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Abstract:  

Drilling operations of offshore oil and gas fields are characterized by high reliance on 

advanced technology, high risk, and high costs due to operating in harsh ocean environments, 

under complicated geological factors, and extreme operating condition. Lost circulation or well 

“kick” are examples of hazardous events that may occur while drilling wells and such events may 

develop into a blowout accident if not handled. Identification and analysis of root causes and 

consequences are effective measures to prevent serious accidents from happening. The risk of 

having a blowout may change with time, depending on the stage of the drilling operation, and such 

kind of dynamics should be captured in risk assessment. This paper presents an approach for 

determining the conditional probabilities of hazardous events and their consequences. The 

approach includes models that take into account the influence of degradation and (if used in 

operation) new real-time information which represents the change in a state of a model parameter 

(such as state change of mud density) that can be captured while the drilling operation is ongoing. 

The approach presents a newly-developed model based on the basic theory of Dynamic Bayesian 

network (DBN) and this proposed model can incorporate some additional nodes to handle the 

uncertainty issues involving the model uncertainty and relevant parameters’ uncertainty and also 

consider the effect of degradation, which are missed in other papers when using the DBN method 

for risk assessment of similar systems and operations. The main objective of this newly-developed 

model is to demonstrate how dynamic risk assessments can be used for incident prediction 

evolution as well as root cause reasoning during offshore drilling operation, given that a specific 

event has occurred. A bowtie model is established firstly to link the potential incident scenarios 

with pressure regimes and formation load capacity, and then the model is translated into a DBN. 

DBN inference is adapted to perform predictive and diagnostic analysis in different time slices for 

risk assessment and root cause reasoning. A sensitivity analysis is carried out to find the relative 

importance of each root cause in generating the potential drilling incidents. A case study with 

focusing on lost circulation during three drilling scenarios is used to illustrate and verify the 

feasibility of the proposed approach. 
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 Highlights: 

 Potential incident scenarios with pressure regimes and weak formation are presented. 

 A newly-developed model based on Dynamic Bayesian Network is proposed for offshore 



drilling incidents.  

 Effects of model and parameter uncertainty are taken into account.  

 Prediction of risk evolution and root cause reasoning are performed based on the 

influence of degradation and occurred events. 

 

1 Introduction  

Drilling into offshore oil and gas fields with high pressure, temperature, H2S-gases, and weak 

formations such as sand, limestone and fissures will often face challenges such as narrow safe 

drilling fluid density window, multiple pressure systems in vertical direction, and high pressure 

zones. Drilling operations at such fields are more prone to serious problems (here referred to as 

drilling incidents), such as lost circulation and uncontrolled influx to well (“kick”), and blowouts 

(to environment) compared to (less demanding) oil and gas fields. These drilling incidents can 

result in unplanned downtime (which are costly) or may develop into large accidents, with the 

potential to cause fatalities, environmental damages, and full or partially loss of drilling facility 

and well (Crichton et al., 2005; Holland, 1997; Skogdalen et al., 2011). For example, the 

well-known Macondo blowout that occurred during the last stage of a drilling operation resulted in 

11 fatalities and the largest oil spill in the history of offshore oil and gas industry. Predicting early 

kick or lost circulation, and taking necessary precautions, have been regarded as key measures to 

avoid such kind of disastrous accidents (Khan and Abbasi, 1999; Skogdalen and Vinnem, 2012). 

Kick is the first warning and step towards a blowout, and it is therefore important to detect a 

kick as early as possible and to implement efficient measures in due time. Mud weight and 

circulation is the primary barrier to prevent kicks, and lost circulation is an early indication of a 

kick under development. It is reported that drilling operations often experience loss of circulation, 

and it is therefore important to direct the attention to avoid and manage this situation. A loss of 

circulation occurs when the bottom hole pressure in the wellbore is higher than the formation 

pressure, allowing (or forcing) the drilling fluid to flow into the formation. Several researchers 

have focused on the effects of lost circulation (Shen, 2015; Yan et al., 2015), and proposed 

measures to reduce such effects (Alexander, 1989; Sheremetov et al., 2008). Lost circulation is 

usually accompanied by wellbore stability problems, damage of reservoir near well bottom, and 

stuck pipe, and these are the main reasons why kick and even blowout can occur as a consequence. 

Managed pressure drilling (MPD) technology is developed to avoid flow of drilling fluid into the 

formation, and MPD is therefore an important measure to avoid loss of circulation and eliminate 

lost circulation-kick incidents (Hannegan, 2006; Hannegan & Fisher, 2005). Consequently, the 

effects of MPD should be included in risk assessments associated with loss of circulation. 

Bayesian networks (BNs) is a flexible approach to include the effects of drilling systems 

along with other risk influencing factors like well conditions and physical measurements. 

Abimbola et al. (2015) have, for example, proposed a BN-based risk model that considers 

potential scenarios for different pressure regimes. BNs may be derived from other frequently used 

models, such as bow-ties (BTs), fault trees (FTs) and event trees (ETs), for example with basis in 

the BTs, FTs and ETs developed by Khakzad et al. (2013). Bhandari et al. (2015) applied BN 

method to investigate different risk factors associated with MPD and underbalanced drilling deep 

water drilling technologies with respect to blowout accidents. Other approaches for modeling risk 

also exist: Xue et al. (2013) have proposed a safety barrier-based accident model for blowouts 



which is consider the effects of three-level well control (i.e. control using drilling fluid, control 

using circulation and shut-in). Ataallahi and Shadizadeh (2015) have introduced Delphi and fuzzy 

approach into a risk analysis model, and used this model to find and compare the main risk 

influencing factors in exploration drilling, of well completion, and workover of wells after the 

well has been put into production phase. 

The main weakness of the mentioned risk assessment approaches is their inability to capture 

dynamic effects of a drilling operation, such as change of well conditions, new information about 

events that have occurred, and new estimates or measurement of technical state of equipment. FT, 

ET and BT models (which constitute the main elements of most methods proposed) are all unable 

to account for correlation and dependencies between mentioned factors, and the models cannot be 

easily updated under changing conditions and handle the uncertainty issues (Khakzad et al., 2011). 

Models based on BN can overcome these modeling deficiencies, but cannot explicitly treat 

temporary relationships between model parameters (Cai et al., 2015; Hu et al., 2015), i.e. account 

for the fact that relationships of parameters may change from one drilling phase to the next. These 

limitations have already been resolved by introducing dynamic BNs (DBN). DBN builds on BNs, 

but have additional features that allow the incorporation of events, conditions, and 

interrelationships that may change over time. Cai et al. (2013) have explored the use of DBN in 

performance evaluation of subsea blowout preventer BOP considering imperfect repair. DBNs 

have also been introduced for the same purpose in other industry sectors, such as for monitoring 

the risk of tunnel-induced road surface damage (Wu et al., 2015) and for studying the risk of life 

extension of fire water pump (Ramírez and Utne, 2015).  

The application of DBN is an alternative to the traditional risk techniques in terms of 

applying the conditional dependencies, and updating initial failure probabilities of root causes 

when additional information is available. What seems to be missing is the possibility to 

incorporate the effects of both model uncertainty and parameter uncertainty. Parameter uncertainty 

may exist due to prior knowledge being from existing literature, while model uncertainty may 

relate to uncertainty about the logical relationship between model parameters. Both of these are 

relevant in situations where experience is limited and the causal relationship is not well 

understood. In addition, current DBN based models assume that parameters of conditional 

probability and failure rates are time-invariant (Cai et al., 2013; Hu et al., 2011)  , but in practices 

many failures in mechanical equipment follow other probability distribution, e.g. Weibull. The 

main motivation for this paper is therefore to  present a newly-developed approach based on 

DBN theory for risk modeling, by integrating parameter uncertainty of prior knowledge, by 

introducing failure probability distribution according to the Weibull rules, and by allowing that 

causal relationships may be uncertain. The modeling techniques by (Kjaerulff and Madsen, 2008) 

are used to handle the model uncertainty issues. The proposed approach may be used to 

systematically perform the predictive, diagnostic and sensitivity analysis for risk assessment. A 

case study is introduced to demonstrate the application of the proposed risk models for lost 

circulation during three drilling operations.  

