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Preface

This report is written as a partial requirement for a Master’s degree in Material Science and
Technology at the Norwegian University of Science and Technology (NTNU). This report is a
continuation of the project work done during Autumn 2015.

Extensive work has been put into the fabrication and fracture testing of micro-cantilevers in order to
study the hydrogen effects on the grain boundary of FeSi steels. This report has been in close
collaboration with Ph.D. student Tarlan Hajilou, where the cantilevers fabricated have been used for
her fracture tests at the nanomechanical lab at NTNU.

The focus of this report will be on the production process of micro-cantilevers.

A risk assessment and two A3-posters presenting the experimental work and its results can be found in
appendix A, B and C, as required by the Department of Engineering Design and Materials (IPM) at
NTNU. Pictures of the cantilevers made can be viewed in appendix D.



Abstract

Large amounts of micro-cantilevers were made using a focused ion beam (FIB) microscope. The
cantilevers were made to be tested under cyclic loading in a triboindenter to determine the hydrogen
effect on the grain boundaries of a FeSi-alloy (3wt% Si and 0,02wt% C). The hydrogen effect was
determined by analyzing load-displacement curves where the displacement were from 3 to 5 pum
vertically, under atmospheric and acidic conditions (introduction of hydrogen). The focus of this
report has been on the fabrication of the micro-cantilevers.

A machining procedure for making cantilevers of good quality is presented in this report. It is made
for cantilevers of the dimensions: 14,5 um length, 4 um width, 2,6 um height, and an elevation of 5
um from the cantilever to the sample floor, but has been used to make cantilevers of varying
dimensions. The hydrogen effect on one of the samples has been determined, where it was found that
the introduction of hydrogen on the grain boundary lowered the needed force to bend the cantilever by
80 uN.



Sammendrag

En stor mengde mikrobjelker ble fabrikert ved bruk av fokusert ionestrale (FIB) mikroskop. Bjelkene
ble lagd for a testes under syklisk lasting i en triboindenter for & bestemme hydrogeneffekten pa
korngrensene til en type FeSi legering (3wt% Si og 0,02wt% C). Hydrogeneffekten ble fastslatt ved a
analysere belastnings-forflytningskurver hvor forflytningen var fra 3 til 5 um vertikalt, under
atmosferiske og syrlige betingelser (introduksjon av hydrogen). Fokuset for denne rapporten har veert
pa fabrikeringsprosessen for mikrobjelkene.

En maskineringsprosedyre for a lage bjelker av god kvalitet er presentert i denne rapporten.
Prosedyren er laget for bjelker av dimensjonene: 14,5 um lengde, 4 um bredde, 2,6 um heyde, og en
elevasjon pa 5 pm fra bjelken til provegulvet, men har blitt brukt til & lage bjelker av varierende
dimensjoner. Hydrogeneffekten pa en av prevene har blitt funnet. Det ble fastslatt at introduksjonen av
hydrogen pa korngrensen senket den ngdvendige kraften for & boye bjelken med 80 uN.
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Introduction

Hydrogen embrittlement is a huge and costly technical difficulty a wide arrange of industries face
every day. Although researchers worldwide have researched the topic tirelessly, the mechanisms
concerning hydrogen embrittlement are still largely debated. A multitude of mechanisms have been
proposed, some seen as more valid than others, but still more research is required to fully understand
the multitude of processes which occur from the introduction of hydrogen to the given metal and to its
brittle fracture. How does the hydrogen accumulate in the metal? By what mechanics does it influence
metals mechanical properties? These are the questions that have been given and answered, though with
varying degrees of satisfaction.

One way to learn more about the effects of hydrogen on affected metals are through the microscale
study of its effect on the grain boundary. A set of micro-cantilevers designed to be bent in a
triboindenter can then be fabricated on the grain boundary and introduced to an environment of
concentrated hydrogen to instill a high hydrogen concentration on the grain boundary. By then
bending these micro-cantilevers, both in environments containing hydrogen and without, one can
determine the differences in the force required to bend the cantilever to a certain depth, and thus
determine hydrogens reduction of the material’s toughness.

