
Noxed - A NOX Engine World Editor

Author(s)

Gisle Aune
Tor Strømme

Bachelor in Game Programmering
20 ECTS

Department of Computer Science and Media Technology
Norwegian University of Science and Technology,

18.05.2016

Supervisor(s) Simon McCallum



Noxed - A NOX Engine World Editor

Sammendrag av Bacheloroppgaven

Tittel: Noxed - En Verdensregissør bygget med NOX Engine

Dato: 18.05.2016

Deltakere: Gisle Aune
Tor Strømme

Veiledere: Simon McCallum

Oppdragsgiver: Suttung Digital

Kontaktperson: Magnus Bjerke Vik, magnus@suttungdigital.com

Nøkkelord: verdensredigeringsprogram, c++, fliskart, 2D
Antall sider: 50
Antall vedlegg: 3
Tilgjengelighet: Åpen

Sammendrag: Noxed er et 2D nivåredigeringsprogram bygd for – og med
– NOX Engine. Den utnytter JSON filformatet for aktører
og verdner for å konstruere en fil som kan bli forstått av
den innebygde innlasteren i spillmotoren. Dette gjør det
enklere å bygge nivåer uten den slitsomme prosessenen
som er å endre store JSON filer manuellt som bare blir
værre som verdnene vokser i størrelse og kompleksitet.
Programmet er konfigurerbart av spillutvikleren, som har
full kontroll på hvilke aktører som kan plasseres, og hvor
vidt deres alternativer kan redigeres av nivådesigneren.
I tillegg til dette har Noxeds utvidelser av motoren en
metode for å bygge modulære grafiske strukturer ut fra
sammenhengssensitive fliser.

i



Noxed - A NOX Engine World Editor

Summary of Graduate Project

Title: Noxed - A NOX Engine World Editor

Date: 18.05.2016

Authors: Gisle Aune
Tor Strømme

Supervisor: Simon McCallum

Employer: Suttung Digital

Contact Person: Magnus Bjerke Vik, magnus@suttungdigital.com

Keywords: world editor, c++, nox, tilemaps, 2D
Pages: 50
Attachments: 3
Availability: Open

Abstract: Noxed is a 2D level editor built for – and with – the NOX
Engine. It leverages the JSON file format of actors and
world files to construct a world file that can be under-
stood by the built-in means of world loading within the
NOX Engine. It eases the process of creating levels for the
games without the tedium of manual JSON addition or
reliance on procedural generation to make game worlds
of scale. The editor is configurable by the game develop-
ers, and they can manage the actors that can be used and
expose options within their components for the level de-
signer. In addition to that, the Noxed extensions to the
engine provides a means of constructing modular graphi-
cal tile maps out of smart, context-sensitive tile maps.

ii



Noxed - A NOX Engine World Editor

Preface

In August 2015 we decided to see if Suttung Digital would be our employers on a bache-
lor project. After meeting with them in November they accepted our proposal of creating
a world editor with the NOX Engine.

We would like to thank Simon McCallum for being our project supervisor. A special thank
you goes out to our principal Suttung Digital; Magnus Bjerke Vik, Håkon Nordling, Jakob
Solheim and Tomas Olsen. They gave us valuable feedback and encouragement that were
a big help during the development of our editor.

iii



Noxed - A NOX Engine World Editor

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Goals and Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.4 Project Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Subject area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Limits and Requirements . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Project Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Suttung Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.2 Responsibilities and roles . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.3 Routines and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Planning and Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 External Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.2 Code Style and Quality . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.3 Configuration Management . . . . . . . . . . . . . . . . . . . . . . 3

1.5.4 Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Work Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.1 Main Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6.3 Gantt Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iv



Noxed - A NOX Engine World Editor

3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Workflow Interruptions . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Project tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Jira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.4 Toggl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.4 TeXstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Editor Blueprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 General Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Guide: Add a player character . . . . . . . . . . . . . . . . . . . . . 17

4.2 Tile Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Smart Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.3 Guide: Make a tile set definition . . . . . . . . . . . . . . . . . . . 21

4.2.4 Tile Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.5 Guide: Add a new tile type . . . . . . . . . . . . . . . . . . . . . . 21

4.2.6 Tile Type: StaticTile ("static") . . . . . . . . . . . . . . . . . . . . . 25

4.2.7 Tile Type: ChequeredTile ("chequered") . . . . . . . . . . . . . . . 25

4.2.8 Tile Type: BigTile ("bigtile") . . . . . . . . . . . . . . . . . . . . . . 26

4.2.9 Tile Type: RandomTile ("random") . . . . . . . . . . . . . . . . . . 26

4.2.10 Tile Type: IslandTile ("island") . . . . . . . . . . . . . . . . . . . . . 27

4.2.11 Tile Type: IslandTagTile ("island_tag") . . . . . . . . . . . . . . . . 27

4.2.12 Tile Type: FourBitTile ("4bit") . . . . . . . . . . . . . . . . . . . . . 28

4.3 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Data Structures and Program Interaction . . . . . . . . . . . . . . . 30

4.3.2 The Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 Guide: Setting up GUI for a component . . . . . . . . . . . . . . . 32

4.4 Noxed Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 EditorBlueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.3 EntitySpawner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4 FollowCamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



Noxed - A NOX Engine World Editor

4.4.5 GridCursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.6 PushCamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.7 TileMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.8 TileMapManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.9 TileMapObjectSaver . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.10 TileSpawner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.11 WorldSaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Noxed Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 EntitySelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 GuiLayoutNotification . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.3 GuiValueChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.4 MouseAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.5 TilePlacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.6 TileSetRequest and TileSetResponse . . . . . . . . . . . . . . . . . 40

4.5.7 WorldSaveBroadcast and WorldSaveResponse . . . . . . . . . . . . 40

5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Development environment setup . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 For Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 For Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 For Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 For Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Licensing issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Cross-Platform Development . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Code Style and Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Workflow and Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Jira and Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.2 Suttung Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 SmartTile.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Original Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Jira Worklog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



Noxed - A NOX Engine World Editor

List of Figures

1 Gantt chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Editor with your new Player actor . . . . . . . . . . . . . . . . . . . . . . . 19

4 RoofedTile example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 ChequeredTile example (Contrast adjusted for visibility) . . . . . . . . . . 26

6 BigTile example (Contrast adjusted for visibility) . . . . . . . . . . . . . . 26

7 RandomTile example (Contrast adjusted for visibility) . . . . . . . . . . . 27

8 IslandTile example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 FourBitTile example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Several ElementLayots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 An element group displaying an actor’s values. . . . . . . . . . . . . . . . . 32

12 Grid size UI element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Brush example picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

14 Source and Build folders for Cmake . . . . . . . . . . . . . . . . . . . . . . 42

15 Specify Visual Studio for Cmake. . . . . . . . . . . . . . . . . . . . . . . . 42

vii



Noxed - A NOX Engine World Editor

List of Tables

1 Project Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Use Case: Change tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Use Case: Change brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Use Case: Add actor instance . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Use Case: Remove actor instance . . . . . . . . . . . . . . . . . . . . . . . 9

6 Use Case: Manage actor instance . . . . . . . . . . . . . . . . . . . . . . . 9

7 Use Case: Add tile map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Use Case: Manage tile map . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 Use Case: Remove tile map . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10 Use Case: Export world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

11 Use Case: Add actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

12 Use Case: Add sprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

13 Use Case: Add tile set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

viii



Noxed - A NOX Engine World Editor

1 Introduction

1.1 Goals and Framework

1.1.1 Background

We are two students studying Game Programming at NTNU Gjøvik. Our wish is to create
a 2D level editor for a game made with the NOX Engine made by Suttung Digital. Our
main focus is to get an editor that can be used to generate levels without any need to
change the game.

We want to have support for tile sets and game actors.

1.1.2 Target Audience

This project is about creating a tool for level designers, which is meant to interface with
content created by the game developers and graphics designers.

This document is mostly targeted towards developers who are looking to use the
Noxed editor and extensions to the NOX Engine in their project, but there are guides and
information pertinent to usage that do not involve programming.

There are guides offered in chapter 4 that goes over the process for other team mem-
bers to set up the editor for level designers’ use.

• Add editor-actor: 4.1.3
• Add tile set: 4.2.3
• Add tile type: 4.2.5
• Add UI element group: 4.3.3

1.1.3 Project Goals

Effect Goals

• Get a deeper understanding of how games and level editors interact.
• Learn more about tool development. Creating tools that are practical and usable.

Result Goals

• The editor should be usable and complete.
• The basics aspects of the editor should be understandable and intuitive.
• The levels created should work on the game without changing or modifying the

game.
• The games and editor should work in both Windows and Linux.

1.1.4 Project Framework

We will use free development tools, either as in available to students free of charge, or
open source. If we need additional libraries, we will opt for free options with an open
license. There are no costs associated with the project.

1



Noxed - A NOX Engine World Editor

NOX Engine

NOX Engine is the game engine we will use to build our editor and prototype games. It is
an open-source 2D engine that runs on Linux, Windows and OS X. It uses SDL2 to create
windows, and OpenGL to render on screen. Actors and levels are stored as JSON files.
Our plan is to use our editor to read in dummy versions of actors and place them in a
running game world. When the world is complete we will serialize the world to a JSON
file using the real version of the actors.

1.2 Scope

1.2.1 Subject area

We would like to create an editor that is easy to use, with objects that are highly modifi-
able. We will focus on the following areas:

• The games using this editor shall be able to expose any number of game objects by
using special assets.

• The editor shall save world information in the format the engine already uses.
• The game can use a core set of objects and features so it can understand the Noxed

actors without including the entire level editor.

1.2.2 Limits and Requirements

The game(s) and editor should run in Windows 10 or newer and Ubuntu 14 LTS. The
programs should start on integrated graphic cards, but need only run smoothly on newer
dedicated graphic cards. This requirement does not account for level designs with a high
object density.

1.2.3 Assignment

We will make at least one game and a level editor to said game. If time permits we will
make multiple games and make the editor work on all of them.

1.3 Project Organization

1.3.1 Suttung Digital

Suttung Digital [1] is a local game and software development studio founded by students
who attended Gjøvik University College (now Norwegian University of Science and Tech-
nology - Gjøvik). They are our principals on this project.

1.3.2 Responsibilities and roles

Team Leader: Tor Strømme

No other roles defined seeing as we are only two persons.

1.3.3 Routines and Rules

• Any decision made for the group should be discussed internally first. If no agree-
ment can be reached we will first discuss with an external (Magnus from Suttung
or Simon from NTNU Gjøvik). If no agreement is reached, the group leader will
make a decision.

• If a member of the group has not performed his assigned tasks in the agreed upon
time it is up to the other member to give a verbal warning. If the behavior is re-

2



Noxed - A NOX Engine World Editor

peated a meeting will be called with Simon.
• Any unforeseen costs will be split evenly among the members.
• Any member has the right to sign and authorize on behalf of the group.
• When work hours are concerned our main objective each week will be to complete

assigned tasks. However we expect each member to spend at least 20 hours each
week even if the task is easy or completed early.

1.4 Planning and Reports

1.4.1 Work flow

We will follow the Scrum model as much as is sensible with two persons. Mainly we
will have four major parts: Design, develop game, develop editor and completion. The
game and the editor will be developed in tandem. We allocated 9 weeks starting week
6 to develop our software. The remaining time will be used for bug fixes, polishing and
report writing.

We will start with weekly sprints working together in the same room, though this is
subject to change as the project matures. If we do not physically meet on a work day we
will have the daily scrum meeting on Skype instead. Every Monday at 13.00 we will hold
the Scrim Review and Retrospective for the completed sprint followed by the Planning
Meeting for the next sprint. Any member can call meetings and all members are expected
to update the Backlog.

1.4.2 External Meetings

Meet with Suttung Digital once a week, Mondays 1400. Simon will be at the Mustad
rooms we are using at Wednesdays so we will have meetings with him there approxi-
mately every other week.

1.5 Quality Assurance

1.5.1 Documentation

All commits to Bitbucket should be complete with useful comments(see 1.5.3). Classes,
functions and resources should be commented in a fashion that we can generate docu-
mentation using Doxygen or similar software.

1.5.2 Code Style and Quality

We will attempt to use the c++ core guidelines.

1.5.3 Configuration Management

Issues and tasks will be tracked using Jira. We chose Jira since it is popular and we figure
that it is easier to get help if lots of people use it.

Git will be used for source control. Any errors with integration will be reported when
discovered. The author is responsible to ensure that their additions to the code will inte-
grate into the project, and should be available to troubleshoot any issues during integra-
tion.

Every new commit to the master branch will be preceded by a code review with the
other group member. This is to ensure that the latest version always is working and
satisfies all standards.

3



Noxed - A NOX Engine World Editor

When we get a working copy of the game and editor the newest versions will be made
available on the NTNU bachelor project web site.

1.5.4 Risk Analysis

Event Probability Impact Assessment
Sickness or disease Medium Depends on duration and severity

Absence and procrastination Medium High
Hardware issues Low Low

Technical issues with game engine High Low
Downtime on web services Low Low

Lack of Communication Medium High
Loss of Group Member Low High

Table 1: Project Risks

Sickness and Disease Notify the other group member. Make sure any work you have
done is documented and available.

Absence and Procrastination Communicate what is happening on the group meetings.
Motivate each other.

Hardware Issues Make sure you save and commit your work regularly. We both have
backup computers.

1.6 Work Planning

1.6.1 Main Parts

We have some flexibility in the planning phase since we are using an agile development
model. We have agreed on five major milestones we want to reach at certain times. What
tasks need to be completed for each milestone is yet to be seen.

1. Project Plan Delivery
28/01-16

2. Prototype of Game and Editor
22/02-16

• A basic user interface for the editor and a game with a player that can move
around.

3. Main development complete
10/04-16

• The game and the editor is finished and complete. Only bug fixes and polish
remains.

4. Final Sprint
09/05-16

• Any and all development from here on out will be if the code does not compile
and run on the target systems. Code unrelated to that has to be committed to
be merged or discarded by this date.

4



Noxed - A NOX Engine World Editor

5. Report Delivery
18/05-16

1.6.2 Assignments

We have planned on using 9 weeks for the main development cycle, but leave the last
5 for the written report, bug fixing, polishing and catching up if a feature took more
time than first anticipated. We have five tasks in our main cycle and one task after the
development is done.

Main Development Cycle

1. Blank sheet to work from. 1 week.
2. Basic editor with placement of assets. Simple prototype of a game. 2 weeks.
3. Tile sets in both game and Editor. 2 weeks.
4. Interface in editor with object properties. 2 weeks.
5. Complete game(s). 2 weeks.

After Development

1. Report writing, bug fixes. Remaining time.

This is a list of features we would like to implement, in descending order of impor-
tance not order of implementation. If time is an issue we will discard from the bottom
first.

• Editor: Entity placement.

• Editor: Entity properties.

• All: Tiled graphics for 2D level geometry

• Game: One example game with simple fighting, enemies, and movement.

• Editor: Tile set placement.

• Editor: Different brushes.

• All: Automatic adjacency-adapting tiles for faster tile map production.

• All: Meta-data for tiles that can be used by the game and editor.

• All: Integration of editor as submodule in projects.

• All: A separation of editor and core objects needed both by editor and game.

• Game: Another example game with basic tower defense mechanics where a player can
edit the map between attempts

• Game: Sound effects.

• Game: Music.

5



Noxed - A NOX Engine World Editor

1.6.3 Gantt Chart

Figure 1: Gantt chart.

6



Noxed - A NOX Engine World Editor

2 Requirements

2.1 Functional requirements

We are developing a level editor to provide a visual means of constructing worlds for
Suttung Digital’s NOX Engine. It shall allow placement of objects and tiles defined by the
game developers for the editor’s target game, and export them into the JSON format that
the game can read.

To do so, Noxed needs to have a way to load the necessary assets and present them
to the level designer with the user interface. The specific assets it needs are:

• The cursor controller placed in the editor world.
• All JSON files for tile set definitions under tileset/
• All actor definitions referred to in the cursor controller’s definition.