The rest of this paper is organized as follows. Section 2 presents three drilling scenarios with 

the MPD technology. In section 3, the fundamental theory of BN and DBN will be briefly 

introduced. In section 4, a DBN-based risk assessment model is developed by incorporating some 

additional nodes to handle the uncertainty issues involving the model uncertainty and relevant 

parameters’ uncertainty and the effect of degradation is also considered for the drilling incidents. 



The proposed method is applied for incident prediction evolution as well as root cause reasoning 

regarding lost circulation in the case study of section 5. Section 6 provides the conclusion and 

research perspectives of this study.  

 

2. Manage pressure drilling (MPD) technology 

MPD is regarded as a powerful drilling hazard mitigation technique for offshore drilling and 

is defined by International Association of Drilling Contractors (IADC) Underbalanced Operations 

Committee as “an adaptive drilling process used to precisely control the annual pressure profile 

throughout the wellbore”. The aim of MPD is to ascertain the down hole pressure environment 

limits and to manage the annular hydraulic pressure profile accordingly (Stamnes et al., 2008). An 

MPD system consists of the following main systems: a rotating control device (RCD), an 

automated dynamic annular pressure control (DAPC) system, a backpressure pump, a DAPC 

choke manifold, a flowmeter (Elliott et al., 2011). The RCD is also regarded as first barrier to seal 

between the annulus and drillstring by creating a closed circulation system different from 

normally open circulation system, and therefore the flow of mud out from the annulus can be 

controlled by an automated choke. The DAPC system is used to maintain the constant bottom hole 

pressure (BHP) through providing the backpressure on the annulus by continuously adjusting the 

DAPC chocks and backpressure pump. A flowmeter provides the flow-out data and kick detection 

is predicted by monitoring flow-in data (Vajargah and van Oort, 2015). MPD drilling techniques 

include constant bottom hole pressure (CBHP), pressurized mud-cap drilling, and dual gradient 

drilling (Rehm et al., 2013). The case study selected for this paper focuses on the use of CBHP as 

a measure to prevent or mitigate drilling hazards, such as differential sticking, lost circulation and 

kicks, on a development well in a pressurized, fractured basement with narrow downhole 

environmental limitation. The MPD system can also optimize the rate of penetration, reduce 

non-productive time and the number of casing strings relative to conventional drilling techniques, 

and deepen casing set points. The typical offshore MPD system is illustrated in Fig.1.  

 

 
Fig.1 MPD system (Elliott et al., 2011) 

    During a drilling operation, it is required to always maintain two functioning well barriers: 

The primary barrier, which is the active balancing of drilling fluid (i.e. mud) to avoid 



hydrocarbons escaping from the well, and the secondary barrier, which is the BOP. The BOP 

consists mainly of BOP control system and BOP stack, used to seal, control and monitor oil and 

gas wells to prevent blowout, the uncontrolled release of crude oil and/or natural gas from well. 

The MPD system can be regarded as being part of the primary barrier, as the system applies 

backpressure control to maintain control with BHP (Patel et al., 2013). The hydrostatic pressure of 

the drilling fluid column must take into account the correct balance between BHP and formation 

fracture pressure (FFP).  

The formula for determining the BHP (Rehm et al., 2013) varies for different types of drilling 

operations. Three types of drilling operations have been considered in this paper: not circulating, 

tripping in, and circulating. When the rig pump is not circulating the drilling fluid, the static BHP 

is defined as:    

BHP௦௧௔௧௜௖ ൌ ௗܲ௙௖ ൌ ௗ݄݃ߩ ൅

௕ܲ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ1ሻ   
where ௗܲ௙௖	 is the hydrostatic pressure of the drilling fluid column, 	  ௗ is the density of drillingߩ

fluid and, g stands for gravitational acceleration, h is drilling fluid height, and ௕ܲis the 

backpressure of wellhead.    

When the drillstring is tripping in the wellbole, the dynamic BHP is defined as: 

BHPௗ௬௡௔௠௜௖ ൌ ௗܲ௙௖ ൅ ௦ܲ௚

ൌ ௗ݄݃ߩ ൅ ௦ܲ௚

൅ ௕ܲ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ2ሻ 
where ௦ܲ௚ is the surging pressure caused by drillstring tripping in the wellbore, and	 ௕ܲ is the 

backpressure of wellhead. 

When the rig pump is on and circulating the drilling fluid, the dynamic BHP is defined as:   

BHPௗ௬௡௔௠௜௖ ൌ ௗܲ௙௖ ൅ ௙ܲ௖

ൌ ௗ݄݃ߩ ൅ ௙ܲ௖

൅ ௕ܲ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ3ሻ 
where ௙ܲ௖	 is the frictional pressure due to pumping the drilling fluid through the drillstring, and 

௙ܲ௖	 is the backpressure of wellhead. 

In this paper, the main focus is on the control a CBHP to avoid drilling fluid loss. If the MPD 

system fails to perform this function, the result may be serious, such as differential sticking and 

lost circulation. Lost circulation does not simply means the loss of a few dollars of drilling mud, 

but it can be disastrous as a blowout. Drilling crew therefore pays close attention to monitoring of 

tanks, pits, and flow from the well, to quickly assess and control the lost circulation. This paper 

studies the causes and effects of lost circulation for the three mentioned, considering the 

performance of the MPD system and other influencing factors. 

3 Theoretical basis for Dynamic Bayesian Networks 

Dynamic Bayesian Networks (DBNs) is an extension of Bayesian Network (BNs). This 

section highlights some selected points about the theoretical of BNs as well as DBNs.  

 

3.1 Bayesian Networks  

A BN is a combination of graph model and probability theory, consisting of a directed acyclic 

graph (DAG) and an associated joint probability distribution (JPD) (Nielsen and Jensen, 2009). In 

a DAG, nodes including parent nodes and child nodes represent random variables, and links 



determine probabilistic dependences between variables. A conditional probability table (CPT) for 

discrete variables is defined for the relationship among parent nodes to demonstrate marginal 

probability. Assuming ܲܽሺ ௜ܺሻ  is the parent node of ௜ܺ , the CPT of ௜ܺ  is denoted by 

ܲሺ ௜ܺ	 |	 ܲܽሺ ௜ܺሻሻ. Therefore, the JPD,Pሺ ଵܺ, . . . , ܺேሻ, can be rewritten as Eq. (4). 

Pሺ ଵܺ, . . . , ܺேሻ ൌ ∏ܲሺ ௜ܺ	 |	 ܲܽሺ ௜ܺሻሻ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ4ሻ       

The quantification of probabilities in BNs includes to two steps: assigning prior probabilities 

to the parent nodes, and defining CPT of child nodes by combining a priori knowledge. Such 

knowledge can be from expert judgment, or observations.  

3.2 Dynamic Bayesian Networks 

A DBN is a type of BN which is used to model time-series data by introducing relevant 

temporal dependencies, so as to describe the dynamic behavior of random variables (Hu et al., 

2011). A DBN consists of a sequence of time slices and temporal links. Each slice represents a 

static BN to describe variables in the corresponding time step and temporal links between 

variables in different time slices represent a temporal probabilistic dependence. A DBN is an 

extension of BN to model probability distribution over semi-infinite collection of random 

variables. The CPT of each variable in DBN can be calculated independently, facilitating the 

interpretation of DBN. 

