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Abstract

Industrial processes often involves handling of objects and surfaces shaped like geometric
primitives. This should be taken into consideration when designing computer vision-based
systems for such processes. Both pose and parameters of geometric primitives can be es-
tablished with 3D cameras and simple algorithms. In this thesis, robust estimation algo-
rithms have been considered to detect primitive shapes in point clouds from 3D cameras.
The primitives are described with conformal geometric algebra. Possible applications have
been suggested and demonstrated through a robotic pick-and-place task solved with data
from a 3D camera.

A primitive shape detection algorithm is implemented in a C++ based software. The
algorithm is implemented for planes, spheres and cylinders. Results show that the algo-
rithm is able to detect the shapes in data sets containing up to 90% outliers. Furthermore,
a real-time tracking algorithm based on the primitive shape detection algorithm is imple-
mented to track primitives in a real-time data stream from a 3D camera. The run-time
of the tracking algorithm is well below the required rate for a 60 frames per second data
stream. A multiple shape detection algorithm is also developed. The goal is to detect
multiple shapes in a point cloud with a single run of the algorithm. The algorithm is im-
plemented for spheres and results show that multiple spheres can be successfully detected
in a point cloud.

The accuracy and efficiency of the algorithms is demonstrated in a robotic pick-and-
place task. Primitive objects are detected in the robot workspace. These objects are used
for robot-camera calibration and data cropping, in addition to the pick-and-place operation.
The demonstration show that the algorithms are effective for high accuracy demanding
industrial tasks, given raw data from consumer grade 3D cameras.
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Sammendrag

Industrielle prosesser involverer ofte håndtering av objekter og overflater formet som
stilistiske geometrier. Dette bør tas hensyn til ved design av datasyn-baserte systemer for
slike prosesser. Posisjon, orientasjon og parametere av stilistiske geometrier kan identi-
fiseres ved bruk av 3D kameraer og enkle algoritmer. I denne avhandlingen er robuste
estimeringsalgoritmer anvendt for deteksjon av geometriske former i punktskyer. De ge-
ometriske formene er beskrevet med konform geometrisk algebra. Mulige applikasjoner
er blitt foreslått og demonstrert gjennom en robotisert plukk-og-plasser oppgave som er
løst med et 3D kamera.

En algoritme for deteksjon av geometriske former er implementert i et C++ basert
program. Algoritmen er implementert for plan, kuler og sylindere. Resultatene viser
at algoritmen kan detektere geometrier i datasett med opptil 90% støy. I tillegg er en
sporingsalgoritme implementert for sporing av geometriske former i sanntid med et 3D
kamera. Sporingsalgoritmen yter mer enn raskt nok til å utføre sporing i en bildestrøm
på 60 bilder per sekund. En algoritme for deteksjon av flere geometriske former er også
utviklet. Målet med denne algoritmen er å detektere alle geometriske former i en punktsky
ved å utføre algoritmen én gang. Algoritmen er implementer for kuler og resultatene viser
at flere kuler kan detekteres i en punktsky fra et 3D kamera.

De implementerte algoritmene er demonstrert i en robotisert plukk-og-plasser opp-
gaven. Geometriske former er detektert i robotens arbeidsrom. De detekterte formene
brukes til robot-kamera kalibrering og segmentering av data, i tillegg til selve plukk-og-
plasser operasjonen. Demonstrasjonen viser at algoritmene er effektive for industrielle
oppgaver som krever høy presisjon, gitt rådata fra et lavkost forbrukerklasse 3D kamera.
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Chapter 1
Introduction

1.1 Background

Industrial processes often rely on visual data of objects and surroundings for decision-
making and inspection. Such processes can be object pose estimation for robotic ma-
nipulation tasks, position localization for automated guided vehicles and 3D difference
detection for inspections.

Structured light- and time of flight sensors measure depth, either in a point (range
sensor), along a line (laser scanner) or in a matrix structure (3D camera). A 3D camera
can output depth data of a scene with high frequency, usually in the form of unorganized
point clouds consisting of 3D points sampled from the scene. When the Microsoft Kinect
3D camera and the Point Cloud Library (PCL) [1] was launched in 2010, interest in the
field of point cloud processing increased as 3D point cloud algorithms for robotics and
perception were made easily available. Popular applications are object recognition, sur-
face reconstruction and segmentation. A typical pipeline for object recognition from point
clouds consists of filtering, normal computation, keypoint detection, descriptor computa-
tion, matching, registration and finally refinement of the registration. These methods have
been developed so that shapes with arbitrary geometry and arbitrary pose can be detected
in any scene.

Human- and machine-made objects are often shaped like geometric primitives such as
planes, spheres, cylinders, cones or torus, or a combination of several. Thus, production-,
inspection- and maintenance processes often involves handling of primitives. Considering
this when designing computer vision based detection systems, accurate, simple and effi-
cient data treatment can be achieved. Compared to the traditional point cloud processing
pipeline, recognition can be simplified and the required level of competence for applying
such systems can be reduced, potentially making vision based solutions more attractive for
production enterprises.

In [2] it is demonstrated that it is possible to segment both point clouds and CAD mod-
els to primitive shapes for object recognition and pose estimation. The focus of this thesis
is the primitive shape detection in point clouds, where the RANdom SAmple Consensus
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Chapter 1. Introduction

(RANSAC) [3] algorithm is one of the first, simplest and most popular methods. More-
over, as geometry of primitive shapes is a central part of this thesis, geometric algebra in
conformal space is studied as it offers intuitive and elegant description and handling of
geometry. Implementing and testing RANSAC with conformal geometric algebra is pri-
oritized to demonstrate that conformal geometric algebra is applicable to such problems.
Furthermore, literature on robust estimators for computer vision is studied for inspira-
tion and ideas to further optimize and improve the algorithmic primitive shape detection.
Lastly, a simple robotic system dependent on 3D camera sensor data is implemented and a
pick-and-place task is performed. The goal is to demonstrate that the RANSAC-based al-
gorithms are effective for high accuracy demanding tasks, given raw-data from consumer
grade 3D cameras.

1.2 Objectives
The objectives of this thesis are

1. Describe the technology behind 3D cameras and common processing steps for point
clouds.

2. Present the RANSAC algorithm and other robust estimators.

3. Describe how primitive shapes can be modeled with geometric algebra.

4. Implement the RANSAC algorithm for primitive shape detection in point clouds
with geometric algebra.

5. Further optimize and improve the primitive shape detection.

6. Implement software for point cloud processing and primitive shape detection.

7. Test the system in experiments and present the results.

8. Demonstrate applications of primitive shape detection in a robotic pick-and-place
task.

1.3 Approach
The objectives of this thesis have been of both theoretical and practical nature. Theoret-
ical in the sense of studying literature, methods, articles and implementations of existing
technology. And practical in the sense of acquiring data from a 3D camera, implementing
data processing algorithms in the C++ programming language and testing the implemented
software.

Objective 1
The technology behind structured light and time of flight 3D cameras are described in
Section 3.2. The operational principal of the 3D camera used in this thesis is presented in
detail. Point clouds are presented in Section 3.3 and the common processing steps for an
object recognition pipeline are presented in Section 3.4

2



1.3 Approach

Objective 2

A literature review of robust statistical estimators and RANSAC-based algorithms for
computer vision is presented in Chapter 2. A chronological time-line of published esti-
mators is presented. Thereafter, the essence of each estimator is described in relation to its
predecessors.

Objective 3

The basis of geometric algebra is presented in Section 3.6 along with a description of the
basic geometric entities in conformal space. Furthermore, object modeling with geometric
algebra is presented in Section 4.3.

Objective 4

The implemented RANSAC algorithm is presented in Section 4.4. Three different cases
for algorithm termination are considered.

Objective 5

In Section 4.5, a RANSAC-based tracking algorithm is presented. The run-time of the
algorithm is reduced by applying a tactic for reducing the data size. Thus, tracking is
enabled. In Section 4.6, a algorithm for multiple shape detection is presented. A sampling
strategy that potentially increases the efficiency of RANSAC is suggested.

Objective 6

The software is implemented in the C++ programming language and relevant source code
snippets are appended appendix B. The structure of the software is explained in Section
4.2. The software contains implementations of the suggested algorithms in addition to
functionality for point cloud processing and data control.

Objective 7

The suggested algorithms are tested in experiments with the developed software. Result
and analysis of the experiments are presented in Chapter 5.

Objective 8

A simple robotic pick-and-place task is defined and described in Section 4.7. A 3D
camera-robot demonstration is implemented in the robot laboratory at the Department of
Production and Quality Engineering. The goal is to place arbitrarily positioned ping-pong
balls in a arbitrarily positioned tube. The objects are detected and positioned by data from
a 3D camera. The whole demonstration is documented in a video found in the digital
appendix.

3
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Literature and documentation
Articles from the Institute of Electrical and Electronics Engineers (IEEE) journals have
been used to a large extend during the project. They are referred to where relevant and
listed in the bibliography.

Tutorials, documentation and code snippets from the Point Cloud Library [1] have
been used in the implementation of the C++ software.

Textbooks on geometric algebra have been studied to a large extent. The books are:

• Foundations of geometric algebra computing by Dietmar Hildenbrand [4].

• Geometric algebra for computer science: an object-oriented approach to geometry
by Leo Dorst, Daniel Fontijne and Stephen Mann [5].

In addition, relevant scientific articles were studied. Especially important were the
article on the RANSAC algorithm [3] and the efficient multiple shape detection [6].

1.4 Structure of the Report
The report is primarily focused on the task of primitive shape detection in point clouds.
The literature review, background theory, and solutions are presented for the purpose of
this task. In addition, some motivational aspects are established by presenting possible
applications and existing methods.

• Chapter 1 present the background and motivation for the work done in this thesis.
In addition, the objectives and approach are presented.

• Chapter 2 gives an overview of the statistical estimators for computer vision studied
in this thesis. There is a dedicated section to the RANSAC algorithm and a dedicated
section to RANSAC-based publications.

• In Chapter 3 the background theory describing 3D camera technologies, point clouds,
point cloud processing, least-squares fitting, geometric algebra and kinematics is
presented. This is the foundation for the work done. Especially important are the
sections about point clouds and geometric algebra, which are the basis for all the
algorithms implemented.

• Chapter 4 describes the developed software, shape modeling with conformal geo-
metric algebra, primitive shape detection with RANSAC, a suggested tracking algo-
rithm, a suggested multiple shape detection algorithm and the implementation and
execution of the robotic pick-and-place demonstrator.

• In Chapter 5 a description and analysis of the conducted experiments are presented.
The performance of the implemented algorithms is mapped and results are presented
and discussed.

• In Chapter 6 a discussion regarding practical issues during the work is presented.
Furthermore, a conclusion of the thesis is presented and suggestion for further work
are discussed.
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Chapter 2
Literature Review

2.1 Introduction
In this chapter, a brief overview of robust statistical methods for computer vision will be
given in a chronological order and RANSAC will be placed among them. The RANSAC
algorithm will be presented in detail, along with a brief description of its descendants. A
graphical overview can be seen in Figure 2.1, where each method is listed with its abbre-
viation and year of publication. A more extensive study on robust statistics in computer
vision can be found in [7].

Figure 2.1: A timeline of publications of robust statistical methods for computer vision. The tim-
leine is divided into independent publications and RANSAC-based publications.

It is important to have in mind that RANSAC is only one of many methods for dealing
with noisy data. Such methods have been widely studied and developed in the field of
robust statistics. Robust statistical methods were adopted to computer vision to improve
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performance of various feature extraction algorithms. As the field of computer vision
evolved in pace with the computational powers of computers, there was a need for meth-
ods that could efficiently handle large data sets with high percentage of noise. In addition,
visual data is usually more complex than data analyzed in statistics. The RANSAC algo-
rithm was developed within the computer vision community itself and is one of the first
algorithms developed specifically for dealing with vision data.

2.2 Robust Estimators for Computer Vision
Robust statistical methods can be classified as methods that tolerate the presence of data
points that do not obey the assumed model. These data points are called outliers [7].
The robustness of an estimator can be quantified by the percentage of outliers that can be
present without causing arbitrarily bad results.

The Hough transform was patented by P.VC Hough (1962) in [8] and has become one
of the most applied robust estimators in computer vision. Originally, the Hough transform
was a method of fitting lines to a set of noisy data points. It does so by mapping each point
to the line-parameter space, where each point will produce a line in the parameter space.
If several points lie on the same line, the lines in the parameter space will intersect. A
simple voting scheme can then be applied, usually local maximums of intersections in the
parameter space are identified as the actual parameters of a line in the xy plane.

The Hough Transform has also been adapted to fit other shapes, like circles and cylin-
ders. There are also a method called Generalized Hough Transform that can fit any arbi-
trary shape, given some training data. However, when the number of parameters increases,
the number of votes cast in each local maximum may be small. Thus, the local maximums
corresponding to real shapes in the data set may not have more votes than their neighbors.
Therefore, the Hough Transform must be used with care when applied to shapes other than
lines and circles.

The Random Sample Consensus (RANSAC) algorithm was published by Martin A.
Fischler and Robert C. Bolles at Stanford Research Institute (SRI) International (1981)
in [3]. RANSAC, in its most basic form, is a method of segmenting outliers from a data
set given some predefined model. Even though the idea behind RANSAC is simple, it
is extremely powerful and have had a big impact on the field of computer vision. The
RANSAC algorithm will be presented in detail in the next section.

The RESidual Consensus (RESC) algorithm was introduced by Yu et al. (1994) in [9].
RESC is an estimator developed for segmenting primitive shapes in point clouds. It does
so by randomly initializing a primitive from a minimum set of points, the rest of the points
residuals are calculated and presented in a histogram. After repeating the processK times,
the primitive shape is identified as the largest continuous region where the residuals tend
to be minimum.

The Minimum Probability Randomness Estimator (MINPRAN) algorithm was pre-
sented by Charles V. Stewart (1995) in [10]. MINPRAN does not rely on a known error
bound for the good data. Instead, it assumes the bad data are randomly distributed within
the dynamic range of the sensor. Based on this, MINPRAN uses random sampling to
search for the fit and the inliers to the fit that are least likely to have occurred randomly.
Using this technique, MINPRAN can deal with noise levels above 50%.
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Charles V. Stewart also introduced the Minimum Unbiased Scale Estimator (MUSE)
algorithm with James V. Miller (1996) in [11]. They observed that random outliers in-
creased in regions of discontinuities in range images and developed the algorithm as a
consequence of their observation. MUSE is especially developed to extract multiple prim-
itives from range images by identifying continuous regions.

The Adaptive Least kth Order Squares (ALKS) algorithm was proposed by Lee et al.
(1998) in [12]. The estimator minimizes the kth order statistics of the squared of residuals.
The homogeneous surface patch representing the relative majority of the points is detected
by determining the optimal value of k from the data. Thus, the largest continuous surface
is detected for each run of the algorithm, which can be fitted to some primitive.

The Maximum Density Power Estimator (MDPE) and the Quick Maximum Density
Power Estimator (QMDPE) was introduced by Wang and Suter (2003) in [13]. MDPE
is a parameter estimation algorithm that optimizes an objective function that measures
both the density distribution of data points in residual space and the size of the residual
corresponding to the local maximum of the density distribution. They claim the algorithm
can tolerate 85% outliers. They adapt MDPE to work with segmentation in range images
and call this algorithm Quick-MDPE.

In 2004, Wang and Suter introduced two novel estimators called Two-Step Scale esti-
matos (TSSE) and Adaptive Scale Sample Consensus (ASSC) in [14]. They divide robust
estimation in two task; the task of estimating the model parameters and the task of estimat-
ing the scale of the noise in the inlier data. The TSSE estimator is used for estimating the
scale of inliers, while ASSC combine TSSE and RANSAC to robustly estimate the model
parameters. The advantage of this is that they do not require a prior knowledge of the scale
of inliers, as opposite to the RANSAC algorithm (for example).

Wang and Suter (2004) also presented the Adaptive Scale Residual Consensus (ASRC)
algorithm intended for computer vision tasks in [15]. ASRC scores a model based on both
the residuals of inliers and the corresponding scale estimate determined by those inliers.
This algorithm is very robust to multiple structure data with high percentage of outliers
and requires no predefined inlier threshold.

In 2008, Wang introduced an improved version of QMDPE called Maximum kernel
Density Estimator (MKDE) in [16]. This algorithm uses the kernel density to evaluate the
residuals, which reduces the computational cost compared to QMDPE.

In 2010, Wang, Mirota and Hager presented the Adaptive-Scale Kernel Consensus
(ASKC) estimator in [17]. This is a generalization of previous published algorithms like
RANSAC, ASSC and MKDE that is based on nonparametric kernel density estimation
theory. They show that RANSAC, ASSC and MKDE all are special cases of ASKC.

2.3 Random Sample Consensus (RANSAC)

As previously stated, the RANSAC [3] algorithm was introduced by Fishler and Bolles in
1981. They demonstrated the robustness of RANSAC compared to a iterative least-squares
fitting with a ”throwing out the worst residual” heuristic. Their original data set and figure
for this demonstration can be seen in Figure 2.2. The obvious interpretation of the line is
y = x, with a small error in point 4 and a gross error in point 7. An iterative least-squares
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Table 2.1: Iterative least-squares procedure with a heuristic of throwing out the worst residual. The
fitted line will not agree with the actual model, due to noise in the data set.

Iteration Data set Line fitted by least-squares
1 1, 2, 3, 4, 5, 6, 7 y = 1.48 + 0.16x
2 1, 2, 3, 4, 5, 7 y = 1.25 + 0.13x
3 1, 2, 3, 4, 7 y = 0.96 + 0.14x
4 2, 3, 4, 7 y = 1.51 + 0.06x

approach with a heuristic of throwing out the worst residual is tabled in Table 2.1, the
noise in the data set causes a bad fitting.

Figure 2.2: Original data set and figure used by Fishler and Bolles to demonstrate the robustness of
RANSAC. The data set represent the line y = x with a small error in point 4 and a gross error in
point 7. (Adapted from [3])

A RANSAC approach for the line fitting problem is tabled in Table 2.2. Here, a mini-
mal data set is randomly sampled for every iteration and a line is generated from the data
set. Each generated line is evaluated by its number of inliers and the line with the most
inliers is picked as the final line. Thus, the RANSAC approach will successfully identify
the line x = y in this example.

Generally, the RANSAC algorithm fit a predefined model to experimental (noisy) data.
Fishler and Bolles studied the effectiveness of the algorithm applied to the Location De-
termination Problem (LDP) in image analysis. The LDP is the problem of determining in
what point in space an image was obtained, given some landmarks with known location
in the image scene. However, Fishler and Bolles recognizes the potential of the algorithm
when applied to scientific problems in general, where interpreting sensed data in terms of
predefined models is a common task.

Conventional fitting methods, like least-squares fitting, considers the whole data set
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Table 2.2: A RANSAC procedure for the line-fitting problem. The generated line with the most
inliers is identified as the final line.

Iteration Data set Generated line Inliers # inliers
1 1, 2 y = x 1, 2, 3, 5, 6 5
2 1, 3 y = x 1, 2, 3, 5, 6 5
3 1, 4 y = 0.67x 1, 2, 4 3
4 1, 7 y = 0.2x 1, 7 2
5 3, 4 y = 2 3, 4, 7 3

when fitting a model. A gross error in the data set will result in a model that represent the
reality poorly. The uniqueness of RANSAC is that it is capable of detecting these gross
errors as outliers and completely neglect them when fitting the final model. Data points
that lies within the model tolerance is classified as inliers. Depending on the complexity
of the model (the size of random samples) RANSAC can handle contamination levels well
above 50%, which is commonly assumed to be a practical limit in robust statistics [18].

RANSAC as formally stated by Fishler and Bolles:

Given a model that requires a minimum of n data points to instantiate its free
parameters, and a set of data points P such that the number of points in P is
greater than n [#(P ) ≥ n], randomly select a subset S1 of n data points from
P and instantiate the model. Use the instantiated model M1 to determine the
subset S1∗ of points in P that are within some error tolerance of M1. The set
S1∗ is called the consensus set of S1.

If #(SI∗) is greater than some threshold t, which is a function of the estimate
of the number of gross errors in P , use S1∗ to compute (possibly using least-
squares) a new model M1∗.

If #(S1∗) is less than t, randomly select a new subset S2 and repeat the above
process. If, after some predetermined number of trials, no consensus set with
t or more members has been found, either solve the model with the largest
consensus set found, or terminate in failure.

In addition to the data set and the specified model, the RANSAC algorithm requires three
parameters:

1. The error tolerance T , used to determine whether or not a point is compatible with
a model

2. The number of subsets to try, k

3. The threshold t, which is the number of compatible points used to imply that the
correct model has been found.

Fishler and Bolles suggest methods for determining reasonable values for these param-
eters. These parameters can also be determined experimentally, and by allowing k to be
sufficiently large, good results for the final model are in most cases certain. The downside
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of letting k be large is the computational cost, as k represents the number of times the al-
gorithm iterates. Hence, the challenge when applying RANSAC is to find a good trade-off
between the accuracy of the final model and the number of iterations. The tolerance and
threshold parameters are dependent on both the model and data set, but should be picked
so convergence is reached as fast as possible.

By defining these three user-dependent parameters, Fishler and Bolles encouraged
(consciously or not) several researches to contribute in the work of reducing the depen-
dency of such parameters. This have led to the publication of several RANSAC algorith-
mic techniques.

2.4 RANSAC Based Algorithms
Since the publication of the algorithm in 1981, RANSAC has grown to become a standard
tool in computer vision and image processing. Numerous contributions have been made
to improve speed, robustness, accuracy and dependency of user specified parameters.

The Maximum Likelihood Estimation Sample Consensus (MLESAC) estimator was in-
troduced by Torr and Zisserman (1996) in [19]. This is a generalization of RANSAC, that
adopt the same sampling strategy as RANSAC to generate putative solutions. It chooses
the solution that maximizes the likelihood of the solution, instead of just evaluating the
number of inliers. MLESAC shows superior results to RANSAC for the test data used
by Torr and Zisserman. MLESAC was introduced as a part of a new method for robustly
estimating multiple view relations from point correspondences.

The M-estimator Sample Consensus (MSAC) was also introduced by Torr and Zis-
serman (2000) in [19]. MSAC was introduced as a ”first enhancement” of RANSAC,
before they moved on to introducing MLESAC. The only difference between RANSAC
and MSAC is the evaluation of inliers and outliers. In RANSAC, each model is scored
with its number of inliers. In MSAC, the score of each inlier is weighted, based on how
well it fit the model. Torr and Zisserman argue that the computational cost of doing this
evaluation is very small and that ”there is no reason to use RANSAC in preference to this
method”.

As Fishler and Bolles stated, a deterministic selection process that reduces the number
of subset k to try, and consequently the number of iterations of the algorithm, is advanta-
geous. N Adjacent Points SAmple Consensus (NAPSAC) was introduced by Myatt et al.
(2002) in [20]. They show that picking data points with proximity, for the model instan-
tiation, increases the probability of selecting a minimal set consisting of inliers. Taking
a noisy point cloud of a scene containing a sphere as an example, intuition argues that
the probability of 4 point representing the surface of the sphere is greater when the points
are selected based on locality, rather than completely random. The proximity criteria is
integrated with the original RANSAC algorithm in NAPSAC. NAPSAC shows superior
behavior to the original algorithm in high noise and higher dimension data.

Locally Optimized RANSAC (Lo-RANSAC) was introduced by Chum et al. (2003)
in [21]. They argue that the underlying assumption of RANSAC, that a model with pa-
rameters computed from an outlier-free sample is consistent with all inliers, does not hold
in practice. Therefore they propose and test several local optimization techniques that is
applied every time that RANSAC finds a model with more than t inliers. In a standard

10



2.4 RANSAC Based Algorithms

RANSAC implementation, optimization is usually done after a run of the algorithm, typ-
ically the model is fitted to its inliers with least-squares methods. Chum et al. find that
their optimization scheme produces results that agree with the underlying assumption of
RANSAC mentioned above.

A preemptive strategy was proposed by Nistér (2003) in [22]. Nistér apply RANSAC
to real-time computation problems and argue for a strategy that can keep the computation
time of the algorithm more or less constant. His solution is to generate a predefined number
of models and use the highest scored model in this model-pool. The output of the algorithm
does not satisfy an absolute quality metric; the output is now dependent of the quality of
the generated models.

The evaluation of the instantiated model is an obvious time consuming step of the
RANSAC algorithm. Here, every data point have to be evaluated against the model, and
this is repeated for every iteration of the algorithm. The time consumed for evaluating
a model is proportional to the number of data points N . R-RANSAC, or Randomized
RANSAC, was introduced by Chum and Matas (2005) in [23]. They show that it is suffi-
cient to only test the model against a small number, d, of data points from the total of N
data points (d << N). They implement this in a two-step procedure:

1. Evaluate model against d randomly selected data points

2. Only evaluate against all N data points if the first evaluation scores above a certain
threshold

They show that this evaluation scheme improve the speed of the algorithm considerably
compared to the original evaluation scheme. The conclusion of their research is that their
evaluation scheme obtains the same solution as the original algorithm, in a shorter time.

The Progressive Sample Consensus (PROSAC) algorithm was proposed by Chum and
Matas (2005) in [24]. They focus their work on matching corresponding points of interest
between two images. They apply RANSAC to this problem and then develop an improved
version of RANSAC for this task. Instead of a random sampling strategy, they rank each
correspondence for each iteration and pick their samples form a progressively larger set of
top-ranked correspondences. They find that their sampling scheme can be up to a hundred
times faster than RANSAC for this application.

An evolutionary sampling strategy for RANSAC is proposed by Rodehorst and Hell-
wich (2006) in [25]. They call their modified algorithm for Genetic Algorithm SAmple
Consensus (GASAC), as they model and modify the minimal samples following the evo-
lution of a gene. Each minimal sample is classified as a gene and can be mutated or crossed
with other genes. For every iteration, each gene is scored with some fitness function (eg.
number of inliers). High scoring genes are mutated or crossed with other genes and re-
scored in the next iteration. This evolutionary sampling strategy tends to converge against
a global maximum of the fitness score, as local maximums are avoided through mutation
and crossing of the genes. Rodehors and Hellwich conclude that significant acceleration
can be achieved using a systematic sampling strategy rather than a random one.

Frahm and Pollefeys (2006) propose in [26] a RANSAC-based algorithm for handling
(quasi-)degenerate data. Their estimator is called (Quasi-)DEGenerate data SAmple Con-
sensus (QDEGSAC). Degeneracy means that the data do not provide enough constraints
to compute the relation uniquely, but up to a family of relations that all explain the data.
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QDEGSAC is especially developed for computation of the relation from a number of po-
tential matches in image analysis, where degenerate data often is generated from homo-
geneous regions in the image (like plane surfaces). They concluded that their method
performs as well as the state of the art while being more generally applicable.

Ni, Jin and Dellaert (2009) introduce a estimator in [27] that takes advantage of the
assumptions that inliers often comes in groups of some form. They propose the Group
SAmple Consensus (GroupSAC) estimator which uses a grouping sampling strategy. They
also point out that the grouping of data can be based on other properties than locality. The
algorithm is applied to the image-matching problem and they show that grouping based
on the optical flow of the image produce good results. They conclude that their algorithm
performs better than RANSAC on data sets with high percentage of noise, given that the
inliers can be grouped by some property.