There also needs to be a cursor that the level designer can use to add, select and
remove content to the level. It should be capable of operating on tile maps and actors
alike, but not at the same time. Modes set by keyboard input or UI input shall control the
cursor’s behavior to decide whether it is acting upon a tile map or the actor space, how
it does so and which specific tile or actor it places.

The editor should allow some minor adjustments for the location of UI elements, and
key rebinding. Those features does not need to be configurable in the program itself,
configuration files will suffice.

7



Noxed - A NOX Engine World Editor

2.1.1 Use case diagram

Figure 2: Use case diagram

2.1.2 Use cases

Use Case Change tile
Actor Level designer
Goal Change the tile at a specific position, or positions on a tile map.

Normal Flow

1. Set the editor mode to activate the tile spawner.
2. Select the tile map from the tile map list.
3. Move the cursor to the correct location.
4. Left click to place the tile.

Variations When removing a tile, use right click instead of left click.

Table 2: Use Case: Change tile

8



Noxed - A NOX Engine World Editor

Use Case Change brush
Actor Level designer
Goal Change the size and/or shape of the brush.

Normal Flow

1. Set the editor mode to activate the tile spawner.
2. Adjust the brush size slider or use the configured keyboard
shortcut.
3. Adjust the brush shape slider.

Variations None

Table 3: Use Case: Change brush

Use Case Add actor instance
Actor Level designer
Goal Add an actor at a position in the world.

Normal Flow

1. Set the editor mode to activate the tile spawner.
2. Select the actor by using the slider or the configured to change
selection.
3. Move the cursor to the correct location.
4. Left click to place the actor.

Variations None

Table 4: Use Case: Add actor instance

Use Case Remove actor instance
Actor Level designer
Goal Remove an actor at a position in the world.

Normal Flow

1. Set the editor mode to activate the tile spawner.
2. Select the actor by using the slider or the configured to change
selection.
3. Move the cursor to the actor’s location.
4. Right click to remove the actor.

Variations None

Table 5: Use Case: Remove actor instance

Use Case Manage actor instance
Actor Level designer
Goal Change an aspect of an existing actor instance in the world.

Normal Flow

1. Set the editor mode to activate the tile spawner.
2. Select the actor by using the slider or the configured to change
selection.
3. Move the cursor to the actor’s location.
4. Left click on an existing actor to select it.
5. Change the relevant GUI sliders and inputs.

Variations If you want to manage the actor that was just spawned, then.

Table 6: Use Case: Manage actor instance

9



Noxed - A NOX Engine World Editor

Use Case Add tile map
Actor Level designer
Goal Add a tile map to the world.

Normal Flow
1. Select the tile set from the tile set list.
2. Click the button to add a tile map.
3. Observe the change in the tile map list.

Variations None

Table 7: Use Case: Add tile map

Use Case Manage tile map
Actor Level designer
Goal Change one or more properties of a tile map in the world.

Normal Flow 1. Select the tile map from the tile map list.
2. Change the relevant properties.

Variations None

Table 8: Use Case: Manage tile map

Use Case Remove tile map
Actor Level designer
Goal Remove a tile map to the world.

Normal Flow
1. Select the tile map from the tile map list.
2. Make very sure it is the correct one you have selected.
3. Click the remove button.

Variations None

Table 9: Use Case: Remove tile map

Use Case Export world
Actor Level designer
Goal Remove a tile map to the world.

Normal Flow
1. Finish up the level editing.
2. Press Left CTRL + S.
3. The data is now saved to assets/world/initial.json.

Variations

The key combination mentioned in step 2 may have been
remapped in the controls.json. The file name of the exported
world may also have been configured to be different by changing
the component definition for the Noxed::WorldSaver component.

Table 10: Use Case: Export world

10



Noxed - A NOX Engine World Editor

Use Case Add actor
Actor Game developer
Goal Add an actor to be used by the editor.

Normal Flow

1. Add a new actor with a unique name.
2. Add a physics, transform and a visual component to the actor.
3. Add a Noxed::EditorBlueprint component that has
"extends" set to the correct game actor.
4. Add components (if any) to the blueprint.

Variations When doing this for the first time, I advise reading the guide in
section 4.1.3 that explains the steps in greater detail.

Table 11: Use Case: Add actor

Use Case Add sprite
Actor Artist
Goal Add a sprite to the editor actor as a visual component

Normal Flow
1. Add image to sprite sheet.
2. Add or locate Sprite component in actor you wish to add it to.
3. In the sprite field, write the file name of your sprite.

Variations
The project can use a different sprite component that is not re-
ferred to as "Sprite", and it would need to be set up differently if
it is animated.

Table 12: Use Case: Add sprite

Use Case Add tile set
Actor Artist
Goal Add a tile set to be used by the editor.

Normal Flow

1. Add the source image to the image atlas.
2. Note the tile size, count and separation.
3. Enter that data into a new tile set definition.
4. Add appropriate smart tiles to the tile set definition.
5. Save it.

Variations When doing this for the first time, I advise reading the guide in
section 4.2.3 that explains the file format and steps in detail.

Table 13: Use Case: Add tile set

11



Noxed - A NOX Engine World Editor

2.2 System Requirements

The editor is made to support both Windows 10 and Ubuntu 14.04 LTS. That is not to
say that it wouldn’t work on other versions of Windows and distributions of Linux, as
it likely will, but the requirement is that it work on those platforms. None of us have a
device running Apple’s OS X, which is the reason for its omission here.

The editor needs to support graphics cards and drivers which support OpenGL 3.0
and up. Modern dedicated graphics card generally do meet this requirement, while Linux
drivers for intel’s integrated graphics do not. There should be no guarantee of full func-
tionality when using a system that does not meet this requirement.

The editor will have different requirements than the games that it edits levels for.
In some regards it will only display static representations of dynamic actors, but on the
other hand the smart tile map may require more processing than the game tile map if the
option to export only the result is selected.

12



Noxed - A NOX Engine World Editor

3 Process

All planning will be done in January. We expect to get ideas for minor improvements and
additions underway, but all major features of the editor should be agreed on and be on a
prioritized list when we start our programming.

3.1 Workflow

As mentioned in our introduction we had 5 major milestones that we wanted to complete.
For each of these the work was organized into issues and sprints, with a project backlog.
The following is our definition of the terms as we used them.

Issue: Any improvement, bug fix or addition to the software code itself or its assets.

Sprint: One week starting on Tuesday and ending on Monday.

backlog: All issues not currently added to a sprint or resolved.

Any work to be done on the project needs to belong to an issue. An issue needs to be
described and receive an estimation of time needed to complete it. If the time assessment
is over thirteen hours we will attempt to split the issue into several smaller issues. When
an issue is created it will be added to the project backlog.

Every Monday we will have a meeting where we will decide on which issues should
be added to the coming sprint. If we fail to complete any issues we will first attempt to
fit it in the next sprint, if that is not possible it will be added to the backlog or discarded.

An issue will have 1 to 13 story points corresponding to the number of work hours
estimated for the issue. Story points are used to keep the workload for each sprint ap-
propriate.

3.1.1 Workflow Interruptions

Bugs

With the NOX Engine being a work in progress we expect minor bugs. We also expect
to deal with them quite easily since the engine is open source. If we find a bug in their
engine we will take the following steps in order:

• Ask Suttung Digital if there is a fix not yet merged into the NOX Engine master
branch.

• Fix the bug ourselves and send a pull request.

Missing Features

If there is a feature missing we have a different approach:

• Ask suttung about an alternative way of adding the desired functionality.
• Consider dropping the functionality that needs this feature.
• Fork the NOX-engine and add the feature ourselves.

13



Noxed - A NOX Engine World Editor

Forking would really only be considered if it was critical to finishing our project.
Adding features to an engine runs the risk of quickly running up unnecessary time and
may prove to be too complicated.

3.2 Project tools

3.2.1 Git

https://git-scm.com/

“Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency." [2]

Having very little experience with other types of source control the choice to use Git
was easy. Our project is hosted on Bitbucket and contains two repositories, one for the
code and one for our Thesis. In addition we had both our interface library and the NOX-
engine added as submodules. Submodules are a way to add existing repositories as sub
directories to your repository without them interfering with each other.

Working with git we decided to give each issue it’s own branch on Bitbucket to keep
the master branch clean in the sense that it would always compile and run. When merg-
ing completed work into the master branch there should be a short code review. This is
to ensure that the code was good and that the code runs on both Windows and Linux.

3.2.2 Jira

https://www.atlassian.com/software/jira[3]
Jira is a tool that is used for planning and tracking progress during the development of
software. Although Jira is a very powerful and comprehensive tool, we mainly wanted
to use it for issue creation, issue tracking and planning sprints. When using Jira and
Bitbucket together you can also use smart commits. Adding keywords to your git commit
message will automatically update the status of the issue in Jira’s web interface.

3.2.3 Slack

https://slack.com/[4]
Slack is a simple chat program with servers and channels. Slack is server based with open
and private channels. Apps are available for Android, iOS, OS X, Linux and Windows in
addition to a web interface. Recommended by our principal Suttung Digital.

3.2.4 Toggl

https://www.toggl.com/[5]
Toggl is an advanced stopwatch application with both desktop and web versions. You
can track time within a project and with specific tags. There are also advanced report
features where you can see time spent per week and what tags or projects you spent the
most time working on.

14

https://git-scm.com/
https://www.atlassian.com/software/jira
https://slack.com/
https://www.toggl.com/


Noxed - A NOX Engine World Editor

3.3 Programming Tools

3.3.1 CMake

https://cmake.org/[6]
We are doing cross-platform development. CMake is a tool that helps us automate the
build process and in our case generate makefiles for Linux, and solutions and projects for
Visual Studio on Windows. Suttung Digital has an example template we expect to easily
adapt to our project. Using Cmake also cuts down on the setup time for a development
environment on a new machine.

3.3.2 Visual Studio

https://www.visualstudio.com/[7]
For development on Windows we will use Visual Studio Community 2015 with the Visual
C++ compiler. The IDE was chosen because it is free to use and feature code completion
and debugging.

3.3.3 Atom

https://atom.io/[8]
Atom is a highly modifiable text editor we will use for developing on Linux. It is free and
offers some auto completion and syntax highlighting.

3.3.4 TeXstudio

http://www.texstudio.org/[?]
We are using latex to render our thesis paper. TeXstudio is an open source integrated
writing environment. We chose it because it is free and has several quality of life features
like autocomplete, jumping within the document, previewing and syntax highlighting.

15

https://cmake.org/
https://www.visualstudio.com/
https://atom.io/
http://www.texstudio.org/


Noxed - A NOX Engine World Editor

4 Technical Details

This chapter will go over the technical aspects of the level editor, and Noxed’s extensions
of the NOX Engine. First and foremost we will talk about the editor blueprints, tile sets
and the graphical user interface, but all components and events are described at the end
of this chapter.

4.1 Editor Blueprints

The editor needs to understand the game, what actors can be placed and what settings
the level desiner should be able to tinker with. That is where editor blueprints come in.
They are a component of an static actor that represents visually how it will appear in the
game.

4.1.1 Design

The idea behind this is to place customizable objects, with options and ranges that the
developer sets by intention. It does not inherently understand NOX Engine actors com-
ponents aside from the Transform. Instead, the blueprint contains settings for how an
object is exported. Specifically, what actor it extends, whether it’s controlled, and the
components. The components can base itself on a pre-written JSON object, or the one in
the actor representing the game actor in the editor.

When placed or selected, the actor options appear in the UI with sliders, text inputs,
checkboxes and so on. These settings will not have an immediate effect on the in-editor
appearance of the actor.

4.1.2 General Usage

To start, you want a static actor with a Transform, a visual component (e.g. Sprite) and
physics. Physics is used to check for occupancy, which is used for deletions and preventing
overlap. If you have the editor assets and game assets in the same folder, you should use
a suffix or prefix for the actor names to avoid ambiguity.

In that actor, there should be a Noxed::EditorBlueprint component. Default values for
"extend" and "controlled" are unset and false respectively. The last saved actor with an
editor blueprint that has "controlled" set to true will be the controlled actor in the game.

Components are added to the blueprint similarly to how they’re added to actors, but
the layout inside them differs. First you have to choose whether the component definition
is based on the editor representation’s component, a JSON object, or nothing. The former
is useful for editable components like the tile map, as well as component that you want to
base on the editor component. "base" is an option if you don’t use the editor component,
and as its name implies, it will serve as the base for the arguments to write upon.

The arguments inside "args" are applied last, and these are what the GUI will display.
They have the following arguments.

16



Noxed - A NOX Engine World Editor

• "type": The type
• "value": The default value of the argument
• "min": The minimum value of the argument
• "max": The maximum value of the argument
• "path": An array of field names that are traversed into before the argument is writ-

ten

The following types are implented. Please note that for numeric values, a minimum
and maximum value are required.

• "boolean": Checkbox
• "int": Slider
• "float": Slider
• "string": Text Input
• "vector": Two float number inputs

4.1.3 Guide: Add a player character

Before I begin, the scope of this guide is the JSON side of things, and it assumes you
already have the components in order n the game. It also takes for granted that you have
copied the cursor object over from the example and changed the values to make it fit
with your setup.

This process can be repeated for any actor, however it does not demonstrate basing
the constructed component on another. The "E_TileMap" actor included with the editor
assets are an example of a rare use case for a serialization of the in-editor component.

Make E_Player.json

You start off by adding the JSON for the editor object. It should be a static representation
of the object in game. The required components are the Transform and Physics, for they
will be used to have the object take up space in the game world and allow selection
and deletion of it. Any visual components like Sprite and Light are optional, but strongly
recommended.

The prefix is used to distinguish editor actors from the actual in-game actors in the
editor.

However, the editor doesn’t know what to do with this object when the level is ex-
ported. For that, a Noxed::EditorBlueprint component is required. This is going to be the
controlled actor. See the usage section above and the example below to fill in the sliders,
fields and checkboxes for the player controller component in your game.

It should look something like this, referring your content where that is applicable. The
code below is from the platformer example, which has a very simple player controller that
only kills it below a configurable Y value.

17



Noxed - A NOX Engine World Editor

{
" E_Player " :
{

"name" : " P layer " ,
" components " :
{

" Transform " :
{
} ,
" S p r i t e " :
{

" spriteName " : " c i r c l e . png " ,
" renderLeve l " : 1000 ,
" s c a l e " : 0.9

} ,
" Phys i c s " :
{

" bodyType " : " s t a t i c " ,
" dens i t y " : 100 ,
" depth " : 4 ,
" shape " :
{

" type " : " c i r c l e " ,
" rad ius " : 0.45

} ,
" l inearDamping " : 10.0 ,
" angularDamping " : 10.0

} ,
" Noxed : : E d i t o r B l u e p r i n t " :
{

" extends " : " P layer " ,
" c o n t r o l l e d " : true ,
" components " :
{

" P la t former : : P l a y e r C o n t r o l l e r " :
{

" args " :
{

" f a l l L i m i t " :
{

" type " : " f l o a t " ,
" value " : −50,
" min " : −1000,
"max" : 0 ,
" l a b e l " : " K i l l below Y "

}
}

}
}

}
}

}
}

Add it to the cursor

At the time of writing, there is no automatic way to locate and index the editor actors.
Instead, the object has to be manually added to the Noxed::EntitySpawner component’s
quickbar on the cursor actor. It should look like the below code example.

One thing to note is that it must match the name at the top of the JSON definition
for the editor actor, the file name is not enough. Do not forget to edit that when copying
actors.

18



Noxed - A NOX Engine World Editor

Figure 3: Editor with your new Player actor

" Noxed : : EntitySpawner " :
{

" o f f s e t " : { " x " : 0 , " y " : 0} ,
" quickbar " :
{

"modeName" : " qu i ckba rSe l e c t " ,
" d e f a u l t s " :
[

" E\ _P layer "
]

} ,
" editorMode " : 0

} ,

Test it

Assuming nothing went wrong, you now have your player actor selectable, placeable and
editable in the editor, similar to how it is depicted on this page.