In general, there are two assumptions for a DBN construction interconnected time slices of 

static BNs. Firstly, the system is considered as the first-order Markovian (i.e.,Pሺܺ௧| ଵܺ, . . . , ܺ௧ିଵሻ ൌ

Pሺܺ௧|	 ܺ௧ିଵሻ. Secondly the transition probability Pሺܺ௧|	 ܺ௧ିଵሻ is the same for all the t. Therefore, 

a DBN can be defined by a pair of BNs (B1, B→ ): where B1 is a BN which defines the prior P(X1), 

and B→ is a two-slice temporal Bayesian net (2TBN) that defines the transition and observation 

models as a product of the CPTs in the 2TBN (Murphy, 2002), as seen in Eq. (5).  

Pሺܺ௧|	 ܺ௧ିଵሻ ൌෑܲሺܺ௧
௜	 |	 ܲܽሺܺ௧

௜ሻሻ

ே

௜ୀଵ

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ5ሻ 

                   

where  

 ܺ௧
௜ is the ith node in time-slice t,  

 ܲܽሺܺ௧
௜ሻ denotes the parent of ܺ௧

௜, which may be in the same time-slice t or previous 

time-slice t-1, and  

 N indicates the number of random variables in	 ܺ௧
௜. 

The nodes in the first time-slice of a 2TBN have unconditional initial state distribution, 

Pሺ ଵܺ
ଵ:ேሻ, while each node in the second time-slice has an associated CPT. Then, for a DBN with T 

slices, the joint distribution can be obtained by “unrolling” the network as expressed in Eq. (6). 

Pሺ ଵܺ:்
ଵ:ேሻ ൌෑ ஻ܲଵሺ ଵܺ

௜ 	 |	 ܲܽሺ ଵܺ
௜ሻሻ ൈෑෑ ஻ܲ→ሺܺ௧

௜	 |	 ܲܽሺܺ௧
௜ሻሻ

ே

௜ୀଵ

்

௧ୀଶ

ே

௜ୀଵ

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ6ሻ 

                
 

Several inference algorithm (Murphy, 2002; Neapolitan, 2004) have been proposed for DBN 

modeling. In this paper, the forwards-backwards inference and mutual information are used for 

Bayesian inference. The main benefit of introducing DBN for risk assessment may be summarized 

as follows: 

 A DBN as an excellent tool for many types of probabilistic inference can make all 



relevant qualitative and quantitative analysis in a full probabilistic model, including a 

broad variety of modeling schemes in a single framework and a large collection of exact 

and approximate inference techniques from the BN applied to dynamical process. 

 A DBN is more acceptable for predicting values of variables and capable of revealing the 

system state at any time. At a time slice new information about model parameters may be 

incorporated into the model, the value of a variable can be calculated based on 

probabilistic inference. This information may be in the format of: 

1) Updated probabilities, updated only on the basis of the associated probability 

distribution and the elapsed time. 

2) Updated probabilities, considering new real-time information, such as a change in a 

state of a model parameter. 

3) A combination of the two above, using Bayesian update. 

 

4 Development of a DBN-based risk assessment model  

DBN is in this paper introduced as an approach to enhance the safety and reliability of 

drilling activities of complex offshore wells. The DBN is used as basis to set up a risk assessment 

model consisting of factors that may lead to drilling incidents, the causal relationship between 

them, and the effects of measures available to prevent the escalation. The model is used to perform 

the prediction for occurrence probability of drilling incidents over time and compare risk among 

the different drilling processes. The overall workflow needed to derive the model and apply it for 

risk assessment is shown in Fig. 2. As seen in the figure, there are three main steps: Hazard 

identification, DBN establishment, and DBN-based risk assessment. 

Step 1
Hazard identification

Develop  drilling scenarios  

Identify root cause, 
barriers and consequence  

Build the causal relationship

Step 2
DBN development

Mapping algorithm

Translate BT to DBN

DBN development

Time-based
CPTs

Step 3
DBN-based risk 

assessment

Predictive analysis

Diagnostic analysis

Sensitive analysis

Decision making

BT model establishment
including FT and ET

Space-based
CPTs

Validation of the model  
 

Fig. 2. DBN-based risk assessment model for drilling incidents 

 

The particulars of the presenting model are specified as: 

 Step 1: A BT model is integrated, so that the cause-consequence chain or causal 

relationships can be easily identified and evolvement of drilling incidents can be foreseen.  

 Step 2: Uncertainties related to DBN model construction and failure data are considered. 

The parameters of CPTs from the previous time to the current time used in the proposed 

model are assumed both time-variant and time-homogeneous. 

 Step 3: Estimation does not only focus on forward analysis, but also dynamics given any 

event occurring drilling process. In addition, the occurrence probability of a top event as a 



function of time will be evaluated. The root cause reasoning and the development trend of 

underlying consequence are discussed given the occurrence of top event in diagnostic 

analysis. 

 

4.1 Step 1: Hazard identification 

A BT model can provide visual explanation of a complete accident scenario evolution and are 

widely applied in hazard identification and risk analyses (De Dianous and Fiévez, 2006). A 

simplified BT is shown in Fig. 3(a), with three main parts: The left side, the middle, and the right 

side. On the left side is a FT, identifying the causes of an unwanted event (which is placed in the 

middle), and on the right side there is an ET, identifying the possible outcomes given the effects of 

mitigating measures.  

The following notations will be used in the rest:  

 Root causes (RC), the basic events of the FT,  

 Intermediate event (IE), which can be substructures of the FT,  

 Top event (TE), the unwanted event that is placed in the middle of the BT,  

 Safety barriers (SB), mitigation measures to reduce the severity of potential consequences 

(C).  

Once hazards have been identified, the bow-tie model can be applied to further build the 

causal relationships. This process for hazards identification is considered a difficult task for 

complex offshore wells, especially the drilling with high temperature and pressure information. 

 

 

Fig. 3. Translating from BT to BN (a) simplified BT model (b) simplified BT model 

 

The detailed steps for hazard identification are explicitly illustrated as follows. 

(1) Develop drilling incidents scenarios based on the drilling operations and pressure regime 



in section 2. 

(2) Collect available safety-based information about hazards including ocean environment 

factors, geological factors, drilling technology, and human factors ect.., incidents (kick, lost 

circulation ect.) or underlying consequences (blowout ect.) associated with the drilling operation 

in question, using the relative standards, literature, accident reports and experts input. 

(3) Develop BT based on the FT and ET theory for drilling incidents, and the BT should be 

reviewed by relevant personnel from operations, maintenance, safety and management, etc. 

(4) Describe the explicit causal relationships among the root causes, target incidents and 

consequences and define the state of each root cause and the corresponding failure data. 

But the application of BT in the risk analysis suffers the limitation of updating probability 

and cannot take uncertainty into consideration (Khakzad et al., 2011). More importantly, because 

of being composed of static structures such as FT and ET, BT has not widely been recognized in 

the context of dynamic analysis. To consider dynamic behavior over time, the BT model needs to 

be transformed into DBN for dynamic risk assessment. The dynamic behavior over time consists 

of three aspects as follows: 

 The evolution tendency of the TE can be predicted over time after the actual evidences 

of root causes are collected in different time-slices. 

 The occurrence probability of having TE and experiencing corresponding consequences 

will be predicted given the current status of root causes detected at any time. 

 The failure probabilities of any root cause at previous time can be calculated when the 

status of this cause at current time is detected. 

 

4.2 Step 2: DBN development 

4.2.1 Mapping BT to BN  

The translating algorithm from BT to BN consists of FT mapping and ET mapping(Khakzad 

et al., 2013). First, the mapping from FT into BN includes a graphical and probability translation 

based on the previous work (Bobbio et al., 2001). Fig. 3(b) illustrates the simplified procedure of 

mapping FT and ET into BN. In the graphical translation phase, each root cause, intermediate 

event and top event of FT is translated into a corresponding root node, intermediate event (IE) 

node and top event (TE) node of BN, respectively. The nodes of BN are linked in the same way as 

the corresponding events in the FT. In the probability translation phase, the failure probabilities of 

the root causes are assigned to the corresponding parents nodes as prior probabilities. The 

connections between events such as “AND gate” and “OR gate” are translated into equivalent 

conditional probability tables (CPT) in BN.  