RANSAC with Spatial Consistency Check (SCRAMSAC) is proposed by Sattler, Leibe
and Kobbelt (2009) in [28]. They use a spatial consistency check (SCC) to evaluate the set
of inliers. The fraction of inliers is measured in a specific region and all further processing
is limited to the part of the data set where the fraction surpasses some threshold θ. This
results in a reduced data set of higher quality. They show that this simple idea has impor-
tant consequences for the runtime and robustness of the estimated results. Compared to
RANSAC their method improve runtime by a large factor while yielding similar results.

Another sampling strategy based on the beta-probability distribution is introduced by
Meler, Decroues and Crowley (2010) in [29], namely the Beta SAmple Consensus (Be-
taSAC). After initializing a minimal set and scoring all points with respect to this set, the
points are sorted according to the beta-distribution and a new minimal sample is drawn
from this distribution. They demonstrate the benefits of their method on the homography
estimation problem and concludes that BetaSAC is dozens of times faster than PROSAC
in some cases.

RANSAC have also been developed and adapted to work with data sets containing
multiple primitives. Schnabel, Whal and Klein introduced, in [6], an algorithm that can fit
several primitive geometric shapes to a point cloud using the RANSAC algorithm. They do
this by constructing all their predefined models (plane, sphere, cylinder, cone and torus) for
every subset of data points. Each model is scored and evaluated against the other models
and some threshold. They also introduce a novel sampling scheme that require the point
cloud to be organized in an octree structure [30], this allows a more rapid and efficient
search for models in the point cloud.

2.5 Summary

In this literature study, it is found that many robust statistical estimators exist. RANSAC
is one of the first robust estimator developed from within the computer vision commu-
nity. The random sampling scheme and iterative approach of RANSAC is the basis for
many algorithms developed for computer vision. Thus, RANSAC is also the basis for the
work done in this thesis. However, a lot of inspiration is sourced from the other methods
presented in this chapter.

Some summarizing points:
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2.5 Summary

• Robust statistical methods were adopted to computer vision to handle large, noisy
data sets

• Robust estimators developed for computer vision are usually applied to problems
like image matching and point cloud processing, but can be applied to any statistical
parameter estimation problem.

• RANSAC is the first of many robust estimators developed for computer vision.

• RANSAC uses a random sampling scheme and requires three user-specified param-
eters.

• Numerous contributions to RANSAC have been made to improve speed, robustness,
accuracy and dependency of user-specified parameters.
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Chapter 3
Background Theory

3.1 Introduction
This chapter gives insight to the theory and concepts studied for fulfilling the objectives of
this thesis.

Section 3.2 gives a description of the technology behind the two most common types
of 3D cameras today. The goal is to give an understanding of how point clouds of a scene
can be generated from such sensors.

Point clouds and their structure are presented in Section 3.3. In Section 3.4 the meth-
ods of point cloud processing mentioned in the introducing chapter are described. Noise
filtering, smoothing, segmentation and general object recognition are all problems that can
be solved with primitive shape detection. The complexity of many of these methods, and
the required level of competence for applying such methods, can be reduced. Thus, this
section also works as a motivation for developing primitive shape detection algorithms.

Section 3.5 gives a presentation of linear least-squares fitting, which is a central tool in
many of the robust estimators discussed in the previous chapter. Furthermore, Section 3.6
gives a brief introduction to geometric algebra and conformal space. Lastly, Section 3.7
show the basic relations of kinematics applied in the robotic pick-and-place demonstrator.

3.2 3D Cameras
Optical 3D data acquisition is the acquiring of the distance from the measuring device to
the scene, also called depth or z-coordinate. 3D cameras are a special type of cameras
that maps the depth of a scene. In a traditional camera, color information is stored in
pixels organized in a matrix structure. Likewise, depth is stored in pixels organized in a
matrix structure in 3D cameras. Each pixel can be assigned an x- and y-value based on
the intrinsic camera parameters. Consequently, each pixel in a 3D camera represents a 3D
point in space.

3D cameras, as different from laser scanners and range finders, can capture the depth
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of an entire scene at a single instance. Modern technology makes it possible to capture
and output this depth several times per second. Today, cheap, consumer grade cameras
can output high-density depth streams at high frame rates.

Consumer grade 3D cameras (also called depth cameras) normally comes with a built-
in RGB color camera. The RGB camera and 3D camera can be calibrated such that colour
and depth coincide. Such cameras are also called RGB-D cameras, and the information
outputted from such cameras can be visualized as coloured 3D points or surfaces.

There exist primarily two types of 3D cameras based on the technology used for ob-
taining 3D information from the scene.

3.2.1 Structured light cameras

Structured light cameras consists of a light projector and an image sensor. Light is pro-
jected in a pattern on to the scene and this pattern is recognized in the image. When the
pattern is recognized, it is possible to triangulate the 3D position of every point in the pat-
tern by knowing the position and orientation of the projector relative to the image frame.
This method can create dense point clouds that can be obtained under various illumination
conditions at high frame rates. A structured light camera is classified as an active type
camera, because it actively projects light on to the scene to be mapped.

Figure 3.1: Concept of structured light triangulation. The structured light emitted on the scene
is identified in the camera matrix. By knowing the transformation between the projector and
the camera, the position of each identified light structure can be identified. (Adapted from
http://www.extremetech.com/)

Figure 3.1 demonstrates the triangulation procedure in a structured light setup. Struc-
tured light is emitted from the projector in a vertical stripe pattern. A traditional digital
image sensor observes the projected light pattern and by counting the number of stripes,
it is possible to identify each stripe and the angle of transmittance from the projector. Us-
ing the intrinsic camera parameters, the angle from the camera frame to the point can be
determined. By using the angle from the projector, the angle from the camera and the
translation between them, this becomes a simple geometry problem.
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Structured light cameras represents one of the main group of 3D cameras today. They
offer real-time 3D data streams and can operate in various lighting conditions. They also
eliminate the problem of ambiguity in homogeneous surfaces by projecting light. Some
cameras also use infrared light projectors and sensors so that the scene is not disturbed by
projected visual light.

3.2.2 Time-of-Flight cameras

Time-of-Flight (ToF) cameras also fall under the class of active cameras as they project
light on to the scene. The light is reflected from the scene back to the projector, where the
receiver is located. The idea of ToF cameras is to measure the time from when the light is
emitted from the projector to when the light is received by the receiver. Using the speed
of light c, it is possible to calculate the distance to the point of reflection. Figure 3.2 and
equation (3.1) gives a simple description of the concept, here is ρ the distance to the scene
and τ is the measured time of flight.

Figure 3.2: Concept of Time-of-Flight. The time of flight is measured from the signal is emitted to
it is received. (Adapted from [31])

ρ =
cτ

2
(3.1)

Direct measurement of travel time of light require fast electronics that can measure
time spans in the picoseconds range. To avoid the cost and challenges of fast electronics,
different clock technologies have been introduced and this have led to several different
ToF camera types [31]. The most common type is the continuous wave (CW) intensity
modulation approach; this approach is also the basis in the Kinect for Xbox One camera
used in this thesis.

CW ToF cameras apply a modulation frequency to a light-wave so that the light be-
comes a carrier signal for the modulation frequency. The problem of distance estimation
is shifted from observing the travel time of light to observing the phase shift of the emitted
modulation frequency. This concept is illustrated by assuming a transmitter and receiver
in the same position. The transmitter emits a sinusoidal wave with modulation frequency
fmod in the direction of the scene, the modulated wave is reflected by the scene and read
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by the receiver. An illustration of the two signals is given in Figure 3.3. The emitted signal
can be written as

sE(t) = AE [1 + sin(2πfmodt)], (3.2)

where sE(t) is the emitted sinusoidal signal, AE is the amplitude and fmod is the modu-
lation frequency. The received signal can be written as

sR(t) = A sin(2πfmodt+ ∆φ) +B, (3.3)

where sR(t) is the received sinusoidal signal, A is the amplitude, ∆φ is the phase shift
from the emitted signal and B is the noise term of interfering radiation. [31]

Figure 3.3: Emitted and received CW ToF signal. The blue wave is the emitted signal while the red
wave is the received reflected signal. The received signal is identified by its modulation frequency
and the phase shift between the signals is used to determine distance to the point of reflection.
(Adapted from [31])

The phase shift is in particular interest as this is used to calculate the distance to the
object through the relation

ρ =
c

4πfmod
∆φ. (3.4)

In practice, the phase shift, amplitude and noise term of the received signal from equation
(3.3) is estimated by sampling the received signal 4 times for every period. Thus, the
sampling frequency fsamp, has to be 4 times the modulation frequency fmod.

In a camera sensor, like in the Kinect for Xbox One, there is an array of receivers that
are sampling reflected light from a set of points in the scene. There is not a projector for
every receiver, but the projector is constructed in a way that the virtual center lies in the
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middle of the array of receivers. By synchronizing the sampling frequency of the receivers,
it is possible to capture a number of points in a scene simultaneously, and reconstruct the
sampled scene in a point cloud.

The Kinect for Xbox One offer a depth sensor with a 512×424 pixel array with a pixel
size of 10 × 10 µm. This sensor is able to give a 70◦ horizontal and 60◦ vertical field of
view with a depth range between 0.8 - 4.2 meters. The sensor can produce a 30 frames
per second (FPS) depth image stream where the accuracy error is 1% of the range for an
average of 100 images. [32]

3.3 Point Clouds

Figure 3.4: Point cloud of a sphere
consisting of 10 000 points. (Cre-
ated with MATLAB)

A point cloud is a set of data points in a coordinate
system. In Euclidean space, a point cloud consists of
3D points. Point clouds can be sampled from CAD-
models, generated by computer software or created
from 3D scanners or cameras. Point clouds can be used
for reconstructing surfaces, quality inspection, anima-
tion and visualization. Figure 3.4 shows a point cloud
of a sphere containing 10 000 points.

Point clouds usually comes in an unorganized form,
which means that the points are not ordered in any
form. Ordering or grouping the points can be advan-
tageous for systematically searching through a point
cloud.

3.3.1 Octree
Octrees are a popular and effective way of organizing a
point cloud. Octrees are used to recursively subdividing 3D space into eight octants. Each
octant is called a node and each node can be subdivided into exactly eight nodes at the
lower level of the octree. The root node is the largest and contain all other nodes. The
depth d of the octree is the number of levels of the octree. The resolution dres of an octree
is the length of the sides of the nodes at the lowest level of the octree. An octree is fully
defined when the length l of the sides of the root node is spesified along with the the depth
or resolution. The relation between the root node, depth and resolution can be expressed
as:

l

2d
= dres. (3.5)

The number of nodes present in an octree is:

1 + 81 + 82 + . . .+ 8d−1. (3.6)

Figure 3.5 show the structure of an octree.
By placing the root node of an octree over the space spanned by a point cloud, the

points in the point cloud can be organized into the nodes of the octree. The multiple levels
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Figure 3.5: Octree structure. Every node is subdivided into 8 nodes in the level be-
low, this is repeated until a desired resolution of the octree is achieved. (Adapted from
https://en.wikipedia.org/wiki/Octree)

of an octree allows for systematic searching of different sized point clusters in the point
cloud. Figure 3.6 show a 3D model of a rabbit organized in an octree. Only the nodes that
contain some part of the rabbit are visualized. Note that an arbitrary point on the rabbit is
present at all the levels of the octree.

Figure 3.6: A 3D model of a rabbit organized in an octree. Only populated nodes are visualized.
(Adapted from http://www.mathworks.com/)
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3.4 Point Cloud Processing

Point clouds often contain noise and unwanted elements that needs to be filtered away. It
is also desirable to extract information about specific objects, or regions in a point cloud.
Several methods and algorithms have been developed for these purposes. In this section
a brief summary of some concepts will be given. These concepts will be presented in a
sequence following an object recognition pipeline, where the ultimate goal is to recognize
and describe a specific object’s position and orientation in the scene. This is usually done
by matching and fitting some model of the object to the point cloud. This model can be a
polygonal mesh, point cloud or a mathematical description of a primitive.

3.4.1 Noise filtering

To decide whether a point is noise or not, its neighbors are considered. One can use
simple strategies, like removing a point if its geometrical distance to its nearest neighbor
is larger than some threshold. However, methods that are more sophisticated are used for
robustness.

Statistical outlier removal is a general method that assumes that the Euclidean distances
between neighboring points can be represented by some statistical distribution (eg. the
normal distribution). First, all the neighboring distances is considered to establish the
parameters of the distribution. Then, all the neighboring distances are tested with this
model to decide whether the point is rejected as noise or not.

3.4.2 Downsampling

Downsampling is a simple method for reducing the size and complexity of a point cloud.
Ideally, a downsampled point cloud will contain as much information about the scene as
the original. The motivation for reducing the complexity of a point cloud is to reduce the
calculation load in the later steps of the processing pipeline. Downsampling can be per-
formed by simply removing a number of random points, but more sophisticated methods
that preserves the information in the cloud exists.

One of the most common methods is called voxel grid sampling. Voxels (small 3D
boxes) are placed over the whole point cloud. The mean, or the centroid, of all the points
that lie inside each voxel is computed and replaces the original points in the voxels. By
keeping the voxel size small, sufficient detail in the point cloud is preserved. Voxel grid
sampling is also a great tool for making two different point clouds equal in density for
better comparison. Figure 3.7 shows how a voxel grid is applied over a point cloud and
how the points are replaced by the centroid in the voxel.
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Chapter 3. Background Theory

Figure 3.7: Voxel grid in a point cloud. The blue points are the original points while the red points
represent the centroid of the blue points within each voxel. (Created with MATLAB)

3.4.3 Surface smoothing

Figure 3.8: Point cloud of a
sphere before and after sur-
face smoothing. (Adapted
from http://doc.cgal.org/)

Even though the point cloud is downsampled and noise fil-
tered, it can still contain disturbances like awkward edges,
surface inconsistencies and roughness. This can affect later
steps in the point cloud-processing pipeline and should be
handled to avoid significant errors in the end-result. Differ-
ent smoothing techniques handles this problem while keep-
ing the shape features of the point cloud intact.

A general smoothing technique called Moving Least
Squares (MLS) [33] fits a high order polynomial to the
neighboring points of a point. Then, the point is fitted to the
polynomial by moving it in the direction of the smallest Eu-
clidean distance from the point to the polynomial. This pro-
cess is repeated for all the points in a point cloud to obtain a
smoothing effect. Figure 3.8 demonstrates the power of sur-
face smoothing. Smoothing algorithms can also be adopted
to fit certain shapes, like cylinders or spheres. This makes
the smoothing more accurate, given that the point cloud is
acquired from a scene with known geometry.

3.4.4 Segmentation
Segmentation is simply a term for grouping points based on
some property. Such properties can be specific values of
coordinates, points that belong to an object or primitive or
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3.4 Point Cloud Processing

points that are classified as noise. When the points are grouped their features can be more
easily examined, or they can be filtered and erased from the point cloud.

3.4.5 3D keypoints and descriptors
Keypoints and descriptors are tools used for creating a compact description of a point
cloud. A keypoint is simply a point of interest, while a descriptor is a compact description
of a region around a keypoint that is assigned to the keypoint.

The motivation and underlying goal of keypoint detection and description is to identify
unique points in the point cloud. The unique points are crucial for matching correspon-
dences between two point clouds, alignment of point clouds and object recognition.

Good keypoints are the basis of good descriptors. Frederico Tombari gives a nice
classification of 3D keypoint properties in his research paper Performance Evaluation of
3D Keypoint Detectors [34]:

3D keypoints are

• Distinctive, i.e. suitable for effective description and matching

• Repeatable with respect to point-of-view variations, noise and scale

Usually these keypoints are found to lie along peaks and edges in the point cloud. These
are regions where the distance to some of the point’s neighbors is large, e.g. the distance
gradient is large. The 3D keypoint detectors that exists also consider factors such as key-
point density, scale and color, if such data is available.

There exists a number of different types of descriptors that extract different type of in-
formation from the underlying surface of a point. The descriptors are usually represented
by a n-dimensional vector so they can be easily compared. The choice of which descriptor
to pick depends very much on the application. The descriptor type described above is a lo-
cal descriptor that represent information about a point. Other types are global descriptors,
that represents information about an entire shape or object. These descriptors are useful
when identifying objects in a scene. An overview of the different descriptor types and
properties can be found in [35].

3.4.6 Correspondence matching
As a descriptor is a n-dimensional vector that describe the features at a certain point, the
corresponding descriptor in another point cloud can be determined by simply comparing
the length between descriptor vectors.

Given a set of descriptors for two point clouds (di,d
′
j), i = 1, .., n j = 1, ..,m,

lengths between di and d′1,..,m are calculated. Then, all lengths are compared and the
two points with the smallest descriptor length are identified as correspondences. This is
repeated for all the descriptors di,..,n and a set of corresponding points are obtained.

3.4.7 Alignment
Alignment is the process of aligning two different point clouds together. In order to per-
form the alignment, the two point clouds must contain some common scene. This common
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scene is identified from the descriptors, and the point clouds are aligned using their com-
mon scene as reference. Figure 3.9 show two point clouds of the same face from different
views. The point clouds are aligned to create a better representation of the face. This can
be used to reconstruct 3D objects, or it can be used to identify an object’s position and
orientation.

The alignment process begins with matching correspondences from the two point
clouds. These correspondences are used to perform an initial alignment before the fine
registration is carried out. The fine registration is simply the process of fine-tuning the
initial alignment; this is usually done with an iterative algorithm.

Figure 3.9: Two point clouds of a face aligned. (Adapted from http://dynface4d.isr.uc.pt/)

From the correspondences the homogeneous 4× 4 transformation matrix, T, between
the two point clouds can be calculated from the relation:

p̃k = Tp̃′k, (3.7)

where p̃k and p̃′k are the homogeneous corresponding points. As this equation is overde-
termined for more than 4 correspondences, the T matrix is usually calculated by minimiz-
ing the error function:

E(T∗) =
∑
k

|| p̃k −Tp̃′k ||2 (3.8)

3.4.8 Fine registration
As the alignment procedures discussed above can be inaccurate due to mismatches or noise
in the data sets, a method for fine tuning the alignment is needed. The Iterative Closest
Point (ICP) algorithm was presented by Chen and Medioni (1991) in [36]. This method
iteratively refines the alignment by generating correspondences and minimizing an error
metric between them. The correspondences are usually matched by picking the nearest
neighboring points between the two point clouds. This is considered a brute force method
and it may find a solution that lie in a local minimum. Therefore, the initial alignment of
the two point clouds is crucial for the result. The ICP algorithm can be summarized in the
following steps:
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3.5 Least-Squares Fitting

1. Pick correspondences

2. Minimize the cost function

E(R∗, t∗) =

n∑
i=1

m∑
j=1

wi,j ||mi − (Rdj + t) ||2, (3.9)

where R and t are the rotation and translation between the two clouds and the ∗

denotes the entities that minimizes E(R∗, t∗). mi and dj are the points in the two
point clouds and wi,j is 1 if mi and dj are correspondences and 0 otherwise.

3. Apply the transformation

T =

[
R t

0 0 0 1

]
. (3.10)

For every iteration a transformation is applied which will shift the relative position
between the points in the two point clouds. Therefore, new correspondences have to be
picked for every iteration. If the transformation applied is significant, the new correspon-
dences will not be the same as for the previous iteration. Hence, the tactic of the ICP
algorithm is simply to minimize the total Euclidean distance between two point clouds. If
these two clouds are equal, or similar, they will appear aligned when the total Euclidean
distance between them is minimized.

3.5 Least-Squares Fitting
The Least-Squares fitting method is a method for fitting a model to a set of data points.
A simple data set consist of n points (xi,yi),i = 1, .., n. xi is independent, while yi

is dependent of xi and is found by observation. The model is described by the function
f(x, B), where B is the vector containing the parameters. For example the equation of a
line:

y = mx+ b. (3.11)

Here, y = f(x, B), B =
[
m b

]
and x = x.

The residual ri is defined as the difference between the actual value of the dependent
variable and the value predicted by the model:

ri = yi − f(xi, B). (3.12)

The Least-Squares method find the minimum sum of all the squared residuals. This sum
is defined as:

S =

n∑
i=1

r2i . (3.13)
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The minimum of the sum is found by setting the gradient to zero:

∂S
∂Bj

= 2
∑
i

ri
∂ri
∂Bj

= 0, j = 1, . . . ,m, (3.14)

where each parameter in B will produce one gradient equation. Equation (3.14) can be
reduced to

∂S
∂Bj

= 2
∑
i

ri
∂f(xi, B)

∂Bj
= 0, j = 1, . . . ,m, (3.15)

because yi is independent of Bj . Setting

Xij =
∂f(xi, B)

∂Bj
, (3.16)

the overdetermined system can be defined as:

n∑
j=1

XijBj = yi, i = 1, . . . ,m. (3.17)

Rewriting to matrix form:

XB = y, (3.18)

where

X =


X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

. . .
...

Xm1 Xm2 . . . Xmn

 , B =


B1

B2

...
Bn

 , y =


y1
y2
...
ym

 .
The Least-Squares estimate of B is then given by:

B̂ = (XTX)−1XTy. (3.19)

3.6 Geometric Algebra

This section gives a brief introduction to geometric algebra. The focus will be on 5D
conformal geometric algebra because it allows for easy and intuitive handling of geometric
entities such as planes and spheres. The introduction is based of Dietmar Hildenbrand’s
book Foundations of Geometric Algebra Computing published by Springer (2013) [4].
Only material relevant for this thesis will be presented.
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3.6 Geometric Algebra

Table 3.1: The 32 blades of 5D conformal geometric algebra

Grade Term Blades No.
0 Scalar 1 1
1 Vector e1, e2, e3, e∞, e0 5

2 Bivector

e1 ∧ e2, e1 ∧ e3, e1 ∧ e∞,
e1 ∧ e0, e2 ∧ e3, e2 ∧ e∞,
e2 ∧ e0, e3 ∧ e∞, e3 ∧ e0,
e∞ ∧ e0

10

3 Trivector

e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e∞, e1 ∧ e2 ∧ e0,
e1 ∧ e3 ∧ e∞, e1 ∧ e3 ∧ e0, e1 ∧ e∞ ∧ e0,
e2 ∧ e3 ∧ e∞, e2 ∧ e3 ∧ e0, e2 ∧ e∞ ∧ e0,
e3 ∧ e∞ ∧ e0

10

4 Quadvector

e1 ∧ e2 ∧ e3 ∧ e∞,
e1 ∧ e2 ∧ e3 ∧ e0,
e1 ∧ e2 ∧ e∞ ∧ e0,
e1 ∧ e3 ∧ e∞ ∧ e0,
e2 ∧ e3 ∧ e∞ ∧ e0

5

5 Pseudoscalar e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 1

3.6.1 Blades, pseudoscalars and mulitvectos
The basis vectors e1, e2,...,en are the basic elements of vector algebra, but only a part of
geometric algebra. The basic elements of geometric algebra are called blades, where each
blade has a grade. A scalar is a blade of grade 0 (0-blade) and the basis vectors are blades
of grade 1 (1-blade). The blades spanned by two 1-blades are called 2-blades, and so on.
The 2-blade

A2 = e1 ∧ e2 (3.20)

describes a oriented surface area. In this case it is the area spanned by basis vectors e1 and
e2 which simply is a oriented area in the xy plane. The maximum grade blade n,

I = e1 ∧ e2... ∧ en (3.21)

is called the pesudoscalar because it only exist one such element. A linear combination
of k-blades is called a k-vector and a linear combination of blades with different grades is
called a multivector, which are the general elements of geometric algebra.

3D Euclidean geometric algebra consists of the scalar, three basis vectors, three bivec-
tors and the pseudo scalar, summing up to a total of 8 blades. 5D conformal geometric
algebra consists of the scalar, five basis vectors, ten bivectors, ten trivectors, five quadvec-
tors and the pseudosclar, summing up to a total of 32 blades (see Table 3.1 [4]).

3.6.2 Geometric product
Two vectors in 2D space are given as:

u = u1e1 + u2e2, v = v1e1 + v2e2. (3.22)

27



Chapter 3. Background Theory

Their geometric product is:

uv = u ∧ v︸ ︷︷ ︸
Outer product

+ u · v.︸ ︷︷ ︸
Inner product

(3.23)

The inner product of two vectors is a scalar:

u · v = (u1e1 + u2e2) · (v1e1 + v2e2)
= u1v1e1 · e1 + u1v2e1 · e2 + u2v1e1 · e2 + u2v2e2 · e2
= u1v1 + u2v2,

(3.24)

where

ei · ej = 0, ei · ei = 1, i 6= j

for basis vectors e1...n ∈ Rn. The outer product is:

u ∧ v = (u1e1 + u2e2) ∧ (v1e1 + v2e2)
= u1v1e1 ∧ e1 + u1v2e1 ∧ e2 + u2v1e1 ∧ e2 + u2v2e2 ∧ e2
= (u1v2 − u2v1)e1 ∧ e2,

(3.25)

where

ei ∧ ei = 0, ei ∧ ej = −ej ∧ ei, i 6= j

for basis vectors e1, ..., en ∈ Rn.

3.6.3 Invertibility and Duality

The inverse of a blade A is defined by:

AA−1 = 1 (3.26)

The inverse of the Euclidean pseudoscalar:

II = −1
→ II(I−1) = −I−1
→ I−1 = −I

(3.27)

The dual of an algebraic expression is calculated by dividing by the pseudoscalar. For
example the dual of the plane A = e2 ∧ (e1 + e3) is:

A∗ = e2 ∧ (e1 + e3)(e1e2e3)−1

= e2 ∧ (e1 + e3)(−e3e2e1)
= −e3 + e1.

(3.28)
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Table 3.2: The basic geometric entities of 5D conformal space

Entity IPNS representation OPNS representation
Point P = p + 1

2p
2e∞ + e0

Sphere S = P − 1
2r

2e∞ S∗ = P1 ∧ P2 ∧ P3 ∧ P4

Plane π = n + de∞ π∗ = P1 ∧ P2 ∧ P3 ∧ e∞
Circle Z = S1 ∧ S2 Z∗ = P1 ∧ P2 ∧ P3

Line L = π1 ∧ π2 L∗ = P1 ∧ P2 ∧ e∞
Point pair Pp = S1 ∧ S2 ∧ S3 Pp∗ = P1 ∧ P2

3.6.4 Basis Vectors in Conformal Space
Conformal space consist of the three Euclidean basis vectors e1, e2, e3 and two additional
basis vectors e+, e−.

e2+ = 1, e2− = −1, e+ · e− = 0. (3.29)

These basis vectors are combined to give more intuitive meaning:

e0 = 1
2 (e− − e+), e∞ = e− + e+. (3.30)

e0 represent the 3D origin and e∞ represents infinity. The new basis vectors are null
vectors:

e20 = e2∞ = 0. (3.31)

Their inner product is

e∞ · e0 = −1. (3.32)

3.6.5 The Basic Geometric Entities in Conformal Space
The basic geometric entities in conformal space (point, sphere, plane, circle, line and point
pair) has two representations. The IPNS (inner product null space) representation and the
OPNS (outer product null space) representation. These two representations are dual of
each other, which makes it easy to go from one to the other. In the OPNS representation,
the outer product indicates the construction of a geometric object with help of the points
that lie on it. In the IPNS representation, the outer product indicates the intersection of
geometric entities. These representations are great when working with point clouds. The
OPNS representation allow for easy construction of geometric entities from points, while
the IPNS representation allows for easy extraction of parameters.