19



Noxed - A NOX Engine World Editor

4.2 Tile Set

In cases like rooms and platforms, an entity is not enough to construct an object of indi-
vidual shape. Tile sets serve that purpose nicely. A tile set is an image that is segmented
into smaller pieces, tiles, that can be arranged in any configuration on a tile map to create
a new image.

A tile set needs to point to an image that is loaded along with the atlas, and the
following information is needed to properly read the tiles.

• "name": This shows up in the GUI for selection when creating a new map. It should
be unique.

• "image": The file name that points to the part of the atlas where the tile set resides.
• "tileSize": The size of an individual tile, in pixels.
• "tileSep": The spacing between each tile, in pixels.
• "setSize": The amount of tiles across and downward.

A tile is then referred to by an index that starts with the top-left corner, and is aligned
to the top-left corner.

4.2.1 Structure

The central data structure of a tile map is the TileGrid, which essentially is a structure to
store a signed integer associated with a two-dimensional position. It has no knowledge of
the tile set or tile map it is meant to store data for, and thus doesn’t do any range checking
on the values. That said, the default value is -1, which is intended to be interpreted as
no tile being at that position.

It stores those values in blocks of user-defined size, and associates those blocks with
an x index and y index. It also keep them in a linear structure for use in iterating over
the entire tile grid to process all tile indices.

This structure uses integers for the positions, which means that reads and writes to it
from an actor component need to convert the world position to tile index when operating
on the structure.

It is very cheap to iterate over the structure sequentially, and use the block x-index,
y-index and size to determine the position of each tile inside of it. The random operations
are fast if you access the same block as the last function call, but require two std::map
lookups with an integer index otherwise.

4.2.2 Smart Tiles

If you have used a basic tile map editor in the past, you may have had to select different
tiles of the same component, be it the wall, alternate floor tiles, some flowers to ran-
domize the grass and so on. Additionally, you may have had to cover the tiles up with
colliders and other such objects. That is tedious, but predictable work, something that
computers excel at.

Another thing is that the tile map layout is sometimes confusing and contain a large
amount of tiles for the same wall and floor, and in the beginning there time may be
wasted searching for that one top-left convex corner.

That is the inspiration for this feature: a means of setting the tile based on parameters,
tags and context. "Smart Tiles" was my working title for this, and it was what stuck. An

20



Noxed - A NOX Engine World Editor

alternative name may be "Context-Sensitive Tiles", although there is more to this than
just context sensitivity.

4.2.3 Guide: Make a tile set definition

This guide covers the process of getting your tile set from the atlas into the editor and
your game. There is no programming required to do this part, but you will be limited to
the existing tile types – the next guide will cover that.

Step 1: Meta-data and image information

First, you need to take note of some information about your image: it’s filename, the size
of each individual tile, how much space there is between each tile and how many tiles
there are. The tile and separator size is given in pixels, while the set size is given in tiles.

The "name" field needs to be unique as to not cause conflict when the tile map requests
it. By now, it should look like the JSON below.

{
"name" : " UniqueTileSetName " ,
" image " : " image−name . png " ,
" t i l e S i z e " : { " x " : 32 , " y " : 32} ,
" t i l e S e p " : { " x " : 1 , " y " : 1} ,
" s e t S i z e " : { " x " : 2 , " y " : 2} ,

}

Step 2: Add smart tiles

For the smart tiles to automate the process of making tile maps, there needs to be infor-
mation about how it should go about it. The definition for all smart tiles are stored in the
JSON file you started on in the previous step.

" smar tT i l e s " :
[
]

The tile map will refer to them by index, which means any insertions into the middle
of the array will potentially break previous smart tile maps.

4.2.4 Tile Types

The SmartTile class is abstract, and how it functions is defined by the sub classes which
I will describe in the remainder of this section. Each class has a short one-word name
that is used to identify it in the JSON tile set definition. The options and arguments are
required, unless otherwise specified.

All tile types has tags, which is handled by the base class. They are used for inter
smart-tile grouping in some cases, and object spawning. You can also specify conditional
tags, which are only returned if the smart tile has been resolved to a specific result at
that position. The latter is useful for keeping wall objects from spawning where they are
either unwanted or unnecessary.

4.2.5 Guide: Add a new tile type

Here we will go through the process of adding a new tile type in the C++ project, from
empty class to a working tile type. In this tutorial, I will implement a simple tile type that
uses a secondary tile to form a roof if the above tile is empty, and we’ll call it RoofTile.

All tile types has to be added to Noxed itself to work, for otherwise it would be limited

21



Noxed - A NOX Engine World Editor

to the game only and not display correctly in the editor. You could work around that by
not using the "dumbDown" option on the tile map and using a dummy tile in the editor,
but that will offer a diminished preview of it for the level designer.

The relevant folder is Noxed/noxed/tileset/tiletypes/ and its corresponding name
space is noxed::tileset::tiletypes.

The code examples will break style to fit within the horizontal boundaries of the
document.

Requirements

• RoofedTile uses two tile indices as input, "wall" and "roof".
• It shall have an option called "emptyOnly" with default value true.
• If a tile parameter is lacking, they shall get the value -1.
• If the index above matches this instance’s index, it shall return the wall tile.
• If the option "emptyOnly" is true, return the roof index if there is nothing above it.
• If the option "emptyOnly" is false, return the roof index if the tile above has any

index different to this SmartTile instance’s index.
• It has the identifier "roofed".

Step 1: Get a blank slate

The way we use to get a blank slate is to copy the StaticTile header and source file,
replace the class name and change the value of the "ID" member defined in the source
file. Appendix A.1 contains the entire header file for the SmartTile class that our tile will
inherit from.

// R o o f e d T i l e . h
#pragma once

#include <noxed/ t i l e s e t / SmartTi le . h>

namespace noxed { namespace t i l e s e t { namespace t i l e t y p e s {

c lass RoofedTi le : public noxed : : t i l e s e t : : SmartTi le
{
public :

const s t a t i c IdType ID ;

void i n i t i a l i z e ( const s td : : vector<int>& t i l e s ,
const Json : : Value& opt ions ) ove r r ide ;

const in t r e s o l v e ( const T i l eGr id ∗grid , T i l e S e t ∗ set ,
const in t x , const in t y , const in t index ) over r ide ;

const s td : : s t r i n g getType () const over r ide ;

private :
in t w a l l T i l e ;
in t r o o f T i l e ;
bool emptyOnly ;

} ;

}}}

22



Noxed - A NOX Engine World Editor

// R o o f e d T i l e . cpp
#include " RoofedTi le . h "

#include <noxed/ t i l e s e t / T i l e S e t . h>
#include <noxed/ t i l e s e t / T i l eGr id . h>

namespace noxed { namespace t i l e s e t { namespace t i l e t y p e s {

const SmartTi le : : IdType RoofedTi le : : ID = " roofed " ;

void RoofedTi le : : i n i t i a l i z e ( const s td : : vector<int>& t i l e s ,
const Json : : Value& opt ions )

{
// The base c l a s s s e t s up tag s i f they are p rov ided .
this−>SmartTi le : : i n i t i a l i z e ( t i l e s , opt ions ) ;

}

const in t RoofedTi le : : r e s o l v e ( const T i l eGr id ∗grid , const T i l e S e t ∗ set ,
const in t x , const in t y , const in t index )

{
return −1

}

const s td : : s t r i n g RoofedTi le : : getType () const
{

return ID ;
}

}}}

Step 2: initialize()

As you see in the code on the previous page, there are two parameters given to the
initialize method, "tiles" and "options". Those are data from the fields with the same
name in the tile set definition.

The first part of the process is getting the tiles from the first parameter, which is
an std::vector<int> constructed from the JSON array. There is no guarantee that the
length will be correct, which means you have to check the size of it before using it.

// Se t d e f a u l t v a l u e s
this−>w a l l T i l e = −1;
this−>r o o f T i l e = −1;

// Se t v a l u e s from t i l e array i f l e n g t h i s s u f f i c i e n t
i f ( t i l e s . s i z e () >= 2)
{

this−>w a l l T i l e = t i l e s [0 ] ;
this−>r o o f T i l e = t i l e s [1 ] ;

}
else i f ( t i l e s . s i z e () == 1)
{

this−>w a l l T i l e = t i l e s [0 ] ;
}

The next part is easy if you understand the library the NOX Engine uses to parse and ex-
port JSON data. As the requirements defined, the default value is false.

// Read the op t i on ( s )
this−>emptyOnly = opt ions . get ( " emptyOnly " , f a l se ) . asBool ( ) ;

That is all you need to do for initialization.

23



Noxed - A NOX Engine World Editor

Step 2: resolve()

This function uses the following parameters to resolve the index of the tile that shall be
shown at this position.

• grid The TileGrid where the tile is located.
• set The TileSet where this smart tile instance is located.
• x The logical tile x index; xTile parameters in the grid.
• y The logical tile y index; yTile parameters in the grid.
• index The index of this smart tile instance in the tile set.

What we are going to do is to check the index of the tile above it (x, y + 1) in the
grid. For this example, I have decided to keep it simple instead of compact. The inner
if-statements can of course be replaced with the ternary ?-operator.

in t aboveIndex = grid−>g e t T i l e (x , y + 1) ;

i f ( this−>emptyOnly )
{

i f ( aboveIndex == −1) // I f above t i l e i s empty
{

return this−>r o o f T i l e ;
}
else
{

return this−>w a l l T i l e ;
}

}
else
{

i f ( aboveIndex != index ) // I f above t i l e i s something o the r than t h i s i n s t a n c e
{

return this−>r o o f T i l e ;
}
else
{

return this−>w a l l T i l e ;
}

}

Step 3: Register it

To register it, open NoxedWindowView.cpp and add your header file to the list of includes.
It also needs to have been added to CMakeList.txt by now, otherwise you will receive
linker errors.

The tile set manager is set up in the NoxedWindowView::initialize function in the
aforementioned CPP file. TileSetManager::registerSmartTileType uses the ID field
in the template argument to map the short name to your tile type in its instance factory.
Add the below line of code among the other calls to the same function.

t i l e se tManager . reg i s te rSmar tT i l eType<noxed : : t i l e s e t : : t i l e t y p e s : : RoofedTile >();

Step 4: Test it

Once you have solved any compiler errors and warnings that may have popped up, it is
time to test it in order to confirm that it is working as designed.

Find one of the tile set definitions among your assets. For this example, I used tile-
set/TestTileset2.json and added the following smart tile definition.

24



Noxed - A NOX Engine World Editor

{
" type " : " roofed " ,
"name" : " RoofedTi le t e s t " ,
" t i l e s " : [0 , 1] ,
" opt ions " :
{

" emptyOnly " : true
}

}

If everything works, adding that tile to a map should appear as depicted below.

Figure 4: RoofedTile example

4.2.6 Tile Type: StaticTile ("static")

Even with all the features offered by smart tiles, there are still tiles that only consist of
one tile from the image, and is never changing based on context. That’s what this tile
type is for.

Arguments

• 0: The tile.

4.2.7 Tile Type: ChequeredTile ("chequered")

As the name implies, this tile set uses the position to create a pattern similar to a chess
board using two tiles from the image.

Arguments

• 0: The white tile.
• 1: The black tile.

25



Noxed - A NOX Engine World Editor

Figure 5: ChequeredTile example (Contrast adjusted for visibility)

4.2.8 Tile Type: BigTile ("bigtile")

This forms a rectangular pattern from multiple tiles, essentially creating one big repeat-
ing tile. It is useful for detailed floor textures that are not confined to one square meter,
or commonly used patterns. What inspired this tile type was the expensive flooring in
The Sims 2 that repeats one bigger texture across multiple floor tiles.

Arguments

• 0-N: The tiles forming the pattern, where N is width time height.

Options

• "width": Width (in tiles) of the pattern.
• "height": Height (in tiles) of the pattern.

Figure 6: BigTile example (Contrast adjusted for visibility)

4.2.9 Tile Type: RandomTile ("random")

This has a noisy pattern that remain consistent even if the tile is deleted and added again.
The random number is a function of the smart tile’s index, tile set’s name length, x and
y.

Arguments

• 0-N: The pool of random tiles, N being an arbitrary number. All elements in
this array has equal likelihood, meaning that a more common tile will occur
more often.

26



Noxed - A NOX Engine World Editor

Figure 7: RandomTile example (Contrast adjusted for visibility)

4.2.10 Tile Type: IslandTile ("island")

I struggled to come up with a good name for this one, but what it does is have one outer
tile and one inner tile. The inner tile appears if all surrounding tiles are of the same smart
tile, while the outer tile occurs if not.

Arguments

• 0: The inner tile.
• 1: The outer tile.

Figure 8: IslandTile example

4.2.11 Tile Type: IslandTagTile ("island_tag")

This is similar to the one described above, but it uses the first tag of its own starting with
"tile-group:" as the group, and considers all neighboring tiles with the exact same tag as
part of it. It uses the inner tile if all surrounding tags have it, outer tile otherwise.

Arguments

• 0: The inner tile.
• 1: The outer tile.

27



Noxed - A NOX Engine World Editor

4.2.12 Tile Type: FourBitTile ("4bit")

This forms a 4 bit mask out of adjacencies and use that to pick the tile index. The adja-
cencies that affect the bits, in ascending order of significance are: left, top, right, bottom.
The only limitations this has is that it doesn’t work for T-shapes given that the additional
four bits are only used for corners when all four cardinal directions are blocked by a
matching tile. The obvious use for this tile is grass platforms, but it could also be used
for rocks and paths in a top-down game.

If a tag starting with "tile-group:" exists among its tags, it will check for that instead
of the index. Unlike the IslandTile, the tile type id is same regardless of whether tags
are used.

I recommend keeping the below argument list handy while setting up a tile of this
type. If your tile set does not possess all the tiles, I recommend padding it out with the
tile you would put at index 15 in the array. If there is no tile at index 15 and the resolved
value exceed the array’s upper boundary, the first provided tile (no neighbors) will be
selected.

Arguments

• 0: No neighbors (0000).
• 1: Neighbor to the left (0001).
• 2: Neighbor above (0010).
• 3: Neighbors to the left and above (0011).
• 4: Neighbor to the right (0100).
• 5: Neighbors to the left and right (0101).
• 6: Neighbor to the right and above (0110).
• 7: Neighbors above and on both sides (0111).
• 8: Neighbor below (1000).
• 9: Neighbors below and to the left (1001).
• 10: Neighbors above and below (1010).
• 11: Neighbors above, below and to the left (1011).
• 12: Neighbors below and the right (1100).
• 13: Neighbors below and on both sides (1101).
• 14: Neighbors above, below and to the right (1110).
• 15: Neighbors all around it (1111).
• 16: Top-left corner unoccupied (1110 1111).
• 17: Top-right corner unoccupied (1101 1111).
• 18: Bottom-right corner unoccupied (1011 1111).
• 19: Bottom-left corner unoccupied (0111 1111).

Options

• *extraBits*: Enables arguments 16 through 19.

28



Noxed - A NOX Engine World Editor

Figure 9: FourBitTile example

29



Noxed - A NOX Engine World Editor

4.3 GUI

Our graphical user interface is built with the Dear Imgui library. It is an open source
library that outputs vertex buffers for you to render as you please. We chose the library
since it was lightweight and very easy to use. The library also have bindings in place to
use with OpenGL and SDL. Because of this we were easily able to incorporate the library
into our NOX Engine application.