Bearfield and Marsh (2005) present a mapping algorithm from ET into DBN, which includes 

safety barriers and consequence translation. Each safety barrier of ET is translated into a 

corresponding barrier node with two states (functioning and failure) and the consequences of ET 

are translated into a corresponding consequence node with multiple states as the number of the 

event tree consequences. The state probability of the consequence node is influenced by the state 

of the barrier node. The failure probability of safety barriers is assigned to the prior probabilities 

of corresponding barrier nodes. It is noted that the CPTs of the corresponding consequence node 

are assigned base on the expert judgment.   

4.2.2 Simplified DBN model development 

As state of the node or the occurrence probability of the node e.g. failure is changing over 



time，a simplified DBN is established by extending the BN formalism within three time-slices 

from at time t=0, t=t1 to at time t=t2, as presented in Fig. 4(a). The time interval is the same 

between 0 and t1 or t1 and t2. As indicated in Fig. 4(a), the root nodes RC1, RC2, RC3 and RC4, 

and barrier nodes SB1 and SB2 are extended from 0th to t1 or from t1 to t2 with inter-slice arcs, 

respectively. There are no inter-slice arcs assigned for other nodes except for root nodes and 

barrier nodes because the inter relationship over time is not discussed in this paper. Each root 

nodes of DBN can take two states, YES and NO. The state YES denotes that a root cause occurs, 

while NO means that the root cause doesn’t occur. IE/TE can take states True or False. The state 

True and False refers to the IE/TE occur and do not occur, respectively. Each barrier nodes of 

DBN also involve two states, namely, Success and Failure. The state Success and Failure refers 

whether or not the barrier is able to carry out its safety function or not.  

Fig. 4. Simplified DBN modeling (a) without model uncertainty and (b) with model uncertainty for three 

time-slices  

This proposed model can handle the uncertainty issues involving the model uncertainty and 

parameters uncertainty.  

(1) Modeling uncertainty is necessary due to the lack of the accurate determination of a 

causal relationship between the nodes and their parents, e.g. the relationship between the 

nodes RC1 and RC2 cannot completely follow the OR-gate. To handle the model 

uncertainty, the nodes denoted as MU as shown in Fig.5 (b) is introduced by modifying 

its CPT and constant with different time-slices. MU can take the states OR and AND, 

which refers to the IE follow the OR-gate or the AND-gate. The CPT of IE1 can be 

assigned as seen Table 1, e.g. PሺIE1 ൌ True|RC1 ൌ YES, RC2 ൌ YES,MU ൌ ORሻ ൌ 1. 



 

Table 1 CPT for IE1 node 

RC1 RC2 MU IE1 

YES NO YES NO OR AND True False 

1 0 1 0 1 0 1 0 

1 0 1 0 1 0 1 0 

1 0 0 1 1 0 1 0 

0 1 0 1 1 0 0 1 

1 0 1 0 0 1 1 0 

0 1 1 0 0 1 0 1 

1 0 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 

 

(2) Parameters uncertainty can be split into the space-based and the time-based.  

 The space-based parameters uncertainty occurs when linking the root nodes (Ri) to 

IE nodes (IEj), which is based on the uncertainty of the root causes itself, e.g. the 

node RC3 and RC4 which represent the formation fracture pressure and formation 

porosity are influenced by uncertainty effect of geology information for offshore 

drilling operation. We can handle this uncertainty by using Noisy AND-gate or 

Noisy OR-gate algorithm (Neapolitan 2004). If we assume that PሺIE2 ൌ

True|RC3 ൌ YES, RC4 ൌ NOሻ ൌ 0.04andPሺIE2 ൌ True|RC3 ൌ NO, RC4 ൌ YESሻ ൌ

0.05, we can get PሺIE2 ൌ True|RC3 ൌ YES, RC4 ൌ YESሻ ൌ 0.088.	 The CPT can 

be assigned as seen Table 2. 

 

Table 2 CPT for IE2 node 

RC3 RC4 IE2 

YES NO YES NO True False 

1 0 1 0 0.088 0.912 

0 1 1 0 0.04 0.96 

1 0 0 1 0.05 0.95 

0 1 0 1 0 1 

 

 The time-based parameters uncertainty occurs when linking the root nodes (Ri
tj-1) at 

the previous time  tj-1 to the root nodes (Ri
tj) at the current time tj. The CPTs are 

assumed time-invariant if prior knowledge is usually obtained in accordance with 

accident statistic and literature reviews, e.g. the occurrence probability of for a 

specific change in density is P which is prior probability and assumed to be constant 

over time. We assumed when the root cause occurs at time t-1, the root cause will 

not occur at time t. It means that the root cause can be adjusted in a perfect state in 

the current time interval. The CPTs is therefore assigned as shown in Table 3, when 

Pሺܴ௧௝
௜ ൌ YES|	 ܴ௧௝ିଵ

௜ ൌ YESሻ ൌ 	 0	 and	 Pሺܴ௧௝
௜ ൌ NO|	 ܴ௧௝ିଵ

௜ ൌ YESሻ ൌ 	 Pሺܴ௧௝
௜ ሻ. 

 

Table 3 CPT for two time slices 

tj-1 tj 



YES NO 

YES 0 1 

NO P(Ri
tj) 1-P(Ri

tj) 

The CPTs are regarded as the time-variant if failures for root causes such as 

equipment failure and safety barrier failure follow the Weibull distribution. The 

degradation influence is considered to estimate the parameters of CPTs. If Pሺܴ௧௝
௜ ൌ

YES|	 ܴ௧௝ିଵ
௜ ൌ YESሻ ൌ 1 െ eെሺλt݆െ1ሻ

ߙ
and 	 Pሺܴ௧௝

௜ ൌ YES|	 ܴ௧௝ିଵ
௜ ൌ NOሻ ൌ 1 െ eെሺλt݆ሻ

ߙ
, 

we have CPTs which is assigned as listed in Table 4, where λ	 and	 α denote the 

scale parameter and shape parameter, respectively. 

 

Table 4 CPT for two time slices 

tj-1 
tj 

YES NO 

YES 1 െ eିሺ஛୲ೕషభሻ
ഀ
 eିሺ஛୲ೕషభሻ

ഀ
 

NO 1 െ eିሺ஛୲ೕሻ
ഀ
 eିሺ஛୲ೕሻ

ഀ
 

 

4.3 Step 3:DBN-based risk assessment 

In this step it is proposed to utilize DBN for the three mentioned decision-support scenarios:  

 Predictive analysis, meaning to estimate the risk evolution of drilling operation over time 

and forecast development in the risk of a drilling operation given the current state of 

knowledge.  

 Diagnostic analysis, meaning to detect and investigate the most likely causes of a drilling 

incident using backward analysis when the top event occurs. 

 Sensitivity analysis, meaning to check to what extent the results of the predictive or 

diagnostic analysis is influenced by specific parameters which are regarded as uncertain. 

4.3.1 Predictive analysis 

Predictive analysis aims to predict the future risk evolution tendency of drilling operation 

over time and forecast development in the risk of a drilling operation given the current state of 

knowledge, using the forward inference technical in DBN. The occurrence probability distribution 

of a top event at time t under the combination of root causes ሺܴ௧
ଵ,⋯ܴ௧

௜ሻ and the occurrence 

probability distribution of the corresponding consequence (C) under the combination TE and 

safety barriers ሺܤ௧
ଵ,⋯ܤ௧

௜ሻ. The state of each root cause or safety barrier is treated as input by 

CPTs into DBN model. Probability distribution of TE/C, represented by P (TEt=te)/ P(Ct=c), is 

calculated by Eq. (7) and Eq. (8).  