The micro-cantilevers can be machined by utilizing the focused ion beam (FIB) microscope. By
bombarding the metal sample with charged ion particles, material can be removed to design
cantilevers on the microscale, which would be impossible to do accurately with macroscale tools.

It is a requirement before testing that the cantilevers are uniform and of good quality with minimum
damage and oddities before testing. This report therefore focuses on determining a process which will
make sure that those who follow the given procedure will obtain micro-cantilevers that are of pristine
quality in a short amount of time, so the focus of further research can be directed towards the
understanding of the many micromechanics concerning the introduction of hydrogen on the grain
boundary of metals.



1. Theory

1.1 Hydrogen embrittlement
Hydrogen embrittlement is understood as the reduction of toughness in iron and other affected metals,
turning them brittle (hence its name) due to the introduction of hydrogen. It is a huge technical
problem that has been thoroughly researched, albeit mostly on the macroscale. Yet, more experiments
are needed to fully understand the mechanisms that govern hydrogen embrittlement and prove the
validity of already established theories. Temporal in nature, by effectively removing the hydrogen
from the affected metal, its original strength and toughness may be restored completely.

The field study of hydrogen embrittlement was effectively started by Johnson in 1875 when he
published his papers on the subject. He studied the change in mechanical properties of a piece of iron
after being immersed in different acids. After 30-60 minutes of immersion in strong hydrochloric or
dilute sulfuric acid, he bent the iron piece to study the macroscale effects of this immersion. The iron
piece was found to break after being bent once on itself, while it would be able to be bent two or three
times before fracture without the introduction of hydrogen. Johnson also found that, with enough time,
the original mechanical properties of the submerged iron piece would return. This raised the need for
determining the mechanisms under which the hydrogen embrittlement operates. [5]

1.1.1 Hydrogen-enhanced local plasticity (HELP)
A large amount of mechanisms to account for hydrogen embrittlement have been proposed through the
years. Unfortunately, only a few remain valid to date. One of these mechanisms are the hydrogen-
enhanced plasticity theory., which was introduced by Birnbaum and Sofronis.

The phenomenon became evident through the experiments of Bechem in 1972. Bechem theorized that
the increased material ductility by introduction to hydrogen were an indicative of hydrogen enhancing
plasticity processes. He also suggested that the hydrogen-induced fracture stresses were connected
with the microstructural state of the material. This contradicted previous beliefs that the ductility was a
direct effect caused by the embrittlement process and was thus not considered important to the
understanding of the underlying mechanics of hydrogen embrittlement. It was later revealed through
experiments performed by the «lllinois group» led by Robertson Birnbaum, that the introduction of
hydrogen gas increased the velocity of dislocation motion in the material. When removing the
hydrogen gas from the sample, the dislocation motion ceased. It was then apparent that hydrogen
enhanced the dislocation motion in affected materials. These observations were initially challenged,
and it was postulated that this stemmed from the pressure difference created by the introduced gas
environment into the objective pole-piece of the electron microscope, or just simply a thin foil effect.
However, it was found that the time required to calibrate the microscope for the introduced gas
pressure was a few seconds, while the observed effect lingered for a significantly longer period. The
final nail in the coffin to the superstition came when macroscale experiments such as stress relaxation
and strain rate change tests were conducted. They showed that the presence of hydrogen decreased the
activation area for dislocation motion and their activation energy. In situ experiments in a
transmission electron microscope (TEM) has also been conducted to further iron the theory. The
sample was cracked under the presence of hydrogen gas or water-saturated inert gas. It was found that
before the crack evolution, the sample would experience extensive thinning ahead of the crack,
observed in the microscope as a set of parallel lines. The crack also widened considerably. The
cracking mechanism was also found to change, as under the influence of hydrogen it changed from
transgrannular to intergrannular.



