dt

∂aijkl
∂δ

(x)
∂ur

l

∂xk

(x, T − t, s)
∂ũr

i

∂xj

(x, t, s). (3.11)

Note that because we scale the divergence of displacement vector by the density normal-

ized bulk modulus V 2
P0, the gradient with respect to VP0 (equation 3.9) has two additional

terms in the right hand side, when compared to the formula for the other gradients (equa-

tions 3.10 and 3.11).

The adjoint state wavefields ũs
i and ũr

i can be computed by the following adjoint model-

ings
∂2ũs

i

∂t2
(x, t)− ∂

∂xj

[
aijkl(x)

∂ũs
l

∂xk

(x, t)

]
=

∂As

∂xi

(x, T − t, s) (3.12)

and,
∂2ũr

i

∂t2
(x, t)− ∂

∂xj

[
aijkl(x)

∂ũr
l

∂xk

(x, t)

]
=

∂Ar

∂xi

(x, t, s), (3.13)

where As and Ar are given by

As(x, t, s) = V 2
P0(x)

∫
dh ĥ

∂2R
∂z2

(x+ h,h)W r(x+ 2h, T − t, s), (3.14)

and,

Ar(x, t, s) = V 2
P0(x)

∫
dh ĥ

∂2R
∂z2

(x− h,h)W s(x− 2h, t, s). (3.15)

The adjoint sources ∂As

∂xi
, and ∂Ar

∂xi
represent respectively the source and receiver side dis-

placement residuals. These residuals are obtained by taking the kernel of the derivatives

of the objective function with respect to the displacement wavefields us
i , and ur

i . Because

the displacement wavefields us
i , and ur

i are originally shifted by respectively +h and −h,

a shift with opposite sign must be applied to the objective function prior to taking the

respective derivatives. This explains why As have dependencies in x + h, and x + 2h,

and Ar have dependencies in x − h, and x − 2h. For example, in the case of the source

side we have ∫
dx

∫
dh

∂2R
∂z2

(x,h)W s(x− h)W r(x+ h) =

∫
dx

∫
dh

∂2R
∂z2

(x+ h,h)W s(x)W r(x+ 2h). (3.16)

The same argument can be used for the receiver side. Finally, note that equation 3.12 is

to be solved in reverse-time, while equation 3.13 is to be solved forward in time.

If regularization is applied, the gradients of equation 3.7 with respect to the velocity pa-

rameters must be augmented with the gradients of equation 3.8, which are given by

∂JR

∂VP0

(x) = β1(x)
(
VP0(x)− V 0

P0(x)
)− α1

(
∂2VP0

∂x2
i

(x)− ∂2V 0
P0

∂x2
i

(x)

)
, (3.17)
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∂JR

∂ε
(x) = β2(x)

(
ε(x)− ε0(x)

)− α2

(
∂2ε

∂x2
i

(x)− ∂2ε0

∂x2
i

(x)

)
, (3.18)

∂JR

∂δ
(x) = β3(x)

(
δ(x)− δ0(x)

)− α3

(
∂2δ

∂x2
i

(x)− ∂2δ0

∂x2
i

(x)

)
. (3.19)

3.3.2 Velocity preconditioning

To speed up convergence, and to restrict the space of possible solutions, we precondition

the velocity parameters using bi-cubic B-splines (Dierckx, 1993)

VP0(x) =
∑
m

bm1Bm1(x) + V 0
P0(x), (3.20)

ε(x) =
∑
m

bm2Bm2(x) + ε0(x), (3.21)

δ(x) =
∑
m

bm3Bm3(x) + δ0(x), (3.22)

where, Bmn are cubic splines defined at predetermined points m = (mx,mz) in a spline

grid and bmn are coefficients to be determined by the velocity analysis. The spacing of

the spline grid controls the sparseness of the solution and can be chosen differently for

VP0, ε and δ, hence the n = 1, 2, 3 index. We only use B-splines to represent the velocity

updates. This avoids having to fit the initial model to a B-spline basis, which would

otherwise result in unnecessary smoothing.

The B-spline representation is attractive because it allows for local velocity variations,

while, at the same time, ensures continuous second order spatial derivatives. These prop-

erties help to obtain a numerically stable and well-posed velocity analysis algorithm.

In practice, we compute the gradients in Cartesian coordinates and subsequently trans-

form them to the spline basis

∂Jm1

∂bm1

=

∫
dx Bm1(x)

∂J
∂VP0

(x), (3.23)

∂Jm2

∂bm2

=

∫
dx Bm2(x)

∂J
∂ε

(x), (3.24)

∂Jm3

∂bm3

=

∫
dx Bm3(x)

∂J
∂δ

(x). (3.25)

3.3.3 Diagonal scaling

One problem associated with the estimation of more than one parameter at the same time

is that the magnitudes of the gradients with respect to the different parameters can be
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very different. The different sensitivities are normally compensated for in a full-Newton

optimization method, through the scaling given by the inverse Hessian matrix (Nocedal

and Wright, 2000). However, for quasi-Newton methods this is not the case. The poor

relative scaling causes the optimization to be dominated by the parameters with the largest

gradient magnitudes. To mitigate this problem, we apply the so-called diagonal scaling

(Nocedal and Wright, 2000), where the optimization variables are related to the bi-cubic

spline coefficients by a linear coordinate transformation

b′mn =
bmn

kn
. (3.26)

By proper choice of the constants kn for each spline coefficient array bmn, we can rescale

the gradients, since
∂Jmn

∂b′mn

= kn
∂Jmn

∂bmn

. (3.27)

This helps to equalize the contribution of each parameter to the descent direction and

hence simultaneous estimation of all parameters. One drawback of this approach, com-

pared to a full-Newton method, is that the chosen scaling must be fixed at the beginning

of the optimization, and can only be changed by restarting the optimization as a steepest

descent.

