
Bachelor Project:

Platformer Generation AI

Authors: Christer Peltoperä Somby

Henning Einar Luick

Jonas Dalheim Reitan

Kristoffer Eidså

Date: 18.05.2015
Supervisors: Mariusz Nowostawski

Simon McCallum

Table of Contents
1. Preface . 5
2. List of Figures . 5
3. List of Tables . 7
4. List of Listings . 8
5. Sammendrag . 9
6. Abstract . 10
7. Introduction . 11

7.1 Project Description . 12
7.2 Background . 12

7.2.1 Why we chose to do this . 12
7.3 Academic Background . 13
7.4 Audience . 13
7.5 Product Audience . 13
7.6 Document Structure . 14
7.7 Roles . 14
7.8 Development Framework . 14
7.9 Terminology . 15
7.10 Introduction references . 15

8. Requirements . 15
9. Technical Design . 16

9.1 Technology . 17
9.2 Program Flow . 18
9.3 Subsystems . 18

9.3.1 ActorFactory . 18
9.3.1.1 Actors . 19

9.3.1.1.1 ActorStates . 22
9.3.2 Animations . 23
9.3.3 Console . 25
9.3.4 Event . 27
9.3.5 Graphical User Interface . 27
9.3.6 Particles . 29
9.3.7 Physics . 31
9.3.8 Renderer . 32
9.3.9 Resource Management . 33

9.4 Technical Design References . 34
10. Development Process . 34

10.1 Development Tools . 35
10.2 Development Workflow . 35
10.3 Project Workflow . 36

10.3.1 Scrum . 36
10.4 Working Hours . 36

11. World Generation . 37
11.1 Approaches . 39

11.1.1 Deterministic Random Generation . 39
11.1.2 Line by line Approach, our selected approach 41

11.1.2.1 Line by Line failed Implementation . 42
11.1.2.2 Successful implementation of Line by Line Approach 44

11.1.2.2.1 Storing and Loading from the database using Line by Line
 Approach . 46

11.1.3 Noise Approach . 48
11.1.3.1 Implementing Noise Approach . 49
11.1.3.2 Learning With Noise . 51
11.1.3.3 Libnoise . 52
11.1.3.4 Obstacle Placement Using Noise . 52

11.1.4 Tile by tile Approach . 55
11.2 World Collision . 59

11.2.1 Marching Squares Algorithm . 60
11.2.2 The problem with tile collision . 63

11.3 Our choice . 65
11.4 World Generation References . 65

12. User feedback and testing . 66
12.1 User feedback . 67

12.1.1 Passive user feedback . 67
12.1.2 Active user feedback . 67
12.1.3 Our approach . 68

12.2 Testing . 69
12.2.1 Internal testing . 70
12.2.2 Public testing . 71

13. Deployment . 71
13.1 Installer . 72

13.1.1 Problems . 72
13.2 Deployment References . 72

14. Discussion . 72
14.1 Group Work and Workload . 73
14.2 Further Development . 73

14.2.1 Cooperative Play . 74
15. Conclusion . 74
16. Appendices . 75
17. A. Project Plan . 76
18. B. Prosjektavtale . 84
19. C. Toggl . 87
20. D. Medieval Brawl . 150

21. E. Bachelor Work Log . 171

5

Preface
Thanks to Mariusz Nowostawski for being our supervisor, helping us with the bachelor

thesis whenever we needed it, and giving us directions so we were headed the right path.

Thanks to Simon J. R. McCallum for answering bachelor thesis related question that we

had. Thanks to Ådne Midtlin for being available for business related questions. We

would also like to thank everyone that participated in the testing of our algorithm.

