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Summary

Computational Fluid Dynamics is the science of solving the governing equations of fluid motion

numerically. Simulating multiphase flow has traditionally been difficult, due to non-uniform

fluid properties and challenges in expressing the interfacial forces. A solver developed by the

"Thermal Two-Phase Flow Laboratory" at the Norwegian University of Science and Technology,

has implemented a phase-field approach in order to model the interface dynamics of multi-

phase flow. The goal of this thesis is to simulate low energy droplet-film collisions using this

solver, and test its performance.

Central to the phase-field approach is the Cahn–Hilliard equation. The equation model

phase separation, and in simulations without convection, the solver was proven to be very suc-

cessful. One and two droplets were simulated with ease. Several guidelines have been developed

regarding what numerical resolution is needed to obtain good solutions.

In simulations where the coupled Navier–Stokes and Cahn–Hilliard equations were used to

model droplet-film collisions, several errors were uncovered. Most notably was the global mass

loss observed for some given problem setups. The solver was also seen to be highly param-

eter dependent, without discovering the definite underlying solution. Even though mass was

not conserved globally, many promising signs were observed with respect to the dynamical be-

haviour of the collisions. Coalescence, one of the known possible collision outcomes, was ob-

tained, as well as early signs of a bouncing droplet.

A proper mesh refinement and parameter study is recommended as further work in order

to correct the errors discovered. Some of the physical behaviour is highly encouraging, and if

the issue of mass conservation is corrected, the solver is believed to be a great tool in future

multiphase simulations.
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Sammendrag

Computational Fluid Dynamics er vitenskapen som omfatter numerisk løsning av de universelle

likningene for fluiders bevegelse. Flerfasestrømning har tradisjonelt vært vanskelig å simulere,

på grunn av ikke-uniforme fluid-egenskaper og problemer med beskrivelsen av kreftene i over-

flaten mellom fluider. En løser utviklet av " Thermal Two-Phase Flow Laboratory" ved Norges

teknisk-naturvitenskapelige universitet, har implementert en "phase-field approach" for å mod-

ellere overflatedynamikken i flerfasestrømning. Målet i denne avhandlingen er å simulere en

lav-energi kollisjon mellom en dråpe og en fluidfilm ved å bruke denne løseren.

Sentralt i "the phase-field approach" er Cahn–Hilliard likningen. Likningen modellerer fas-

eseparasjon, og i simuleringer uten konveksjon, viser løseren seg å fungere veldig bra. Både

én og to dråper ble simulert uten problemer. En rekke retningslinjer for nødvendig numerisk

oppløsning er utviklet.

I simuleringer der de koblede Navier–Stokes og Cahn–Hilliard likningene ble brukt til å mod-

ellere dråpe-film kollisjoner, ble det funnet en rekke feil. Viktigst var et stort globalt massetap

ved enkelte oppsett. Løseren var også svært parameter avhengig, en endelig løsning på prob-

lemet har ikke blitt funnet. Selv om løseren viste massetap, var flere av de dynamiske resul-

tatene lovende. Koalesens, ett av flere mulige kollisjonsutfall, ble observert, samt antydninger

til en dråpe som spretter på fluidfilmen.

En grundig raffinering av elementnettet og et parameterstudie er anbefalt videre arbeid for

å forbedre feilene i løseren. Enkelte av de fysiske resultatene er lovende, og hvis problemet med

massetap forsvinner, kan løseren bli et godt verktøy for løsning av flerfasestrømning.
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Chapter 1

Introduction

1.1 Background and Motivation

Fluid motion can be described by the Navier–Stokes (NS) equations. The NS equations are based

on Newton’s second law, ~F = m~a, and are in essence a conservation of linear momentum. The

NS equations are non-linear, second order, partial differential equations. Because of its com-

plexity, it is only possible to analytically solve easy problems where several assumptions and

simplifications have been made. This give rise to the branch of fluid mechanics called Com-

putational Fluid Dynamics (CFD). In CFD, the goal is to solve the governing equations of fluid

motion numerically. Solving multiphase flow however, has proven to be difficult due to non-

uniform fluid properties and challenges in modelling interfacial forces.

Multiphase flow is defined as simultaneous flow of fluids with different properties. Examples

range from steam droplets in boiling water, to water droplets in an oil pipe. The fluids can have

a constant volume fraction, or undergo a phase-change, and thus vary with time (e.g. boiling

water). Multiphase flow occurs in a number of applications. Power plants and process stations

are examples where two-phase flow is present, and knowledge of heat transfer and pressure

drop is crucial if one wants to design successful systems.

The interface between two fluids is of great interest, as it is where properties change val-

ues. In a CFD solver, the interface has to be modelled, and several models exist. Some mod-

els assume a sharp interface with instantaneously changing properties, other models, diffuse

interface models (DI), assume the interface of having a finite thickness and continuous fluid

1
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properties. The latter will be used in this thesis.

A droplet colliding with a fluid film is a fundamental phenomenon in multiphase flow. The

problem is very complex, and while some references have successfully simulated high energy

coalescence and bouncing droplets, none have been able to simulate low energy coalescence.

This thesis will use a DI model called the phase-field method to model interfacial dynamics, that

hopefully will change that. The advantage of using a phase-field approach is to avoid using an

ad-hoc hypothesis regarding the coalescence of the two fluid bodies.

1.2 Goal and scope

The goal of this thesis is to numerically simulate the multiphase phenomenon of a droplet falling

on a thick fluid-film of the same liquid. The simulations will be performed using a solver based

on the spectral element method, and the phase-field approach will be used to model the in-

terface dynamics. The Cahn–Hilliard equations will first be used to model phase separation,

then coupled with the Navier–Stokes equations to solve dynamic problems. Figure 1.1 shows

the different phenomena simulated in the thesis.

Droplet falling
on liquid surface

Droplet falling
on solid surface

Two droplet
equilibrium

Single droplet
equilibrium

Cahn–Hilliard
Cahn–Hilliard +
Navier–Stokes

Figure 1.1: Overview of phenomena simulated in thesis

The scope of the thesis is as follows; two-dimensional, incompressible flow with no thermal

effects will be considered. The density ratio of the fluids will be large, and the viscosity ratio

will vary. The effect of the Weber number (We) at impact will be investigated, and in particular,

bouncing/low energy coalescence is the desired outcome. Therefore, simulations will be lim-

ited to small We. The numerical implementation of the phase-field method will not be covered
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in detail; an overview of the theory will be presented. General guidelines for how to set up a

simulation, parameters, grid refinement and more, will be investigated and discussed.

A solver is provided to the author, and will be modified to simulate phenomena relevant to

this thesis. The solver is developed at the "Thermal Two-Phase Flow Laboratory" at the Norwe-

gian University of Science and Technology (NTNU). The simulations are performed in Matlab

using the Vilje HPC-cluster available at NTNU. An MPI version of the solver will be used to per-

form the calculations efficiently and within a reasonable timeframe.

1.3 Structure

The thesis is set up as follows: Chapter 2 will cover the theory regarding the mathematical

model, the numerical model and the dynamics involving falling and colliding droplets. A re-

view of the experimental and numerical works in the field will also be presented. Chapter 3 will

describe the different simulations performed. Chapter 4 will present the results from the simu-

lations. Chapter 5 will discuss the results, investigate sources of error, and explain the assump-

tions made. Finally, chapter 6 will summarize the results and present recommended further

work.

Appendix A list all the parameters and settings used in the simulations. If not explicitly stated

otherwise, all simulations will follow the settings set there. Non-dimensional equations are used

in the simulations, and thus, all parameters are dimensionless by definition. Figures will there-

fore not include units, although time frequently will be referred to as seconds. A sample Matlab

code solving the Cahn–Hilliard equation is included in appendix B. Interested readers are en-

couraged to try the code and investigate the influence of the controlling parameters. Appendix

C gives an introduction to numerical integration, and appendix D discusses the implementation

of non-dimensional parameters. Finally, appendix E lists the videos attached with this thesis. It

is highly recommended to watch the videos in conjunction with the result chapter, as they give

a superior visual understanding of the dynamics.



Chapter 2

Theory

The purpose of this thesis is to numerically simulate a droplet-film collision. The interface dy-

namics in multiphase flow is usually complex, and developing a trustworthy model for the sur-

face is of great interest. This thesis will use a solver where the phase-field approach is imple-

mented in order to model the interface.

The first section in this chapter will cover the mathematical model; the Navier–Stokes equa-

tions and the phase-field approach. The next section will cover the numerical model, in partic-

ular, the spectral element method and the least squares method. The last section will cover the

physical phenomena of droplet-film collisions, as well as a literary review of similar experiments

and simulations.

2.1 The Equations of Fluid Motion

The goal to derive a set of equations that describes the motion of fluids. Fluids are substances

that, unlike solids, deform under all external shear forces. Due to the low internal resistance

in fluids, tracking one single particle is difficult, and it is common to adopt a Eulerian frame

of reference. Several conservation laws can be derived, the ones relevant to this thesis are the

conservation of mass, and conservation of momentum.

The equations for conservation of mass, usually referred to as the continuity equation, for

incompressible flow, can be written as follows:

4
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∇·~u = 0 (2.1)

where ~u is the velocity vector. The equations for conservation of momentum, usually referred

to as the Navier–Stokes equations (NS), for incompressible flow, can be written as follows:

∂~u

∂t
+~u ·∇~u =− 1

ρ
∇p + µ

ρ
∇2~u +~g (2.2)

where ρ, p,µ,~g is the density, pressure, dynamic viscosity and gravitational acceleration respec-

tively. We have assumed Newtonian flow with gravity as the only body force. The reader is

expected to have some experience with the continuity and Navier–Stokes equations, a thorough

derivation of the above equations can be found in many text books, e.g. Kundu and Cohen

(2008).

2.2 Phase-Field Method

One of the problems with simulating multiphase flow is how to model the interface. Some ap-

proximations assumed that the surface was a layer of zero thickness, where physical properties

are discontinuous across the surface. This is called the sharp interface model. Rayleigh (1892)

then developed the idea that the surface has non-zero thickness, and van der Waals (1893)

explained this by use of thermodynamical principles. This idea is called the diffuse interface

model. Figure 2.1 shows the fundamental difference between the two models.