To summarize, hydrogen increases the production and mobility of dislocations irrespective of the type
of dislocation and crystal structure. The hydrogen segregates to dislocation stress fields and other
elastic obstacles, increasing the intensity of them in preferred directions and reducing them in others.
In the reduced directions, the interaction energy of the dislocation which impedes its motion will be
reduced, thus allowing increased mobility of the dislocation in that direction. [5]

1.2 Focused lon Beam Microscopy
The Focused lon Beam (FIB) microscope is a highly versatile instrument that has been used
extensively in the semiconductor industry and material science. Highly resembling the Scanning
Electron Microscope (SEM), it differs in its source of imaging, utilizing a focused beam of ions rather
than electrons. [1] [2] [3] The ions are extracted from an ion-source and then propelled towards the
sample by an accelerating voltage. The kinetic interactions between the ions and the sample produces
the emission of secondary-electrons (SE-electrons), which can be collected by a compatible detector,
giving topographic information of the sample surface. This information can in turn be fed to a
computer, which produces an image. [1] The FIB’s forte is however its ability to precisely «cut» into
the sample surface (milling) through ion-solid interactions, and to perform local chemical vapor
deposition (CVD) with a gas injection needle. As the bombardment of ions from the FIB causes
damage to the sample surface, it is often seen in conjunction with a SEM, creating a highly versatile
«dual-beam» microscope. The FIB and SEM column are then tilted at a certain angle in relation to
each other, so that their beams intersect at a shared point on the sample surface at a given working
distance. [1] [2] [3] The SEM is then used primarily as an imaging column, while the FIB column is
used for the milling and CVD. [1] An schematic example of a FIB-SEM dual beam microscope is
given in Figure 1.

SEM column

FIB column /_—>

vacuum chamber

__ micromanipulator
tubing for

gas injection
sample at 54° tilt

gas injection | —

nozzel fully motorized stage ~ coincidence point

WD =5mm

Figure 1 —Representation of a FIB-SEM dual-beam microscope [4]



1.3 Microscope structure
The FIB and the SEM microscope are rather structurally similar. Both consist of a chamber with a
vacuum system, a sample stage, various detectors (e.g. Everhart Thornley Detector), focal lenses, a
source of imaging, and a connected computer to control the microscope and display the imaged sample.
An illustration of the FIB column is given in Figure 2. [1] [2] [3] What distinguishes the two
microscopes from each other is the source of imaging. The FIB microscope utilizes a source consisting
of ions rather than electrons. Typically, the source is a liquid metal ion source (LMIS), as it provides a
brighter and more focused beam when the appropriate lenses are used. The most widely used LMIS is
the gallium ion source (Ga"), although bismuth, gold, indium, and tin are also applicable. The reasons
gallium is chosen in favor of the others, is due to its advantages in comparison to the other LMIS. [1]
[3] Gallium has a low melting temperature (30 °C), which makes the design and operation of the
source simple, low vapor pressure, low volatility (due to negligible evaporation), usually more stable
than other LMIS, and it does not react with the material defining the needle (typically wolfram). [1]

generation of beam
(2 pA)

Spruy aperture

First kens
adjusting the current
(typically pA to nA)

scanning the beam

Figure 2 - An schematic respresentation of the FIB column and its major components [4]

The ion-beam column generally consist of a Ga-blunt needle, which is responsible for extracting the
ions from the LMIS and propelling them towards the sample surface. The extraction of the ions are
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carried out by field emission, where the extracted ions form a Taylor-cone at the end of the needle.
The cone is formed as a direct effect from the electrostatic forces and the ion surface tension on the
needle geometry. A large negative potential between the needle and an extraction electrode generates
the electric field (typically with a magnitude of 10™° VV/m) which propels the ions towards the sample
surface. To help focus the beam on the sample for increased resolution (smaller spot size) a wide array
of apertures and lenses are utilized. In the most basic ion beam columns, a condensor and objective
lens are used to define and focus the beam. Beam-defining apertures are used to select the beam
current and spot diameter, deflection plates to raster the beam over the sample surface, stigmation
poles to ensure a spherical beam profile, a high speed beam blanker to deflect the beam off the sample
and onto a beam stop, and a Faraday cup to act as said beam stop. The reason electrostatic lenses are
used, rather than electromagnetic lenses as in SEM, is due to the correlation between the
electromagnetic lenses’ strength as a function of their size (charge/mass ratio). An electromagnetic
lens for a FIB would simply weigh a ludicrous amount (on the scale of thousands of kilograms). [1]