3.3.4 Numerical optimization

The organization of the numerical optimization scheme in our 2D TTI WEMVA imple-

mentation is shown in Figure 3.3. In a first stage the L-BFGS algorithm is fed with an

initial model (as shown in the left side of Figure 3.3), which corresponds to the initial

diagonally scaled B-spline coefficient b′ initmn . These are typically zero, since we are not

fitting the initial models to B-Spline coefficients, and the initial updates are zero. At each

iteration or line search step, the objective function and gradient need to be evaluated. The

modeling variables VP0, ε and δ necessary for the migration and gradient computation are

obtained from the optimization variables b′mn, through a two stage process, as shown in

the left of Figure 3.3. First the diagonal scaling is removed by solving equation 3.26 for

the B-spline coefficients bmn. Then equations 3.20 through 3.22 are used to evaluate the

B-splines. A step by step procedure for computing the objective function and gradient

can be described as:

1. Construct R and evaluate the objective function, and in this procedure store the

displacements us
i and ur

i for each shot.

2. Perform separately the two adjoint modelings for each shot, according to equa-

tions 3.12 and 3.13 to compute, respectively, the adjoint states ũs
i and ũr

i , and at

each time step use equations 3.9, 3.10, and 3.11 to build the gradients.

3. Stack each gradient over all shots to obtain the full gradient.
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Figure 3.3: Organization of the 2D TTI WEMVA algorithm: Beval and Bproj correspond

to respectively B-Spline evaluation and projection; S and S−1 refer to respectively the

forward and inverse diagonal scaling; b′ initmn Âăare the initial diagonally scaled B-spline

coefficients, while b′ optmn are the optimized diagonally scaled B-spline coefficients.
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The computed objective function J must be augmented by the regularization term JR, as

shown in the center of Figure 3.3. While the gradients of J with respect to the parameters

VP0, ε and δ are augmented with the respective regularization gradients, as shown in the

right side of Figure 3.3. Finally, these gradients are projected into a B-spline basis using

equations 3.23 through 3.25, and diagonally scaled using equation 3.27.

The loop is repeated until some convergence criteria is met, or a predetermined number

of iterations have been run. At which point, the optimized parameters b′ optmn are outputted,

as shown in the right of Figure 3.3

3.4 Synthetic 2D example

The first example of TTI WEMVA is based on the synthetic velocity model shown in Fig-

ure 3.4. The model is a 2D synthetic cross section of a North sea offshore reservoir. The

anisotropic model simulates a 2D TTI medium. This model was used to generate syn-

thetic seismic data using a finite difference solution to the elastic wave equation (Lisitsa

and Vishnevskiy, 2010). The geometry of the data consists of a line with minimum offset

of 0.15 km and maximum offset of 5 km. Absorbing boundary conditions were used to

ensure that the data is free from surface related multiples. However, interbed multiples

and converted waves are still present in the data.

In this example, as in the next example, we simultaneously estimate VP0, ε and δ. All

parameters are optimized over bi-cubic B-spline grids with 0.8 km spacing in the lateral

direction and 0.2 km in the vertical direction. We assume an initial θ model and keep it

constant over the course of the minimization. In this case, we use the true θ model, shown

in Figure 3.4d.

Regularization consisted in constraining the anisotropic parameters ε and δ to be zero at

the water layer and positive in the sediments. The constant α1, controlling the derivative

regularization of the VP0 model, was set so that the value of the regularization was 1% of

the total initial objective function value, while α2 and α3 were set to values 10000 times

larger than that of α1. A taper is applied to mute the gradient in the water layer, simulating

a situation where the velocity of the water is known. The maximum frequency of the data

was filtered down to 30 Hz, so that a coarse grid of 0.02 by 0.02 km could be used for

modeling and migration.

The starting point for the velocity analysis is an isotropic 1D velocity model, shown in

Figure 3.5a. The model is constructed from a single smoothed trace of the true velocity

model. The result of optimization on the parameters after 27 iterations are shown in Figure

3.5b-d. From this figure, we can see that the updated VP0 model is able to partially capture

the main background features of the true VP0 model. On the other hand, the estimated

anisotropic parameters show a strong imprint of the P-wave velocity, and a general lack

of structure. This reveals a strong dependency between the different parameters, which

in this case appears to be a major contributor to the non-uniqueness of the result. Of all
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Figure 3.4: 2D TTI synthetic model of a North sea reservoir. (a) VP0. (b) ε. (c) δ. (d) θ.
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parameters estimated, δ seems to be the most poorly constrained. We note that there is a

tendency for δ to be overestimated in the shallow parts of the model and underestimated

in the deeper parts of the model. The reason for this behavior is twofold. The first reason

is the poor separation between the effects of VP0 and δ on the kinematics of the image.

