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Abstract

A nonsmooth equation-oriented multistream heat exchanger (MHEX) model has
been developed by the Process Systems Engineering Laboratory at Massachusetts
Institute of Technology that is intended to be a part of a rigorous optimization and
simulation tool for liquefied natural gas (LNG) processes. The model was success-
fully used to simulate the poly refrigerant integrated cycle operations (PRICO®)
process for LNG production, though it suffered from convergence difficulties in
more complex single mixed refrigerant processes. The primary challenge was flash
calculations, which frequently failed to converge with a Newton solver even for
initial guesses close to the solution. Equation-oriented simulation models have
the advantage of high efficiency, but are generally less robust than the sequential-
modular approach, such that improved performance may be achieved by using a
different simulation framework.

This master thesis studies two alternative model structures. First, the equation-
oriented framework is replaced with a hybrid solution, in which vapour-liquid
equilibrium calculations are included as nested subroutines and solved sequentially.
Next, a fully sequential-modular approach is considered. The models are tested
for different single mixed refrigerant processes, and are solved with a nonsmooth
Newton-type solver using Clarke Jacobian elements as generalized derivatives. The
implicit function theorem for lexicographically smooth functions is used for com-
puting analytical derivatives in the subroutines.

Results showed that the hybrid models were considerably more robust than the
original equation-oriented models. In addition, they required fewer iterations to
converge. However, as expected, they suffered a loss in efficiency. About half
the computing time in the hybrid PRICO model was spent on the vapour-liquid
equilibrium modules, which was primarily due to derivatives calculations. As a
consequence the time per iteration was between 4 and 5 times longer for the pro-
cesses studied, and even with fewer required iterations, the models were normally
1.5-3 times slower. On the other hand, the sequential-modular framework turned
out to be unsuitable for simulating the LNG models as it was both significantly less
robust and efficient than the other approaches. The observed drop in robustness
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is against the general theory, however, and it was concluded that the convergence
problems were caused by modularizing the MHEX model.



iii

Sammendrag

En ikke-glatt likningsbasert multistrøms varmeveksler (MHEX) modell, har blitt
utviklet av Process Systems Engineering Laboratoriet ved Massachusetts Institute
of Technology. Dette har vært en del av et større prosjekt for å lage et robust
simulerings- og optimeringsverktøy for flytende naturgass (LNG) produksjon. Mod-
ellen har blitt brukt til å simulere PRICO- prosessen, men den viste seg å ha vansker
med å konvergere for større og mer kompliserte modeller. Hovedutfordringen
var flash-beregningene, som ofte mislyktes å konvergere i Newtonløseren selv for
initialverdier nærme løsningen. Likningsbaserte modeller har en fordel av økt
effektivitet, men er normalt mindre robuste enn modulbaserte simuleringsverktøy.
Av denne grunn kan det være fordelaktig å studere alternative modellstrukturer.

Masteroppgaven ser nærmere på to ulike modellformer. Det ene er et hybrid-
alternativ hvor flashberegningene er modulisert og ligger innbakt i den lignings-
baserte modellen. Det andre er en fullstendig modulbasert modellform. De to
alternativene er testet for forskjellige single mixed refrigerant (SMR) modeller, og
er løst ved bruk av en Newton metode for ikke-glatte funksjoner der Clarke Jacobian
elementer brukes som gradienter. For å beregne gradienter i modulene, benyttes et
implisitt funksjonsteorem for lexicografisk-glatte funksjoner.

Resultatene viser at den hybride metoden var betydelig mer robust enn den lign-
ingsbaserte modellen. I tillegg krevde modellformen mindre iterasjoner for å kon-
vergere. Derimot opplevde de hybride modellene redusert effektivitet, som er i
samsvar med teorien. Det viste seg at omtrent halvparten av den totale stimu-
leringstiden for PRICO modellen ble brukt til å løse flashberegningene, noe som
primært skyldes tidkrevende beregninger av gradienter. Dette førte imidlertid til at
iterasjonstiden for de hybride modellene var mellom 4 og 5 ganger lengre, mens den
totale stimuleringstiden normalt var 1.5-3 ganger lengre. På en annen side, viste
den fullstendig modulbaserte modellformen seg å være ugunstig for simulering av
LNG- modeller, ettersom den var både langt saktere og betydelig mindre robust.
Det siste skrider mot generell teori på området, og det ble konkludert med at det
hele skyldes en modulisering av varmevekslermodellen.
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Chapter 1

Introduction

Liquefied natural gas (LNG) plays an important role in the shift towards green
energy sources. It is considered a cleaner alternative to oil and coal – with a low
sulfur content and no particle emissions – and at the same time avoids the trans-
portation difficulties associated with traditional pipeline gas. However, natural gas
liquefaction is a very energy intensive process that requires cooling to circa -162°C.
Investments in expensive, custom and proprietary technology like cryogenic heat
exchangers and rotating equipment are necessary, and along with the high operating
costs, liquefaction accounts for about 30-45% of the cost in the LNG chain [27].
Moreover, natural gas is often used to power the LNG processes, which results
in significant emissions. There exist, therefore, both economic and environmental
incentives for improving process designs.

1.1 Motivation

The high operating and capital costs of natural gas liquefaction, means a thorough
and reliable analysis of the system should be conducted before making a com-
mitment. Unfortunately, state-of-the-art simulation tools like Aspen Plus® that
are available for LNG process simulation offer only local optimization software
[2], which has clear limitations in systems design. Therefore, an equation-oriented
model for multistream heat exchangers (MHEX) is currently being developed by
the Process Systems Engineering Laboratory at Massachusetts Institute of Tech-
nology under supervision of Professor Barton, for use in a global optimization
algorithm. The MHEX model has already been used to successfully simulate the
Poly Refrigerant Integrated Cycle Operations (PRICO®) process, and was tested
in the specialization project for more complex liquefaction systems [40].



2 1.2. Master thesis structure

Results showed that the MHEX model struggled for the larger processes. Ad-
ditional variables made initialization challenging, especially for the discrete flash
calculations used to approximate the heating/cooling curves in the two-phase re-
gion. The challenge with flash calculations became pronounced when using a
cubic equation of state, which caused a sharp increase in the number of two-phase
variables from 2 to 16 per stream segment. Besides from the convergence issues,
the model exceeded the memory limit of (dense) CPLEX®. Although, the limit
can be raised by exploiting sparsity (see [40]), another possibility would be to use
a sequential-modular approach. The sequential-modular framework partitions the
models into smaller subroutines that are solved separately, thus reducing the size of
the system and generally making it more robust. This comes at the expense of lower
efficiency, however, mainly due to the additional cost of solving and computing
derivatives for the modules. In order to make the models more robust, it is
interesting to study alternative frameworks. For instance, either a fully sequential-
modular framework where each module is solved separately, or by using a partially
modular approach where flash calculations are nested and solved sequentially.

1.2 Master thesis structure

This master thesis is divided into seven chapters. Chapter 2 deals with modeling of
liquefaction processes for natural gas, and more specifically the multistream heat
exchanger model by Watson et al. Next, Chapter 3 presents different frameworks
for process simulation, as well as a method for calculating analytical derivatives of
modular subroutines by invoking the implicit function theorem. The same chapter
also briefly discusses nonsmoothness in the MHEX model. Chapter 4 describes
key concepts in nonsmooth analysis before presenting an implicit function theorem
for lexicographically smooth functions. Analogously to the procedure presented in
Chapter 3, this theorem is then used in Chapter 5 for implementing a sensitivities
calculation procedure for nonsmooth modular subroutines. The next two chapters
look at two alternative frameworks for the MHEX model. First, in Chapter 6 a
hybrid model is created, in which the vapour-liquid equilibrium (VLE) calculations
are modularized and solved sequentially. The hybrid framework is then tested
and compared with the original model by studying the LNG processes from the
specialication project. Chapter 7 includes the MHEX model in a fully sequential-
modular framework, which likewise to Chapter 6, is compared with the partial-
modular and the equation-oriented models. Finally, an LNG process that did not
converge in the specialization project is revisited in Chapter 8.
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1.3 Deviations from the original project descrip-
tion

The scope of this project is to design and implement modular subroutines such
that the MHEX model can be tested for alternative frameworks. In agreement
with supervisor, the thesis focused on the first two suggested tasks, especially
testing the hybrid and sequential-modular models. All the simulations were with
ideal properties, as robust vapour-liquid equilibrium calculations had yet to be
implemented for nonideal thermodynamics. Also, work has been initiated on the
third task, with the rest left for future work along with testing the frameworks
with a cubic equation of state.





Chapter 2

LNG process modeling

2.1 LNG liquefaction plants

Natural gas liquefaction plants are cryogenic processes that cool the gas from
ambient temperature down to circa 111K. At this temperature, the natural gas is
liquid at atmospheric conditions, which is suitable for energy storage or transport
over long distances. There currently exist three main types of LNG plants [27]:

• Base-load plants

• Peak-shaving plants

• Small-scale plants

Base-load plants are based on a field developement and are the main facilities for
processing and shipping of LNG. They typically have a production capacity of
more than 3 mtpa (million tons per annum) [27]. Peak-shaving plants are smaller
liquefaction processes that are connected to an existing gas network. Natural gas
is liquefied and stored when demand is low, so that it can be sold during days
of high demand. Finally, small-scale plants are LNG plants with a production
capacity less than 500 000 tpa (tons per annum) [27]. They are connected to an
existing gas network and distribute LNG to small customers. The type of LNG
plant and trade-offs between capital and operating costs determines the design of
liquefaction processes. Simpler processes like the PRICO (Figure 2.1) are normally
only considered for small-scale and peak-shaving plants. Base-load production,
on the other hand, often employ more complex processes (e.g. the dual mixed
refrigerant (DMR) process in Figure 2.2) in order to reduce the operating costs.

For base-load plants that handle unprocessed feed gas, a key decision is whether
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Figure 2.1: The PRICO process.

to have integrated or upstream natural gas liquids (NGL) extraction. Heavier
hydrocarbons freeze out at cold temperatures, which can cause plugging of process
equipment [29]. The LNG is also subject to quality constraints that may require
heating value adjustments by removing heavier components [29]. In addition, liq-
uefied petroleum gas (LPG), i.e. propane and butane [14], is a valuable commodity
and is therefore normally sold separately. With integrated NGL extraction, the
cold in the liquefaction process is used for liquefying and separating the heavy
components. The disadvantage is that the natural gas has to be below the critical
pressure pc in order for separation to occur. At lower pressures, the work required
for cooling the gas will increase, resulting in additional costs [28]. There also
exists a trade-off between hydrocarbon recovery and energy consumption, which is
determined by the temperature of the scrub-column. For upstream extraction, on
the other hand, the NGLs are removed in a separate process prior to liquefaction.
Normally, a turbo-expander process is employed that expands, cools, liquefies and
separates NGLs before recompressing the gas [29]. High recovery is possible, and
unlike LNG processes with integrated NGL extraction, the liquefaction pressure
may be above pc. However, additional power is needed for recompression.

Liquefaction processes typically exhibit tight designs in the low-temperature region
where thermodynamic losses from irreversible heat transfer are significant (see
Figure 2.3) [40]. Temperature differences in the heat exchangers are minimized
by using cascades and/or refrigerant mixture compositions, as well as splitting
of streams to provide cooling at different temperature levels. As a consequence,
multistream heat exchangers are used, serving as the core of the liquefaction
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Figure 2.2: The DMR process.

process. The most commonly used MHEXs in LNG production are plate-fin and
spiral-wound heat exchangers [29]. Because of the tightness in design, especially
at cold temperatures, accurate modeling of these heat exchangers is necessary to
correctly describe the liquefaction process.

2.2 Multistream heat exchanger model

The multistream heat exchanger model developed by Watson et al. [42] is a gen-
eralization of the two-stream countercurrent heat exchanger in Figure 2.4. The
heat exchanger is completely characterized by Equations (2.1)-(2.3), which are the
energy balance, as well as the equations for the minimum temperature difference
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Figure 2.3: Graph showing the exergy-change for a system at different temperatures
as it is heated 1kW [40].

Figure 2.4: The two-stream countercurrent heat exchanger.

∆Tmin and the overall heat transfer coefficient.

mCp,H
(
T in

H − T out
H
)

= mCp,C
(
T out

C − T in
C
)
, (2.1)

∆Tmin = min
{
T in

H − T out
C , T out

H − T in
C
}
, (2.2)

UA = Q

∆TLM
. (2.3)

The mCp in Equation (2.1) is the heat capacity flowrate for the hot and cold
streams, and is assumed constant in the heat exchanger. For Equation (2.3), U is
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the overall heat transfer coefficient, A is the heat transfer area and ∆TLM is the
log-mean temperature difference.

Watson et al. [42] extended these equations to the case for multiple hot and cold
stream inlets (see Figure 2.5).

nH∑
i=1

mCpH,i
(
T in

H,i − T out
H,i
)

=
nC∑
j=1

mCpC,j
(
T in

C,j − T out
C,j
)
, (2.4)

UA =
K−1∑
k=1

∆Qk
∆T kLM

. (2.5)

The nH and nC in Equation (2.4) are the total number of hot and cold streams in the
MHEX. The energy balance for the MHEX is otherwise analogous to the two-stream
case. An equation for heat transfer area (2.5) on the other hand, is found by only
allowing for vertical heat exchange between the composite curves. Theoretically,
this is done by partitioning the composite curves into enthalpy intervals k with
endpoints defined by kinks in either the hot or cold composite curve. Here, K is
used to denote the total number of interval temperatures.

Figure 2.5: A multistream heat exchanger with nH hot streams and nC cold
streams.

For two-stream heat exchangers, the pinch point is always located at one of the
stream inlets/outlets. This is not the case for MHEXs, however, where pinching
may occur at intermediate temperatures. Consequently, (2.2) cannot readily be
extended to the general case. Instead, to ensure the only solution will be the one
corresponding to a minimum temperature difference equal to ∆Tmin between the
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composite curves, Watson et al. [42] included the following additional constraint:
min{
p∈P

EBP pC − EBP
p
H} = 0, (2.6)

where EBP pH and EBP pC are the enthalpies of the extended composite curves at
given pinch point candidate p, evaluated from the following equations:

EBP pH =
nH∑
i=1

mCpH,i
[
max

{
0, T p − T out

H,i
}
−max

{
0, T p − T in

H,i
}

−max
{

0, Tmin
H − T p

}
+ max {0, T p − Tmax

H }
]
, ∀p ∈ P,

(2.7)

EBP pC =
nC∑
j=1

mCpC,j
[
max

{
0, (T p −∆Tmin)− T in

C,j
}

−max
{

0, (T p −∆Tmin)− T out
C,j
}

+ max {0, (T p −∆Tmin)− Tmax
C }

−max
{

0, Tmin
C − (T p −∆Tmin)

}]
, ∀p ∈ P.

(2.8)

The P in (2.7) and (2.8) defines the set of pinch candidates, which according to the
pinch method consists of all the stream supply temperatures. The only difference
between regular and extended composite curves is that the latter extrapolates the
endpoints to the maximum and minimum temperatures in the process. This is
to ensure that there always exist a corresponding hot or cold temperature even
for pinch candidates at the endpoints of the composite curves. The slope of each
extension is made as low as possible so that it will not change the pinch location.
In the MHEX model by Watson et al., all pinch point candidates T p were expressed
by their hot stream temperature [42]

T p =
{
T in

H,i, ∀p = i ∈ nH,

T in
C,j + ∆Tmin, ∀p = j ∈ nC.

According to Equation (2.6), the pinch point will be at the point where the hori-
zontal distance between the two extended composite curves is equal to zero. ∆Tmin
violations happen whenever the expression EBP pC − EBP

p
H is negative.

The assumption of constant mCps is only valid for small temperature changes.
Therefore, to account for the wide temperature range in LNG liquefaction, the
composite curves are approximated using affine segments with constant mCps over
an enthalpy interval (for a definition of affine functions, see Section 4.1). The
accuracy of the representation is determined by the number of stream segments,
which was set to three for the subcooled and superheated region and to five for the
two-phase region in most of the simulations.

In summary, the MHEX model is composed of the following three equations:
nH∑
i=1

mCpH,i
(
T in

H,i − T out
H,i
)

=
nC∑
j=1

mCpC,j
(
T in

C,j − T out
C,j
)
,
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UA =
K−1∑
k=1

∆Qk
∆T kLM

,

min{
p∈P

EBP pC − EBP
p
H} = 0.

With three model equations, the MHEX model can be solved for three unknown
variables.

2.3 Vapour-liquid equilibrium calculations in the
multistream heat exchanger model

The refrigerant(s) and natural gas traverse one or more phase regions in the LNG
process that need to be captured by the MHEX model. In the single phase regions
the fluid composition will remain constant and heat capacities will depend only on
temperature (provided ideal gas properties are used). On the other hand, composi-
tions vary in the two-phase region as components evaporate/condense while heat-
ing/cooling. During phase transitions, therefore, heat capacitites will be dependent
on factors such as the vapour fraction (α) and the vapour/liquid compositions (y
and x).

The MHEX model approximates the two-phase region as a series of discrete pQ-
flash calculations (see Figure 2.6) [41]. The pQ-flash is a vapour-liquid equilibrium
(VLE) problem for a fixed heat load Q and pressure p. The feed composition z,
flowrate F , temperature Tin, and molar feed enthalpy hf are known quantities in
the problem, thus solving for the temperature Tout, vapour or liquid flowrates V/L,
and the vapour and liquid compositions y and x. For an N component system,

Figure 2.6: The pQ flash problem.
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each stage is completely characterized by the following 2N + 3 equations [11]:

L+ V = F, (2.9)
Total material balance

xiL+ yiV = ziF, ∀i = 1, 2, . . . , N, (2.10)
Component material balance

yi = Kixi, ∀i = 1, 2, . . . , N, (2.11)
Phase equilibrium

hlL+ hvV = hfF +Q, (2.12)
Energy balance

∑
i

yi −
∑
i

xi = 0, (2.13)

Consitutive equation

where the heating/cooling terms Q are equally distributed between the different
stages and sum up to the total enthalpy difference of the two-phase region.

Rachford and Rice [33] provided an alternative formulation of the flash equations
nC∑
i

zi (Ki − 1)
1 + α (Ki − 1) = 0, (2.14)

which is monotonically decreasing with respect to the vapour fraction α

α ≡ V

F
. (2.15)

Equation (2.14) is derived from component material balances, phase equilibrium
and the consitutive equation, and can be solved iteratively using the Newton-
Raphson method. Since the function is monotonically decreasing, it contains no
false α-roots, i.e. nonphysical roots, and thus no false solutions for the Newton-
method. The full derivation of (2.14) is given in Appendix D.