ܲሺܶܧ௧ ൌ ሻ݁ݐ ൌ ܲ൫ܶܧ௧ ൌ ௧ܧܫห݁ݐ
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁൯ 

ൈ ܲ൫ܧܫ௧
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁, ܴ௧
ଵ ൌ ⋯,ଵݎ , ܴ௧

௜ ൌ  ௝൯         (7)ݎ

where, te stands for the state of a top event TEt; ݅ ௝݁ stands for the state of intermediate event IEt 

and rj stands for the state of root nodes ܴ௧
௜; ܲሺܶܧ௧ ൌ ௧ܧܫ|݁ݐ

ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ
௜ ൌ ݅ ௝݁ሻ refers to the 

conditional probability distribution of TEt; ܲሺܧܫ௧
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁, ܴ௧
ଵ ൌ ⋯,ଵݎ , ܴ௧

௜ ൌ  ௝ሻ refersݎ

to the joint probability distribution of IE nodes and root nodes. 

ܲሺܥ௧ ൌ ܿሻ ൌ ܲ൫ܥ௧ ൌ ܿหܶܧ௧ ൌ ,݁ݐ ௧ܤ
ଵ ൌ ܾଵ,⋯ , ௧ܤ

௜ ൌ ௝ܾ൯ ൈ 

ܲሺܶܧ௧ ൌ ሻ݁ݐ ൈ ܲሺܤ௧
ଵ ൌ ܾଵ,⋯ , ௧ܤ

௜ ൌ ௝ܾሻ                   (8) 

where, c stands for the state of consequence Ct; and bi stands for the state of root nodes Bi; 



ܲ൫ܥ௧ ൌ ܿหܶܧ௧ ൌ ,݁ݐ ௧ܤ
ଵ ൌ ܾଵ,⋯ , ௧ܤ

௜ ൌ ௝ܾ൯ refers to the conditional probability distribution of Ct; 

ܲሺܤ௧
ଵ ൌ ܾଵ,⋯ , ௧ܤ

௜ ൌ ௝ܾሻ refers to the joint probability distribution of barrier nodes. 

   The risk of a drilling operation given the occurrence of root causes (ܴ௧
௠ ൌ  ௠), representedݎ

by	 ܲ൫ܶܧ௧ ൌ ௧ܴ|݁ݐ
ଵ ൌ ⋯,ଵݎ , ܴ௧

௠ ൌ ⋯,௠ݎ , ܴ௧
௜ ൌ  ௝൯, can also be calculated by Eq.(9)ݎ

ܲሺܶܧ௧ ൌ ௧ܴ|݁ݐ
௠ ൌ ௠ሻݎ ൌ ܲ൫ܶܧ௧ ൌ ௧ܧܫห݁ݐ

ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ
௜ ൌ ݅ ௝݁൯ 

ൈ ܲሺܧܫ௧
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁，ܴ௧
ଵ ൌ ⋯,ଵݎ , ܴ௧

௠ ൌ ⋯,௠ݎ , ܴ௧
௜ ൌ  ௝ሻ           (9)ݎ

where, ܲሺܶܧ௧ ൌ ௧ܧܫ|݁ݐ
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁ሻ refers to the conditional probability distribution of 

TE; ܲሺܧܫ௧
ଵ ൌ ݅݁ଵ,⋯ , ௧ܧܫ

௜ ൌ ݅ ௝݁	 ܴ௧
ଵ ൌ ⋯,ଵݎ , ܴ௧

௠ ൌ ⋯,௠ݎ , ܴ௧
௜ ൌ  ௝ሻrefers to the joint probabilityݎ

distribution of IE nodes and root causes given the occurrence of root causes (ܴ௧
௠ ൌ  .(௠ݎ

Generally, P(TEt=te),P(Ct=c) or 	 ܲሺܶܧ௧ ൌ ௧ܴ|݁ݐ
௠ ൌ ௠ሻݎ  can serve as an indicator to 

evaluate the risk, informing decision makers to take proper measures.  

 

4.3.2 Diagnostic analysis 

Diagnostic analysis aims to obtain the posterior probability distribution of each root causes 

when a TE occurs at certain time, which is performed through backward analysis of DBN. The 

underlying causes with the largest occurrence probability or the occurrence probability above the 

acceptable safety level can then be detected by means of posterior probability distribution, 

reminding engineers to pay more attention for these causes. Posterior probability distribution of 

root nodesܴ௧
௜, represented by	 ܲ൫ܴ௧

௜ ൌ ௧ܧܶ|௜ݎ ൌ  .൯, can be calculated by Eq. (10)݁ݐ

ܲ൫ܴ௧
௜ ൌ ௧ܧܶ|௜ݎ ൌ ൯݁ݐ ൌ

௉ቀܶܧ௧ ൌ ቚܴ௧݁ݐ
௜ ൌ ௜ቁൈ௉ሺோ೟೔ୀ௥೔ሻݎ

௉ሺ்ா೟ୀ௧௘ሻ
                   (10) 

Normally,	 ܴ௧
௜ is more likely to become the key root cause at time t leading to the occurrence 

of the TE when ܲ൫ܴ௧
௜ ൌ ௧ܧܶ|௜ݎ ൌ  .൯ is close to 1݁ݐ

 

4.3.3 Sensitivity analysis 

Sensitivity analysis, meaning to check to what extent the results of the predictive or 

diagnostic analysis is sensitive to specific parameters regarded as uncertain. The important degree 

of root cause to the top event can be analyzed by applying Shannon’s mutual information (entropy 

reduction), which is one of the most commonly used measurement for ranking information 

sources(Kjærulff and Madsen, 2006). The mutual information is the total uncertainty-reducing 

potential of R, given the original uncertainty in Ri prior to consulting Rj. Intuitively, mutual 

information can measure how much knowing one of these variables reduces our uncertainty about 

the other. The mutual information of Ri and Rj is given by:  

      
   

,
, , log

i j

i j i j
i j i j

P R R
I R R P R R

P R P R
                       (10) 

where P(Ri, Rj) is the joint probability distribution function of root cause Ri and Rj, and P(Ri) 

and P(Rj) is the probability distribution of root cause Ri and Rj, respectively. 

 

4.4 Validation of the model 

Validation for a newly-develop model is a significant process of checking whether it will 

provide a reasonable amount of confidence to meet its specification and produce the required 

results in a sound, defensible and well-grounded way. It seems to become an impractical exercise 



to gather the all monitored data to perform a fully comprehensive validation for a newly-develop 

model because it ideally requires to cover the complete range of possibilities. The validation in 

this paper including the model development process, the model usability and results comparison 

has been therefore carried out to partially verify the proposed model.  

 Validation of model development process means to verify the newly-develop model 

to be constructed in a reasonably, defensibly and realistically way. 

 Validation of model usability means to check sensitivities of results by modeling the 

change of inputs data by three-axiom-based validation method by Jones et al. 

(2010). 

 Validation of model results means to evaluate the results generated from a 

developed model involving model parameters inputs, and make the result more 

reasonable by a comparison with that of another approach such as fault tree and 

static Bayesian network using existing data.  

1) The proposed model is developed based on a Bowtie model illustrated in Fig. 3 that 

is also used for translating to meet the requirement for dynamic risk assessment. 