6

List of Figures
figure 9.1 program flow
figure 9.2 actor factory - Actor UML
figure 9.3 actors - sequence for actor updating without a custom category
figure 9.4 actors - possible for sequence for actors updating with a custom category
figure 9.5 actorstates - statemachine for actors
figure 9.6 actorstates - actorstate hierarchy
figure 9.7 animations - example of a tile atlas
figure 9.8 resource management - a simple illustration of our resource management
figure 9.9 resource management - a simplified version of what a improved resources
handler could look like
figure 11.1 world generation - small platform
figure 11.2 world generation - without grid-locked movement
figure 11.3 deterministic level generation - level example
figure 11.4 deterministic level generation - more advanced level
figure 11.5 line by line approach - the red line shows the input
figure 11.6 line by line approach - the next output
figure 11.7 line by line approach - the AI generated two straight lines in a row
figure 11.8 successful implementation of line by line approach - illustration of
datastructure of leveldata
figure 11.9 successful implementation of line by line approach - figure illustrating table 2
figure 11.10 successful implementation of line by line approach - a chunk from
anywhere in the level
figure 11.11 implementing noise approach - example of output from fractal noise
figure 11.12 implementing noise approach - example on how noise lines up with old
platformer levels
figure 11.13 implementing noise approach - image taking directly from the game Super
Mario Bros.
figure 11.14 libnoise - voronoi pattern
figure 11.15 obstacle placement using noise - spike filler algorithm
figure 11.16 tile by tile approach - outputs
figure 11.17 tile by tile approach - the AI will take in «1 tile, position: 2,5» as input.
figure 11.18 tile by tile approach - the AI gave «Right» as output.
figure 11.19 tile by tile approach - This time the output was «Up».
figure 11.20 tile by tile approach - Complete platform could look like this.
figure 11.21 marching squares algorithm - platform before and after applying algorithm
figure 11.22 marching squares algorithm - what the user sees
figure 11.23 marching squares algorithm - cases
figure 11.24 marching squares algorithm - comparison
figure 11.25 the problem with tile collision - two ground tiles from a separate game
together with the player on top for illustration purposes
figure 11.26 the problem with tile collision - the block is being pushed up to the left, and

7

left on the right
figure 11.27 the problem with tile collision - clipped edges of a square body makes
movement better
figure 12.1 internal testing - flat level
figure 12.2 internal testing - level with variation

8

List of Tables
table 1 technology
table 2 successful implementation of line by line approach - table 2
table 3 storing and loading from the database using line by line approach

9

List of Listings
listing 9.1 actors - XMLelement example
listing 9.2 actors - a graphicscomponent example
listing 9.3 actors - a example XML-file for actor
listing 9.4 actors - registering a new component
listing 9.5 actors - registering a new component category for the physicscomponent
listing 9.6 actors - overridden update function still calls parent
listing 9.7 animations - variables
listing 9.8 aniamtions - animation class
listing 9.9 console - function pointer storage
listing 9.10 console - insertion function to map
listing 9.11 console - search and call function
listing 9.12 event - example sending message
listing 9.13 event - example receive message
listing 9.14 graphical user interface - XML-file example
listing 9.15 particles - updating all positions to the graphics processing unit
listing 9.16 particles - instancing vertex shader with textures
listing 9.17 particles - instancing fragment shader with colors
listing 11.1 line by line failed implementation - implementation of line by line approach
listing 11.2 storing and loading from the database using line by line approach - loading
data from the SQL database
listing 11.3 storing and loading from the database using line by line approach - leveldata
is randomized
listing 11.4 implementing noise approach - the various inputs to perlin noise
listing 11.5 implementing noise approach - basic level layout
listing 11.6 obstacle placement using noise - spike filler algorithm
listing 11.7 tile by tile approach - implementation of tile by tile approach
listing 11.8 marching squares algorithm - adding a new solid tile to the vector for the
algorithm
listing 11.9 marching squares algorithm - example from marching squares algorithm

10

Sammendrag

Sammendrag av Bacheloroppgaven

Tittel Platformer Generation AI

Dato 18.05.2016

Deltakere Christer P. Somby

 Henning E. Luick

 Kristoffer Eidså

 Jonas D. Reitan

Veileder Mariusz Nowostawski

Oppdragsgive
r

Kremen

Kontaktperso
n

Jonas Dalheim Reitan +4791871237Jonasdr@hotmail.com

Nøkkelord Thesis, AI, Game Engine, Programming, C++, Level Generation

Antall sider ?