Figure 2.1: (a) Sharp Interface Model (b) Diffuse Interface Model

In classical fluid mechanics, the sharp interface model is widely used, and it is largely suc-
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cessful. There are however, situations where the model breaks down. This occurs when the

thickness of the interface is comparable to the length scale of the problem at hand (Anderson

et al. (1998)). In addition, sharp interface models cannot reproduce topological changes like

coalescence and breakup, without the use of ad-hoc rules. A droplet falling on a film falls within

this category, and the idea of a diffuse interface is therefore what will be adopted in this thesis.

Another advantage with the diffuse interface model is that you avoid discontinuities and delta

functions, thus making numerical simulations more suited.

The diffuse interface model used in this thesis is the phase-field method, a short derivation

follows. Central to the method is the use of the free energy density, f . The free energy is a model

for the energy in the system, composed of two parts, an interfacial energy and a bulk energy:

f = 1

2
εσα|∇φ|2 +ε−1σαψ(φ) (2.3)

where the order parameter φ is a measure of phase, ε is a measure of interface thickness, σ is

the surface tension coefficient, and ψ(φ) is the bulk energy density. The bulk energy density is

described using a double-well potential,ψ(φ) = 1
4φ

2(1−φ)2, a function with minima atφ= {0,1},

see figure 2.2a. The two minima are defining the value of φ in the two bulk phases.

0 1
0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

0.1

0.12

0.14

0.16

(a) Bulk energy density ψ

0

0

0.5

1

(b) General solution of order parameter φ

Figure 2.2: Free energy components

At equilibrium, the free energy F = ∫
f dV is at a minimum,

dF

dφ
= ε−1σαψ′(φ)−εσα∆φ=µ0 = 0 (2.4)
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where µ0 is called the chemical potential. The one-dimensional solution to the equation µ0 = 0

yields φ(x) = 0.5+ 0.5tanh(x/(2
p

2ε)) with x=0 being the location of the interface (φ=0.5), see

figure 2.2b. That is, φ will take the value of {0,1} in the two bulk phases, and 0 ≤ φ ≤ 1 in the

finite interface region. Different definitions of the bulk energy ψ(φ) exists in literature, this may

lead to other minima, however the hyperbolic tangent shape of the solution φ(x) is always the

same.

The next step is to develop a method for calculating the phase parameter φ. Cahn and

Hilliard (1958) extended van der Waals ideas of a diffuse interface by creating an equation de-

scribing the development of φ as a function of the chemical potential:

∂φ

∂t
= M∇2µ0 (2.5)

Eq. (2.5) is the famous Cahn-Hilliard (CH) equation. The CH equation is based on Fick’s law,

where M is a diffusion parameter called mobility. The Cahn–Hilliard equation was originally

used to model phase separation, but have later been applied to a variety of problems, among

others, multiphase flow. Interested readers can refer to Lee et al. (2014) for a mathematical,

physical and numerical derivation of the Cahn–Hilliard equations. A sample MATLAB CH code

is included in appendix B. In order to couple the CH eq. with fluid flow, one has the convective

Cahn-Hilliard equation, as listed below:

∂φ

∂t
+~u ·∇φ=∇·M∇µ (2.6)

Important properties of the equation will be presented later. The convective Cahn–Hilliard

equation is coupled to the momentum and continuity equations through the velocity field, and

similarly, the momentum equations get a forcing term expressed using the chemical potential

and the phase parameter. The result is a system of equations solving for multiphase flow. The

non-dimensional, incompressible continuity, Cahn–Hilliard and Navier–Stokes equations with

phase-field surface forces are as follows:

∇·~u = 0 (2.7)

σα[ε−1(φ2 −3φ/2−0.5)+ε∆]φ+µ0 = 0 (2.8)
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∂φ

∂t
+~u ·∇φ− 1

Pe
∇· (M∇µ) = 0 (2.9)

∂~u

∂t
+~u ·∇~u =−∇p + 1

Re
∇· [(∇~u +∇~uT )]+~f (2.10)

where ~f is the interfacial and body forces. The interfacial force in the present simulation is

expressed as ~Fint = µ∇φ/Bo, and the gravitational forces as ~Fg = ρg /F r 2. Eq. 2.8 comes from

inserting the definition of the bulk energy density into eq. 2.4.

There are several important dimensionless numbers in the simulations. The Reynolds num-

ber, Re = ρALV /µA, the Bond number, Bo = ρA g L2/σ, the Froude number, F r = V /
√

g L, and

the Peclet number, Pe = Lu/(Mµ0). The density in the momentum equations is defined as fol-

lows: The local averaged density is ρ̄ = φρA + (1 −φ)ρB , then, using fluid A as a scale, a di-

mensionless density is ρ = ρ̄/ρA. The viscosity is defined in a similar fashion. Note that the

dimensionless density and viscosity follow the same shape as the order parameter, as is desired.

The numerical implementation of the above system of equations will not be covered in this text,

interested readers can refer to Ding et al. (2007) or Jacqmin (1999) for more information.

2.2.1 Mass and Energy in the Cahn–Hilliard Equation

Two important properties of the Cahn–Hilliard equation, mass conservation and energy mini-

mization, will be derived in this section. As will be shown, mass loss may be observed locally in

CH simulations, even though mass is conserved globally.

Starting with the Cahn-Hilliard equation:

∂φ

∂t
+~u ·∇φ= M∆µ (2.11)

µ0 = ∂F

∂φ
= ε−1σαψ′(φ)−εσα∆φ (2.12)

and boundary conditions:

BC 1 : ~n ·~u|∂Ω = 0 (2.13)

BC 2 : ~n ·~∇µ0|∂Ω = 0 (2.14)

where ∂Ω is the boundary of the computational domain. Integrate eq 2.11 over the domainΩ,
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∫
Ω

∂φ

∂t
+

∫
Ω
~u ·∇φ=

∫
Ω

M∆µ0 (2.15)

d

d t

∫
Ω
φdΩ+

∫
Ω
φ(∇·~u)dΩ−

∫
∂Ω
φ~u ·~nd∂Ω︸ ︷︷ ︸

Divergence Theorem

= M
∫
∂Ω

∇µ0 ·~nd∂Ω︸ ︷︷ ︸
Divergence Theorem

(2.16)

d

d t

∫
Ω
φdΩ+

��
���

���:0∫
Ω
φ(∇·~u)dΩ︸ ︷︷ ︸

Continuity

−
���

���
��:0∫

∂Ω
φ~u ·~nd∂Ω︸ ︷︷ ︸

BC 1

=
��

���
���

��:0
M

∫
∂Ω

∇µ0 ·~nd∂Ω︸ ︷︷ ︸
BC 2

(2.17)

d

d t

∫
Ω
φdΩ= 0 (2.18)

The quantity φ is conserved. As the density follow φ, this equates to a global conservation

of mass. How the mass is spread in the computational domain however, is not governed by this

result. It is therefore possible to experience local mass loss in the droplet.

The energy of the system can be defined by the Ginzburg-Landau functional:

F =
∫
Ω

f dΩ=
∫
Ω

[
αεσ

1

2
|∇φ|2 +ε−1ασψ(φ)

]
dΩ (2.19)

which is the integral of the free energy density over the domain. The time derivative of the

energy is as follows:

d

d t
F =

∫
Ω
µ0

dφ

d t
=

∫
Ω
µ0(∇· (M∇µ0)−~u ·∇φ) =−M

∫
Ω
|∇µ0|2dΩ≤ 0 (2.20)

Observe that the rate of change in the energy is negative. The dynamics of the problem will

try to minimize the energy F. This is a very important feature of the CH equation, recall that the

bulk energy had minima in the two bulk phases, hence the dynamics favour phase separation.

That is exactly why the CH equation is coupled with the NS equations for solving multiphase

flow.

Shrinking droplet

As mentioned earlier, the goal of this thesis is to numerically simulate a falling droplet. Imagine

the hypothetical situation where a small disturbance in the velocity field causes the radius of
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the droplet to shrink (δr < 0), and due to mass conservation, the value of the order parameter

to increase (δφ > 0), see figure 2.3. This shift in mass is allowable if the energy in the system

is decreasing, as derived above. Yue et al. (2007) derives the theoretical shift in mass in such

a situation, along with numerical verification and the derivation of a stable lower limit for the

droplet radius.

Figure 2.3: Shrinking droplet, top and side view

The result is repeated without further derivation:

∂r

r0
=−

p
2

24
(

V

Vd
)(
ε

r0
) (2.21)

∂φ=
p

2

6
(
ε

r0
) (2.22)

where V ,Vd is the domain and droplet volume respectively. Observe that both change in droplet

size and shift in phase parameter is governed by ( εr0
). ( εr0

) will later be referred to as a Cahn

number C hr . A C hr < 0.01 gives negligible mass loss according to Yue et al. (2007). The above

result can be used as a validation of the solver used in this thesis.

The volume ratio in the simulations should be low, however one has to be aware of the impli-

cations of the boundaries if the droplet is too large with respect to the domain. A lower limit for

the droplet size with respect to the domain size can also be derived. If the droplet has an initial

radius smaller than a critical radius, the droplet will disappear in a process similar to Ostwald

ripening (Yue et al. (2007)). The critical radius is defined as follows:

rc =
(p6

8π
V ε

)1/3 (2.23)

The simulations in this thesis will be well within the limit above.
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2.3 The Numerical Method

The Navier–Stokes equations are non-linear, second order, partial differential equations. The

equations are usually impossible to solve analytically, unless several assumptions and simplifi-

cations have been made. This limits the direct use of the NS equations in engineering science.

One highly successful approach in engineering is to construct non-dimensional versions of the

equations, perform model experiments, before scaling to real size. This approach also has its

limitations, as experiments can be difficult to perform, expensive and time-consuming. This

illustrates the need for another approach to fluid mechanical problems. Computational Fluid

Dynamics (CFD) is the science of solving the governing fluid mechanical equations numerically.

The CFD community is growing and becoming more and more important as the price of com-

putational power and memory is decreasing.

A numerical method needs several components. Firstly, there needs to be a mathematical

model describing the physical phenomena. The models used in this thesis are described in

section 2.1 and 2.2, culminating in the eqs. 2.7-2.10. Secondly a discretization method has to

be chosen. This thesis will use the Least Squares Spectral Element Method, a brief introduction

will follow. Finally, one has to choose an appropriate solution method, as the discretization

produces a large system of non-linear algebraic equations. Figure 2.4 is showing the main parts

of the numerical method.