Examination of development process, illustrated in Fig. 4, consists of checking both 

effect of uncertainty and degradation. As an example, it is not clear whether the 

relationship between RC1 and RC2 follows rule of OR-gate or AND-gate and what kind 

of effect it will bring. Uncertainty effect about model and parameters is therefore to be 

validated by comparing the model without MU nodes and that with MU nodes by taking 

probabilities range of OR-gate [0, 1]. The results, seen as in Fig. 5, reveal that the 

occurrence probability of the top event will be revised from 1.9ൈ10-3 to 3.61ൈ10-2 given 

every root cause taking the initial probabilities 0.1 in YES state under not considering 

effect of parameter uncertainty, while that will be changed from 9ൈ10-5 to 1.7ൈ10-3 

under considering that. The validation for degradation effect given MU nodes 

probabilities (0.3, 0.7) is carried out by comparing the occurrence probability not taking 

degradation effect (time-invariant CPT) with that taking degradation effect (time-variant 

CPT) as listed as in Table 3 and Table 4. The results (seen as in Table 5) also indicate that 

the occurrence probability of the top event will change slightly former and increase later. 

The change of occurrence probability can be explained reasonably due to the 

consideration of the causal relationship and parameters uncertainty and degradation 

effect. 

 
Fig. 5 Occurrence probability under MU nodes with OR-gate taking different probabilities 

Table 5 Comparison for degradation 

Time slice DBN without 

degradation effect 

DBN with  

degradation effect 



0 0 0 

1 5.7E-04 5.7E-04 

2 5.6E-04 9.7E-04 

 

2) Validation of model usability as illustrated in Fig. 4, is to check whether sensitivities of 

results by modeling parameters inputs is expected. At the initial time, the prior 

probabilities for all root causes are set to 0.1, and probability of MU nodes is taken by 

(0.3, 0.7). When the probabilities of root causes including RC1, RC2, RC3, and RC4 are 

set to 1 in sequence and keep the probability of MU nodes constant, the occurrence 

probability of the top event will gradually increase from 5.7ൈ10-4 to 3.3ൈ10-3, 9ൈ10-3, 

4.48ൈ10-2 and 8.8ൈ10-2, respectively. The exercise of increasing the failure probability of 

each root cause one after another will meet the axiom specification and produce the 

required results, thus giving a partial verification to the newly-developed model. 

3) The results have been validated by the special case with “lost circulation” in not 

circulating scenario using the existing partial data seen as Fig. . The results from the fault 

tree (FT), BN with average probability failure on demand (PFDavg)(Rausand, 2014) and 

DBN with probability failure on demand (PFD(t)) and PFDavg (Rausand, 2014) are 

compared for a period with 4 time slices, which is seen as in Table 6. The basic event 

with these of the occurrence probability is listed as Table 7 and Table 8. The results has 

indicated that the magnitude of occurrence probabilities almost keep the same. The 

difference of results between FT and BN is caused by the uncertainty issues, while that 

between BN and DBN can be explained by the effect of degradation. This part can make 

the final results from the newly-developed model more reasonable. 

Table 6 Comparison final results of for different methods 

Time FT BN DBN with 

PFD(t) 

DBN with 

PFDavg 

t=0 8.00E-05 5.00E-05 0 0 

t=360 8.00E-05 5.00E-05 2.00E-05 9.40E-07 

t=720 8.00E-05 5.00E-05 7.00E-05 2.60E-05 

t=1080 8.00E-05 5.00E-05 1.40E-04 5.00E-05 

 

5 Case study 

A case study for an offshore well related to lost circulation is carried out in this section. An 

offshore drilling well in BD oil and gas field in Madura is considered as the equipment under 

protection. The highest wind events (thunderstorms) will result in maximum wave heights that are 

relatively small according the statistics. The interface of the target oil and gas reservoir pressure is 

approximately 8090 psi, which is equivalent to the pressure coefficient 1.68, and formation 

temperature is about 151.7℃, belonging to the high-temperature and high-pressure system. Lost 

circulation or kick is likely caused by the very light gray and low-density limestone reservoir with 

narrow drilling fluid density window and high pressure. Therefore, the MPD technology is 

adapted in this application.  

 

5.1 Risk identification for lost circulation 



A BT model is firstly developed for risk identification of lost circulation in the three drilling 

operations. Fig.6 and Fig.7 show the fault tree and event tree of lost circulation in BT model. 

Considering well lost circulation as an undesired event among such drilling incidents, the potential 

causes and consequences have to be determined. As indicated in Fig.6 (a), (b) and (c), three fault 

trees are established for modeling different drilling operations involving not circulating, tripping 

in and circulating process. The root causes of lost circulation are collected and investigated. 

According to the section 2, the overbalanced drilling condition is likely to result in the loss of mud. 

As drilling encountering limestone and fissures formation, the likelihood of lost circulation will be 

increased. So, two main reasons could be identified including the larger BHP than the FFP and 

leakage path. The increasing BHP and the MPD system failing to maintain a constant BHP will 

make larger BHP than the FFP possible. The others leading to lost circulation may include 

excessive drilling fluid density in not circulating process, the surging effect caused by tripping 

activities and high pump pressure in circulating process. The formation condition and well 

structure design can also be taken into consideration in terms of the contribution to the lost 

circulation. Therefore, totally 21 potential root causes in fault tree was found based on the work of 

Fuh et al. (1992), Skogdalen and Vinnem (2012) and Abimbola et al. (2015).  

Safe operation, collapse stuck, kick and blowout as potential consequences are emphasized 

for a weak formation as depicted in Fig. 5 (d). To forestall the occurrence of these consequences, 

three safety barriers are installed: plugging barrier, kick detection system and BOP system. 

Plugging barriers should be used when massive volume of drilling mud into the formation is 

losing. The successful plugging to the lost circulation plays a critical role in reducing the 

downtime loss and preventing the wellbore collapse and pipe sticking through the utilizing of 

plugging materials, tools and a series shut or kill operations. Kick detection system has the 

function to detect the occurrence of kick if the plugging barriers fail to control the loss of mud. 

The BOP system can prevent the formation fluid into external environment and it will be 

highlighted when kick cannot be detected and controlled.   

 



（a） 

(b) 



(c)  

 

(d) 

Fig. 6. BT model for (a) fault tree of Not circulating, (b) fault tree of Tripping in and (c) fault tree of Circulating 

(d) event tree 

 

   5.2 DBN modeling for the case 

The DBNs for drilling lost circulation in this study are established using Netica (2015) 

software that can use the networks to perform various kinds of inference with the fastest and most 

modern algorithms. According to the mapping algorithm described in Section 4.2.1, BTs of “lost 

circulation” combining the root causes and consequences for three drilling operations are 

translated into corresponding DBN with three time-slices as presented in Fig. 7, which is extended 

from time at t=0th , t=720th to t=1440th hour during drilling days for modeling.  
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Fig. 7 DBN modeling with three time-slices for different drilling scenarios (a) Not circulating (b) Tripping in 

and (c) Circulating 

It is noted that model uncertainty issues can be handled by adding the MU node with two 

states “OR” and “AND” in the proposed DBN-based model. The states of root/IE nodes, TE nodes 

and barriers nodes are assigned “YES/NO”, “True/False” and “Success/Failure” respectively, as 

indicated in Fig.8. Similarly, consequences states are achieved from “safe operation to blowout” 

according to the availability and reliability performance of safety barriers. The CPTs of nodes 

considering the parameters uncertainty should be assigned to model the DBNs. In the initial time 

at t=0, the value of the prior probability needs to be assigned to each state of root nodes. If the 

prior knowledge of root causes such as UDDFD and IDFH is obtained by taking advantage of the 

available literature (Abimbola et al., 2014; Holland, 1997; Participants, 2002) and also the expert 

inputs if necessary, the prior probabilities of these root causes are assigned as listed in column 4 of 

Table 7. If the probabilities of failure on demand for the equipment and safety barriers such as 



RCDFS and BOPS are assumed to follow the Weibull distribution, the initial states of these root 

causes are considered to in its perfect functioning state, and the value of failure probability is 

assigned to 0. The values of scale parameter λ and shape parameter α in Weibull distribution are 

provided in Table 8, which are determined by the expert’s inputs.  