Antall vedlegg

Tilgjengelighe
t

Åpen

Sammendrag Kremengine er en spillmotor skrevet fra grunnen av i C++14 . Den
støtter både 3D og 2D. Vi laget vår egen motor slik at vi kunne ha
maksimal kontroll over nivå genererings algoritmen og redusere tiden
det tar å teste ting siden vi visste hvordan alt fungerte. Det er mange
forskjellige måter å takle oppgaven vi satt for oss selv. Vi
eksperimenterte med mange forskjellige algoritmer for å lære
datamaskinen hvordan å generere gode nivåer konsekvent.
Det vi endte opp med er en nivå generator som bruker linje for linje
framgangsmåten for bakken spilleren skal gå på og støy
fremgangsmåten for taket i verdenen våres.

11

Abstract

Abstract for Bachelor Project

Title Platformer Generation AI

Date 18.05.2016

Participants Christer P. Somby

 Henning E. Luick

 Kristoffer Eidså

 Jonas D. Reitan

Supervisor Mariusz Nowostawski

Employer Kremen

Contact
Person

Jonas Dalheim Reitan Jonasdr@hotmail.com +4791871237

Keywords Thesis, AI, Game Engine, Programming, C++, Level Generation

Pages ?

Attachments

Availability Open

Abstract Kremengine is a game engine written from scratch in C++14. It
supports both 3D and 2D. We made our own engine so we could have
maximum control of the level generation algorithm and reduce time it
take to test things as we knew how everything worked. There is a lot
of different ways to approach the task we set for ourselves. We
experimented with a lot of different algorithms to learn the computer
how to generate good levels consistently.

What we ended up with is a level generator that uses the line by line
 for ground for the player to walk on and the approach noise approach

for the ceiling of our world.

12

Introduction

Project Description

The project we are doing is very interesting and can be complex, what we really wanted
to work with was something that learns, that is why we are making a level generator that
can learn how to make better levels. The level generator uses user feedback to get a
general sense of how the level was, if it was bad, it will down prioritize the patterns that
do not work together, likewise, if it was good, if will prioritize the patterns that work
together. The reason we chose to do user feedback rather than doing self learning by
observing the players behavior as a primary way of getting data, is because user
interaction can be both very enjoyable coupled with the brainpower and independence of
humans. Seeing something evolve through the playing of many people is something that
is fascinating to observe and can also be a powerful tool for level making in games. Just
being able to see what the best level is for players of all ages and all difficulties that can
be directly used or be the influencer of great level making.

Background

The bachelor group consists of four game programming students who intend to start a
game development company after finishing our degree. Because of that we wanted to
built a flexible and expandable game engine during last semester in the game
programming course, with the intent of writing our bachelor assignment in it. During this
semester we focused everything on the game engine, so we did not give the bachelor
much thought.

We had a few meetings during the second week of January where we discussed what we
wanted to do, and we seemed to be most interested in working with AI or virtual reality.
None of us owned the proper hardware to work efficiently with virtual reality so we
quickly settled for some research and pioneering in the field of AI. We ended up settling
for some form of level generation AI. After discussing this with Associate Professor
Simon J. R. McCallum and Associate Professor Mariusz Nowostawski, we decided on
creating an AI which would eventually generate generally good levels. The AI would
achieve this by sending what it considered good levels to voluntary participants, who in
turn would give feedback back to the server and the AI would learn from that.

All four of us have different areas of interest and experience within game development,
and the project is fairly large, so we found this to be the perfect fit for us.

Why we chose to do this

Many big companies pay video game testers to test their game and level design,[1]
because there is no precise definition of good level design. The quality of a level or a
game is subjective, but that do not mean that there is not a generally good way of

https://dev.imt.hig.no/confluence/display/KREM/Introduction+references#Introductionreferences-1

13

building them. The tool we are writing hopes to discover the generally good way to build
a generic platform level.