The phase regions occurring in the MHEX as well as their location, are often not
known a priori. Instead, phase transitions in the problem are usually approached
by solving an MINLP with phase detection handled through binary variables [16,
17, 18]. Alternative methods involving complementary constraints have also been
suggested [20]. All these solution strategies include solving nonconvex optimization
problems that are computationally expensive.
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Watson and Barton [41] propose an alternative model formulation that detects
phase changes using a nonsmooth mid-function:

mid
{
α, α− 1,−

nC∑
i=1

zi (Ki − 1)
1 + α (Ki − 1)

}
= 0. (2.16)

The mid-function is a composite function of the piecewise continuously differen-
tiable (PC1) max and min functions (for definition of PC1, see Section 4.1):

mid {x, y, z} ≡ max {min (x, y) ,min (max (x, y) , z)} , (2.17)

and is thus PC1. It can be solved using a nonsmooth Newton-type solver, e.g. the
nonsmooth Newton-type method by Qi and Sun [32]:

G
(
xk
) (

x(k+1) − xk
)

= −f
(
xk
)
, (2.18)

avoiding the binary phase detection variables altogether. In Equation (2.18),
G
(
xk
)
is a generalized derivative element, which is discussed in more detail in

Chapters 3 and 4.

The nonsmooth formulation works as follows. For an all vapour outlet, α = 1
and the Rachford-Rice term will be positive (see [35]). Hence, the third argument,
which is the negative of the Rachford-Rice term, will be less than zero, reducing
(2.16) to the middle term. For this case, the nonsmooth equation solver will set the
vapour flowrate V equal to the feed flowrate F , corresponding to the superheated
region. The argument for an all liquid outlet is analogous. Likewise, in the two
phase region, the Rachford-Rice term will be zero from (2.14) and 0 ≤ α ≤ 1. In
this case, the mid-function evaluates the third term to zero [41].

Equations (2.9)-(2.13) are general, in the sense that they do not depend on the
thermodynamic models used. Equation (2.16) should thus be compatible with
any fluid package. Nevertheless, solving the mid-function directly turns out to be
quite challenging with the Peng-Robinson equation of state, as the nonsmooth
Newton solver frequently fails to converge even for initial guesses close to the
solution (Watson, Massachusetts Institute of Technology, Cambridge MA, personal
communication, 2015). As a consequence, a more robust flash formulation is needed
before implementing a cubic equation of state in the MHEX model. For this
thesis, however, all simulations are done with ideal properties and hence use the
formulation in (2.16).

2.4 Inside-out algorithm for pQ-flash calculations

Boston and Britt [11] came up with an algorithm for solving the vapour-liquid
equilibrium (VLE) problem in Equations (2.9)-(2.13) using nested loops. The
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algorithm has proven to be very dependable, and is used in state-of-the-art process
simulation tools like Aspen Plus® [26]. Rather than dealing with the problem
directly by either substitution or a Newton method, it estimates a solution first
by using simple models for calculating thermodynamic properties. Then, model
parameters are updated in an outer loop using more rigorous relations. Overall
convergence of the algorithm is achieved when the relative change in parameter
values are within a given tolerance ε. With a calculation procedure going from an
inner to an outer loop, Boston and Britt’s algorithm is commonly known as the
"inside-out" algorithm.

Instead of solving the 2N + 3 VLE equations simultaneously, the inner loop is
reduced to a single variable problem by introducing variables R and ri [11]:

R ≡ KrV

KrV +K0
rL

, (2.19)

where Kr is a reference equilibrium constant taken as the weighted average of the
individual Ki values

ln (Kr) ≡
∑
i

wiln (Ki) , (2.20)

and K0
r is merely introduced to avoid numerical difficulties whenever Kr gets very

large or very small. The weights wi in (2.20) are derived by Boston and Britt [11]:

wi = ti∑
j tj

, (2.21)

where
ti ≡

yi

1 + V
F (Ki − 1)

. (2.22)

The other variables ri introduced by Boston and Britt are defined as

ri ≡
xiL

1−R. (2.23)

Both the liquid flowrate L and molar composition xi are unknown quantities, and
are thus substituted in order to retain the single variable problem. By introducing
a "volatility parameter"

φi ≡ ln (Ki/Kr) , (2.24)
the molar gas fractions yi can be expressed in terms of xi and Kr:

yi = Kre
φixi. (2.25)

Combining Equation (2.25) with the component material balances yields a more
convenient formulation of the variables ri:

ri = ziF

1−R+K0
rReφi

. (2.26)
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See Appendix B for the full derivation of (2.26). Equation (2.26) expresses the
inner variables ri as a function of known quantities (zi, F, φi, and K0

r ) and the
variable R only.

From (2.26), another expression for Kr can be found, along with relations for the
composition and flowrates [11]:

Kr =
∑
i ri∑

i e
φiri

, (2.27)

xi = ri∑
j

rj
, (2.28)

yi = eφiri∑
j

eφjrj
, (2.29)

L = (1−R)
∑
i

ri. (2.30)

All four equations are derived in Appendix B.

In the inner convergence problem, the total energy balance is used as a residual

Ψ = hfF +Q− L (hl − hv)− Fhv = 0, (2.31)

where R is implicitly defined through the variables hv, hl, and V .

Departure functions that are assumed affinely dependent on temperature are used
for finding the enthalpies in (2.31), where system temperature is calculated from
the reference equilibrium constant.

ln (Kr) = A+B

(
1
T
− 1
T ∗

)
, (2.32)

∆hv = C +D (T − T ∗) , (2.33)
∆hl = E + F (T − T ∗) . (2.34)

The variable T ∗ is a reference temperature set by the user. Defining enthalpies in
terms of departure functions requires calculated ideal gas enthalpies. For ideal gas,
however, enthalpy is a function of temperature alone, and does not require large
additional computational cost to evaluate.

Equations (2.32)-(2.34) are designed to be as simple as possible to limit the com-
putational complexity. Rather, the model parameters A-F and φi are updated in
an outer loop by more rigorous models to ensure the system approaches a solution.
Calculating thermodynamic properties is quite time consuming, making up most of
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the CPU time in computer simulations [24, 26, 44]. Avoiding such computations at
every iteration by delegating it to the outer loop of the algorithm therefore presents
clear benefits to model efficiency.

Originally, Boston and Britt proposed a more complicated relationship for ∆hv,
involving computing pseudo-critical temperatures and pressures, as well as reduced
temperatures [11]. The simpler temperature dependence shown in (2.33) is adopted
by Parekh and Mathias in [26].

To summarize, the pQ flash algorithm by Boston and Britt takes the following form
[11]:

Algorithm 1 Boston and Britt’s algorithm for pQ flash calculations
1: Initialize U = [φ, A,B,C,D,E, F ], where φ is a row vector of the volatility

parameters.
2: Initialize R
3: while

∥∥∥U− Û
∥∥∥
∞
> εU do

4: Set U← Û
5: while |Ψ| > εΨ do
6: Calculate x,y, L and r using Equations (2.28)-(2.26).
7: Find Kr using (2.27) and use this to calculate the temperature in (2.32).
8: Calculate the enthalpy departures using Equations (2.33) and (2.34).
9: Calculate Ψ and update R.
10: end while
11: Calculate K and ∆hl/v using rigorous thermodynamic models.
12: Calculate Û =

[
φ̂, Â, B̂, Ĉ, D̂, Ê, F̂

]
using Equations (2.32)-(2.34) and

updated values for K and ∆hl/v.
13: end while

Here ‖x‖∞ is the infinity norm of x ∈ Rn, which is defined as:

‖x‖∞ ≡ max {|x1|, . . . , |xn|} . (2.35)
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Simulation frameworks

Flowsheet models are sets of equations (e.g. the conservation laws and thermo-
dynamic relations) that accurately describe the behaviour of processes [8], thus
providing a fundamental tool for design and optimization. How these equations
are organized and solved by the program normally determines its efficiency and
robustness. Therefore, deciding on a simulation framework is an important step in
process modeling. This chapter presents the two main approaches for flowsheet sim-
ulation, namely sequential-modular (SM) and equation-oriented (EO) frameworks.
It also mentions a third, hybrid strategy, before presenting a method for calculating
sensitivities of modular subroutines. In Section 3.4, issues with nonsmoothness in
the MHEX model are elaborated. For a detailed comparison between the EO and
SM frameworks, see the specialization project [40].

3.1 Sequential-modular framework

Sequential-modular flowsheets organize the model into smaller sub-processes (e.g.
separation, expansion valve, reactor etc.) along with their corresponding equations.
In each module, the output stream variables are computed based on input streams
and design specifications [12]. Hence, it will be influenced by upstream processes,
and the solver proceeds in the same direction as the information flow in the
flowsheet.

Recycles represent a reflux of information that complicates the input/output re-
lationships in the model. In such cases, a stream will not only be influenced by
upstream processes, but by all units in the same loop. Necessarily, one pass through
the flowsheet is generally not sufficient in this case, instead requiring the use of an
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Figure 3.1: Tearing recycle streams to yield an acyclic network [40].

iterative approach for the simulation problem. Practically, this is done by "tearing"
streams in each recycle to generate an acyclic network, which is solved by successive
passes until the tear stream variables (input variables to module 6 and output
variables from module 5 in Figure 3.1) converge.

Each calculation pass corresponds to solving a set of equations

w = t (x,w) , (3.1)

for the tear variables w. Here x is used for other inputs to the simulation model.
The tear equations (3.1) are not defined explicitly, but result from sequential
solution of the modules between ends of the torn stream. They may be solved
using any iterative method [6].

The number of tear variables needed for each tear stream is found by applying
Duhem’s theorem, which says that the state of a closed system at equilibrium with
known masses for the components can be completely determined by fixing two
independent variables [37]. Thus, for a system with C components, a total of C+2
independent variables need to be fixed. Although originally developed for closed
systems, the theorem is also applicable to streams at steady state [6], such that
each tear stream needs C + 2 tear variables.

In process optimization, tear equations may be included directly in the optimization
problem as equality constraints yielding a nonlinear program (NLP) of the form
[8]:

min
x,w

f (x,w)

subject to: h (x,w) = 0
g (x,w) ≤ 0
w− t (x,w) = 0

x ∈ X ⊂ Rnx , w ∈W ⊂ Rnw

(3.2)

where x are the decision variables, and w are the tear variables in the problem. The
functions h and g are constraints in the model, for instance quality specifications
or raw material supply. The program formulation in (3.2) is known as the infeasible
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path approach and can be solved effectively for a local solution with a Newton-
based NLP solver like sequential quadratic programming (SQP) [9, 10]. With this
approach, flowsheet convergence is not necessary at each intermediate step, but is
instead achieved automatically at the optimum [9].

3.2 Equation-oriented framework

The equation-oriented strategy works as follows. Rather than partitioning the
flowsheet into smaller subroutines, it gathers all the model equations and rewrites
them in the form

f (x) = 0, (3.3)
which can be solved simultaneously with a root-finding algorithm (e.g. a Newton-
type method) [6]. Equation (3.3) is typically highly nonlinear, and finding initial
guesses in the region of local convergence can be quite challenging, especially for
large models [6]. Also, by pooling all the equations together, EO models eliminate
the possibility of using specialized procedures for initializing and solving particular
subroutines, which is why they tend to be less robust than their SM counterparts
[6]. On the other hand, stream tearing and repeated acyclic flowsheet passes are
no longer necessary, making them generally more efficient.

The equation-oriented model can be implemented in an optimization program by
including (3.3) as equality constraints:

min
x

fo (x)

subject to: g (x) ≤ 0
h (x) = 0
f (x) = 0
x ∈ X ⊂ Rnx

(3.4)

where fo here is used to denote the objective function, and f the model equations.

3.2.1 Hybrid framework

Hybrid frameworks combine the robustness of the sequential-modular approach
with the efficiency of the equation-oriented method by modularizing particularly
challenging sub-processes. Instead of solving the entire flowsheet simultaneously,
certain parts are handled sequentially at every Newton-step resulting in greater
robustness. No stream tearing and acyclic flowsheet simulation is necessary in
hybrid models, thus preserving the main advantage of using an EO approach. Fur-
thermore, custom initialization and solver algorithms can readily be implemented
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for the nested subroutines. On the other hand, by including subroutines in an
equation-oriented framework that is solved with a Newton-type method, input-
output sensitivities (i.e., derivative info) for the modules are required. Calculating
these sensitivities can be quite time-consuming, especially for nonsmooth modules
or if finite differencing is used (see Section 3.3).

3.3 Acquiring analytical sensitivities

Correct derivative information is needed for the objective function and constraints
in order to optimize flowsheet models. However, unlike the equation-oriented
approach where relations are expressed analytically, sequential-modular and hybrid
models are defined (fully or partially) by the implicit input-output relationships
in modular subroutines. As a consequence, derivative information for the modules
must be found before these two frameworks can be implemented in an optimiza-
tion procedure. Furthermore, like the equation-oriented approach, hybrid models
normally employ a Newton-method for simulating the flowsheet. This requires
accurate derivatives to be defined for all the variables that occur in the model,
including those that are output variables from nested subroutines.

Though derivatives can be approximated numerically using finite differences, i.e.,

Jf (x) d ≈ f (x + d)− f (x) (3.5)

this approach introduces a truncation error O (d), which may lead to poor search
directions and early termination of the NLP algorithm [8]. Wolbert et al. [44,
45] also found that analytical derivatives leads to considerable time savings in an
optimization framework. Instead of using finite differences therefore, sensitivities
ought to be calculated analytically by exploiting the implicit function theorem
[44, 45].

Every module i in a modular flowsheet is regarded as its own sub-process described
by a system of equations fi : W ⊂ Rm+n → Rn

fi (x,y) = 0 (3.6)

that can be solved for the output variables y ∈ Rn with a Newton type method.
Here W is open, and x ∈ Rm is used collectively for the inputs to the unit.
Analytical derivatives for y in Equation (3.6) follows directly from the implicit
function theorem.
Theorem 3.1. (Rudin [34, Theorem 9.27]). Let fi be continuously differentiable(
C1) in W and fi (x̂, ŷ) = 0 for some (x̂, ŷ) ∈ W . Provided the partial Jacobian
matrix

∂fi
∂y (x̂, ŷ) (3.7)
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is nonsingular, then for each x in a neighborhood N of x̂ there corresponds a unique
y near ŷ that also satisfies (3.6). That is, there exists a C1 function

g : N ⊂ Rm → Rn (3.8)

such that
fi (x,g (x)) = 0, ∀x ∈ N. (3.9)

Moreover,
dg
dx (x̂) = −

[
∂fi
∂y (x̂,g (x̂))

]−1
∂fi
∂x (x̂,g (x̂)) . (3.10)

Expression (3.10) in Theorem 3.1 is produced by differentiating (3.9) using the
classical chain rule:

dfi
dx (x̂,g (x̂)) = ∂fi

∂x (x̂,g (x̂)) + ∂fi
∂y (x̂,g (x̂)) dg

dx (x̂) = 0, (3.11)

implying that
∂fi
∂y (x̂,g (x̂)) dg

dx (x̂) = −∂fi
∂x (x̂,g (x̂)) , (3.12)

which gives
dg
dx (x̂) = −

[
∂fi
∂y (x̂,g (x̂))

]−1
∂fi
∂x (x̂,g (x̂)) . (3.13)

It provides a method for computing analytical derivatives for modules whenever
the partial Jacobian ∂fi

∂y (x̂,g (x̂)) is nonsingular (i.e. it has an inverse) and fi is
continuously differentiable.
Definition 3.1. (From Rudin [34]). Let D ⊂ Rn be open and f : D → R. Then,
f is continuously differentiable on D if the partial derivatives

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)


exist and are continuous on D.

Continuously differentiable functions are often denoted by Cn, where n represents
an order at which the partial derivatives are defined and continuous.
Example 3.1. Given a function

f : R→ R : x→ x2,

Then, f will be C∞ as all its higher-order derivatives exist and are continuous on
X:

df

dx
(x) = 2x,
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d2f

dx2 = 2,

and
dkf

dxk
= 0

for all positive integers k greater than or equal to three.

On the other hand, the function

F : D ⊂ R→ R : x→
∫ x

0
|u− 1|du

is only C1 on the domain D = (0, 2) as its derivative

dF

dx
(x) = |x− 1|

is nondifferentiable at x = 1.

3.4 Issues with nonsmoothness

The assumption of continuously differentiable functions cannot be extended to the
MHEX model. Equations (2.4), (2.6) and (2.16) are all nonsmooth, meaning that
the derivatives are not defined everywhere on their domain. The nonsmoothness
is due to max- and min-functions, which have undefined derivatives whenever the
arguments are equal.
Example 3.2. Let f : R→ R be the function

f (x) = max {0, x} .

Then f will be nondifferentiable at x = 0 as

df
dx (x) =

{
0, for x < 0,
1, for x > 0.

That is, the derivative of f does not exist at x = 0, and the function is said to have
a kink at this point.

Max-functions occur, for instance, in the expressions for the enthalpies of the
extended composite curves (Equations (2.7) and (2.8)), thereby causing (2.6) to
become nonsmooth. Also, to account for the possibility of a stream entering or
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Figure 3.2: The max function.

exiting the MHEX in any phase, the following max, min, and mid expressions are
used for the inlet and outlet temperatures [41]:

T in
sup = max

(
TDP, T

in) ,
T in

2p = mid
(
TDP, TBP, T

in) ,
T in

sub = min
(
TBP, T

in) , (3.14)

and:
T out

sup = max
(
TDP, T

out) ,
T out

2p = mid
(
TDP, TBP, T

out) ,
T out

sub = min
(
TBP, T

out) , (3.15)

where BP and DP are the bubble- and dew-point, and sup, 2p and sub denote the
superheated, two-phase and subcooled regions, respectively. The variables T in/out

are the stream inlet/outlet temperatures to the MHEX.

Generally, nonsmoothness causes issues for Newton solvers and derivative-based
optimization techniques. To cope with points of nondifferentiability, smoothing-
approximations are frequently used that approximate the kink as a C1 function.
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One such approximation for the max function is

max {0, f (x)} ≈

(√
f (x)2 + β2 + f (x)

)
2 , (3.16)

where β is a user-defined parameter [5].