Both the IPNS and OPNS representations of all the basic geometric entities in confor-
mal space are listed in Table 3.2 [4]. In Table 3.2 x and n represent 3D entities obtained
by linear combinations of the 3D basis vectors:

x = x1e1 + x2e2 + x3e3 (3.33)
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3.6.6 Least-Squares Fitting in Conformal Space
This section is a summary of the least-squares approach described in [37] and shows the
least-squares fitting procedure of points to spheres and planes in conformal space.

Let Pi describe a point and S a sphere or a plane:

Pi = pi +
1

1
p2
i e∞ + e0 (3.34)

S = s + s4e∞ + s5e0. (3.35)

S is to be fitted to the set of points P by minimizing the error function

min

n∑
i=1

(Pi · S)2, (3.36)

where Pi · S is a distance measure between point Pi and the sphere/plane S. This can be
written in bilinear form as

min(sTBs), (3.37)

where

sT = (s1, s2, s3, s4, s5),

and the 5× 5 matrix

B =


b1,1 b1,2 b1,3 b1,4 b1,5
b2,1 b2,2 b2,3 b2,4 b2,5
b3,1 b3,2 b3,3 b3,4 b3,5
b4,1 b4,2 b4,3 b4,4 b4,5
b5,1 b5,2 b5,3 b5,4 b5,5


has entries

bj,k =

n∑
i=1

wi,jwi,k,

where

wi,k =


pi,k if k ∈ {1, 2, 3}
−1 if k = 4

− 1
2p

2
i if k = 5.

By introducing a Lagrangian, it can be shown that the solution of the minimization
problem is given by the eigenvector of B which corresponds to the smallest eigenvalue.
The eigenvector can be found by singular value decomposition of the matrix B.

B = UDV T (3.38)

U is a matrix where each column represents an eigenvector of B and D is a diagonal
matrix where each diagonal value represent the corresponding eigenvalue of the eigenvec-
tors in U .
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3.6.7 Geometric Algebra vs Vector Algebra

For comparison, an example of a sphere constructed from 4 points are presented. First, the
parameters of the sphere are obtained by using vector algebra in Euclidean space. Then,
the parameters of the sphere are obtained by using geometric algebra in conformal space.

Sphere Example with Vector Algebra

Given four non-coplanar points in euclidean space:

x1e1 + y1e2 + z1e3
...

x4e1 + y4e2 + z4e3

The equation of the sphere that passes through the points is found by solving the determi-
nant of the following matrix:∣∣∣∣∣∣∣∣∣∣

(x2 + y2 + z2) x y z 1
(x21 + y21 + z21) x1 y1 z1 1
(x22 + y22 + z22) x2 y2 z2 1
(x23 + y23 + z23) x3 y3 z3 1
(x24 + y24 + z24) x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣
= 0 (3.39)

The parameters are extracted by writing the result on standard form:

(x− xc)2 + (y − yc)2 + (z − zc)2 = r2 (3.40)

Sphere Example with Geometric Algebra

Given four non-coplanar points in conformal space:

P1 = p1 + 1
2p

2
1e∞ + e0

...
P4 = p4 + 1

2p
2
4e∞ + e0.

The equation of the sphere that passes through the points is found by taking the wedge
product of the points:

S∗ = P1 ∧ P2 ∧ P3 ∧ P4.

Taking the dual of the sphere and normalizing gives:

S = S∗I−1 = xc +
1

2
(x2

c − r2)e∞ + e0.

The sphere center xc and radius r can be extracted from the conformal vector S.
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3.7 Kinematics
A vector with coordinates vA in reference frame A can be represented with coordinates
vB in reference frame B

vA = RA
Bv

B + tA (3.41)

where RA
B is the rotation matrix and tA is the translation from A to B. The entities are

illustrated in Figure 3.10
The columns of rotation matrix RA

B describe the direction of the axes of reference
frame B in the coordinates of reference frame A.

RA
B =

[
xA
B yA

B zAB
]
. (3.42)

A B
zA

yA

xA

xB yB

zB

(((((((((((((((((((tA

Figure 3.10: The entities of reference frame A and B in a 3D space.

Rotation and translation can be combined in a homogeneous transformation matrix

TA
B =

[
RA

B tA

0 1

]
. (3.43)

A homogeneous vector ṽA =

[
vA

1

]
in reference frame A can be represented with coordi-

nates ṽB =

[
vB

1

]
in reference frame B

ṽA = TA
Bṽ

B . (3.44)
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Chapter 4
Solution and Implementation

4.1 Introduction

Much effort has been made in the process of implementing and adapting a robust RANSAC
algorithm in this thesis. In order for development and testing to be efficient, a C++ soft-
ware application with a Graphical User Interface (GUI) was developed in the Qt Integrated
Development Environment (IDE). Setting up the software project with relevant libraries
for visualization, communication with sensors, point cloud processing and geometric al-
gebra, has been time consuming. Visualization was prioritized when developing the GUI,
as visual confirmation of results is a helpful tool when implementing. A lot of informal
testing was done from an office desk, as data could be obtained instantly with a Kinect for
Xbox One depth sensor. Common objects like ping-pong balls, coffee mugs and the floor
could be used to represent primitive shapes.

In this chapter developed software and the RANSAC-based algorithm for primitive
shape detection will be presented. Shape modeling and fitting is done in conformal space
with geometric algebra. Different strategies for terminating the algorithm are considered.
Tactics for real-time tracking are suggested. In addition, a more refined algorithm for
detection of several primitives is developed. This algorithm combines several concepts
presented in Section 2.4. Lastly, a simple robotic pick-and-place task of primitive objects
is implemented for the purpose of demonstrating the algorithms and possible applications.

4.2 Software

The C++ software combines geometric algebra operations, developed algorithms, point
cloud capturing and visualization into a GUI program. The program is appended as a digi-
tal appendix and the source code for some of the main functions can be found in Appendix
B. The program requires a computer running on the Ubuntu 14.04 LTS operating system
and a working installation of the Point Cloud Library (PCL) with all its dependencies in-
stalled. Also, the Versor open source library for geometric algebra computations and the
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libfreenect2 open source library for the Kinect for Xbox One camera is required.

4.2.1 Structure

Figure 4.1 shows the structure of the developed software. Boxes in red indicate the external
libraries and where they are used. Boxes in blue indicate features that are controlled by
the user through the GUI, these boxes also interacts with the user through the visualization
window. The boxes in white are underlying functions in the program.

Visualization is prioritized so that effects of different operations can be understood. It
is also useful for verifying the result of shape detection, tracking and segmentation. As
the depth sensor of the Kinect for Xbox One output 217 088 3D points, a preprocessing
step that reduces the data size is handy such that only relevant data are considered. This
preprocessing step mainly consist of cropping point data that fall outside some specified
bounds.

Figure 4.1: Software structure of the developed software. The software takes data from a 3D camera
or disk for manipulation. The results are visualized in a visualization window. The red boxes are
external software libraries that enables various functionality.
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4.2.2 Graphical User Interface

The GUI can be seen in Figure 4.2. It shows a black space for visualization to the right and
the program control panel to the left. The implementations of the buttons and visualization
window are all declared in the same header file and implemented in the corresponding .cpp
file. It is under the implementations of the buttons that different functions of the program
are called. Furthermore, a callback function for updating the visualization window runs
every 20ms, as long as the program is not busy with other processes.

Figure 4.2: The GUI developed in the Qt IDE for the software. The GUI enables interaction with
the visualized data set through push-buttons, sliders and editable number-boxes.

4.2.3 External Libraries

The C++ based Versor library is developed for geometric algebra computations and for-
mulations. It is an open source project developed by Pablo Colapinto [38]. The features
of this library is mainly used for shape modeling, which will be described later in this
chapter.

The Point Cloud Library is a open source library developed for image- and point cloud
processing and visualization. It contains implementations of all the features presented in
Section 3.3 and many more. There are many contributors and sponsors to this project.
The library’s founders, Radu Bogdan Rusu and Steve Cousins, gives a description of the
motivation and features of the project in [1]. The library is mainly used for handling point
clouds and visualization.
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The libfreenect2 library is an open source grabber for the Kinect for Xbox One camera.
It is developed by Lingzhu Xiang and can be found online [https://github.com/OpenKinect/libfreenect2].
The library allows for control of the camera and access to the data streams.

4.3 Shape modeling
One of the focuses of this thesis is to explore the use of geometric algebra when RANSAC
is applied to geometrical problems. Planes and spheres are described by vectors in con-
formal space, and are easily manipulated with geometric operations. The use of geometric
algebra is therefor considered superior to vector algebra when working with these objects.
More intricate shapes, like cylinder, cone and torus, cannot be described by a single vector
in conformal space and are therefore not necessarily easier to model with geometric alge-
bra. However, a novel description of a cylinder is suggested that is based on two spheres in
conformal space. All the presented primitives are implemented in the objects.h file found
in Appendix B.

4.3.1 Plane
A plane is described in conformal space by the vector:

π = n + de∞ (4.1)

n is the normal vector of the plane in Euclidean space and d is the distance from the plane
to the origin in the direction of the normal vector.

A plane can be constructed from three points in conformal space by taking the wedge
product:

π∗ = P1 ∧ P2 ∧ P3 ∧ e∞. (4.2)

Taking the dual and normalizing gives the plane on the IPNS form:

π = π∗I−1 = n + de∞ (4.3)

4.3.2 Sphere
A sphere is described in conformal space by the vector:

S = xc +
1

2
(x2

c − r2)e∞ + e0 (4.4)

xc is the sphere center in Euclidean space and r is the sphere radius.
A sphere can be constructed from four non-coplanar points in conformal space by

taking the wedge product:

S∗ = P1 ∧ P2 ∧ P3 ∧ P4 (4.5)

Taking the dual and normalizing gives the sphere on the IPNS form:

S = S∗I−1 = xc +
1

2
(x2

c − r2)e∞ + e0 (4.6)
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4.3.3 Circle
A circle is described in conformal space as the intersection of two spheres

Z = S1 ∧ S2 (4.7)

or, by the outer product of three points that lie on it

Z∗ = P1 ∧ P2 ∧ P3 (4.8)

The center of the circle can be found by the product:

Pc = Ze∞Z (4.9)

Normalization gives:

Pc = xc +
1

2
x2
ce∞ + e0 (4.10)

The radius of the circle is the distance between the center and a point on the circle. This
distance can be found by using the inner product in conformal space:

r =
√
−2(Pc · P1). (4.11)

4.3.4 Cylinder
Unlike spheres and planes, a cylinder cannot be uniquely defined from points on its surface
without some additional assumptions or constraints. A line and a radius can define a
cylinder. The line can be infinite, giving the cylinder infinite length, or it can have some
absolute length. For obtaining the line and the radius from point-data, two approaches
were considered.

Approach 1: Circle-Plane

The centerline of a cylinder is defined as the normal of a plane going through the center of
a circle lying on the plane. The cylinder radius is defined as the radius of the circle. Figure
4.3a shows a circle on a plane, the normal of the plane is placed in the center of the circle,
defining the position and direction of the cylinder. The same three points can define the
plane and the circle, this is easily done in conformal space.

Given three points:

P1 = x1 + 1
2x

2
1e∞ + e0

...
P3 = x3 + 1

2x
2
3e∞ + e0,

the circle and plane are constructed

Z∗ = P1 ∧ P2 ∧ P3

π∗ = P1 ∧ P2 ∧ P3 ∧ e∞.

The normal of the plane, the center of the circle and the radius are found as described in
Section 4.3.1 and 4.3.3.
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(a) Approach 1: Circle-plane representation of a
cylinder

(b) Approach 2: Sphere-sphere representation of
a cylinder

Figure 4.3: The two approaches considered for defining a cylinder. Approach 1 is based on a circle
and a plane in conformal space. Approach 2 is based on two spheres in conformal space.

Approach 2: Sphere-Sphere

For cylinders that have no thickness, a sphere with the same radius as the cylinder would
fit inside the cylinder with the sphere center coinciding with the centerline of the cylinder.
By placing two such spheres inside the same cylinder, the centerline of the cylinder can be
defined as the line going through the two sphere centers. Figure 4.3b shows two spheres
with equal radius encapsuled by a cylinder, the cylinder-axis goes through the two sphere
centers.

Given eight points:

P1 = x1 + 1
2x

2
1e∞ + e0

...
P8 = x8 + 1

2x
2
8e∞ + e0,

two spheres can be constructed

S∗1 = P1 ∧ P2 ∧ P3 ∧ P4

S∗2 = P5 ∧ P6 ∧ P7 ∧ P8.

Their dual are found to extract parameters:

S1 = xc1 + 1
2 (x2

c1 − r2)e∞ + e0
S2 = xc2 + 1

2 (x2
c2 − r2)e∞ + e0,

where r is the cylinder radius and xc1 and xc2 are the sphere centers. The centerline of the
cylinder in Euclidean space is defined in parametric form by:

l(t) = xc1 + (xc2 − xc1)t, (4.12)

where t is the parameter along the line.
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4.4 Primitive Shape Detection

RANSAC-based algorithms searches for, and scores, a model within a noisy data set until
some stopping criteria is satisfied. As described in Chapter 2, several approaches exist.
Which approach to pick depends on what is known about the data set and the model. The
focus of this thesis is manipulation of point clouds from 3D camera sensors. Given that
the data obtained are noisy point clouds, three cases were considered:

• Case 1: The number of inliers for a primitive is known.

• Case 2: Nothing is known about the primitives represented in the point cloud.

• Case 3: The point cloud contains a representation of a specific primitive with one
(or more) known parameter(s).

Each case demand different criteria to be fulfilled to terminate the algorithm. However,
the initialization and inlier classification of each primitive are equal in all the cases. The
implementation of this will be presented first in this section. Thereafter, the termination
strategy for each case is presented. Lastly, some probabilistic relations for detecting a
primitive in a point cloud are presented. The presented algorithms are implemented in the
ransac.h file found in Appendix B.

4.4.1 Initialization and Inlier Classification

Planes, spheres and cylinders have been implemented. They are all initialized in conformal
space with geometric algebra. The inlier classification is done in conformal space for
planes and spheres as geometric algebra offers easy computation of distances between
points and these objects. However, since cylinders cannot be represented as a single vector
in conformal space, there is no simple way of calculating distance between a point and a
cylinder with geometric algebra. Therefore, this calculation is done in Euclidean space
with vector algebra.

Plane

Given a point cloud P of N > q points in 3D Euclidean space, a plane is to be identified
as a subset of P. The error tolerance T is given.

1. Randomly pick a subset of q = 3 points from P and project them to conformal
space:

P1 = x1 + 1
2x

2
1e∞ + e0

...
Pq = xq + 1

2x
2
qe∞ + e0.

2. Define a plane using the approach described in Section 4.3.1.
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3. Calculate the distance d between the plane π and each point Pi in P, using the inner
product in conformal space:

d = π · Pi. (4.13)

Pi is classified as a inlier point if the distance d between the point and the plane
satisfies the condition:

−T ≤ d ≤ T (4.14)

Sphere

Given a point cloud P of N > q points in 3D Euclidean space, a sphere is to be identified
as a subset of P. The error tolerance T is given.

1. Randomly pick a subset of q = 4 points from P and project them to conformal
space:

P1 = x1 + 1
2x

2
1e∞ + e0

...
Pq = xq + 1

2x
2
qe∞ + e0.

2. Define a sphere using the approach described in Section 4.3.2.

3. Define the center of the sphere as a point:

Pc = xc +
1

2
x2
ce∞ + e0 (4.15)

4. Calculate the distance d between the sphere center Pc and each point Pi in the data
set using the inner product in conformal space:

d =
√
−2(Pc · Pi). (4.16)

Pi is classified as a inlier point if the distance d between the point and the sphere
center satisfies the condition:

r − T ≤ d ≤ r + T (4.17)

Cylinder

Given a point cloud P ofN > q points in 3D Euclidean space, a cylinder is to be identified
as a subset of P. The error tolerance T is given.

1. Randomly pick a subset of q (q = 3 for approach 1 and q = 8 for approach 2) points
from P and project them to conformal space:

P1 = x1 + 1
2x

2
1e∞ + e0

...
Pq = xq + 1

2x
2
qe∞ + e0.
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2. Define a cylinder using one of the approaches described in Section 4.3.4.

3. Find two points on the center line of the cylinder in Euclidean space. If approach 1:

c1 = xc

c2 = c1 + n.
(4.18)

If approach 2:

c1 = xc1

c2 = xc2.
(4.19)

4. Calculate the distance d between the line that runs through c1 and c2 and each point
xi in the data set using:

d =
| (xi − c1)× (xi − c2) |

| c1 − c2 |
(4.20)

xi is classified as a inlier-point if the distance between the point and the line satisfies
the condition: r − T ≤ d ≤ r + T .

5. The cylinder edges are found by picking the two inlier points that lies farthest away
from another, xb and xt, and projecting them to the centerline of the cylinder. First
the vector from a point c1 on the center-axis to xb and xt are found:

cxb = xb − c1
cxt = xt − c1.

(4.21)

Projecting onto the cylinder center-axis, n:

xeb = (cxb · n)n
xet = (cxt · n)n

(4.22)

6. The length of the cylinder is the distance between the cylinder edges:

l =| xet − xeb | (4.23)

4.4.2 Termination Strategy
Case 1: Known number of inliers for a primitive

In this case, the score is simply the number of inliers. A primitive is accepted and iteration
is terminated if the number of inliers I is greater than some threshold t.

Case 2: Nothing is known about the primitive

In this case a predetermined number of iterations k is defined. After k iterations, the
highest scoring primitive is accepted and the algorithm is terminated.

For a plane, it is sufficient to define the score as the number of inliers. However, for a
sphere and a cylinder this approach would always return the larges primitive in the point
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cloud. To avoid this, the density of inliers are considered when scoring the primitives. The
density ρ is defined as the number of inliers I per surface area A of the primitive. For a
sphere:

ρ =
I

As
=

I

4πr2
, (4.24)

and for a cylinder:

ρ =
I

Ac
=

I

2πrl
(4.25)

Furthermore, if unprocessed point clouds from a 3D camera are considered, the density of
inliers will also depend on the distance from the sensor. This is because the point density
is higher closer to the sensor. The number of points nA per unit area in relation to the
z-distance from the sensor is defined as:

nA = azb, (4.26)

where a and b are some sensor-dependent constants which can be found experimentally.
A scoring function, which takes into account both the surface area of the primitive and its
distance from the sensor, is defined:

f(ρ, z) =
ρ

nA
=

I

Aazb
. (4.27)

If only the surface area that is visible from the sensor is taken into account (for spheres
and cylinder this is approximately equal to half their surface area), the denominator for
this scoring function approximates the expected number of inliers for a primitive. This
means that the functions returns values between 0 and 1.

Case 3: A parameter of the primitive is known

When the point cloud contains a specific primitive with known parameters, the iteration
continues until the primitive is detected. The number of iterations k will in this case be
undefined. Using the same scoring function as for case 2 implies the need of defining a
threshold t for deciding whether the primitive is accepted or not. In addition, after the
initialization of a primitive, its parameters can be examined before counting inliers and
scoring. A primitive is only scored if its parameters satisfies the threshold t ∈ [0, 1].
Thus, scoring is only done for a fraction of the initialized primitives with the intention of
computational savings.

Algorithm for a sphere or a cylinder with specified radius rt:

1. Initialize the primitive as described in Section 4.4.1.

2. Classify inliers if:

rt(1− t) ≤ r ≤ rt(1 + t), (4.28)

repeat step 1 if not.
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3. Calculate the score

f(ρ, z) =
ρ

nA

and terminate if:

f(ρ, z) ≥ 1− t. (4.29)

Repeat step 1-2 if not.

4.4.3 Probability
Given a point cloud P of N points containing a shape S of n points, a minimal subset
of q points required to uniquely define the shape is randomly picked. The probability of
detecting the shape S in a single pass of the algorithm is:

P (n) =

(
n
q

)(
N
q

) ≈ ( n
N

)q
. (4.30)

The probability of detecting the shape after k iterations is:

P (n, k) = 1− (1− P (n))k. (4.31)

The number of iterations K required to detect a shape of size n with a probability
P (n,K) ≥ pt:

K ≥ ln(1− pt)
ln(1− P (n))

. (4.32)

The denominator can be approximated by its Taylor series if P (n) is small:

K ≈ − ln(1− pt)
P (n)

. (4.33)

Thus, the number of iterations required to detect a shape is directly correlated to the
fraction n

N . This confirms the intuition that higher percentage of outliers requires higher
number of iterations.

4.5 Tracking
Tracking an object in a data stream from a 3D camera is in this thesis simplified to the
problem of detecting the same primitive in multiple point clouds. In order for the tracking
to be performed in real-time, the detection of a primitive have to be successful before a
new point cloud is received form the 3D camera. As 3D cameras can deliver point clouds
at rates of 30-60 frames per second (FPS), detections have to be completed in the 17-33ms
range. The time of detection depends on the computational power of the computer and
computational cost of the algorithm.
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In order to keep the computational cost of the algorithm somewhat constant, a preemp-
tive strategy is applied. The stopping criteria of Case 2 in Section 4.4.2 is chosen, which
keeps the number of iterations k constant. The size of the point cloud is also reduced to
improve the probability of detection and keep the computational cost of every iteration as
low as possible. Only points within a certain distance d to the previous known position of
the primitive are considered. Thus, the change in position, in two consecutive point clouds
in the stream, have to be within the bounds of d for tracking to be successful. Hence, there
is a trade-off between computational cost and maximum allowed change in position when
choosing the value of d.

For a plane, only points Pi that satisfies the condition

π · Pi ≤ d (4.34)

are considered. π is the plane in the previous point cloud. For a sphere the condition is√
−2(Pc · Pi) ≤ rt + d, (4.35)

where Pc and rt is the center and radius of the sphere in the previous point cloud. For a
cylinder the condition is

| (xi − c1)× (xi − c2) |
| c1 − c2 |

≤ rt + d, (4.36)

where c1 and c2 are two points on the centerline of the cylinder in the previous point cloud
and rt is the previous radius.

The tracking algorithm:

1. Discard all point that do not satisfy the proximity condition

2. Initialize the primitive as described in Section 4.4.1.

3. Classify inliers and compute the score. For spheres and cylinders, only if

r(1− t) < rt < r(1 + t).

4. Terminate and return the highest scoring primitive if the maximum number of itera-
tions k is reached or if a primitive with a score

f(ρ, z) > 1− t

is found. If not, repeat step 2 and 3.

4.6 Multiple Shape Detection
The goal of this algorithm is to detect multiple primitives in a point cloud with a single
run of the algorithm. Efforts have been made to make the algorithm robust and compu-
tationally cheap. The sampling strategy is inspired by Schnabel et al. in [6], where the
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point cloud is organized in an octree structure. However, while the suggested sampling
strategy aims to iterate through all nodes of the octree, their sampling strategy is more
sophisticated as it keeps track of which levels of the octree is more probable to produce
good detections. The shape modeling and scoring is performed as described in previous
sections. The algorithm is only implemented for spheres due to the limited time avail-
able for this project, but additional primitives are possible. The presented algorithm is
implemented in the ransac.h filer found in Appendix B.

Even though the motivation for the algorithm is to establish a robust way to detect
several primitives in a point cloud, it is discovered that the suggested sampling strategy can
in some cases drastically improve the performance of detection. An example is presented
and discussed in Section 4.6.3.

4.6.1 Overview
Given a point cloud P of points {P1, . . . , PN}, the point cloud is organized in an octree
structure. The size of the octree is set such that the root node of the octree spans over the
whole point cloud. The root node is subdivided into smaller nodes until nodes with sides
of length dres are obtained. The resolution dres of the octree should be chosen such that
there exist a node that contains only inlier points of the smallest shape in the point cloud.

A minimal subset of q points is picked within a node in the octree. The size of q is
determined by the largest q for the primitives considered. All the considered primitives
S are initialized from the minimal subset and their inliers I are classfied as discussed in
Section 4.4.1. The primitives S are scored by evaluating the scoring function f(E(I)) =

I
E(I) , where E(I) is the expected number of inliers for a primitive as discussed in Case 2
in Section 4.4.2. The subset of inliers for a primitive PSi

⊂ P are extracted if the score is
larger than some threshold t.

By systematically repeating the initialization and scoring procedure for every node at
every level of the octree all shapes are detected. Furthermore, by starting the procedure at
the highest level of the octree, large shapes are detected and extracted from the point cloud
first. When the procedure is conducted for all the nodes in the octree, the extracted set
of primitives S = {S1, . . . ,Sm} are returned with their corresponding subsets of inliers
PS1

, . . . ,PSm
⊂ P.

4.6.2 Sampling strategy
Shapes are a local phenomenon, therefore the probability that two points belong to the
same shape is higher the smaller the distance between the points. By organizing the points
in an octree, spatial proximity between points are established very effectively [6]. If a
shape is present in a point cloud, one can by observation argue that in some level of the oc-
tree there exists a node that only contain points that belong to that shape. This is true when
the resolution of the octree is sufficiently small. By randomly picking a minimal subset of
points from a node that only contain points from a single shape, this minimal subset will
represent the shape. However, since sensed data are considered, some additional consid-
eration have to be taken. Even though all the points within a node fall between the inlier
bounds of a shape, there is no guaranty that every minimal combination of these points will
give an accurate description of the shape. Therefore, the number of iterations k for each
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node will be in the range of 2 − 4 instead of 1 to ensure that no shape is overlooked. By
starting at the highest level of the octree, the largest shapes will be detected and extracted
first, which reduces the number of points to consider in later iterations.

The number of nodes present in the octree dictates the number of iterations. The
number of nodes are dependent of the size of the root node and the resolution of the octree,
as shown in Section 3.3.1. When deciding the depth of the octree the smallest shapes
present in the point cloud are considered. Setting the resolution such that the smallest
node will contain ≤ 1

4 of the volume of the shape is considered sufficient for obtaining a
node where most of the points belong to the shape.

When a point cloud is organized in an octree, many of the nodes will be empty or
consist of few points. This is the case because the root node will in many cases span over
large regions that does not contain any points. By only considering nodes that contain
more than q points, the number of iterations can be reduced considerably.

4.6.3 Performance

The power of this sampling strategy is best illustrated with an example. A point cloud of
49 396 points can be seen in Figure 4.4. The point cloud contains a sphere with radius
r = 0.02m and 109 inlier points, which is to be detected. The point cloud fits inside an
octree with a root node with sides of 2.56m. According to Section 3.3.1 a resolution of
dres = 0.01m suggest a total of 2 396 745 nodes, and with k = 2 results in 4 793 490
iterations. However, in this case only 10 118 nodes are occupied with more than q = 4
points, resulting in a total of 20 236 iterations. Assuming that at least one of the nodes has
a inlier ratio ≥ 0.95, detection of the sphere is achieved with a probability of 0.966. De-
tecting the sphere with the same probability using a random sampling scheme as presented
in Section 4.4.3, would require 142 612 308 700 iterations. In this particular case the new
sampling scheme is more than 7 000 000 times more effective than a random sampling
scheme. However, this measure is highly dependent on the point density and the required
depth of the octree.