There are many examples of smart level generation, but most of these are using a self
written algorithm with no external learning. Our tool will generate better levels as more
people use it and give feedback, and will hopefully eventually be able to generate close
to perfect generic platform levels.

We were allowed to be four on this project because of its scope and complexity, in
addition to the fact that it is a fairly unexplored subject. We are planning to start a game
development company after we are are finished with the degree, which is an additional
reason for developing this tool, as it could be used by us among others in the future to
speed up the development process of platform games.

Academic Background

The entire team is studying game programming at NTNU Gjøvik. We have all made
several prototype games as well as a game engine during our study. All members are
proficient with c++. Most members also have some experience with other languages. We
have made games for both Windows and Android. We are all Windows users, so
multiplatform support is very limited.

Audience

Demo Audience

The demo will be used to demonstrate what we have done for NTNU in Gjøvik. It will
showcase the strengths and weaknesses of the generation algorithm, and demonstrate
how it can be used in a real business setting. Gjøvik University College can use it as
advertisement to show off what their students are capable of after a completed bachelor
degree. For us it will be a project we can add to our portfolio when searching for a job.

Thesis Audience

The thesis is created for NTNU in Gjøvik for research and teaching. It will also be used
by scholars who wish to delve deeper into the generation than we have. We will explain
most of the terms in great detail, so the thesis will be understood by most people who
have no prior experience in the field of artificial intelligence or world generation. See
section for full overview of the tools used in this project.Development Tools

Product Audience

The product is aimed towards game creators and academics. For game programmers it

14

1.

2.
3.

4.

5.

6.

7.
8.
9.

could be a good tool for them to use to find out how their levels evolve or use it to make
their own generation by using out input. For academics, it can be interesting to see our
findings and possibly learn from it and maybe even extend it.

Document Structure

Summary of the chapters in the document:

Introduction: Introduction to the document, background of the project, the projects
framework, terminology and the audiences for the product.
Requirements: Describes the requirements we set for the program.
Technical Design: Describes the technology, system architecture, program flow
and subsystems.
Development Process: Describes how we worked, what tools we used and our
work hours.
World Generation: Describes the different approaches that were attempted, how
world collision is handled and what our final choice of algorithm was.
User feedback and testing: Describes our methods of aquiring user feedback and
the testing process.
Deployment: Describes how the installer was built.
Discussion: Describes our work and possibilities of further development.
Conclusion: Contains a summary of what was done.

Roles

We have no team leader for the project. The reason for that is so we could see how well
we work together as a team and how fast we are at arriving at a decision. Christer P.
Somby did a lot of odds and ends, working on some level generation, console, installer
and database. Henning E. Luick did a lot of stuff to sort out issues in the engine,
networking and level generation. Henning's level generation idea was the one that was
chosen. Jonas D. Reitan did pathfinding, level generation using noise, engine fixes and
graphics. Kristoffer Eidså mostly worked on database integration and user feedback, but
he also worked on GUI, engine and level generation. Our supervisor is Mariusz
Nowostawski, he helped us with ideas on level generation and all the questions we
needed answering on the problems we encountered during the project.

Development Framework

Creating a tool for level generation can be something exciting to work on that requires
you to change the projects direction in order to better accomplish the goal by using other
types of algorithms. The goal of the project is very ambitious considering the amount of
time needed to research different methods and try them. So we neede a framework that

15

can help us keep track and steer us towards the end goal. That is why we chose to use
Scrum as our framework. [2]

The scrum sprints are set to last one week each, with weekly spring meetings to review
and refill the sprint backlog. The meetings are held every friday at 16:00. Daily scrums
are also held to keep people updated on the progress of the project. The sprint leader was
usually Henning E. Luick, he took the initiative to keep us on track when we held the
meetings.