1.4 lon-solid interactions
The FIB microscope’s usage of an ion source rather than an electron source causes some concern. The
main concern is the ions’ effect on the sample material. When the Ga-ion hits the surface of the
sample, it transfers a lot of kinetic energy to the affected atoms. This energy is proportional to the
voltage used on the FIB-microscope. The energy can sometimes be of such a magnitude, that the ion
can cause irreparable damage to the imaged area of the sample. The damage can be atomic sputtering,
ion emission, heating of the sample, or implantation of ions in the sample surface. An illustration of
the possible outcomes of the ion-solid interactions is shown in Figure 3. [1] [2] [3]

The transfer of an ion’s kinetic energy to the surface can happen through two mechanisms: inelastic
and elastic collision. In the first case, the ion’s energy is wholly transferred to the electrons of the
sample trough the ion’s momentum. This is called electronic energy loss, and results in ionization and
the emission of electrons and electromagnetic radiation from the sample surface. The emitted electrons
from this process are necessary to provide an image of the sample surface. The second case, elastic
collision, is called nuclear energy loss, and can result in the displacement of sample atoms from their
original position in the lattice and the emission of the surface atoms of the sample (sputtering). [1] [2]
[3] Here, the energy is transferred as translational energy to screened target atoms. [1] For the FIB
microscope, the dominant process for energy loss is considered to be electronic energy loss. [2]. In
some cases, the emitted atom due to inelastic collision might have enough energy to displace other
atoms in the sample and thus cause a large amount of atoms to have excess kinetic energy. [1] This
generally leads to defects in the lattice parameters of the sample through interstitial-vacancy and
incorporation of Ga, however, nuclear energy loss is also what is used to be able to mill the sample
with FIB. [1] [2]
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Primary lon --~>.
secondary electrons
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(ion or neutral)

vacuum

¥ RIS o e &

solid

Implanted lon

Figure 3 —Schematic illustration of the implementation of a 30 keV Ga-ion in a crystal lattice. The ion causes the
emission of electrons, but also atoms in the crystal lattice [3]

By utilizing the nuclear energy loss mechanism, material can be selectively removed from the sample
by the FIB. [1] This mechanism is referred to as «knock-on sputtering». Emitted surface particles
during milling generally have an energy of 2-5 eV. The path of the emitted particles has a cosine
distribution for normal incidence ion bombardment (see Figure 4). [2]

Figure 4 - Representation of the mean path of the emitted sample particles related to the incident angle [2]
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2. Experimental procedure

2.1 Sample material
The samples used were FeSi-alloys (0,02 wt% C and 3 wt% Si) of different heights with a diameter of
11,5 mm. They were cut to the correct dimensions by the Fine Mechanical Lab at NTNU to ensure
they would fit into the FIB sample holders provided. An iron alloy containing Si was used as the dual
beam FIB/SEM microscope provided had a well calibrated/tested Si-profile for milling.

2.2 Sample preparation
The samples were ground with silicon carbide grinding paper and then etched with acetone in a Struers
LectroPol-5.

The samples were marked with indents in a 3x3 grid with a macro indenter. The markings were evenly
spaced and on the same line. Two indents were made in a corner to be able to distinguish which
direction the sample were in the microscope. Figure 5 gives an illustration of how the indent
placement in the sample. Some of the samples had the indents situated in the middle, and not spread
out across the sample as seen in the illustration. Others also had a different indent grid than shown
below, though the principle remains the same.