4.3.1 Data Structures and Program Interaction

ElementLayout - A Single GUI Element

The elements of our interface are stored in our program in a struct that looks like this:

s t ruc t ElementLayout
{

const s td : : s t r i n g key ;
const s td : : s t r i n g l a b e l ;
const ElementType type ;
Json : : Value min ;
Json : : Value max;
Json : : Value value ;
s td : : vector<std : : s t r i ng > l i s t I t e m s ;
bool v i s i b l e ;

}

enum ElementType
{

NUMBER_FLOAT,
NUMBER_INT,
STRING ,
OUTPUT_STRING ,
BOOLEAN,
LIST_STRING ,
BUTTON,
VEC2_FLOAT ,
LAYOUT_HEADER,
LAYOUT_TEXT ,
LAYOUT_SEPARATOR

};

key Identifier used by the the interface to inform an actor which value has been changed.

label Text to be displayed next to the value changed, name of the value.

type Type of value that is being changed and displayed by the interface, text, integrals,
float numbers etc. See ElementType.

min Minimum limit of the value if applicable.

max Maximum limit of the value if applicable.

value the actual value.

listItems Used if we are to display an element containing a list.

visible If an UI-element should be displayed or not.

In this figure we see an example of several elements. Looking at the second we can see
that it has a label: "Brush Size", and a value: currently set to 5. Its type is NUMBER_INT,
which is what we will use to create a slider to change the value of an integer. Its min
and max values are 1 and 5 respectively, but are not shown as text. The element with the
label "Tiles" is of the LIST_STRING type and uses the special listItems variable.

4.3.2 The Controller

Which elements are displayed in the user interface is controlled by our GuiHandler class.
The central data structure used by the class is shown below:

30



Noxed - A NOX Engine World Editor

Figure 10: Several ElementLayots

s t ruc t ElementGroup{
nox : : l o g i c : : a c to r : : Actor ∗ ac to r ;
s td : : s t r i n g elementName ;
s td : : s t r i n g elementID ;
s td : : vec to r <std : : shared_ptr<gui : : ElementLayout>> layou t s ;

} ;

s td : : map<std : : s t r i n g , s td : : unique_ptr<ElementGroup>> currentElements ;

actor A pointer to the actor that owns the values being changed.

elementName Every actor has a name that can be accessed via the pointer. If there is no
actor that owns the values the name of the object will be stored here.

elementID An identifier that is shared of actors and objects of the same type.

layouts A vector of ElementLayout structs that belong to the actor.

currentElements A map of everything that will be displayed each frame. The value we
use for the string key is the elementID contained in ElementGroup.

The GuiHandler will iterate over the currentElements map each frame and display
the user interface according to what is stored there. The reason we used a map and the
elementID as a key that we only wanted to show one of each named element group at a
time. If you for example place a number of enemies in a row the information displayed
by the interface will be the values belonging to the last enemy. You can always click
previously placed actors to change their values.

Here we can see an ElementGroup being displayed with the name "E_Enemy" and
several ElementLayout elements.

Communication with components

The GuiHandler communicates using events. If an actor is placed or selected in the world
a GuiLayoutNotification event is sent to the interface. In the NOX-engine all events

31



Noxed - A NOX Engine World Editor

Figure 11: An element group displaying an actor’s values.

contain a pointer to an actor, but in addition the GuiLayoutNotification event contains
the following data:

s td : : s t r i n g elementId ;
s td : : vector<std : : shared_ptr<noxed : : gui : : ElementLayout>> layou t s ;

elementId The ID that is shared by actors by the same type.

layouts vector of ElementLayout structs that belong to the actor.

The GuiHandler will extract the actor pointer and the data from the event and store
it in the currentElements map. If an element group with the same elementID was being
displayed, it will be replaced.

Were we to drag a slider or change a value using the interface a GuiValueChange
event will be sent by the GuiHandler to the actor that was associated with the element.
The GuiValueChange event like all other events contains an actor pointer and this infor-

mation:
s td : : s t r i n g elementId ;
s td : : s t r i n g key ;
Json : : Value value ;

elementId The ID that is shared by actors by the same type.

key Identifier for which value is to be changed.

value The actual value.

4.3.3 Guide: Setting up GUI for a component

There are a few steps you need to make to get a component within the editor to commu-
nicate back and forth with the GUI handler. For this, I will describe the process of making
it possible to set the size of the grids GridCursor (4.4.5) snaps to. This guide assumes
you are familiar with the event system, header files and name spaces, thus it will not go
into detail about it.

Step 1: The data structure

The best practice for storing UI elements are to keep persistent instances of them in the
component, and sending the shared pointers when the UI element group needs to be
updated. That way, the component can manage the elements’ state. How we have done
it is having an array that is populated once and sent off every time we need to update
the GUI.

s td : : vector<std : : shared_ptr<noxed : : gui : : ElementLayout>> layou t s ;
s td : : shared_ptr<noxed : : gui : : ElementLayout> gr idS izeLayout ;

32



Noxed - A NOX Engine World Editor

Step 2: Initialize

Start by making a function for initializing the GUI element layouts, and have it called
by the creation event function. It should construct the element, add it to our list, and
then call for an update. While it does not make a lot of sense for a small GUI element
group like this, it makes it easier to read code setting up larger element groups, especially
where elements require loops and conditional statements.

The GUI element should have a key that can be understood in the code, a label that
makes it clear to the user what it does, and a type that fits with its purpose. The other
fields are not relevant right now, as a VEC2_FLOAT field’s limits has to be enforced and
defined when receiving value changes.

void GridCursor : : in i tGu iLayout ()
{

// Crea t e e l ement
this−>gr idS izeLayout = std : : make_shared<ElementLayout >(" g r i dS i z e " ,

" Grid S ize " ,
ElementType : : VEC2_FLOAT ,
Json : : Value ( ) ) ;

// Add i t to l i s t
this−>layou t s . push_back ( this−>gr idS izeLayout ) ;

// Update i t
this−>updateGuiLayout ( ) ;

}

Step 3: Update

Every time a value changes, even if it’s caused by the GUI itself, it needs to get up-to-date
information.

void GridCursor : : updateGuiLayout ()
{

// Update g r i d s i z e
this−>gridSizeLayout−>value [ " x " ] = this−>g r i dS i z e . x ;
this−>gridSizeLayout−>value [ " y " ] = this−>g r i dS i z e . y ;

// Update p o s i t i o n
const f l o a t x = this−>actorTransform−>g e t P o s i t i o n ( ) . x ;
const f l o a t y = this−>actorTransform−>g e t P o s i t i o n ( ) . y ;
this−>pos i t ionLayout−>value = boost : : l e x i c a l _ c a s t <std : : s t r i ng >(x ) + " , "

+ boost : : l e x i c a l _ c a s t <std : : s t r i ng >(y ) ;

// N o t i f y GUI Handler
auto event = std : : make_shared<GuiLayoutNot i f i ca t ion >(this−>getOwner ( ) ,

" GridCursorOptions " ,
this−>layou t s ) ;

this−>getLog icContext()−>getEventBroadcas ter()−>queueEvent ( event ) ;
}

Step 4: Listen

The GUI will now display the element as two adjacent text inputs. However, it will not do
anything with the grid cursor in response to user input. To handle that, the component
needs to listen to the GuiValueChange and handle it as shown in the code snippet below.

33



Noxed - A NOX Engine World Editor

else i f ( event−>isType ( GuiValueChange : : ID ))
{

auto valueChange = std : : s t a t i c _ p o i n t e r _ c a s t <GuiValueChange>(event ) ;

i f ( valueChange−>getKey () == " g r i dS i z e " )
{

this−>g r i dS i z e = parseJsonVec ( valueChange−>getValue ( ) , glm : : vec2 (0 . f , 0 . f ) ) ;

auto p o s i t i o n = this−>actorTransform−>g e t P o s i t i o n ( ) ;
this−>actorTransform−>s e t P o s i t i o n ( this−>snap ( p o s i t i o n ) ) ;

this−>updateGuiLayout ( ) ;
}

}

Step 5: Test

Once it compiles, you should see a GUI element with the name of the actor as header. It
is supposed to look like the figure below. As you edit it, it should automatically snap the
cursor’s position to the new grid.

Figure 12: Grid size UI element

34



Noxed - A NOX Engine World Editor

4.4 Noxed Components

All Noxed components have a Noxed:: prefix in their identifiers used to include them in
actors, and can thus be easily identified in the JSON files for their definitions. Similarly,
they use the C++ name space noxed::components for their declaration.

4.4.1 Brush

The brush manages the pattern and size of tile placement in the world grid. The patterns
are classes that defines the set of points that form the core and edge of the brush, as they
do not have the same requirements when it comes to resolving smart tiles.

While it reacts to mode changes from keyboard and UI input, it does not interact
directly with the world. Neither does it manage the UI elements. It exposes functions
that TileSpawner (4.4.10) uses to create the user interface element, and to read the
array of offsets to figure out where it should alter the tile map.

It makes use of the singleton BrushPatternManager to get the registered brush pat-
terns. The singleton is set up during the windows’ initialization as shown in the code
snippet below.

It also has its own renderer that renders the brush sprite for every point that the brush
pattern has for that size. It allocates enough squares to use the max size of the brush.
brushPatternManager ->registerPatternType <noxed:: brush:: patterns :: SquareBrushPattern >();
brushPatternManager ->registerPatternType <noxed:: brush:: patterns :: DiamondBrushPattern >();

Figure 13: Brush example picture.

35



Noxed - A NOX Engine World Editor

4.4.2 EditorBlueprint

This component is the primary means of saving an actor when the level designer initiates
a world save. Its only dependency is Transform, but it could have others if configured to
use the editor component when serializing it. This may seem contradictory to section 4.1
where it is mentioned that physics and any graphical component is necessary; however,
that is only when the object has to be clickable and visible. If that is not required, it
can be used with only a transform to make an object that is included in exported levels,
which the example below shows.

Example

{
" components " :
{

" Transform " :
{
} ,
" Noxed : : E d i t o r B l u e p r i n t " :
{

" extends " : " L e v e l C o n t r o l l e r "
" components " :
{
}

}
}

}

4.4.3 EntitySpawner

This component is responsible for spawning, selecting and deleting entities. It does not
move around on its own, and is thus expected to be in an actor that has a GridCursor
(4.4.5). It emits an EntitySelection (4.5.1) event that is picked up by the correct
EditorBlueprint (4.4.2) to display their options in the user interface.

As mentioned earlier in this chapter, this object keeps a list of which entities it can
spawn.

4.4.4 FollowCamera

This component, when on a controlled actor, changes the properties of the NoxedWindowView’s
camera. It tracks the position and rotation of the parent actor’s Transform, and changes
the camera according to configuration. It is used on the player character in the example
games.

4.4.5 GridCursor

As its name suggests, this is a component that makes the object move around according
to the cursor’s position while snapping to a grid that is set in the component definition.
It listens for MouseAction (4.5.4) which are sent by the window on both mouse and
camera movement.

It does not possess any functionality for acting upon the editor world in and of itself,
instead relying on the EntitySpawner (4.4.3) and TileSpawner (4.4.10) component for
that.

36



Noxed - A NOX Engine World Editor

4.4.6 PushCamera

This is similar to FollowCamera (4.4.4) in that it controls the NoxedWindowView’s camera,
but it uses movement controls and pushable edges to move it. It is designed for the
GridCursor (4.4.5). The second means of control, which is by pushing the cursor against
the edges of the screen, is implemented but left unused as it became too much of a
nuisance in practice.

4.4.7 TileMap

This component is a canvas, upon which tiles from a tile set can be arranged in any
configuration. It can both be a simple tile map that just uses the indices provided to it,
or a smart tile map that resolves the smart tiles before displaying it. It manages the tile
grid and the render nodes necessary to display it.

If the tile map is set to use smart tiles, any set operations on it will go through the
smart tiles at the specified indices and resolve them. It will only resolve the placed tiles
and its eight adjacent tiles. For brushes larger than one cell, the brush instructs which
part of it is the core where only the tile itself has to be resolved, and which positions are
the edge where tiles are to be resolved along with their neighbors.

If you haven’t already, I recommend reading section 4.2 which goes into detail about
tile sets and smart tiles.

When initialized without being provided a tile set, it will send out a TileSetRequest
(4.5.6) and wait until receiving a response before setting up the renderer.

TileBlockRenderNode

To display the tile maps, we had to create a custom render node that would show one
square for each tile in the map. The tile map component has one renderer per block in
the TileGrid, which can be of any size. This means that a change in the tile map will
cause as few nodes as possible to update, sometimes even only one.

One problem with the renderer is that it will exhaust the engine’s limitations after
approximately 10,000 tiles has been placed, and even less than that if the tile map is
sparse.

4.4.8 TileMapManager

This component manages the lifetime of multiple tile maps that exist in the game world,
and offers a user interface for the level designer to do so. The tile maps themselves do
not have any physical presence in the editor world, making this the only way to remove
or select them. It also shows which tile sets are available.

4.4.9 TileMapObjectSaver

A useful feature for smart tile sets are spawning actors at the tiles’ location. The obvious
use case is spawning solid collision blocks onto tiles depicting solid objects in order to
avoid the second step of covering them with black collider boxes. They use tiles’ tags to
determine whether an object is to be placed at the given position. Please note that it does
not check whether the grid cell is occupied before doing so.

With the aid of conditional tags, multiple objects can be used for different tile shapes.
An example would be saving memory and storage space by having the colliders only on
the outward facing tiles. It could be more granular than that, and even allows for differ-

37



Noxed - A NOX Engine World Editor

ent actors depending on what the smart tile resolve into - triangular ones on corners, for
example.

This component needs to be in the same actor as the TileMap (4.4.7) it’s supposed to
overlay with actors.

Example

" Noxed : : Ti leMapObjectSaver " :
{

" o b j e c t s " :
{

" wal l : square " : " I n v i s i b l e W a l l . Square "
}

}

4.4.10 TileSpawner

This component allows for managing the content of a single TileMap (4.4.7) by placing
or removing tiles according to the size and pattern of the actor’s Brush (4.4.1). It does
not interact directly with the tile map, instead it sends a TilePlacement (4.5.5) that the
tile map will react to.

4.4.11 WorldSaver

This component waits for its configured key combination, and then sends out a WorldSaveBroadcast
(4.5.7)] that other actors’ components can listen to in order to write to the world file, and
the NoxedWindowView attached the same work in progress object to a WorldSaveResponse
(4.5.7) that is received by this component after the request has reached all listeners. The
only Noxed components that do so are EditorBlueprint (4.4.2), TileMapObjectSaver
(4.4.9) and TileMap (4.4.7).

The default configuration is to save this to a file called "initial.json", and there is at
the time of writing now means of changing that during runtime, and the default key
combination is left CTRL and S.

38



Noxed - A NOX Engine World Editor

4.5 Noxed Events

4.5.1 EntitySelection

This is a very simple event that has nothing more to it than the ID and base class.
It signifies that an entity has been selected by the EntitySpawner (4.4.3). Any com-
ponent listening to this should mark themselves as selected if, and only if, the actor
pointed to is their parent, and mark themselves otherwise if not. This is to prevent many
EditorBlueprint (4.4.2) components fighting over the UI element for the blueprint’s
properties.

4.5.2 GuiLayoutNotification

The UI, which is described in detail in section 4.3, needs to be populated by the actors
before it can be used. Given that UI is segmented into element groups that are associated
with an actor, the relevant components can use this event to notify the UI controller
about who they are, what element group they want to manage and what elements there
are in that group.

See section 4.3.2 for more information about this and the below event.

4.5.3 GuiValueChange

As the communication from actors to the user interface is done via events, so are the
replies. This contains the name of the actor that described the UI element group, the
name of the group, the key that was supplied with the changed element, and last – but not
least – the value. The value is a Json::Value meaning that it is up to the components to
convert them to the correct type, which should happen without error if the UI controller
received the correct element types.

4.5.4 MouseAction

This event is for any and all actions based on mouse input. It differs from all other
NOX Engine and Noxed events in that it has 3 identifiers that are all mutually exclusive,
MouseAction::MOVE, MouseAction::BUTTON and MouseAction::HOLD. It is possible to
listens to more than one of them, even all three. The reason for the separation is to
prevent unnecessary processing of events that are potentially ran on every frame.