Mathematical Model
Discretization

Method
Solution Method

Figure 2.4: Ingredients in a numerical method

2.3.1 Spectral Element Method

The continuous differential equations from the mathematical model have to be approximated

by a set of algebraic equations. There are several discretization schemes available, the most

common are the finite difference method (FD), the finite volume method (FV) and the finite

element method (FE). The FD method approximates the derivatives at one node by use of the

function values at the neighbouring nodes. A node is a place in the domain where the differen-
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tial equations are approximated. The FD method is easy to implement; however it is best used

on structured grids. Conservation is not strictly enforced in FD methods. The FV method uses

the integral form of the equations of motion. The conservation laws are applied to each CV, and

the computational node is centered in the CV. FV methods can be used on all grid types, and

conservation is guaranteed. The drawback is the complexity when implementing higher than

second order schemes. The FE method approximates the solution within an element by a shape

function, and ensures continuity (C 0 or better) across element borders. The element approxi-

mations are inserted into a weighted conservation law, then integrated over the entire domain.

The FE methods are not strictly conservative, but have several advantages, among others the

ability to handle arbitrary geometries and easy implementation of higher order schemes. An

introduction to the FD and FV methods used in fluids mechanics can be found in Ferziger and

Peric (2012), while a thorough description of the FE method can be found in Zienkiewicz et al.

(1977), among others.

This section will briefly cover the basic concept of the Least Squares Spectral Element Method

(LSQSEM). A thorough mathematical description is beyond the scope of this project, but can be

found in other texts, see De Maerschalk (2003), Proot and Gerritsma (2002), Fernandino and

Dorao (2011). The general concept of the Spectral Element Method is to divide the domain into

elements, then write the solution within each element as a sum of weighted polynomials (2.24).

The sum consists of a known basis function multiplied by a coefficient, and the assumption is

that in the limit of this being an infinite sum, you would recover the exact solution. When writing

the solution f e on this form, and the basis functions φ j (x) being known, the problem reduces

to finding the coefficients α j .

f e (x) =
P∑

j=0
α jφ j (x) (2.24)

Eq.(2.24) shows the mathematical description of the polynomial expansion, where P is the

expansion order and φ j is a basis function. The basis functions used in this solver are the or-

thogonal Hermite polynomials taken from Fernandino and Dorao (2011), see figure 2.5.

The Hermite polynomials consist of four basis functions that assign the value and first deriva-

tive at the boundaries. These functions are strictly necessary. Additional, optional "Bubble"
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Figure 2.5: Hermite Polynomials

functions can be added to provide information about the inter-element values. Figure 2.5b

shows four Bubble functions, however more functions can be made if needed. The higher poly-

nomial order used, the more accurate results.

The solution in the whole domain is obtained by combining the solutions in each subdo-

main,

f (x) =
Ne⋃
e=1

f e (x) (2.25)

with Ne being the number of elements.

The big advantage with using the Spectral Element Method is spectral or exponential con-

vergence. In theory, if the solution is analytic or infinitely smooth, the convergence rate with

respect to approximation order will be exponential. Exponential convergence is the fastest con-

vergence possible, and it gives the method great error properties. If the function is not analytic,

or in the case of discontinuities, this convergence rate will not be obtained, see Xiu (2010). Keep-

ing a constant polynomial order P, and refining the mesh should display the same convergence

rate as a method of order P, which for P>2 is superior to most commercial software.

In this thesis, the geometrical domain will be discretized into a uniform, structured, Carte-

sian grid.



CHAPTER 2. THEORY 14

2.3.2 Least Squares Method

The differential equations from arising from the mathematical model are discretized using the

Least Squares Method. A general derivation follows:

Given the general differential equation,

L f = g (2.26)

where L is a generic differential operator. Define the residual R:

R =L f − g = 0 (2.27)

The residual will take the value of zero as the simulation approaches the exact solution f . If

the residual is multiplied with a test functionΦ and the integral over the new quantity is set to be

zero, the result is a method for solving differential equations called the Mean Weighted Residual

method (MWR): ∫
Ω

RΦdΩ= 0 (2.28)

There are several possible choices of test functions. In the Galerkin method, the test func-

tions are the same as the basis functions. In this solver, the residual itself is going to be used as

the test function: ∫
Ω

R2dΩ= 0 (2.29)

This method is called the Least Squares Method (LSQ). In reality, the residual of the numer-

ical solution is not equal to zero. Define a functional J as half of (2.29). The goal is to minimize

this quantity to find the best possible approximation of f ,

J ( f ) = 1

2

∫
Ω

R2dΩ= 1

2

∫
Ω

(L f − g )2dΩ

Now introduce the polynomial expansion from equation 2.24;

J ( f ) = 1

2

∫
Ω

(L f − g )2dΩ= 1

2

∫
Ω

(
∑

(α j Lφ j )− g )2dΩ= J (α0, . . . ,αN )



CHAPTER 2. THEORY 15

The functional J is only a function of the unknown coefficients α j . To find the minimum of

the functional J , set the partial derivative with respect to all coefficients to zero:

∂J

∂αi
= 0, ∀i = 0. . . N

∂

∂αi
[
1

2

∫
Ω

(
∑

(α j Lφ j )− g )2dΩ] =
∫
Ω

(
∑

(α j Lφ j )− g )Lφi dΩ= 0

∑
α j

∫
Ω

Lφ j Lφi dΩ=
∫
Ω

gLφi dΩ (2.30)

Eq. (2.30) can be expressed as a matrix system:

Ai jα j = Fi (2.31)

with

Ai j =
∫
Ω

Lφ j Lφi dΩ, αT
j = [α0,α1, . . . ,αM ], Fi =

∫
Ω

gLφi dΩ

where αT
j is the unknown vector. The integrals above have to be dealt with numerically. In this

thesis, Gauss quadrature integration will be implemented, more specifically, integration defined

on the Gauss-Legendre-Lobatto (GLL) points. Interested readers can find an introduction in

appendix C.

A big advantage of the least squares method is that it always transforms the partial differen-

tial equations to a symmetric positive-definite system, where effective solvers like the precon-

ditioned conjugate gradient method can be used, see Bewley (2010) or Shewchuk (1994).

2.4 Dynamics of Droplet-Film collisions

Droplets colliding on liquid and solid surfaces are observed in many parts of the physical world,

from spray-combustion and ink-jet printing, to meteorite impaction and multiphase flow. The

controlling parameter in phenomena regarding droplet collisions is the Weber number (We)

defined as follows:

W e = 2ρAV 2
0 R

σ
(2.32)
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where ρA is the density of the heavy liquid, σ the surface tension, R is the radius of the falling

droplet, and V0 is the impact velocity, see figure 2.6. The Weber number is the ratio of the inertial

forces to the surface tension forces.

Figure 2.6: Droplet falling on a fluid film

Depending on the Weber number in an experiment, one will observe several different out-

comes. Droplet-droplet collisions have been studied in great detail (see Jiang et al. (1992), Orme

(1997)), and different outcomes have been identified. The droplet-film collision has not been

studied to the same extent, but similar outcomes, namely bouncing, coalescence, partial coa-

lescence and splashing have been observed (see Pan and Law (2007), Rein (1993), Zhao et al.

(2011a))

One very interesting phenomenon observed experimentally is a droplet floating on a fluid

film for several seconds before coalescing, see Jones and Wilson (1978), Couder et al. (2005). This

is not something that has been successfully simulated numerically, and is one of the phenomena

this thesis will try to obtain. Zhang et al. (2009) observed another interesting phenomenon, a

"second-stage" partial coalescence that also have been observed at NTNU (Thermal Two Phase

Flow Laboratory (2013)). This phenomenon involves a droplet partially coalescing, the second

droplet partially coalescing and so on. Figure 2.7 summarizes the most likely outcomes of low to

medium We number collisions. Higher We numbers are usually associated with splashing, and

will not be covered in this thesis.
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Figure 2.7: Low to medium Weber number outcomes

Collision Outcomes

The following section will cover some of the physics regarding the different collision phenom-

ena. Starting with bouncing. The reason why a droplet can bounce on a liquid surface is due to

the fact that there is a thin fluid layer between the droplet and the film, see figure 2.8.

Figure 2.8: Fluid-film suspending a droplet

The inertial forces in the falling droplet will drain the gas film away. Define the critical inter-

facial distance as dc . If the two fluid surfaces are further separated than dc when the transla-

tional momentum of the droplet is lost, the surface tension in the film will act to bring the film
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to its original shape, and the droplet will bounce.

If the two fluid surfaces are closer than dc , the surfaces will merge. Interestingly this merg-

ing can occur at both higher and lower Weber number than the bouncing outcome Zhao et al.

(2011b). If the Weber number is low, the floating phenomenon may be observed. Small inertial

forces in the droplet does not deform the film to the extent that the reversal surface forces can

overcome the gravitational forces acting on the droplet, and the droplet floats. The droplet is

suspended by the surface as the gas film is slowly drained away. When the separation is suf-

ficiently small, the Van der Waals forces are starting to apply (Qian and Law (1997)). The van

der Waals forces are weak intermolecular forces that can attract or repel, and are not based

on electrostatic interaction. The strength and range of the force depends on whether the flu-

ids are permanent or induced dipoles, as a consequence, the critical distance dc is highly de-

pendent on what fluid is used. Different sources report critical distances in the range of dc =
0.1−100µm (Couder et al. (2005), MacKay and Mason (1963), Jones and Wilson (1978), Gilet and

Bush (2012)).

The critical interfacial distance can be reached using a high Weber number as well. In this

case the inertial forces in the falling droplet is large, and the intermolecular forces do not affect

the coalescence. This was experimentally observed by Zhao et al. (2011a). An even higher Weber

number will cause fragmentation and will not be covered in this thesis.

The drainage of gas can be accelerated or slowed down in several ways. One way of slowing

the process down is if the film is heated, and you observe a phenomenon similar to the Lei-

denfrost effect. The Leidenfrost effect is characterized by vaporization of a liquid to create a

protective gas film. This thesis however, will not take any thermal considerations into account.

Having a thin liquid film will act as an accelerator of the drainage of the protecting gas. This is

because the wall is immovable, and the effect of the impact forces will be larger.

Other factors influencing the drainage of the protective gas are the densities and viscosities

in the simulation. Simulations show that a heavier gas needs more momentum to be expelled.

This will widen the Weber number interval where bouncing is observed. The same is true for

high viscosity fluids.

This thesis will cover vertical collision between a falling droplet and a same-liquid film. The

liquid film will be thick. Thick film, or deep water pools is defined as the film thickness h f (figure
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2.6) where the bounding solid surface no longer influences the behaviour of the falling droplet.