Alternatively, nonsmooth Newton-type solvers (e.g. the nonsmooth Newton method
by Qi and Sun in (2.18)) and optimization algorithms (e.g bundle methods [19])
have been developed that use generalized derivatives in place of conventional deriva-
tives. Generalized derivatives are defined as extensions of the concept of derivatives
to some classes of nondifferentiable functions, e.g. piecewise continuously differ-
entiable (PC1) functions, which include max and min. Importantly, generalized
derivatives are reduced to conventional derivatives for continuously differentiable
functions. Recent developments in nonsmooth analysis by the Process Systems
Engineering Laboratory at Massachusetts Institute of Technology are centered
around calculating generalized derivatives for nonsmooth systems and is discussed
in more detail in the next chapter.



Chapter 4

Mathematical theory

This chapter presents a methodology for calculating the generalized derivatives
needed to simulate or optimize the nonsmooth MHEX model. The procedure
focuses on one type of generalized derivatives, namely the Clarke Jacobian. How-
ever, computing elements of the Clarke Jacobian directly is difficult, and thus
this chapter presents an alternate route through lexicographic derivatives and
the lexicographic-directional derivative. Unlike the Clarke Jacobian in general,
lexicographic-directional derivatives follow sharp calculus rules such that they are
computationally tractable. This chapter also presents a nonsmooth implicit func-
tion theorem that can be used to compute lexicographic-directional derivatives for
piecewise continuously differentiable subroutines. Lastly, Section 4.6 focuses on
a numerical procedure for calculating the lexicographic-directional derivatives by
exploiting the procedural operations in a computer.

4.1 PC1 functions

Definition 4.1. (From Scholtes [36]). Given a function f : X → Rm for an open
set X ⊂ Rn, and some x ∈ X. Then f is piecewise continuously differentiable(
PC1) at x if there exist a neighborhood N ⊂ X of x and a finite collection Ff (x)
of C1 selection functions mapping N into Rm, where f is continuous and

f (y) ∈ {φ (y) : φ ∈ Ff (x)} , ∀y ∈ N.

Furthermore, if each selection function φ ∈ Ff (x) is linear, then function f is
piecewise linear (PL) at x. If each selection function φ ∈ Ff (x) is affine, then
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function f is piecewise affine (PA) at x. If f is PC1 at x for each x ∈ X then f is
PC1 on X.

In Definition 4.1, the term selection function is used for elements of the set of C1

functions that makes up the PC1 function.
Example 4.1. Consider the function

f : R→ R : x→ |x|.

For x = 0, Ff (0) consists of two different selection functions:

φ1 (x) = −x, ∀x ∈ (−∞, 0]
φ2 (x) = x, ∀x ∈ [0,∞) ;

f is PC1 on R.

Definition 4.1 distinguishes between linear and affine functions. The first is any
mapping that satisfies the vector addition and scalar multiplication properties:

f (x + y) = f (x) + f (y) , (4.1)
f (ax) = a · f (x) , ∀a ∈ R. (4.2)

Linear functions mapping Rn to R take the form:

f (x) = cTx (4.3)

for some c ∈ Rn.

Affinity, on the other hand, originates from convex analysis and is defined as
functions that are both concave and convex.
Definition 4.2. (From Barton [7, Definition 3.1]). A set C ⊂ Rn is convex if
the line connecting any two points x,y ∈ C lies entirely in C. Thus, for any two
points x,y ∈ C, the points z defined by

z ≡ λx + (1− λ)y, ∀λ ∈ [0, 1] ,

must also be in C.
Definition 4.3. (From Barton [7, Definition 3.16 and Definition 3.19].) Let C ⊂
Rn be a non-empty convex set. Then a function f : C → R is convex if the following
inequality holds for each x,y ∈ C:

f (λx + (1− λ) y) ≤ λf (x) + (1− λ) f (y) , ∀λ ∈ (0, 1) .

A function is concave if instead the inequality

f (λx + (1− λ) y) ≥ λf (x) + (1− λ) f (y) , ∀λ ∈ (0, 1) ,

is satisfied for all x,y ∈ C [7].
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Figure 4.1: A convex set C and a nonconvex set D.

Clearly, affine functions must satisfy both inequalities by equality, which is only
true for functions of the form:

f (x) = cTx + b. (4.4)
Example 4.2. Let f : C ⊂ Rn → R be an affine function

f (x) = cTx + b.

Then neither the vector addition property (4.1):
f (x + y) = cT (x + y) + b,

= cTx + cTy + b,

6= f (x) + f (y) ,
nor the scalar multiplication property:

f (ax) = cT (ax) + b,

= a · cTx + b,

6= a · f (x) ,
will be satisfied. Instead, these properties are only true for affine functions when
b = 0, i.e. the linear function form.

4.2 Clarke’s Jacobian and plenary hulls

Before presenting a tractable way of computing generalized derivatives for PC1

functions, the concepts of convex hulls, Lipschitz continuity, and B-subdifferential
are introduced.
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The convex hull of a set D, denoted by conv (D), is the smallest convex superset
of D [7] (see Figure 4.2). In the case of D being convex, the convex hull is equal
to D itself.

Figure 4.2: The convex hull of set D

Definition 4.4. A function f : X ⊂ Rn → Rm is Lipschitz continuous on X if
there exists an L ≥ 0 such that

‖f (x)− f (y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ X.

Lipschitz continuity is a strong form of uniform continuity, in that the function is
limited in how fast it can change. Its rate of change is bounded on X by L, also
known as the Lipschitz constant for the function.
Definition 4.5. A function f : X ⊂ Rn → Rm is locally Lipschitz continuous on
X, if for each x ∈ X, there exists a neighbourhood N of x such that f is Lipschitz
continuous on N .

For example, the function

f (x) = 1√
x
, ∀x ∈ (0,+∞) , (4.5)

will not be Lipschitz continuous on the interval (0,+∞) as its slope approaches
(−∞) when x goes to zero (see Figure 4.3). However, f is locally Lipschitz
continuous on X as each neighbourhood N can be chosen infinitesimally small
such that the function’s gradient will be bounded on that interval. On the other
hand, the function will not be locally Lipschitz continuous on [0,+∞), as f is
nondifferentiable at x = 0.

Piecewise continuously differentiable functions consist of a finite set of C1 selec-
tion functions φ (x) that have bounded derivatives everywhere. Therefore, such
functions will be locally Lipschitz continuous on their domains.
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Figure 4.3: The graph of 1/
√
x.

Definition 4.6. (From [13] and [31]). Given a locally Lipschitz continuous func-
tion f : X → Rm on an open set X ⊂ Rn, let Y ⊂ X be the set where f is
differentiable. Then, the B-subdifferential of f at x ∈ X is defined as:

∂Bf (x) ≡
{

A ∈ Rm×n : A = lim
j→∞

Jf (xj) , x = lim
j→∞

xj , xj ∈ Y, ∀j ∈ N
}
.

In other words, the B-subdifferential at a point x ∈ X is a set of matrices ∂Bf (x) ⊂
Rm×n, containing the Jacobians of f as x is approached from any direction of
differentiability.
Example 4.3. Let f (x) = |x|, a PC1 function on R whose graph is shown in
Figure 4.4.

Considering points {−2, 0, 2} in Figure 4.4, then the B-subdifferential for Point 1
will be the set

∂Bf (−2) = {−1} ,
as the slope remains the same when the point is approached from either direction.

Similarly, the B-subdifferential at x = 2 is

∂Bf (2) = {1} .

At the origin, however, the Jacobians change depending on whether we approach
the point from the left or from the right. There exists a nondifferentiable point, and
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Figure 4.4: The absolute function.

the B-subdifferential will contain all the Jacobians in its neighbourhood:

∂Bf (0) = {−1, 1} .

One type of generalized derivatives are the elements of the Clarke Jacobian (∂f (x)),
which is defined as the convex hull of the B-subdifferential. Its disadvantage is that
it satisfies the classical calculus rules only as inclusions rather than equations [13],
which makes it difficult to evaluate its elements. Therefore, this chapter presents
an alternative method that instead calculates objects of the plenary hull of the
Clarke Jacobian using lexicographic (L-) derivatives.

The plenary hull of a set A ⊂ Rm×n is defined as [38]:

plen (A) ≡
{

H ∈ Rm×n : ∀d ∈ Rn, ∃A ∈ A s.t. Hd = Ad
}
. (4.6)

Moreover, a set is plenary if it equals its plenary hull. Given G ∈ ∂f (x) ⊂ Rm×n
and b ∈ Rm, solving the equation system

Gy = b, (4.7)

is equvalent to solving the equation system

Hy = b, H ∈ plen (∂f (x)) . (4.8)



Chapter 4. Mathematical theory 31

Nonsmooth Newton-type methods are of the form:

G
(
xk
) (

x(k+1) − xk
)

= −f
(
xk
)
, (4.9)

where G (x) is a generalized derivative element, e.g. an element of ∂f (x). Equations
(4.7)-(4.8) guarantee there exist matrices H ∈ plen

(
∂f
(
xk
))
, also referred to as

the plenary Jacobian [38], that will produce an image identical to G
(
xk
)

xk and
G
(
xk
)

x(k+1). As a result, any element of the plenary Jacobian is just as useful
as a Clarke Jacobian element for nonsmooth equation solving [23]. Moreover, as
the plenary hull is a superset of the Clarke Jacobian, its elements are more easily
obtainable.

4.3 Lexicographic derivatives

Lexicographic derivatives (L-derivatives) were first introduced by Nesterov [25], and
were later proved by Khan and Barton [21] to be elements of plen (∂f (x)) whenever
they exist. Lexicographic means "in the order it would appear in a dictionary" and
is used here to describe the hierarchical order in which directional derivatives are
computed. Analogous to conventional derivatives, the L-derivative for a function
f : X → Rm only exist when f is lexicographically smooth [23, 25].
Definition 4.7. Let f : X ⊂ Rn → Rm, where X is open. The directional
derivative at x ∈ X in direction d ∈ Rn is the rate of change of f (x) as it is
perturbed in said direction.

f ′ (x; d) ≡ lim
h→0+

f (x + hd)− f (x)
h

.

Definition 4.8. A locally Lipschitz continuous function f : X ⊂ Rn → Rm, where
X is open, is said to be lexicographically smooth (L-smooth) at a point x ∈ X if
it is directionally differentiable at x and its higher-order directional derivatives are
well-defined for any M = [m1 . . .mk] ∈ Rn×k and k ∈ N:

f0
x,M : Rn → Rm : d→ f ′ (x; d)

f1
x,M : Rn → Rm : d→

[
f0
x,M

]′ (m1; d)
...

fkx,M : Rn → Rm : d→
[
fk−1
x,M

]′
(mk; d)

Lexicograpical smoothness is possible even at nondifferentiable points, provided
the directional derivatives are defined.



32 4.3. Lexicographic derivatives

Example 4.4. Let f : R2 → R be a PC1 function:

f (x1, x2) = max (x1, x2) ,

whose graph is presented in Figure 4.5.

Figure 4.5: The maximum value function.

For each point x ∈ R2, the directional derivative from perturbing x in direction:

d =
[
d1
d2

]
,

is:

f ′ (x1, x2; d) = lim
h→0+

f (x1 + hd1, x2 + hd2)− f (x1, x2)
h

.

For points x1 6= x2, f is continuously differentiable, which implies it is also lexico-
graphically smooth [25]. At x1 = x2, on the other hand, the derivative is undefined
as there exists a kink in the graph. Fortunately, the directional derivative can still
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be computed from Definition 4.7:

f ′ (x1, x2; d) = lim
h→0+

f (x1 + hd1, x2 + hd2)− f (x1, x2)
h

= lim
h→0+

max (x1 + hd1, x2 + hd2)−max (x1, x2)
h

= lim
h→0+

h ·max (d1, d2)
h

= max (d1, d2) .

Obviously, the new mapping f0
x,M (d1, d2) = max (d1, d2) is also directionally dif-

ferentiable everywhere; higher-order directional derivatives exist, and the function
is L-smooth according to Definition 4.8.

Lexicographic derivatives are best explained as generalizations of standard deriva-
tives. More specifically, they are defined as the Jacobian of the mapping fnx,M :
Rn → Rm evaluated at 0n, which is continuously differentiable provided the
directions matrix M ∈ Rn×n is nonsingular [25]. Lexicographic derivatives are
denoted as JLf (x; M) and, unlike elements of the Clarke Jacobian, obey sharp
calculus rules.
Example 4.5. Consider the function f : R2 → R in Example 4.4 evaluated at
x = 0. For an arbitrary nonsingular directions matrix M

M =
[
m11 m12
m21 m22

]
,

the first-order directional derivative is (see Example 4.4)

f0
x,M (m1) = max (m11,m21) ,

which is the function we started with. If m11 is equal to m21, then m12 6= m22 since
M is nonsingular, and the calculation procedure is repeated. On the other hand, if
m11 6= m21 the term f0

x,M (m1) reduces to either m11 or m21, depending on which
is largest. Since M is assumed to be nonsingular, at least one of the columns mk

will have different entries. Let us say here that m11 > m21 for illustration. Then,
the second-order directional derivative will be

f1
x,M (m2) =

[
f0

x,M
]′ (m1; m2)

= lim
h→0+

f0
x,M (m11 + h ·m12,m21 + h ·m22)− f0

x,M (m11,m21)
h

= lim
h→0+

m11 + h ·m12 −m11

h
= m12.
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Similarly

f2
x,M (d) =

[
f1

x,M
]′ (m1; d)

= lim
h→0+

f1
x,M (m12 + hd1,m22 + hd2)− f1

x,M (m12,m22)
h

= d1,

and the lexicographic derivative of f at x = 0 is

Jf2
x,M (0) =

[
∂f2

x,M
∂d1

(0)
∂f2

x,M
∂d2

(0)
]

= [1 0] .

The set of lexicographic derivatives JLf (x; M) at x for nonsingular directions
matrices M ∈ Rn×n is known as the lexicographic subdifferential ∂Lf (x):
Definition 4.9. (From Nesterov [25]).

∂Lf (x) ≡
{

JLf (x; M) : M ∈ Rn×n, detM 6= 0
}
.

The lexicographic subdifferential is a subset of the plenary hull of the Clarke
Jacobian [21], and any element of ∂Lf (x) can therefore substitute for G in Equation
(4.9). In case of piecewise differentiable functions, Khan and Barton found the
following to be true [23]:

∂Lf (x) ⊂ ∂Bf (x) ⊂ ∂f (x) . (4.10)

That is, lexicographic derivatives are elements of the Clarke Jacobian itself rather
than the plenary Jacobian. Nonsmooth Newton-type methods that employ B-
subdifferential elements as generalized derivative information benefit from local
quadratic convergence properties [23].

4.4 Lexicographic directional derivatives

Lexicographic derivatives are not computed directly, but are instead calculated by
first finding a lexicographic directional (LD-)derivative. For an L-smooth function
f : X ⊂ Rn → Rm, the LD-derivative of f at x ∈ X in directions M ∈ Rn×k, k ∈ N
is defined as [23]:

f ′ (x; M) ≡
[
f0
x,M (m1) f1

x,M (m2) · · · fk−1
x,M (mk)

]
. (4.11)

Equation (4.11) is used for computing the LD-derivatives:
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Example 4.6. The higher-order directional derivatives for the maximum value
function at x = 0 were computed in Example 4.5:

f0
x,M (m1) = m11

f1
x,M (m2) = m12.

Therefore, the lexicographic directional derivative is in this case the row vector

f ′ (0; M) = [m11 m12] .

Where the L-derivative is a generalization of the conventional derivative, the LD-
derivative is analogous to the standard directional derivative for smooth functions
[23]. Provided the directions matrix M is nonsingular and square, the following
relationship between the LD-derivative and L-derivative holds:

f ′ (x; M) = JLf (x; M) M. (4.12)

Example 4.7. Considering the same maximum value function as in Examples 4.4-
4.6 for a point x = 0. For an arbitrary 2× 2 nonsingular directions matrix M, the
LD-derivative was found in Example 4.6 to be:

f ′ (0; M) = [m11 m12] .

Since M is nonsingular, detM 6= 0 and its inverse is given as

M−1 = 1
detM

[
m22 −m12
−m21 m11

]
,

= 1
m11m22 −m12m21

[
m22 −m12
−m21 m11

]
,

=

 m22

m11m22 −m12m21

−m12

m11m22 −m12m21−m21

m11m22 −m12m21

m11

m11m22 −m12m21

 .

The L-derivative can then be computed directly from Equation (4.12):

JLf (0; M) = f ′ (0; M) M−1.
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Inserting for the inverted matrix:

JLf (0; M) = [m11 m12]

 m22

m11m22 −m12m21

−m12

m11m22 −m12m21−m21

m11m22 −m12m21

m11

m11m22 −m12m21

 ,

=
[
m11m22 −m12m21

m11m22 −m12m21

m11m12 −m1m12

m11m22 −m12m21

]
= [1 0] ,

which is the same as in Example 4.5.

For a square and nonsingular directions matrix M, ∂Lf (x) is also guaranteed to
be a part of the plenary hull of the Clarke Jacobian (see Section 4.3). Equation
(4.12) represents a convenient way of finding L-derivatives for a given LD-derivative.
Another advantage with using LD-derivatives is that they follow the strict chain
rule such that LD-derivatives for composite functions can be found in the same
fashion.
Theorem 4.1. (From Khan and Barton [23]) Given open sets X ⊂ Rn and Y ⊂
Rm, and locally Lipchitz continuous functions f : Y → Rq and g : X → Y that
are L-smooth at g (x) ∈ Y and x ∈ X. Then, the composition f ◦ g is L-smooth
at x, and for any directions matrix M ∈ Rn×k, the following chain rule for LD-
derivatives is satisfied:

[f ◦ g]′ (x; M) = f ′ (g (x) ; g′ (x; M)) . (4.13)

4.5 Implicit function theorem for lexicographically
smooth functions

In Section 3.3, analytical solutions for the input-output sensitivities were formu-
lated for C1 functions by means of the implicit function theorem. Fortunately, there
exists an analogous theorem presented by Khan and Barton that is applicable to
lexicographically smooth functions [22]. Before the theorem can be presented,
however, the projection of the Clarke Jacobian must be defined.
Definition 4.10. (From [13]) Let f : X × Y → Rp for open sets X ⊂ Rn and
Y ⊂ Rm, and let it be locally Lipschitz continuous in a neighborhood of a point
(x̂, ŷ) ∈ X × Y . Then, the Clarke Jacobian projection of f at (x̂, ŷ) with respect to
y is defined as the set

π2∂f (x̂, ŷ) ≡
{

W2 ∈ Rp×m : ∃W1 ∈ Rp×n s.t. [W1 W2] ∈ ∂f (x̂, ŷ)
}
.