Figure 4.4: A point cloud of 49 396 points showing a ping-pong ball placed on the floor. For a
random sampling strategy it would require approximately 7 000 000 times more iterations to detect
the sphere, compared to the suggested sampling strategy. (Obtained with the Kinect for Xbox One)
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4.6.4 Scoring
Inspired by the R-RANSAC [23] algorithm described in Section 2.4, the cost of scoring
is reduced by only scoring against a subset Psub of points from the point cloud P. The
original point cloud P is randomly divided into 4 disjoint subsets of equal size and point
density. When a primitive is to be scored, it is scored against one of these subsets. Only
if it the score is above a threshold t0 = t

4 the primitive will be scored against the whole
point cloud P. The primitive is accepted if this score is ≥ t.

4.7 Robotic Pick-and-Place
In this robotic pick-and-place task, a 3D camera is used for primitive shape detection and
localisation. The primitives positions and parameters are used for robot-camera calibration
and robot positioning. The goal is to pick-and-place arbitrarily positioned ping-pong balls
inside an arbitrarily positioned hollow tube. The ping-pong balls are detected as spheres,
while the tube is detected as a cylinder.

Figure 4.5: The setup of the robotic pick-and-place demonstration. The 3D camera is used for
detecting the spheres and the cylinder. The information is sent to the robot arm, which is used to
place the spheres in the cylinder.

Figure 4.5 show the setup of the demonstration. A Kinect for Xbox One 3D camera is
used to obtain 3D point clouds of the scene. A KUKA KR 6 robot arm is used for pick-and-
place operations. In addition, the robot is controlled by a KUKA KR CR4 controller. The
communication between the robot controller and the software described in Section 4.2 is
done through the Robot Operating System (ROS) on a computer running the Ubuntu 14.04
LTS operating system.
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4.7.1 Information Flow and Software

Figure 4.6 show the information flow in the setup. The operations in the purple box rep-
resent the software and GUI described in Section 4.2. When an object is detected, the
position of the object is transformed to the robot coordinate frame. This position is sent to
ROS, which sends necessary move commands to the KR C4 robot controller. Commands
for opening and closing the gripper is also sent from ROS. The KR C4 robot controller
does the trajectory planning and execution of the robot movements. When a move is suc-
cessful, this is communicated back to ROS, which sends the next move command, if there
are any.

The structure- and information flow of ROS and the robot controller is rather com-
plicated and is not the scope of this thesis. Due to the work of fellow students Asgeir
Bjørkedal and Kristoffer Larsen at the Institute of Production and Quality Engineering,
easy control of the robot is enabled. Once connected to ROS, their work enable manipula-
tion of the robot with two simple commands. One move command, which moves the end
effector of the robot to a desired position with a desired orientation, and a command for
opening and closing the gripper. These were the only two commands used for controlling
the robot. Thanks to Bjørkedal and Larsen, not much time or effort were spent on robot
control.

Figure 4.6: Information flow of the demonstrator. Positions of detected shapes are sent to ROS
which gives commands to the robot controller.

4.7.2 Calibration

Locating the robot coordinate frame in the camera coordinate frame is necessary in order
to transform camera coordinates to robot coordinates. This is done in a calibration step
that is necessary to perform every time the camera is repositioned. A standard method of
doing this is identifying the position and orientation of a specific object in both coordinate

48



4.7 Robotic Pick-and-Place

systems, and then calculate the transformation between the two coordinate systems based
on the pose of the object.

Figure 4.7: The robot cell used for the demonstrator. The robot coordinate frame is placed in the
middle of the table and have to be defined in the camera frame.

Figure 4.7 show how the camera can be positioned in the robot cell. It also show how
the robot coordinate frame is defined on the work-table. The robot origin OR is located
at the center of the table, the ~zR-axis is normal to the table and the ~xR and ~yR-axis are
parallel with the table. Because the axes are perpendicular to each other, this coordinate
system can be fully defined in the camera frame by locating the origin and the direction of
two of the axes. The origin is found by placing a small sphere with radius r in the robot
origin and detecting the center position x1 of the sphere in the camera frame:

OR
c = x1.

The robot z-axis is defined by detecting the plane that represent the table and using the
normal n of the plane.

~zRc = n.

The x-axis is found by placing a small sphere with radius r on the robot x-axis and detect
the center position x2 of the sphere in the camera frame:

~xRc =
x2 − x1

| x2 − x1 |
.
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Finally, the y-axis is defined as the cross product between the x-axis and the z-axis:

~yRc = ~xRc × ~zRc .

Thus, the homogeneous transformation matrix between the camera frame and the robot
frame is defined as:

TR
c =

[
~xRc ~yRc ~zRc OR

c

0 0 0 1

]
1 0 0 0
0 1 0 0
0 0 1 −r
0 0 0 1

 (4.37)

Here, the radius r of the sphere is compensated for.

4.7.3 Place Position
The place position xR

place for this demonstration is right above a cylinder placed some-
where on the work-table. This means that the ”top” end of the cylinder have to be located
in the robot frame. In order to define the place position, the cylinder edges is located in
the camera. This is done as described in Section 4.4. Once the cylinder edges xeb and xet

are located in the camera frame, they are transformed to the robot frame:

x̃R
eb = (TR

c )−1x̃eb

x̃R
et = (TR

c )−1x̃et

The edge with the larges z-value is recognized as the ”top” of the cylinder. Thus, the place
position for the robot is defined.

4.7.4 Pick Position
The robot is to pick ping-pong balls that are arbitrarily located on the work-table. Hence,
the center positions of the spheres have to be located in the robot frame. The center position
of the spheres are located in the camera frame by using the algorithm for multiple shape
detection described in Section 4.6. Once the sphere centers xc,i, i = 1 . . . n are located in
the camera frame they are transformed to the robot frame:

x̃R
c,i = (TR

c )−1x̃c,i, i = 1 . . . n

4.7.5 Automatic Execution
The calibration and the definition of place position is two rather manual operations, as
these require human interaction to be performed. However, in a repetitive pick-and-place
application these steps only need to be performed once. After this, objects can be detected,
picked and placed in an automatic continuous manner. This is implemented as illustrated
in the pseudocode below.
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while Not terminated do
Detect spheres xc,i, i = 1 . . . n
Transform coordinates x̃R

c,i ← (TR
c )−1x̃c,i

while i ≤ n do
Move robot to xR

c,i

Close robot gripper
Move robot to xR

place

Open robot gripper
end while

end while

4.7.6 Video
A video showing the demonstration is produced and added to the digital appendix. The
video start with calibration. During this step, multiple shape detection of spheres is demon-
strated along with shape detection of a plane. After the transformation between the camera
coordinate frame and robot coordinate frame is established, a tube and some ping-pong
balls are placed arbitrarily on the table. In the following sequence, the place position is
defined. Here, a plane is segmented and removed from the data set before demonstrating
shape detection of a cylinder. Next, the spheres on the table are detected and the robot
executes the pick-and-place operation.

In the next part of the video, tracking of objects is demonstrated. Two spheres and a
plane are tracked simultaneously by using the procedure presented in Section 4.5. The goal
is to track the robot coordinate frame by tracking the objects and perform the calculation
as described in Section 4.7.2. The camera is moved while tracking and the robot frame
is constantly updated. By executing a new pick-and-place operation based on the new
transformation matrix between the camera and robot, it is demonstrated that the tracking
was successful.

In the last part of the video, the whole process of calibration, place position definition
and pick-and-place operation is demonstrated one more time. In addition, it is shown that
the pick-and-place operation can be performed continuously once the calibration is done
and place position is defined.
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Chapter 5
Analysis and Discussion

5.1 Introduction

In this chapter, the conducted experiments and results are presented. The goal of the
experiments is to map the performance of the implemented RANSAC-based algorithms
described in the previous chapter.

The primitive shape detection algorithm is tested on CAD-models that are sampled to
point clouds. The shape detection is performed with different degrees of outliers that are
randomly added to the point cloud. During these experiments, it is established that shape
detection can be achieved with repetitive precision. It is also seen that specifying one or
more parameters of the shape reduces the computational cost. Moreover, it is found that
the suggested sphere-sphere approach for initializing a cylinder produces higher accuracy
detection and lower computational costs compared to the circle-plane approach.

Tracking of a sphere is tested with point clouds obtained from a 3D camera. Here,
results show that the algorithm is able to track a sphere in real-time data streams in the
30 − 60 FPS range. The observed precision is 3.33mm for both static and movement
tracking. However, it is recognized that the precision is dependent on both the size of the
shape and the distance from the sensor.

Lastly, the multiple shape detection algorithm is tested on a point cloud obtained from
a 3D sensor. It is observed that the detection rates depends on shape size and distance from
the camera. This is also true for the observed precision.

5.2 Primitive Shape Detection

The implemented algorithm is tested for spheres and cylinders. The stopping criteria of
Case 1 presented in Section 4.4.2 is applied. Hence, the number of inlier points I for both
the sphere and the cylinder is known. The algorithm is set to terminate when a primitive
consisting of minimum t× I points is detected, where t = 0.9.
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5.2.1 Sphere
Two experiments were performed for detection of a sphere. In the first experiment, the
sphere radius is considered unknown, meaning that all candidates have to be evaluated. In
the second experiment, the sphere radius is known, meaning that only candidates that sat-
isfy the sphere radius is evaluated. The results are presented in Figure 5.1. The figure show
logarithmic plots of the total number of iterations before successful detection is achieved,
the number of evaluated primitives, the run-time of the algorithm and the position error of
the detected sphere center. All the metrics are plotted against the percentage of outliers.
The presence of outliers is also graphically illustrated below the plots, where green points
are inlier points and blue point are outlier points. For every level of noise considered, 10
test were performed and their average is presented. This is necessary as the algorithm is
based on a random sampling strategy.

Figure 5.1: Results for the sphere experiments. The blue line represents the experiment where
all initialized spheres are evaluated. The red line represents the experiment where only initialized
spheres that satisfies the radius threshold is evaluated. The performance of the algorithms is plotted
logarithmically for an increasing outlier percentage. As the outlier percentage increases the perfor-
mance metrics increases exponentially. The outlier percentage is graphically illustrated below the
plots.

The result for the first experiment are plotted as the blue line in Figure 5.1. The figure
shows how the total number of iterations, total time of detection and error in position of
the detected sphere increases exponentially with the outlier percentage. The results are
also presented in Table 1 found in Appendix A, along with the calculated probability of
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detection according to equation (4.31). The experiment was concluded at a 90% outlier
percentage, as average run-time of the algorithm exceeded 38s and the time required for
conducting experiments at higher outlier percentages was considered unpractical.

By examining the blue line in Figure 5.1, it can be seen that the error metric is constant
and small for outlier percentages up to approximately 90%. At this level, the outlier density
is so high that it affects the accuracy of the detection. The outlier density causes spheres
that are initialized from outlier points to satisfy the termination criteria of t×I . This causes
erroneous detections. As predicted by the probabilistic relations presented in section 4.4.3,
the number of iterations increases with the outlier percentage. There is a direct correlation
between run-time and number iterations, which is reflected in the ”Time” graph in Figure
5.1.

The results for the second experiment are plotted as the red line in Figure 5.1. The
results are also presented in Table 2 found in Appendix A, along with the calculated prob-
ability of detection according to equation (4.31). It can be seen that both the number of
iterations and error in position are approximately the same for the two experiments. This
indicates that the evaluation strategy applied in the second experiment does not affect the
algorithm’s ability to detect shapes, or the algorithm’s accuracy. However, the time of de-
tection is reduced considerably as the initialized spheres are only evaluated for a fraction
of the iterations. This reveals that evaluating primitives, by classifying inliers and scoring,
is computationally costly. The number of evaluated spheres is plotted in the ”Evaluated
Iterations” graph in Figure 5.1. The ratio between the number of iterations and the number
of evaluated iterations is plotted in Figure 5.2. It can be seen that this ratio move toward
0.01 when the outlier percentage increases. For the first experiment, this ratio is always 1
as every iteration is scored, which means that the blue lines plotted in the ”Iterations” and
”Evaluated Iterations” graph in Figure 5.1 are equal.

Due to the computational savings of the strategy tested in the second experiment, it
was possible to test the algorithm for higher outlier percentages without the practical re-
strictions faced in the first experiment. For outlier percentages above 90%, the error metric
increases exponentially. Because of the high outlier density, spheres initialized arbitrar-
ily in the point cloud will contain a sufficient amount of inliers to satisfy the termination
criteria of t × I . Thus, it is not possible to separate the actual sphere from the outliers
and detection is unsuccessful. At a outlier percentage of approximately 95% the number
of iterations peaks. Above this level a sphere initialized anywhere in the point cloud will
satisfy the termination criteria, resulting in premature termination.

Figure 5.2: The ratio between the number of iterations and the number of evaluated iterations. Major
computational savings is achieved as only a fraction of the iterations are evaluated.
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5.2.2 Cylinder

The two approaches for initializing a cylinder, discussed in Section 4.3.4, were tested for
detection. The cylinder radius is known. Thus, only primitives that satisfy the radius pa-
rameter are evaluated, which causes computational savings as established in the sphere
experiment. The results are presented in Figure 5.3, which has generally the same setup
as Figure 5.1 for the sphere experiments. The figure shows logarithmic plots of the to-
tal number of iterations before successful detection is achieved, the number of evaluated
primitives, the total time of detection and the angle error of the cylinder center axis. All the
metrics are plotted against the percentage of outliers. For every level of noise considered,
10 test were performed and their average is presented.

In the first experiment the plane-circle initialization were tested. The results are plotted
as the blue line in Figure 5.3. The results are also presented in Table 3 found in Appendix
A. It can be seen that the error metric is small with small variations up to a outlier percent-
age of approximately 80%. Above 80% outliers, the error metric increases exponentially
due to the high outlier density. The number of iterations increases with the outlier per-
centage. This is intuitively expected, but can not be predicted by the probabilistic relations
presented in section 4.4.3. These relations only yield for shapes that are uniquely defined
by the points they are initialized from. Unlike spheres and planes, a cylinder cannot be
uniquely defined from points on its surface without some additional assumptions or con-
straints. From Figure 5.3 it can be seen that both the run-time and evaluated iterations
are correlated to the number of iterations, which agrees with what is found in the sphere
experiments.

In the second experiment the sphere-sphere initialization were tested. The results are
plotted as the red line in Figure 5.3. The results are also presented in Table 4 found in Ap-
pendix A. Since this initialization is based on spheres, the number of iterations presented
is the total number of iterations executed for detecting two spheres that satisfies the radius
criteria and inlier termination criteria t × I . The number of inliers that falls on a sphere
that is placed inside a point cloud of a cylinder depends on the point density and the error
tolerance T , used to determine whether a point is compatible with the sphere. The number
of inliers I that falls on the sphere is established by initializing a sphere with the same
radius as the cylinder and the center at the cylinder center-axis. The sphere is initialized
in a outlier free point cloud of the cylinder and the number of points that falls within the
bounds of the sphere surface is counted.

The cylinder is only evaluated when two spheres that satisfies radius and inliers are
identified. By examining the ”Evaluated Iterations” graph in Figure 5.3, it can be seen the
the number of evaluated cylinders is low and almost constant for outlier percentages up
to 80%. This indicates that the two spheres gives a good indication of the actual cylinder
and that the sphere-sphere approach gives robust results. However, above 80% outliers the
number of evaluated cylinders increases exponentially. This means that spheres that do
not represent the cylinder are accepted due to the high outlier density.

It can be seen from Figure 5.3 that the sphere-sphere approach performs considerably
better than the plane-circle approach. Below outlier percentages up to 80%, the sphere-
sphere approach requires fewer iterations than the plane-circle approach. In addition, more
accurate detection is performed with the sphere-sphere initialization, as both the error met-
ric and number of scored iterations are lower. By comparing Table 3 and Table 4 in Ap-
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pendix A, it is found that the sphere-sphere approach requires approximately 4 times less
iterations, uses approximately 32 times less computation time and produces approximately
1.75 times more accurate detections.

Figure 5.3: Results for the cylinder experiments. The blue line represents the circle-plane initializa-
tion while the red line represents the sphere-sphere initialization. The performance of the algorithms
is plotted logarithmically for an increasing outlier percentage. As the outlier percentage increases
the performance metrics increases exponentially. The outlier percentage is graphically illustrated
below the plots.

5.3 Tracking
In order to analyse the performance of the tracking algorithm, real sensor data from a
Kinect for Xbox One 3D camera was used. A sphere with radius r = 33mm was placed
in the sensor field of view and tracking was executed. The parameters of the tracking,
as presented in Section 4.5, were set to d = 5cm, t = 0.9 and k = 10000. Three
different experiments were conducted. First, tracking was performed on a single point
cloud captured by the sensor. The goal is to map the uncertainties that is caused by noise
in the data. Secondly, tracking was performed in a real-time data stream. The sphere and
the sensor were held at fixed positions in order to map the uncertainties that is caused by
variations in the data stream. Lastly, it was attempted to track the sphere during a linear
movement. The results of the experiments are presented in Table 5.1 and described in the
subsections below.
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Table 5.1: Resulting averages for the tracking experiments. Performance for single point cloud
tracking, real-time static tracking and real-time movement tracking is tabled.

Single Point Cloud Real-Time Static Real-Time Movement
Accuracy [mm] 2.84 3.33 3.33
Uncertainty [mm] 1.51 1.86 1.72
Points 559 559 1590
Outlier Ratio 0.72 0.72 0.79
Time [ms] 0.23 0.47 2.8
Iterations 757 950 6532
Probability of
Detection 0.99 0.99 1

5.3.1 Single Point Cloud

The center position of the sphere was detected 1000 times in a tracking sequence. The
detected positions are plotted in Figure 5.4, the origin in the plot is placed at the centroid
of the detected positions. The average distance from the centroid of the detected positions
is 2.84mm with a standard uncertainty of 1.51mm. The variance in position implies that
inliers are defined differently for every detection, which again implies that the points rep-
resenting the sphere does not lie on a perfect sphere surface. The accuracy for a single
point obtained by the sensor is 1% of the range (z-distance) for an average of 100 frames
[32]. The average z-position of the sphere is measured at 1.75m, which means that a single
point on the sphere have a maximum accuracy of 17.5mm. This explain the variation of
the detected center position. However, the accuracy of the sphere center is better than for
a single point, implying that the uncertainty in position of a point is normal distributed.

An average of 559 points satisfied the proximity condition explained in Section 4.5.
The average outlier ratio was 0.72, which resulted in an average of 757 iterations with
a 0.23ms average time of detection. This is well below the limit of 16.67ms for a 60
FPS data stream. According to equation (4.31) presented in Section 4.4.3, the sphere was
detected with an average probability of ≈ 0.99.

5.3.2 Real-Time Static Tracking

The sensor was set to stream point clouds at a rate of 30 FPS. The tracking algorithm was
run every 40ms, insuring that a new point cloud was received every time the tracking was
run. The center position of the sphere was detected 1000 times in a tracking sequence. The
sphere and the sensor was held at the same positions as for the single point cloud experi-
ment. The detected sphere center positions are plotted in Figure 5.5, the origin in the plot
is placed at the centroid of the detected positions. The average distance from the centroid
of the detected positions is 3.33mm with a standard uncertainty of 1.86mm. Compared to
the accuracy and uncertainty of the single point cloud tracking experiment, the deviance
caused by disturbances in the data stream are 0.4mm with a 0.35mm uncertainty. Such
disturbances can be caused by small vibrations, changes in lighting conditions or accuracy
of the electrical components of the sensor.
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Figure 5.4: Detected center position of a sphere in a single point cloud tracking sequence.

The average time of detection was 0.47ms with an average of 950 iterations. The data
set contained an average of 559 points with an average outlier ratio of 0.72. According to
equation (4.31) the sphere were detected with an average probability of≈ 0.99. Compared
to the single point cloud experiment, the data set size and outlier ratio are approximately
equal. However, the number of iterations and time of detection is higher for a real-time
data stream. A possible explanation can be that these metrics already are very small and
that the degree of ”luck” during the random sampling plays a significant role. Thus, more
than 1000 detections are needed to find a statistical significant average.

5.3.3 Real-Time Movement Tracking
To establish whether the tracking algorithm is able to track moving objects, the sphere
was tracked while rolling on the floor in an approximate straight path. For tracking to be
successful, the sphere must not move more than d = 5cm before the sensor acquires a new
frame. Thus, when deciding d, both movement speed of the object and frame rate of the
sensor should be considered. However, as the goal of this experiment were to establish
whether a moving object could be tracked or not, a low movement speed were applied and
d = 5cm were considered sufficient.

For the experiment, the center position of the sphere was detected 74 times while the
sphere rolled a total distance of 1.57m. The measured accumulated time was 2.85s, which
means that the average frame rate was 25.97 FPS and that the sphere had an average speed
of 0.55m

s . The detected sphere centers have an average distance of 3.33mm to a fitted line,
with a standard uncertainty of 1.7mm. The detected sphere centers is plotted in Figure 5.6
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Figure 5.5: Detected center position of a static sphere in a real-time tracking sequence.

along with the fitted line.
The data set contained an average of 1590 points with an average outlier ratio of 0.79.

This resulted in an average of 6532 iterations with an average time of detection of 2.8ms.
Compared to the two other tracking experiments, the time of detection is higher due to the
number of points considered. Nevertheless, the time of detection were below the limit of
16.67ms for a 60 FPS data stream. According to equation (4.31) the sphere was detected
with an average probability of ≈ 1.

By examining the result in Table 5.1, it is observed that the measured accuracy and
uncertainty of the real-time static- and movement tracking are approximately equal. How-
ever, the movement tracking experiment were conducted closer to the sensor. This is
reflected in the number of inlier points for the two experiments, as more points fall on
the sphere closer to the sensor. Because the accuracy of a single point is dependent on
the distance from the sensor, higher accuracy data where used for the movement tracking.
Thus, it can be concluded that the accuracy and uncertainty of movement tracking is not
as good as for static tracking.

5.4 Multiple Shape Detection

The multiple shape detection algorithm is only implemented for spheres. In order to anal-
yse the performance of the algorithm, real sensor data from a Kinect for Xbox One 3D
camera was used. Three spheres were placed in the sensor field of view and a single point
cloud of 22225 points was captured. The multiple shape detection was run 1000 times on
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Figure 5.6: Detected center position of a moving sphere in a real-time tracking sequence.

this data set. The data set were organized in an octree with a root node of length 1.28m
and a resolution of 0.01m. The octree consisted of 3675 populated nodes and the number
of iterations per node were set to k = 4, resulting in a total of 14700 iterations per run of
the algorithm. The average run-time of the algorithm was 121ms.

The results of the experiment is presented in Table 5.2. The detection rate describes the
ratio of successful detections of a sphere. The distance metric is presented as the spheres
absolute distance from the sensor. It can be seen that the detection rate is higher for the
largest sphere. In addition, for the two smaller spheres the detection rate is highest for the
sphere with the most inlier points, which is proportional to the object’s distance from the
sensor. The actual radii of the spheres are presented along with the average radii of the
detections.

The positions of the successful detections are plotted in Figure 5.7, which gives a visual
impression of the accuracy of the algorithm. The uncertainty in position and radius for the
largest sphere is higher than expected compared to the two smaller spheres. This occurs
because small spheres that are initialized from the surface of the large sphere are accepted.
The phenomenon is also reflected in the distribution of the detected sphere radii, which is
presented in Figure 5.8. This could have been avoided with a more robust scoring scheme.

For the experiment, the algorithm detected exactly three spheres correctly 56.2% of the
attempts. For 42.8% of the attempts, one or more spheres were not detected. Lastly, for
8.8% of the attempts false detections were made. These are not robust results. However, if
all three spheres were to be detected with a 95% probability using the single shape detec-
tion algorithm, it would require a total of ≈ 28 025 543 170 iterations. This is 1 906 567
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Table 5.2: Resulting averages for the multiple shape detection experiment. The table shows perfor-
mance metrics of the algorithm for the detection of three different spheres in the point cloud.

Sphere 1 Sphere 2 Sphere 3
Detection rate 0.989 0.872 0.707
Distance [m] 1.626 1.272 1.697

Accuracy [mm] 6.81 4.79 5.74
Uncertainty [mm] 6.26 4.16 4.89

Inliers 202 141 73
Actual radius [mm] 33 20 20

Detected radius [mm] 28.94 18.97 19.85
Uncertainty [mm] 5.1 2.41 2.34

Figure 5.7: Successful detections of the multiple shape detection algorithm. The color of the plotted
positions indicate which sphere is detected.

times more iterations compared to the number of iterations conducted in this experiment.
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Figure 5.8: Distribution of detected radii for the multiple shape detection algorithm. It can be seen
that the distribution for the largest sphere have a long tail of smaller radii. This is a result of the
algorithm accepting smaller spheres that are initialized on the surface of the largest sphere.

5.5 Scoring Function

In the experiments for tracking and multiple shape detection, the scoring function de-
scribed in Section 4.4.2 was used to evaluate the spheres. The denominator of the scoring
function describes the expected number of inliers for a sphere depending on its radius and
z-distance from the sensor. The parameters of the function is dependent on the sensor and
were found experimentally for a Kinect for Xbox One 3D camera. Taking into account that
only spheres were to be considered, a small modification was done to the denominator:

Aazb = 4πr2azb = âzbr2. (5.1)

Thus, the parameter â were found instead of a.

Three spheres of different radii were placed in the field of view of the sensor. The
z-distance, radius and inlier points for each sphere was measured a total of 10628 times
from multiple positions. Finally, the function was fitted to the measurements by adjusting
the â and b parameters using the ”problem solver”-tool in Excel. The result is plotted in
Figure 5.9, where the blue line represent the measured inliers and the orange line represent
the estimated inliers with â = 445471.914 and b = −2.202. The different levels of inliers
in the plot reflect the radii of the spheres.
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Figure 5.9: Fitted scoring function. The parameters of the scoring function is adjusted in Excel by
minimizing the residual between the scoring function and actual measurements. The different levels
of inliers reflects the radius of the spheres used in the measurements.

5.6 Summarizing Remarks

This chapter presented performance results for the implemented algorithms. The random
sampling scheme of the original RANSAC algorithm is the base of all the implemented
algorithms. The performance of this sampling scheme is predicted by the probabilistic
relations presented in Section 4.4.3 and the results presented in [3]. This agrees with the
relation between outlier ratio and iterations tabled in Table 1 and 2 found in Appendix A.
In the tables it can be seen that the calculated probabilities for successful detections lie
in the range between 34, 1% and 68.2%, which is the range of 1 standard deviation in a
standard normal distribution.

In the primitive shape detection experiments, it is discovered that the outlier density
is decisive for successful detections. When the outlier density is too high, the algorithm
cannot separate the shape from the rest of the point cloud. If the outliers where distributed
over a larger volume, it is expected that successful detections could have been achieved.
Consequently, the outlier percentage can be close to 100% and successful detections can
be made, as along as the outliers are spread over a large volume. However, the number
of iterations increases exponentially with outlier percentage, which limits the applications
for detections in point clouds with high percentage of outliers.