A gantt chart was set up so we could keep track of when we should be at a certain point.
It is found in Appendix . There are 4 milestones that to be completed. The earliestA
prototype was set there so we had something we could show and see if it truly was
progressing. The later milestones were for collecting data to see the progress of the
algorithm and see whether or not we needed to modify something to progress towards
the goal.

Terminology

IDE - Integrated Development Environment (ex. Visual Studio)
SDL - Simple DirectMedia Layer. Used to handle low level events from the
operating system.
2D - Two-Dimensional.
3D - Three-Dimensional.
XML - Extensible Markup Language.
CPU - Central Processing Unit. Processes computer instructions.
GPU - Graphics Processing Unit. Processes graphics to be displayed on a display.
OpenGL - Open Graphics Library. Used to send data to the GPU.
GUI - Graphical User Interface.
AI - Artificial Intelligence. Create intelligent software like learning or pathfinding.
ANN - Artificial Neural Network. Uses neural networks to learn machines.
MDP - Markov Decision Processes. Mathematical framework for modeling
decision making.

Introduction references
[1] Wikipedia. (2016). . [online] Available at: Game testing https://en.wikipedia.org/w/in

 [Accessed 18dex.php?title=Game_testing&oldid=714107300#cite_ref-Bethke52_8-0
May 2016].
[2] Wikipedia.org (no date). [online] Available at: Scrum (software development). https:/

 [Accessed 18 may 2016]./en.wikipedia.org/wiki/Scrum_(software_development)

https://dev.imt.hig.no/confluence/display/KREM/Introduction+references#Introductionreferences-2
https://dev.imt.hig.no/confluence/display/KREM/A.+Project+Plan#A.ProjectPlan-A
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=714107300#cite_ref-Bethke52_8-0
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=714107300#cite_ref-Bethke52_8-0
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)

16

Requirements
There are some requirements that we have of our code base and program. For the code
base the code should be well written, easily maintainable and expandable and well
commented. For the level generation we require it to be fast, it can not have it be slow. If
it is slow, people will get impatient in between levels, therefore it has to have a clearly
defined maximum time it can use to generate a level. For the database, we want it to
have expandable space aswell as being reliable. The program should also not crash and
be reliable to use.

17

Technical Design

Technology

The entire system is written in C++, using the C++14 standard. All coding is done in
Visual studio 2015. We freely use all features and shortcuts offered by Visual Studio
2015 as we want to familiarize us with this IDE. If the C++ standard library supports a
required feature, this should be used rather than any third party library.

The program uses SDL 2.04 to create the programs window and manage input.
SDL_Mixer is used for the audiosystem. OpenGL is a cross-language, cross-platform
application programming interface for rendering 2D and 3D vector graphics. The
OpenGL version we are using is version 4.5, but support for earlier versions are also
there. The system uses XML-files(Extensible Markup Language) for loading actors. We
use TinyXML-2 for parsing of XML-files. Notepad and Notepad++ is used to manually
modify XML-files. Box2D is the physics system used. Other libraries used are described
in the sections about the systems using them.

Table 1:

Library Short Description

SDL2 Window and input management

SDL_Mixer Audio

SDL_Font Handles text rendering

std_image Image loading library supporting png, jpeg
and gif

OpenGL Graphics renderer

glu OpenGL utility Library

glew OpenGL Extension Wranger Library

glm OpenGL Math. Math library

Box2D Physics system

libnoise Noise generation library

Raknet Networking

mysqlcppconn MYSQL database driver library

tinyxml2 XML parser

lua Scripting language

18

Program Flow

The program starts by initalizing all core components which require initialization.
Renderer, external data handlers and subcomponents like the particle system and the
database are initialized here.

After general initialization , the application will run through a loop held by the run()
function inside the Engine class. The loop checks for the current application State and
inititializes said game state. Initialization of application states are mostly just changing
the Graphical User Interface. Once the initialization is done, the run() functions calls on
a separate loop which is responsible for updating the current state.