Yunt [46, Theorem 2.6.12] also detailed the property ∂2f (x̂, ŷ) ⊂ π2∂f (x̂, ŷ), where
∂2f (x̂, ŷ) is the partial Clarke Jacobian with respect to y evaluated at (x̂, ŷ).
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Theorem 4.2. (From [22, Theorem 2]) Let W ⊂ Rm+n be open and f : W → Rn
be L-smooth at a point (x̂, ŷ) ∈W that satisfies

f (x̂, ŷ) = 0.

In addition, assume the projection π2∂f (x̂, ŷ) contains no singular matrices. Then,
there exist a neighbourhood N ⊂ Rm of x̂, and a Lipschitz continuous function
g : N → Rn such that ŷ = g (x̂) and

f (x,g (x)) = 0,

is satisfied for all x ∈ N . Furthermore, g is L-smooth at x̂; for every p ∈ N and
M ∈ Rm×p, g′ (x̂; M) is the unique solution to the equation system

f ′ (x̂, ŷ; (M,g′ (x̂; M))) = 0.

The last equation system in Theorem 4.2 is found by applying the chain rule in
(4.13). Solving it with respect to g′ (x̂; M) will yield the LD-derivatives for the
sensitivities. In the case that f is C1 at (x̂, ŷ), the projection

π2∂f (x̂, ŷ) =
{
∂f
∂y (x̂, ŷ)

}
. (4.14)

Consequently, the assumption regarding π2∂f (x̂, ŷ) containing no singular matrices
is analogous to requiring the partial Jacobian to be nonsingular in the C1 case.

4.6 Forward automatic differentiation for evaluat-
ing derivatives

Automatic differentiation (AD) is a method for computing derivatives numerically
by exploiting the procedural operations that take place in a computer when eval-
uating functions. A sequence of elemental operations are executed, each returning
a temporary variable that is then used in other operations. Elemental operations
in this context refer to simple operations like addition, subtraction, multiplication,
division as well as simple functions (sine, exponential function, max/min function
etc.). By virtue of the chain rule, such stepwise computation is also possible for
differentiation, and may be done in parallel to finding the function value. This is the
foundation of the forward mode of automatic differentiation, for which derivative
values are carried forward along with the numerical values themselves [15]. There
also exists a reverse mode, though it will not be discussed in this report. For
more information on the reverse mode, check [15]. The principles of automatic
differentiation is best illustrated with an example.
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Example 4.8. Let f : R2 → R be a C1 function such that

f (x1, x2) = x1x2 + x2
1 + ex2 . (4.15)

Assume that a program evaluates this function at the point (x1, x2) = (0.5, 1.0),
then a possible sequence of elemental operations would be as in Table 4.1.

Table 4.1: Illustration of the evaluation sequence in a program.

u−1 = x1 = 0.5000
u0 = x2 = 1.0000
u1 = u−1 · u0 = 0.5000 · 1.0000 = 0.5000
u2 = u−1 · u−1 = 0.5000 · 0.5000 = 0.2500
u3 = exp (u0) = exp (1) = 2.7183
u4 = u1 + u2 = 0.5000 + 0.2500 = 0.7500
u5 = u4 + u3 = 0.7500 + 2.7183 = 3.4683
y = u5 = 3.4683

Forward automatic differentiation calculate the derivatives of a temporary variable
simultaneously, using the chain rule and the same sequence of elemental operations
(see Table 4.2).
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Although Example 4.8 was done for a C1 function, the same principles apply to
nonsmooth functions, provided they are L-factorable [23].
Definition 4.11. (From [23]). A function f is L-factorable if all the functions
in its elemental library are L-smooth and their LD-derivatives are known or com-
putable.

Among L-factorable functions are the PC1 functions from the MHEX model [23].
LD-derivatives replace conventional derivatives for the nonsmooth case, and are
included in an automatic differentiation framework through object-oriented pro-
gramming. Specifically, by defining a new data type that also stores the variable’s
derivatives. In addition, operators and simple functions are overloaded, i.e. cus-
tomized for a particular data type, to calculate LD-derivatives simultaneously using
calculus rules. The procedures in Tables 4.1 and 4.2 thus do not occur separately
but are intertwined in the model.

Algorithm 2 presents a general layout of the forward mode of automatic differenti-
ation for an L-factorable function f [23].

Algorithm 2 Forward mode of automatic differentiation for an L-factorable
function f : Rn → Rm

1: Assign uk−n ← xk for k = 1, . . . , n
2: Assign Uk−n ←

[
MT]

k
for k = 1, . . . , n

3: for i = 1, . . . , l do
4: Set vi ← [uj ]j≺i
5: Calculate ui = γi (vi)
6: Set Vi ← [Uj ]j≺i
7: Calculate Ui = [γi]′ (vi; Vi)
8: end for
9: return f (x) = ul and f ′ (x; M) = Ul

Here M ∈ Rn×p is the directions matrix, while γi,∀i = 1, . . . , l are the l elemental
operations that occur in the function. Furthermore,

[
MT]

k
is the kth row of M.

The notation j ≺ i is used to indicate direct dependency (i.e. j ≺ i is true if ui is
defined by a function fui (. . . , uj)), whereas [uj ]j≺i and [Uj ]j≺i are stacked scalars
and vectors, respectively, of variables (uj) and derivatives (Uj) that occur in the
ith elemental operation. Example 4.9 shows the general outline of Algorithm 2.
Example 4.9. Consider the L-factorable function

f : R2 → R : (x1, x2)→ max
{
x2

1, x2
}

at a point of nondifferentiability (x1, x2) = (2, 4), and a directions matrix

M =
[
1 0
0 1

]
.
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Then f consists of l = 2 elemental operations, which are multiplication (x1 ·x1) and
a max-function. The steps taken by Algorithm 2 are summarized in Table 4.3. The
LD-derivative U2 for the max-function was found using the results from Example
4.5 and 4.6 for a directions matrix

V2 =
[
0 1
4 0

]
.

U2 = max′ (v2; V2) ,

= max′
([

4
4

]
;
[
0 1
4 0

])
,

= [4 0] ,
= U1.

Table 4.3: Numerical calculation of the LD-derivative of max
{
x2

1, x2
}
at (x1, x2) =

(2, 4), using the forward mode of automatic differentiation for L-factorable
functions.

u−1 = x1 = 2 U−1 =
[
MT

]
1 = [1 0]

u0 = x2 = 4 U0 =
[
MT

]
2 = [0 1]

i = 1:
v1 = [u−1] V1 = [U−1]

u1 = u−1 · u−1 = 4 U1 = 2u−1 ·U−1 = [4 0]
i = 2:

v2 =
[
u0
u1

]
V2 =

[
U0
U1

]
u2 = max {u1, u0} = 4 U2 = U1 = [4 0]

Algorithm 4.9 therefore returns:

f (2, 4) = 4,

and
f ′
(

(2, 4) ;
[
1 0
0 1

])
= [4 0] .





Chapter 5

Implementation of a
nonsmooth implicit function
theorem

Section 3.3 presented an approach for evaluating analytical sensitivities of modular
subroutines by invoking the classical implicit function theorem. For Theorem 3.1
to be satisfied, however, the functions need to be continuously differentiable, which
is not the case for the MHEX model. Instead, the concept of LD-derivatives was
studied in Chapter 4, along with an implicit function theorem for lexicographically
smooth functions. The theorem states that there exists a unique solution g′ (x̂; M)
to the equation system

f ′ (x̂, ŷ; (M,g′ (x̂; M))) = 0, (5.1)

where g′ (x̂; M) is the LD-derivative of the implicit function. Like the result for
C1 functions, it acts as an input-output sensitivity for PC1 subroutines. This
chapter begins with presenting a lemma for solving (5.1), before implementing the
procedure in C++ in Section 5.2. Finally, the algorithm is tested for the PC1

pQ-flash formulation in Equation (2.16).

5.1 Solving for the input-output sensitivities of
PC1 subroutines

Equation (5.1) is solved by applying a lemma produced by Khan (Khan, Argonne
National Laboratory, personal communication, 2015):
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Lemma 5.1. Let conditions of Theorem 4.2 hold. Then the kth column nk of
N ≡ g′ (x; M) is the unique solution to the set of equations:

0 = f (k−1)[
x̂
ŷ

]
,

[
M(k−1)
N(k−1)

] ([mk

n

])
.

The residual function for this equation system, defined as

h : v→ f (k−1)[
x̂
ŷ

]
,

[
M(k−1)
N(k−1)

] ([mk

v

])
,

is L-smooth on Rn; for any v ∈ Rn and A ∈ Rn×q, q ∈ N

h′ (v; A) = f ′
([

x̂
ŷ

]
;
[
M(k−1) mk 0m×q
N(k−1) v A

])[
0k×q
Iq×q

]
.

Lemma 5.1 allows solving for each column of g′ (x; M) sequentially using a nons-
mooth Newton-type solver. At each step, nk is found as the kth order directional
derivative of f in direction [mk nk]T, approaches zero. Previously evaluated
LD-derivative elements N(k−1) of the implicit function, as well as the directions
matrix Mk up to column k are used in the calculations. The search direction for
the Newton-type solver is provided by the LD-derivative h′ (v; A) of the residual
function h, where A is a directions matrix. Algorithm 3 presents an outline for
solving (5.1). The variable Nvar, o is here used to denote the total number of
variables in the "outer problem", i.e. excluding the variables incorporated into
subroutines.
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Algorithm 3 Computing sensitivities for lexicographically smooth functions.
Given input variables x̂, the solution of the output variables ŷ and directions
matrices A and M.

1: Set k = 1.
2: while k ≤ Nvar, o do
3: if k = 1 then
4: Set M1 ←m1.
5: else
6: Set Mk ←

[
M(k−1) mk

]
.

7: end if
8: Set v← 0 as initial guess
9: Do a Newton solve with H← h′

(
vj ; A

)
as a generalized derivative element

to iterate v(j+1) = vj −H−1h
(
vj
)
, j = 1, . . ., where v0 = 0.

10: Set N← [N v∗].
11: k = k + 1.
12: end while
13: return N

5.2 Implementation in C++

Algorithm 3 was implemented in C++ using the existing automatic differentiation
framework developed by Khan and Barton [23] for calculating LD-derivatives,
included in the multistream heat-exchanger model. The residual functions are
solved with the nonsmooth Newton-type method in (2.18) by Qi and Sun [32]
using a generalized derivative element G

(
xk
)
∈ plen

(
∂f
(
xk
))

at each iteration.

1
2 %Sensitivity function. Calculates sensitivities for any function.
3
4 %[x] are the output variables from the subroutine.
5 %[nVar] is the number of variables in the "outer" problem
6 %[vari] are all the variables in the outer problem.
7 %[p] are all the scalar parameters needed in the subroutine.
8 %[p_vect] are all the vector parameters needed in the subroutine.
9 %[PQflash_sens] is a pointer to the residual functions.
10
11 void sensitivity(vector<ldouble> &x, vector<ldouble> vari, vector<ldouble>

p, vector< vector<ldouble> > p_vect, LDfunc Resid){
12
13 % Find the dimensions of the matrix A:
14 int colA=x.size();% Number of inner problem variables determines the

dimensions of A.
15 int nVar=vari[0].getDepth(); % Number of variables in the outer

problem.
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16
17 for(int i=0;i<colA;i++){
18 x[i].setDepth(nVar);% Setting the depth of the variables in the

inner problem such that the sensitivities can be stored.
19 }
20
21 % Setting up the vector for the parameters in the inner sensitivity

function.
22 vector<ldouble> var(x.size()+vari.size());% [var] contains all the

variables in the outer problem + all the variables in the inner
problem

23
24 for(int i=0;i<var.size();i++){
25 if(i<vari.size()){
26 var[i]=vari[i].getValue();
27 }
28 else{
29 var[i]=x[i−vari.size()].getValue();% adds all the inner

problem variables
30 }
31 }
32
33
34 % Calculates each of the unknown higher order directional derivatives

[v] at each iteration.
35 for(int i=0;i<nVar;i++){
36 %setting the [v]−vector
37 dVector v(colA);%[colA] represent the number of variables in the

inner problem!
38 for(int j=0;j<colA;j++){
39 v[j]=0.0;%provides initial guesses for all the [v] elements
40 }
41
42
43
44 %Setting depths for all parameters:
45 for(int j=0;j<var.size();j++){
46 var[j].setDepth(i+colA+1);%[colA] here accounts for the zero

matrix above A in Lemma 3.1.
47 }
48
49 %Copying the i first columns of the M matrix from the input

variables:
50 for(int j=0; j<vari.size();j++){
51 for(int k=0;k<i+1;k++){
52 var[j].setDotValue(k,vari[j].getDotValue(k));
53 }
54 }
55
56 %adding the A matrix to the remaining directional derivative

columns of the output variables:
57 for(int j=0;j<colA;j++){
58 var[j+vari.size()].setDotValue(i+1+j,1.0);
59 }
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60
61
62 %Adding the [i−1] columns of N calculated in previous iterations.

This will only happen after the first iteration.
63 if(i>0){
64 for(int j=0;j<colA;j++){
65 var[j+vari.size()].setDotValue(i−1,x[j].getDotValue(i−1));
66 }
67 }
68
69
70 vector<vector<ldouble>> vect_params(2+p_vect.size());
71 %This vector is initialized in order to collectively organise all

the parameters to the module as one argument. % The first
column in [vect_params] consists of the outer problem
variables [vari].

72 % The scalar parameters [p] to the module will make up the second
column in the [vect_params] argument.

73 % The nonscalar function parameters [p_vect] are placed in column
three and onwards.

74
75
76 vector<ldouble> inVar(colA);% All the output variables ("inner

problem variables") of the module for which sensitivities will
be found for.

77 % All the inner problem variables are provided as a separate
argument.

78
79 vector<ldouble> OuterVar(vari.size());%All the outer problem

variables plus LD−derivative information up until column i.
80
81 for(int j=vari.size();j<vari.size()+colA;j++){
82 inVar[j−vari.size()]=var[j];
83 }
84 for(int j=0;j<vari.size();j++){
85 OuterVar[j]=var[j];
86 }
87
88 vect_params[0]=OuterVar;% Adding all the "outer model variables"

to the first row of [vect_params].
89 vect_params[1]=p;% Adding all the scalar module parameters to the

second row of [vect_params].
90 for(int j=0;j<p_vect.size();j++){
91 vect_params[2+j]=p_vect[j];% Adding the remaining vector

parameters.
92 }
93
94
95
96 bool flag;
97 double S;% Used to temporary store the sensitivities
98 flag=ssNewton_solve(colA, 1.0, v, inVar, vect_params, Resid);
99 if(flag){
100 for(int j=0;j<colA;j++){% Cycles through all the variables and
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add the sensitivities corresponding to a given variable
i.

101 S=v[j]; % Sensitivities
102 x[j].setDotValue(i,S);
103 }
104 }
105 }
106 }

Input variables to the function are of a predefined data type ldouble that consists
of a value of type double, which is a data type that is used for storing floating
point numbers, as well as a vector containing the LD-derivative. Each element of
this vector corresponds to an element in Equation (4.11), and is throughout the
code referred to as a dot-value. The function setDepth at line 46 manages the
dimension of the dot-values vector, which will increase by one for every iteration i.
This additional space is needed to contain the vectors v and mi from Lemma 5.1.
The function getDepth returns the current dimension of the LD-derivative vector.
Also an argument in the sensitivity function, is a pointer Resid to the residuals
required by the nonsmooth Newton-type solver at line 98. Pointers to functions
are used in order to make the code more versatile. The residual function used for
testing the above algorithm is found in Appendix A.

The directions matrix M(i−1) is added in the for-loop between lines 50 and 54. It
consists of the LD-derivatives for the input variables, and will have a row dimension
equal to the total number of variables in the outer problem. As a consequence of the
chain rule, this derivative information is then transferred to the output variables.

The matrix A must be chosen to be square and nonsingular so that (4.12) holds.
In this program, the identity matrix I was used. An initial guess for v is given at
line 39 by setting all its elements to zero. Sensitivities are stored in the output
variables x at line 98, after solving the residual functions. The x are passed to the
function as address arguments, and are also used for updating the N(i−1) columns
at each iteration (lines 63-67).

5.3 Testing the sensitivity function for the nons-
mooth VLE equation

A pQ-flash test problem with ideal properties was used for checking the implemen-
tation of the sensitivity function. Watson and Barton developed a nonsmooth
model for flash calculations that considers the disappearance of phases at the
boundary of the two-phase region [41]. The model is formulated using a mid
function with the three possible outlet conditions: all liquid outlet, all vapour
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outlet and two-phase outlet as arguments.

mid
{
α, α− 1,−

nC∑
i=1

zi (Ki − 1)
1 + α (Ki − 1)

}
= 0. (5.2)

The mid function is PC1 everywhere on its domain, meaning it is lexicographically
smooth. Consequently, its LD-derivative is well-defined and the implicit function
theorem (5.1) is applicable. Accompanying the mid function for a pQ-flash is the
overall energy balance

hlL+ hvV = hfF +Q, (5.3)
which is also L-smooth.
Example 5.1. Consider a pQ-flash at p = 3.695MPa with a feed composition as
given in Table 5.1. The residual function used for this test problem can be found
in Appendix A.

Table 5.1: Feed compositions used for the pQ-flash test problem.

Component Mole fraction
N2 0.1532
CH4 0.1779
C2H6 0.4086
C3H8 0.0041
C4H10 0.2562
Sum 1.0000

Inlet temperature and feed flowrate was set to Tin = 240K and F = 1.0kmol/s,
respectively. The corresponding inlet enthalpy was found in Aspen Plus® to be
hf = −93978.6J/mol relative to the elements’ standard state at 298.15K [3, p.16-
17]. Heat influx to the flash vessel was specified to 1000kW.

pQ-flash calculations solve Equations (2.9)-(2.13) for the liquid- and vapour outlet
compositions (x,y), the flash temperature (Tout), and the the vapour fraction α.
The pQ-flash problem was simulated using both Aspen Plus® and Equations (5.2)-
(5.3) to verify results before computing the sensitivities.