The second reason is related to the poor scaling of the optimization, which causes the

objective function to be dominated by the sensitivity to δ in the shallow parts of the image

and by VP0 in the deeper parts. This means that in the shallow parts of the model, δ is

mainly compensating for the kinematic errors introduced by an underestimated VP0, and

vice-versa for the deeper parts of the model.
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Figure 3.5: Initial and updated models used for the 2D synthetic data example. (a) Initial

VP0 model. (b) Updated VP0 model after 27 iterations. (c) Updated ε model after 27

iterations. (c) Updated δ model after 27 iterations. The θ model used in this example is

shown in Figure 3.4d

Figure 3.6 shows a comparison of the RTM images produced with the initial 1D, WEMVA,

and true model parameters. The initial image has large mispositionings and is poorly fo-

cused due to the inaccurate initial background velocities. These issues are partially fixed

in the optimized migrated image, which is better focused. But there are some mispo-
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sitionings (up to more than 0.05 km) in the optimized image, in particular below 3 km

depth. To help better compare the spatial positioning of the reflectors in the images, we

have drawn three arrows in fixed positions in the images.

A selection of subsurface offset CIGs constructed using the initial model, the optimized

model and the true model are shown in Figures 3.7a-c. The figure shows that the energy

in the updated CIGs are now better focused at the zero lag, when compared to the initial

CIGs. A comparison of the true model CIGs with the updated CIGs reveals that the

updated CIGs are slightly mispositioned (>50 m) in depth. The fact that both the updated

and true models can produce CIGs that are focused at zero lag, yet at different positions

in space, reveals one source of non-uniqueness. This seems to repeat the generally known

fact that, in presence of anisotropy, focusing of prestack depth migrated images does not

guarantee a unique positioning of the subsurface reflectors.

Now we repeat the velocity analysis using the same parameters as before, but this time

we use a fixed VP0 model obtained by smoothing the true model. The VP0 model is shown

in Figure 3.8a, while the results of velocity analysis for ε, and δ are shown respectively

in Figures 3.8a and 3.8b. The results show that by adding additional information, in this

case VP0, we can obtain better estimates of the anisotropic parameters.

3.5 Field 2D example

In the next example, we apply the method on a real data set taken off the North Sea,

offshore Norway. The data is originally a 3D marine data set, from which we extracted a

2D line. The geometry of the data consists of a line with minimum offset of 0.15 km and

maximum offset of 5 km. The data processing included multiple attenuation, and muting

of direct wave, wide-angle reflections and refractions. The maximum frequency of the

data was filtered down to 30 Hz, so that a coarse grid of 0.02 by 0.02 km could be used

for modeling and migration.

The initial model for the optimization is shown in Figure 3.9a. It consists in an isotropic

1D model created by smoothing a well log of the vertical slowness. Here, we numerically

estimate θ from the initial image, and keep it constant during optimization. We try to

approximate an STI model of the subsurface, where the symmetry axis is perpendicular to

the dip of the beddings. To estimate the tilt angle, we first estimate the smallest positive

angle between the spatial gradient of the image and an unitary positive vertical vector.

This can be done using the equation

φ(x) = cos−1

⎡
⎢⎣

∣∣∂R
∂z
(x, 0)

∣∣(
∂R
∂x

2
(x, 0) + ∂R

∂z

2
(x, 0)

)1/2

⎤
⎥⎦ . (3.28)
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Figure 3.6: Images constructed using: (a) Initial model; (b) Optimized model; (c) True

model. Arrows are drawn to help visualize the changes in the spatial positioning of the

reflectors.

67



a)

D
ep

th
 (k

m
)

CIG position (km)
4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

b)

D
ep

th
 (k

m
)

CIG position (km)
4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

c)

D
ep

th
 (k

m
)

CIG position (km)
4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

Figure 3.7: CIGs constructed using: (a) Initial model; (b) Optimized model; (c) True

model. The black dotted lines mark the position of the zero subsurface offset. The offsets

range between -0.5 and 0.5 km.
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Figure 3.8: Results of 2D TTI WEMVA with a fixed VP0 model obtained by smoothing

the true model. (a) Smoothed VP0. (b) ε. (c) δ.
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To find the sign of the angle, we use the following convention

θ(x) =

⎧⎨
⎩

−φ(x) if ∂R
∂x

(x, 0) ≤ 0,

φ(x) if ∂R
∂x

(x, 0) > 0.
(3.29)

To avoid excessive roughness in the estimate of θ, we low-pass filter the image gradient

before computing φ, and subsequently low-pass filter θ. The estimated tilt angles are

shown in Figure 3.9b. We can see that the estimated angles partially capture the general

background trend of the structure in the image. However, some artifacts are apparent,

which make the estimate look non-geological. These appear, in particular, at areas where

there is a lack of reflectivity, or due to the smearing caused by the smoothing. Since

these artifacts are of small angle magnitude (|θ| <5 degrees), we deem they should have

a minor or negligible effect on wave propagation.

As in the previous example, the parameters are optimized over a bi-cubic B-spline grid

with 0.8 km spacing in the lateral direction and 0.2 km in the vertical direction. Regular-

ization followed the same guidelines as in the previous example.

The resultant estimated parameters after 47 iterations of 2D TTI WEMVA are shown

in Figures 3.10. The estimated VP0 model reveal a, nearly 1D, plane-layered overburden

down to 2 km. Below 2 km, as expected due to the normal faulted structures, the optimized

VP0, ε and δ models show more lateral variation.

The migrated images computed with the initial and updated models are shown in Fig-

ure 3.11, while Figure 3.12 shows a comparison on selected CIGs. We can see that op-

timization locally improves the focusing of the RTM image. These improvements are

marked by arrows in Figure 3.11. Also, the energy in the updated CIGs is more focused

at zero offset, as can be see in Figure 3.12. However, as in the synthetic data example,

there is some uncertainty about the positioning of the reflectors in the final image.