The single point cloud tracking experiment is simply a primitive shape detection pro-
cedure executed multiple times on a point cloud obtained from a sensor. This experiment
shows that uncertainties in the points that falls on the sphere causes inaccuracies in the de-
tected center position of the sphere. However, the accuracy for a shape consisting of mul-
tiple points is higher than for a single point obtained by the sensor. In addition, it is found
that the algorithm performs sufficiently fast for real-time tracking. The real-time static
tracking experiment shows that real-time tracking is achieved successfully. However, the
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accuracy is slightly reduced due to the variations in the data stream. The real-time move-
ment tracking experiment showed that the tracking algorithm were able to track moving
objects, even though the observed accuracy were degraded compared to static tracking.
Nevertheless, the experiments showed promising results, considering the accuracy of the
sensor. The low computational cost and computation time of the tracking algorithm is a
benefit of the data limitation strategy.

The performance of the multiple shape detection algorithm can be compared with the
single point cloud tracking performance. The largest sphere is placed at approximately the
same distance from the sensor in the two experiments. It can be seen that the accuracy
of the primitive shape detection algorithm is about 4 times better than the multiple shape
detection algorithm. In addition, the detection rate of the multiple shape detection algo-
rithm is well below 1. However, the multiple shape detection uses fewer iterations than
the primitive shape detection algorithm. Thus, computational savings and the convenience
of detecting multiple shapes with a single algorithm compensate for the loss in robustness
and accuracy.

The octree structure and sampling strategy of the multiple shape detection algorithm
ensures that minimal sub-samples are picked from the surfaces of the spheres. Even though
spheres are initialized from these sub-samples the spheres are sometimes rejected, which
can be seen from the detection rate. This is due to the noise in the point cloud and low
accuracy of the sensor. This can be compensated for by trying more minimal subsets in
every node, at the cost of computational efficiency. Alternatively, spheres can be fitted to
its inliers and re-scored before rejection or acceptance. This could reduce the influence of
noisy variations. In addition, the algorithm sometimes produces false detections. This can
be avoided by further improving the scoring function.
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Concluding Remarks

6.1 Discussion

Starting with an idea of how conformal geometric algebra could be suited for point cloud
processing, and ending up with the results and software presented in this thesis, have been
a highly educational journey. Many hours of self-education have been spent with subjects
like geometric algebra, point cloud processing, C++ object oriented programming, Linux
and ROS, robust statistics and kinematics.

The programming aspect of this thesis have been especially demanding, due to limited
programming skills. An experienced programmer would probably criticize a lot of the
methods and structure in the software. However, as a GUI with a lot of functionality is
successfully implemented, the author is very satisfied with the result.

The initial objectives of this thesis are fulfilled and the author believes the project is
successfully completed. In addition to the initial objectives, tracking and multiple shape
detection are considered. The computational efficiency of the studied algorithms was the
inspiration for the tracking implementation, while methods studied in the literature were
the inspiration for multiple shape detection.

6.2 Conclusion

Industrial processes often involves handling of objects and surfaces shaped like geometric
primitives. This should be taken into consideration when designing computer vision-based
systems for such processes. Both pose and parameters of geometric primitives can be es-
tablished with 3D cameras and simple algorithms. In this thesis, robust estimation algo-
rithms have been considered to detect primitive shapes in point clouds from 3D cameras.
The primitives are described with conformal geometric algebra. Possible applications have
been presented.

The technology behind 3D cameras have been described and it is explained how such
sensors can output high density point clouds. Existing methods and concepts of point
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cloud processing have been presented.
A literature review of robust statistical estimators for computer vision have been con-

ducted. A detailed review of the RANSAC algorithm is given, along with a overview of
RANSAC-based algorithms. The objective of these methods and algorithms is to classify
a data set into inliers and outliers. Outliers are discarded and inliers can be fitted to some
predefined model. When the data set is a point cloud and the model is some geometric
primitive, these methods can be applied to detect pose and parameters of primitive shapes.

The primitive shape initialization and inlier classification is implemented in confor-
mal space with geometric algebra. Two approaches for modeling a cylinder is suggested.
Conformal geometric algebra is not applied anywhere in the literature of robust estimators
studied. Thus, this thesis works as a proof of concept.

A RANSAC-based algorithm is implemented in a C++ based software and the system
is tested in experiments and results are presented. Furthermore, additional methods for
improving the computational cost and number of iterations of RANSAC are implemented
in a tracking algorithm and a multiple shape detection algorithm. The inspiration for these
improvements were found in the literature studied.

The results of the conducted experiments shows that primitive shapes can be detected
in point clouds with up to 90% outliers. It is also argued that detections can be made in
point clouds with close to 100% outliers, given that the outlier density is lower than the
inlier density. In point clouds obtained from a Kinect for Xbox one 3D camera, results
shows that the accuracy of detected primitives are better than the accuracy for the sensor.
This is due to the normalizing effect when considering all the points that describe a shape.
However, accuracy is highly dependent on the distance from the sensor and the number
of points that falls on the detect shape. Furthermore, the tracking algorithm can achieve
real-time tracking due to the low computational cost of the algorithm.

The sphere-sphere approach for detecting a cylinder proved to be superior to the circle-
plane approach. In general, the sphere-sphere approach requires fewer iterations and pro-
duces more accurate results.

The sampling scheme of the multiple shape detection algorithm were found to be
1 906 567 times more effective than a random one, for the conducted experiment. How-
ever, this metric is highly dependent on point density and octree resolution. The multiple
shape detection algorithm was set to detect 3 spheres in a noisy point cloud and was exe-
cuted 1000 times. The algorithm detected all three objects correctly 56.2% of the attempts,
which is not a robust result. In addition, it is found that the accuracy for the primitive shape
detection algorithm is approximately 4 times better than for the multiple shape detection.
Nevertheless, suggestions for improvements have been proposed and the author believes
that a powerful multiple shape detection algorithm can be achieved.

In the robotic pick and place demonstrator, some possible applications of primitive
shape detection are suggested. The video clearly demonstrates the accuracy of the algo-
rithms, as the robot successfully pick-and-place repeatedly.

6.3 Further Work
Only planes, spheres and cylinders are considered in this thesis. A natural candidate for
further work is to define several primitives with conformal geometric algebra and develop
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methods for inlier classification. The suggested sphere-sphere approach for detecting a
cylinder in a point cloud can be extended to cones and torus, as spheres would fit in the
same manner for these shapes.

Another candidate for further work is to implement several primitives for the multiple
shape detection algorithm. In addition, further improving the scoring and fitting of de-
tected primitives can achieve robust detection. The ultimate goal would be to successfully
detect and extract all primitives present in a point cloud. This can be used for efficient
surface reconstruction, meshing or object detection.

Lastly, some comparative work regarding conformal geometric algebra could be per-
formed. In [6] they present performance result of their suggested algorithm. The same
algorithm could be implemented with conformal geometric algebra for comparison, as a
contribution to their work. In this thesis, it is concluded that conformal geometric algebra
is suited for such applications, but no performance advantages are investigated.

Figure 6.1: An object subdivided to into re-
gions of primitive shapes. (Adapted from [6])

The primitive shape detection algorithms
suggested in this thesis can also be com-
pared to a traditional point cloud processing
pipeline. In cases were the objective is to
estimate pose of primitive objects, it is ex-
pected that the suggested methods will outper-
form the complexity of the point cloud pro-
cessing pipeline presented in Section 3.4. It
would also be interesting to examine if a fully
functional multiple shape detection algorithm
could work with objects of complex geometry.
Such objects can be subdivided into regions of primitive shapes like illustrated in Figure
6.1.
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A Results
This appendix contains tabled measurements for the experiments presented in Section 5.2.
Table 1 and 2 are graphically presented in Figure 5.1. Table 3 and 4 are graphically pre-
sented in Figure 5.3.

Table 1: Results for shape detection of a sphere with unknown radius. The probability of detection
is calculated using the probabilistic relations discussed in Section 4.4.3.

Outliers Iterations Evaluated Iterations Time [ms] Error [mm]
Probability

of Detection
33% 2 2 2.7 0.25 42.4%
37% 6 6 5.0 0.25 62.9%
40% 11 11 9.1 0.25 78.6%
44% 6 6 5.7 0.25 46.1%
46% 19 19 16.4 0.25 80.2%
49% 9 9 9.6 0.24 47.9%
55% 18 18 19.3 0.25 54.2%
59% 43 43 48.9 0.24 71.0%
65% 77 77 107.1 0.26 67.2%
74% 137 137 261.6 0.25 48.7%
82% 864 864 2588.4 0.26 62.2%
87% 2749 2749 12009.5 0.33 59.5%
90% 6762 6762 38634.9 0.81 51.8%

Table 2: Results for shape detection of a sphere with known radius. The probability of detection is
calculated using the probabilistic relations discussed in Section 4.4.3.

Outliers Iterations Evaluated Iterations Time [ms] Error [mm]
Probability

of Detection
33% 8 2 2.5 0.25 84.1%
42% 8 1 2.2 0.25 62.7%
49% 20 2 3.2 0.25 75.2%
59% 22 2 3.7 0.23 47.7%
74% 193 5 9.6 0.26 61.1%
82% 1135 19 48.1 0.27 71.2%
87% 1694 26 92.5 0.30 42.6%
89% 8089 120 526.3 0.30 67.4%
91% 14849 189 1058.6 0.52 58.7%
92% 13851 172 1090.5 0.89 37.0%
94% 35838 430 3632.0 1.29 42.0%
95% 71751 856 8853.3 2.46 37.9%
96% 44012 506 6231.4 5.78 10.0%
97% 17114 202 3301.3 18.35 1.1%
98% 243 4 100.9 118.32 0.0%
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Table 3: Results for shape detection of a cylinder. The cylinder is initialized using the circle-plane
approach described in Section 4.3.4.

Outliers Iterations
Evaluated
Iterations Time [ms] Error [◦]

0% 1988 299 273.8 1.257
34% 13505 1222 1683.9 1.452
39% 11853 1038 1516.8 1.557
44% 7521 615 990.8 1.595
51% 14003 1038 1961.6 1.906
57% 25826 1784 3689.4 1.972
57% 24548 1609 3715.8 1.240
64% 21598 1340 3706.7 1.369
75% 54311 3122 11592.0 1.996
83% 58215 3111 17595.1 3.329
89% 44719 2291 18693.8 5.316
91% 8404 436 4539.8 10.498

Table 4: Results for shape detection of a cylinder. The cylinder is initialized using the sphere-sphere
approach described in Section 4.3.4.

Outliers Iterations
Evaluated
Iterations Time [ms] Error [◦]

0% 557 1 11.9 0.657
31% 1536 1 25.4 0.618
37% 2171 1 36.7 1.012
40% 2530 1 39.2 0.752
47% 4282 2 70.1 0.816
53% 4035 2 69.5 0.913
57% 5175 2 92.3 1.042
65% 6682 2 125.0 1.483
71% 8567 2 188.5 1.298
81% 18192 2 562.5 2.187
87% 98748 137 6286.9 3.703
91% 63190 243 8652.8 8.949
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B C++ Source Code
This appendix contain the source code for primitive shape modeling with conformal geo-
metric algebra and the implemented RANSAC-based algorithms.

• objects.h is the header file for the primitive shapes in conformal space. It contains
declarations for planes, spheres, circles and cylinders.

• objects body.cpp is the implementation of the objects.h header file. It contains the
implementations for all the functions and variables declared in objects.h.

• ransac.h is the header file for the implemented algorithms. It contains declarations
of the primitive shape detection algorithm for planes, spheres and cylinders. In addi-
tion, it contains a declaration of the multiple shape detection algorithm for spheres.
The classes and methods declared in objects.h are included.

• ransac body.cpp is the implementation of the ransac.h header file. It contains the
implementations of all the functions and variables declared in ransac.h.

objects.h

1

2 / /
3 / / C r e a t e d by Akse l S v e i e r . S p r i n g 2016
4 / /
5

6 # i f n d e f RANSACGA OBJECTS H
7 # d e f i n e RANSACGA OBJECTS H
8

9 # e n d i f / / RANSACGA OBJECTS H
10

11 # i n c l u d e <v s r / s p a c e / v s r c g a 3 D o p . h>
12 # i n c l u d e <p c l / p o i n t t y p e s . h>
13 # i n c l u d e <p c l / common / common headers . h>
14

15 u s i n g namespace v s r ;
16 u s i n g namespace v s r : : cga ;
17 u s i n g namespace p c l ;
18

19 / / C l a s s t h a t c r e a t e s and h a n d l e s p l a n e s wi th CGA
20 c l a s s p l a n e
21 {
22 p u b l i c :
23 Pnt d u a l P l a n e ; / / S t o r e s t h e IPNS r e p r e s e n t a t i o n
24 Pnt normDualPlane ; / / S t o r e s t h e n o r m a l i z e d IPNS r e p r e s e n t a t i o n
25

26 vo id d e f i n e D u a l ( Pn t p1 , Pn t p2 , Pn t p3 ) ; / / C r e a t e s a p l a n e from 3
p o i n t s i n c o n f o r m a l s p a c e

27 vo id d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x ) ; / /
C r e a t e s a p l a n e from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d

28 p r i v a t e :
29 vo id n o r m a l i z e ( Pn t dPln ) ; / / F u n c t i o n t h a t n o r m a l i z e s a c o n f o r m a l

v e c t o r
30 } ;
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31

32 / / C l a s s t h a t c r e a t e s and h a n d l e s s p h e r e s wi th CGA
33 c l a s s s p h e r e {
34 p u b l i c :
35 f l o a t r a d i u s , x , y , z ; / / F l o a t s f o r s t o r i n g t h e p a r a m e t e r s o f t h e

s p h e r e
36 Pnt d u a l S p h e r e ; / / S t o r e s t h e IPNS r e p r e s e n t a t i o n
37 Sph sphe ; / / S t o r e s t h e OPNS r e p r e s e n t a t i o n
38

39 vo id d e f i n e D u a l ( f l o a t x , f l o a t y , f l o a t z , f l o a t r ) ; / / C r e a t e s a
s p h e r e from c e n t e r ( x , y , z ) c o o r d i n a t e s and r a d i u s

40 vo id d e f i n e D u a l ( Pn t p1 , Pn t p2 , Pn t p3 , Pn t p4 ) ; / / C r e a t e s a s p h e r e
from 4 p o i n t s i n c o n f o r m a l s p a c e .

41 vo id d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l1 , Po in tC loud<
PointXYZRGB> : : P t r c l2 , Po in tC loud<PointXYZRGB> : : P t r c l3 , Po in tC loud<
PointXYZRGB> : : P t r c l 4 ) ; / / C r e a t e s a s p h e r e from 4 p o i n t s from a
p o i n t c l o u d .

42 vo id d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l , v e c t o r<i n t> i n d e x ) ;
/ / C r e a t e s a s p h e r e i n from 4 i n d e x e d p o i n t s i n a p o i n t c l o u d

43 p r i v a t e :
44 f l o a t c a l c R a d i u s ( Pn t dSph ) ; / / F u n c t i o n t h a t c a l c u l a t e s r a d i u s
45 Pnt n o r m a l i z e ( Pn t dSph ) ; / / F u n c t i o n t h a t n o r m a l i z e s a c o n f o r m a l v e c t o r
46 } ;
47

48 / / C l a s s t h a t c r e a t e s and h a n d l e s c i r c l e s wi th CGA
49 c l a s s c i r c l e
50 {
51 p u b l i c :
52 f l o a t r a d i u s = 0 ; / / F l o a t f o r s t o r i n g t h e c i r c l e r a d i u s
53 Pnt c i r c l e C e n t e r ; / / P o i n t i n c o n f o r m a l s p a c e f o r s t o r i n g t h e c i r c l e

c e n t e r
54 Par c i r c l e ; / / S t o r e t h e OPNS r e p r e s e n t a t i o n
55 C i r d u a l C i r c l e ; / / S t o r e s t h e IPNS r e p r e s e n t a t i o n
56 Pnt p l a n e ; / / S t o r e s t h e p l a n e t h e t h e c i r c l e l i e on
57

58 vo id d e f i n e C i r c l e ( Pn t p1 , Pn t p2 , Pn t p3 ) ; / / C r e a t e s c i r c l e from 3
p o i n t s i n c o n f o r m a l s p a c e

59 vo id d e f i n e C i r c l e ( PointXYZRGB p1 , PointXYZRGB p2 , PointXYZRGB p3 ) ; / /
C r e a t e s a c i r c l e from 3 p o i n t from a p o i n t c l o u d

60 vo id d e f i n e C i r c l e ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x ) ; / /
C r e a t e s c i r c l e from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d

61

62 p r i v a t e :
63 vo id c a l c R a d i u s ( Pn t p ) ; / / F u n c t i o n t h a t f i n d s t h e c r i c l e r a d i u s
64 vo id f indNorma l ( Pn t p l n ) ; / / C r e a t e s t h e p l a n e t h a t t h e c r i c l e l i e on
65 } ;
66

67 / / C l a s s t h a t c r e a t e s and h a n d l e s c y l i n d e r s wi th CGA
68 c l a s s c y l i n d e r {
69 / / S i n c e t h e r e i s no r e p r e s e n t a t i o n o f a c y l i n d e r i n CGA a c y l i n d e r w i l l be

r e p r e s e n t e by a c i r c l e on a p l a n e .
70 / / The d i r e c t i o n o f t h e normal o f t h e p l a n e i n t h e c i r c l e c e n t e r w i l l be

t h e c e n t e r−a x i s o f t h e c y l i n d e r
71 p u b l i c :
72 Pnt p l a n ; / / S t o r e t h e IPNS r e p r e s e n t a t i o n o f a p l a n e
73 Pnt c e n t e r ; / / S t o r e s t h e c e n t e r i n a c o n f o r m a l v e c t o r
74 f l o a t r a d i u s = 0 ; / / F l o a t f o r s t o r i n g t h e r a d i u s
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75

76 vo id d e f i n e C y l i n d e r ( Pn t p1 , Pn t p2 , f l o a t r a d ) ; / / C r e a t e s a c y l i n d e r
from two p o i n t s i n c o n f o r m a l s p a c e on t h e c e n t e r a x i s and a r a d i u s

77 vo id d e f i n e C y l i n d e r ( Pn t p1 , Pn t p2 , Pn t p3 ) ; / / C r e a t e s a c y l i n d e r from
3 p o i n t s i n c o n f o r m a l s p a c e

78 vo id d e f i n e C y l i n d e r ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x ) ; / /
C r e a t e s t h e c y l i n d e r from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d

79 } ;

objects body.cpp

1 / /
2 / / C r e a t e d by Akse l S v e i e r . S p r i n g 2016
3 / /
4

5 # i n c l u d e ” o b j e c t s . h ”
6 # i n c l u d e <v s r / s p a c e / v s r c g a 3 D o p . h>
7 # i n c l u d e <p c l / p o i n t t y p e s . h>
8 # i n c l u d e <p c l / common / common headers . h>
9

10 u s i n g namespace v s r ;
11 u s i n g namespace v s r : : cga ;
12 u s i n g namespace p c l ;
13

14 / / C r e a t e s a s p h e r e from c e n t e r ( x , y , z ) c o o r d i n a t e s and r a d i u s
15 vo id s p h e r e : : d e f i n e D u a l ( f l o a t x , f l o a t y , f l o a t z , f l o a t r ) {
16 d u a l S p h e r e = n o r m a l i z e ( Round : : d l s ( Vec ( x , y , z ) , r ) ) ;
17 r a d i u s = r ;
18 }
19

20 / / C r e a t e s a s p h e r e from 4 p o i n t s i n c o n f o r m a l s p a c e .
21 vo id s p h e r e : : d e f i n e D u a l ( Pn t p1 , Pn t p2 , Pn t p3 , Pn t p4 ) {
22 d u a l S p h e r e = n o r m a l i z e ( ( p1 ˆ p2 ˆ p3 ˆ p4 ) . d u a l ( ) ) ;
23 r a d i u s = c a l c R a d i u s ( d u a l S p h e r e ) ;
24 }
25

26 / / C r e a t e s a s p h e r e from 4 p o i n t s from a p o i n t c l o u d .
27 vo id s p h e r e : : d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l1 , Po in tC loud<

PointXYZRGB> : : P t r c l2 , Po in tC loud<PointXYZRGB> : : P t r c l3 , Po in tC loud<
PointXYZRGB> : : P t r c l 4 ) {

28 d u a l S p h e r e = n o r m a l i z e ( ( Vec ( c l1−>p o i n t s [ 0 ] . x , c l1−>p o i n t s [ 0 ] . y , c l1−>
p o i n t s [ 0 ] . z ) . n u l l ( )

29 ˆ Vec ( c l2−>p o i n t s [ 0 ] . x , c l2−>p o i n t s [ 0 ] . y , c l2−>p o i n t s [ 0 ] . z ) . n u l l ( )
30 ˆ Vec ( c l3−>p o i n t s [ 0 ] . x , c l3−>p o i n t s [ 0 ] . y , c l3−>p o i n t s [ 0 ] . z ) . n u l l ( )
31 ˆ Vec ( c l4−>p o i n t s [ 0 ] . x , c l4−>p o i n t s [ 0 ] . y , c l4−>p o i n t s [ 0 ] . z ) . n u l l ( ) ) .

d u a l ( ) ) ;
32 r a d i u s = c a l c R a d i u s ( d u a l S p h e r e ) ;
33 }
34

35 / / C r e a t e s a s p h e r e i n from 4 i n d e x e d p o i n t s i n a p o i n t c l o u d
36 vo id s p h e r e : : d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l , v e c t o r<i n t> i n d e x

) {
37 d u a l S p h e r e = n o r m a l i z e ( ( Vec ( c l−>p o i n t s [ i n d e x [ 0 ] ] . x , c l−>p o i n t s [ i n d e x

[ 0 ] ] . y , c l−>p o i n t s [ i n d e x [ 0 ] ] . z ) . n u l l ( )
38 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 1 ] ] . x , c l−>p o i n t s [ i n d e x [ 1 ] ] . y , c l−>

p o i n t s [ i n d e x [ 1 ] ] . z ) . n u l l ( )

81



39 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 2 ] ] . x , c l−>p o i n t s [ i n d e x [ 2 ] ] . y , c l−>
p o i n t s [ i n d e x [ 2 ] ] . z ) . n u l l ( )

40 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 3 ] ] . x , c l−>p o i n t s [ i n d e x [ 3 ] ] . y , c l−>
p o i n t s [ i n d e x [ 3 ] ] . z ) . n u l l ( ) ) . d u a l ( ) ) ;

41 r a d i u s = c a l c R a d i u s ( d u a l S p h e r e ) ;
42 x = d u a l S p h e r e [ 0 ] ; y = d u a l S p h e r e [ 1 ] ; z = d u a l S p h e r e [ 2 ] ;
43 }
44

45 / / F u n c t i o n t h a t c a l c u l a t e s r a d i u s
46 f l o a t s p h e r e : : c a l c R a d i u s ( Pn t sph ) {
47 r e t u r n s q r t ( ( 1 / pow ( sph [ 3 ] , 2 ) ) ∗ ( pow ( sph [ 0 ] , 2 ) +pow ( sph [ 1 ] , 2 ) +pow ( sph

[ 2 ] , 2 ) ) − (2∗ sph [ 4 ] / sph [ 3 ] ) ) ;
48 }
49

50 / / F u n c t i o n t h a t n o r m a l i z e s a c o n f o r m a l v e c t o r
51 Pnt s p h e r e : : n o r m a l i z e ( Pn t dSph ) {
52 Pnt r e t ;
53 f o r ( i n t i = 0 ; i <5; i ++){
54 r e t [ i ] = dSph [ i ] / dSph [ 3 ] ;
55 }
56 r e t u r n r e t ;
57 }
58

59 / / C r e a t e s a p l a n e from 3 p o i n t s i n c o n f o r m a l s p a c e
60 vo id p l a n e : : d e f i n e D u a l ( Pn t p1 , Pn t p2 , Pn t p3 ) {
61 d u a l P l a n e = ( p1 ˆ p2 ˆ p3 ˆ I n f ( 1 ) ) . d u a l ( ) ;
62 n o r m a l i z e ( d u a l P l a n e ) ;
63 }
64

65 / / C r e a t e s a p l a n e from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d
66 vo id p l a n e : : d e f i n e D u a l ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x ) {
67 d u a l P l a n e = ( Vec ( c l−>p o i n t s [ i n d e x [ 0 ] ] . x , c l−>p o i n t s [ i n d e x [ 0 ] ] . y , c l−>

p o i n t s [ i n d e x [ 0 ] ] . z ) . n u l l ( )
68 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 1 ] ] . x , c l−>p o i n t s [ i n d e x

[ 1 ] ] . y , c l−>p o i n t s [ i n d e x [ 1 ] ] . z ) . n u l l ( )
69 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 2 ] ] . x , c l−>p o i n t s [ i n d e x

[ 2 ] ] . y , c l−>p o i n t s [ i n d e x [ 2 ] ] . z ) . n u l l ( )
70 ˆ I n f ( 1 ) ) . d u a l ( ) ;
71 n o r m a l i z e ( d u a l P l a n e ) ;
72 }
73

74 / / F u n c t i o n t h a t n o r m a l i z e s a c o n f o r m a l v e c t o r
75 vo id p l a n e : : n o r m a l i z e ( Pn t dPln ) {
76 f o r ( i n t i = 0 ; i < 5 ; i ++){
77 normDualPlane [ i ] = dPln [ i ] / s q r t ( pow ( dPln [ 0 ] , 2 ) +pow ( dPln [ 1 ] , 2 ) +pow (

dPln [ 2 ] , 2 ) ) ;
78 }
79 }
80

81 / / C r e a t e s c i r c l e from 3 p o i n t s i n c o n f o r m a l s p a c e
82 vo id c i r c l e : : d e f i n e C i r c l e ( Pn t p1 , Pn t p2 , Pn t p3 ) {
83 d u a l C i r c l e = p1 ˆ p2 ˆ p3 ;
84 c i r c l e = ( p1 ˆ p2 ˆ p3 ) . d u a l ( ) ;
85 Pnt temp = ( ( p1 ˆ p2 ˆ p3 ) . d u a l ( ) ) ∗ I n f ( 1 ) ∗ ( ( p1 ˆ p2 ˆ p3 ) . d u a l ( ) ) ;
86 f o r ( i n t i = 0 ; i <5; i ++){
87 c i r c l e C e n t e r [ i ] = temp [ i ] / temp [ 3 ] ;
88 }
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89 f i ndNorma l ( ( p1 ˆ p2 ˆ p3 ˆ I n f ( 1 ) ) . d u a l ( ) ) ;
90 c a l c R a d i u s ( p1 ) ;
91 }
92

93 / / C r e a t e s a c i r c l e from 3 p o i n t from a p o i n t c l o u d
94 vo id c i r c l e : : d e f i n e C i r c l e ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x ) {
95 d u a l C i r c l e = Vec ( c l−>p o i n t s [ i n d e x [ 0 ] ] . x , c l−>p o i n t s [ i n d e x [ 0 ] ] . y , c l−>

p o i n t s [ i n d e x [ 0 ] ] . z ) . n u l l ( )
96 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 1 ] ] . x , c l−>p o i n t s [ i n d e x [ 1 ] ] . y , c l−>

p o i n t s [ i n d e x [ 1 ] ] . z ) . n u l l ( )
97 ˆ Vec ( c l−>p o i n t s [ i n d e x [ 2 ] ] . x , c l−>p o i n t s [ i n d e x [ 2 ] ] . y , c l−>

p o i n t s [ i n d e x [ 2 ] ] . z ) . n u l l ( ) ;
98 c i r c l e = d u a l C i r c l e . d u a l ( ) ;
99 Pnt temp = c i r c l e ∗ I n f ( 1 ) ∗ c i r c l e ;