Table 5.2 shows some deviations between the nonsmooth model and Aspen Plus®. It
is likely that these departures can be accredited to different methods for evaluating
specific heat capacities at low temperatures. Aspen Plus® extrapolates many of
its temperature dependent property models linearly for temperatures beyond the
limits [4, p. 9]. The ideal thermodynamics implemented for the multistream heat
exchanger model, on the other hand, simply extend these models at their endpoints.

Using the program outlined in Section 5.2, sensitivities for Tout and α with respect
to the three pQ-flash parameters hf, Q and p were found (see Table 5.3).
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Figure 5.1: The single stage pQ-flash test problem.

Table 5.2: pQ-flash simulation results.

Flash model by Watson and Barton
Tout [K] α
248.03 0.34

Solution in Aspen Plus®

Tout [K] α
248.69 0.31

Both Tout and α show a low dependence on the heat influx Q and molar feed enthalpy
hf. Moreover, with a feed flowrate of 1.0kmol/s they will be equally sensitive to
these parameters. At this flowrate, a unit perturbation in hf is equal to one kW
and therefore of the same magnitude as a change in Q. The temperature increased
with 8.7K in the vessel with Q = 1000kW, which constitutes 8.7 · 10−3 increase.
Consequently, a temperature dependence of 8.31 · 10−3 on Q and hf is reasonable.

Table 5.3 predicts a negative correlation between the vapour fraction and pressure.
Higher pressures shift the boiling point temperatures upwards, condensation occurs
and the vapour fraction decreases. The temperature–pressure relationship is more
easily studied for pure compounds.

Table 5.3: Sensitivities for the output variables Tout and α.

Q[kW] hf[kJ/kmol] p[MPa]
Tout[K] 8.31 · 10−3 8.31 · 10−3 2.33
α 3.52 · 10−5 3.52 · 10−5 −0.03
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Figure 5.2: Boiling point curve of methane plotted from the extended Antoine
equation [4].

Figure 5.2 reveals a gradient

dp

dT
> 0, ∀T ∈ [TTP, Tc] , (5.4)

where TP and c are used to denote the triple point and the critical point, respec-
tively. A positive correlation between pressure and outlet temperature is therefore
expected.





Chapter 6

Modularizing the
vapour-liquid equilibrium
calculations

This chapter presents a hybrid framework for the multistream heat exchanger
model where the vapour-liquid equilibrium equations are modularized and solved
sequentially. The goal is to find out whether the alternative formulation leads to
a more robust model, capable of simulating complex liquefaction processes. First,
Section 6.1 covers the general structure of the VLE subroutine, as well as presenting
a modified initialization procedure. In Section 6.2, the VLE module is tested
and verified using the equation-oriented PRICO model as reference. Section 6.3
then tests the robustness of the hybrid framework for the single mixed refrigerant
processes studied in the specialization project [40]. The final section looks at the
increase in simulation times for the alternative model. Ideal properties were used
in all the simulations.

6.1 The vapour-liquid equilibrium module

With ideal properties, the pQ-flash problem is a two variables problem in Tout and
V , hence the energy balance

hlL+ hvV = hfF +Q (6.1)

is needed in addition to Equation (2.16). Arguments to the module are the
pressure p, the feed enthalpy hf, the feed composition z, the feed flowrate F and
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the number of flash stages n2p. The flash stages are solved sequentially using a
nonsmooth Newton-type solver, and correct LD-derivatives for the output variables
are evaluated using the sensitivity function from Chapter 5. Before the next stage,
the feed enthalpy is either reduced or increased by Q, depending on whether
the stream is hot or cold. As mentioned in Section 2.3, Q is chosen such that
heating/cooling in the pQ-flashes sum up to the total enthalpy difference in the
two-phase region. The VLE-module uses an inbuilt function FlashStage for solving
the flash equations, such that it becomes compatible with different thermodynamic
models. Algorithm 4 presents the general outline of the module in pseudo-code.

Algorithm 4 The vapour-liquid equilibrium module
1: function VLE-module(p, hf, z, F , n2p, Q)
2: Sort the function arguments into input variables v0 and input parameters

p.
3: Initialize the flash variables Tout,i and αi for each stage i.
4: Set the iteration counter: i← 0.
5: while i < n2p do
6: Evaluate (Tout,i, αi)←FlashStage(vi, p)
7: Evaluate g′i (Tout,i, αi; M) ←Sensitivity(Tout,i, αi, vi, p, Flash-

Stage(vi, p))
8: Set Hf ← Hf +Q and i← i+ 1.
9: end while
10: end function

A nonsmooth Newton-type solver is used in FlashStage for solving Equations (2.16)
and (6.1), which requires good initial guesses for Tout,i and αi in order to converge.
The VLE-module applies the same initialization procedure used in the original
MHEX model, where temperatures and vapour fractions are modelled by linear
interpolation:

Tout,i = T2p, in + i

n2p
(T2p, out − T2p, in) , (6.2)

αi = α2p, in + i

n2p
(α2p, out − α2p, in) . (6.3)

The flash equations are then solved for the assumed values of Tout,i and α improving
the estimates.
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6.2 Verifying the vapour-liquid equilibrium mod-
ule

The VLE module needs to be tested and verified before comparing the two frame-
works. This was done by simulating the PRICO process, which consists of a
single MHEX and is thus regarded as the simplest of the single mixed refrigerant
processes. With n2p = 5, the equation-oriented model is comprised of 52 variables,

Figure 6.1: The PRICO process.

whereas with the hybrid framework the number is reduced to 28. Equations (2.4),
(2.5), and (2.6) means the MHEX model can solve for three unknown quantities
(v1, v2 and v3). The remaining variables account for the dew-point and bubble-
point temperatures, the temperatures in the superheated and subcooled regions,
and in the case of no VLE subroutines, the temperatures and vapour fractions in
the two-phase region. Temperatures in the single phase regions are found by energy
balances over the affine segments i used to approximate the composite curves (see
Section 2.2) [41]:

F
(
hin

sup/sub,i − h
out
sup/sub,i

)
=
Qsup/sub

nsup/sub
, (6.4)

where F is the molar flowrate of the stream, hin/out
sup/sub,i are the molar enthalpies

in/out of segment i, nsup/sub is the number of affine segments used to approximate
the composite curves, and Qsup/sub is the total heat transferred in the phase region.

To test the VLE modules, two simulation cases were developed with different
properties selected as unknown variables. Case I solves for the high pressure (HP)
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and the low pressure (LP) refrigerant temperature out of the multistream heat
exchanger, as well as for the heat transfer area UA. Case II, on the other hand,
solves for the low pressure level, the low pressure refrigerant temperature out, and
∆Tmin. Both simulation cases are detailed in Table 6.1. The LP inlet temperature
v4 is also an unknown quantity in both cases, but is instead determined by the
throttling valve (see Figure 6.1).

Table 6.1: Refrigerant stream and MHEX data used in simulations of the PRICO
process.

Property Case I Case II
High pressure level [MPa] 3.695 3.695
Low pressure level [MPa] 0.170 v1

Flowrate [kmol/s] 3.47 3.47
HP inlet temperature [K] 303.15 298.15
HP outlet temperature [K] v1 118.5
LP inlet temperature [K] v4 v4
LP outlet temperature [K] v2 v2

Composition [mol %]
N2 15.32 15.32
CH4 17.79 17.79
C2H6 40.85 40.85
C3H8 0.41 0.41

n-C4H10 25.62 25.62
MHEX data
UA [MW/K] v3 10

∆Tmin [K] 1.2 v3

Case I was simulated in the two frameworks with the initial conditions given in
Table 6.2. The table shows both models converged to the same solution, corre-
sponding to an overall heat duty of 86 MW. Furthermore, according to Figure
6.2, the two models have identical driving force distributions in the MHEX. The
∆T–H plot has the characteristic shape of cryogenic processes, with smaller tem-
perature differences at lower temperatures where thermodynamic losses become
more significant [40]. Therefore, it is reasonable to conclude the VLE subroutines
are functioning properly, and that the two frameworks are equivalent. However,
before asserting the validity of the hybrid model, a similar test was also conducted
for Case II.

In the second case, the initial condition in Table 6.3 was used, which again resulted
in both models converging to the same solution. With both simulations returning
identical results, the VLE-modules are seemingly working properly, such that the
hybrid MHEX model can be used for simulating the more complex processes.
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Table 6.2: Numerical results of Case I for the PRICO process.

Variable Initial values Results
EO model Hybrid model

v1 [K] 130.00 121.16 121.16
v2 [K] 250.00 286.55 286.55
v3 [MW/K] 10.00 18.70 18.70
v4 [K] 116.95 116.95 116.95
Process:
Total duty [MW] 85.97 85.97

Figure 6.2: Case I driving force plots for the equation-oriented and the hybrid
PRICO model.
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Table 6.3: Numerical results of Case II for the PRICO process.

Variable Initial values Results
EO model Hybrid model

v1 [MPa] 0.140 0.120 0.120
v2 [K] 220.00 271.38 271.38
v3 [K] 1.50 2.80 2.80
v4 [K] 116.65 114.39 114.39
Process:
Total duty [MW] 83.46 83.46

Figure 6.3: Case II driving force plots for the equation-oriented and the hybrid
PRICO model.
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6.3 Performance testing of the hybrid framework

The MHEX model with modularized flash calculations is tested for three different
processes taken from the specialization project [40]: the PRICO process, the
"extended" PRICO process, and the single mixed refrigerant process with inte-
grated NGL extraction. Performance tests are done with respect to efficiency and
robustness. Ideal properties were used for all the simulations, with the number of
discrete flash stages in the two phase region of each MHEX set to 5. Simulations
of the two PRICO models were done using the natural gas composition from Table
6.4. A "richer" composition was used for the single mixed refrigerant process with
NGL extraction, in order to have separation at 240K (see Table 6.11). The focus
of the simulations were on the cooling and heating curves in the MHEXs. No
attention was therefore put on the compressor and aftercooler part of the models.

Table 6.4: Natural gas stream data used in the simulations of the PRICO and the
extended PRICO process.

Property Value
Pressure [MPa] 5.50

Flowrate [kmol/s] 1.00
Inlet temperature [K] 298.15
Outlet temperature [K] 118.15
Composition [mol %]

N2 1.00
CH4 95.60
C2H6 3.10
C3H8 0.20

n-C4H10 0.10

In order to test robustness, the models were run over a range of inputs, registering
when they converged. Properties like number of iterations and time per iteration
were noted, such that the efficiency of the two frameworks could be analysed.
Rather than entering the initial guesses manually for each simulation, a bash-script
was constructed that calls the model N times using for-loops.

6.3.1 The PRICO model

The first model to be analysed is the PRICO process, which was also used for
verifying the VLE modules in Section 6.2. The same cases are considered here,
with intervals for the variables presented in Table 6.5. For case I, a grid of inputs
∆v1 = 10, ∆v2/3 = 5 was used, i.e. 175 nodes. Case II, on the other hand, was
simulated on a grid ∆v1 = 0.02, ∆v2 = 10 and ∆v3 = 0.5, a total of 224 nodes. In
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order to compare the spread in the results, relative standard deviation was used,
defined as [1]:

RSD ≡ σ

µ
, (6.5)

where σ is the standard deviation of the data set, and µ is the mean.

Table 6.5: Results of the robustness and efficiency tests for the PRICO process.

Case I Case II
v1 [110, 150] [0.120, 0.180]
v2 [250, 280] [200, 330]
v3 [10, 30] [1.00, 2.50]
N 175 224

EO model Hybrid EO model Hybrid
Solve %1 100.00 92.57 69.64 98.21
Iterations:
Mean 159.99 100.10 154.63 118.10
Standard dev. 62.19 37.95 80.83 42.86
RSD % 38.87 37.91 52.27 36.29
Time per iteration:
Mean [s/iteration] 0.034 0.143 0.036 0.144
Standard dev. 0.001 0.006 0.001 0.011
RSD % 2.94 4.20 2.78 7.64

Simulation time [s]: 5.44 14.31 5.57 17.01
1 Percentage of simulations that converged within 500 iterations.

Counter-intuitively, results show that the alternative model actually performed
worse in the first test. It failed to converge for 13 nodes where the original model
succeeded, while being about 2.6 times slower on average. Investigating some of
these nodes further, it was discovered that the model hits cycles in the nonsmooth
Newton method for certain outlet temperatures of the HP refrigerant. How cycles
occur in Newton-type methods can easily be illustrated for the smooth case:
Example 6.1. Let X = [−3, 3],

f : X ⊂ R→ R : x→ x3 − 2x+ 2.

Then for any x ∈ X,
f ′ (x) = 3x2 − 2.

Solving the equation f (x) = 0 using Newton’s method yields a cycle whenever xk
is either 0 or 1.
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At x = 0:

xk+1 = xk −
f
(
xk
)

f ′ (xk) ,

= 0− 0− 2 · 0 + 2
3 · 0− 2 ,

= 0− 2
−2 = 1.

At x = 1:

xk+1 = 1− 13 − 2 · 1 + 2
3 · 12 − 2 ,

= 1− 1
1 = 0.

Therefore, upon hitting either of these points, Newton’s method will oscillate and
fails to converge.

For Case II, on the other hand, the hybrid framework is significantly more robust
than its EO counterpart, converging 98% of the time. Furthermore, the average
number of iterations required to solve the model is about 3/4 of the original.
However, each iteration takes 4 times longer, making the method 3 times slower on
average. The cause of this increase in simulation time is discussed in Section 6.4.

6.3.2 The extended PRICO process

Apart from the extra MHEX, the "extended" PRICO is identical to the original
PRICO process. However, adding the second heat exchanger increases the number
of variables from 52 to 108 for the EO model and from 28 to 56 for the hybrid
solution. Also, with three supplementary MHEX equations, the model solves
for six variables rather than three. Case I evaluates the HP and LP refrigerant
temperatures out of the heat exchangers, as well as both UA values. The second
case, however, keeps both HP refrigerant outlet temperatures fixed, instead solving
for the refrigerant’s flowrate and low pressure level.

Before conducting the performance analysis, Case I was tested with the initial
guesses from Table 6.7. Both models converged to the same solution for the
unknown variables, with overlapping driving force profiles in the MHEXs (see
Figure 6.5). The HP and LP refrigerant outlet temperatures, the LP refrigerant
inlet temperature, and the total duty in the process are the same as for the normal
PRICO (see Table 6.2). In addition, Figure 6.5 resembles the ∆T plot for Case I
of the PRICO process. There are some deviations between the curves in Figures
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Figure 6.4: The extended PRICO process.

6.2 and 6.5, however, especially for the low temperature portion of the process. In
the extended model, twice the number of segments are used to approximate phase-
regions that occur in both heat exchangers, resulting in a better approximation
of the composite curves and a tighter design. This becomes evident looking at
the combined UA value, which is slightly higher for the extended PRICO (19.03
MW/K versus 18.70 MW/K).

Performance testing of the extended PRICO model for Case I was done in two
parts to limit the number of nodes in the grid. The first simulations vary the
LP refrigerant outlet temperatures v2/3, and the HP refrigerant temperature out
of MHEX 2 (v4). Test 2 varies the UA values instead of variables v3 and v4.
By comparing Tables 6.5 and 6.8, the equation-oriented approach is observed to
perform notably worse for the extended model. Additional equations and variables
in the model makes it difficult to find suitable inputs for the Newton-type method.
The convergence ratio dropped from 100% to 30% for Test 1, and to 43.5% for
Test 2, as well as requiring approximately 2.5 times the number of iterations to
converge. With a tripling of the time per iteration compared to the original PRICO,
these extra iterations greatly affect the efficiency of the equation-oriented model.
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Table 6.6: Refrigerant stream and MHEX data used in simulations of the extended
PRICO process and the single mixed refrigerant process with integrated NGL
extraction (Case I only).

Property Case I Case II
High pressure level [MPa] 3.695 3.695
Low pressure level [MPa] 0.170 v1

Flowrate [kmol/s] 3.47 v2
MHEX 1:

HP inlet temperature [K] 303.15 303.15
HP outlet temperature [K] v1 240
LP inlet temperature [K] v2 v3
LP outlet temperature [K] v3 v4

MHEX 2:
HP inlet temperature [K] v1 240
HP outlet temperature [K] v4 122
LP inlet temperature [K] v5 v5
LP outlet temperature [K] v2 v3

Composition [mol %]
N2 15.32 15.32
CH4 17.79 17.79
C2H6 40.85 40.85
C3H8 0.41 0.41

n-C4H10 25.62 25.62
MHEX data

UA MHEX 1 [MW/K] v6 v6
UA MHEX 2 [MW/K] v7 v7

∆Tmin [K] 1.2 1.2

Nevertheless, since the average number of iterations required by the EO model is
relatively close to the self-imposed iteration limit, it is reasonable to assume some
of the simulations may have converged had it been raised.

In contrast, the hybrid model achieved a much higher convergence ratio of 87.5%
and 100% for the two tests. Moreover, it required about the same number of itera-
tions to converge as for the original PRICO process. Compared to the EO model,
however, test results show a bigger relative deviation in the number of iterations,
indicating that there exist areas for which the alternative method struggles. Also,
the hybrid model, like the EO alternative, sees a tripling in time per iteration.
Fortunately, fewer required iterations make the effect far less pronounced, and the
hybrid framework is actually faster than the EO model for Test 2.
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Table 6.7: Numerical results of Case I for the extended PRICO process.

Variable Initial values Results
EO model Hybrid model

v1 [K] 240.00 240 240.00
v2 [K] 220.00 222.89 222.89
v3 [K] 280.00 286.54 286.54
v4 [K] 120.00 121.16 121.16
v5 [K] 116.95 116.95 116.95
v6 [MW/K] 10.00 1.31 1.31
v7 [MW/K] 10.00 17.72 17.72
Process:
Total duty [MW] 85.97 85.97

Figure 6.5: Case I driving force plots for the equation-oriented and hybrid extended
PRICO models.
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Table 6.8: Results of the robustness and efficiency tests for Case I of the extended
PRICO model.