The most important application state to update is the running state. This state is where all
the game logic and gameplay happens. The other states are mostly traversing menus.

figure 9.1: flow of logic layer

Subsystems

This section describes the game engine’s systems. To see the actual API documentation
for each system with all the methods and data, refer to the doxygen documentation.

ActorFactory

Engine has one ActorFactory. The ActorFactory is responsible for creating and deleting
all drawn objects other than GUI and particles on the screen. We will call these objects
entities or game objects. These entities are defined by the Actor class. Actors use the
entity-component-system where each component is an instance of the ActorComponent
class. Components are identified by its name and can easily be accessed by the actor or

19

sibling components. In addition to creating actors, the ActorFactory is also responsible
for creating components for each actor. This is done by using component factories, and
is covered under actors.

Figure 9.2: ActorUML
Actors

All actors in our program are loaded from XML-files, but it is possible to create actors
purely from c++ code if the need rises. You may want to code an actor in c++ if it needs
a special relationship to a class outside of Kremengine. The reason for using XML files
is that you do not need to recompile the source code for each change, and it also makes it
easier to make small changes to actors clutters the code less.

All components used by the actor and details regarding the components are specified in
the XML-file when loading from file. Every piece of data is stored inside
XML-elements. This is used to make it as easy as possible to extend, with no regards to
efficiency. XML-elements are represented by

<ElementName> elementValue </ElementName>

Components are generally XML-elements with XML-elements inside.

Listing 9.1: XML-Element example

20

<GraphicsComponent>
 <sizeX>1.0</sizeX>
 <sizeY>1.0</sizeY>
 <sizeZ>0.001</sizeZ>
 <xFrames>4</xFrames>
 <yFrames>2</yFrames>
 <animated>true</animated>
 <meshVerticesPath>res/models/cube.obj</meshVerticesPath>
 <texturePath>res/textures/characters/jakkheim/walking.png</texturePath>
 <shader>res/shaders/basicAnimationShader</shader>
</GraphicsComponent>

We have no contingency for faults in the XML-syntax or element contents. The one
creating the XML file is responsible for making sure that the syntax and content is
correct. Faults in syntax or content may lead to a crash in the application, depending on
the severity of the error. All components have default values where it makes sense. An
empty physicsComponent will give you a 1 by 1 square box, where all sensors are
disabled and there is no rotation, which is what we consider default. However, an empty
AudioComponent will not set any default sounds, making the component essentially
useless on its own. An exception to this rule is if you have set a category on the
component, which is covered below.

Listing 9.2: A GraphicsComponent example

21

<Actor>
 <Type>MovingObject</Type>
 <ActorName>TimedBlock</ActorName>
 <NetworkLevel>1</NetworkLevel>
 <Components>
 <GraphicsComponent>
 <sizeX>1</sizeX>
 <sizeY>1</sizeY>
 <sizeZ>1</sizeZ>
 <animated>true</animated>
 <meshVerticesPath>res/models/cube.obj</meshVerticesPath>
 <texturePath>res/textures/timedBlock.png</texturePath>
 <shader>res/shaders/basicAnimationShader</shader>
 </GraphicsComponent>
 <PhysicsComponent>
 <category>TimedBlock</category>
 <collisionCategory>Object</collisionCategory>
 <shape>box</shape>
 <bodyType>1</bodyType>
 <density>1</density>
 <xInPixels>1</xInPixels>
 <yInPixels>1</yInPixels>
 <restitution>0</restitution> <!--bouncyness-->
 <friction>0.0</friction>
 <gravity>0</gravity>
 <fixedRotation>true</fixedRotation>
 </PhysicsComponent>
 </Components>
</Actor>

As mentioned earlier, ActorFactory is also responsible Components through component
factories. Component factories have to be registered for the ActorFactory to know what
kind of components it is allowed to create. Kremengine registeres all the default
components (e.g. graphics, physics and audio) of any game, but custom components can
easily be registered should the need arise.