In the literature, this thickness is not universally defined. In the work of Vander Wal et al. (2006),

a pool/thick film was defined as 10 times the droplet diameter. Pan and Law (2007), in a more

scientific approach using the energy budget, reports a thickness of ≈ 2.5 times the droplet radius

as the deep-pool limit. Define H f as the ratio of film thickness to droplet radius:

H f =
h f

R
(2.33)

Pan and Law (2007) discovered that the droplet behaviour upon impact is dependent on

the Weber number and H f . The dependence on H f disappeared when the film was sufficiently

thick. Due to the limitation of this thesis, the H f will be reasonably high (≥ 2.5), and the collision

outcome should therefore predominantly be dependent on the Weber number.

2.4.1 Numerical Simulation

As seen in the above sections, some experiments on droplet-film collisions have been performed,

and we have a reasonable understanding of the physical phenomena. Numerical simulations

have not been performed to the same extent. Three numerical methods have been proposed:

• The front tracking method (Tryggvason et al. (2001)), where the interface is tracked by

following certain control points.

• The continuum surface force model (CSF) (Brackbill et al. (1992)), where the surface ten-

sion is expressed through the gradient of the continuum variable and the field curvature.

• The phase-field method, as described in section 2.2.

The CSF method can be implemented using, among others, a level-set method or a volume

of fluid method (Tanguy and Berlemont (2005), Scardovelli and Zaleski (1999)). Of the three, the

phase-field method is the only one based on the free energy of the system (section 2.2), not the

surface tension forces.

The problem with numerical simulations of droplet-film collisions is topological changes

like coalescence or breakup. The solution has in many cases been to manually remove or merge

the surfaces to artificially induce coalescence (Nobari et al. (1996), Pan and Law (2007)). This
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procedure has often been preceded by an experimental investigation to obtain the point of co-

alescence. This method is clearly not valid for simulation, as you need ad-hoc information.

Pan and Suga (2005) using a level-set method, successfully simulated both the high-energy co-

alescence and the bouncing regime of droplet-droplet collisions, but failed to simulate the low-

energy coalescence that are believed to originate in intermolecular forces. This phenomenon is

yet to be solved numerically. Implementing the phase-field approach is hopefully a step towards

solving this problem, since no ad-hoc information is needed and the model describes interface

coalescence based on energy minimization arguments.

Another argument for using the phase-field approach is the lack of discontinuities and delta

functions. The calculations can also be made on a fixed grid, as opposed to sharp-interface

methods, where the grid generally have to follow the interface. The numerical process is there-

fore greatly simplified.

2.4.2 Deep-pool experiments

This section will cover, in more detail, the experiments on deep-pool collisions performed by

Zhao et al. (2011b). The experimental focus was on the transition between bouncing and coa-

lescence of droplets on deep liquid pools, and this work will be used as the main reference in

this thesis.

Figure 2.9: Low to medium Weber number outcomes

Several interesting discoveries were made. Coalescence was discovered at both low and high
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energy collisions, with a bouncing regime in between, see figure 2.9. Typical Weber numbers

of bouncing was We≈ 5− 15. During coalescence, a "neck" will form, and depending on the

vertical and horizontal collapse of the neck, a secondary droplet may pinch off. This partial co-

alescence was observed as a transitional region between both high and low energy coalescence

and bouncing.

The bouncing region is characterized by deformation of both the surface and droplet, before

the surfaces restitute and the droplet bounces. In the bouncing regime, the mass is conserved,

however momentum is lost. The coefficient of restitution cr = |V2|
|V1| is used as a measure of con-

servation of momentum, and is approximately constant over a large range of Weber number,

however at low We this coefficient increases sharply towards the upper limit of 1. It was ob-

served that high viscosity and high surface tension increases the coefficient of restitution.

The contact time during bouncing was found to be independent of impinging velocity, given

a constant diameter. A time scale can be made using the parameters in the experiments,

τ∗ =
√
ρD3

σ
(2.34)

The contact time can be expressed as Cτ∗, with C being C=1.72. The contact time can be

separated into three stages, deformation, oscillation and restitution. It was observed that the

restitution process is slower than the deformation process in the bouncing regime. Experiments

using different liquids and velocities showed similar results.

A model for the transition between bouncing and coalescence was proposed (Zhao et al.

(2011b));

K =W e ·Oh−0.58 (2.35)

with K=43 for low energy transitions, and K=119 for high energy transitions. Oh is the Ohnesorge

number:

Oh = µ√
ρDσ

(2.36)

Equation 2.35 will be used frequently to identify the different collision regimes.
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Case Studies

This chapter will cover the methodology, settings, goals and objectives in the simulations per-

formed. In the first section, the Cahn-Hilliard equations will be used to simulate phase separa-

tion into one or two droplets. In the second section, the CH and NS equations are coupled to

simulate cases of falling droplets.

The Cahn–Hilliard equations are solving for the development of the order parameterφ. Solv-

ing for the order parameter should give a distribution with a thin, but finite interval where the

parameter changes sharply, but continuously. Optimally, the distribution is symmetrical and

strictly increasing/decreasing, with no oscillations, see figure 2.2b. The domain needs to have a

sufficiently fine resolution for this to be achievable. An important dimensionless number that

relates the interface parameter ε to a characteristic length is called the Cahn-number. Several

definitions can be made, and the following will be used in this thesis:

C hL = ε

∆x
(3.1)

where ∆x = L/(Ne ·P ) is the size of the average numerical cell, L is the domain length, Ne is the

number of elements and P is the polynomial expansion; and

C hr = ε

r0
(3.2)

where r0 is the initial droplet radius. One of the goals of this thesis is to investigate what resolu-

22
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tion (C hL and C hr ) is needed to obtain a satisfactory solution.

Another numerical factor in this particular solver is how the degrees of freedom (dof) are

increased. In the spectral element method, there are two ways of increasing the dof, increasing

the polynomial expansion order P , or the number of elements Ne. Increasing the polynomial

order is known to give more accurate results, and show better convergence rates (section 2.3.1).

The computational cost, however, is larger. As a practical approach, increasing the number of

elements at a moderate polynomial expansion will be employed in this thesis.

3.1 Droplet Equilibrium

This section will simulate the phase-separation into a droplet and a surrounding fluid. There

will be no convective terms. The uncoupled Cahn–Hilliard equation implemented in this sec-

tion is as follows:

∂φ

∂t
− M

Pe
∆µ0 = 0 (3.3)

[φ2 −1−ε2∆]φ−µ0 = 0 (3.4)

The initial and boundary conditions listed in figure 3.1. The gradients of the order parame-

ter and the chemical potential is zero in the outward direction, along all boundaries. All other

settings can be found in appendix A. Note that the definition of the free energy, eq. 3.4, is slightly

different from what was defined in the theory chapter, this definition follows from defining

φ= [−1,1], ψ(φ) = (φ2 −1)2/4, and including the constant parameters α,σ in µ0.

3.1.1 Single Droplet Equilibrium

A single droplet is simulated using conditions in figure 3.1. The goal of the simulation is to see

whether the solver is successful in simulating a droplet using the Cahn–Hilliard equations, and

if so, investigate the effect of changing the Cahn numbers C hL and C hr .
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L

L

φA = 1

φB =−1

∂φ
∂~n = ∂µ0

∂~n = 0,

on all boundaries

Figure 3.1: Boundary and initial conditions, Single Droplet Equilibrium

3.1.2 Two Droplet Equilibrium

The initial field is manipulated to simulate two droplets, see figure 3.2. The boundary conditions

are as previously shown. The non-convective Cahn–Hilliard equations are globally conservative.

The goal of this simulation is to investigate whether it is possible for mass (φ) to shift from one

fluid body to another, with no convective terms.

L

2L

φA = 1 φA = 1

φB =−1

Figure 3.2: Initial conditions, Two Droplet Equilibrium, boundary conditions as in figure 3.1
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3.2 Falling Droplet

The Cahn–Hilliard and Navier–Stokes equations are coupled to solve dynamic multiphase prob-

lems. In this section, the set of equations, 2.7-2.10 is solved. The initial and boundary conditions

are presented in 3.3. Two phases with φ= {0,1}, no slip, no penetration along all boundaries, as

well as no flux of the order parameter or chemical potential. The mesh parameters in all simu-

lations will be Nex = 24, Ney = 48, ε = 0.02,P = 4, before refinement. All other parameters may

be found in appendix A.

2L

L

~u = ∂φ
∂~n = ∂µ0

∂~n = 0,

3r0

on all boundaries.

Fixed pressure at

centrepoint on

lower boundary.

φA1 = 1

φA2 = 1

φB = 0

Figure 3.3: Boundary and Initial conditions, coupled CH and NS equations

The solver provided in the project was originally simulating a droplet falling on a solid sur-

face (φA2 = 0). Using the original solver, a droplet falling on a solid surface will be simulated.

The initial field and parameters will then be manipulated to simulate a droplet falling on a fluid

film with the desired physical parameters. Lastly, specific experimental results will be copied.

The reasoning behind changing the non-dimensional parameters can be found in appendix D.
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3.2.1 Droplet Falling on Solid Surface

A droplet falling on a solid surface is simulated, this simulation will use the original parameters

(φA2 = 0), and will therefore be referred to as Simulation 0. The objective is to look at the mass

conservation, both locally in the droplet, and globally in the computational domain, as well as

the dynamics in the simulation.

3.2.2 Droplet Falling on Fluid Film

In Simulation A, a fluid film is added to the domain. The physical parameters are kept as in

simulation 0 to ensure a functioning simulation. The goal of this simulation is to see how the

solver simulates the coalescence of two fluid bodies. The collision outcome will not be studied

in detail, obtaining a functional simulation is the main objective.

In Simulation B, the non-dimensional numbers discussed in eqs. D.3-D.5 will be imple-

mented based on a Weber number of W e ≈ 10. The density and viscosity ratios will be kept as in

simulation 0 and A.

As a way of moving closer to specific experiments, we now present results from Zhao et al.

(2011b). Table 3.1 shows the physical properties of 1-propanol and distilled water droplets

falling in air. In both experiments, the droplets bounced on the liquid surface. D and V de-

notes the droplet diameter and impact velocity respectively. Simulation C will use the density

and viscosity values from the 1-propanol collision.