Test 1 Test 2
v1 [K] 240 240
v2 [K] [180, 230] [180, 230]
v3 [K] [250, 300] 280
v4 [K] [110, 160] 120
v5 [K] 116.95 116.95
v6 [MW/K] 10 [5, 30]
v7 [MW/K] 10 [5, 30]
N 216 216

EO model Hybrid EO model Hybrid
Solve %1 30.09 87.50 43.52 100.00
Iterations:
Mean 403.62 134.51 399.00 78.54
Standard dev. 51.28 47.49 60.04 18.37
RSD % 12.71 35.31 15.05 23.39
Time per iteration:
Mean [s/iteration] 0.101 0.424 0.101 0.422
Standard dev. 0.001 0.005 0.003 0.006
RSD % 0.99 1.18 2.97 1.42

Simulation time [s]: 40.77 57.03 40.30 33.14
1 Percentage of simulations that converged within 500 iterations.
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In Case II, the HP refrigerant outlet temperatures are replaced with the refrigerant
flowrate, and low pressure level as variables. Table 6.9 shows the two frameworks
converged to slightly different solutions; yet with a termination tolerance of 10−9

it is unlikely the result of numerical errors. Instead, different ways of handling
the VLE calculations may lead to the nonsmooth Newton method computing
alternative step directions, ultimately terminating at separate solutions. Figure 6.6
indicates a similar distribution of driving forces for the two frameworks, though the
hybrid model is somewhat shifted towards higher duties in the warm end. Small
deviations in total duty are expected due to different refrigerant flowrates. The
effect is bigger in MHEX 1, where the high pressure refrigerant is in the two-phase
region, and therefore dominates the mCp for the hot composite curve.

Figure 6.6: Case II driving force plots for the equation-oriented and hybrid
extended PRICO models.

The hybrid framework is also considerably more robust than the fully equation-
oriented model for Case II (see Table 6.10). In addition, it requires less than half
the number of iterations to find the solution. However, the additional time required
per iteration, makes it between 1.5-1.8 times slower on average.
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Table 6.9: Numerical results of Case II for the extended PRICO model.

Variable Initial values Results
EO model Hybrid model

v1 [MPa] 0.15 0.14 0.14
v2 [kmol/s] 3.00 4.41 4.46
v3 [K] 220.00 215.79 215.59
v4 [K] 270.00 270.60 270.00
v5 [K] 116.95 116.95 116.95
v6 [MW/K] 10.00 1.25 1.25
v7 [MW/K] 10.00 9.71 9.68
Process:
Total duty [MW] 105.03 105.97

Table 6.10: Results of the robustness and efficiency tests for Case II of the extended
PRICO model.

Test 1 Test 2
v1 [MPa] [0.15, 0.20] [0.15, 0.20]
v2 [kmol/s] [2, 5] 4.00
v3 [K] 220 [190, 240]
v4 [K] [250, 270] 280
v5 [K] 116.95 116.95
v6 [MW/K] 10 10
v7 [MW/K] 10 [5, 30]
N 126 216

EO model Hybrid EO model Hybrid
Solve %1 71.43 94.44 81.94 99.07
Iterations:
Mean 247.29 109.66 313.58 110.30
Standard dev. 43.29 43.81 83.44 31.18
RSD % 17.51 39.95 26.61 28.27
Time per iteration:
Mean [s/iteration] 0.105 0.432 0.10 0.432
Standard dev. 0.002 0.005 0.001 0.006
RSD % 1.90 1.16 1.00 1.39

Simulation time [s]: 25.97 47.37 31.36 47.65
1 Percentage of simulations that converged within 500 iterations.
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6.3.3 The SMR process with NGL extraction

The third process studied in this report is the single mixed refrigerant process
from Figure 6.7. Apart from the vessel for natural gas liquids (NGL) extraction,

Figure 6.7: The single mixed refrigerant process with NGL extraction (from US
patent no. 4,033,735 [39]).

the process is identical to the extended PRICO process. Additional variables were
needed, however, to account for the varying natural gas flowrate and composition.
As a result, the equation-oriented and hybrid frameworks are expanded to 120
and 68 variables, respectively. A scrubber temperature of 240K was used in the
simulations. The temperature was set close to the normal boiling point of propane
at−35°C to have sufficient recovery of NGLs. Also, a richer natural gas composition
was used, along with a lower natural gas pressure (see Table 6.11). The SMR
process was simulated for Case I in Table 6.6.

Numerical results are presented in Table 6.12. Despite significant changes in natural
gas composition and the additional scrubber, the solution is close to the results for
the extended PRICO process. Nevertheless, Figure 6.8 indicates that the SMR
process is less tight in the low temperature region, hence the lower UA value. A
higher total duty for the SMR process is reasonable given the rich natural gas
composition. Heavier hydrocarbons have a higher latent heat of vaporization and
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Table 6.11: Natural gas stream data used in the simulations of the SMR process
with integrated NGL extraction.

Property Value
Pressure [MPa] 4.00

Feed flowrate [kmol/s] 1.00
Inlet temperature [K] 298.15
Outlet temperature [K] 118.15
Composition [mol %]

N2 3.00
CH4 83.00
C2H6 7.00
C3H8 5.00

n-C4H10 2.00

thus require more cooling to condense.

Table 6.12: Numerical results for the single mixed refrigerant process with
integrated NGL extraction.

Variable Initial values Results
EO model Hybrid model

v1 [K] 240.00 240 240.00
v2 [K] 220.00 222.15 222.15
v3 [K] 280.00 289.85 289.85
v4 [K] 120.00 120.76 120.76
v5 [K] 116.95 116.95 116.95
v6 [MW/K] 10.00 1.45 1.45
v7 [MW/K] 15.00 15.76 15.76
Process:
Total duty [MW] 86.77 86.77
Flowrate MHEX 2 [kmol/s] 0.90 0.90

Performance testing of the SMR process with NGL extraction was done for a
different range of input values than the extended PRICO. In Test 1, the v4 interval
is shrunk to half the length, instead using a step-size ∆v4 = 5. In addition, the v3
interval was shifted from [250, 300] to [270, 320]. In Test 2, the range of v2 was
adjusted from [180, 230] to [190, 240].

Like for the extended PRICO, the convergence ratio is significantly higher for the
hybrid model. However, it struggles more in Test 2, converging only 76% of the
time. For the same test, extra iterations were required in order to solve the model.
The average time per iteration is approximately 5 times that of the equation-
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Figure 6.8: Driving force plot in the MHEXs for the simulation of the SMR process
with NGL extraction

oriented model, which is higher than what was observed for the other models.
On the other hand, the total simulation time is 2.6-3 times longer, due to fewer
iterations required by the hybrid models. Longer iteration times provide evidence
of more difficult VLE calculations, i.e. additional iterations are required for the
subroutines to converge. Also, the iteration times are affected by extra variables
in the model (68 compared to 56 for the extended PRICO). The equation-oriented
model did not experience such an increase in time per iteration. The EO model is
only slightly bigger than for the extended PRICO, plus no additional time is lost
to the VLE calculations.
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Table 6.13: Results of the robustness and efficiency tests for simulations of the
single mixed refrigerant process with NGL extraction.

Test 1 Test 2
v1 [K] 240 240
v2 [K] [180, 230] [190, 240]
v3 [K] [270, 320] 280
v4 [K] [120, 145] 160
v5 [K] 116.95 116.95
v6 [MW/K] 10 [5, 30]
v7 [MW/K] 15 [5, 30]
N 216 216

EO model Hybrid EO model Hybrid
Solve %1 48.15 86.11 50.46 75.93
Iterations:
Mean 197.35 117.98 344.07 188.76
Standard dev. 66.49 42.74 26.27 20.32
RSD % 33.69 36.23 7.64 10.76
Time per iteration:
Mean [s/iteration] 0.112 0.567 0.116 0.567
Standard dev. 0.002 0.007 0.009 0.012
RSD % 1.79 1.23 7.76 2.12

Simulation time [s]: 22.10 66.89 39.91 107.03
1 Percentage of simulations that converged within 500 iterations.

6.4 VLE modules and simulation times

As observed in Section 6.3, nesting the VLE calculations makes the model signifi-
cantly slower than solving everything simultaneously. For the test cases, the time
per iteration was between 4 and 5 times longer for the hybrid framework. What
causes this drop in efficiency can be found from the call graph of the hybrid model.

Figure 6.9 shows that the vapour-liquid equilibrium calculations make up approx-
imately 50% of the required iteration time. Of this,

47.63
48.42 = 98.37%,

is spent on evaluating the derivatives of the modules, meaning that less than 2%
is used for the "actual" VLE calculations. The algorithm presented in Chapter 5
solves for each column of the LD-derivative sequentially using an iterative approach.
With a directions matrix M ∈ Rn×n, therefore, n equations systems are needed to



72 6.4. VLE modules and simulation times

Figure 6.9: The function call distribution for the hybrid PRICO model.

find the appropriate sensitivities for an equation. For the models in this report, the
dimensions of M corresponds to the total number of variables; e.g. which equals
28 for the hybrid PRICO. Since each vapour-liquid equilibrium module consists of
two equations, 2n sensitivity calculations are required. All the simulations in this
chapter were conducted for n2p = 5, such that each three-stream MHEX consists
of 3 × 5 flash calculations excluding the throttling valve. Adding an extra heat
exchanger, therefore increases the number of sensitivity calculations by

30 · nMHEX. (6.6)

Besides from the VLE and accompanying derivative calculations, initializing the
modules accommodates for the biggest portion of CPU time. Currently, the VLE
modules are being initialized on every iteration of the MHEX model, which is
computationally inefficient. The primary reason for this is that the VLE variables
are not variables in the MHEX model, i.e. they are not saved for subsequent
iterations. Storing these variables will therefore require modifications to the model.
Also, proper initialization of the two-phase variables becomes more important for
complex LNG models. The test cases which did not converge in Section 6.3,
frequently failed in the VLE calculations, and without an initialization procedure
it is likely that robustness will suffer. Furthermore, poor inputs to the LNG model
cause large variations in the stream variables, making the initialization procedure
quite useful.



Chapter 7

Sequential-modular
liquefaction models

This chapter studies the multistream heat exchanger model in a sequential-modular
framework. First, a general outline of the approach is presented, plus a short
description of the MHEX module. Next, in Section 7.2, the PRICO model is
used for testing and validating the MHEX module. Finally, performance testing is
conducted for the PRICO and extended PRICO processes.

7.1 Sequential-modular framework

Natural gas liquefaction processes are complex systems that consist of various
sub-processes, e.g. heat exchange, expansion, separation, and compression. The
sequential-modular approach handles each process separately using standardized
sub-routines, in a calculation sequence similar to the information flow in the model
(see Section 3.1). Process recycles are managed by tearing streams and instead
simulating an acyclic flowsheet. The tear variables are expressed by a set of tear
equations (3.1), implicitly defined from the modules. Algorithm 5, presents the
general framework of the sequential-modular approach.

Algorithm 5 Sequential-modular approach for flowsheet modeling
1: while

∥∥wk+1 −wk
∥∥
∞ ≥ ε do

2: Set wk+1 ← t
(
x,wk

)
3: end while
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The tear equations t
(
x,wk

)
can be solved iteratively using either direct substitu-

tion, or a nonsmooth Newton solver, e.g. Equation (2.18), which is the approach
here.

7.1.1 The MHEX module

Constructing the MHEX module is analogous to the VLE subroutines in Chapter
6. It consists of the same equations as the original model and can thus solve
for the same number of unknowns. In order to successfully incorporate it into a
sequential-modular framework, however, the MHEX model had to be converted to
an input-output format. Inputs to the module are the inlet stream variables and
model parameters. Since a nonsmooth Newton solver is going to be used for solving
the tear equations, derivative information is needed. A pseudo-code of the MHEX
module is presented in Algorithm 6.

Algorithm 6 The multistream heat exchanger module
Let αin/out and Tin/out be the collection of inlet and outlet vapour fractions
and temperatures, respectively.

1: function MHEX-module(αin, Tin, p)
2: Solve (αout, Tout)←MHEX-model(αin, Tin, p)
3: Evaluate the sensitivities: g′ (αout, Tout; M) ←Sensitivity(αout, Tout,

MHEX-model(αin, Tin, p))
4: end function

As it turns out, the MHEX module is more constrained compared to the equation-
oriented model. The reason for this is the input-output structure, which treats all
input streams as constant. A more general discussion about this issue is given in
Section 7.3.3.

7.2 Sequential-modular PRICO simulation model

Before studying more advanced liquefaction processes, the sequential-modular ap-
proach was first tested for the basic PRICO process. Figure 7.1 reveals two process
recycles, each requiring a tear stream. However, the simulation models in this
report only consider the cooling and heating curves in the MHEX, with no attention
put on the compressor and aftercooler section. Instead, inlet conditions for the high
pressure refrigerant are assumed fixed, thus reducing the number of tear streams
to one.

The liquefaction section of the PRICO process consists of two sub-processes: isen-
thalpic throttling and heat exchange. A tear stream with C + 2 corresponding



Chapter 7. Sequential-modular liquefaction models 75

Figure 7.1: The PRICO process with tear streams indicated.

variables is needed at the cold end of the MHEX. In this particular case, how-
ever, the composition will remain fixed throughout the refrigerant cycle, therefore
limiting the number of tear variables to two. The vapour fraction and stream
temperature were picked as tear variables in the problem. Applying Algorithm 5
directly, the method in Algorithm 7 can be derived.

The sequential-modular framework was verified using the test cases studied for the
PRICO process in Chapter 6 (see Table 6.1). However, different input values were
needed to achieve convergence (the changed input value is emboldened).

Table 7.1: Numerical results of Case I for the sequential-modular PRICO process.

Variable Initial values Results
EO model SM model

v1 [K] 120.00 120.77 120.77
v2 [K] 250.00 286.55 286.55
v3 [MW/K] 10.00 18.82 18.82
v4 [K] 116.95 116.60 116.60
Process:
Total duty [MW] 86.11 86.11
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Algorithm 7 The sequential-modular PRICO simulation model
Let ft : S1 ⊂ Rnw+ny → Rny denote the module equations for the throttling
valve, and let fMHEX : S2 ⊂ Rnp+ny+nw → Rnw be the MHEX model. Here,
ny = nw = 2 as there are two tear variables in the problem, and np are the
total number of parameters in the MHEX model.

1: Choose any nonsingular directions matrix M ∈ Rnw×nw .
2: Provide an initial guess for w.
3: while ‖w∗ −w‖∞ ≥ ε do
4: Solve the throttling valve module ft (w,y) = 0ny for y, and compute the

LD derivatives g′1 (w; M) = 0nw for the implicit function y = g1 (w).
5: Solve the MHEX module fMHEX (p,y,w) for the tear variables w∗, and

evaluate g′2 (p,y; g′1 (w; M)).
6: Evaluate the residual r = w∗ − wk, and use a nonsmooth Newton-type

method to compute the next iterate wk+1.
7: end while

As seen from Table 7.1 and Figure 7.2, both frameworks converged to the same
solution. Results deviate slightly from Table 6.2, yet the driving force profiles
remain strikingly similar. Different solutions are expected given the new initial
guess. Nevertheless, their close proximity further strengthen the validity of the
sequential-modular framework.

Case II experienced convergence issues in a sequential-modular framework. No
solution was found when the HP refrigerant outlet temperature remained fixed
to 118.5K (see Table 7.3). Instead it had to be raised to 120K with accompany-
ing adjustments in inputs. Again, both models converged to the same solution.
Therefore, by the argument made for the VLE modules, the sequential-modular
framework is verified.

Table 7.2: Numerical results of Case II for the PRICO process.

Variable Initial values Results
EO model SM model

v1 [MPa] 0.140 0.120 0.120
v2 [K] 260.00 271.38 271.38
v3 [K] 2.50 2.80 2.80
v4 [K] 115.65 114.39 114.39
Process:
Total duty [MW] 83.46 83.46

Since the HP refrigerant outlet temperature is held constant here, the tear stream
needs to be changed. If not, the solver will break out of the loop after the first
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Figure 7.2: Case I driving force plots for the sequential-modular and equation-
oriented PRICO models.

iteration. The only alternative tear location is on the low pressure side of the
throttling valve. It is important to note that changing the tear stream also alters
the calculation sequence of the open flowsheet in Algorithm 7.
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Figure 7.3: Case II driving force plot for the sequential-modular and equation-
oriented PRICO models.

7.3 Performance testing of the sequential-modular
framework

Robustness and efficiency testing of the sequential-modular framework was carried
out the same way as in Section 6.3. Ideal properties were used throughout, with n2p
set to 5. The maximum number of iterations was limited to 500 for the individual
modules, and to 50 for the overall model. Natural gas data from Table 6.4 was
used.

7.3.1 The PRICO process

The sequential-modular model of the PRICO flowsheet was tested using the grid
of inputs from Section 6.3.1. By comparing Tables 6.5 and 7.3, the sequential-
modular model clearly under-performs for both cases. Only 30% of the simulations
converged for Case I, which is about a third of the other frameworks. It was
especially sensitive to the initial HP refrigerant outlet temperatures (v1), solving
only for v1 = {110, 120}.
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Table 7.3: Results of the robustness and efficiency tests for the PRICO process.

Case I Case II
v1 [110, 150] [0.120, 0.180]
v2 [250, 280] [200, 330]
v3 [10, 30] [1.00, 2.50]
N 175 224

Solve %1 31.43 0.00
Total simulation time:
Mean [s] 38.78 –
Standard dev. 27.14 –
RSD % 69.98 –

1 With the maximum number of iterations set to 500 for the individual modules and 50 for the
overall flowsheet.

Even when the model converged, however, it was still–in accordance with the theory
presented in Chapter 3–slower on average. Table 7.4 show the simulation times
for the three frameworks. The sequential-modular model was 2.7 and 7.1 times
slower than the hybrid and equation-oriented methods, respectively. In addition,
the simulation times fluctuated more violently because of the computing time
associated with additional flowsheet passes.

Table 7.4: Total simulation times for the three frameworks.

SM model Hybrid model EO model
Average simulation time [s] 38.78 14.26 5.43
Standard deviation 27.14 5.40 2.10
RSD % 69.98 37.87 38.67

None of the simulations converged for Case II with the refrigerant stream data
in Table 6.1. Instead, the HP refrigerant outlet temperature had to be raised to
120K before a solution was found. Nevertheless, the sequential-modular model
still performed significantly worse than the hybrid alternative. Not only was it
less robust, but it was also approximately 6 times slower on average (see Table
7.5). Similarily to Case I, the SM model struggled for a particular range of inputs,
though here it was the ∆Tmin variable (v3). Specifically, the model converged only
for v3 = {2, 2.5}.
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Table 7.5: Results of the robustness and efficiency tests for the PRICO process.