100 f o r ( i n t i = 0 ; i <5; i ++){
101 c i r c l e C e n t e r [ i ] = temp [ i ] / temp [ 3 ] ;
102 }
103 f i ndNorma l ( ( Vec ( c l−>p o i n t s [ i n d e x [ 0 ] ] . x , c l−>p o i n t s [ i n d e x [ 0 ] ] . y , c l−>

p o i n t s [ i n d e x [ 0 ] ] . z ) . n u l l ( ) ˆ Vec ( c l−>p o i n t s [ i n d e x [ 1 ] ] . x , c l−>p o i n t s [
i n d e x [ 1 ] ] . y , c l−>p o i n t s [ i n d e x [ 1 ] ] . z ) . n u l l ( ) ˆ Vec ( c l−>p o i n t s [ i n d e x
[ 2 ] ] . x , c l−>p o i n t s [ i n d e x [ 2 ] ] . y , c l−>p o i n t s [ i n d e x [ 2 ] ] . z ) . n u l l ( ) ˆ I n f
( 1 ) ) . d u a l ( ) ) ;

104 c a l c R a d i u s ( Vec ( c l−>p o i n t s [ i n d e x [ 0 ] ] . x , c l−>p o i n t s [ i n d e x [ 0 ] ] . y , c l−>
p o i n t s [ i n d e x [ 0 ] ] . z ) . n u l l ( ) ) ;

105 }
106

107 / / C r e a t e s c i r c l e from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d
108 vo id c i r c l e : : d e f i n e C i r c l e ( PointXYZRGB p1 , PointXYZRGB p2 , PointXYZRGB p3 ) {
109 d u a l C i r c l e = Vec ( p1 . x , p1 . y , p1 . z ) . n u l l ( )
110 ˆ Vec ( p2 . x , p2 . y , p2 . z ) . n u l l ( )
111 ˆ Vec ( p3 . x , p3 . y , p3 . z ) . n u l l ( ) ;
112 c i r c l e = d u a l C i r c l e . d u a l ( ) ;
113 Pnt temp = c i r c l e ∗ I n f ( 1 ) ∗ c i r c l e ;
114 f o r ( i n t i = 0 ; i <5; i ++){
115 c i r c l e C e n t e r [ i ] = temp [ i ] / temp [ 3 ] ;
116 }
117 f i ndNorma l ( ( Vec ( p1 . x , p1 . y , p1 . z ) . n u l l ( ) ˆ Vec ( p2 . x , p2 . y , p2 . z ) . n u l l ( ) ˆ

Vec ( p3 . x , p3 . y , p3 . z ) . n u l l ( ) ˆ I n f ( 1 ) ) . d u a l ( ) ) ;
118 c a l c R a d i u s ( Vec ( p1 . x , p1 . y , p1 . z ) . n u l l ( ) ) ;
119 }
120

121 / / F u n c t i o n t h a t f i n d s t h e c r i c l e r a d i u s
122 vo id c i r c l e : : c a l c R a d i u s ( Pn t p ) {
123 r a d i u s = s q r t ( pow ( p [ 0 ] − c i r c l e C e n t e r [ 0 ] , 2 ) + pow ( p [ 1 ] − c i r c l e C e n t e r

[ 1 ] , 2 ) +pow ( p [ 2 ] − c i r c l e C e n t e r [ 2 ] , 2 ) ) ;
124 }
125

126 / / F u n c t i o n t h a t c r e a t e s t h e p l a n e t h a t t h e c r i c l e l i e s on
127 vo id c i r c l e : : f i ndNorma l ( Pn t p l n ) {
128 f o r ( i n t i = 0 ; i < 5 ; i ++){
129 p l a n e [ i ] = p l n [ i ] / s q r t ( pow ( p l n [ 0 ] , 2 ) +pow ( p l n [ 1 ] , 2 ) +pow ( p l n [ 2 ] , 2 ) ) ;
130 }
131 }
132

133 / / C r e a t e s a c y l i n d e r from two p o i n t s i n c o n f o r m a l s p a c e on t h e c e n t e r a x i s
and a r a d i u s

134 vo id c y l i n d e r : : d e f i n e C y l i n d e r ( Pn t p1 , Pn t p2 , f l o a t r a d ) {

83



135 r a d i u s = r a d ;
136 c e n t e r = p1 ;
137 f o r ( i n t i = 0 ; i < 3 ; i ++){
138 p l a n [ i ] = ( p1 [ i ] − p2 [ i ] ) / s q r t ( pow ( p1 [ 0 ] − p2 [ 0 ] , 2 ) + pow ( p1 [ 1 ] −

p2 [ 1 ] , 2 ) + pow ( p1 [ 2 ] − p2 [ 2 ] , 2 ) ) ;
139 }
140 p l a n [ 3 ] = 0 ;
141 }
142

143 / / C r e a t e s a c y l i n d e r from 3 p o i n t s i n c o n f o r m a l s p a c e
144 vo id c y l i n d e r : : d e f i n e C y l i n d e r ( Pn t p1 , Pn t p2 , Pn t p3 ) {
145 p l a n e p l n ;
146 p l n . d e f i n e D u a l ( p1 , p2 , p3 ) ;
147 p l a n = p l n . normDualPlane ;
148 c i r c l e c i r ;
149 c i r . d e f i n e C i r c l e ( p1 , p2 , p3 ) ;
150 c e n t e r = c i r . c i r c l e C e n t e r ;
151 r a d i u s = c i r . r a d i u s ;
152 }
153

154 / / C r e a t e s t h e c y l i n d e r from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d
155 vo id c y l i n d e r : : d e f i n e C y l i n d e r ( Po in tC loud<PointXYZRGB> : : P t r c l , i n t ∗ i n d e x )

{
156 p l a n e p l n ;
157 p l n . d e f i n e D u a l ( c l , i n d e x ) ;
158 p l a n = p l n . normDualPlane ;
159 c i r c l e c i r ;
160 c i r . d e f i n e C i r c l e ( c l , i n d e x ) ;
161 c e n t e r = c i r . c i r c l e C e n t e r ;
162 r a d i u s = c i r . r a d i u s ;
163 }

ransac.h

1 / /
2 / / C r e a t e d by Akse l S v e i e r . S p r i n g 2016
3 / /
4

5 # i f n d e f RANSACGA RANSAC H
6 # d e f i n e RANSACGA RANSAC H
7

8 # e n d i f / / RANSACGA RANSAC H
9

10 # i n c l u d e <v s r / s p a c e / v s r c g a 3 D o p . h>
11 # i n c l u d e <p c l / p o i n t t y p e s . h>
12 # i n c l u d e <p c l / common / common headers . h>
13 # i n c l u d e <p c l / f i l t e r s / p a s s t h r o u g h . h>
14 # i n c l u d e <p c l / o c t r e e / o c t r e e . h>
15 # i n c l u d e <p c l / o c t r e e / o c t r e e i m p l . h>
16 # i n c l u d e <p c l / f i l t e r s / e x t r a c t i n d i c e s . h>
17 # i n c l u d e ” o b j e c t s . h ”
18

19 u s i n g namespace v s r ;
20 u s i n g namespace v s r : : cga ;
21 u s i n g namespace p c l ;
22

23 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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24

25 / / / / / / / / / / / / / / / / / / / / / / / PLANE / / / / / / / / / / / / / / / / / / / / / / / / / / /
26

27 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
28

29 / / C l a s s f o r d e t e c t i n g a p l a n e i n a p o i n t c l o u d wi th RANSAC
30 c l a s s r a n s a c P l a n e {
31 p u b l i c :
32 r a n s a c P l a n e ( ) ; / / C o n s t r u c t o r
33 f l o a t p l a n e t o l ; / / T o l e r a n c e used f o r d e c i d i n g w e th e r a p o i n t i s

c o m p a t a b l e wi th a p l a n e
34 Po in tC loud<PointXYZRGB> : : P t r c l o u d ; / / P o i n t c l o u d f o r h o l d i n g t h e d a t a

s e t
35 Po in tC loud<PointXYZRGB> : : P t r segment ; / / P o i n t c l o u d f o r h o l d i n g t h e

i n l i e r p o i n t s
36 s t d : : v e c t o r<i n t> ∗ i n d e x l i s t ; / / V ec to r f o r h o l d i n g t h e i n d e x of i n l i e r

p o i n t s
37

38 Pnt r a n P l n ; / / P l a n e o b j e c t
39 i n t c a n d i d a t e s ; / / Number o f c a n d i d a t e s t o d e t e c t
40

41 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l , i n t cand ) ;
42 vo id compute ( ) ; / / does a l l compu ta t i on , and e v e n t u a l l y s t o r e s t h e

p l a n e wi th t h e most i n l i e r s a s a Pn t t y p e ;
43 vo id s e g m e n t P l a n e ( Po in tC loud<PointXYZRGB> : : P t r seg ) ; / / F u n c t i o n t h a t

c r e a t e s and s t o r e s t h e i n d e x l i s t o f t h e c u r r e n t p l a n e
44 Pnt f i t ( Pn t p l n ) ; / / P l a n e f i t t i n g i n c o n f o r m a l s p a c e
45 p r i v a t e :
46 boo l i s I n l i e r ( Pn t p o i n t , Pn t p l a n e ) ; / / Bool f o r d e t e r m i n i n g w e a t h e r a

p o i n t i s a i n l i e r
47 } ;
48

49 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
50

51 / / / / / / / / / / / / / / / / / / / / / / / SPHERE / / / / / / / / / / / / / / / / / / / / / / / / / / /
52

53 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
54 / / C l a s s f o r d e t e c t i n g a s p h e r e i n a p o i n t c l o u d wi th r a n s a c
55 c l a s s r a n s a c S p h e r e {
56 p u b l i c :
57 r a n s a c S p h e r e ( ) ; / / C o n s t r u c t o r
58 f l o a t r a d i u s T o l e r a n c e ;
59 f l o a t i n l i e r T r e s h o l d = 0 . 0 0 5 ; / / For t h e k i n e c t t h e a c c u r a c y i s 1 % of

t h e d i s t a n c e from t h e s e n s o r f o r 100 images .
60 i n t i t e r a t i o n s = 1 ; / / Maximum a l l o w e d i t e r a t i o n s
61 i n t a c t u a l I t ; / / I n t e g e r f o r s t o r i n g t h e number o f i t e r a t i o n s pe r fo rmed
62 f l o a t r a d i u s = 0 ; / / f l o a t f o r s t o r i n g t h e r a d u i s
63 Po in tC loud<PointXYZRGB> : : P t r c l o u d ; / / P o i n t c l o u d f o r s t o r i n g t h e d a t a

s e t
64

65 f l o a t t ime ; / / F l o a t f o r s t o r i n g t h e c o m p u t a t i o n t ime of t h e a l g o r i t h m
66

67 Pnt ranSph ; / / Sphere o b j e c t
68 i n t c a n d i d a t e s = 1 ; / / Number o f c a n d i d a t e s t o d e t e c t
69 s t d : : v e c t o r<i n t> ∗ i n d e x l i s t ; / / V ec to r f o r s t o r i n g i n l i e r s
70 i n t n u m I n l i e r s ; / / I n t e g e r f o r s t o r i n g t h e number o f i n l i e r s
71
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72 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l , f l o a t r a d ) ;
73 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l , f l o a t rad ,

i n t cand ) ;
74 boo l compute ( ) ; / / does a l l compu ta t i on , and e v e n t u a l l y s t o r e s t h e

s p h e r e wi th t h e most i n l i e r s a s a Pn t t y p e ;
75 Pnt f i t ( s p h e r e sph ) ; / / Sphere f i t t i n g i n c o n f o r m a l s p a c e .
76

77 p r i v a t e :
78 boo l i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , s p h e r e can ) ; / / Bool f o r

d e t e r m i n i n g whe the r a p o i n t i s a i n l i e r
79 boo l sphe reCheck ( s p h e r e sph ) ; / / Check i f t h e s p h e r e r a d i u s i s i n s i d e

t o l e r a n c e l i m i t s
80 i n t e s t i m a t e I n l i e r s ( s p h e r e sph ) ; / / F u n c t i o n f o r e s t i m a t i n g t h e i n l i e r s

f o r a s p e c i f c s p h e r e .
81 } ;
82

83 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
84

85 / / / / / / / / / / / / / / / / / / / / CYLINDER / / / / / / / / / / / / / / / / / / / / / / / / / / /
86

87 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
88 / / C l a s s f o r d e t e c t i n g a c y l i n d e r i n a p o i n t c l o u d u s i n g t h e p lane−c i r c l e

a p p r o a c h .
89 c l a s s r a n s a c C y l i n d e r {
90 p u b l i c :
91 Po in tC loud<PointXYZRGB> : : P t r c l o u d ; / / P o i n t c l o u d f o r s t o r i n g t h e d a t a

s e t
92 Po in tC loud<PointXYZRGB> : : P t r i n l i e r C l o u d ; / / P o i n t c l o u d f o r s t o r i n g

t h e i n l i e r s
93 f l o a t t o l = 0 ; / / F l o a t f o r t h e r a d i u s t o l e r a n c e
94 f l o a t s e a r c h R a d i u s = 0 ; / / F l o a t f o r s t o r i n g t h e r a d i u s
95 i n t n u m b e r I n l i e r s ; / / F l o a t f o r s t o r i n g t h e number o f i n l i e r s
96 c y l i n d e r r an Cy l ; / / c y l i n d e r o b j e c t
97 i n t i t e r a t i o n s = 1 ; / / Maximum number o f i t e r a t i o n s
98 i n t c a n d i d a t e s ; / / Number o f c a n d i d a t e s t o d e t e c t
99

100 / / Length
101 Eigen : : V e c t o r 4 f c e n t r o i d ; / / C e n t r o i d o f i n l i e r s
102 Eigen : : V e c t o r 3 f p r o j L ; / / P o i n t a t t h e edge o f c y l i n d e r on t h e c y l i n d e r

a x i s
103 Eigen : : V e c t o r 3 f p r o j S ; / / P o i n t a t t h e edge o f c y l i n d e r on t h e c y l i n d e r

a x i s
104 i n t l a r g e s t I n d = 0 ; / / Index of p o i n t a t c y l i n d e r edge
105 i n t s m a l l e s t I n d = 0 ; / / Index of p o i n t a t c y l i n d e r edge
106

107

108 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l e r a n c e , f l o a t
rad , i n t i n l i e r s , i n t cand ) ;

109 vo id compute ( ) ; / / does a l l compu ta t i on , and e v e n t u a l l y s t o r e s t h e
c y l i n d e r wi th most i n l i e r s

110 vo id c y l i n d e r L e n g t h ( ) ; / / F u n c t i o n f o r d e t e r m i n i n g t h e c y l i n d e r l e n g t h
111 p r i v a t e :
112 boo l i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , Pn t p1 , Pn t p2 ) ; / / Bool f o r

d e t e r m i n i n g w e a t h e r a p o i n t i s a i n l i e r
113 boo l r a d i u s C h e c k ( f l o a t r a d ) ; / / Check i f t h e c y l i n d e r r a d i u s i s i n s i d e

t o l e r a n c e l i m i t s
114 } ;
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115

116 / / C l a s s f o r d e t e c t i n g a c y l i n d e r i n a p o i n t c l o u d u s i n g t h e sphe re−s p h e r e
a p p r o a c h .

117 c l a s s r a n s a c C y l i n d e r 2 {
118 p u b l i c :
119 r a n s a c C y l i n d e r 2 ( ) ; / / C o n s t r u c t o r
120 Po in tC loud<PointXYZRGB> : : P t r c l o u d ; / / P o i n t c l o u d f o r s t o r i n g t h e d a t a

s e t
121 Po in tC loud<PointXYZRGB> : : P t r i n l i e r C l o u d ; / / P o i n t c l o u d f o r s t o r i n g

t h e i n l i e r s
122 f l o a t t o l = 0 ; / / F l o a t f o r t h e r a d i u s t o l e r a n c e
123 f l o a t s e a r c h R a d i u s = 0 ; / / F l o a t f o r s t o r i n g t h e r a d i u s
124 i n t i n l i e r s ; / / I n t e g e r f o r s t o r i n g t h e number o f i n l i e r s
125 c y l i n d e r r an Cy l ; / / C y l i n d e r o b j e c t
126 r a n s a c S p h e r e b a l l ; / / Sphere d e t e c t i o n o b j e c t
127

128 / / Length
129 Eigen : : V e c t o r 4 f c e n t r o i d ; / / C e n t r o i d o f i n l i e r s
130 Eigen : : V e c t o r 3 f p r o j L ; / / P o i n t a t t h e edge o f c y l i n d e r on t h e c y l i n d e r

a x i s
131 Eigen : : V e c t o r 3 f p r o j S ; / / P o i n t a t t h e edge o f c y l i n d e r on t h e c y l i n d e r

a x i s
132 i n t l a r g e s t I n d = 0 ; / / Index of p o i n t a t c y l i n d e r edge
133 i n t s m a l l e s t I n d = 0 ; / / Index of p o i n t a t c y l i n d e r edge
134

135 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l e r a n c e , f l o a t
r a d ) ;

136 vo id compute ( ) ; / / does a l l compu ta t i on , and e v e n t u a l l y s t o r e s t h e
c y l i n d e r wi th most i n l i e r s

137 vo id c y l i n d e r L e n g t h ( c y l i n d e r c y l ) ; / / F u n c t i o n f o r d e t e r m i n i n g t h e
c y l i n d e r l e n g t h

138 p r i v a t e :
139 boo l i s I n l i e r 2 ( f l o a t x , f l o a t y , f l o a t z , Pn t p1 , Pn t p2 ) ; / / Bool f o r

d e t e r m i n i n g w e a t h e r a p o i n t i s a i n l i e r
140 } ;
141

142 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
143

144 / / / / / / / / / / / / / / / / / / MULTIPLE SPHERES / / / / / / / / / / / / / / / / / / / / / / / / /
145

146 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
147 / / M u l t i p l e shape d e t e c t i o n a l g o r i t h m implemented f o r s p h e r e s
148 c l a s s r a n s a c S p h e r e s {
149 p u b l i c :
150 r a n s a c S p h e r e s ( ) ; / / C o n s t r u c t o r
151 Po in tC loud<PointXYZRGB> : : P t r c l o u d ; / / P o i n t c l o u d f o r s t o r i n g t h e d a t a

s e t
152 Po in tC loud<PointXYZRGB> : : P t r c l o u d f i l t e r e d ; / / P o i n t c l o u d f o r s t o r i n g

t h e d a t a s e t a f t e r a s p h e r e i s e x t r a c t e d
153 v e c t o r<Poin tC loud<PointXYZRGB> : : P t r> ∗ subClouds ; / / V ec to r f o r s t o r i n g

t h e s u b c l o u d s
154 s t d : : v e c t o r<p c l : : P o i n t I n d i c e s : : P t r> ∗ i n d e x l i s t ; / / V ec to r f o r s t o r i n g

t h e i n l i e r i n d i c e s
155 s t d : : v e c t o r<sphe re> ∗ f o u n d S p h e r e s ; / / Ve c to r f o r s t o r i n g t h e d e t e c t e d

s p h e r e s
156
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157 i n t t o t a l N u m b e r O f I t e r a t i o n s ; / / I n t e g e r f o r s t o r i n g t h e t o t a l number o f
i t e r a t i o n s a c c u m u l a t e d

158 i n t t o t a l N u m b e r O f P o p u l a t e d N o d e s ; / / I n t e g e r f o r s t o r i n g t h e t o t a l
number o f p o p u l a t e d nodes

159 i n t e s t i m a t e d I n l i e r s ; / / I n t e g e r f o r s t o r i n g t h e e s t i m a t e d i n l i e r s
160

161 / / D e f a u l t o c t r e e bounds
162 do ub l e x min = −1, y min = −1, z min = 0 , x max = 1 , y max = 1 , z max

= 2 ;
163 do ub l e r o o t L e n g t h = 0 ;
164 f l o a t r e s = 0 . 0 2 ;
165 i n t d e p t h ;
166

167

168 vo id s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t r e s o l u t i o n ) ;
169 vo id s e t O c t r e e B o u n d s ( d oub l e xmin , d ou b l e ymin , d ou b l e zmin , d ou b l e

xmax , do ub l e ymax , do ub l e zmax ) ; / / F u n c t i o n f o r s e t t i n g t h e o c t r e e
bounds

170 vo id s e t O c t r e e ( f l o a t r e s o l u t i o n ) ; / / F u n c t i o n f o r c r e a t i n g t h e p o i n t
p i c k i n g o c t r e e wi th a d e s i r e d r e s o l u t i o n

171 vo id s e t S e a r c h O c t r e e ( f l o a t r e s o l u t i o n ) ; / / F u n c t i o n f o r c r e a t i n g t h e
s e a r c h o c t r e e wi th a d e s i r e d r e s o l u t i o n

172 vo id compute ( ) ; / / F u n c t i o n t h a t r u n s t h e a l g o r i t h m
173 s p h e r e f i t ( s p h e r e sph , p c l : : P o i n t I n d i c e s : : P t r i n l i e r s ) ; / / F u n c t i o n f o r

f i t t i n g a s p h e r e t o i t s i n l i e r s
174 vo id d i v i d e C l o u d ( ) ;
175

176 p r i v a t e :
177 p c l : : o c t r e e : : O c t r e e P o i n t C l o u d S e a r c h<p c l : : PointXYZRGB> : : P t r o c t S e a r c h ;

/ / S ea r c h o c t r e e o b j e c t
178 p c l : : o c t r e e : : O c t r e e P o i n t C l o u d<p c l : : PointXYZRGB> : : P t r o c t ; / / P o i n t

p i c k i n g o c t r e e o b j e c t
179

180 v e c t o r<i n t> s h u f f l e ( v e c t o r<i n t> l i s t ) ; / / F u n c t i o n f o r s h u f f e l i n g a
i n d e x v e c t o r

181 i n t g e t I n l i e r s ( s p h e r e can ) ; / / F u n c t i o n f o r c o u n t i n g t h e i n l i e r s f o r a
s p h e r e from a s u b c l o u d

182 boo l i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , s p h e r e can ) ; / / F u n c t i o n f o r
d e r e m i n i n g whe the r a p o i n t i s a i n l i e r

183 i n t e s t i m a t e I n l i e r s ( s p h e r e sph ) ; / / F u n c t i o n f o r e s t i m a t i n g t h e i n l i e r s
o f a s p h e r e

184 } ;

ransac body.cpp

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
2

3 / / / / / / / / / / / / / / / / / / / / / / / PLANE / / / / / / / / / / / / / / / / / / / / / / / / / / /
4

5 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
6

7 / / C o n s t r u c t o r
8 r a n s a c P l a n e : : r a n s a c P l a n e ( ) {
9 i n d e x l i s t = new s t d : : v e c t o r<i n t >;

10 }
11

12 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
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13 vo id r a n s a c P l a n e : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l , i n t
cand ) {

14 c l o u d = c l ;
15 p l a n e t o l = t o l ;
16 c a n d i d a t e s = cand ;
17 }
18 / / Runs t h e p r i m i t i v e shape d e t e c t i o n f o r a p l a n e
19

20 vo id r a n s a c P l a n e : : compute ( ) {
21 / / V a r i a b l e s t o keep t r a c k of t h e a l g o r i t h m
22 i n t r a n [ 3 ] ;
23 i n t c o u n t = 0 ;
24 Pnt cand [ c a n d i d a t e s ] ;
25 p l a n e a p l a n e ; / / C r e a t e a p l a n e o b j e c t from o b j e c t . h
26

27 / / A lgo r i t hm
28 w h i l e ( c o u n t < c a n d i d a t e s ) {
29

30 / / G e n e r a t e random i n d e x e s x
31 f o r ( i n t i = 0 ; i <3; i ++){
32 r a n [ i ] = rand ( ) % cloud−>p o i n t s . s i z e ( ) ;
33 }
34 / / C r e a t e d u a l p l a n e wi th i n d e x e d p o i n t s from p o i n t c loud , u s i n g GA
35 a p l a n e . d e f i n e D u a l ( c loud , r a n ) ; / / C r e a t e s a d u a l p l a n e i n c o n f r o m a l

s p a c e from 3 i n d e x e d p o i n t s i n a p o i n t c l o u d
36 cand [ c o u n t ] = a p l a n e . normDualPlane ;
37 c o u n t ++;
38 }
39

40 / / F ind number o f i n l i e r p o i n t s f o r each c a n d i d a t e
41 i n t i n P o i n t s [ c a n d i d a t e s ] ;
42 f o r ( i n t i = 0 ; i < c a n d i d a t e s ; i ++){
43 c o u n t = 0 ;
44 f o r ( i n t j = 0 ; j < c loud−>p o i n t s . s i z e ( ) ; j ++)
45 i f ( i s I n l i e r ( Vec ( c loud−>p o i n t s [ j ] . x , c loud−>p o i n t s [ j ] . y , c loud−>

p o i n t s [ j ] . z ) . n u l l ( ) , cand [ i ] ) ) {
46 c o u n t ++;
47 }
48 i n P o i n t s [ i ] = c o u n t ;
49 }
50

51 / / F ind c a n d i d a t e wi th most i n l i e r s
52 i n t b e s t = 0 ;
53 i n t numBest = 0 ;
54 f o r ( i n t i =0 ; i < c a n d i d a t e s ; i ++){
55 i f ( i n P o i n t s [ i ] > numBest ) {
56 b e s t = i ;
57 numBest = i n P o i n t s [ i ] ;
58 }
59 }
60

61 / / F i t t h e p l a n e wi th t h e most i n i l e r s t o i t s i n l i e r s
62 Pnt f i t t e d P l n = f i t ( cand [ b e s t ] ) ;
63

64 / / F i n a l l y n o r m a l i z e
65 f o r ( i n t i = 0 ; i < 5 ; i ++){
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66 r a n P l n [ i ] = f i t t e d P l n [ i ] / s q r t ( pow ( f i t t e d P l n [ 0 ] , 2 ) +pow (
f i t t e d P l n [ 1 ] , 2 ) +pow ( f i t t e d P l n [ 2 ] , 2 ) ) ;

67 }
68

69 }
70

71 / / F u n c t i o n t o check i f a p o i n t i s c l a s s i f i e d as a i n l i e r
72 boo l r a n s a c P l a n e : : i s I n l i e r ( Pn t p o i n t , Pn t p l a n e ) {
73 f l o a t d i s t a n c e = s q r t ( pow ( ( p o i n t <= p l a n e ) [ 0 ] , 2 ) ) ;
74 i f ( d i s t a n c e < p l a n e t o l ) {
75 r e t u r n t r u e ;
76 } e l s e {
77 r e t u r n f a l s e ;
78 }
79 }
80