The following data is broadcast along with the event:

• Position on screen (in pixels).
• Size of the screen (in pixels).
• Absolute world position of the curosr (in game units).
• Whether it’s a button press in case of a MouseAction::BUTTON id.
• Which button is pressed.

The event also triggers a new mouse movement event when the camera is moved,
with a recalculated world position. This prevents the GridCursor (4.4.5) actor from
lagging behind if only the camera moves without the mouse moving. That allows the
level designer to place tiles in straight lines by only moving with the keyboard while
holding down the mouse button.

39



Noxed - A NOX Engine World Editor

4.5.5 TilePlacement

The TileSpawner (4.4.10) only knows the name of the tile map, and don’t have any
controls or direct reference to the actor that owns it, or the component itself. To commu-
nicate with the TileMap (4.4.7), it sends these events that addresses a tile map by name.
The event contains the position, brush pattern, brush size and the desired tile index.

Another use of this would be in a game where a smart tile set is to change due to a
game mechanic. For example, we can have an actor that overlay all cracked destructible
walls, and upon destruction it will tell the tile map to change the tile at its position to
reflect the changed state.

4.5.6 TileSetRequest and TileSetResponse

Tile maps not managed by the TileMapManager (4.4.8) have no direct access to the
manager that keeps track of all tile sets. A TileMap (4.4.7) starts by sending this event
to the window, which accesses the tile set manager and constructs a response to provide
the appropriate tile set data to the map.

A secondary purpose of it is to get a reference to the aforementioned tile set manager
as it is included in all responses. That is what TileMapManager (4.4.8) does in order to
supply tile maps with the right set.

Request and response events is something often used in the NOX Engine to get data
from other actors, as well as references. That way, the numeric identifiers need not be
hard-coded into the levels, nor would a pointer to the window or application be nec-
essary. The camera controllers described earlier in this chapter was made prior to us
learning about this pattern of inter-actor communication.

4.5.7 WorldSaveBroadcast and WorldSaveResponse

Our first idea of saving the world involved having all created objects be a child of the
cursor actor, which was unnecessarily complicated and limited all editor actors to one
parent actor. After better understanding the event handling, we switched to a process
where every object that wanted to could extend the world root or add another actor to
the array of actor definitions.

This meant that multiple types of components could listen to the broadcast and add
actor definitions or world properties as they see fit. Below are three components in our
project that uses this event, and you can read more about them in their sections.

• EditorBlueprint (4.4.2)
• TileMap (4.4.7)
• TileMapObjectSaver (4.4.9)

This is unlike the above request/respone pattern as the response’s purpose is only to
be next int the event queue. Upon receiving this response, the WorldSaver (4.4.11)will
be aware that all objects listening to the previous event has had a chance to save data to
it, and it is thus ready to write the resulting world file.

40



Noxed - A NOX Engine World Editor

5 Deployment

This chapter discusses how to prepare and package Noxed for use by end users, as well
as how to set up a development environment for projects using or working on Noxed.

5.1 Development environment setup

5.1.1 For Windows

Before you begin you need to install these programs on your computer:

• Visual Studio 2015 with c++ languague pack.
• Git
• Cmake (with GUI)

Large parts of this section is copied almost verbatim from the NOX Engine readme at
https://bitbucket.org/suttungdigital/nox-engine, with some clarifications. This
guide will use the precompiled versions of the third party libraries available from the
Suttung Digital Bitbucket repository.

Setting up Third Party Libraries

Navigate to where you want to put the project and open Git Bash there. We will need to
create a folder for our projects and clone the libraries. Run these commands in Git Bash:

mkdir Noxed
cd Noxed
g i t c lone h t tp s : // b i t b u c k e t . org / s u t t u n g d i g i t a l /windows− l i b r a r i e s

In windows explorer navigate to the windows-libraries folder and run the script
named "create_msvc140_usr" (right-click -> run with powershell). You might need
to allow running scripts on your system. To do this, open a PowerShell terminal and run

Set−Execu t ionPo l i cy U n r e s t r i c t e d −Scope CurrentUser

When the script is done, there will be a new "usr" directory next to the script. Set
the the environment variable "CMAKE_PREFIX_PATH" to point to this. Also set "PATH" to
point to "usr\bin\x64" and "usr\bin\x86" to be able to use both the 64-bit and 32-bit
dll’s.

Setting up Noxed

Browse to your Noxed folder in Git Bash. We will now clone the Noxed repository into a
folder named source and create a build folder for our Visual Studio solution.

mkdir bu i ld
g i t c lone h t tp s : // b i t b u c k e t . org / noxeduni t ed / noxed sou r c e
cd source
g i t submodule update −− i n i t −−r e c u r s i v e

Start the Cmake program. Press the "Browse Source" button and select the "source"
folder where you cloned the Noxed repository. After that press the "Browse Build" but-
ton and navigate to the "build" folder.

41

https://bitbucket.org/suttungdigital/nox-engine


Noxed - A NOX Engine World Editor

Figure 14: Source and Build folders for
Cmake

Figure 15: Specify Visual Studio for Cmake.

Press Configure and a dialogue box will open. Select "Visual Studio 14 2015" from
the dropdown menu and tick the box for "Use default native compilers", press Finish.
After this press Configure followed by Generate. If you get an error that glew is not
found when Configuring try to set the "CMAKE_PREFIX_PATH" to "...\usr\lib" instead
of "...\usr".
You should now have a ready to run solution inside your "\Noxed\build" folder. The
three different projects you can run are:

• noxed-editor
• topdown
• platformer

Right Click your preferred project, select "Set as StartUp Project", then click on
Properties->Configuration Properties->Debugging and set the Working Directory to your
source folder, typically "..\..\source". If you want to run the noxed-editor on the pro-
togames you need to supply either "topdown" or "platformer" as command arguments.

5.1.2 For Linux

All the commands below are run as a non-privileged user unless sudo is used. All com-
mands also assume you are using Ubuntu 14.04 LTS with brief explanations on how
it differs on later versions ov ubuntu. If you run a distribution other than Ubuntu, the
package manager commands will differ greatly. Furthermore, if you use another shell
than bash or plain sh, you may need to make some changes.

First you need to get the dependencies and tools to compile and run the package. The
below command is for Ubuntu 14.04 LTS and may differ on your Linux system. The first

42



Noxed - A NOX Engine World Editor

line is only requires on Ubuntu 14.04 LTS to get a GCC version that supports C++14
features used in NOX Engine. For later versions of ubuntu, you may want to replace
g++-5 with simply g++

sudo add−apt−r e p o s i t o r y ppa : ubuntu−too lcha in−r / t e s t
sudo apt−get update && sudo apt−get upgrade
sudo apt−get i n s t a l l g i t cmake g++−5 l i bboos t−a l l −dev l ibg lew−dev

Once that is done, you should make a folder for Noxed and clone the repository. After
that, you will need to grab the NOX Engine and its submodules.

mkdir noxed
cd noxed/
g i t c lone h t tp s : // b i t b u c k e t . org / noxeduni t ed / noxed sou r c e
cd source
g i t submodule update −− i n i t −−r e c u r s i v e

If everything went according to plan, building it should be as simple as running CMake
and make in the build directory. Omit the option for cmake if your compiler’s command
is simply g++.

mkdir . . / bu i ld /
cd . . / bu i ld /
cmake . . / source −DCMAKE_CXX_COMPILER=g++−5 && make −j 2

To test it, navigate to the source folder and run one of the executables.

. . / bu i ld / bin /noxed−e d i t o r p la t fo rmer

. . / bu i ld / bin / p la t former

. . / bu i ld / bin /noxed−e d i t o r topdown

. . / bu i ld / bin /topdown

5.2 Packaging

5.2.1 For Windows

For this guide to work you need to have the same folder structure as the development
environment setup guide.

• In Visual Studio, select Release instead of debug and compile the three projects.
• Go into your source folder and run the script named win_release.ps1(Right-Click

-> Run with Powershell), you may need to set permissions to run scripts first. The
script will create a release folder in your Noxed directory

• Download a Microsoft Visual C++ 2015 Redistributable package that corresponds
to your version of the Visual C++ compiler and put it in the release folder. At the
time of writing this is 14.0.23026 and can be found at https://www.microsoft.
com/en-us/download/details.aspx?id=48145[10]

Your release folder is now standalone and can be run on other windows computers.
Remember to install the Microsoft Visual C++ 2015 Redistributable before you run the
programs.

5.2.2 For Linux

To deploy our two example games and the editor, I have prepared a shell script that will
run under Ubuntu 14.04 LTS. It should be put in the noxed/ directory mentioned in the
last chapter, which is above the source and build directory. You can find the script in the

43

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145


Noxed - A NOX Engine World Editor

root directory of our repositry. The script has to be run from the directory outside of the
source directory that Noxed was cloned into.

The result is two folders, one for each game. They contain the editor and a shell script
to run the editor with the correct command argument to load the resources. This script
does not package them for installation, however and they will have to be run from the
folder.

5.3 Licensing issue

At the time of writing, the executable produces will be subject to the LGPLv2 license due
to statically linking OpenAL. The NOX Engine developers are looking into making them
shared by default and thus our script and instructions may need modifications to work
properly in the future. To compile OpenAL dynamically or omit it, you need to change
the options in NOX-Engine’s CMakeLists.txt file that are relevant to it.

44



Noxed - A NOX Engine World Editor

6 Discussion

6.1 Cross-Platform Development

Developing for both Linux and Windows simultaneously went surprisingly well. After
configuring Visual Studio to use forward slashes we had zero instances of code written
in Visual Studio not running on Linux and only two instances of Linux written code not
running on Windows. We believe that this is mostly due to the NOX Engine already being
cross-platform.

Our only third-party outside of the NOX Engine library was written with both Linux
and Windows in mind, but required a tiny bit of extra code to run under Windows.

Listing 6.1-1: The only platform specific code.
#i f d e f _WIN32

SDL_SysWMinfo wmInfo ;
SDL_VERSION(&wmInfo . ve r s ion ) ;
SDL_GetWindowWMInfo( this−>window , &wmInfo ) ;
io . ImeWindowHandle = wmInfo . i n f o . win . window ;

#endif

One major issue we had was that the Graphical User Interface would not show up
on screen when the editor was running on a Linux machine with an integrated graphics
card. After spending some time investigating this we decided to cut our losses and not
support integrated cards on Linux.

6.2 Code Style and Quality

https://github.com/isocpp/CppCoreGuidelines[11]
Our original idea was to use the c++ core guidelines. This was quite quickly discarded.
We were impatient to start working and constantly looking up something was very frus-
trating. Instead we decided to imitate the style and practices used in the NOX Engine and
its examples. This proved to be a more comfortable process since we often had to check
the engine code anyway.

6.3 Workflow and Process

We got all our planning done in time and started programming the 26th of January.

Although our plans were to meet daily in the same room we ended up using our office
more as a place for organizing work than a workspace. Preferring to work at home we
met at least a couple of times face to face per week while keeping contact on Skype and
Slack to coordinate our work. If there was any issues or we needed feedback or close
cooperation we would use Skype voice chat and work together that way.

Using sprints as a container for issues worked reasonably well. We think that if we
were to do a similar project we would try using a Kanban agile model to see if the
increased flexibility would give us bigger freedom to refactor what work needs to be
done next.

45

https://github.com/isocpp/CppCoreGuidelines


Noxed - A NOX Engine World Editor

The goals were coming along as scheduled for the first two milestones, but the tile set
and UI content proved to be more work than first thought. We were threading on unfamil-
iar ground with NOX Engine’s rendering mechanisms. Suttung Digital were very helpful
with explaining it, however, otherwise it could have taken a lot longer. In hindsight it
might be easier designing and implementing a graphic user interface simultaneously as
the other mechanics.

Come April and the sickness risk started to became reality. That ended up – along
with what I mentioned above – causing a 2.5 week delay. It gave us less time to polish
and improve usability of the editor, as well as doing code related to the game prototypes.

6.3.1 Jira and Git

In hindsight we should have found a simpler tool with simple issue tracking where you
could add issues to sprints. That was all we really needed and wanted. It didn’t help that
the web interface was updated in the middle of our project. We managed to use Jira for
all of our issues and work so that we had total control of who was working with what
when.

Each issue got a separate branch as planned with the naming convention “wX-noxed-
Y” where X was the week number and Y was the issue number. Later we switched to
“NOXED-Y” since it was simpler and the week the issue was created didn’t really matter.
Code reviews before every merge into master weren’t accomplished, but we managed to
give each other feedback on coding style frequently.

Git and Bitbucket worked flawlessly with one small exception; submodules. After
moving the location of one submodule we never managed to remove all traces of the
old location, making it pop up as a change periodically.

6.3.2 Suttung Digital

Having Suttung Digital as our principal was a good experience. We had weekly meetings
with them, except for one week in May and the easter holiday. The meetings were a very
good incentive to keep our work consistent and on time, in addition to getting some very
valuable feedback from Suttung Digital.

They added us to their Slack server which gave us a way to communicate with them
directly, providing us with prompt and constructive answers on any and all questions we
had. They even answered us on weekends, which was a pleasant surprise.

6.3.3 Future Work

There are a few things that will need to be done before the editor can become a great
tool for development within the NOX Engine. The project will be made open source with
an MIT license, meaning that any of these issues may no longer be there when next year’s
Bachelor groups are coming together. We will continue managing the repository hosted
on BitBucket as of the time of writing, and submissions from outside our groups will have
to be submitted as pull requests.

To see the project at the state it was upon delivery, we have created the tag "bachelor-
2016-hand-in" at the last commit we did before delivering the source code.

46



Noxed - A NOX Engine World Editor

Refactor to library

As it stands, the project includes the source code for Noxed and the games in the same
repository. This is not very helpful for any new projects that wants to use it as their
project will have to be forks or submodules of Noxed. The tasks are as follows:

• Change compilation type to static library
• Move platformer/ and topdown/ to their own repository with Noxed as submod-

ule
• Write instructions for how to set up a project
• Add a means of extending the editor in projects using Noxed.

All editor-only components should still be mixed in with the rest of the Noxed com-
ponents, and that is to allow it being used in future projects where the level editor is
embedded into the game. It is entirely possible to make a constructor argument or func-
tion to select whether they should be part of the current running Noxed program, but we
never saw the need for it, or a case where extra components would impact performance.

Save and resume progress

This is a more complicated issue, but is crucial to making this viable in a production
environment. There is currently no way to save the world in a way that can be restored
in the editor for future work. What it needs to do is to serialize all active objects aside
from a select few that may change during development, like the cursor and any other
persistent EditorBlueprint (4.4.2) actors.

File managment

The files written to and read from in the editor are all statically configured in the relevant
components’ JSON files. This editor needs a way to invoke the operative system’s file
dialogs and select files from there for load, save or export. Either that, or a user interface
that allows adding, removing and selecting files within the editor.

Better TileMapObjectSaver

The object saver is useful for placing walls and any other object that functions indepen-
dently of the tile map itself. However, what if we for example wanted to make every
cracked wall destructible and parameterize it so that it knows which tiles to put down
instead when the wall is destroyed.

A way to go about it is having a specific component that is saved with any actor
definition this component produces, and within it there has to be information about
what tile indices to change into. It also needs to differ depending on whether the tile
map is "dumbed down" (i.e. only resolved indices are saved, not the smart tile indices) as
the desired index would be different in that case. This SmartTile base class would need
to store the relevant information.

Blueprint argument visualization

A feature to visually aid the level designer would be line-art squares and circles affected
by arguments in editor blueprint, for example a circle to depict light range.

47



Noxed - A NOX Engine World Editor

A proper game

Our two games are mere prototypes of basic mechanics in their genre, and do not rep-
resent a real use scenario for the editor. This is probably the only thing here that may
unconditionally serve as a starting point for a future bachelor project: developing a game
while contributing relevant changes upstream to the editor.