3.6 Discussion

Prestack depth migration of P-wave surface seismic data in 2D TTI media using a density

normalized elastic wave equation requires an estimate of the P-wave velocity along the

symmetry axis VP0, the S-wave velocity along the symmetry axis VS0, Thomsen’s param-

eters ε, and δ, and the tilt θ of the symmetry axis with respect to the vertical. To reduce the

number of parameters we need to estimate, we assume that the kinematics of P-waves are

independent of the choice of VS0, and that θ is structurally conforming. Which reduces

the velocity estimation problem to three parameters: VP0, ε, and δ. Here we use 2D TTI

WEMVA to simultaneously estimate these three parameters from surface seimic data. The

results show that the method is able to improve the focusing of the depth migrated image.

However, the synthetic data example clearly show that a unique set of anisotropic param-

eters is not constrained by the method. There are several contributors to this issue. One
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Figure 3.9: Initial models used for the 2D field data example. (a) Initial VP0 model. (b) θ
model overlaid by the initial image. The tilt angles in (b) are estimated from the reflector

dips of the initial image.
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Figure 3.10: Optimized models after 47 iterations of 2D TTI WEMVA. (a) VP0. (b) ε. (c)

δ.
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Figure 3.11: Images constructed using: (a) Initial model; (b) Optimized model. Arrows

are drawn at fixed positions in the images to mark changes in the spatial positioning and

focusing.
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Figure 3.12: CIGs constructed using: (a) Initial model; (b) Optimized model. The black

dotted lines mark the position of the zero subsurface offset. The offsets range between

-0.5 and 0.5 km.
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of them is that, over a transverse isotropic medium, focusing of the prestack depth images

does not constrain a unique spatial positioning of the reflectors in a depth migrated image

(Isaac and Lawton, 1999; Bakulin et al., 2010). Another reason is the existence of a strong

interdependency between the parameters VP0, ε, and δ (Alkhalifah and Tsvankin, 1995;

Jones et al., 2003). In fact, Alkhalifah et al. (2001) shows that, under certain conditions,

at most two parameters can be recovered from P-wave seismic reflection data. Therefore,

if the goal is to obtain a geological model of the subsurface from surface seismic data, a

combination of different methods, and additional information, such as well data, must be

used to constrain the updated models to a narrower space of possible solutions (Alkhalifah

and Tsvankin, 1995; Alkhalifah et al., 2001; Bakulin et al., 2010; Yan et al., 2004).

The choice of parameterization can be important for the results of velocity analysis, be-

cause it changes the scaling of the optimization problem (Nocedal and Wright, 2000).

Here we use WEMVA to estimate VP0, ε, and δ. In order to estimate more than one

parameter simultaneously using a L-BFGS optimization algorithm, we apply diagonal

scaling. The idea is to approximately equalize the sensitivity of the objective function to

the different parameters. This procedure can be avoided if the parameters have the same

units and vary approximately over the same ranges. It is thus possible that the parameter-

ization given by VP0, Vh = VP0

√
1 + 2ε, and Vn = VP0

√
1 + 2δ, which was suggested by

Alkhalifah and Tsvankin (1995), provides a better scaling for the problem. Although we

develop the method using VP0, ε and δ, it is trivial to change the parameterization to VP0,

Vh, and Vn, by substitution of the quantities on the density normalized stiffness tensor.

The main difference between isotropic and anisotropic WEMVA is in the reconstruction of

the source and receiver wavefields. Here, we use a density normalized elastic wave equa-

tion to model the source and receiver displacement wavefields over 2D TTI media. And

then extract quasi-P wavefields by taking the divergence of the displacements scaled by

the density normalized bulk modulus. These wavefields are input to an extended crosscor-

relation imaging condition to create PP CIGs of the subsurface. However, the elastic wave

equation also naturally models S-waves. This opens for the possibility to apply WEMVA

to multicomponent data. Instead of taking the divergence of the displacements, we could

also extract scalar wavefields based on the curl of the displacement, which would allow

us to create PS, and SS images of the subsurface. The 2D TTI WEMVA algorithm we

present can be extended to use all these images, allowing to simultaneously estimate VP0,

and VS0, as well as to improve the accuracy in the estimation of the anisotropic parameters

ε and δ (Tsvankin and Thomsen, 1995; Grechka et al., 2002).

The WEMVA method we present is restricted to single scattering reflection data. This is

a limitation shared by all methods based on the image domain, and prevents us from us-

ing valuable information contained in refractions, and multiple reflections. Data domain

methods based on full-waveform inversion (FWI) can, in theory, use all information con-

tained in the data (Tarantola, 1984; Virieux and Operto, 2009; Plessix and Rynja, 2010).

On the other hand, for FWI to converge to the solution it requires either the presence of

useful signal at very low frequencies (<4Hz), or an initial model that is kinematicaly close

to the solution (Virieux and Operto, 2009). Combining FWI and WEMVA is non-trivial,
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since in practice the two methods have very different restrictions when it comes to the

input data and initial models. However, one possible strategy is to simply use WEMVA to

create initial models that are kinematically close enough to the solution, and then further

refine them using FWI.

3.7 Conclusion

We present a WEMVA method based on anisotropic 2D TTI RTM. To reconstruct the

wavefields needed for the imaging condition, we use a density normalized elastic wave

equation. The WEMVA method can be used to simultaneously estimate the parameters

VP0, ε, and δ from surface seismic reflection data, using an objective function consisting

of a combination of depth oriented differential semblance and stack-power maximization.