81 / / F u n c t i o n t h a t c r e a t e s and s t o r e s t h e i n d e x l i s t o f t h e c u r r e n t p l a n e
82 vo id r a n s a c P l a n e : : s e g m e n t P l a n e ( Po in tC loud<PointXYZRGB> : : P t r seg ) {
83 d e l e t e i n d e x l i s t ;
84 i n d e x l i s t = new s t d : : v e c t o r<i n t >;
85 f o r ( i n t j = 0 ; j < seg−>p o i n t s . s i z e ( ) ; j ++)
86 i f ( i s I n l i e r ( Vec ( seg−>p o i n t s [ j ] . x , seg−>p o i n t s [ j ] . y , seg−>p o i n t s [ j ] .

z ) . n u l l ( ) , r a n P l n ) ) {
87 i n d e x l i s t−>p u s h b a c k ( j ) ;
88 }
89 }
90

91 / / F i t t i n g o f a p l a n e t o i t s i n l i e r p o i n t u s i n g g e o m e t r i c a l g e b r a
92 Pnt r a n s a c P l a n e : : f i t ( Pn t p l n ) {
93

94 d e l e t e i n d e x l i s t ;
95 i n d e x l i s t = new s t d : : v e c t o r<i n t >;
96 f o r ( i n t j = 0 ; j < c loud−>p o i n t s . s i z e ( ) ; j ++){
97 i f ( i s I n l i e r ( Vec ( c loud−>p o i n t s [ j ] . x , c loud−>p o i n t s [ j ] . y , c loud−>

p o i n t s [ j ] . z ) . n u l l ( ) , p l n ) ) {
98 i n d e x l i s t−>p u s h b a c k ( j ) ;
99 }

100 }
101

102 / / Pu t i n l i e r p o i n t s i n t o m a t r i x f o r e a s i e r h a n d l i n g
103 Eigen : : Mat r ixXf P ( i n d e x l i s t−>s i z e ( ) , 5 ) ;
104

105 f o r ( i n t i =0 ; i < i n d e x l i s t−>s i z e ( ) ; i ++){
106 P ( i , 0 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . x ; / / x
107 P ( i , 1 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . y ; / / y
108 P ( i , 2 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . z ; / / x
109 P ( i , 4 ) = −0.5∗(pow ( P ( i , 0 ) , 2 ) + pow ( P ( i , 1 ) , 2 ) + pow ( P ( i , 2 ) , 2 ) ) ;
110 P ( i , 3 ) = −1;
111 }
112

113 / / Compute SVD of m a t r i x
114 Eigen : : JacobiSVD<Eigen : : Matr ixXf> USV( P . t r a n s p o s e ( ) ∗P , Eigen : :

ComputeFullU | Eigen : : ComputeFullV ) ;
115

116 f o r ( i n t i = 0 ; i < 3 ; i ++){
117 p l n [ i ] = USV. matr ixU ( ) ( i , 4 ) ; / / USV. matr ixU ( ) ( 3 , 0 ) ;
118 }
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119 p l n [ 3 ] = USV. matr ixU ( ) ( 4 , 4 ) ; / / USV. matr ixU ( ) ( 4 , 0 ) ;
120 p l n [ 4 ] = USV. matr ixU ( ) ( 3 , 4 ) ; / / USV. matr ixU ( ) ( 4 , 0 ) ;
121

122 r e t u r n p l n ;
123 }
124

125 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
126

127 / / / / / / / / / / / / / / / / / / / / / / SPHERE / / / / / / / / / / / / / / / / / / / / / / / / / / /
128

129 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
130

131 / / C l a s s c o n s t r u c t o r
132 r a n s a c S p h e r e : : r a n s a c S p h e r e ( ) {
133 i n d e x l i s t = new s t d : : v e c t o r<i n t >;
134 }
135

136 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
137 vo id r a n s a c S p h e r e : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l ,

f l o a t r a d ) {
138 c l o u d = c l ;
139 r a d i u s = r a d ;
140 r a d i u s T o l e r a n c e = t o l ;
141 c a n d i d a t e s = 1 ;
142 }
143

144 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
145 vo id r a n s a c S p h e r e : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t t o l ,

f l o a t rad , i n t cand ) {
146 c l o u d = c l ;
147 r a d i u s = r a d ;
148 r a d i u s T o l e r a n c e = t o l ;
149 c a n d i d a t e s = cand ;
150 }
151

152 / / Runs t h e p r i m i t i v e shape d e t e c t i o n f o r a s p h e r e
153 boo l r a n s a c S p h e r e : : compute ( ) {
154 / / V a r i a b l e s t o keep t r a c k of t h e a l g o r i t h m
155 i n t i t = 0 ;
156 v e c t o r<i n t> r a n ( 4 ) ;
157 i n t can = 0 ;
158 v e c t o r<sphe re> cand ;
159 s p h e r e a s p h e r e ; / / C r e a t e a s p h e r e o b j e c t from o b j e c t . h
160 i n t c o u n t ;
161 v e c t o r<i n t> i n P o i n t s ;
162

163 / / Timer
164 s t d : : c l o c k t t1 , t 2 ;
165 t 1 = s t d : : c l o c k ( ) ;
166

167 / / A lgo r i t hm
168 w h i l e ( can < c a n d i d a t e s && i t < i t e r a t i o n s ) {
169

170 / / G e n e r a t e random i n d e x e s
171 f o r ( i n t i = 0 ; i <4; i ++){
172 r a n [ i ] = rand ( ) % cloud−>p o i n t s . s i z e ( ) ;
173 }
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174

175 / / C r e a t e d u a l s p h e r e wi th i n d e x e d p o i n t s from p o i n t c l o u d
176 a s p h e r e . d e f i n e D u a l ( c loud , r a n ) ; / / C r e a t e s a d u a l s p h e r e i n

c o n f r o m a l s p a c e from 4 i n d e x e d p o i n t s i n a p o i n t c l o u d
177

178 / / Check i f s p h e r e i s i n s i d e t o l e r a n c e
179 i f ( sphe reCheck ( a s p h e r e ) ) {
180

181 / / Count i n l i e r s
182 c o u n t = 0 ;
183 f o r ( i n t j = 0 ; j < c loud−>p o i n t s . s i z e ( ) ; j ++) {
184 i f ( i s I n l i e r ( c loud−>p o i n t s [ j ] . x , c loud−>p o i n t s [ j ] . y , c loud−>

p o i n t s [ j ] . z , a s p h e r e ) ) {
185 c o u n t ++;
186 }
187 }
188

189 / / Check i f s p h e r e i s f e a s a b l e
190 i f ( c o u n t >= e s t i m a t e I n l i e r s ( a s p h e r e ) ) {
191 cand . p u s h b a c k ( a s p h e r e ) ;
192 i n P o i n t s . p u s h b a c k ( c o u n t ) ;
193 can ++;
194 }
195 }
196 i t ++;
197 }
198 / / S t o r e t h e p e r f o r m a n c e
199 a c t u a l I t = i t ;
200 t 2 = s t d : : c l o c k ( ) ;
201 t ime = ( ( f l o a t ) t2−( f l o a t ) t 1 ) / ( CLOCKS PER SEC ) ;
202

203 i f ( can > 0){
204 / / F ind c a n d i d a t e wi th most i n l i e r s
205 i n t b e s t = 0 ;
206 n u m I n l i e r s = 0 ;
207 f o r ( i n t i =0 ; i < cand . s i z e ( ) ; i ++){
208 i f ( i n P o i n t s [ i ] > n u m I n l i e r s ) {
209 b e s t = i ;
210 n u m I n l i e r s = i n P o i n t s [ i ] ;
211 }
212 }
213

214 / / F i t t h e s p h e r e t o i t s i n l i e r s
215 ranSph = f i t ( cand [ b e s t ] ) ;
216 f l o a t r a d = s q r t ( ( 1 / pow ( ranSph [ 3 ] , 2 ) ) ∗ ( pow ( ranSph [ 0 ] , 2 ) +pow ( ranSph

[ 1 ] , 2 ) +pow ( ranSph [ 2 ] , 2 ) ) − (2∗ ranSph [ 4 ] / ranSph [ 3 ] ) ) ;
217 / / Check i f t h e f i t i s s u c c e s f u l l , r e t u r n t h e u n f i t t e d s p h e r e .
218 i f ( cand [ b e s t ] . r a d i u s / r a d > 1 . 1 | | cand [ b e s t ] . r a d i u s / r a d < 0 . 9 ) {
219 ranSph = cand [ b e s t ] . d u a l S p h e r e ;
220 }
221 / / Re tu rn t r u e i f a s p h e r e was found
222 r e t u r n t r u e ;
223 } e l s e {
224 / / Re tu rn f a l s e i f n o t
225 r e t u r n f a l s e ;
226 }
227 }
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228

229 / / F u n c t i o n t o check i f a p o i n t i s c l a s s i f i e d as a i n l i e r
230 boo l r a n s a c S p h e r e : : i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , s p h e r e can ) {
231 f l o a t d i s t = s q r t ( pow ( ( can . d u a l S p h e r e [0]−x ) , 2 ) +pow ( ( can . d u a l S p h e r e [1]−

y ) , 2 ) +pow ( ( can . d u a l S p h e r e [2]− z ) , 2 ) ) ;
232 i f ( ( d i s t > ( can . r a d i u s − i n l i e r T r e s h o l d ) ) && ( d i s t < ( can . r a d i u s +

i n l i e r T r e s h o l d ) ) ) {
233 r e t u r n t r u e ;
234 } e l s e {
235 r e t u r n f a l s e ;
236 }
237 }
238

239 / / Check i f t h e r a d i u s i s i n s i d e t h e t o l e r a n c e l i m i t s
240 boo l r a n s a c S p h e r e : : sphe reCheck ( s p h e r e sph ) {
241 i f ( sph . r a d i u s < ( r a d i u s ∗(1+ r a d i u s T o l e r a n c e ) ) && sph . r a d i u s > ( r a d i u s

∗(1− r a d i u s T o l e r a n c e ) ) )
242 {
243 r e t u r n t r u e ;
244 } e l s e {
245 r e t u r n f a l s e ;
246 }
247 }
248

249 / / F u n c t i o n t h a t e s t i m a t e s t h e i n l i e r s , s e n s o r d e p e n d e n t
250 i n t r a n s a c S p h e r e : : e s t i m a t e I n l i e r s ( s p h e r e sph ) {
251 / / a and b a r e found by e x p e r i m e n t a l measurments wi th t h e k i n e c t 2 and

r e g r e s s i o n i n e x c e l .
252 / / y = a ∗ ( d i s t ˆ ( b ) ∗ r a d ˆ 2 )
253 f l o a t a = 439731 .61228317 , b =−2.2345982262;
254 f l o a t r a d = sph . r a d i u s , d i s t = sph . d u a l S p h e r e [ 2 ] ;
255 i n t e s t i m a t e d I n l i e r s = a ∗ ( pow ( d i s t , b ) ∗pow ( rad , 2 ) ) ;
256 i f ( e s t i m a t e d I n l i e r s > 10){
257 r e t u r n e s t i m a t e d I n l i e r s ;
258 } e l s e {
259 r e t u r n 999999;
260 }
261 }
262

263 / / F i t t i n g o f a s p h e r e t o i t s i n l i e r p o i n t u s i n g g e o m e t r i c a l g e b r a
264 Pnt r a n s a c S p h e r e : : f i t ( s p h e r e sph ) {
265 d e l e t e i n d e x l i s t ;
266 i n d e x l i s t = new s t d : : v e c t o r<i n t >;
267 f o r ( i n t j = 0 ; j < c loud−>p o i n t s . s i z e ( ) ; j ++){
268 i f ( i s I n l i e r ( c loud−>p o i n t s [ j ] . x , c loud−>p o i n t s [ j ] . y , c loud−>p o i n t s [ j

] . z , sph ) ) {
269 i n d e x l i s t−>p u s h b a c k ( j ) ;
270 }
271 }
272

273 / / Pu t i n l i e r p o i n t s i n t o m a t r i x f o r e a s i e r h a n d l i n g
274 Eigen : : Mat r ixXf P ( i n d e x l i s t−>s i z e ( ) , 5 ) ;
275

276 f o r ( i n t i = 0 ; i < i n d e x l i s t−>s i z e ( ) ; i ++){
277 P ( i , 0 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . x ; / / x
278 P ( i , 1 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . y ; / / y
279 P ( i , 2 ) = c loud−>p o i n t s [ i n d e x l i s t−>a t ( i ) ] . z ; / / x
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280 P ( i , 4 ) = −0.5∗(pow ( P ( i , 0 ) , 2 ) + pow ( P ( i , 1 ) , 2 ) + pow ( P ( i , 2 ) , 2 ) ) ;
281 P ( i , 3 ) = −1;
282 }
283

284 / / Compute SVD of m a t r i x
285 Eigen : : JacobiSVD<Eigen : : Matr ixXf> USV( P . t r a n s p o s e ( ) ∗P , Eigen : :

ComputeFullU | Eigen : : ComputeFullV ) ;
286

287 / / N o r m a l i z i n g
288 f o r ( i n t i = 0 ; i < 5 ; i ++){
289 sph . d u a l S p h e r e [ i ] = USV. matr ixU ( ) ( i , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
290 }
291 sph . d u a l S p h e r e [ 3 ] = USV. matr ixU ( ) ( 4 , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
292 sph . d u a l S p h e r e [ 4 ] = USV. matr ixU ( ) ( 3 , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
293 r e t u r n sph . d u a l S p h e r e ;
294 }
295

296 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
297

298 / / / / / / / / / / / / / / / / / / / / CYLINDER / / / / / / / / / / / / / / / / / / / / / / / / / / /
299

300 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
301

302 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
303 vo id r a n s a c C y l i n d e r : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t

t o l e r a n c e , f l o a t rad , i n t i n l i e r s , i n t cand ) {
304 c l o u d = c l ;
305 t o l = t o l e r a n c e ;
306 s e a r c h R a d i u s = r a d ;
307 n u m b e r I n l i e r s = i n l i e r s ;
308 c a n d i d a t e s = cand ;
309 }
310

311 / / Runs t h e p r i m i t i v e shape d e t e c t i o n f o r a c y l i n d e r u s i n g t h e p lane−c i r c l e
a p p r o a c h

312 vo id r a n s a c C y l i n d e r : : compute ( ) {
313 / / V a r i a b l e s t o keep t r a c k of t h e a l g o r i t h m
314 i n t r a n [ 3 ] ;
315 i n t i c o u n t = 0 ;
316 i n t can = 0 ;
317 v e c t o r<c y l i n d e r > cand ;
318 v e c t o r<i n t> i n P o i n t s ;
319 boo l t e r m i n a t e = t r u e ;
320 c y l i n d e r a c y l i n d e r ; / / C r e a t e a c y l i n d e r o b j e c t from o b j e c t . h
321 i n t i t = 0 ;
322

323 / / A lgo r i t hm
324 w h i l e ( can < c a n d i d a t e s && i t < i t e r a t i o n s ) {
325 i t ++;
326 / / G e n e r a t e random i n d e x e s
327 f o r ( i n t i = 0 ; i <3; i ++){
328 r a n [ i ] = rand ( ) % cloud−>p o i n t s . s i z e ( ) ;
329 }
330 / / C r e a t e c y l i n d e r wi th i n d e x e d p o i n t s from p o i n t c loud , u s i n g GA
331 a c y l i n d e r . d e f i n e C y l i n d e r ( c loud , r a n ) ;
332

333 / / Check i f c y l i n d e r i s i n s i d e r a d i u s t o l e r a n c e
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334 i f ( r a d i u s C h e c k ( a c y l i n d e r . r a d i u s ) ) {
335

336 / / F ind number o f i n l i e r s f o r c y l i n d e r
337 Pnt p1 = a c y l i n d e r . c e n t e r ;
338 Pnt p2 ;
339 p2 [ 0 ] = p1 [ 0 ] + a c y l i n d e r . p l a n [ 0 ] ;
340 p2 [ 1 ] = p1 [ 1 ] + a c y l i n d e r . p l a n [ 1 ] ;
341 p2 [ 2 ] = p1 [ 2 ] + a c y l i n d e r . p l a n [ 2 ] ;
342 i c o u n t = 0 ;
343 f o r ( i n t i = 0 ; i < c loud−>p o i n t s . s i z e ( ) ; i ++){
344 i f ( i s I n l i e r ( c loud−>p o i n t s [ i ] . x , c loud−>p o i n t s [ i ] . y , c loud−>

p o i n t s [ i ] . z , p1 , p2 ) ) {
345 i c o u n t ++;
346 }
347 }
348 / / S t o r e c y l i n d e r and number o f i n l i e r s
349 cand . p u s h b a c k ( a c y l i n d e r ) ;
350 i n P o i n t s . p u s h b a c k ( i c o u n t ) ;
351 }
352 }
353

354 i f ( can > 0){
355 / / F ind c a n d i d a t e wi th most i n l i e r s
356 i n t b e s t = 0 ;
357 i n t n u m I n l i e r s = 0 ;
358 f o r ( i n t i =0 ; i < cand . s i z e ( ) ; i ++){
359 i f ( i n P o i n t s [ i ] > n u m I n l i e r s ) {
360 b e s t = i ;
361 n u m I n l i e r s = i n P o i n t s [ i ] ;
362 }
363 }
364 / / S t o r e t h e c y l i n d e r wi th t h e most i n l i e r s
365 r a nC y l = cand [ b e s t ] ;
366 }
367 }
368

369 / / Check i f t h e r a d i u s i s i n s i d e t h e t o l e r a n c e l i m i t s
370 boo l r a n s a c C y l i n d e r : : r a d i u s C h e c k ( f l o a t r a d ) {
371 i f ( r a d > ( s e a r c h R a d i u s −( s e a r c h R a d i u s ∗ t o l ) ) && r a d < ( s e a r c h R a d i u s +(

s e a r c h R a d i u s ∗ t o l ) ) ) {
372 r e t u r n t r u e ;
373 } e l s e {
374 r e t u r n f a l s e ;
375 }
376 }
377

378 / / F u n c t i o n t o check i f a p o i n t i s c l a s s i f i e d as a i n l i e r
379 boo l r a n s a c C y l i n d e r : : i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , Pn t p1 , Pn t p2 ) {
380 Eigen : : Vec to r3d v ( x−p1 [ 0 ] , y−p1 [ 1 ] , z−p1 [ 2 ] ) ;
381 Eigen : : Vec to r3d w( x−p2 [ 0 ] , y−p2 [ 1 ] , z−p2 [ 2 ] ) ;
382 Eigen : : Vec to r3d q ( p2 [0]−p1 [ 0 ] , p2 [1]−p1 [ 1 ] , p2 [2]−p1 [ 2 ] ) ;
383 Eigen : : Vec to r3d c r o s s = v . c r o s s (w) ;
384 f l o a t d = s q r t ( pow ( c r o s s [ 0 ] , 2 ) +pow ( c r o s s [ 1 ] , 2 ) +pow ( c r o s s [ 2 ] , 2 ) ) / s q r t (

pow ( q [ 0 ] , 2 ) + pow ( q [ 1 ] , 2 ) + pow ( q [ 2 ] , 2 ) ) ;
385 i f ( d < ( s e a r c h R a d i u s ∗(1+ t o l ) ) && d > ( s e a r c h R a d i u s ∗(1− t o l ) ) ) {
386 r e t u r n t r u e ;
387 } e l s e {
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388 r e t u r n f a l s e ;
389 }
390 }
391

392 / / F u n c t i o n t h a t f i n d s t h e c y l i n d e r l e n g t h from t h e i n l i e r p o i n t s
393 vo id r a n s a c C y l i n d e r : : c y l i n d e r L e n g t h ( ) {
394 i n l i e r C l o u d . r e s e t ( new Poin tC loud<PointXYZRGB>) ;
395 / / F i r s t f i n d a l l i n l i e r s and s t o r e i n a p o i n t c l o u d
396 c y l i n d e r a c y l i n d e r = r an Cy l ;
397 Pnt p1 = a c y l i n d e r . c e n t e r ;
398 Pnt p2 ;
399 p2 [ 0 ] = p1 [ 0 ] + a c y l i n d e r . p l a n [ 0 ] ;
400 p2 [ 1 ] = p1 [ 1 ] + a c y l i n d e r . p l a n [ 1 ] ;
401 p2 [ 2 ] = p1 [ 2 ] + a c y l i n d e r . p l a n [ 2 ] ;
402 f o r ( i n t i = 0 ; i < c loud−>p o i n t s . s i z e ( ) ; i ++){
403 i f ( i s I n l i e r ( c loud−>p o i n t s [ i ] . x , c loud−>p o i n t s [ i ] . y , c loud−>p o i n t s [ i

] . z , p1 , p2 ) ) {
404 i n l i e r C l o u d−>p u s h b a c k ( c loud−>p o i n t s [ i ] ) ;
405 }
406 }
407 / / Normal i ze
408 p c l : : compute3DCent ro id (∗ i n l i e r C l o u d , c e n t r o i d ) ;
409

410 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
411 i n l i e r C l o u d−>p o i n t s [ i ] . x −= c e n t r o i d [ 0 ] ;
412 i n l i e r C l o u d−>p o i n t s [ i ] . y −= c e n t r o i d [ 1 ] ;
413 i n l i e r C l o u d−>p o i n t s [ i ] . z −= c e n t r o i d [ 2 ] ;
414 }
415

416 / / F ind p o i n t f a r t h e s t away from o r i g o
417 f l o a t l a r g e s t D = 0 ;
418 f l o a t t h i s D =0;
419 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
420 t h i s D = s q r t ( pow ( i n l i e r C l o u d−>p o i n t s [ i ] . x , 2 ) + pow ( i n l i e r C l o u d−>

p o i n t s [ i ] . y , 2 ) + pow ( i n l i e r C l o u d−>p o i n t s [ i ] . z , 2 ) ) ;
421 i f ( l a r g e s t D < t h i s D ) {
422 l a r g e s t D = t h i s D ;
423 l a r g e s t I n d = i ;
424 }
425 }
426

427 / / F ind t h e f a r t h e s t p o i n t i n t h e o p p o s i t e d i r e c t i o n .
428 / / Th i s i s done by on ly s e a r c h i n g i n t h e o p p o s i t e o c t a n t o f t h e f i r s t

p o i n t
429 f l o a t s m a l l e s t D = 0 ;
430 t h i s D = 0 ;
431 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
432 i f ( ( i n l i e r C l o u d−>p o i n t s [ i ] . x ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . x )

< 0 && ( i n l i e r C l o u d−>p o i n t s [ i ] . y ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . y )
< 0 && ( i n l i e r C l o u d−>p o i n t s [ i ] . z ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . z )
< 0){

433 t h i s D = s q r t ( pow ( i n l i e r C l o u d−>p o i n t s [ i ] . x , 2 ) + pow (
i n l i e r C l o u d−>p o i n t s [ i ] . y , 2 ) + pow ( i n l i e r C l o u d−>p o i n t s [ i ] . z , 2 ) ) ;

434 i f ( s m a l l e s t D < t h i s D ) {
435 s m a l l e s t D = t h i s D ;
436 s m a l l e s t I n d = i ;
437 }
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438 }
439 }
440

441 / / T r a n s l a t e back t o o r i g i n a l p o s i t i o n
442 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
443 i n l i e r C l o u d−>p o i n t s [ i ] . x += c e n t r o i d [ 0 ] ;
444 i n l i e r C l o u d−>p o i n t s [ i ] . y += c e n t r o i d [ 1 ] ;
445 i n l i e r C l o u d−>p o i n t s [ i ] . z += c e n t r o i d [ 2 ] ;
446 }
447

448 / / F ind l i n e s from ” c e n t e r ” t o l a r g e s t and s m a l l e s t
449 Eigen : : V e c t o r 3 f c l ( i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . x − r a nC y l . c e n t e r

[ 0 ] , i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . y − r a nC y l . c e n t e r [ 1 ] , i n l i e r C l o u d
−>p o i n t s [ l a r g e s t I n d ] . z − r a nC y l . c e n t e r [ 2 ] ) ;

450 Eigen : : V e c t o r 3 f c s ( i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . x − r a nC y l . c e n t e r
[ 0 ] , i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . y − r a nC y l . c e n t e r [ 1 ] ,
i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . z − r a nC y l . c e n t e r [ 2 ] ) ;

451

452

453 / / P r o j e c t t h e l i n e s on to t h e c e n t e r l i n e
454 Eigen : : V e c t o r 3 f c e n t e r l i n e ( r an Cy l . p l a n [ 0 ] , r an Cy l . p l a n [ 1 ] , r an Cy l . p l a n

[ 2 ] ) ;
455

456 p r o j L = c l . d o t ( c e n t e r l i n e ) ∗ c e n t e r l i n e ;
457 p r o j S = cs . d o t ( c e n t e r l i n e ) ∗ c e n t e r l i n e ;
458 }
459

460 / / C o n s t r u c t o r
461 r a n s a c C y l i n d e r 2 : : r a n s a c C y l i n d e r 2 ( ) {
462 i n l i e r C l o u d . r e s e t ( new Poin tC loud<PointXYZRGB>) ;
463 }
464

465 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
466 vo id r a n s a c C y l i n d e r 2 : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t

t o l e r a n c e , f l o a t r a d ) {
467 c l o u d = c l ;
468 t o l = t o l e r a n c e ;
469 s e a r c h R a d i u s = r a d ;
470 }
471

472 / / Runs t h e p r i m i t i v e shape d e t e c t i o n f o r a c y l i n d e r u s i n g t h e sphe re−
s p h e r e a p p r o a c h

473 vo id r a n s a c C y l i n d e r 2 : : compute ( ) {
474 / / V a r i a b l e s t o keep t r a c k of t h e a l g o r i t h m
475 i n l i e r C l o u d . r e s e t ( new Poin tC loud<PointXYZRGB>) ;
476 i n t i c o u n t ;
477 Pnt p1 , p2 ;
478 b a l l . s e t D a t a ( c loud , t o l , s e a r c h R a d i u s ) ; / / Ransac f o r s p h e r e s , d a t a i s

s e t
479

480 / / F ind t h e f i r s t s p h e r e t h a t s a t i s f i e s t h e r a d i u s
481 b a l l . compute ( ) ;
482 p1 = b a l l . ranSph ;
483

484 / / F ind t h e second s p h e r e t h a t s a t i s f i e s t h e r a d i u s
485 b a l l . compute ( ) ;
486 p2 = b a l l . ranSph ;
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487

488 / / Count t h e i n l i e r s f o r t h e c y l i n d e r and s t o r e t h e i n l i e r s i n a i n l i e r
c l o u d

489 f o r ( i n t i = 0 ; i < c loud−>p o i n t s . s i z e ( ) ; i ++){
490 i f ( i s I n l i e r 2 ( c loud−>p o i n t s [ i ] . x , c loud−>p o i n t s [ i ] . y , c loud−>p o i n t s [ i

] . z , p1 , p2 ) ) {
491 i n l i e r C l o u d−>p u s h b a c k ( c loud−>p o i n t s [ i ] ) ;
492 i c o u n t ++;
493 }
494 }
495 i n l i e r s = i c o u n t ;
496

497 / / The c y l i n d e r i s c r e a t e d and s t o r e d .
498 r a nC y l . d e f i n e C y l i n d e r ( p1 , p2 , s e a r c h R a d i u s ) ;
499 }
500