ComponentFactoryCreatorImplementation<FlashOnHitComponent>
flashOnHitFactory("FlashOnHitComponent",
engine.getActorFactory()->getComponentFactoryFactory());

In addition to creating custom components, one can also create custom categories on any
component. Creating and setting custom categories gives you the option to override key
functions of this component. This is very useful for game logic or simple AI. Custom
categories have to be registered after the Component is registered.

Listing 9.3: Example XML-file of an actor

listing 9.4: registering a new component

22

ComponentCreatorImplementation<PhysicsTimedBlock>
physicsComponent5("TimedBlock",
engine.getActorFactory()->getComponentFactoryFactory()->getFactory("Physi
csComponent"));

A component with a custom category can still call on all meaningful methods of the
parent.

void PhysicsMovingPlatform::update(float deltaTime) override
{
 PhysicsComponent::update(deltaTime); //Here the parent function is being
called from a child

 //below here is code that is specific for the MovingPlatform actor
 float pos = std::cos(this->position += (this->speed * deltaTime));
 if (this->position >= glm::two_pi<float>())
 {
 this->position -= glm::two_pi<float>();
 }
 body->SetLinearVelocity({ this->direction.x * pos, this->direction.y *
pos });
}

figure 9.3: sequence for actor updating without a custom category

figure 9.4: possible sequence for actor updating with a custom category
ActorStates

ActorStates are states for actors to be in. Every actor has to be in exactly one state at any
given time. The states are in a finite state machine.

listing 9.5: registering a new component category for the physics component

listing 9.6: overridden update function still calls parent

23

figure 9.5: State machine for actors. Figure created using [4]

The states are designed to handle details surrounding an actor and its movements. An
dropping actor may move slower horizontally than a walking one for instance. The state
of the actor depends mostly on the velocity. The exception to this is if the actor is dead.
An actor is in the dead state when his health drops to zero or is set to be dead manually.
The primary responsibility of these states is to make sure that the correct animation is
being played for the actor. More features are in place, but are not currently in use.

figure 9.6: Actor state hierarchy

The state machine and method can be expanded upon. One might want a concurrent state
machine in a more complex game. A concurrent state machine handles multiple
concurrent states. An example where this would be useful could be where the character
has to act differently depending on e.g weather or equipment, which can not be handled
in a global actor state. Game programming patterns was very helpful in learning more[3]
about state machines.

Animations

Animations are something we use to change the representation of an object, either at a
per frame basis or per action. We use this to give the game more life by having actors
look like they are walking by animating their feet or by giving feedback to the user that a
button has been pressed.

We use per frame on objects that we want to look like humans performing an action, like

https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-4
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-3

24

walking, and we use per action on objects that only change when a certain action occurs,
for example a mouse click on a button.

The way this system works is by telling the graphical processing unit what part of the
texture to sample from when drawing the actors to the screen. We can tell it to sample
from texture coordinate 0,0, which will choose the texture in position 0,0 in the tile atlas
(see) which would draw a black square. figure 9.7

figure 9.7: example of an tile atlas.

Instead of drawing colored boxes we used it to draw characters walking by simply
looping through for example [0,0] up to [4,0], which would give us 0 in the y-axis and 0
to 4 in the x-axis. This will create the illusion of human like actions of the character in
the game even if he is just sliding across the floor logic-wise.

The following code block is the shader code we used to tell the graphical processing unit
what to sample from the texture.

int columns = int(size.x);
 float x = spriteNo % columns;
 float y = spriteNo / columns;
 vec4 texel = texture2D(texture0, (vec2(x, y) + vec2(1.f, 1.f) *
texCoord) / size);

It is mathematically figuring out what coordinate the "spriteNo" corresponds to and
draws that texture onto the position of the actor on screen. All textures in are in
coordinates from [0,0] to [1,1] so we need to divide the texture coordinate by the amount
of pictures in the tile atlas on the horizontal and vertical plane, this means that the boxes
on would be divided up to 1/5, or 0.2 per texture. Given the spriteNo 7, wefigure 9.7
would get [2,1], which would give us the texture coordinate corresponding to the yellow
box with a star inside because it is counting from 1 instead of 0.