Table 3.1: Bouncing Droplets, from Zhao et al. (2011b)

Fluid ρ [kg/m3] µ [mPa/s] σ [mN/m] D [mm] V [m/s]
1-propanol 799.6 1.968 23.28 0.24 1.14
Air 1.2 0.0186 - - -
Distilled Water 996.9 0.89 71.99 0.16 1.2
Air 1.2 0.0186 - - -

The next step would be to completely copy an experiment. Immediately, one discovers a

problem. Looking at the 1-propanol collision, the droplet size is extremely small with respect

to the impact velocity. A droplet of diameter D = 0.24mm will need an initial falling height of ≈
300D to obtain a velocity of 1.14m/s. That is not feasible if the collision is simulated numerically,

due to the large computational time involved for a large domain. The attempts of replicating
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experiments are therefore limited to simulating the regions described by equation 2.35 (figure

2.9), repeated for convenience below:

K =W e ·Oh−0.58

with K=43 for low energy transitions, and K=119 for high energy transitions. The physical prop-

erties of water (table 3.1) will be used to simulate one collision in the three following intervals;

K ≤ 43, 43 ≤ K ≤ 119, K ≥ 119, referred to as Simulation D-F.



Chapter 4

Results

4.1 Droplet Equilibrium

4.1.1 Single Droplet Equilibrium

Figure 4.1 shows the stable solution to the Cahn-Hilliard equation. The mass was found to be

conserved both globally and locally in the droplet during the iteration process.

Figure 4.1: Cahn-Hilliard solution, φ. Nex = 40, Ney = 40, ε= 0.01,P = 4

28
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The numerical resolution, specifically the Cahn-number C hL , at a sufficiently resolved so-

lution is listed in table 4.1 and figure 4.2. What simulations deemed acceptable are based on a

visual inspection, and is therefore only used to obtain approximate guidelines, see chapter 5.

Table 4.1: Visually acceptable solutions

ε Ne P C hL

0.05 24 4 2.40
0.02 16 4 0.64
0.01 32 4 0.64
0.005 40 4 0.40
0.0025 80 4 0.40
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·10−2
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Figure 4.2: Cahn number needed for acceptable solution

The goal is to identify an approximate limit for how refined the mesh should be, to get a

sufficiently resolved solution. This limit should be constant, i.e have the form C hL = ε
∆x =C . If

one disregards the first entry in the table, ε= 0.05, then a reasonable limit seems to be C hL = 0.5,

the interface parameter ε should be about half the width of the average numerical cell. Keep

in mind, this is average numerical cell, and as will be explained in a later chapter, this is not

representative for all simulations. Setting the limit to C hL ≥ 1 is therefore recommended.

The first entry in table 4.1 was dropped due to the ratio C hr = ε/r0 = 0.2 being too large. For

a properly resolved droplet to be possible, a limit of C hr ≤ 0.1 is proposed, details in chapter 5.
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4.1.2 Two Droplet Equilibrium

Two identical droplets were simulated. There was no change in mass, shape or size of the

droplets during the iteration process. The hypothesis that mass loss, or shifting in mass, can

only occur in simulations with a convective term, is assumed to be valid. Figure 4.3 shows the

stable Cahn-Hilliard solution of two droplets.

Figure 4.3: Cahn–Hiliard solution, φ. Nex = 50, Ney = 100, ε= 0.01,P = 4

4.2 Falling Droplet

This section will present the results of the numerical simulations using the coupled Cahn–Hilliard

and Navier–Stokes equations. Both droplets falling on solid and liquid surfaces will be pre-

sented, and compared with experimental results when possible.

4.2.1 Droplet Falling on Solid Surface

This section will present the results from simulation 0. Figure 4.4 shows the result of the simu-

lation at evenly spaced timesteps. The Cahn numbers were C hL = 1.92 and C hr = 0.08, all other

settings are listed in Appendix A. The acceleration of the centrepoint of the droplet is calculated

to be close to the gravitational acceleration, when buoyant effects are considered. After impact,
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Figure 4.4: Simulation 0, t=[0 → 2.2]

the droplet separates into two droplets as the downward momentum is deflected outwards, and

overcomes the surface tension in the film. The droplets eventually merge and the surface settles.

Figure 4.5 shows the velocity field ~u in the domain at times t = {0.3,2.2}. The left snapshot

displays the velocity field during the fall. There is a tendency that the surrounding fluid is escap-

ing from underneath the droplet, recirculating up along the sides. This is exactly the dynamics

one can expect in a closed domain. The velocity inside the droplet is almost uniform, another

well modelled dynamic. At t=2.2 (right), when the film is settling, we see two pairs of counter-

rotating vortices. The lower pair is created by the falling droplet, the top pair by the viscous

effects and the bounded domain above. It may seem like there is a slight asymmetry in the po-

sition of the vortices, but this is due to where the velocity components have been drawn. In



CHAPTER 4. RESULTS 32

Figure 4.5: Velocity field, Simulation 0, t=0.3 (left), t=2.2 (right)

general, it seems like the dynamics of the droplet collision is modelled well. A huge problem

with the simulation however, is the evolution of the mass in the system.

Figure 4.6 shows the development of the global mass in the simulation. Some regions can be

identified; There is mass gain while the droplet is in free fall, there is mass loss at impact, and

there is severe mass loss as the surface is settling. After about 2 seconds, the mass stabilizes,

at about 75% of the original value. The non-conservative behaviour is concerning, especially

coupled with the fact that refining the mesh 225%1 did not change the behaviour noticeably.

1Percentage refinement from now on defined as follows: 50% more elements in both directions yields 1.5 ·1.5 =
2.25 times the number of elements → 225% refinement
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Figure 4.6: Global mass, Simulation 0

The Cahn number C hL

Several simulations using C hL ≈ 1 were performed, none of the simulations worked. In all cases,

the droplet was oscillating in space, seemingly without any gravitational effects. Figure 4.7

shows an example, simulation 0 using C hL ≈ 2 and C hL ≈ 1 respectively, otherwise equal pa-

rameters and grid resolution. Based on this, the guideline regarding the Cahn number C hL is

revised to C hL ≥ 2. A theoretical discussion can be found in chapter 5.

Figure 4.7: Simulation 0, C hL ≈ 2(top), C hL ≈ 1(bottom)



CHAPTER 4. RESULTS 34

4.2.2 Droplet Falling on Fluid Film

This section will present the results from simulations A-F. In short, simulations A and B showed

promising features in terms of the dynamics of the collision, however both displayed severe

mass loss, similar to simulation 0. In chapter 5 various reasons are discussed and tested, with-

out discovering the definite underlying reason. Simulation C also showed promising signs in

terms of the dynamics of the problem, bouncing was observed, and more importantly, mass

conserved. The local mass behaviour however, was not as desired. Simulation D-F was not

successful. See figure 4.2 for an overview of the results.

Table 4.2: Simulation outcomes

Simulation Wea Theoretical Outcomeb Outcome
A 19.6 Bouncing Coalescence
B 5.3 Coalescence Coalescence
C 9.2 Bouncing Bouncing
D-F - - No result

aReaders should be careful when calculating the Weber and Ohnesorge numbers based on generic parameters.
The solver is only dependent on the viscosity and density ratios, not the actual values, however We and Oh is. Ex:
[ρ1,ρ2]=[100,1] and [1000,10] is identical in the solver, but one order apart in terms of the Weber number.

bEq. 2.35

Simulation A

Simulation A resulted in coalescence. The solver managed to merge the two fluid bodies to one,

and the resulting film displayed similar movement and oscillation to what you would expect,

before eventually settling. The big issue however, was the mass loss. The droplet itself had a

small mass gain comparable to that of simulation 0 before impact. However, the global mass

was reduced to about 75% of the original value after just 0.5 seconds. This is a problem, and

something you should not observe in the CH equations. A global decrease and a slight droplet

increase in mass also indicates that the main problem area is the fluid film. Refining the grid

225% did not improve the simulations, the dynamics was identical, and the mass loss was still

present. After several non-successful simulations, settings A was suspended.
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Simulation B

In simulation B, the arbitrary non-dimensional numbers, (Re, Bo), was changed to resemble a

more physical setting. Figure 4.8 shows the results of simulation B. If one disregards the severe

mass loss, then the outcome is clearly a functioning simulation of high energy coalescence, with

large surface waves and no deceleration of the falling droplet. The Weber and Ohnesorge num-

bers was calculated to be W e ≈ 5.3 and Oh ≈ 0.057, characterizing the impact as low energy

coalescence. The simulation outcome is therefore not exactly as wanted.

Figure 4.8: Simulation B, t=[0 → 1.25]

Notice the severe mass loss. Interestingly, the fluid film keeps on shrinking long after the

impact. In 1 second, the mass dropped to about 55% of its original value. The droplet mass and

size is approximately unchanged during the fall, and the mass loss is therefore occurring in the

fluid film. The rate of mass loss in simulation A and B is roughly the same, differences in the

initial few timesteps makes the total mass loss bigger in simulation A at any given time.
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Simulation C

Due to the significant mass loss in simulation A and B, further attempts at getting closer to the

physical setting was performed. Figure 4.9 shows the result from simulation C, where the density

and viscosity ratios are taken from experiments. The Weber and Ohnesorge number was We≈9.3

and Oh≈0.029 yielding what should be a bouncing droplet. Keep in mind the concerns raised

in the footnote of table 4.2 are still valid. There are some very promising signs, as well as some

completely non-physical results. Two things immediately stand out, the mass loss in the droplet,

and the apparent bouncing. This behaviour could also be observed in a partially coalescing

droplet, but this possibility is discarded due to the lack of coalescence/neck-pinching dynamics.

As of now, the outcome is classified as bouncing.

Figure 4.9: Simulation C, t=[0 → 1.1]

Figure 4.10 shows the development of mass in the simulation. The mass is divided into

droplet mass, film mass and global mass. There is severe mass loss in the droplet. However,
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this only occurs before impact, then the mass of the droplet is constant. Similarly, the mass

of the film is increasing around the time of impact, then stabilizing for the rest of the simula-

tion. The decrease in droplet mass and increase in film mass perfectly offsets each-other, result-

ing in global conservation. The two effects are happening with a slight time shift, thus making

the global mass "dip" before recovering. The settings used in simulation C is the first to obtain

global mass conservation, a huge improvement on the previous sections. This change is thought

to originate in the density/viscosity ratios, a thorough investigation will follow in chapter 5.
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Figure 4.10: Mass distribution, Simulation C

Figure 4.11 shows the velocity field just before and just after the apparent bouncing. In the

top row, during the fall, the velocity vectors are following the movement of the falling droplet.