501 / / F u n c t i o n t o check i f a p o i n t i s c l a s s i f i e d as a i n l i e r
502 boo l r a n s a c C y l i n d e r 2 : : i s I n l i e r 2 ( f l o a t x , f l o a t y , f l o a t z , Pn t p1 , Pn t p2 )

{
503 Eigen : : Vec to r3d v ( x−p1 [ 0 ] , y−p1 [ 1 ] , z−p1 [ 2 ] ) ;
504 Eigen : : Vec to r3d w( x−p2 [ 0 ] , y−p2 [ 1 ] , z−p2 [ 2 ] ) ;
505 Eigen : : Vec to r3d q ( p2 [0]−p1 [ 0 ] , p2 [1]−p1 [ 1 ] , p2 [2]−p1 [ 2 ] ) ;
506 Eigen : : Vec to r3d c r o s s = v . c r o s s (w) ;
507 f l o a t d = s q r t ( pow ( c r o s s [ 0 ] , 2 ) +pow ( c r o s s [ 1 ] , 2 ) +pow ( c r o s s [ 2 ] , 2 ) ) / s q r t (

pow ( q [ 0 ] , 2 ) + pow ( q [ 1 ] , 2 ) + pow ( q [ 2 ] , 2 ) ) ;
508 i f ( d < ( s e a r c h R a d i u s ∗(1+ t o l ) ) && d > ( s e a r c h R a d i u s ∗(1− t o l ) ) ) {
509 r e t u r n t r u e ;
510 } e l s e {
511 r e t u r n f a l s e ;
512 }
513 }
514

515 / / F u n c t i o n t h a t f i n d s t h e c y l i n d e r l e n g t h from t h e i n l i e r p o i n t s
516 vo id r a n s a c C y l i n d e r 2 : : c y l i n d e r L e n g t h ( c y l i n d e r c y l ) {
517

518 / / Normal i ze
519 p c l : : compute3DCent ro id (∗ i n l i e r C l o u d , c e n t r o i d ) ;
520

521 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
522 i n l i e r C l o u d−>p o i n t s [ i ] . x −= c e n t r o i d [ 0 ] ;
523 i n l i e r C l o u d−>p o i n t s [ i ] . y −= c e n t r o i d [ 1 ] ;
524 i n l i e r C l o u d−>p o i n t s [ i ] . z −= c e n t r o i d [ 2 ] ;
525 }
526

527 / / F ind p o i n t f a r t h e s t away from o r i g o
528 f l o a t l a r g e s t D = 0 ;
529 f l o a t t h i s D =0;
530 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
531 t h i s D = s q r t ( pow ( i n l i e r C l o u d−>p o i n t s [ i ] . x , 2 ) + pow ( i n l i e r C l o u d−>

p o i n t s [ i ] . y , 2 ) + pow ( i n l i e r C l o u d−>p o i n t s [ i ] . z , 2 ) ) ;
532 i f ( l a r g e s t D < t h i s D ) {
533 l a r g e s t D = t h i s D ;
534 l a r g e s t I n d = i ;
535 }
536 }
537

538 / / F ind t h e f a r t h e s t p o i n t i n t h e o p p o s i t e d i r e c t i o n .
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539 / / Th i s i s done by on ly s e a r c h i n g i n t h e o p p o s i t e o c t a n t o f t h e f i r s t
p o i n t

540 f l o a t s m a l l e s t D = 0 ;
541 t h i s D = 0 ;
542 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
543 i f ( ( i n l i e r C l o u d−>p o i n t s [ i ] . x ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . x )

< 0 && ( i n l i e r C l o u d−>p o i n t s [ i ] . y ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . y )
< 0 && ( i n l i e r C l o u d−>p o i n t s [ i ] . z ∗ i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . z )
< 0){

544 t h i s D = s q r t ( pow ( i n l i e r C l o u d−>p o i n t s [ i ] . x , 2 ) + pow (
i n l i e r C l o u d−>p o i n t s [ i ] . y , 2 ) + pow ( i n l i e r C l o u d−>p o i n t s [ i ] . z , 2 ) ) ;

545 i f ( s m a l l e s t D < t h i s D ) {
546 s m a l l e s t D = t h i s D ;
547 s m a l l e s t I n d = i ;
548 }
549 }
550 }
551

552 / / T r a n s l a t e back t o o r i g i n a l p o s i t i o n
553 f o r ( i n t i = 0 ; i < i n l i e r C l o u d−>s i z e ( ) ; i ++){
554 i n l i e r C l o u d−>p o i n t s [ i ] . x += c e n t r o i d [ 0 ] ;
555 i n l i e r C l o u d−>p o i n t s [ i ] . y += c e n t r o i d [ 1 ] ;
556 i n l i e r C l o u d−>p o i n t s [ i ] . z += c e n t r o i d [ 2 ] ;
557 }
558

559 / / F ind l i n e s from ” c e n t e r ” t o l a r g e s t and s m a l l e s t
560 Eigen : : V e c t o r 3 f c l ( i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . x − r a nC y l . c e n t e r

[ 0 ] , i n l i e r C l o u d−>p o i n t s [ l a r g e s t I n d ] . y − r a nC y l . c e n t e r [ 1 ] , i n l i e r C l o u d
−>p o i n t s [ l a r g e s t I n d ] . z − r a nC y l . c e n t e r [ 2 ] ) ;

561 Eigen : : V e c t o r 3 f c s ( i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . x − r a nC y l . c e n t e r
[ 0 ] , i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . y − r a nC y l . c e n t e r [ 1 ] ,
i n l i e r C l o u d−>p o i n t s [ s m a l l e s t I n d ] . z − r a nC y l . c e n t e r [ 2 ] ) ;

562

563

564 / / P r o j e c t t h e l i n e s on to t h e c e n t e r l i n e
565 Eigen : : V e c t o r 3 f c e n t e r l i n e ( r an Cy l . p l a n [ 0 ] , r an Cy l . p l a n [ 1 ] , r an Cy l . p l a n

[ 2 ] ) ;
566

567 p r o j L = c l . d o t ( c e n t e r l i n e ) ∗ c e n t e r l i n e ;
568 p r o j S = cs . d o t ( c e n t e r l i n e ) ∗ c e n t e r l i n e ;
569 }
570

571 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
572

573 / / / / / / / / / / / / / / / / / / / / / MULTIPLE SPHERES / / / / / / / / / / / / / / / / / / / / / / / /
574

575 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
576 / / C o n s t r u c t o r
577 r a n s a c S p h e r e s : : r a n s a c S p h e r e s ( )
578 : o c t ( new p c l : : o c t r e e : : O c t r e e P o i n t C l o u d<PointXYZRGB>( r e s ) ) ,
579 o c t S e a r c h ( new p c l : : o c t r e e : : O c t r e e P o i n t C l o u d S e a r c h<PointXYZRGB>( r e s ) ) {
580 }
581

582 / / S e t t i n g t h e d a t a and p a r a m e t e r s o f t h e a l g o r i t m
583 vo id r a n s a c S p h e r e s : : s e t D a t a ( Po in tC loud<PointXYZRGB> : : P t r c l , f l o a t

r e s o l u t i o n ) {
584 c l o u d = c l ;
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585 c l o u d f i l t e r e d = c l ;
586 r e s = r e s o l u t i o n ;
587 d i v i d e C l o u d ( ) ; / / D i v i d e s t h e c l o u d t o 4 random s u b s e t s , used f o r

f a s t e r s c o r i n g
588 i n d e x l i s t = new s t d : : v e c t o r<p c l : : P o i n t I n d i c e s : : P t r >;
589 f o u n d S p h e r e s = new s t d : : v e c t o r<sphe re >;
590 }
591

592 / / F u n c t i o n f o r s u f f e l i n g a l i s t o f i n t e g e r s
593 v e c t o r<i n t> r a n s a c S p h e r e s : : s h u f f l e ( v e c t o r<i n t> l i s t ) {
594 i n t ran , temp ;
595 f o r ( i n t i = l i s t . s i z e ( ) ; i > 0 ; i−−){
596 r a n = rand ( ) % i ;
597 temp = l i s t [ i −1];
598 l i s t [ i −1] = l i s t [ r a n ] ;
599 l i s t [ r a n ] = temp ;
600 }
601 r e t u r n l i s t ;
602 }
603

604 / / F u n c t i o n t h a t d i v i d e s t h e p o i n t c l o u d t o 4 random s u b s e t s , used f o r
f a s t e r s c o r i n g

605 vo id r a n s a c S p h e r e s : : d i v i d e C l o u d ( ) {
606 subClouds = new v e c t o r<Poin tC loud<PointXYZRGB> : : P t r >;
607 Po in tC loud<PointXYZRGB> : : P t r temp ( new Poin tC loud<PointXYZRGB>) ;
608 v e c t o r<i n t> l i s t ( c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) ) ;
609 / / S t o r e a l l t h e i n d e x e s i n a v e c t o r
610 f o r ( i n t i = 0 ; i < c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) ; i ++){
611 l i s t [ i ] = i ;
612 }
613 / / S h u f f l e t h e v e c t o r
614 l i s t = s h u f f l e ( l i s t ) ;
615

616 / / S p l i t t h e p o i n t c l o u d i n t o 4 ” s u b c l o u d s ”
617 i n t c o u n t = 1 ;
618 f o r ( i n t i = 0 ; i < c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) ; i ++){
619 temp−>p u s h b a c k ( c l o u d f i l t e r e d −>p o i n t s [ l i s t [ i ] ] ) ;
620 i f ( i == ( ( c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) / 4 ) ∗ count −1) ) {
621 subClouds−>p u s h b a c k ( temp ) ;
622 temp . r e s e t ( new Poin tC loud<PointXYZRGB>) ;
623 c o u n t ++;
624 }
625 }
626

627 / / Pu t t h e ” r e s t ” i n t h e f i r s t s u b c l o u d
628 f o r ( i n t i = c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) −1; i > c l o u d f i l t e r e d −>

p o i n t s . s i z e ( )−1−( c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) %4) ; i−−){
629 subClouds−>a t ( 0 )−>p u s h b a c k ( c l o u d f i l t e r e d −>p o i n t s [ i ] ) ;
630 }
631 }
632

633 / / F u n c t i o n t h a t c r e a t e s o c t r e e f o r p o i n t p i c k i n g
634 vo id r a n s a c S p h e r e s : : s e t O c t r e e ( f l o a t r e s o l u t i o n ) {
635 oc t−>d e l e t e T r e e ( ) ;
636 oc t−>s e t R e s o l u t i o n ( r e s o l u t i o n ) ;
637 oc t−>def ineBoundingBox ( x min , y min , z min , x max , y max , z max ) ;
638 do ub l e xma , yma , zma , xm , ym , zm ;
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639 oc t−>getBoundingBox (xm , ym , zm , xma , yma , zma ) ;
640 r o o t L e n g t h = s q r t ( pow ( xma−xm , 2 ) ) ;
641 oc t−>s e t I n p u t C l o u d ( c l o u d f i l t e r e d ) ;
642 oc t−>a d d P o i n t s F r o m I n p u t C l o u d ( ) ;
643 }
644

645 / / F u n c t i o n t h a t c r e a t e s o c t r e e f o r s e a r c h i n g
646 vo id r a n s a c S p h e r e s : : s e t S e a r c h O c t r e e ( f l o a t r e s o l u t i o n ) {
647 o c t S e a r c h−>d e l e t e T r e e ( ) ;
648 o c t S e a r c h−>s e t R e s o l u t i o n ( r e s o l u t i o n ) ;
649 o c t S e a r c h−>def ineBoundingBox ( x min , y min , z min , x max , y max , z max ) ;
650 o c t S e a r c h−>s e t I n p u t C l o u d ( subClouds−>a t ( 0 ) ) ;
651 o c t S e a r c h−>a d d P o i n t s F r o m I n p u t C l o u d ( ) ;
652 }
653

654 / / F u n c t i o n t h a t s e t s t h e bounds o f t h e o c t r e e r o o t node
655 vo id r a n s a c S p h e r e s : : s e t O c t r e e B o u n d s ( d ou b l e xmin , d ou b l e ymin , d ou b l e zmin ,

do ub l e xmax , d oub l e ymax , d ou b l e zmax ) {
656 x min = xmin ; y min = ymin ; z min = zmin ; x max = xmax ; y max = ymax ;

z max = zmax ;
657 oc t−>d e l e t e T r e e ( ) ;
658 oc t−>s e t R e s o l u t i o n ( r e s ) ;
659 oc t−>def ineBoundingBox ( x min , y min , z min , x max , y max , z max ) ;
660 do ub l e xma , yma , zma , xm , ym , zm ;
661 oc t−>getBoundingBox (xm , ym , zm , xma , yma , zma ) ;
662 r o o t L e n g t h = s q r t ( pow ( xma−xm , 2 ) ) ;
663

664 / / S t a r t a t r o o t l e n g t h
665 oc t−>d e l e t e T r e e ( ) ;
666 oc t−>s e t R e s o l u t i o n ( r o o t L e n g t h ) ;
667 oc t−>def ineBoundingBox ( x min , y min , z min , x max , y max , z max ) ;
668 o c t S e a r c h−>d e l e t e T r e e ( ) ;
669 o c t S e a r c h−>s e t R e s o l u t i o n ( r o o t L e n g t h ) ;
670 o c t S e a r c h−>def ineBoundingBox ( x min , y min , z min , x max , y max , z max ) ;
671 }
672

673 / / Runs t h e m u l t i p e shape d e t e c t i o n a l g o r i t h m
674 vo id r a n s a c S p h e r e s : : compute ( ) {
675 / / V a r i a b l e s t o keep t r a c k of t h e a l g o r i t h m
676 p c l : : P o i n t I n d i c e s : : P t r i n l i e r s ( new p c l : : P o i n t I n d i c e s ( ) ) ;
677 s t d : : v e c t o r<i n t> i n d i c e s ;
678 p c l : : E x t r a c t I n d i c e s <p c l : : PointXYZRGB> e x t r a c t ;
679 o c t r e e : : O c t r e e P o i n t C l o u d<PointXYZRGB> : : L e a f N o d e I t e r a t o r i t ;
680 p c l : : Po in tC loud<p c l : : PointXYZRGB> : : P t r c l o u d f ( new p c l : : Po in tC loud<

p c l : : PointXYZRGB>) ;
681 boo l r e s t a r t = f a l s e ;
682 f l o a t t h i s R e s = r o o t L e n g t h ;
683 t o t a l N u m b e r O f I t e r a t i o n s = 0 ;
684 t o t a l N u m b e r O f P o p u l a t e d N o d e s = 0 ;
685

686 / / I t e r a t e s t h r o u g h t h e o c t r e e
687 w h i l e ( t h i s R e s >= r e s ) {
688

689 s e t O c t r e e ( t h i s R e s ) ;
690 s e t S e a r c h O c t r e e ( t h i s R e s ) ;
691 i n t t e m p I n l = 0 ;
692 i n t b e s t I n l = 0 ;
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693

694 / / I t e r a t e t h r o u g a l l nodes a t p r e s e n t l e v e l
695 i t . r e s e t ( ) ;
696 i t = oc t−>l e a f b e g i n ( ) ;
697 s p h e r e a s p h e r e ;
698 s p h e r e tempSphere ;
699 w h i l e (∗++ i t && ! r e s t a r t ) {
700 b e s t I n l = 0 ;
701 t e m p I n l = 0 ;
702 / / Only c o n s i d e r p o p u l a t e d nodes
703 i f ( i t . i sLea fNode ( ) ) {
704 i n d i c e s . r e s i z e ( 0 ) ;
705 i t . g e t L e a f C o n t a i n e r ( ) . g e t P o i n t I n d i c e s ( i n d i c e s ) ;
706 / / Only c o n s i d e r nodes wi th more t h a n 4 p o i n t s
707 i f ( i n d i c e s . s i z e ( ) > 4){
708 t o t a l N u m b e r O f P o p u l a t e d N o d e s ++;
709 / / I n i t i a l z e s 4 s p h e r e s i n t h e c u r r e n t node
710 f o r ( i n t i = 0 ; i < 4 ; i ++){
711 t o t a l N u m b e r O f I t e r a t i o n s ++;
712 i n d i c e s = s h u f f l e ( i n d i c e s ) ;
713 t empSphere . d e f i n e D u a l ( c l o u d f i l t e r e d , i n d i c e s ) ;
714 / / S t o r e t h e s p h e r e wi th t h e most i n l i e r s
715 i f ( tempSphere . z < 3 && tempSphere . z > 0 . 2 &&

tempSphere . r a d i u s > 0 .015 && tempSphere . r a d i u s < 0 . 1 3 ) {
716 t e m p I n l = g e t I n l i e r s ( tempSphere ) ;
717 i f ( b e s t I n l < t e m p I n l ) {
718 b e s t I n l = t e m p I n l ;
719 a s p h e r e = tempSphere ;
720 t e m p I n l = 0 ;
721 }
722 }
723

724 }
725 / / Sco re t h e sphe re , t h e e s t i m a t e have t o be d i v i d e d by

4 b e c a u s e on ly a q u a t e r o f t h e t o t a l p o i n t i s used f o r s c o r i n g
726 i f ( ( b e s t I n l >= e s t i m a t e I n l i e r s ( a s p h e r e ) ∗0 . 2 5 ) ) {
727 / / F ind and s t o r e i n l i e r s a l l t h e i n l i e r s
728 i n l i e r s . r e s e t ( new p c l : : P o i n t I n d i c e s ( ) ) ;
729 f o r ( i n t i = 0 ; i < c l o u d f i l t e r e d −>p o i n t s . s i z e ( ) ;

i ++){
730 i f ( i s I n l i e r ( c l o u d f i l t e r e d −>p o i n t s [ i ] . x ,

c l o u d f i l t e r e d −>p o i n t s [ i ] . y , c l o u d f i l t e r e d −>p o i n t s [ i ] . z , a s p h e r e ) ) {
731 i n l i e r s −>i n d i c e s . p u s h b a c k ( i ) ;
732 }
733 }
734

735 / / A l l o f t h e i n l i e r s a r e checked a g a i n s t t h e
e s t i m a t e

736 i f ( i n l i e r s −>i n d i c e s . s i z e ( ) >= e s t i m a t e I n l i e r s (
a s p h e r e ) ) {

737 / / Sphere i s a c c e p t e d
738 i n d e x l i s t−>p u s h b a c k ( i n l i e r s ) ;
739

740 / / F i t t h e s p h e r e
741 s p h e r e f i t t e d = f i t ( a s p h e r e , i n l i e r s ) ;
742 i f ( f i t t e d . r a d i u s / a s p h e r e . r a d i u s > 1 . 1 | |

f i t t e d . r a d i u s / a s p h e r e . r a d i u s < 0 . 9 ) {
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743 s t d : : c o u t << ”Bad f i t t i n g ! ” << s t d : : e n d l ;
744 foundSphe re s−>p u s h b a c k ( a s p h e r e ) ;
745 } e l s e {
746 foundSphe re s−>p u s h b a c k ( f i t t e d ) ;
747 }
748

749 / / E x t r a c t i n l i e r s from t h e p o i n t c l o u d
750 e x t r a c t . s e t I n p u t C l o u d ( c l o u d f i l t e r e d ) ;
751 e x t r a c t . s e t I n d i c e s ( i n l i e r s ) ;
752 e x t r a c t . s e t N e g a t i v e ( t r u e ) ;
753 e x t r a c t . f i l t e r (∗ c l o u d f ) ;
754 c l o u d f i l t e r e d . r e s e t ( ) ;
755 c l o u d f i l t e r e d = c l o u d f ;
756

757 / / R e s e t t h e o c t r e e s and r e s t a r t t h e i t e r a t i o n
a t t h e same r e s o l u t i o n

758 r e s t a r t = t r u e ;
759 }
760

761 }
762 }
763 }
764 }
765 i f ( ! r e s t a r t ) {
766 / / No s p h e r e was found a t t h e c u r r e n t l e v e l
767 / / C o n t i n ue i t e r a t i o n a t t h e lower l e v e l
768 t h i s R e s = t h i s R e s / 2 ;
769 } e l s e {
770 / / A s p h e r e was found and t h e i t e r a t i o n i s r e s t a r t e d a t t h e

c u r r e n t l e v e l
771 r e s t a r t = f a l s e ;
772 d i v i d e C l o u d ( ) ;
773 }
774 }
775 }
776

777 / / F u n c t i o n t o check i f a p o i n t i s c l a s s i f i e d as a i n l i e r
778 boo l r a n s a c S p h e r e s : : i s I n l i e r ( f l o a t x , f l o a t y , f l o a t z , s p h e r e can ) {
779 f l o a t d i s t = s q r t ( pow ( ( can . d u a l S p h e r e [0]−x ) , 2 ) +pow ( ( can . d u a l S p h e r e [1]−

y ) , 2 ) +pow ( ( can . d u a l S p h e r e [2]− z ) , 2 ) ) ;
780 f l o a t i n l i e r T r e s h o l d = ( 7 . 0 f / 1 8 0 0 . 0 f ) + ( 1 . 0 f / 1 8 . 0 f ) ∗ can . r a d i u s ; / /

I n t e r p o l a t i o n f u n c t i o n
781 i f ( ( d i s t > ( can . r a d i u s − i n l i e r T r e s h o l d ) ) && ( d i s t < ( can . r a d i u s +

i n l i e r T r e s h o l d ) ) ) {
782 r e t u r n t r u e ;
783 } e l s e {
784 r e t u r n f a l s e ;
785 }
786 }
787

788 / / F u n c t i o n t h a t c o u n t s and r e t u r n t h e i n l i e r s o f a s p h e r e f o r a s u b c l o u d
789 i n t r a n s a c S p h e r e s : : g e t I n l i e r s ( s p h e r e can ) {
790 i n t i n l = 0 ;
791 p c l : PointXYZRGB s e a r c h P o i n t ;
792 s t d : : v e c t o r<i n t> p o i n t I d x V e c ;
793 s t d : : v e c t o r<f l o a t > po in tNKNSquaredDis tance ;
794
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795 s e a r c h P o i n t . x = can . x ;
796 s e a r c h P o i n t . y = can . y ;
797 s e a r c h P o i n t . z = can . z ;
798 o c t S e a r c h−>r a d i u s S e a r c h ( s e a r c h P o i n t , can . r a d i u s + 0 . 0 5 , po in t IdxVec ,

po in tNKNSquaredDis tance ) ;
799 f l o a t i n l i e r T r e s h o l d = ( 7 . 0 f / 1 8 0 0 . 0 f ) + ( 1 . 0 f / 1 8 . 0 f ) ∗ can . r a d i u s ; / /

I n t e r p o l a t i o n f u n c t i o n
800 f o r ( i n t i = 0 ; i < p o i n t I d x V e c . s i z e ( ) ; i ++){
801 i f ( ( s q r t ( po in tNKNSquaredDis tance [ i ] ) < ( can . r a d i u s +

i n l i e r T r e s h o l d ) ) && ( s q r t ( po in tNKNSquaredDis tance [ i ] ) > ( can . r a d i u s −
i n l i e r T r e s h o l d ) ) ) {

802 i n l ++;
803 }
804 }
805 r e t u r n i n l ;
806 }
807

808 / / F u n c t i o n t h a t e s t i m a t e s t h e number o f i n l i e r s , used t o d e c i d e whe the r a
s p h e r e i s a c c e p t e d

809 i n t r a n s a c S p h e r e s : : e s t i m a t e I n l i e r s ( s p h e r e sph ) {
810 / / a and b a r e found by e x p e r i m e n t a l measurments wi th t h e k i n e c t 2 and

r e g r e s s i o n i n e x c e l .
811 / / y = a ∗ ( d i s t ˆ ( b ) ∗ r a d ˆ 2 )
812 f l o a t a = 439731 .61228317 , b =−2.2345982262;
813 f l o a t r a d = sph . r a d i u s , d i s t = sph . d u a l S p h e r e [ 2 ] ;
814 e s t i m a t e d I n l i e r s = a ∗ ( pow ( d i s t , b ) ∗pow ( rad , 2 ) ) ;
815 i f ( e s t i m a t e d I n l i e r s > 10){
816 r e t u r n e s t i m a t e d I n l i e r s ;
817 } e l s e {
818 r e t u r n 999999;
819 }
820 }
821

822 / / F u n c t i o n t h a t f i t s a s p h e r e t o i t s i n l i e r p o i n t u s i n g c o n f o r m a l
g e o m e t r i c a l g e b r a

823 s p h e r e r a n s a c S p h e r e s : : f i t ( s p h e r e sph , p c l : : P o i n t I n d i c e s : : P t r i n l i e r s ) {
824

825 / / Pu t i n l i e r p o i n t s i n t o m a t r i x f o r e a s i e r h a n d l i n g
826 Eigen : : Mat r ixXf P ( i n l i e r s −>i n d i c e s . s i z e ( ) , 5 ) ;
827 f o r ( i n t i = 0 ; i < i n l i e r s −>i n d i c e s . s i z e ( ) ; i ++){
828 P ( i , 0 ) = c l o u d f i l t e r e d −>p o i n t s [ i n l i e r s −>i n d i c e s . a t ( i ) ] . x ; / / x
829 P ( i , 1 ) = c l o u d f i l t e r e d −>p o i n t s [ i n l i e r s −>i n d i c e s . a t ( i ) ] . y ; / / y
830 P ( i , 2 ) = c l o u d f i l t e r e d −>p o i n t s [ i n l i e r s −>i n d i c e s . a t ( i ) ] . z ; / / x
831 P ( i , 4 ) = −0.5∗(pow ( P ( i , 0 ) , 2 ) + pow ( P ( i , 1 ) , 2 ) + pow ( P ( i , 2 ) , 2 ) ) ;
832 P ( i , 3 ) = −1;
833 }
834

835 / / Compute SVD of m a t r i x
836 Eigen : : JacobiSVD<Eigen : : Matr ixXf> USV( P . t r a n s p o s e ( ) ∗P , Eigen : :

ComputeFullU | Eigen : : ComputeFullV ) ;
837

838 / / Normal i ze
839 Pnt temp ;
840 f o r ( i n t i = 0 ; i < 5 ; i ++){
841 temp [ i ] = USV. matr ixU ( ) ( i , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
842 }
843 temp [ 3 ] = USV. matr ixU ( ) ( 4 , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
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844 temp [ 4 ] = USV. matr ixU ( ) ( 3 , 4 ) /USV. matr ixU ( ) ( 4 , 4 ) ;
845 f l o a t r a d i u s = s q r t ( ( 1 / pow ( temp [ 3 ] , 2 ) ) ∗ ( pow ( temp [ 0 ] , 2 ) +pow ( temp [ 1 ] , 2 ) +

pow ( temp [ 2 ] , 2 ) ) − (2∗ temp [ 4 ] / temp [ 3 ] ) ) ;
846 sph . d e f i n e D u a l ( temp [ 0 ] , temp [ 1 ] , temp [ 2 ] , r a d i u s ) ;
847 r e t u r n sph ;
848 }
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C Digital Appendix
The digital appendix is submitted with the electronic document as AkselSveier-Master-

DigitalAppendix.zip. It includes:

• A video showing the robotic pick-and-place demonstration.

• A folder containing the objects.h, objects body.cpp, ransac.h and ransac body.cpp
files.

• A folder containg the developed GUI software, including a README.md file and
the vesor library.
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