In this procedure, the tilt of the symmetry axis with respect to the vertical is assumed to

conform to the initial reflectivity geometry and not updated, and the S-wave velocities are

heuristically chosen and also kept constant.

The method is tested on both synthetic and field data. The tests show that the method

is well-posed and converges to a model which produces well focused images. On the

other hand, the results also show that 2D TTI WEMVA of surface seismic data alone is

not sufficient to constrain a unique anisotropic model of the subsurface. This means that

to obtain a correct positioning of the reflectors in the subsurface, the method must be

complemented with additional information.

Since we employ the elastic wave equation for wavefield reconstruction, the method can

be easily generalized to any anisotropic medium. Furthermore, the quantities in the stiff-

ness tensor can easily be transformed to honor other parameterizations than the one used

in this paper.
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3.9 Appendix A: 2D elastic TTI medium

We consider the following system describing 2D elastic wave propagation

∂tux = ∂xτxx + ∂zτxz, (3.30)

∂tuz = ∂xτxz + ∂zτzz, (3.31)

⎛
⎝ ∂tτxx

∂tτzz
∂tτxz

⎞
⎠ =

⎛
⎝ a11 a13 a15

a13 a33 a35
a15 a35 a55

⎞
⎠
⎛
⎝ ∂xux

∂zuz

∂xuz + ∂zux

⎞
⎠+

⎛
⎝ Sxx

Szz

Sxz

⎞
⎠ , (3.32)

where ∂t =
∂
∂t

,∂x = ∂
∂x

, and ∂z
∂
∂z

; ui is the particle displacement vector, τij Âăis a stress

tensor, Sij is an external source tensor; A = (aij) is the matrix of density normalized

elastic coefficients. This matrix is obtained from the fourth order tensor aijkl using the

Voight notation: xx → 1, zz → 3, xz → 5 (Winterstein, 1990).

In a 2D TTI medium, A is given by the following elastic coefficients

a11 = a′11 cos
4 θ + a′33 sin

4 θ + 2(a′13 + 2a′55) sin
2 θ cos2 θ, (3.33)

a13 = (a′11 + a′33 − 4a′55) sin
2 θ cos2 θ + a′13(sin

4 θ + cos4 θ), (3.34)

a15 = (a′13 − a′11 + 2a′55) sin θ cos
3 θ,

+(a′33 − a′13 − 2a′55) sin
3 θ cos θ, (3.35)

a33 = a′11 sin
4 θ + a′33 cos

4 θ + 2(a′13 + 2a′55) sin
2 θ cos2 θ, (3.36)

a35 = (a′13 + 2a′55 − a′11) sin
3 θ cos θ,

+(a′33 − a′13 − 2a′55) sin θ cos
3 θ, (3.37)

a55 = (a′11 + a′33 − 2a′13 − 2a′55) sin
2 θ cos2 θ + a′55(sin

4 θ + cos4 θ), (3.38)

where θ is the tilt angle of the symmetry axis with respect to the vertical, and A′ = (a′ij)
are quantities given by

a′11 = V 2
P0(1 + 2ε), (3.39)

a′13 =
[
2δV 2

P0

(
V 2
P0 − V 2

S0

)
+
(
V 2
P0 − V 2

S0

)2]1/2 − V 2
S0, (3.40)

a′33 = V 2
P0, (3.41)

a′55 = V 2
S0, (3.42)

where VP0 is the P-wave velocity along the symmetry axis, VS0 is the S-wave velocity

along the symmetry axis, and ε and δ are Thomsen’s anisotropic parameters.
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Chapter 4

Reverse-time demigration using the
extended imaging condition

Wiktor Weibull and Børge Arntsen
Norwegian University of Science and Technology, Trondheim, Norway

Abstract

The forward and inverse process of seismic migration and demigration or remodeling has

many useful applications in seismic data processing. We present a method to re-obtain

the seismic reflection data after migration, by inverting the common image point gathers

produced by reverse-time migration with an extended imaging condition. This allows to

convert the results of seismic data processing in the stacked image domain back to the

prestack reflection data domain. To be able to reconstruct the data with high fidelity,

we set up demigration as a least squares inverse problem, and solve it iteratively using a

steepest descent method. Because we use an extended imaging condition, the method is

not dependent on an accurate estimate of the migration velocity field, and is able to accu-

rately reconstruct both primaries and multiples. At the same time, because the method is

based on reverse-time migration it can accurately handle seismic reflection data acquired

over complex geological media. Numerical results show the feasibility of the method, and

highlight some of its applications on 2D synthetic and field data sets.

Scheduled for presentation at the 82nd SEG Annual International Meeting in September
2013. Paper submitted to Geophysics 2013.
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4.1 Introduction

The motivation behind this work was to obtain a method to reconstruct seismic reflection

data from common image point gathers (CIGs) constructed with reverse-time migration

(RTM). The method should work without the need for an accurate velocity model, and

the reconstructed data should have an acceptably small error in amplitude and phase. This

would ultimately allow us to process data in the migrated domain, which can be an advan-

tage in many situations, such as velocity analysis, illumination studies, data interpolation

and multiple attenuation.

Demigration methods have a long history in seismic data processing. Loewenthal et al.

(1976) introduced the concept of exploding reflector model, showing how to obtain zero-

offset seismic data from a migrated stack using a background velocity model and wave

theoretical methods. The Kirchhoff integral and the high frequency approximation have

also been used for reconstruction of seismic data form migrated images (Jaramillo and

Bleistein, 1999; Santos et al., 2000; Miranda, 2006). More recently, RTM has been used

to recreate data from seismic images with the purpose of velocity analysis (Chauris and

Benjemaa, 2010), and multiple attenuation (Zhang and Duan, 2012).