Figure 5 - Simple illustration of the placement of the macro-indents on the samples

The samples were mounted in a brass FIB sample holder which fastened the sample mechanically by 3
screws with a square profiled screwdriver as shown in Figure 6. Mechanical fastening was chosen as
carbon tape showed drift during tilting/rotation of the stage.
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Figure 6 —-Image of the FIB sample holder mounted in the stage’s sample holder

When the sample was not in use, the sample was stored in a plastic container in the NTNU nanolab
cleanroom, containing a bag of silica gel to reduce oxidation.

2.3 Milling procedure
The final procedure for the milling of the cantilevers can be found in Table 1. The tilts given are in
relation to the stage unless specified. A revision of the original parameters were necessary due to the
need for bending the cantilevers to a further depth (5 wm) during fracture testing and an increased need
for swiftness in the machining process. This called for the inclusion of a new step to remove material
from under the cantilever. All the milling were done with regular cross-sections with a 4 passes
multiscan. The multiscan was used to reduce the time needed for milling.

The pictures given in Table 1 were taken with a FEI Helios nanolab 400s dual beam microscope, at an
accelerating voltage of 5 kV and a current of 0,69 nA with a dwell time of 5 um, while the FIB
pictures had a voltage of 30 kV, a current of 0,93 pA and a dwell time of 5 pm.

Approximately, it took 1 hour and 12 minutes to finish a cantilever while also imaging the cantilever
as in step 11 below (see Table 2 for approximate times). This does not include the time needed to
pump/vent the chamber, mounting and removal of sample, correcting microscope parameters, initial
focusing and adjustment of FIB/SEM beam shift.

A multitude of pictures from different angles were taken of the finished cantilever to give needed
information about the cantilever quality to the co-supervisor. The pictures were taken from different
angles to make sure one would be able to spot if there was any redeposition or symmetry errors.
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Table 1 — Final milling parameters

Step 1: Coarse milling of
cantilever base shape
Tilt: 52°

Current: 2,8 nA

Voltage: 30 kV

Depth: 10 um

Time: 20 min.

Step 2: Coarse milling of
cantilever profile

Tilt: 52°

Current: 2,8 nA

Voltage: 30 kV

Depth: 6 + 10 um

Time: 5 min. 30 sec.

Step 3: Coarse milling of
cross-section

Tilt: -9 °

Current: 9,3 nA

Voltage: 30 kV

Depth: 10 pm

Time: 2 x 1 min. 30 sec.

Step 4: Removal of
redeposition under cantilever
Tilt: 7 °

Current: 9,3 nA

Voltage: 30 kV

Depth: 10 pm + 10 um

Time: 2 X 2 min. + 2 X 2 min.

Step 5: Removal of
redeposition on cross-section
Tilt: -9 °

Current: 9,3 nA

Voltage: 30 kV

Depth: 6 um

Time: 2 x 30 sec.
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Step 6: Fine milling of final
cantilever profile

Tilt: 52 °

Current: 0,92 nA

Voltage: 30 kV

Depth: 10 um + 6 um

Time: 7 min.

Step 7: Fine milling of final
cantilever cross-section
Tilt: -9 °

Current: 0,92 nA

Voltage: 30 kV

Depth: 6 um

Time: 2 x 2 min. 30 sec.

Step 8: Milling of hole for
bending

Tilt: 52°

Current: 93 pA

Voltage: 30 kV

Depth: 0,05

Time: 2 sec.

Step 9: Milling of roman
numeral

Tilt: 52°

Current: 93 pA

Voltage: 30 kV

Depth: 1 pm

Time: 1 min.

Step 10: Milling of notch on
grain-boundary

Tilt: 52°

Current: 9.7 pA

Depth: 1 pm

Time: 1 min.