Case II at 120K
SM model Hybrid model

Solve % 48.21 98.21
Total simulation time:
Mean [s] 94.77 16.35
Standard dev. 25.16 6.14
RSD % 26.55 37.57

7.3.2 The extended PRICO process

The extended PRICO process is presented in Figure 7.4 with a possible tear set.
An additional tear stream is needed for the midsection between the two MHEXs,
adding two extra equations to the outer problem. Apart from this, the program
structure for the extended PRICO remains similar to Algorithm 7.

Figure 7.4: The extended PRICO process with tear streams indicated.

Like for the sequential-modular PRICO, the model suffered from convergence dif-
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ficulties. Therefore, rather than conducting the performance tests using the grid
of inputs from Section 6.3.2, it was tightened around the known solution. Node
spacings were also made smaller with ∆v2,∆v3 and ∆v4 equal to 5 for Test 1. For
Test 2, the UA intervals were left unchanged while the v2 range was reduced.

Table 7.6: Results of the robustness and efficiency tests for Case I of the sequential-
modular extended PRICO model.

Test 1 Test 2
v1 [K] 240 240
v2 [K] [215, 230] [210, 235]
v3 [K] [270, 290] 280
v4 [K] [115, 130] 120
v5 [K] 116.95 116.95

v6 [MW/K] 10 [5, 30]
v7 [MW/K] 10 [5, 30]

N 80 216
Solve %1 0.00 0.00
Total simulation time:
Mean [s] – –
Standard dev. – –
RSD % – –

1 With the maximum number of iterations set to 500 for the individual modules and 50 for the
overall flowsheet.

Despite efforts trying to get the SM model to converge, no solution was found
for the extended PRICO. Frequent convergence errors were caused by poor HP
refrigerant inlet temperatures into MHEX 2, a direct consequence of the calculation
sequence created by the acyclic network. Upstream modules do not take into
account the subsequent subroutines, and can thus produce outputs for which there
is no solution. In the extended PRICO case, MHEX 1 converged by lowering the HP
outlet temperature while keeping the LP outlet temperature constant. As a result,
no solution could be found for the second MHEX, eventually causing the model
to fail. The sequential-modular framework exhibited such poor convergence for
the SMR processes studied that it will be unpractical for simulating more complex
LNG liquefaction processers.

7.3.3 Convergence issues for the sequential-modular frame-
work

The performance tests demonstrate a drop in robustness for the sequential-modular
framework, despite having to solve less equations simultaneously. The MHEX
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module, for instance, consists of just 24 variables, i.e. 4 less than the hybrid PRICO
model. However, due to the input-output format of the MHEX module, it is more
constrained than for the models in Chapter 6.

The equation-oriented and hybrid frameworks calculate the whole network simulta-
neously, and as a consequence, inlet variables to the MHEXs need only be feasible
at the solution. For sequential-modular models, on the other hand, the inlet
temperatures are held fixed for every iteration of the acyclic flowsheet, and are
instead treated by the tear equations in an outer loop. Each solution of the MHEX
module, therefore, corresponds to a set of inlet temperatures. However, for certain
sets of inputs there exist no solution at all, which will prompt the sequential-
modular method to fail.
Example 7.1. A simulation of the sequential-modular PRICO model that did not
converge, is shown in Figures 7.5 and 7.6. The simulation was for Case II with
initial values (v1, v2, v3, v4) = (0.14, 270, 1.2, 116.95).

Figure 7.5: Composite curves for a simulation of the sequential-modular PRICO
model that did not converge.

The high LP inlet temperature (116.95K) pushes the cold composite curve towards
the hot composite curve, and no feasible solution can be found for the MHEX
module due to temperature crossovers. Moreover, since the LP inlet temperature is
fixed for each solution of the MHEX, the solver cannot adjust it to find a feasible
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Figure 7.6: Driving force plot for a simulation of the sequential-modular PRICO
model that did not converge.

solution, and thus fails to converge. On the other hand, equation-oriented and
hybrid frameworks solve everything simultaneously, including the inlet variables.
Consequently, if no solution exists for the given inlet variables, they are changed
by the Newton-solver until a feasible solution can be found.

Another example of this issue is the strong dependency on HP refrigerant outlet
temperature observed for Case I of the PRICO model. The HP refrigerant outlet
temperature determines the LP inlet temperature implicitly through the throttling
valve. As a consequence, temperatures greater than 120K will result in inlet
temperatures for which there are no feasible solutions for the MHEX module.





Chapter 8

Simulating a more advanced
LNG process

This chapter studies the more advanced single mixed refrigerant process depicted
in Figure 8.1. The process was simulated in the specialization project using the
equation-oriented framework, though no solution was obtained [40]. Here, the
hybrid framework is employed to investigate whether it is capable of simulating
more complex models. Like in Chapters 6 and 7, ideal properties were used.

8.1 The single mixed refrigerant process

The single mixed refrigerant process closely resembles the extended PRICO. How-
ever, a scrubber is placed downstream of the aftercooler to separate the high
pressure refrigerant into a liquid mixture and a vapour stream. The liquid mixture
is subcooled in MHEX 1 before being throttled to the low pressure level. Here
it mixes with the LP refrigerant stream from MHEX 2, effectively lowering the
temperature. The vapour stream, on the other hand, will provide cooling in
MHEX 2. The advantage with such a setup is that heavier hydrocarbons are
not cooled down to cryogenic temperatures, but are instead used for precooling.
Heavy hydrocarbons in the refrigerant mixture account for a significant portion of
the total energy consumption due to their high mCps. Avoiding excessive cooling,
therefore, yields a large economic benefit.

MHEX 1 consists of four streams, which drastically increases the number of vari-
ables from 28 to 50. Additional variables were needed for describing the refrigerant
compositions, flowrates, dew- and bubble-point temperatures, as well as stream
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Figure 8.1: The SMR process studied is adapted from US patent no. 3,932,154
[39].

temperatures. In total, the model consists of 84 variables, which is 28 and 16 more
than the extended PRICO and the SMR process with integrated NGL extraction.

With two MHEXs, the model can solve for six unknown variables, which are
presented in Tables 8.1 and 8.2 along with the refrigerant and MHEX data. The
simulation was performed using the natural gas composition from Table 6.4 and
with n2p = 4. Tables 8.1 and 8.2 sort the variables into three types. The vn
variables are solved by the MHEX model and the throttling valves, whereas the
branch compositions ci and flowrates fk are calculated from the inlet flash problem.
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Table 8.1: Refrigerant stream and MHEX data used in MHEX 1 for simulations of
the SMR process.

Property Value
High pressure level [MPa] 3.695
Low pressure level [MPa] 0.150
HP inlet temperature [K] 303.15

LP refrigerant:
Flowrate [kmol/s] 3.47

LP inlet temperature [K] v1
LP outlet temperature [K] v2
Feed composition [mol %]

N2 15.32
CH4 17.79
C2H6 40.85
C3H8 0.41

n-C4H10 25.62

HP refrigerant branch 1:
Flowrate [kmol/s] f1

HP outlet temperature [K] v3
Composition [mol %]

N2 c1
CH4 c2
C2H6 c3
C3H8 c4

n-C4H10 c5

HP refrigerant branch 2:
Flowrate [kmol/s] f2

HP outlet temperature [K] 240
Composition [mol %]

N2 c6
CH4 c7
C2H6 c8
C3H8 c9

n-C4H10 c10
MHEX data
UA [MW/K] v4
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Table 8.2: Refrigerant stream and MHEX data used in MHEX 2 for simulations of
the SMR process.

Property Case I
High pressure level [MPa] 3.695
Low pressure level [MPa] 0.150

Flowrate [kmol/s] f1
HP inlet temperature [K] v3
HP outlet temperature [K] v5
LP inlet temperature [K] v6
LP outlet temperature [K] v7

Composition [mol %]
N2 c1
CH4 c2
C2H6 c3
C3H8 c4

n-C4H10 c5
MHEX data
UA [MW/K] v8

∆Tmin [K] 1.2

8.2 SMR process simulation

Tables 8.3 and 8.4 show the converged solution for the SMR process. Unsur-
prisingly, there is a significant energy saving associated with splitting refrigerant
streams in the process. Approximately 2/3 of the refrigerant circulates through
the cold MHEX, resulting in a total duty of 69.74 MW, 16.23 MW less than Case
I for the extended PRICO. On the other hand, the UA value in MHEX 2 is only
about 25% of the extended PRICO model because of larger temperature differences
in the exchanger.

The composite curves and driving force plot for the warm MHEX are presented in
Figures 8.2 and 8.3. Figure 8.3 resembles the warm side of Figure 6.5, although
more pinched at the outlet. The kink is caused by fixing the outlet temperatures
for the natural gas and the second refrigerant branch to 240K, while letting the
third temperature vary.

Figures 8.4 and 8.5 show the composite curves and driving force plot for the cold
MHEX. A kink also exists here, due to cooling down the natural gas stream
from an elevated temperature of 240K. At this temperature, natural gas is still
in the superheated region, such that the mCp is low. The process pinch occurs at
(TH/TC) = 233.42/232.22K, which is the inlet of the HP refrigerant. The relatively
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Table 8.3: Branch compositions and flowrates for the SMR process.

Variable Initial values Results
Branch 1:
Flowrate f1 [kmol/s] 1.86 2.22
Composition [mol %]:
c1 28.46 23.88
c2 31.08 26.99
c3 37.62 44.09
c4 0.14 0.22
c5 2.69 4.81

Branch 2:
Flowrate f2 [kmol/s] 1.61 1.25
Composition [mol %]:
c6 0.18 0.1
c7 2.48 1.45
c8 44.57 35.09
c9 0.72 0.75
c10 52.04 62.60

Table 8.4: Simulation results for the SMR process.

Variable Initial values Results
v1 [K] 220 220.65
v2 [K] 285 286.54
v3 [K] 240 233.42
v4 [MW/K] 10 1.47
v5 [K] 122 119.10
v6 [K] 116.95 109.09
v7 [K] 220 234.71
v8 [MW/K] 10 4.40
Total duty 1 [MW] 33.42
Total duty 2 [MW] 36.32
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Figure 8.2: Plot showing the composite curves for MHEX 1.

Figure 8.3: Driving force plot for MHEX 1.

high process pinch location makes the design less tight for colder temperatures,
explaining the low UA value observed for MHEX 2.
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Figure 8.4: Plot showing the composite curves for MHEX 2.

Figure 8.5: Driving force plot for MHEX 2.

The kinks in the composite curves and the pinch point location are byproducts of
temperature shifts in the process. Normally, the SMR process can be represented
with a single spiral wound heat exchanger (SWHE) [30], where cooling of single,
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low heat capacity flowrate, streams does not occur. Alternatively, the model can
be solved for a different set of variables, while keeping the HP refrigerant outlet
temperatures fixed. Given the current setup, however, results are reasonable,
providing evidence that the framework is indeed suitable for solving more complex
thermodynamic models.

The SMR model is an essential building block for larger liquefaction processes, e.g.
the C3MR and DMR designs [30]. Figure 8.6 highlights the SMR part of the DMR
process (mixed refrigerant cycle 2). In addition, other mixed refrigerant cycles
that employ a SWHE exhibit similar setups. The framework’s ability to solve this
particular model is thus an important step towards developing rigorous simulation
models for complex liquefaction systems.

Figure 8.6: The DMR process with the SMR cycle highlighted.



Chapter 9

Conclusions and
recommendations for future
work

9.1 Conclusions

In this master thesis, hybrid and sequential-modular frameworks were developed
and tested for different LNG processes. To successfully integrate the modular sub-
routines in the overall model, input-output sensitivities had to be computed using
results from the implicit function theorem for lexicographically smooth functions.
Apart from Case I of the PRICO process, the partially modular framework was
markedly more robust than the equation-oriented alternative. For both the PRICO
and the extended PRICO process the convergence ratio remained close to 100%,
whereas it dropped to between 75 and 86% for the single mixed refrigerant process
with integrated NGL extraction. In comparison, the convergence ratios for the
EO model dropped to between 30 and 50% both in the first case of the extended
PRICO and for the SMR model. In accordance with the theory, however, the gain
in robustness came at the expense of reduced efficency. The time per iteration
quadrupled for the PRICO and the extended PRICO process, and even quintupled
for the SMR process.

According to the call-graph in Figure 6.9, approximately half the computing time
in the hybrid PRICO model is spent on the vapour-liquid equilibrium modules.
The sensitivity calculations make up around 98% of the unit’s call-time, due to
solving nMHEX equation systems per flash. In addition, around 20% of the total



94 9.2. Recommendations for future work

running time is spent in an initialization procedure for the flash variables, which
is called upon every iteration of the MHEX model. The procedure is needed for
more complex processes and for initial guesses far away from the solution.

The hybrid framework was used to simulate the more advanced LNG process in
Figure 8.1 originally studied in the specialization project, though it did not converge
with the equation-oriented method. The process occurs as an important building
block in other more complex and commercially interesting designs. For example,
as the cold end of the DMR and C3MR processes.

The fully sequential-modular framework performed notably worse than the hybrid
and equation-oriented models. It converged only a third of the time for Case
I of the PRICO process, for instance, and parameters had to be adjusted for
the model to solve for Case II at all. Moreover, no solution was found for the
extended PRICO process. Before including the MHEX model in the sequential-
modular flowsheet, it had to be redesigned in an input-output format where each
solution corresponds to a given set of inlet stream variables. This made it more
constrained, however, as inputs are determined either explicitly or implicitly by the
tear variables and thus remain constant for each flowsheet pass. Also, with several
stream outlets, the model has the freedom to vary only a few of the outputs,
which might cause difficulties downstream. It is a combination of these effects
that are the cause of the convergence problems experienced with the extended
PRICO model. Apart from the low convergence ratio, the sequential-modular
models suffered from long simulation times. For example, the sequential-modular
PRICO was 2.7 and 6 times slower on average for the repective simulation cases
than the hybrid framework. Poor convergence properties and long simulation times
make the sequential-modular framework unsuitable for LNG process simulations.

9.2 Recommendations for future work

The simulations in this thesis were done with ideal properties, even though the
software is also intended to be used with a cubic equation of state. More rigorous
VLE calculations are needed before simulating LNG processes with complex ther-
modynamic models, and the inside-out algorithm by Boston and Britt has become
a workhorse for state-of-the-art simulation tools like Aspen Plus®. To implement it
in the MHEX model, however, the algorithm must include functionality for phase
detection, which in the ideal case was done through the piecewise continuously
differentiable mid-function (Equation (2.16)). A nonsmooth inside-out algorithm
is currently under development by Watson et al. [43] that adds a modified version of
(2.16) to the inner loop. The algorithm has been tested for different flash problems
and has so far shown promising results.

Like the VLE module in Chapter 6, derivatives must be calculated for the output
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variables in order to include the nonsmooth inside-out algorithm in the hybrid
framework. Applying the sensitivity code directly, however, is quite challenging as
the output variables are functions of the external and internal loop variables. These
are again dependent on flash inputs and external loop variables (the internal loop
variables), such that nested sensitivity calculations are necessary. Furthermore,
due to modifications made to the outer loop (see [43]), the algorithm currently fails
to capture the output variables’ dependence on the flash inputs whenever in the
single-phase regions. As a result, applying the sensitivity code directly will not
work unless modifications are made to the implementation.

Another possibility is to calculate derivatives from the VLE equations. Unfortu-
nately, this turns out to be quite difficult in the current implementation of the
algorithm, primarily because the inner loop approximates equilibrium constants
Ki with Kre

φi (see Section 2.4) before solving the flash problem. These approx-
imations are only valid in the two-phase region, however, and depart from the
property models in single-phase. This does not affect the solution of the flash
problem, as the K-values have no real interpretation in single-phase and only affect
the shadow-composition, i.e. an imaginary composition of the non-existent phase.
However, the deviations result in the solution (x̂, ŷ) no longer satisfying the VLE
equations when using a cubic property model, such that sensitivities cannot be
calculated. Therefore, a priority should be to modify the algorithm and come up
with approximations for the K-values that are valid everywhere. In addition, once
more rigorous VLE modules have been developed for the MHEX model, the LNG
processes studied in this thesis should be simulated with a cubic equation of state.

This master thesis focused solely on flowsheet simulation, and it would therefore be
interesting to try to optimize the various LNG processes. Furthermore, the models
should be expanded further to check whether the hybrid framework is capable
of both simulating and optimizing more commercially interesting designs like the
DMR or C3MR.

Another interesting topic for further studies would be to try making the VLE
subroutines more effective. As mentioned in Section 6.4, the modules plus initial-
ization take up almost 70% of the total computing time for the PRICO model, and
improving the code could therefore lead to great time savings, especially for larger
models. One idea is to try making a smarter initialization procedure, for instance
by re-initializing the flash variables only after a certain number of iterations or
whenever the inputs have changed significantly. That way, the computing time
spent on initialization may be reduced without a loss in robustness.
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Appendix A

Residual function for the pQ-flash test problem in Chapter 5 This code
evaluates the residuals in Lemma 5.1, and sets the step direction for the nonsmooth
Newton solver.

1
2 void PQflash_sens(vector<ldouble> v, vector<ldouble> outputVar, vector<

vector<ldouble>>& vect, vector<ldouble>& y)
3 {
4
5
6 % hf, Q and p are input variables to the problem
7
8 % composition z and the molar flowrate F are parameters in the problem
9
10 % v: guess for column n, which is what is solved for in the

sensitivity code.
11 % outputVar: the flash outputs solved for in the VLE problem
12 % vect: inputs
13
14 % vect[0]: input variables
15 % vect[1]: scalar parameters
16 % vect[2]: composition z
17
18 % outputVar[0]: temperature out
19 % outputVar[1]: vapour fraction out
20
21 % outputVar[2]: Hf
22 % outputVar[3] = P
23
24
25 int nc=5; % number of components
26
27
28 int colA=outputVar.size();% columns of directions matrix A set to the

same as the number of output variables solved for in the VLE
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problem.
29
30
31 int depth=outputVar[0].getDepth();% Retrieves the length of the dot−

value to the input/output variables. The length is set in the
sensitivity code and contains the (k−1)th columns of M and N, the
directions matrix A, as well as the column n solved for in the
problem.