The bottom row is after impact. The velocity vectors are clearly moving downwards through the

rising droplet. This should not be possible; it is as if the droplet is not there. Another aspect

with this simulation is that the small droplet hovers in space after reaching its top-point (seen

in figure 4.9). This effect may be attributed to an error in the code implementation, but this has

not been identified yet.
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Figure 4.11: Simulation C, t=[0.05,0.15,0.25](top), t=[0.4,0.5,0.6](bottom)

Simulation D-F

Simulation D-F was not successful, possible reasons discussed in Chapter 5. Due to time re-

strictions, and further investigations into simulation A-C, no further simulations was performed

using settings D-F.
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Discussion

5.1 Droplet Equilibrium

Figure 4.2 is based on a visual inspection, as it is difficult to quantify when the CH equations are

properly solved. Figure 5.1 shows the cross-sectional view of the order parameter, solved using

the same dimensions [L,ro ,ε]=[2, 0.25, 0.01], but different numerical resolution. Figure 5.1a is

what you typically would regard as an unacceptable solution, and figure 5.1b is acceptable.
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φ

(a) Unacceptable distribution

−1 −0.5 0 0.5 1

−1

0

1

φ

(b) Acceptable distribution

Figure 5.1: Visual inspection of order parameter φ

It is reasonable to believe that refining the grid would result in a better distribution ofφ. This

is not always the case in the current framework. A uniform grid is used in the simulations, but

as seen in section 2.3.1, each element has a polynomial expansion. The solution will always be

more accurate on the element boundaries, due to the basis functions, and less accurate within

39
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the element. This effect becomes greater with a low polynomial order, due to the lack of bubble

functions. Where the element boundaries are located with respect to the interface will therefore

be important. This may lead to the paradoxical situation where refining the grid actually causes

the region of interest, the interface, to be less refined, or not as accurately resolved as one could

expect. Figure 5.2 shows a hypothetical situation where the number of elements increases from

2 to 3 (within the figure). The resolution in the area of interest clearly decreases.

Figure 5.2: Possible effect of increasing the number of elements

A solution to the problem could be to place the element boundaries in the middle of the

interface, to ensure a refined, and symmetrical solution. With the current geometry, this will

equate to Ne = 8n , as L/r0 = 8, with n being an integer.

Simulations using ε = 0.01 and P=4, with varying number of elements supports this idea.
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Figure 5.3: Order parameter φ, P=4, ε= 0.01
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Figure 5.3 shows the interface using Ne=[32,36,40]. Ne=32 and Ne=40 are multiples of 8, and it

is clear by figure 5.3a and 5.3c that the interface is resolved better than in figure 5.3b (recall the

analytical solution in figure 2.2b). The conclusion is that, if possible, use a number of elements

that follow the Ne = 8n rule. It is also clear from table 4.1 that all the entries are a multiple of

8, and thus, are following the "optimal" settings. When a droplet is falling, deformation and

convection is introduced, and it is not possible to keep the droplet interface at the element

boundaries. That is the reasoning behind increasing the limit to C hL ≥ 1; it is recommended

using an average numerical cell of the same size as the interface parameter.

The assumption of dropping the first entry in table 4.1 can be explained by the ratio C hr =
ε/r0 = 0.2, the interface is too thick with respect to the droplet itself, and obtaining a properly

resolved solution (ex. fig. 5.1), is difficult. This assumption can be investigated further by re-

calling the analytical 1D solution, φ(x) = tanh( |x|p
2ε

). The derivative of the analytical solution is

sech2( xp
2ε

)/
p

(2)ε, which with ε= 0.05 and r0 = 0.25 yields a slope of ≈ 0.05 in the droplet centre.

That is why it is difficult to obtain a visually satisfactory distribution with the parameters above.

With the given initial radius, the slope at the droplet centre can be solved as a function of the

interface parameter ε. A Cahn number of C hr ≤ 0.1 yields close to no slope in the droplet centre,

and a proper solution is possible. It should be pointed out that this recommendation is based

on the non-convective CH equations, and does not take mass loss into account. Yue et al. (2007)

recommends C hr ≤ 0.01 if mass loss is to be negligible in the coupled set of equations.

5.2 Falling Droplet

Asymmetry

The preliminary results from simulation A revealed several errors. Figure 5.4 shows one of the

early attempts, note both non-symmetric behaviour and severe mass loss.

The asymmetry was fixed by moving the reference point for the pressure boundary condition

to the centrepoint of the lower boundary, at the symmetry line, see figure 5.5. No simulations

showed any significant signs of asymmetry after this modification.



CHAPTER 5. DISCUSSION 42

Figure 5.4: Asymmetry, Simulation A

Figure 5.5: Reference point for pressure boundary condition

Cahn number

In section 4.2, the guideline limit for the Cahn number C hL was increased to C hL ≥ 2 based on

empirical evidence. No simulations using C hL = 1 worked, simulations using C hL ≈ 2 did. A

working simulation is here defined when the droplet is falling. The theoretical reason for this

guideline-change is this: The solver simulating the Cahn–Hilliard equations alone is approach-

ing a distribution of the following form, φ = tanh(|x|/p2ε). The solver simulating the coupled

equations is approaching another form, φ= 0.5+0.5tanh(|x|/2
p

2ε). A Cahn number of C hL = 1

in the pure CH solution will cover the same percentage variation in φ as C hL = 2 in the coupled

simulations. The two guidelines are therefore essentially the same. Regardless, this highlights

the danger when transferring experiences from one solver to another.
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5.2.1 Simulation A-C, Mass

The mass in the different simulations is behaving in a non-physical way. This is easily observed

in figure 4.6 where the mass both increases and decreases significantly during different regimes

of the simulation. Simulation A and B showed severe mass loss in fluid film, but relatively un-

changed droplets, simulation C conserved mass globally, however not locally. This section will

discuss some of the possible reasons for this behaviour and give results to some preliminary

investigations into those reasons.

Mesh Refinement

An obvious source of error is a too coarse mesh. A refined mesh will usually produce a better

result, however this is only the case if the problem and solvers are properly set up. In terms of

the phase-field method, a thinner interface will also produce more accurate results.

Simulation B was repeated using a refined mesh. The interface parameter was reduced, and

the number of grid elements was increased in such a way that the Cahn number C hL ≈ 2 was

approximately unchanged and C hr was reduced to 0.06. The new simulation had a 50% increase

in elements in each direction, yielding a total of 2.25 times the degrees of freedom compared

with the original simulation. By visual inspection, the two simulations had similar dynamics,

the fluid film was still shrinking throughout. When looking closer at the results, the rate of mass

loss was the same, differences in the first few timesteps caused the refined simulation to have

a higher mass loss at any given time. Even further refinement of simulation B have not been

performed. The same trend was observed when refining simulation A by 225%.

Parameter Study

One reason for the unpredictable mass behaviour may be the parameters used in the simula-

tions. Table 5.1 lists some of the parameters used in simulations A-C, with drastically differ-

ent outcomes. The surface tension and droplet diameter are of similar magnitude. There is

presently no reason to suspect Re and Bo to affect the mass loss, especially when simulation C is

located "between" A and B with respect to Re and Bo. The density ratioλρ and, most notably, the

viscosity ratio λµ is completely different, and may be a reason for the varying mass behaviour.
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Table 5.1: Mass Conservation

Simulation Outcome λρ λµ σ r0 Re Bo
A Loss 100 2 24.5 0.25 1000 100
B Loss 100 2 24.5 0.25 55 10
C Conservationa 666 106 23.28 0.12 111.5 19.4

aGlobal conservation. Mass shifted from droplet to film

In simulation A and B, the majority of the mass loss was occurring in the fluid film. One way

of further investigate the reason behind the mass loss, is to simulate just a fluid film, with no

falling droplet.

A fluid film alone was simulated. All settings as in simulation B. Figure 5.6 shows the evo-

lution of the global mass in the system, and surprisingly, the mass is decreasing. There is mass
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Figure 5.6: Mass of fluid film, Simulation B

loss even though there should be no movement in the entire domain. Furthermore, the mass

loss is not linear or constant, but seems to oscillate. The fluid film does not completely vanish;

the simulation stabilizes at approximately 50% of the initial mass. Refining the grid about 150%

showed a similar trend.

A similar "film" simulation was set up using the parameters from simulation C. The mass

was conserved to within 0.2% of the original value. This confirms that the mass conservation of
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the fluid film, and indeed the whole domain, is highly dependent on the parameters used. It is

also an indication of that the settings in simulation C may be a reasonable reference point going

forward.

The main difference in simulation B and C is assumed to be the density and viscosity ratios.

Two "intermediate" simulations were set up to investigate what ratio caused mass conserva-

tion, see table 5.2. Iρ and Iµ denote intermediate simulations with "high" ratios of density and

viscosity respectively, both simulations are a cross-combination of simulation B and C.

Table 5.2: Density and Viscosity ratios, Film simulation

Parameter B C Iρ Iµ

ρ1/ρ2 100 666 666 100
µ1/µ2 2 106 2 106
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Figure 5.7: Mass of fluid film

Figure 5.7a shows the relative mass in the four simulations. No conclusions can be made

on the importance of the density and viscosity ratios. Both ratios needed to be high for there

to be mass conservation in the present simulations. One very concerning discovery was made

when the pure film simulations were run on a 1x1 domain to reduce computational cost (recall

original domain of size 1x2). All settings, B-C-Iρ-Iµ conserved mass, example in figure 5.7b

where settings B is plotted for different domain size. This indicates a missing Jacobian in the

implementation. Further work is recommended.
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Boundary Conditions

The boundary conditions imposed on the domain may be a significant source of mass loss. The

boundary condition are as follows; no velocity at the boundaries, ~u = 0, as well as no gradients

in order parameter and chemical potential, ∂φ
∂~n = ∂µ0

∂~n = 0. The conservation of mass was derived

in chapter 2, eqs. 2.15-2.18. Note that the derivation is irrespective of the boundary condition
dφ
d~n = 0. We see that the simulations should conserve mass with the given boundary conditions.

Simulations A and B however, showed severe mass loss and everything suggests that the mass

loss is mainly occurring in the fluid film.