Step 11: Imaging of cantilever

SEM

16
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Table 2 — Approximate time spent in the making of 1 cantilever

Task Time
Milling 52 min
Placement/adjusting/focusing 10 min
Imaging 10 min
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2.3.2 Theoretical dimensions of the cantilever
Presented in Figure 7 are the theoretical ideal dimensions of the cantilevers made in this report. Note
that not all of the cantilevers were of these dimensions. The resulting dimensions were the product of
repeated experiments. The most important part of the dimensions of the cantilevers, are that the batch
made for cyclic loading is of similar size. As long as the lengths and widths are of close magnitude (<
10 um difference) the cantilevers are valid for testing.

GB notch

1,5 um 10 ntr
120° 1 um
20° Ny '

Figure 7 — Schematic of the theoretical dimensions of the cantilevers

{
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2.3.3 Determining safe distance to mill at -9° and 7°
As the need for bending the cantilevers to a further depth became apparent, a revised milling
procedure was necessary. A sufficient depth of 5 um was achieved through the inclusion of an
additional milling step at 7°. It was necessary to calculate the distance from the edge of the cantilever
one could mill from without damaging the cross-section in the process. The trigonometric calculations
used to determine the distance for both the tilt at -9° and 7° are given below.

i

m

=
i
u}

0° 520
FIE
SAMPLE FiB
SAMPLE -
c)

_g“ SE

FIE

i SAMPLE

SAMFPLE

Figure 8 — Overview of the various tilts used during the experimentation and the sample’s relative angles with respect
to the stage/FIB/SEM
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cross-section
area
o o o I
1.5 o
wm 4um
Elvl 30*
120°
30" 30"

Figure 9 —Illustration of the trigonometric calculations for an angle of -9° with respect to the stage

Safe distance at-9°:

o' +h' =w-sin(a) +h-cos(a)
o' +h' =4 pm-sin(29°) + 1,5 um - cos(29°)
w' +h'=325um

Although the calculation is for 29° instead of 30° (as shown in Figure 9), in reality, milling at a 29°

angle in relation to the FIB produced an angle of 30° in the final cross-section. A measurement of the
cross-section angles can be seen in Figure 10.

Figure 10 — SEM angle meassurement of the cross-section profile
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Total height of cross-section.

1,5 um + 2,286 ...* sin(29°) = (1,5 + 1,1) um = 2,6 um

Safe distance at 7°:

At 7° the incident beam angle will be sharper than at -9 ° (see Figure 11). It is therefore required to
calculate a new safe distance to make sure the cross-section is not affected.

ETe Elig

Figure 11 — Schematic showing how the change in angle impacts the cross-section

- H s
1= Sin@ase) ~ oMM

0 = 1,56 um * cos(45°) = 1,1 um

cross-section
area
f o B 6
1.3 h
wm 4um p
30° 30 B

120°
EL Bl

Figure 12 - Illustration of the trigonometric calculations for an angle of 7° with respect to the stage
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Y+A=4um-sin(f)+ 2 *h-cos(B)

4 um - sin(45°) + 2 * 1,5 * cos(45°) = 4,9 um

A distance of 5,25 um was chosen in order to be absolutely certain that the milling at 7° would not
interfere with the cross-section. Through measuring in SEM, it has been shown that milling at 5,25 pm
gives satisfactory results (see Figure 13).

Figure 13 — Height of cantilever after introduction of milling at 7°

2.3.4 Redeposition effect
The redeposition of material on the cantilever during milling has been an unavoidable phenomenon
during fabrication. The effect stems from the ion-solid interactions during cutting.. The redepeosited
material causes numerous problems, including: wrong cross-section dimensions (Figure 15),
roughness on sides of the cantilever, incorrect cantilever height (lowest point on cross-section to
ground level) and uneven material distribution (e.g. material deposited on the sides of the cantilever).
All of these can lead to the cantilever not being useful for testing. It has therefore been quite a
challenge to find ways to control the material redeposition and at the same time produce a cantilever of
correct dimensions and minimum FIB damage.