48



Noxed - A NOX Engine World Editor

7 Conclusion

As we have discussed in the previous chapter, the project reached its goal and we can
successfully create levels for projects using the NOX Engine with the Noxed extensions
as our two prototypes will show. Even though the editor is done as per our original goals,
and we are happy with how it turned out, we discovered a lot of room for additional
features and improvements in order to make it the go-to level editor for NOX Engine
projects.

In the process, we learned a lot about working with other open source software. That
means perusing code to find out how something works when documentation does not
suffice, and most importantly contributing back when there is something that needs to
be added or fixed to fit our use of it.

Our group also gained experience in planning and using an agile development model,
discovering the strengths and weaknesses of it in the long term. It worked well with our
group where the tasks were set from consensus and input from Suttung Digital, but we
can not tell how well it scales were the project larger than two people. Our milestones
served well as an indication of the project’s status.

49



Noxed - A NOX Engine World Editor

Bibliography

[1] 2016. Suttung digital as. http://suttungdigital.com/. (Visited March. 2016).

[2] 2016. Git. https://git-scm.com/. (Visited January. 2016).

[3] 2016. Jira software. https://www.atlassian.com/software/jira. (Visited Jan-
uary. 2016).

[4] 2016. Slack. https://slack.com/. (Visited January. 2016).

[5] 2016. Toggl. https://www.toggl.com/. (Visited January. 2016).

[6] 2016. Cmake. https://cmake.org/. (Visited January. 2016).

[7] 2015. Visual studio. https://www.visualstudio.com/. (Visited November. 2015).

[8] 2016. Atom. https://atom.io/. (Visited Januar. 2016).

[9] 2016. Texstudio. http://www.texstudio.org/. (Visited April. 2016).

[10] 2016. Microsoft visual c++ 2015 redistributable. https://www.microsoft.com/
en-us/download/details.aspx?id=48145. (Visited April. 2016).

[11] 2015. C++ core guidelines. https://github.com/isocpp/CppCoreGuidelines.
(Visited December. 2015).

50

http://suttungdigital.com/
https://git-scm.com/
https://www.atlassian.com/software/jira
https://slack.com/
https://www.toggl.com/
https://cmake.org/
https://www.visualstudio.com/
https://atom.io/
http://www.texstudio.org/
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://github.com/isocpp/CppCoreGuidelines


Noxed - A NOX Engine World Editor

A Header Files

A.1 SmartTile.h

The file has been edited slightly to break very long function declrataions so that they do
not exceed the box width.
#pragma once

#include <json / value . h>

#include <noxed/ t i l e s e t / T i l eGr id . h>
#include <s t r i ng >

namespace noxed { namespace t i l e s e t {

c lass T i l e S e t ;
c lass T i l eGr id ;

/∗∗
∗ A smart t i l e t ype . Th i s c l a s s i s to c o n v e r t a smart t i l e to a r e g u l a r dumb
∗ t i l e by us ing the arguments i t i s p rov ided .
∗
∗ There i s one i n s t a n c e per smart t i l e in a t i l e s e t . I t should not keep s t a t e
∗ tha t i s r e l e v a n t to a s i n g l e t i l e map .
∗/
c lass SmartTi le
{

public :
using IdType = std : : s t r i n g ;

SmartTi le () = default ;

/∗∗
∗ I n i t i a l i z e the smart t i l e with
∗
∗ @param t i l e s A l i s t o f t i l e parameters
∗ @param o p t i o n s A j s o n o b j e c t with o p t i o n s
∗/
v i r tua l void i n i t i a l i z e ( const s td : : vector<int>& t i l e s ,

const Json : : Value& opt ions ) ;

/∗∗
∗ R e s o l v e the c u r r e n t t i l e i n t o the unde r l y ing t i l e s e t t i l e .
∗
∗ @param g r i d The T i l e G r i d where the t i l e i s l o c a t e d
∗ @param s e t The T i l e S e t where the smart t i l e i n s t a n c e i s l o c a t e d
∗ @param x The l o g i c a l t i l e x c o o r d i n a t e ; x T i l e parameters in the g r i d
∗ @param y The l o g i c a l t i l e y c o o r d i n a t e ; y T i l e parameters in the g r i d
∗ @param index The index o f t h i s smart t i l e in the t i l e s e t .
∗/
v i r tua l const in t r e s o l v e ( const T i l eGr id ∗grid , const T i l e S e t ∗ set ,

const in t x , const in t y , const in t index ) = 0;

/∗∗
∗ Ask i f the t i l e has a tag . Th i s i s f o r che ck ing i n s t a n c e s a c r o s s i n s t a n c e s
∗ o f smart t i l e s . For example , you may want two d i f f e r e n t wal l t i l e s to be
∗ c o n t e x t s e n s i t i v e .
∗
∗ I f your t i l e c l a s s do not need t h i s , r e tu rn f a l s e wi thout any o the r ch e ck s .
∗

51



Noxed - A NOX Engine World Editor

∗ @param tag The t e x t s t r i n g to ask i t f o r .
∗ @param r e s o l v e d I n d e x The index r e s o l v e () has g iven , or −1 to not bo ther
∗/
v i r tua l const bool hasTag ( const s td : : s t r i n g tag ,

const in t reso lvedIndex ) const ;

/∗∗
∗ Check i f the tag i s at a l l p o s s i b l e f o r t h i s smart t i l e .
∗
∗ @param tag The tag word
∗ @return True i f the tag i s p o s s i b l e , were the r i g h t c o n d i t i o n s met
∗/
v i r tua l const bool canHaveTag ( const s td : : s t r i n g tag ) const ;

/∗∗
∗ Get the t ype s t r i n g tha t should be the con s tna t ID .
∗/
v i r tua l const s td : : s t r i n g getType () const = 0;

protected :
s td : : map<std : : s t r i n g , s td : : vector<int>> tags ;

} ;

}}

52



Noxed - A NOX Engine World Editor

B Original Project Plan

53



1. Mål og Rammer

1.1. Background

We are two students studying Game Programming at NTNU Gjøvik. Our wish is to create a level
editor for a game made with the NOX-Engine made by Suttung Digital. Our main focus is to get 
an editor that can be used to generate levels without any need to change the game. 

We want to have support for tilesets, entities and solid textured objects. 

1.2. Project Goals

Effect Goals:

● Get a deeper understanding of how games and level editors interact.
● Learn more about tool development. Creating tools that are practical and usable.

Result Goals:

● The editor should be usable and complete.
● The basics of the editor should be understandable and intuitive.
● The levels created should work on the game without changing or modifying the game.
● The games and the editor should work in both Windows and Linux.

1.3. Project Framework

The game(s) and the editor will be made using the NOX engine. We will use free code editors. If
we need additional libraries or software we plan to use free and open source. There are no 
costs associated with the project.



2. Scope

2.1. Subject area

We would like to create an editor that is easy to use and with objects that are highly modifiable, 
with focus on following areas:

● The games using this editor shall be able to expose any number of game objects by 
using special assets.

● The editor shall save world information in the format the engine already uses.
● The game can use a core set of objects and features so it can understand the noxed 

objects without including the entire level editor.

2.2. Limits/requirements.

The game(s) and editor should run in Windows 7 or newer and Ubuntu 14 LTS. The programs 

should start on integrated graphic cards, but need only run smoothly on newer dedicated 

graphic cards under, not accounting for exaggerated level designs with a high object density..

2.3. Assignment

We will make at least one game and a level editor to said game. If time permits we will make 
multiple games and make the editor work on all of them.



3. Project Organization

3.1. Responsibilities and roles

Team Leader: Tor Strømme

No other roles defined seeing as we are only two persons.

3.2. Routines and rules.

● Any decision made for the group should be discussed, if no agreement can be reached 
we will first discuss with an external (Magnus from Suttung or Simon from NTNU). If after
a discussion no agreement is reached, the group leader will make a decision.

● If a member of the group has not performed his assigned tasks in the agreed upon time 
it is up to the other member to give a verbal warning. If the behaviour is repeated a 
meeting will be called with Simon-NTNU.

● Any unforeseen costs will be split evenly among the members.
● Any member has the right to sign and authorize on behalf of the group.
● When work hours are concerned our main objective each week will be to complete 

assigned tasks. However we expect each member to spend at least 20 hours each week
even if the task is easy or completed early. The goal is to have an average around 30 
hours.



4. Planning and reports:

4.1. Workflow

We will follow the Scrum model as much as is sensible with two persons. Mainly we will have 
four major parts: Design, develop game, develop game editor and completion. The game and 
the editor will be developed in tandem. We allocated 9 weeks starting week 6 to develop our 
software. The remaining time will be used for bug fixes, polishing and report writing.

We will start with weekly sprints working together in the same room, though this is subject to 
change as the project matures. If we do not physically meet on a work day we will have the daily
scrum meeting on skype instead. Every monday at 13.00 we will hold the Scrim Review and 
Retrospective for the completed sprint followed by the Planning Meeting for the next sprint. Any 
member can call meetings and any member is expected to update the Backlog.

4.2. External Meetings 

Meet Suttung/Magnus once a week, mondays 1400. Simon will be at the Mustad rooms we are 
using at Wednesdays so we will have meetings with him there approximately every other week. 



5. Quality Assurance

5.1. Documentation

All commits to bitbucket should be complete with useful comments(see 5.3). Classes, functions 
and resources should be commented in a fashion that we can generate documentation using 
Doxygen or similar software.

5.2. Code Style and Quality

We will attempt to use the c++ core guidelines. 

5.3. Configuration Management

Issues and tasks will be tracked using Jira. We chose Jira since it is popular and we figure that it
is easier to get help if lots of people use it.

Git will be used for source control. Any errors with integration will be reported when discovered. 
The author of a class or function will have a responsibility that it works in the context of the 
software and should be available for figuring out what went wrong. 

Every new commit to the Master Branch will be preceded by a code review with the other group 
member. This is to ensure that the latest version always is working and satisfies all and any 
standards.

When we get a working copy of the game and editor the newest versions will be made available 
on the NTNU bachelor project web site. 

5.4. Risk Analysis

Event Probability Impact Assessment

Sickness/disease Medium Depends on duration and 
severity.



Absence/procrastination Medium High

Hardware Issues Low Low

Technical Issues with 
game engine

High Low

Downtime on web services Low Low

Lack of Communication Medium High

Loss of Group Member Low High

Preemptive/reactive measures:

Disease/Sickness:

● Notify the other group member. Make sure any work you have done is documented and 

available.

Absence/Procrastination:

● Communicate what is happening on the group meetings. Motivate each other.

Hardware Issues:

● Make sure you save/commit your work regularly. We both have backup computers.

Technical issues with Game Engine: 

● Contact Suttung and make sure to create a bug on their tracker. Try to work around it in 

the short term. If it is easily fixed, create a pull request.

Downtime on web services:

● Upload local copies to alternative sources and keep working. The services we use are 

using are very robust and reliable. We expect at most to have very short time issues.

Lack of Communication

● Weekly and daily meetings should be enough to counteract this.

Loss of Group Members

● Make sure everyone is working at an even pace and that motivation is kept high. If 

against all odds a member is excluded a meeting has to be called to find out how and 

what can be delivered.



6. Work Planning

6.1. Main Parts

We have some flexibility in the planning phase since we are using Scrum. We have agreed to 

certain milestones we want to reach at certain times. What tasks need to be completed for each 

milestone is yet to see.

1. Project Plan delivery: 28/01-16
2. Prototype game/editor: 22/02-16

○ A basic UI for the editor and a game with a player that can move around. 
3. Main development complete: 10/04-16

○ The game and the editor is finished and complete. Only bug fixes and polish 

remains
4. Final Sprint: 09/05-16

○ Any and all development from here on out will be if the code does not compile 

and run on the target systems. Code unrelated to that has to be committed to be 

merged or discarded by this date.
5. Report Delivery: 18/05-16

6.2. Assignments

We have planned on using 9 weeks for the development of features, but leave the last 5 for the 

written report, bug fixing, polishing or catching up if a feature took more time than first 

anticipated. We will have 5 major milestones and use our sprints to reach these. 

1. Blank Sheet to work from. 1 week.
2. Basic Editor with placement of assets. Simple Prototype of Game. 2 weeks.
3. Tilesets in both game and Editor. 2 weeks. 
4. Interface in Editor with object properties. 2 weeks.
5. Complete Game(s). 2 weeks.
6. Report writing, bug fixes.

This is a list of features we would like to implement, in descending order of importance not order

of implementation. If time is an issue we will discard from the bottom first.

● Editor: Entity placement
● Editor: Entity properties
● All: Tiled graphics for 2D level geometry
● Game: One example game with simple fighting, enemies, and movement.
● Editor: Tile set placement
● Editor: Different brushes
● All: Automatic adjacency-adapting tiles for faster tile map production.
● All: Meta-data for tiles that can be used by the game and editor.
● All: Integration of editor as submodule in projects.



● All: A separation of editor and core objects needed both by editor and game
● Game: Another example game with basic tower defence mechanics where a player can 

edit the map between attempts
● Game: Sound effects
● Game: Music

6.3. Gantt Chart



Noxed - A NOX Engine World Editor

C Jira Worklog

62



[NOXED-76] TopDown: Find New Sprites for Player, PowerUp and Enemy. 
Created: 07/mai/16  Updated: 07/mai/16 

Status: In Progress

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Unresolved Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour 

Time Spent: Not Specified 

Original Estimate: 1 hour 

Sprint: Week 10

Story Points: 1 



GUI: Key-Mapping Reference (use assets/control.json) (NOXED-48) 

 [NOXED-75] TopDown:Add sprites for Player, enemy and power-up Created: 
07/mai/16  Updated: 07/mai/16  Resolved: 07/mai/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Technical task Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Unassigned 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 6, Week 7, Week 8

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 07/mai/16 ] 

plangle is stupid



[NOXED-74] Refactor NoxedGame into Platformer and TopDown Created: 
18/apr/16  Updated: 25/apr/16  Resolved: 25/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

2 hours 

Time Spent: Not Specified 

Original Estimate: 2 hours 

Sprint: Week 9

Story Points: 2 



[NOXED-73] Platformer: Find and smarten tile set Created: 16/apr/16  Updated: 
01/mai/16  Resolved: 01/mai/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 9, Week 10

Story Points: 3 

 Comments  

Comment by Gisle Aune [ 01/mai/16 ] 

The one I have will suffice



[NOXED-72] TopDown: Find and smarten tile set Created: 16/apr/16  Updated: 
07/mai/16  Resolved: 07/mai/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Gisle Aune Assignee: Unassigned 

Resolution: Won't Fix Votes: 0 

Labels: None 

Remaining 
Estimate:

3 hours 

Time Spent: Not Specified 

Original Estimate: 3 hours 

Sprint: Week 10

Story Points: 3 

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 07/mai/16 ] 

Will use the tileset already included in the editor. Will try to find some player and PowerUp/Enemy 
Assets



[NOXED-71] Platformer Add powerup Created: 16/apr/16  Updated: 01/mai/16
 Resolved: 01/mai/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours, 5 minutes 

Original Estimate: Not Specified 

Sprint: Week 10

Story Points: 3 



[NOXED-70] TopDown: Add powerup Created: 16/apr/16  Updated: 07/mai/16
 Resolved: 07/mai/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 6 hours, 12 minutes 

Original Estimate: 3 hours 

Sprint: Week 9, Week 10

Story Points: 3 



[NOXED-69] Platformer: Add enemy Created: 16/apr/16  Updated: 02/mai/16
 Resolved: 02/mai/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 hour, 25 minutes 

Original Estimate: Not Specified 

Sprint: Week 10

Story Points: 5 



[NOXED-68] TopDown: Add enemy Created: 16/apr/16  Updated: 07/mai/16
 Resolved: 07/mai/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

6 hours, 17 minutes 

Time Spent: 1 hour, 43 minutes 

Original Estimate: 1 day 

Sprint: Week 10

Story Points: 8 



[NOXED-67] Platformer: Add movement mechanics platformer Created: 16/apr/16
 Updated: 20/apr/16  Resolved: 20/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 7 hours 

Original Estimate: 3 hours 

Sprint: Week 9

Story Points: 3 



[NOXED-66] TopDown: Add movement mechanics for topdown Created: 16/apr/16
 Updated: 04/mai/16  Resolved: 03/mai/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours, 38 minutes 

Original Estimate: 3 hours 

Sprint: Week 9, Week 10

Story Points: 3 



[NOXED-65] Add Noxed-platformer and Noxed-topdown instead of noxed-game. 
Created: 16/apr/16  Updated: 25/apr/16  Resolved: 25/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Unassigned 

Resolution: Duplicate Votes: 0 

Labels: None 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 9

Story Points: 2 



[NOXED-64] Code Cleanup and Renaming of Gui-elements Created: 11/apr/16
 Updated: 11/apr/16  Resolved: 11/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 hour 

Original Estimate: 1 hour 

Sprint: Week 8

Story Points: 1 



[NOXED-63] Make DearImhuiHandler handle more than one type of item at a time. 
Created: 10/apr/16  Updated: 11/apr/16  Resolved: 11/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

53 minutes 

Time Spent: 1 hour, 7 minutes 

Original Estimate: 2 hours 

Sprint: Week 8

Story Points: 2 



[NOXED-62] Move DearImguiHandler from DearImguiSubRenderer to 
NoxedEditorWindow Created: 10/apr/16  Updated: 11/apr/16  Resolved: 11/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Won't Fix Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour 

Time Spent: Not Specified 

Original Estimate: 1 hour 

Sprint: Week 8

Story Points: 1 

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 11/apr/16 ] 

GuiHandler needs to exist below DearImguiSubrenderer to render at the correct time.