32
33
34 %===========setting the dot values for the output variables==========%
35 for(int i=0;i<colA;i++){
36 outputVar[i].setDotValue(depth−colA−1, v[i].getValue()); % Sets

the dot−value to the current guess v[i].
37 }
38
39 ldouble Hf, P, F, Q, Temp, alpha;
40
41 % Input variables.
42 Hf = vect[0][0];
43 Q = vect[0][1];
44 P = vect[0][2];
45
46 % The parameters in the function make up the second column of vect.
47 P=vect[1][0];
48 F=vect[1][1];
49
50
51 % The feed composition z makes up the third column:
52 vector<ldouble> z(nc);
53 for(int i=0;i<nc;i++){
54 z[i]=vect[2][i];
55 }
56
57
58 %The output variables
59 Temp=outputVar[0];
60 alpha=outputVar[1];
61
62
63
64 % Solve the flash equations:
65 ldouble f1, f2; % These are the function values of the VLE equaitons
66
67 idealFlash(nc, Temp, P, z, Hf, alpha, F, Q, f1, f2);
68
69 % Since Temp and alpha are the solutions to temperature and vapour

fractions for the flash problem, f1 and f2 will be approximately 0
.

70
71 %However, for v to be a solution, the nth column dot−values for f1 and

f2 also need to be zero (see Chapter 5). I.e. they provide the
residuals for the nonsmooth Newton solver in the sensitivity code:

72 y[0].setValue(f1.getDotValue(depth−colA−1));
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73 y[1].setValue(f2.getDotValue(depth−colA−1));
74
75 % The Newton solver also needs LD−derivatives of the dot−values to

provide the step direction. This is done through the inner
directions matrix A:

76 y[0].setDepth(colA);
77 y[1].setDepth(colA);
78
79 % setting the LD−derivative of the computed dot−values v:
80 for(int j=0;j<colA;j++){
81 y[0].setDotValue(j,f1.getDotValue(depth−colA+j));% The LD−

derivatives for the column v are the dot−values for f1 and f2
provided by directions matrix A.

82 y[1].setDotValue(j,f2.getDotValue(depth−colA+j));
83 }
84
85 return;
86 }
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Derivations of Equation (2.26)

First, an expression for xi is found from the component molar balance (Equation
(2.10)):

xiL+ yiV = ziF, (B.1)

which implies
xiL+ yi (F − L) = ziF, (B.2)

so that
xiL+Kre

φixi (F − L) = ziF, (B.3)

and hence
xi = ziF

L+Kreφixi (F − L) . (B.4)

Then, the definition of R is used for expressing the unknown liquid flowrate as a
function of R, Kr and F :

R = KrV

KrV +K0
r (F − V ) , (B.5)

which gives
RK0

rL = KrV (1−R) , (B.6)

and
RK0

rL = Kr (F − L) (1−R) , (B.7)

implying that

L = KrF (1−R)
RK0

r +Kr (1−R) . (B.8)
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Substituting the expressions for xi and L into (2.23) and rearranging yields Equa-
tion (2.26):

ri = xiL

1−R, (B.9)

= ziFL (1−R)−1

L+Kreφi (F − L) , (B.10)

= ziF (1−R)−1

1 +Kreφi
(
F
L − 1

) , (B.11)

= ziF (1−R)−1

1 +Kreφi
(
F (RK0

r+Kr(1−R))
KrF (1−R) − 1

) , (B.12)

= ziF (1−R)−1

1 +Kreφi
(

RK0
r

Kr(1−R)

) , (B.13)

= ziF

1−R+K0
rReφi

. (B.14)

Deriving Equations (2.27)-(2.30)

Before deriving the expressions for the liquid flowrate and molar liquid/vapour
compositions, an alternate expression for Kr is needed:

∑
i

xi =
∑
i

yi, (B.15)

=
∑
i

Kre
φixi, (B.16)

so that

Kr =
∑
i xi∑

i e
φixi

, (B.17)

=
∑
i (1−R) ri

L

(∑
i e
φi (1−R) ri
L

)−1

, (B.18)

=
∑
i ri∑

i e
φiri

. (B.19)

where the step from (B.17) to (B.18) is done by replacing xi with ri (Equation
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(2.23)). Combining (B.19), (B.8) and (2.23), Equations (2.28)-(2.30) are found:

xi = (1−R) ri
L

, (B.20)

= (1−R) ri
(

KrF (1−R)
RK0

r +Kr (1−R)

)−1
(B.21)

=
ri
(
RK0

r +Kr (1−R)
)

KrF
, (B.22)

= ri

(
RK0

r +
∑
i ri∑

i e
φiri

(1−R)
)( ∑

i ri∑
i e
φiri

F

)−1
. (B.23)

Recognizing that

F =
∑
i

ziF, (B.24)

and that the product ziF is found from (2.26)

ziF = ri
(
1−R+K0

rRe
φi
)
, (B.25)

another expression for F is given by

F =
∑
i

ri
(
1−R+K0

rRe
φi
)
, (B.26)

=
∑
i

ri (1−R) +K0
rR
∑
i

eφiri. (B.27)

Inserting for F in (B.23):

xi =
ri

(
RK0

r +
∑

i
ri∑

i
eφiri

(1−R)
)

∑
i
ri∑

i
eφiri

(
∑
i ri (1−R) +K0

rR
∑
i e
φiri)

, (B.28)

=
ri

(
RK0

r +
∑

i
ri∑

i
eφiri

(1−R)
)

∑
i ri

( ∑
i
ri∑

i
eφiri

(1−R) +K0
rR

) , (B.29)

= ri∑
i ri

. (B.30)
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The vapour fractions yi are then found from Equations (B.19) and (B.30):

yi = Kre
φixi, (B.31)

= Kre
φi

ri∑
i ri

, (B.32)

=
∑
i ri∑

i e
φiri
· eφi ri∑

i ri
, (B.33)

= eφiri∑
i e
φiri

. (B.34)

Finally, the expression for the liquid flowrate is derived directly from the definition
of the ri variables:

L = (1−R) ri
xi

, (B.35)

= (1−R) ri
ri/
∑
i ri

, (B.36)

= (1−R)
∑
i

ri. (B.37)
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Appendix C contains the code for the sequential-modular models used in Chapter
7. The MHEX model is not presented here as it was borrowed from Watson and
Barton [41, 42] and not developed in this work.

The sequential-modular PRICO model:

1 % The PRICO function:
2
3 void PRICO(vector<ldouble> w, vector<ldouble> y, vector<vector<ldouble>>&

vect_p, vector<ldouble>& resid){
4 % w: tear variables, y: output variables from the MHEX, resid: tear

variable residuals.
5 %vect_p[0]: input variables to the MHEX, vect_p[1] model variables in

the MHEX, vect_p[2]: parameters in the MHEX
6
7
8 %w[0] is the tear variable for the stream temperature.
9 %w[1] is the tear variable for the vapour fraction.
10
11
12 %=====================Feed enthalpy calculations=====================%
13 % Ideal Compressibility factors
14 ldouble Zl, Zv;
15 Zl = 1.0;
16 Zv = 1.0;
17
18
19 int nc=5; %The number of components in the refrigerant mixture
20
21
22 vector<ldouble> xliq(nc), yvap(nc), Psat(nc), K(nc), z(nc);
23 %xliq: the liquid composition vector.
24 %yvap: the vapour composition vector.
25 %Psat: the vapour pressures for the different components.
26 %K: the equilibrium constants for the components.
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27 %z: the feed composition.
28
29 ldouble Hf; % the feed enthalpy to the end−flash module.
30
31
32 vaporPressure(nc, w[0], Psat);%Function that evaluates the vapour

pressures at the tear stream temperature.
33
34
35 for(int i=0;i<nc;i++){
36 z[i]=vect_p[2][6+i];%The feed composition is provided as

parameters in the model.
37 }
38
39 %Raoult's Law
40 for(int i=0; i<nc; i++) {
41 K[i] = Psat[i]/vect_p[2][2]; %vect_p[2][2] is the pressure of the

high pressure refrigerant in the model, and is providded as a
parameter.

42 }
43
44 % Compositions and Rachford−Rice expression
45 for(int i=0; i<nc; i++) {
46 xliq[i] = z[i]/(1+x[1]*(K[i]−1));
47 yvap[i] = K[i]*xliq[i];
48 }
49
50 Hf=w[1]*vaporEnthalpy(nc,yvap, w[0], vect_p[2][2], Zv) + (1−w[1])*

liquidEnthalpy(nc,xliq,w[0],vect_p[2][2], Zl); %calculates the
feed enthalpy to the end−flash module.

51
52
53 %========================End−flash module==========================%
54
55 vector<ldouble> Output(2);% Outputs from the end−flash module.
56
57 Output[0]=vect_p[0][2];% Initial guess for the LP refrigerant inlet

temperature. Set equal to the temperature from the previous
iteration.

58 Output[1]=vect_p[0][3];% Initial guess for the LP refrigerant inlet
vapour fraction. Set equal to the vapour fraction from the
previous iteration.

59
60 //vect_p[2][1]=F_R, vect_p[2][3]=P_low
61
62 EndFlash(Hf, vect_p[2][1], vect_p[2][3], z, inVar);%The module

function for the throttling valve, which calculates new values for
the temperature and vapour fraction at the low pressure
refrigerant inlet.

63
64 %vect_p[2][1] is the refrigerant flowrate.
65 %vect_p[2][3] is the pressure of the low pressure refrigerant.
66
67 %Update the input variables to the MHEX module.
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68 vect_p[0][2]=Output[0];
69 vect_p[0][3]=Output[1];
70
71 %==========================MHEX module=============================%
72
73 MHEXmodule(y, vect_p[0], vect_p[1], vect_p[2], Hf);
74
75 %========================Tear equations============================%
76
77 resid[0]=w[0]−y[0];% Tear equation for the stream temperature.
78 resid[1]=w[1]−y[1];% Tear equation for the vapour fraction.
79 return;
80 }

The sequential-modular extended PRICO model:

1
2
3 void PRICOext(vector<ldouble> w, vector<vector<ldouble>>& vect_p, vector<

ldouble>& resid){
4 %w: tear variables
5 %vect_p[0]: input variables to MHEX 1.
6 %vect_p[1]: input variables to MHEX 2.
7 %vect_p[2]: inner variables in MHEX 1 module.
8 %vect_p[3]: inner variables in MHEX 2 module.
9 %vect_p[4]: parameters in MHEX 1 module
10 %vect_p[5]: parameters in MHEX 2 module.
11 %resid: residuals
12
13
14 % Ideal Compressibility factors
15 ldouble Zl, Zv;
16 Zl = 1.0;
17 Zv = 1.0;
18
19
20 int nc=5;
21 vector<ldouble> xliq(nc), yvap(nc), Psat(nc), K(nc), z(nc),

Outputs_MHEX1(5), Outputs_MHEX2(5);
22 ldouble Hf, adiabatic;
23
24 % xliq: liquid composition in the flash.
25 % yvap: vapour composition in the flash
26 % Psat: the vapour pressures for the different components.
27 %K: the equilibrium constants for the components.
28 %z: the feed composition.
29 %Outputs_MHEX1/MHEX2: the output variables from the MHEX.
30
31
32 % the refrigerant composition is given as a parameter, and is the same

in both MHEX:
33 for(int i=0;i<nc;i++){
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34 z[i]=vect_p[4][6+i];
35 }
36
37
38 %============================MHEX 1============================%
39 % This part solves the first MHEX module.
40
41 %Low pressure input variables are represented by the tear variables:
42 % Temperature in:
43 vect_p[0][2] = w[0];
44
45 %Vapour fraction in:
46 vect_p[0][3] = w[1];
47
48 % The MHEX module needs the enthalpy at the LP refrigerant inlet to be

specified.
49 % The enthalpy is found by doing a pQ flash at the inlet with Q=0 and

at constant pressure.
50
51 % First the component vapour pressures are calculated for the given

temperature w[0]:
52 vaporPressure(nc, w[0], Psat);
53
54 % Equilibrium constants and liquid/vapour compositions are then

calculated from Raoult's law and the Rachford−Rice formulation:
55 % vect_p[4][3]==P_low
56 for(int i=0; i<nc; i++) {
57 K[i] = Psat[i]/vect_p[4][3];
58 }
59
60
61 % Compositions and Rachford−Rice expression
62 for(int i=0; i<nc; i++) {
63 xliq[i] = z[i]/(1+w[1]*(K[i]−1));//w[1]==alpha_low_in
64 yvap[i] = K[i]*xliq[i];
65 }
66
67 % With calculated compositions we can find the enthalpy at the LP

inlet.
68 Hf=w[1]*vaporEnthalpy(nc,yvap, w[0], vect_p[4][3], Zv) + (1−w[1])*

liquidEnthalpy(nc,xliq,w[0],vect_p[4][3], Zl);
69
70 % After the LP feed enthalpy has been found, the MHEX 1 module can now

be solved.
71 MHEXmodule(Outputs_MHEX1, vect_p[0], vect_p[2], vect_p[4], Hf);
72
73
74 % The HP refrigerant temperature and vapour fraction out of MHEX 1 are

input variables for MHEX 2 as we solve them sequentially:
75 %HP refrigerant temperature in to MHEX 2:
76 vect_p[1][0] = Outputs_MHEX1[0];
77 %HP refrigerant vapour fraction in to MHEX 2:
78 vect_p[1][1] = Outputs_MHEX1[1];
79
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80
81
82 %=======================End flash module=======================%
83 % This module solves the throttling valve as a pQ−flash problem:
84 vector<ldouble> inVar(2);
85 % inVar: the pQ−flash inner problem variables which are the LP

refrigerant temperature
86 % and vapour fraction into MHEX 2.
87
88 %initialize the variables using calculated values from the previous

iteration:
89 % Initial guess for LP refrigerant temperature into MHEX 2:
90 inVar[0]=vect_p[1][2];
91
92 % Initial guess for LP refrigerant vapour fraction into MHEX 2:
93 inVar[1]=vect_p[1][3];
94
95
96
97 %Calculate the LP refrigerant inlet temperature for MHEX 2, using the

same procedure as above:
98
99 % For the second MHEX, there is isenthalpic throttling, which means

that the LP refrigerant inlet enthalpy is the same as the HP
refrigerant enthalpy out of MHEX 2.

100
101 % W[2] is the HP temperature out of MHEX 2, which is a tear variable

in the problem.
102 vaporPressure(nc, w[2], Psat);
103
104 % Raoult's Law
105 for(int i=0; i<nc; i++) {
106 K[i] = Psat[i]/vect_p[5][2];
107 }
108 % Here vect_p[5][2]==P_high, which is the pressure of the HP

refrigerant
109
110
111 % Compositions and Rachford−Rice expression:
112 for(int i=0; i<nc; i++) {
113 xliq[i] = z[i]/(1+w[3]*(K[i]−1));%w[3] is the vapour fraction of

the HP refrigerant out of MHEX 2
114 yvap[i] = K[i]*xliq[i];
115 }
116
117 % Calculate the feed enthalpy for the throttling valve/LP refrigerant:
118 Hf=w[3]*vaporEnthalpy(nc,yvap, w[2], vect_p[5][2], Zv) + (1−w[3])*

liquidEnthalpy(nc,xliq,w[2],vect_p[5][2], Zl);
119
120
121 %Solve the throttling valve module:
122 %vect_p[5][1]: Refrigerant flowrate, vect_p[5][3]: the low pressure
123 EndFlash(Hf, vect_p[5][1], vect_p[5][3], z, inVar);
124
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125 %The output variables for the throttling valve are then used as inputs
to the second MHEX module:

126
127 %LP refrigerant temperature in:
128 vect_p[1][2]=inVar[0];
129
130 %LP refrigerant vapour fraction in:
131 vect_p[1][3]=inVar[1];
132
133
134
135 %============================MHEX 2============================%
136 % solves the second MHEX module:
137
138 MHEXmodule(Outputs_MHEX2, vect_p[1], vect_p[3], vect_p[5], Hf);
139
140
141 %========================Tear equations========================%
142
143 % The residuals are now evaluated using the tear equations:
144
145 %Tear stream 1: LP refrigerant stream between MHEX 1 and MHEX 2.
146 %The LP refrigerant temperature tear variable:
147 y[0]=w[0]−Outputs_MHEX2[2];%Tear equation Tin_low MHEX1 −− Tout_low

MHEX2
148
149 %The LP refrigerant vapour fraction tear variable:
150 y[1]=w[1]−Outputs_MHEX2[3];%Tear equation alpha_low_in MHEX1 −−

alpha_low_out MHEX2
151
152
153 %Tear stream 2: HP refrigerant stream out of MHEX 2.
154 %The HP refrigerant temperature tear variable:
155 y[2]=w[2]−Outputs_MHEX2[0];%Tear equation Tout_high into throttling

valve −− Tout_high MHEX2
156
157 %The HP refrigerant vapour fraction tear variable:
158 y[3]=w[3]−Outputs_MHEX2[1];%Tear equation alpha_high_out into

throttling valve −− alpha_high_out MHEX2
159
160 return;
161 }
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This chapter derives the Rachford-Rice reformulation used in the mid-function for
flash calculations.

Figure D.1: A single stage equilibrium flash used for the VLE calculations in the
MHEX model.

By combining the total material balance:

F = V + L, (D.1)

with the component material balance, an expression for the vapour and liquid
fractions can be found:

Fzi = V yi + Lxi, (D.2)
which yields that

zi =
(
V

F

)
yi +

(
L

F

)
xi, (D.3)

=
(
V

F

)
yi +

(
F − V
F

)
xi. (D.4)
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Furthermore, recognizing that the first fraction is equal to the vapour fraction α:

α ≡ V

F
, (D.5)

(D.4) can be rewritten in terms of vapour fractions.

zi = αyi + (1− α)xi. (D.6)

As equilibrium is assumed for each flash calculation, the following relationship
between the molar fractions xi and yi exists:

yi = Kixi, (D.7)

where Ki is the equilibrium constant for component i. Combining Equations (D.6)
and (D.7) will result in the following convenient expression for xi:

zi = αKixi + (1− α)xi (D.8)

hence,

xi = zi
αKi + 1− α, (D.9)

= zi
1 + α (Ki − α) . (D.10)

At each stage, equilibrium and the consitutive equation is assumed to hold:
n∑
i

yi −
n∑
j

xj = 0, (D.11)

i.e.,
n∑
i

Kixi −
n∑
j

xj = 0. (D.12)

Substituting xi in this last expression, will produce the formula used by the MHEX
model for the flash calculations:

n∑
i

Kizi
1 + α (Ki − 1) −

n∑
j

zj
1 + α (Kj − 1) = 0, (D.13)

which implies that ∑
i

zi (Ki − 1)
1 + α (Ki − 1) = 0. (D.14)
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