21



3.97 pum (s)

—~
7}
o
SN
£
=1
o
v
|

4.18 Hw (s)

Figure 14 — An example of the redeposited material on a cantilever after fabrication. Material has redeposited on the
sides of the cantilever, making a difference of about 20 pm in the final cross-section. This is however considered an
acceptable redeposition effect
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Figure 15 — Another example of redeposited material on a cantilever after fabrication. This is not considered an
acceptable redeposition effect

As seen in Table 1, some of the steps have had to be repeated in order to get rid of redeposited
material. During the cuts at -9° and 7°, it has been necessary to portion the milling into multiple steps,
as to lessen the impact of the redeposition. During each milling, a large chunk of the material removed
will be “pushed” over to the other side, thereby increasing the time required for fabrication and
causing complications. By milling a large amount at the start and then incrementally lessen the amount
of material milled at a time, a satisfactory control of redeposited material was achieved.
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2.3.5 FIB damage
Various currents were tested during the experimental part of the thesis. Generally, a smaller current
yields a more concentrated beam profile, and thus impacts the area surrounding the milled area less.
Time however, has been of significant importance in this project, as the FIB is in high demand and is
often booked. Higher currents than would be preferable was chosen as a result.

9.3 nA was the highest current chosen for the rough millings, as it made the machining of the
cantilevers swift and did not show signs of FIB damage unless taking multiple images due to bad
focus. 21 nA was tried for the first rough milling, but was promptly booted as it showed significant
FIB damage both on the cantilever and the surrounding area (milled noticeably into the surface).

For the delicate steps requiring precision, a current of 0,92 nA was chosen. This current was low
enough to give a clear image of the cantilever, as well as yielding satisfactory results for its cross-
section.

2.3.6 lon Beam Shift
Due to the high currents used by the FIB, the sample experienced a lot of current build-up during
imaging and milling. This caused a shift in the ion beam on the order of a few micrometers when
placing the milling patterns on the FIB image. As such, it was often required to take multiple pictures
in FIB to make sure the milling patterns were placed correctly. Since this would be a serious problem
at higher currents (9.3 nA), instead, a larger safety margin was chosen (5,25 um instead if 5 um) to
make up for this beam shift.

2.3.7 Inclusion of notch on grain boundary
A notch was milled on the grain boundary to lessen the time needed for testing and to make sure the
bend would originate in the grain boundary. This however required that the notch would need to be
accurately placed on the grain boundary. To make sure all of it was covered by the notch, the milling
was exaggerated, so the sides of the cantilever were also milled. It was therefore very important that
the height of the notch on the sides of the cantilever were of similar magnitude, as the bending would
experience torsion otherwise (see Figure 16).
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Figure 16 - Sidview of notch o grain boundary

The required force needed to bend the cantilever were also lessened due to the notch, so one or more
additional cantilevers without a notch were included as references in each sample to determine the
difference in force requirements
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2.3.8 Cyclic loading of cantilevers
The cantilevers were bent in a hysitron ti 950 triboindenter both under atmospheric conditions
(without hydrogen) and under the influence of hydrogen (acidic solution). They were loaded to a depth
of 3 um at the start of the project, and to a depth of 5 um nearing the end .A rectangle milled in the
directions of the cantilevers served as a reference to angle the samples correctly using the
triboindenter’s optical microscope. The cross above the roman numerals, milled with the same
distance from the hole on the cantilever for a batch of cantilevers, saved time when using the
triboindenter’s AFM to locate the hole for placement of the needle.
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3. Results and discussion

Overall, a large amount of cantilevers have been fabricated in order to further the understanding of
hydrogen embrittlement at the microscale. A few notable examples will be presented in this part of the
report. The total of the cantilevers fabricated during the experimental period of the thesis can be
viewed in Appendix D.