[NOXED-61] GUI: Prevent click through Created: 06/apr/16  Updated: 09/apr/16
 Resolved: 09/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 25 minutes 

Time Spent: 1 hour, 35 minutes 

Original Estimate: 3 hours 

Sprint: Week 8

Story Points: 3 



[NOXED-60] Make RandomTile work under Windows Created: 01/apr/16  Updated:
02/apr/16  Resolved: 02/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 hour 

Original Estimate: Not Specified 

Sprint: Week 7



[NOXED-59] GUI: Separate data structure for managing GUI elements, listening to 
instructions from components, and informing components that their GUI elements 
have had the value changed Created: 16/mar/16  Updated: 10/apr/16  Resolved: 
10/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 day, 2 hours, 42 minutes 

Original Estimate: 8 minutes 

Sprint: Week 6, Week 7, Week 8

Story Points: 8 

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 09/apr/16 ] 

added inputlayot and type to handler. #



[NOXED-58] GUI: Tidy up GUI code Created: 16/mar/16  Updated: 06/apr/16
 Resolved: 06/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours, 30 minutes 

Original Estimate: 3 minutes 

Sprint: Week 6, Week 7, Week 8

Story Points: 3 

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 05/apr/16 ] 

fixed imgui CMakestuff.

Comment by Tor Andreas Dyrlie Strømme [ 05/apr/16 ] 

added GUI subrenderer to the game.

Comment by Tor Andreas Dyrlie Strømme [ 06/apr/16 ] 

Testing VI



[NOXED-57] TileMap: "bigtile" Smart Tile Type (Multiple tiles in a repeating 
pattern, forming a big tile) Created: 16/mar/16  Updated: 16/mar/16  Resolved: 
16/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

25 minutes 

Time Spent: 35 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 



[NOXED-56] TileMap: "random" Smart Tile Type (has to be deterministic so that it 
renders exactly alike) Created: 16/mar/16  Updated: 16/mar/16  Resolved: 16/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

5 minutes 

Time Spent: 55 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 



[NOXED-55] TileMap: "4bit" Smart Tile Type (example at 
http://www.saltgames.com/article/awareTiles/) Created: 16/mar/16  Updated: 
21/apr/16  Resolved: 21/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 2 hours, 55 minutes 

Original Estimate: 1 hour 

Sprint: Week 6, Week 9

Story Points: 1 



[NOXED-54] TileMap: Sometimes tiles do not resolve their neighbors right when 
placed quickly Created: 14/mar/16  Updated: 14/mar/16  Resolved: 14/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

30 minutes 

Time Spent: 30 minutes 

Original Estimate: 1 hour 

Story Points: 1 



[NOXED-53] TileMap: "Island" smart tile that islands with others having a shared 
tag. Created: 13/mar/16  Updated: 13/mar/16  Resolved: 13/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Trivial 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

35 minutes 

Time Spent: 25 minutes 

Original Estimate: 1 hour 

Story Points: 0 



[NOXED-52] WASD on the camera should send mouse move actions Created: 
12/mar/16  Updated: 13/mar/16  Resolved: 13/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Unassigned 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

50 minutes 

Time Spent: 10 minutes 

Original Estimate: 1 hour 

Story Points: 1 

 Comments  

Comment by Gisle Aune [ 13/mar/16 ] 

This was a gross overestimation. I thought major rework had to be done, but it was just an update in 
application checking if the camera position matches the last known one. I needed to make a public 
method for broadcasting the mouse position. It takes the screen position and handles all the rest of the 
mouse vent.



[NOXED-51] "pushable" on the camera does nothing Created: 12/mar/16  Updated: 
13/mar/16  Resolved: 13/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

12 minutes 

Time Spent: 3 minutes 

Original Estimate: 15 minutes 

Story Points: 0 



[NOXED-50] Handler: State only considers last added keybinding's limit Created: 
12/mar/16  Updated: 12/mar/16  Resolved: 12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Minor 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

10 minutes 

Time Spent: 5 minutes 

Original Estimate: 15 minutes 

Story Points: 0 



[NOXED-49] Handler: MODE_SET also needs to affect state. Created: 12/mar/16
 Updated: 12/mar/16  Resolved: 12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 15 minutes 

Original Estimate: 10 minutes 

Story Points: 1 



[NOXED-48] GUI: Key-Mapping Reference (use assets/control.json) Created: 
12/mar/16  Updated: 25/apr/16  Resolved: 12/mar/16 

Status: Open

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Unassigned 

Resolution: Unresolved Votes: 0 

Labels: None 

Σ Remaining 
Estimate:

5 hours Remaining 
Estimate:

5 hours 

Σ Time Spent: Not Specified Time Spent: Not Specified 

Σ Original 
Estimate:

1 day 
Original Estimate:

1 day 

Sub-Tasks:

Key
Summar
y

Type StatusAssignee

NOXED-
75 

TopDown
:Add 
sprites for
Player, 
enemy... 

Technica
l task 

Close
d 

  

Sprint: Week 6, Week 7, Week 8

Story Points: 8 



[NOXED-47] GUI: Entity Managment (Get/Set Property) Created: 12/mar/16
 Updated: 12/apr/16  Resolved: 12/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours 

Original Estimate: 3 hours 

Sprint: Week 6, Week 7, Week 8

Story Points: 3 



[NOXED-46] GUI: Communication Event that can describe content and visibily of a 
named block of GUI elements, e.g. entity properties. Created: 12/mar/16  Updated: 
01/apr/16  Resolved: 01/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours 

Original Estimate: 3 hours 

Sprint: Week 6, Week 7

Story Points: 3 



[NOXED-45] GUI: TileMap Managment (Add/Remove, List) Created: 12/mar/16
 Updated: 15/apr/16  Resolved: 15/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 day, 30 minutes 

Original Estimate: 3 hours 

Sprint: Week 6, Week 7, Week 8

Story Points: 3 

 Comments  

Comment by Gisle Aune [ 12/apr/16 ] 

Mistyped issue number. This one is not done!



[NOXED-44] GUI: Cursor Information (Position, Mode, [Size]) Created: 12/mar/16
 Updated: 12/apr/16  Resolved: 12/apr/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

10 minutes 

Time Spent: 1 hour, 50 minutes 

Original Estimate: 2 hours 

Sprint: Week 6, Week 7, Week 8

Story Points: 2 



[NOXED-43] TileMap: Make it possible for code to look for a specific smart tile tag 
and query the smart tile about entity creation parameters on world save Created: 
12/mar/16  Updated: 13/mar/16  Resolved: 13/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 50 minutes 

Time Spent: 3 hours, 10 minutes 

Original Estimate: 5 hours 

Story Points: 5 

 Description  

For the early rough tilemapping, so that the designer need not place individual tiles.

 Comments  

Comment by Gisle Aune [ 13/mar/16 ] 

Went almost 2 hours below the estimate



[NOXED-42] TileMap: Make brush size for rapid rough tile placement, and 2 brush 
shapes (diamond, square) Created: 12/mar/16  Updated: 12/mar/16  Resolved: 
12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Minor 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

30 minutes 

Time Spent: 4 hours, 30 minutes 

Original Estimate: 5 hours 

Story Points: 5 

 Comments  

Comment by Gisle Aune [ 12/mar/16 ] 

Upped the estimate because this requires a new renderer too.



[NOXED-41] Add GUI-rendering to the DearImguiSubrenderer. Created: 10/mar/16
 Updated: 16/mar/16  Resolved: 16/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

3 hours 

Time Spent: Not Specified 

Original Estimate: 3 hours 

Sprint: Week 6, Week 6

Story Points: 3 

 Description  

Add the actual render functions to the DearImguiSubrender class.

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 15/mar/16 ] 

imgui added as submodule

Comment by Tor Andreas Dyrlie Strømme [ 16/mar/16 ] 

Added ugly version. Will be cleaned up in issue NOXED-59

Comment by Tor Andreas Dyrlie Strømme [ 16/mar/16 ] 



*NOXED-58



[NOXED-40] Add classes NoxedEditorApplication and NoxedEditorView for Editor 
specific stuff. Created: 10/mar/16  Updated: 14/mar/16  Resolved: 14/mar/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour 

Time Spent: 4 hours 

Original Estimate: 5 hours 

Sprint: Week 6

Story Points: 5 

 Description  

If we are to use a nox::subrender for rendering the gui on top of the editor we will need to create a new 
class that extends the NoxedApplication class so that we can also extend the NoxedWindowView class to
use the renderer. 



[NOXED-39] Create Subrenderer for GUI renderering Created: 09/mar/16
 Updated: 10/mar/16  Resolved: 10/mar/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours, 25 minutes 

Original Estimate: 2 hours 

Sprint: Week 6

Story Points: 2 

 Description  

Add a subrenderer object that can be hooked onto the renderer. Need to override 
RenderSdlWindowView::OnWindowCreated() to add it when program starts.

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 10/mar/16 ] 

During this issue I discovered that we need to refactor a bit, will create new issues.



[NOXED-38] Make ModeChange stateful with toggles, addition and subtraction 
Created: 08/mar/16  Updated: 12/mar/16  Resolved: 12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 25 minutes 

Time Spent: 35 minutes 

Original Estimate: 2 hours 

Story Points: 2 



[NOXED-37] Make tags for smart tiles handled in base class Created: 08/mar/16
 Updated: 11/mar/16  Resolved: 11/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

50 minutes 

Time Spent: 10 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 



[NOXED-36] Hold down mouse button to place multiple tiles. Created: 07/mar/16
 Updated: 12/mar/16  Resolved: 12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

40 minutes 

Time Spent: 1 hour, 20 minutes 

Original Estimate: 2 hours 

Sprint: Week 6

Story Points: 2 



[NOXED-35] Make it possible to "dumb down" the smart tile set when saving the 
world, to make the game use less resources with a tilesat that is unchanging anyway 
Created: 07/mar/16  Updated: 11/mar/16  Resolved: 11/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

50 minutes 

Time Spent: 10 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 



[NOXED-34] Make the tile map saved with the world show up in the game. Created: 
07/mar/16  Updated: 11/mar/16  Resolved: 11/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 40 minutes 

Time Spent: 20 minutes 

Original Estimate: 2 hours 

Sprint: Week 6

Story Points: 2 

 Comments  

Comment by Gisle Aune [ 10/mar/16 ] 

Changed world saver component. See relevant commit

Comment by Gisle Aune [ 11/mar/16 ] 

Just making it assigned since I forgot to in progress it



[NOXED-33] Serialize TileMap component Created: 07/mar/16  Updated: 10/mar/16
 Resolved: 10/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

45 minutes 

Time Spent: 15 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 



[NOXED-32] Use a deletable flag on EditorBlueprint, and check for it on occupancy 
checks. If it's not there, the occupant should be ignored. Created: 05/mar/16
 Updated: 11/mar/16  Resolved: 11/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 49 minutes 

Time Spent: 11 minutes 

Original Estimate: 2 hours 

Sprint: Week 6

Story Points: 2 



[NOXED-31] Serialize TileGrid (see the deserialize method for structure) Created: 
05/mar/16  Updated: 10/mar/16  Resolved: 10/mar/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

45 minutes 

Time Spent: 15 minutes 

Original Estimate: 1 hour 

Sprint: Week 6

Story Points: 1 

 Comments  

Comment by Gisle Aune [ 10/mar/16 ] 

Will merge with master after tilemap serialize issue



[NOXED-30] Fix off-by-one error in EntitySpawner causing a segfault when 
spawning entity with id = length of spawnable actor list Created: 05/mar/16
 Updated: 05/mar/16  Resolved: 05/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Bug Priority: Major 

Reporter: Gisle Aune Assignee: Unassigned 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

59 minutes 

Time Spent: 1 minute 

Original Estimate: 1 hour 

Story Points: 1 

 Comments  

Comment by Gisle Aune [ 05/mar/16 ] 

Swept that one up while working on issue 28



[NOXED-29] Make a Tiler component, and a way of receiving its instructions to edit 
a tileset Created: 05/mar/16  Updated: 05/mar/16  Resolved: 05/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour 

Time Spent: 2 hours 

Original Estimate: 3 hours 

Sprint: Week 5

Story Points: 3 

 Comments  

Comment by Gisle Aune [ 05/mar/16 ] 

And the tiler is done. Now all that remains is getting smart tileset working, and the schedule is preserved



[NOXED-28] Make a mode change for the grid cursor object so that different placer 
components can cooperate. Created: 05/mar/16  Updated: 05/mar/16  Resolved: 
05/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

40 minutes 

Time Spent: 20 minutes 

Original Estimate: 1 hour 

Sprint: Week 5

Story Points: 1 

 Comments  

Comment by Gisle Aune [ 05/mar/16 ] 

ModeChange event

Comment by Gisle Aune [ 05/mar/16 ] 

That didn't take long. Use E and T for the two current modes, as defined in assets/control.json



[NOXED-27] Doxygen comment cleanup Gisle Created: 02/mar/16  Updated: 
09/mar/16  Resolved: 09/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

40 minutes 

Time Spent: 2 hours, 20 minutes 

Original Estimate: 3 hours 

Sprint: Week 6, Week 5

Story Points: 3 



[NOXED-26] Doxygen comment cleanup Tor Created: 02/mar/16  Updated: 
13/apr/16  Resolved: 13/apr/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Task Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour, 30 minutes 

Time Spent: 1 hour, 30 minutes 

Original Estimate: 3 hours 

Sprint: Week 6, Week 5, Week 6, Week 7, Week 8

Story Points: 3 



[NOXED-25] Delete/Disable collided object. Created: 29/feb/16  Updated: 02/mar/16
 Resolved: 02/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

1 hour 

Time Spent: 4 hours 

Original Estimate: 5 hours 

Sprint: Week 4

Story Points: 5 



[NOXED-24] Make the smart tile set with 3 basic types of smart tiles, and make the 
tile map able to use it Created: 25/feb/16  Updated: 07/mar/16  Resolved: 07/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 5 hours, 5 minutes 

Original Estimate: 5 hours 

Sprint: Week 4, Week 5

Story Points: 5 

 Comments  

Comment by Gisle Aune [ 06/mar/16 ] 

Smart tiles are loaded now, and there's one type which is not very smart.