In their work, Chauris and Benjemaa (2010) uses the concept of the extended imaging

condition (Sava and Vasconcelos, 2011) in a migration/demigration scheme. The ad-

vantage of the extended imaging condition over the classical cross-correlation imaging

condititon (Claerbout, 1971), is that it preserves the phase and angle dependent ampli-

tude information of the data in the migrated image, even in the case of migration with an

inaccurate velocity model. Here we explore this fact and use extended images to set up

demigration as an inverse problem. We try to reconstruct the prestack seismic reflection

data from the migrated image by minimizing a least-squares function. And we solve the

problem iteratively using a steepest descent method.

Results from 2D field and synthetic numerical examples show that phase information can

be recovered after only one iteration, whereas the amplitude information can require many

steepest descent iterations.

4.2 The method

The main purpose of the method is to be able to reconstruct seismic data from CIGs con-

structed using RTM with an extended imaging condition (Sava and Vasconcelos, 2011).

In the extended imaging condition, instead to Claerbout (1971) classical cross-correlation

of the source and receiver wavefields at the imaging point, CIGs are constructed by cross-

correlating the source and receiver wavefields at symmetric lags around the imaging point.

These cross-correlation lags can be either spatial (Rickett and Sava, 2002) or temporal lags

(Sava and Fomel, 2006). The important point is that, different from the classical imaging

condition, the extended imaging condition preserves the kinematic and angle dependent
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information of the data in the image, even in the case of migration with an inaccurate

velocity model. We now show how we can use the extended imaging condition to set up

a demigration method. We demonstrate the method using a time domain implementation

of RTM with a space-lag cross-correlation imaging condition (Rickett and Sava, 2002)

R(x,h) =

∫
ds

∫
dt Ws(x− h, t, s)

∫
dx′

∫
dt′ G(x+ h, t;x′, t′)P (x′, t′, s), (4.1)

where R0 are CIGs (extended image), x = (x, y, z) are the spatial coordinates, h =
(hx, hy, hz) are spatial lags, t is the time, s is the source index, Ws are source wavefields,

G is the acoustic Green’s function, P 0(x′, t′, s) are common shot gathers.

The source wavefields are given by

Ws(x, t, s) =

∫
dx′

∫
dt′ G(x, t;x′, t′)S(x′, t′, s), (4.2)

where S are source functions.

Assume now that we have the CIGs (R0), and we would like to obtain the data (P 0), that

is, we are interested in the inverse procedure of equation 4.1. One approach is to apply

the adjoint of migration, which, for the extended imaging condition, can be written as

(Weibull and Arntsen, 2013)

P (x, t′, s) =
∫

dx′
∫

dt′ G(x, t;x′, t′)
∫

dh
∂2R0

∂z2
(x′ − h,h)Ws(x

′ − 2h, t′, s). (4.3)

This equation has been successfully used by Weibull and Arntsen (2013) to reconstruct

seismic data from muted CIGs. A similar equation has been used by Chauris and Benje-

maa (2010) for velocity analysis. One problem with this modeling equation is that, even

if it properly recreates the kinematics, it gives the wrong amplitudes for the data. Another

approach, and the one that is proposed by this paper, is to cast the problem as a least

squares inversion of the following objective function

J =
1

2

∫
dx

∫
dh

[
∂R0

∂z
(x,h)− ∂R

∂z
(x,h)

]2
. (4.4)

Here R0 are CIGs to be demigrated, and R are forward mapped CIGs. The forward

mapped CIGs are computed according to equation 4.1, but with unknown shot gathers

P (x′, t′, s). Note that R is migrated using the same source wavefields Ws as R0. The

vertical spatial derivatives in equation 4.4 are used to remove well known artifacts from

RTM images (Guitton et al., 2007).

By minimizing this objective function, we seek to find the data that, when migrated,

will approximate the image ∂R0

∂z
in a least squares sense. In principle, because of the

linear relationship between the data and the receiver wavefields, the problem is linear

and its solution can be sought explicitly. However, here we choose to solve the proposed
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least squares problem using a steepest descent method (Nocedal and Wright, 2000). This

means that the demigrated shot gathers are updated iteratively according to

Pi+1(x, t, s) = Pi(x, t, s)− αi
∂J
∂Pi

(x, t, s), (4.5)

where i ∈ (1, ..., N) is the iteration index, αi is a positive step length, and ∂J
∂Pi

is given by

∂J
∂Pi

(x, t, s) =

∫
dx′

∫
dt′ G(x, t;x′, t′)

∫
dh

∂2ΔRi

∂z2
(x′ − h,h)Ws(x

′ − 2h, t′, s),

(4.6)

with the image residual ΔRi being given by

ΔRi(x,h) = R0(x,h)−
∫

ds

∫
dtWs(x−h, t, s)

∫
dx′

∫
dt′ G(x+h, t;x′, t′)Pi(x

′, t′, s).

(4.7)

4.3 Numerical examples

We illustrate the method with some 2D seismic examples. The two first examples are

based on the Marmousi model (Versteeg, 1993), which has become a benchmark model

for complex geology. This model, shown in Figure 4.1, is used to generate seismic data

using a finite difference modeling code (Virieux, 1986). We use a monopole point source

and Ricker wavelet with dominant frequency of 20 Hz. The source spacing, and the

receiver spacing are both 25 m. The shot gathers have a minimum offset of 0 km and a

maximum offset of 5 km.