ST —

‘HV  [mode[mag | WD |det| tilt [
10.00 kV| SE 650x |4.2mm |ETD|52 NTNU NanolLab DualBeam FIB

Figure 17 — SEM image of finished cantilevers from a single crystal FeSi sample
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Table 3 — Cantilevers from FeSi-alloy (sample 1)
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Table 5 — Cantilevers from FeSi single crystal (sample 3)
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Table 6 — Cantilevers from FeSi sample with carbide precipitate on grain boundary (sample 4)
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As can be seen from the images, generally the top-down meassurements corresponds more with the
width of the redeposition on the cross-section. The cross-sectional size without the redeposition is
generally lower by about 20 um. The redeposition stems from the material being pushed from one side
to the other during the final defining of the cross-section profile at -9°. This redeposition can be
removed by having an additional milling at 52 °. However, it was found that the dangers of ruining the
cross-section symmetry were high, so the redeposition were left as it was considered minute.

Table 7 - Results of bend tests for 2 cantilevers without introducing hydrogen (air) and with the introduction of
hydrogen (H)
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In Table 7 are the results of the cyclic loading of two cantilevers from sample 2 (see appendix D). The
introduction of hydrogen to the FeSi-alloy significantly lowered the needed stress to bend the
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cantilever to a depth of 5 pm. This is consistent with the theory, where an concentration of hydrogen
on the grain boundary causes increased dislocation motion. From the experiment, a stress reduction of
80 uN was shown in the hydrogen charged sample.

The stress propagation during the loading of cantilever 2 (hydrogen induced) can be seen in Figure 18.
As can be seen, the stress originates in the grain boundary as expected and a further stress is seen
spreading towards the end of the cantilever as it is deformed. This could be a sign of the hydrogen
thinning effect. A slight torsion effect is also noticed however, which might have impacted the
resulting load curve. The torsion does not come from difference in notch depth, as the cantilevers did
not have a notch milled on their grain boundaries. It might stem from a slight misplacement of the
needle in the triboindenter during bending, a non-centric placement of the hole on the cantilever, the
«hole» defect at the edge of the cantilever, a slip effect during the bending, or a non-uniform weight
distribution of the cantilever.

Viewport: 1 ODE: ENTNUExperimonts/1 FoS._pled_GRC1_AlC1_Av.odb
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Figure 18 — Stress distribution in cantilever 1 in Table 7
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4. Conclusions

A large number of cantilevers has been produced during the completion of this thesis. The cantilevers
were made to be tested through cyclic loading in a triboindenter to determine the hydrogen effect on
the grain boundary of FeSi-alloys. Tests were done in air and acidic solution. The focus of this report
has been on the production of the cantilevers. In the first part of the experimental section, the obtained
procedure for cantilever fabrication is presented.

Throughout the fabrication process, a multitude of problems presented themselves and needed to be
overcome. This report has presented a milling process which will produce cantilevers of good quality
for bend tests.

The problems of redeposition were controlled by gradually decreasing the amount of material milled,
changing the incident beam angle, and repeating certain steps in the milling process.

An increase in current gave the needed fabrication speed to produce cantilever at a satisfactory pace.
Through experimentation it was found that 9,3 nA and 2,8 nA could be used for the rough millings,
while 0,92 nA gave sufficient precision for the fine milling.

Through cyclic loading in a triboindenter, it was found that the introduction of hydrogen to the grain
boundary lowered the required force needed to bend the cantilever to a distance of 5 pm, by 80 pN.
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5. Further work
Further work will be necessary to fully prove the validity of the results herein.

The fabrication procedure of cantilevers can be further improved to produce cantilevers of better
quality, minimizing FIB damage and the effects of redeposition further, and in a swifter fashion.

To fully understand the impact of hydrogen concentrations on the grain boundaries of metals, further
testing of different materials and geometries will be required.

Reproduction of the experiments contained in this report will also aid in the understanding of
hydrogen embrittlement and help ascertain the numeric differences between hydrogen induced fracture
and fracture hydrogen free environments obtained.

I hope that with this report, the fabrication process of the cantilevers will be swift and simple, so the
focus can be directed towards the bending of the cantilevers and the analyzation of the obtained results.
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Appendix B —Required A3-poster describing the project
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Appendix C —Required A3-poster describing the achieved results
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Appendix D — Cantilever images
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