There are two primary physical ways of losing mass, convection and diffusion. First we are

looking at how the no-penetration condition is upheld in simulation B, as this is controlling the

convective mass loss. The velocities across the left and right boundary are small (∼ O (10−6)),

and positive (positive direction defined as outward). The velocity across the lower and upper

boundary is larger, ∼O (10−4), and the largest velocities is always observed at the bottom. Figure

5.8 shows the time averaged velocity across the lower boundary. Note the peak velocity at the

symmetry line. No special behaviour seen at the three-phase contact line (wall/film/gas).
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Figure 5.8: Time-average vertical velocity along bottom, Simulation B
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Recall the convective term from the Cahn–Hilliard equation:

∫
Ω
~u ·∇φ=

∫
Ω
φ(∇·~u)dΩ−

∫
∂Ω
φ~u ·~nd∂Ω︸ ︷︷ ︸

By Divergence Theorem

(5.1)

We are interested the last term of eq. 5.1, the flux along the boundaries. From the velocity

and φ- field in the simulation, the convective mass loss was calculated to be ∆m = −4.6 ·10−4.

This is about 0.05% of the initial mass, and thus not the reason for the severe mass loss. The

same procedure was repeated for the diffusive term:

∫
Ω

M∆µ= M
∫
∂Ω

∇µ ·~nd∂Ω︸ ︷︷ ︸
By Divergence Theorem

(5.2)

There is no output M or ∇µ from the solver. However, ∇µ was calculated using backward

differences to be far from zero. Yet more worryingly, it was not symmetric. It is reason to believe

this could be a source of great mass loss. The LSQ is a weak formulation, but deviations this big

from the prescribed boundary conditions should not be present. One way of artificially avoiding

this problem will be discussed shortly.

A final note regarding the boundary conditions. The fact that simulation C, using the same

solver, but different input parameters, is conserving mass suggest that the boundary conditions

is not the fundamental issue. It is still reason to further investigate the boundary conditions

based on the errors found, however other sources of error should not be excluded.

Weights used in the minimization of the least squares functional

The spectral element method is creating a system of discretized equations that has to be solved.

The least squares method is minimizing a functional made up by the integral of the squared

residual in the domain. In this functional, there will be a term related to the boundary con-

ditions. The least squares method is a so-called "weak-formulation" as it is minimizing the

functional in a global sense, rather than strictly enforcing conditions along boundaries and else-

where. The relative importance of each term when minimizing the functional can be manipu-

lated as a way of "forcing" the solver to emphasize one or the other.
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Simulations with changed weights in the minimization process have not yet been performed,

but may be a way of dealing with the problem. This is not a recommended permanent solution,

as it is not solving the main problem, namely why is it mass loss?

5.2.2 Simulation A-C, Dynamics

Surface Tension

Figure 5.9(top) shows in detail the point of impact in simulation B, and how the two fluid bodies

coalesce. The time step is 0.01 seconds. In theory, there should be a pressure build-up in the

fluid under the droplet, deformation of the fluid film and droplet, before the eventual coales-

cence. This is not observed in the figure, or in the similar plots of the pressure field (not shown).

The numerical resolution might be too low for this to be properly resolved, and bouncing or

floating may not be possible until this behaviour is observed. Refining the mesh 225% (5.9, bot-

tom) showed early signs of a deforming fluid film just before coalescence, which is promising.

It is believed that further refinement will improved on this result.

Figure 5.9: Simulation B, point of coalescence, ∆t = 0.01s. [Nex , Ney ] = [24,48], ε = 0.02, P=4
(top), [Nex , Ney ] = [36,72], ε= 0.015, P=4 (bottom)
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How the surface tension acts to minimize the energy of the system, in this case, minimize

the length of the surface after coalescence, is modelled well. Figure 5.10a shows the position of

the top of the droplet in simulation B. Before impact, an approximate quadratic path is seen, as

it should be according to the gravitational acceleration. Then, just after impact, there is a drastic

increase in the velocity of witch the top of the fluid is moving. This is the regime where the fluid

bodies have coalesced, and the surface tension contracts the fluid film. This behaviour is also

seen in the plots of the velocity field (not shown), where there is a distinct acceleration in the

fluid just after coalescence. The last regime is when the surface is settling. Figure 5.10b shows a
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Figure 5.10: Coalescence and impact, Simulation B and 0

similar plot, for simulation 0. Observe the difference from simulation B. As theory suggests, the

droplet is falling in an approximate quadratic way, until impact, where some of the momentum

is lost, and the top part decelerates.

Simulation C

The apparent bouncing in simulation C is likely another phenomenon, not yet understood. The

bouncing dynamics can be compared with the theoretical/experimental outcome to further in-

vestigate this. Figure 5.11 shows the centerpoint of the droplet during the simulation. Observe

that the droplet bounces to a location higher than the original falling height, as well as losing

3/4 of its mass. Experimental results suggest a coefficient of restitution cr = |V2|
|V1| = 0.28 for im-
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pacts with the calculated Weber number (Zhao et al. (2011b)). This coefficient requires mass

conservation in the droplet. The experimental bouncing behaviour is plotted in red. If the mass

loss is factored in, and one assumes the same proportion of linear momentum conserved, the

coefficient increases to cr = 1.17, also plotted in figure 5.11. It is impossible to know how much

linear momentum is retrieved when only a partial droplet is bouncing, and thus, the last plot is

therefore not physically valid, but serves as an indication of the second bouncing height under

those conditions. Buoyant and drag effects have not been included in this section.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

Time[-]

P
o

si
ti

o
n

[-
]

Simulation C
Bouncing Droplet, cr = 1.17
Bouncing Droplet, cr = 0.28

Figure 5.11: Bouncing droplets

5.2.3 Simulation D-F

The simulations using settings D-F were not successful. It is likely due to very small geometrical

scales making the CFL number too big. The CFL number is the ratio of the convective length to

size of the numerical cell. Due to time restrictions, no further attempts were made on copying

experimental results, and this is left as recommended further work.

The Floating Droplet

One of the goals of this thesis was to simulate a droplet floating on a fluid film. To provoke this

behaviour, a droplet can be placed just above the film. This will generate an almost negligible
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impact velocity, and extremely low Weber numbers. This is essentially what was done in sim-

ulation D-F. As will be shown in the next section, care must be taken for this to be achievable

computationally.

Consider a bouncing droplet. Zhao et al. (2011b) reports typical velocities of ≈ 1.5 for this

collision outcome. Using classical mechanics, the initial falling height h can be approximated

as h = v2/2g . Note that this approximation is a lower limit, as it does not account for drag

and buoyant effects, and the estimate will miss the desired velocity on the lower end. Using

this approximation, the falling height should be h ≈ 0.11. Figure 5.12 shows the separate 1D

theoretical solutions of a film at a location y1 = 0.5 and a droplet at y2 = y1 +h, using r0 = 0.25

and ε= 0.01, as this is the most commonly used settings in this thesis.
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Observe that the distance between the film and the droplet is too small for the interface

in both the film and the droplet to be properly resolved. There is a possibility that the solver

is regarding the fluid bodies as merged even before the simulation starts. The reason why the

solutions overlap, is the extent of which ε smooths out the interface. The interface parameter

would need to be four times as narrow for this to be avoided at this separation. This would in

turn require four times as many elements in all directions, and represent a dramatic increase in

the computational cost.
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The problem with "overlapping" interfaces can be avoided by using a larger initial separation

of the two fluid bodies. By demanding the slope of the distribution of φ to be small in the film-

droplet gap, one can calculate the minimum initial falling height where the solver manages to

properly simulate the two fluid bodies. Based on a visual inspection, the height h should be no

smaller than h ≥ 25ε.

Several simulations were performed using small droplet-film gaps, where the droplet lost its

mass without falling. This was prior to setting a guideline of h ≥ 25ε, and it is believed that this

may be one of the causes of the failed simulations.

5.3 Other

Time Consumption

The solver is written in Matlab, and is relatively time-consuming. Consider simulation B without

refinement; Nex = 24, Ney = 48, ε = 0.02 and P=4, using 16 nodes with 32 CPU’s each on Vilje,

a HPC supercomputer at NTNU. 125 timesteps (1.25s), was performed in 60 wall hours. That is

pure simulation time, not considering time spent queueing. More information about computer

specifications on Vilje can be found at NTNU (2016). Refining the mesh beyond this introduced

significantly longer simulation time.

Due to computational cost, a complete refinement analysis and parameter study have not

been achievable in the short timeframe, and is left as further work.
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Conclusion

6.1 Droplet Equilibrium

The Cahn–Hilliard (CH) equations are proven to be capable of separating phases and simulate

a droplet equilibrium. Cahn numbers C hL ≥ 1 and C hr ≤ 0.1 are recommended for a properly

resolved solution. With no convective term in the CH equation, there is no mass loss, or shift

of mass. Several fluid bodies may therefore be simulated without risk. The lower limit h for

separation of fluid bodies of the same type is h ≥ 25ε.

6.2 Falling Droplet

If the Cahn–Hilliard and Navier–Stokes equations are coupled for solving two-phase flow, the

following mesh guidelines are recommended; C hL ≥ 2, and C hr ≤ 0.1. The reason why the

guideline for C hL is different from above, is due to unequal definitions in the two solvers. The

condition C hr ≤ 0.01, to restrict local mass loss in the droplet, have not been tested due to se-

vere global mass loss. The two different Cahn numbers used in this thesis are both directly pro-

portional to the interface parameter ε. Ideally C hL should be large and C hr small. A practical

approach to simulation is to define a droplet radius, use C hr to calculate the interface parame-

ter, then use C hL to obtain the mesh refinement needed. In terms of the initial spacing between

the droplet and the film, the same recommendation as above is valid. The separation h between

fluid bodies should be no less than h ≥ 25ε for the surfaces to be properly resolved upon impact.
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All the mesh-guidelines presented in this chapter are lower limits. Further increasing the

numerical resolution will give better results, at the expense of computational cost. The solver

used in this thesis is based on the spectral element method, and it is not known whether the

guidelines presented will hold true if a finite difference or finite volume based solver is used.

In terms of the dynamical solution; the ultimate goal of this thesis was to numerically sim-

ulate the outcome of low energy droplet-film collisions. High energy coalescence of the droplet

and fluid film was observed in several simulations. The solver also displayed an apparent bounc-

ing behaviour, however the results were not conclusive. No indications of floating or low energy

coalescence was observed, this is in line with most of the previous work in the field.

The solver was found to be greatly parameter dependent. Severe mass loss is occurring using

some settings, and it is reason to believe that the density and viscosity ratios are the governing

parameters. The definite reason however, have not been found. As of now, high density and

viscosity ratios, ∼O (102 −103), are recommended.