In the last example, we explore the application of demigration to field data. The data

consist of a 2D marine seismic line acquired over the Norwegian North Sea. There are

460 shot gathers, each with a minimum offset of 75 m and a maximum offset of 1250

m. The source spacing, and the receiver spacing are both 12.5 meters. The dominant

frequency of the data is ≈ 30 Hz, and the maximum frequency is ≈ 80 Hz.

4.3.1 Example 1

In the first example, we show the ability of the method to reconstruct the seismic prestack

data from stacked migrated CIGs. In this procedure, the CIGs that are input for demigra-

tion, are the CIGs that are output from RTM with the original data, without any modifica-

tion. The data that is output from demigration is then compared to the original data after

1, and after many iterations. The migration velocity model is shown in Figure 4.2. The

migrated stacked image (zero lag) and a collection of CIGs are shown in Figure 4.3. The

demigration is carried out without knowledge of the original data, except for its geometry.

In other words, the initial shot gathers are a collection of zeroed traces.
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Figure 4.1: Marmousi acoustic model. a) Velocity model. b) Density model.
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Figure 4.2: Migration velocity model for the Marmousi data set.

Figure 4.4 shows a comparison of a particular shot gather at source position 7.83 km of

the original data with the result of demigration of the CIGs after one iteration, and after 5

iterations of demigration. In this comparison, the reconstructed shot gathers were scaled

by an optimal scalar constant. This constant was found by minimizing the least squares

difference of the amplitudes between the reconstructed shot gathers and the original shot

gathers.

Figure 4.5 shows a comparison of traces from the original data, and from the demigrated

data after 1 iteration, and after 5 iterations of demigration. The results show that the

kinematics of the data are reconstructed already after one iteration. And after 5 iterations,

the data amplitudes are getting closer to the ones in the original data, as can be seen in

the comparison of the time traces (Figures 4.5a-c), as well as in the comparison of the

amplitude spectra (Figure 4.5d).

4.3.2 Example 2

In the second example, we explore the application of demigration to interpolation of data.

In this application, the Marmousi data of the previous example are decimated by only

taking every 8th receiver. The resulting receiver interval of 200 m introduce severe dip

aliasing in the seismic data recording. Migration using the decimated data results in CIGs

such as the one shown in Figure 4.6a. The energy in the CIG that is outside the black

dotted lines represents the migrated aliased events. This can clearly be concluded after

comparing this CIG with the ones in Figure 4.3b, which were migrated with the original

non-decimated geometry. Trying to reconstruct the data with the aliased energy in the
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Figure 4.3: Marmousi migrated a) zero-lag image, and b) CIGs at several selected spatial

positions.
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Figure 4.4: Marmousi shot gathers a) original, b) reconstructed after 1 iteration of demi-

gration, c) reconstructed after 5 iterations of demigration.
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Figure 4.5: Comparison of traces of the Marmousi shot gather at source position 7.83

km a) at zero offset, b) at 1.65 km offset, c) at 3 km offset; d) Comparison of amplitude

spectra averaged over all traces of the shot gather.
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Figure 4.6: CIG at position 6.325 km a) before mute, b) after mute to remove aliased

events. The black dotted lines in a) mark the position of the picked mute.

CIGs will, in principle, reconstruct the aliased events in the data. However, we want to

reconstruct the data without aliasing. To achieve that we mute the aliased energy from the

CIGs (Figure 4.6b).

After mute, we demigrate the muted CIGs, acquiring the data at the original receiver

geometry. A comparison between the original shot gather, the decimated shot gather, and

the reconstructed shot gather is shown in Figure 4.7.

Results show that demigration successfully reconstructs the kinematics of the original shot

gather. Due to the smaller fold of the stack of the image constructed with the decimated

data, the amplitudes of the reconstructed data will tend to converge to different values

from those of the original data (about 8 times smaller in this case). Also, this procedure

depends on having a migration velocity model that will focus the energy within the non-

aliased part of the CIGs, that is, inside the black dotted lines indicated in Figure 4.6a.

Otherwise, vital parts of the data may be muted together with the aliased energy. Despite

these limitations, this type of reconstruction can find useful application in interpolating
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Figure 4.7: Shot gathers a) original, b) decimated, c) reconstructed shot gather after 5

iterations of demigration.
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Figure 4.8: Migration velocity model for North Sea field data set.

irregularly sampled aliased data, where most classical methods fail (Zwartjes and Sacchi,

2007).

It is also possible to use this procedure to interpolate across shot gathers. This can be

achieved in exactly the same way as above, but by using reciprocity (Ikelle and Amund-

sen, 2005), and demigrating common receiver gathers, instead of common shot gathers.

4.3.3 Example 3

We now present an application of the demigration method to free surface multiple atten-

uation.

The migration velocity model is shown in Figure 4.8. The migrated stacked image and

CIGs are shown in Figure 4.9. The data used is the same as in the first example. To

remove the multiples we explore a particular characteristic of the behavior of multiples

in images migrated using the spatial lag extended cross-correlation imaging condition. In

these CIGs, free surface multiples and primaries can be separated by noting that events

requiring faster and slower velocities to focus are shifted in opposite directions relative to

the zero lag. This behavior has been first pointed out by Mulder and van Leeuwen (2008),

and later explored by Weibull and Arntsen (2013) to attenuate multiples before automatic

velocity analysis. The demultiple procedure consists in muting the multiple events in the

CIGs and reconstructing the data using the demigration method presented in this paper.