 

Table 7 Prior and posterior probability for root causes 

No. Basic event Description 

Prior  

probability 

posterior probability 

t=1440th 

 t=0 t=1440th 
Not 

circulating 

Tripping 

in 
Circulating 

1 UDDFD 
Unreasonable design of 

drilling fluid density 
5.00E-02 4.76E-02 9.15E-01 8.29E-01 6.2E-01 

2 IDM 
Inaccurate density 

measurement 
0 2.90E-03 5.31E-02 4.81E-02 3.59E-02 

3 IDFH 
Increased drilling fluid 

height 
2E-03 2.00E-03 3.66E-02 3.32E-02 2.48E-02 

4 ACDFS RCD fail to seal 0 1.40E-02 3.89E-01 3.89E-01 3.89E-01 

5 DAPCCSF 
DAPC control system 

failure 
0 4.8E-03 1.33E-01 1.33E-01 1.33E-01 

6 BPPF 
Back pressure pump 

failure 
0 1.14E-02 3.16E-01 3.16E-01 3.16E-01 

7 DAPCCF DAPC choke failure 0 4.9E-03 1.36E-02 1.36E-02 1.36E-02 

8 FMF Flow meter failure 0 1.4E-03 3.89E-02 3.89E-02 3.89E-02 

9 NMF Natural micro fracture 4.88E-02 4.76E-02 4.79E-01 4.79E-01 4.79E-01 

10 LFPP 
Low formation fracture 

pressure 
4.88E-02 4.76E-02 8.41E-02 8.41E-02 8.41E-02 

11 LFP 
Large formation 

porosities 
4.88E-02 4.76E-02 8.8E-02 8.8E-02 8.8E-02 

12 PBS Poor borehole stability 0 1.80E-03 1.80E-03 1.80E-03 1.80E-03 

13 CF Casing failure 0 1.56E-04 1.56E-04 1.56E-04 1.56E-04 

14 CEF Cement failure 0 1.15E-03 1.15E-03 1.15E-03 1.15E-03 

15 RDCR 
Inadequate depth of 

casing running 
3.00E-03 3.00E-03 4.88E-01 4.88E-01 4.88E-01 

16 IRDR 
Increased running 

drillpipe rate 
3.00E-03 3.00E-03 - 4.97E-02 - 

17 IRCR 
Increased running case 

rate 
3.00E-03 3.00E-03 - 4.97E-02 - 

18 EHT 
Effect of high 

temperature 
2.50E-03 2.50E-03 - - 3.1E-02 

19 HDFV 
High drilling fluid 

viscosity 
2.50E-03 2.50E-03 - - 3.1E-02 

20 LRPO Large rig pump out 0 1.14E-03 - - 1.4E-01 

21 HPP High pump pressure 0 1.14E-03 - - 1.4E-01 

     



Table 8 Parameters of the Weibull distribution  

Basic event Description 

Shape 

parameter 

(α) 

Scale 

parameter 

(λ) 

IDM Inaccurate density measurement 1.0 2.00E-06 

RCDFS RCD fail to seal 2.2 1.00E-04 

DAPCCSF DAPC control system failure 1 3.33E-06 

BPPF Back pressure pump failure 1.7 5.00E-05 

DAPCCF DAPC choke failure 1.6 2.50E-05 

FMF Flow meter failure 1.0 1.00E-06 

PBS Poor borehole stability 1.9 2.50E-05 

CF Casing failure 2.5 2.08E-05 

CEF Cement failure 2.1 2.78E-05 

LRPO Large rig pump out 1.7 5.00E-05 

HPP High pump pressure 1.7 5.00E-05 

 

The parameters of CPTs should also be assigned to model DBNs. The approach of CPTs 

calculation considering the parameters uncertainty is following the discussion in section 4.2.2. 

There are two examples to illustrate the space-based parameters of CTPs and two examples to 

explain the time-based parameters of CPTs, respectively. Taking the “DAPC fail to control” as 

example, the occurrence of this event is caused by the DAPC system failure, back pressure pump 

failure and DAPC choke failure. With the use of Boolean logic relationships, the CPTs can be 

calculated as listed in Table 9. Taking the “NLPF” as example, the CPT is calculated from the 

nodes “NMF” and “PFLC” to the node “NLPF” based on experts knowledge and Noisy-OR 

filling-up algorithm in this study, as presented in Table 10. The presence of NLPF is caused by 

NMF and PFLC in the YES state at respective probability of 0.02 and 0.05, but not 1 due to the 

effect of uncertainty. The time-based CPTs, namely the CPTs for two time-slices of root causes 

follow the rules as depicted in Table 3 and Table 4. Taking the “UDDFD” as example, the prior 

probability of UDDFD is 0.05, and the CPT is assigned as listed in Table 11. Taking the “BPPF” 

as example, the failure probability of BPPF is 0.07 and 0.014 at t=720th and t=1440th hour 

respectively, and the CPT is assigned as listed in Table 12. 

 

Table9 CPT for DAPCFC 

DAPCCF BPPF DAPCCSF PDAPCFC 

YES NO YES NO YES NO YES NO 

1 0 1 0 1 0 1 0 

1 0 1 0 1 0 1 0 

1 0 0 1 1 0 1 0 

0 1 0 1 1 0 1 0 

1 0 1 0 0 1 1 0 

0 1 1 0 0 1 1 0 

1 0 0 1 0 1 1 0 

0 1 0 1 0 1 0 1 

 



Table 10 CPT for NLPF 

NMF PFLC NLPF 

YES NO YES NO YES NO 

1 0 1 0 0.999 0.001 

0 1 1 0 0.98 0.02 

1 0 0 1 0.95 0.05 

0 1 0 1 0 1 

 

Table 911 CPT of UDDFD for two time slices 

tj-1 
tj 

YES NO 

YES 0 1 

NO 0.05 0.95 

 

Table 12 CPT of BPPF for two time slices 

tj-1 
tj 

YES NO 

YES 0.007 0.993 

NO 0.014 0.986 

 

5.3 Results and discussion 

5.3.1 DBN-based predictive analysis 

Fig. 7 shows DBNs modeling results for the three drilling scenarios contributing to lost 

circulation within three time-slices. The predictive results indicate that the occurrence probability 

of lost circulation at time t=720th hour and at time t=1440th hour for not circulating, tripping in and 

circulating scenario is 7.0E-05, 7E-05 and 8E-05, and 2.2E-04, 2.4E-04 and 3.3E-04, respectively. 

Fig. 8 shows the risk comparison for three drilling scenarios and tendency of the risk evolution 

within 9 time-slices. We assume that the time slice interval is the same as 360 hours. It is clear that 

the occurrence probability of lost circulation is highest and is growing fastest in the scenario of 

circulating process meaning that lost circulation is much more likely to occur in circulating 

process when the rig pump is on. Compared to the static operation, dynamic operations is more 

vulnerable due to the effect of the surging pressure and the annual friction pressure. In addition, 

the reliability of wellhead back pressure control is decreasing over time and it has a great effect on 

the occurrence probability of lost circulation. Dynamic operation and the reliability of wellhead 

back pressure control therefore needs to be paid more attention when drilling.  



  
Fig. 8 Risk comparison for three drilling scenarios 

 

When drilling encounters the formation with the narrow mud density window, the small 

change of mud density will have a great impact on the occurrence of lost circulation. Fig. 9 shows 

the occurrence probability of lost circulation at the different time (at 3rd time-slice, 4th time-slice 

and 7th time-slice) given the mud density in abnormal state in circulating scenarios. It is clear that 

the occurrence probability of lost circulation increases fast given the unreasonable change of mud 

density at 3rd time-slice, 4th time-slice and 7th time-slice and will decrease at their next time-slice. 