Comment by Gisle Aune [ 06/mar/16 ] 

The tilemap works now with smart tiles, but there's just one boring type to choose from and it's not 
resolving neighbors yet. Overtime is very possible, but 2 more tile types and neighbor resolution is all that
remains.

Comment by Gisle Aune [ 07/mar/16 ] 

Finished it up to what the issue said. The tile set has 6 smart tiles, check them out with keys 1-6 in the 
editor after setting editor mode with 'T'-key. The three types to demonstrate it is: static (just plain old one-
to-one), chequered (chess board), and island (inner and outer layer)





[NOXED-23] Make tilemap component that uses tileset resource Created: 25/feb/16
 Updated: 05/mar/16  Resolved: 05/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 2 days, 50 minutes 

Original Estimate: 5 hours 

Sprint: Week 4, Week 5

Story Points: 5 

 Comments  

Comment by Gisle Aune [ 28/feb/16 ] 

Made TileGrid class to organize them, but it's untested.

Comment by Gisle Aune [ 28/feb/16 ] 

Fixed the TileGrid class and made the boilerplate code for the TileMap

Comment by Gisle Aune [ 03/mar/16 ] 

There's a bad alloc error. Commiting to check it in VS

Comment by Gisle Aune [ 04/mar/16 ] 

This has taken longer than expected, but there's some tile action going on now!  I need some more 
optimizations and cleanups, and then it should be ready for closing



Comment by Gisle Aune [ 05/mar/16 ] 

The tile map is complete, however it is still not editable as that is beyond the scope of this issue. This was
a gross underestimation!



[NOXED-22] Make tileset resource that loads on startup. Created: 25/feb/16
 Updated: 28/feb/16  Resolved: 28/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours, 25 minutes 

Original Estimate: 3 minutes 

Sprint: Week 4

Story Points: 3 

 Comments  

Comment by Gisle Aune [ 27/feb/16 ] 

Tile Set resource is working. Nothing visible yet, however.



[NOXED-21] Test imgui with Noxed Created: 24/feb/16  Updated: 09/mar/16
 Resolved: 09/mar/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 7 hours 

Original Estimate: 5 hours 

Sprint: Week 6, Week 5

Story Points: 5 

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 09/mar/16 ] 

Imgui will work the engine, but the creation of a subrenderer is necessary.



[NOXED-20] Add Collision Detection on Player Object. Created: 24/feb/16  Updated:
24/feb/16  Resolved: 24/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours 

Original Estimate: 3 hours 

Sprint: Week 4

Story Points: 3 



[NOXED-19] Be able to spawn two different entities in editor. Created: 22/feb/16
 Updated: 25/feb/16  Resolved: 25/feb/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 2 hours, 40 minutes 

Original Estimate: Not Specified 

Sprint: Week 3, Week 4

 Comments  

Comment by Gisle Aune [ 22/feb/16 ] 

Started working on keyboard mode change event and handler.

Comment by Gisle Aune [ 23/feb/16 ] 

Made the mode changer now, which should pave the way to making this possible before we get a GUI. 
See EntitySpawner component for test code.

Comment by Gisle Aune [ 25/feb/16 ] 

The editor can now select actors to spawn, see the editor's actor/Cursor.json and controls.json resource for
how that's bound for now.



[NOXED-18] Split spawner code out of GridCursor Created: 22/feb/16  Updated: 
22/feb/16  Resolved: 22/feb/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 20 minutes 

Original Estimate: Not Specified 

Sprint: Week 3

 Comments  

Comment by Gisle Aune [ 22/feb/16 ] 

EntitySpawner handles the entity spawning GridCUrsor did prior. Merging it into master now.



[NOXED-15] Remove code from Window View for old mouse event. (Requires: 
NOXED-12, NOXED-13, NOXED-7) Created: 16/feb/16  Updated: 12/mar/16
 Resolved: 12/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Minor 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

50 minutes 

Time Spent: 10 minutes 

Original Estimate: 1 hour 

Story Points: 1 



[NOXED-14] Place exposed entities (Requires: NOXED-10) Created: 15/feb/16
 Updated: 20/feb/16  Resolved: 20/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Done Votes: 0 

Labels: Editor 

Remaining 
Estimate:

0 minutes 

Time Spent: 5 hours, 10 minutes 

Original Estimate: Not Specified 

Sprint: Week 3

 Comments  

Comment by Gisle Aune [ 20/feb/16 ] 

Started work, but got segfault when saving.

Comment by Gisle Aune [ 20/feb/16 ] 

Tried fixing some errors.

Comment by Gisle Aune [ 20/feb/16 ] 

The culprit was a lot of & in return types. It almost works now, except the components in the blueprint

Comment by Gisle Aune [ 20/feb/16 ] 

Exporting works now. Fixed json error in actor Wall on editor. Added transform.

Comment by Gisle Aune [ 20/feb/16 ] 

World saving now saves them correctly. Fixed "extends" typo that caused save objects to not extend



Comment by Gisle Aune [ 20/feb/16 ] 

Deleting works again, but we may need to find another way to detect grid occupancy.

Comment by Gisle Aune [ 20/feb/16 ] 

We worked together on this issue, hence the doubled time.



[NOXED-13] Make Camera moving component use new mouse event (Requires: 
NOXED-7) Created: 15/feb/16  Updated: 17/feb/16  Resolved: 17/feb/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Minor 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: Editor 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 3

 Comments  

Comment by Gisle Aune [ 17/feb/16 ] 

This did not become a problem.



[NOXED-12] Make GridCursor use new mouse event (Requires: NOXED-7) 
Created: 15/feb/16  Updated: 16/feb/16  Resolved: 16/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Minor 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 20 minutes 

Original Estimate: Not Specified 

Sprint: Week 3



[NOXED-11] Hotkey event for ctrl, alt or shift-modified key-presses Created: 
15/feb/16  Updated: 14/mar/16  Resolved: 14/mar/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Minor 

Reporter: Gisle Aune Assignee: Unassigned 

Resolution: Fixed Votes: 0 

Labels: Noxed 

Remaining 
Estimate:

20 minutes 

Time Spent: 1 hour, 40 minutes 

Original Estimate: 3 hours 

Story Points: 2 

 Comments  

Comment by Gisle Aune [ 05/mar/16 ] 

Can be added as extra functionality in the ModeChange event emitter in handlers/



[NOXED-10] Expose to Editor Created: 15/feb/16  Updated: 20/feb/16  Resolved: 
20/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: Editor 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 day, 1 hour, 10 minutes 

Original Estimate: Not Specified 

Sprint: Week 3

 Description  

Assets for exposing game entities for the level editor to place and adjust.

 Comments  

Comment by Gisle Aune [ 19/feb/16 ] 

Code does not compile and there's nothing to demo yet.

Comment by Gisle Aune [ 19/feb/16 ] 

Added files to cmake list

Comment by Gisle Aune [ 20/feb/16 ] 

Class set up, but not confirmed working. It compiles, at least.



Comment by Gisle Aune [ 20/feb/16 ] 

This should work, but I need a new branch to weave this into the save-the-world stuff before I know for 
sure.

Comment by Gisle Aune [ 20/feb/16 ] 

just going to add time

Comment by Gisle Aune [ 20/feb/16 ] 

Half of those hours was wasted doing some crazy solution, though.



[NOXED-9] Cursor Camera that moves with WASD and when mouse is near edge 
Created: 15/feb/16  Updated: 17/feb/16  Resolved: 17/feb/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Done Votes: 0 

Labels: Editor 

Remaining 
Estimate:

0 minutes 

Time Spent: 5 hours, 20 minutes 

Original Estimate: Not Specified 

Sprint: Week 3

 Comments  

Comment by Gisle Aune [ 17/feb/16 ] 

Tue 16:30-16:45
Wed 07:45-11:20, 12:45-14:15
Total: 5h 20m

The camera components are for controlling the view's main camera. If need arises, some refactoring 
would be necessary to have it only control a local camera, which it will have to acquire through a locally 
broadcasted component event.

The first thing I did was allowing other objects access to the camera from the view. However, getting the 
view proved to be a challenge. Finding the controlled view returned null despite the actor being 
controlled.

After more investigation, I found out that the function to find the controlling view explicitly finds the 
view if the view is NOT controlling the actor. Changing the operator from != to == fixed the issue I had, 
but I contacted the engine devs about this and asked if it was the intended behavior.



Logic.cpp:126: if (controlledActor && controlledActor->getId() != actorId)

Magnus asked that I send a pull request of the change, and so I did. The pull request ended up rebased 
into commit 2f07c2d319dbd805ed7b1d3d1736b7aa3a62960e. That solves that problem, and I finished the
class for the follow-camera.

Next task was the cursor camera, which shall only move when the cursor is close to the edge or the keys. 
Apparently I can use the camera's BBOX for this, making the MouseAction properties I made with this in
mind moot.

WASD movement was a minor challenge, but I needed to figure out that the keyboard event was press 
and release. I added a keyboardMovement vector for that to be added. One issue with the WASD 
movement is the grid cursor not moving unless there's been a change. That's out of scope for this issue, 
but it will have to be addressed as its own little issue.

The reason I jumped to that was that it showed me the key to a problem with the mousemovement. It 
would accelerate when a constant speed was intended. I changed it to using a movement vector, as well, 
instead of trying to have it move towards a target position. Normalization if both was at zero made it fail 
completely, but adding a small threshold before new position was calculated fixed it.



[NOXED-8] Save the world! Created: 15/feb/16  Updated: 20/feb/16  Resolved: 
20/feb/16 

Status: Closed

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Gisle Aune Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: Editor 

Remaining 
Estimate:

0 minutes 

Time Spent: 4 hours 

Original Estimate: Not Specified 

Sprint: Week 3

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 20/feb/16 ] 

Merged with master



[NOXED-7] Class for mouse event Created: 15/feb/16  Updated: 16/feb/16  Resolved: 
16/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Gisle Aune Assignee: Gisle Aune 

Resolution: Fixed Votes: 0 

Labels: Noxed 

Remaining 
Estimate:

0 minutes 

Time Spent: 1 hour, 55 minutes 

Original Estimate: Not Specified 

Sprint: Week 3

 Description  

 class MouseAction : Event 
 Event needs the following methods and correspoing variables 
 bool isClick() 
 int getMouseButton() 
 glm::ivec2 getScreenPosition() 
 glm::vec2 getWorldPosition() 
 Use constants for button names left, right and middle 
 Integrate it into NoxedWindowView class 

 Comments  

Comment by Gisle Aune [ 16/feb/16 ] 

There are most likely a number of entites that wants to listen to mouse clicks, but not movements. Add 
that to keyboard events not needing be fired because the cursor moved, and the call for a new event class 
is there. The biggest motivator, however, is that the Action event doesn't have enough space for all the 



variables that mouse events need.

The solution is two event classes, MouseMoveEvent and MouseClickEvent. The latter inherits from the 
former. That will mean there are Actors that use both, but those that only need to listen to clicks won't 
have to check an event every frame.

Or so I thought. When doing that, the event ID would be the same for both. After looking into the event 
type names, I found out that I could merge those two classes into one and have two names for it. 
MouseAction::MOVE and MouseAction::BUTTON. They are both used like Action::ID for listening 
purposes. This may be a premature optimization, but the thing I learned about events should be useful 
down the line.



[NOXED-5] Second type of environment, power-up/destroyable, interact with the 
player in some way. Created: 15/feb/16  Updated: 24/feb/16  Resolved: 24/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Fixed Votes: 0 

Labels: Game 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 3, Week 4

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 22/feb/16 ] 

Added a game application class for game specific stuff, also made a second actor json for testing.

Comment by Tor Andreas Dyrlie Strømme [ 24/feb/16 ] 

Splitting up in smaller issues.



[NOXED-3] Improve Codebase structure: Noxed, Noxed-game and Noxed-editor 
Created: 09/feb/16  Updated: 15/feb/16  Resolved: 15/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: Improvement Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 2

 Comments  

Comment by Gisle Aune [ 15/feb/16 ] 

Projects use the code from Noxed, by including it into the projects. The project name needs to be supplied
to the NoxedApplication class.



[NOXED-2] Editor: Place wall "clumps" Created: 09/feb/16  Updated: 15/feb/16
 Resolved: 15/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Gisle Aune 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

Not Specified 

Time Spent: Not Specified 

Original Estimate: Not Specified 

Sprint: Week 2

 Comments  

Comment by Gisle Aune [ 15/feb/16 ] 

Clicking the editor places walls. This is test code to be replaced with a proper level editor placement.



[NOXED-1] Game: Collision with walls Created: 09/feb/16  Updated: 09/feb/16
 Resolved: 09/feb/16 

Status: Resolved

Project: 2016: Noxed

Component/s: None 

Affects Version/s: None 

Fix Version/s: None 

Type: New Feature Priority: Major 

Reporter: Tor Andreas Dyrlie Strømme Assignee: Tor Andreas Dyrlie Strømme 

Resolution: Done Votes: 0 

Labels: None 

Remaining 
Estimate:

0 minutes 

Time Spent: 3 hours 

Original Estimate: Not Specified 

Sprint: Week 2

 Comments  

Comment by Tor Andreas Dyrlie Strømme [ 09/feb/16 ] 

There now are wall clump objects that you can collide with in the noxed-game



Generated at Sun May 15 15:40:02 CEST 2016 by Tor Andreas Dyrlie Strømme using JIRA 6.3.4#6332-
sha1:51bc225ef474afe3128b2f66878477f322397b16. 


	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Goals and Framework
	Background
	Target Audience
	Project Goals
	Project Framework

	Scope
	Subject area
	Limits and Requirements
	Assignment

	Project Organization
	Suttung Digital
	Responsibilities and roles
	Routines and Rules

	Planning and Reports
	Work flow
	External Meetings

	Quality Assurance
	Documentation
	Code Style and Quality
	Configuration Management
	Risk Analysis

	Work Planning
	Main Parts
	Assignments
	Gantt Chart


	Requirements
	Functional requirements
	Use case diagram
	Use cases

	System Requirements

	Process
	Workflow
	Workflow Interruptions

	Project tools
	Git
	Jira
	Slack
	Toggl

	Programming Tools
	CMake
	Visual Studio
	Atom
	TeXstudio


	Technical Details
	Editor Blueprints
	Design
	General Usage
	Guide: Add a player character

	Tile Set
	Structure
	Smart Tiles
	Guide: Make a tile set definition
	Tile Types
	Guide: Add a new tile type
	Tile Type: StaticTile ("static")
	Tile Type: ChequeredTile ("chequered")
	Tile Type: BigTile ("bigtile")
	Tile Type: RandomTile ("random")
	Tile Type: IslandTile ("island")
	Tile Type: IslandTagTile ("island_tag")
	Tile Type: FourBitTile ("4bit")

	GUI
	Data Structures and Program Interaction
	The Controller
	Guide: Setting up GUI for a component

	Noxed Components
	Brush
	EditorBlueprint
	EntitySpawner
	FollowCamera
	GridCursor
	PushCamera
	TileMap
	TileMapManager
	TileMapObjectSaver
	TileSpawner
	WorldSaver

	Noxed Events
	EntitySelection
	GuiLayoutNotification
	GuiValueChange
	MouseAction
	TilePlacement
	TileSetRequest and TileSetResponse
	WorldSaveBroadcast and WorldSaveResponse


	Deployment
	Development environment setup
	For Windows
	For Linux

	Packaging
	For Windows
	For Linux

	Licensing issue

	Discussion
	Cross-Platform Development
	Code Style and Quality
	Workflow and Process
	Jira and Git
	Suttung Digital
	Future Work


	Conclusion
	Bibliography
	Header Files
	SmartTile.h

	Original Project Plan
	Jira Worklog