Figure 4.10 shows one particular CIG at position 4 km before and after muting the free

surface multiple events. The black dotted line mark the position of the zero horizontal lag.
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Figure 4.9: North Sea field data migrated a) zero lag image, and b) CIGs at selected spatial

positions.
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Note that the events to right of the black dotted lines represent events that require lower

velocity to focus. These events are interpreted as multiples, and are therefore muted. In

addition to muting the free surface multiple events, we also muted one particular event

ocurring at a depth of about 800 m (Figure 4.10). The purpose is to show the ability of the

method to remove events from the data by muting them in the extended image domain.
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Figure 4.10: North Sea field data CIG at position 4 km a) original, b) after mute to remove

free surface multiples.

We run the demigration for 50 iterations, using the original multiple-rich shot gathers as

a starting point for the inversion. Figure 4.11a shows the original shot gather which was

used to generate the CIGs, and also as a starting point for the inversion. Figure 4.11b

shows the result of demigration on a particular shot gather at position 5.5 km. Finally,

Figure 4.11c shows the difference between the original and demigrated shot gathers. As

can be clearly seen, the events that have been muted in the CIGs, are attenuated in the

demigrated shot gather. This includes the free surface multiple events, typically charac-

terized by steep moveouts, and one particular primary event.
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Figure 4.11: North Sea field data shot gathers at position 5.5 km a) original, b) after 50

iterations of demigration of the muted CIGs, c) difference between shot gathers a) and b).
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4.4 Conclusion

We presented a method to reconstruct seismic reflection data from stacked CIGs con-

structed through RTM with an extended imaging condition. The method is based on least

squares inversion, and is solved iteratively using a steepest descent approach. The numer-

ical examples show that the extended imaging condition allows kinematic reconstruction

of the prestack seismic reflection data after only one iteration, although many iterations

are required to recover the correct amplitudes. The presented method has many interest-

ing applications, such as image-based demultiple and data interpolation. And becuase

the method is based on RTM, it can be applied to process data acquired over complex

geological media.
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Chapter 5

Concluding remarks

In this doctoral work I took a step in the direction of improving seismic imaging over

complex geology. Seismic imaging over complex geological media is a challenging pro-

cess. The strong and sharp contrasts, as well as the elastic nature of the sediments within

the earth need to be honored by both the migration, and by the velocity estimation meth-

ods. With the purpose of imaging complex media, I developed and implemented three

automatic parameter estimation methods based on non-linear least squares inversion in

the image-domain. The main accomplishments and limitations of these methods are sum-

marized below.

In Chapter 2, I extend WEMVA to deal with complex geological media by incorporating

reverse-time migration and robust demultiple of surface seismic data. I introduce a ver-

tical derivative operator to act over the reverse-time migrated image. This improves the

convergence properties of the velocity analysis in areas of strong and sharp contrasts. The

method is fully automatic and requires no picking. However, due to the very high compu-

tational cost, the implementation is restricted to 2D. 3D implementation is left as future

work. The synthetic results show that the implemented WEMVA can recover accurate

background subsurface models with large perturbations using both depth-oriented sem-

blance and differential semblance as error measures. The method is limited to pre-critical

single-scattering reflection data. This means that, prior to velocity analysis, post-critical

reflections and refractions need to be muted, and the multiples must be attenuated. In the

field data example, we introduce an image-based demultiple procedure and show how it

helps to improve the results of WEMVA under the presence of free surface multiples. The

method can be used to create complex initial models to be further refined by data domain

methods such as full-waveform inversion.

The methodology of Chapter 2 was extended to 2D TTI elastic anisotropic media. To

image anisotropic media, I use elastic reverse-time migration. The imaging can be de-

scribed in two steps. First I use an elastic wave equation to reconstruct the source and

receiver particle displacement wavefields. Then I use simple wave mode separation to ob-

tain the scalar wavefields needed for the cross-correlation imaging condition. The method

is developed for velocity analysis from PP CIGs constructed from surface seismic data.
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Extension to deal with PS CIGs constructed from multicomponent data is left as future

work. Numerical results on 2D synthetic and field data show that the method converges to

models that improve the focusing of the depth migrated images. However, the assumption

of anisotropy in the subsurface model strongly increases the ambiguity of the results. In

this case, in order to converge to geologically meaningful models it is necessary to add

additional information. The computational cost of method is very high, and future work

is necessary to implement the method in 3D.

I also present a method to demigrate seismic reflection data using reverse-time migration

with an extended imaging condition. The method, which is presented in Chapter 4, is

related to the methods in Chapter 2 and 3, because the data is obtained by non-linear least

squares inversion of an objective function defined in the image domain. The extended

image condition produces CIGs that preserve amplitude and phase information of both

primaries and multiple reflections. This means that they can be used to reconstruct the data

with high fidelity, even in the presence of an inaccurate velocity model. The relationship

between the data and the wavefields is linear, since the data is the source in the back

propagation of the receiver wavefield. Thus the problem can be formulated as a linear

least squares problem. However, due to the large size of the system, I cast the problem

as a non-linear least squares problem and solve it using a steepest descent method. At

each iteration the data is updated by adding to it the result of a Born modeling. The

phase of the data is recovered after 1 iteration of the method, whereas the amplitudes

require many iterations. Applications of the method in 2D synthetic models of complex

geological media are presented. The results show the capability of the method to process

complex seismic data. A 2D field data example is also included. Some applications,

such as data reconstruction, might, to some extent, require an accurate estimate of the

velocities. Again the cost of the method currently prohibits its use in 3D applications.
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