The occurrence probability of lost circulation increases from 1.8ൈ10-4 to 2.6ൈ10-3 when the mud 

density changed at 3rd time-slice. According the assumption in Section 4.2.2, when Pሺܷܦܨܦܦ௧ ൌ

YES|ܷܦܨܦܦ௧ିଵ 	 ൌ YESሻ ൌ 	 0, the occurrence probability of lost circulation decreases from 

3.3ൈ10-4 to 1.4ൈ10-4 at 4th time-slice given the mud density changed at 3rd time-slice. The ratio is 

largest at 7th time-slice compared that of 3rd time-slice and 4th time-slice. As a matter of fact, the 

drilling well went exactly through more narrow density window as the depth is growing over time, 

and the 7th time-slice was mostly considered as dangerous period during the drilling progress. The 

likelihood of lost circulation can be estimated with the unreasonable change of mud density.  
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Fig. 9 Occurrence probability of lost circulation given mud density change at different time-slices 

 

5.3.2 DBN-based root cause reasoning 

Assuming the occurrence of lost circulation for three drilling scenarios by 1440th hours with 

setting the state of lost circulation node to true, a diagnostic analysis is conducted. The prior and 

posterior probabilities of these root causes for not circulating, tripping in and circulating scenarios 

are listed in column 4 and column 5 of Table 9, which indicate updated failure probability 

available given the occurrence of lost circulation from backward propagation. The comparison of 

prior probabilities and posterior probabilities by using the ratio as presented in Fig. 10 shows that 

the posterior probabilities are more than10- 200 times as much as their prior probabilities. In the 

above diagnostic analysis using DBN probability inference algorithm, the critical roles of drilling 

fluid density should be highlighted because the ratio of UDDFD (1) is the largest. It is worth 

noting that the root causes such as UDDFD (1) and RDCD (15) which would have been totally 

dominating as other factors in causing lost circulation in three scenarios. The other main 

contributing factors identified are LRPO (20) and HPP (22) in circulating process. Therefore the 

practical diagnosis and checking should then focus on the availability of these root causes until the 

high risk was controlled in real time. 
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Fig. 10.  Ratio of Posterior probability and prior probability in (a) Not circulating (b) Tripping in and (c) 

Circulating 

 

The occurrence probability of lost circulation at current time can be calculated by the 

proposed model when the loss of circulation occurred at previous time. Taking the circulating 

scenario as example, the occurrence probability of lost circulation (LC) at time t=1440th given the 

LC occurred at time t=720th is calculated, namelyܲሺܥܮ௧ୀଵସସ଴௧௛ ൌ 	|݁ݎݑܶ ௧ୀ଻ଶ଴௧௛ܥܮ ൌ ሻ݁ݑݎܶ ൌ

0.00009, which become lower than that (0.00033) of no occurrence of lost circulation at time 

t=720th. There is a change for root cause (RC) state between at time t=720th and t=1440th, the 

ܲሺܴܥ௧ୀ଻ଶ଴௧௛ ൌ 	|ܵܧܻ ௧ୀ଻ଶ଴௧௛ܥܮ ൌ ሻ݁ݑݎܶ  becomes larger and ܲሺܴܥ௧ୀଵସସ଴௧௛ ൌ

	|ܵܧܻ ௧ୀ଻ଶ଴௧௛ܥܴ ൌ  ሻ become smaller based on the Eq. (10) and Eq. (6), as shown in Fig.11 (a)ܵܧܻ

and Fig.11 (b). As a result, the posterior probabilities can provide new evidential information for 

diagnosis analysis, and the values of root causes can be updated in a dynamic manner.  
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(b) 

Fig. 11 Prior probability (P (prior)) and posterior probability (P (posterior)) of root causes at time (a) t=720th 

and (b) t=1440th 

 

The blowout may happen at the same time when encountering the weak formation with gas-layers. 

The occurrence probability is mostly close to 0 in Fig.7 due to the lower probability of the lost 

circulation and failure of safety barriers. Based on the failure of safety barriers following the 

Weibull rules, the reliability of barriers in different time is decreasing. Taking the circulating 

scenarios as example, the consequence probabilities when lost circulation occurred are calculated 

starting from collapse stuck to blowout as shown in Fig.12. Hence, collapse stuck has the higher 

likelihood than other consequences. Plugging barrier should be therefore given more concern to 

meet high level reliability. It is also worth noting that there is a small change for kick and blowout 

in occurrence probability because of the higher reliability of kick detection barrier and BOP 

barrier in the whole drilling.  

 

Fig. 12 Occurrence probability of collapse stuck, kick and blowout at different time-slices 
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5.3.3 Sensitivity analysis 

Importance factors degree sequence of root causes for lost circulation is also calculated by 

using mutual information, which can measure the information that two variables share and how 

much uncertainty about one variable is reduced by knowing the other. The individual contribution 

of each root cause towards lost circulation at time slice T=4 is calculated by comparing three 

drilling scenarios as shown in Fig. 13(a). It is seen that, for three types of operations, UDDFD (1) 

contributes much to the lost circulation, which is regard as the most fatal weakness. In Fig. 13(a), 

UDDFD (1) in not circulating scenario has a higher contribution for lost circulation comparing 

with other scenarios, whereas ACDFS (4), BPPF (6), NMF (9), and RDCR (15) in circulating 

scenario also have higher contributions than those of other scenarios. 

The individual contribution of each root cause towards lost circulation in circulating 

scenarios is calculated by comparing the time slice T=1, and T=4 and T=9 as shown in Fig. 13(b).  

It is found that, UDDFD (1) and RCDFS (4) at time slice T=1, UDDFD (1) at time slice T=4 and 

RCDFS (4) at time slice T=9 make the highest contribution to the lost circulation, which indicates 

that these root causes are sensitive to the lost circulation and should be given more attention in 

order to guarantee the safe drilling operation at different time. In Fig. 13(b), the value of mutual 

information at time slice t=9 has a higher contribution for lost circulation comparing with other 

time slices, such as UDDFD (1), BPPF (6), NMF (9), and RDCR (15). Therefore, the different 

root causes should be give more attention focused on at different time of drilling. 
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(b) 

Fig. 13. Sensitivity analysis of root causes for (a) different scenarios and (b) different slices 

 

6 Conclusions and research perspectives  

This paper focuses on the safe drilling operations given the special geological environment 

with high temperature and high pressure, where the MPD technology which is adopted to avoid 

the drilling incidents. According to the close relationship between hazard factors and the dynamic 

variance of bottom hole pressure during drilling, a risk assessment model based on DBN for 

predict analysis, diagnostic analysis and sensitivity analysis is proposed. 

The application of the proposed model has been presented with a case study on the offshore 

lost circulation. In order to provide graphical symbols for the logical causal relationship between 

factors and effect of lost circulation, a BT model is establish to map different drilling operation 

scenarios. All potential root causes contributing to lost circulation and the corresponding possible 

outcomes identified given the occurrence of this incident are analyzed carefully. Then the DBN is 

established from the BT. Finally by the inference mechanism of DBN, the risk evolution tendency 

of drilling operations can be predicted comparing the not circulating, tripping in and circulating 

scenarios over time and given the current state of root causes. The root cause reasoning and the 

development trend of underlying consequence are discussed given the occurrence of top event in 

diagnostic analysis. The root causes most important for the top event occurrence have been 

identified with sensitivity analysis on the basis of mutual information for different drilling 

scenarios and different time. The occurrence probability is highest in the scenario of circulating 

process, which indicates that lost circulation is much more likely to occur in circulating process. 

Drilling fluid density and availability of rotating control device have made the highest 

contribution to the lost circulation for this scenario, and they may for this reason be regarded as 

the most important weaknesses to give attention. The overall safety can be ensured by taking 

effective corrective measures on circulating process. The direction of our subsequent work is to 

extend our model to improve the robustness of probability distribution of root causes from the 

prior knowledge by logging data and apply the method to other oil and gas operations such as 

production and overwork. 
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