6.3 Further Work

A major problem encountered in almost all simulations was global mass loss. Further simu-

lations and analysis will have to be performed, with particular focus on solving the issue with

mass conservation. Suggested focus of further work:

Mesh Refinement Due to time restrictions, a thorough mesh refinement has not been per-

formed. The level of mesh dependency and rate of convergence have not

been investigated. Higher order polynomial expansions have not been

implemented. All of the above may help uncover the underlying prob-

lem.

Parameter Study The solver is sensitive to the parameters used. A complete parameter

study, continuing the work started in section 5.2.1 is recommended. In-

vestigating other parameters, mainly the surface tension and geometry,

may be the next progression.

Boundary Conditions It is recommended to look further into the potential mass loss along
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boundaries. The diffusive term is especially interesting as it showed asym-

metric behaviour.

LSQ Weights Changing the relative importance of the boundary conditions when im-

plementing the Least Squares Method may be a way of conserving mass.

It is however not confirmed that the boundary conditions are the main

reason for the mass loss.

Experimental Results This suggestion is not related to mass loss, but rather obtaining the cor-

rect dynamics. Attempts at directly copying experimental results can be

performed. Problems may arise when the length and velocity scales are

to be copied.

Mesh refinement and parameter study is recommended as primary action towards solving

the problem of mass loss. Some of the physical behaviour is highly encouraging, in particular

the coalescence of the fluid bodies. The author believes that if the issue of mass conservation is

fixed, then the solver could be a great tool in future multiphase simulations.
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Appendix A

Problem Parameters

Table A.1 – Droplet Equilibrium, section 4.1

Parameter Single Droplet Two Droplets

Lx 2 4

Ly 2 2

Nex 8-64 100

Ney 8-64 50

P1 4 4

ε 0.05-0.0025 0.01

M 1 1

Pe 1 1

r0 0.25 0.25

Table A.2 – Falling Droplet , section 4.2

Parameter 0 A B C D E F

Lx 1 1 1 0.5 0.004 0.006 0.008

Ly 2 2 2 1 0.008 0.012 0.016

Nex 24-36 24-36 24-36 24 24 24 24

Ney 48-72 48-72 48-72 48 48 48 48

Continued on next page
1Equal in all directions
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Table A.2 – Continued from previous page

Parameter 0 A B C D E F

Nez 1 1 1 1 1 1 1

P 4 4 4 4 4 4 4

ε 0.01-0.02 0.01-0.02 0.015-0.02 0.01 0.00008 0.00012 0.00016

Re 1000 1000 55 111.5 445 817 1260

Pe 1000 1000 100 200 25000 16667 12500

Bo 100 100 10 19.4 0.54 1.2 2.2

Fr 1 1 1 1 1 1 1

g 9.8 9.8 9.8 9.8 9.8 9.8 9.8

r0 0.25 0.25 0.25 0.12 0.001 0.0015 0.002

ρ1/ρ2 100 100 100 656 830 830 830

ρ1 100 100 100 800 996.9 996.9 996.9

µ1/µ2 10 2 2 106 478 478 478

µ1 10 2 2 1.983 0.89e-3 0.89e-3 0.89e-3

σ 24.5 24.5 24.5 23.3 0.072 0.072 0.072

α 6
p

2 6
p

2 6
p

2 6
p

2 6
p

2 6
p

2 6
p

2

yc12 1.5 1.5 1.5 0.72 0.006 0.009 0.012

yc23 - 0.75 0.75 0.35 0.002 0.003 0.004

∆t 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table A.3 – Film, section 5.2.1

Parameter B C Iρ Iµ

ρ1/ρ2 100 666 666 100

µ1/µ2 2 106 2 106

Mesh4

2Initial droplet centre
3Initial film height
4All simulations ran on a 1x2 domain using 24x48 elements and a polynomial expansion of 4



Appendix B

Sample MATLAB Cahn–Hilliard code

The evolution of a uniform field with small, random noise into clearly separated phases using

the Cahn–Hilliard equations. Credit to Lee et al. (2014). This is not the code used in the thesis.

clear a l l ; x r i g h t = 2 ; y r ight = 1 ;M = 200;N = 100;

x = linspace ( 0 . 5 * x r i g h t /M, xright −0.5* x r i g h t /M,M) ;

y = linspace ( 0 . 5 * y r ight /N, yright −0.5* y r ight /N,N) ; h = x(2)−x ( 1 ) ;

[ xx , yy ]=meshgrid ( x , y ) ; dt = 0 . 1 ; maxiter = 500; epsilon = 4*h/(2* sqrt ( 2 ) * atanh ( 0 . 9 ) ) ;

xp = linspace ( 0 , (M−1)/ xright ,M) ’ ; yq = linspace ( 0 , (N−1)/ yright ,N) ’ ;

Leig =−((xp . ^ 2 ) * ones ( 1 ,N) + ones (M, 1 ) * ( yq ’ . ^ 2 ) ) * pi * pi ;

CHeig = ones (M,N)− 2* dt * Leig + dt * epsilon ^2* Leig . ^ 2 ;

U = 0.001*( rand (M,N) −0.5 ) ; hat_U = dct2 ( real (U) ) ;

for i t = 1 : maxiter i f rem( i t ,10)==0

subplot ( 2 , 1 , 1 ) ; surf ( xx ’ , yy ’ , real (U) )

shading interp ; axis ( [ 0 x r i g h t 0 y r i ght −1 1 ] )

subplot ( 2 , 1 , 2 ) ; contourf ( xx ’ , yy ’ , real (U) , [−0.9 −0.45 0 0.35 0 . 9 ] )

axis image , axis ( [ 0 x r i g h t 0 y r i ght ] ) ; getframe ( gcf )

end

fU = U.^3−3*U; hat_rhs = hat_U + dt * Leig . * dct2 ( real ( fU ) ) ;

hat_U = hat_rhs . / CHeig ; U = idct2 ( hat_U ) ;

end
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Quadrature Integration

There are several ways to approximate the value of a definite integral. An intuitive approach is

Trapezoidal Rule (C.1) where the area under a function is the average value of the function at

two points, multiplied with the distance between the points:

∫ b

a
f (x)d x = (b −a)

f (a)+ f (b)

2
(C.1)

This method can be extended to more advanced integration schemes like Simpson’s method. A

more general way of solving an integral is quadrature integration, where the integral is the sum

of weighted values at certain quadrature points:

∫ 1

−1
f (x) =

Q∑
q=1

wq f (xq ) (C.2)

Gauss-Legendre-Lobatto

In the quadrature integration above (eq. C.2), the weights wq and the points xq where the

function is evaluated are needed. This can be obtained from the Gauss-Legendre-Lobatto

(GLL) rule. GLL approximates the weights and integration points based on the Legendre

polynomials, eq.C.3.

Ln(x) = 1

2nn!

d n

d xn
[(x2 −1)n] (C.3)
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where n is an integer. Eq.C.4 show how to calculate the weights.

wq = 2

n(n −1)[Ln−1(xq )]2
(C.4)

The quadrature points xq are the roots of the polynomial L′
n−1(x). Using the GLL rule, the

function values are evaluated on non-uniform locations within each grid, with higher

resolution near the edges. Figure C.1 shows the spatial discretization of a square of unit length

with a polynomial expansion of n=10.

Figure C.1: 2D grid using GLL with n=10

This general method can be used in this thesis. Introducing the quadrature integration to

approximate Ai j and Fi in eq. (2.31):

Ai j =
∫
Ω

Lφ j Lφi dΩ≈
Q∑

q=0
(Lφ j )|xq (Lφi )|xq wq (C.5)

Fi =
∫
Ω

gLφi dΩ≈
Q∑

q=0
g (xq )(Lφi )|xq wq (C.6)

Once the coefficients are known, insert in eq.(2.24) to obtain the full solution.
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Physical Consistency

The solver provided to the author was simulating a droplet falling on a solid surface. The

original settings are listed in table D.1.

Table D.1: Parameters in Simulation 0

Re Pe Bo Fr g r0 ρA ρB µA µB σ

1000 1000 100 1 -9.8 0.25 100 1 2 1 24.5

The problem with the above parameters is the physical consistency. The Froude number is

defined as the ratio of inertial to gravitational forces, and in the simulations in this thesis, Fr=1

is reasonable. From the definition of the Froude number, a characteristic velocity will therefore

be defined as V =√
g L. With L = 2r0, and the above listed surface tension, the Bond number

should be 10, not 100. The Reynolds number should be ≈ 55, not 1000.

The goal is to express the dimensionless numbers in the simulations, see eqs 2.9-2.10, by use of

the Weber number:

W e = 2ρAr0V 2

σ
(D.1)

The velocity will be approximated using a gravitational velocity. The actual impact velocity will

be calculated from the simulations.
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V =√
g L (D.2)

where g is the gravitational acceleration and L = 2r0 is the characteristic length in the

simulation. This definition of the characteristic velocity will make the Bond and Weber number

equal, and it is a reasonable estimate of the actual impact velocity.

The rest of the dimensionless numbers can be rewritten as follows:

Re = 2ρAr0V

µA
=W e

σ

V µA
(D.3)

Bo = ρA g L2

σ
=W e (D.4)

F r = V√
g L

= 1 (D.5)

The Peclet number have to be prescribed in advance, values will be taken from Ding et al.

(2007).

Pe = r0V

Mφ
(D.6)

In the definitions of the dimensionless densities and viscosities, the following ratios occur.

Both ratios have to be prescribed in advance:

λρ = ρA

ρB
,λµ = µA

µB
(D.7)

To sum up, if W e,ρA,ρB ,µA,µB are specified, Re,Bo,σ as well as the global viscosity and

density, can be calculated. The Weber number prescribed in the solver is only an estimate, the

real value have to be calculated using the actual impact velocity.
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List of Videos

Included in the thesis is a digital folder, master-ET.zip, which contains the following videos. All

videos are AVI-files, and should be viewable on all commercial software.

0.avi Dynamics of Simulation 0.

A.avi Dynamics of Simulation A.

B.avi Dynamics of Simulation B.

C.avi Dynamics of Simulation C.

B-film.avi Dynamics of the fluid film simulated using settings from simulation B.

Velo-0.avi Simulation 0 with velocity vectors superposed.

Velo-A.avi Simulation A with velocity vectors superposed.

Velo-B.avi Simulation B with velocity vectors superposed.

Velo-C.avi Simulation C with velocity vectors superposed.

Velo-B-film.avi As B-film.avi, with velocity vectors superposed.
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