Everything in the game that need a per frame animation uses the animation class. This
class is responsible for telling the animation system what frame to start on, how many
frames to animate and how fast to animate them. It consists of a very simple update and
getFrame function.

Listing 9.7: Variables

25

void Animation::update(float deltaTime)
{
 this->currentFrame += this->animationSpeed * deltaTime;
}

int Animation::getFrame()
{
 return this->firstFrame + (static_cast<int>(this->currentFrame) %
this->amountOfFrames);
}

The update function is responsible for updating the animation per frame by the amount
we want, so we can tell it to loop through its entire animation in how many frames we
want. For example loop through all of its 5 frames every second. We use getFrame() to
figure out what frame we want to display at the current frame the game is currently
rendering, which is sent to the animation subsystem. This function takes the offset frame
into the tile atlas, named firstFrame in code, and adds the frame it is currently trying to
display. An example of this could be a tile atlas with 30 frames and we only want to
display the last 10, so we set the firstFrame to be 20 and give it 10 frames to loop
through.

Console

Writing the console was a venture into finding a way to make a console dynamic, having
only one call for the program to handle. It did not end up being fully implemented, but
the planned implementation was also more time consuming compared to doing it the
easy way. Which would be to add a parser that just checks the command sent in to a
function full of if statements that can call any function that you wanted to add.

The storing of the functions is placed into a class that has the appropriate functions for
inserting and searching and calling. It stores any type of class function pointer, and those
class functions have to belong to the same class. So a class to store the functions was
needed. That class stores a copy of the Engine object, from which it can access most
systems within the program. This class' object is stored together with the class function
pointer storage object.

typedef void(SomeClass::*funcPtr)(void);
std::map<std::string, std::pair<funcPtr, std::type_index>> pairFuncs;

In listing 9.9 we see a type definition for a class function pointer which is call funcPtr

Listing 9.8: animation class

Listing 9.9: Function pointer storage

26

that takes void as an argument. This means that when we store the function pointer, the
arguments that the function has is not passed along to the storage of the funcPtr variable.
This means that we have to store away the type of function. That is where the pair in the
map comes in. It stores the function pointer together with the type of the function.

template<typename func>
void insert(std::string mappingName, func f1)
{
 //find the type of the function pointer
 auto typeT = std::type_index(typeid(f1));
 //pair the function pointer with the type
 pairFuncs.insert(std::make_pair(mappingName,
std::make_pair(reinterpret_cast<funcPtr>f1, typeT)));
}

This templated function in listing 9.10 is for inserting the class function pointers into the
map that stores the class function pointer and the type of the class function pointer. The
typeT variable is to temporarily store and find the type of the function, it stores the
arguments of the function. The function then inserts the name of the function and pairs it
with the class function pointer after casting it to a function that takes no arguments and
pairs it with the type of class function pointer.

template<typename Type, typename R, typename... Args>
void searchAndCall(std::string mappedName, R object, Args&&... args)
{
 auto mapIter = pairFuncs.find(mappedName);
 auto mappedPair = mapIter->second;
 //Cast the general functionpointer(void) to the type it really is
 auto typeCastedFunc = reinterpret_cast<Type(SomeClass::*)(Args
...)>(mappedPair.first);
 assert(mappedPair.second == std::type_index(typeid(TypeCastedFunc)));
 (object->*TypeCastedFunc)(std::forward<Args>(args)...);
}

The searchAndCall function in listing 9.11 takes in the return type of the class function
pointer, the object that you want to call the function from and the name of the function
together with any arguments that it had originally, like you would send variables into any
other function. The functions that are used by a console usually do not return anything,
therefore the return type is usually void, but it was written like that because it can be
used for various other systems that use function pointers. The first thing the function

Listing 9.10: Insertion function to map

Listing 9.11: Search and call function

27

does is to find the function within the map, then it finds the pair that is stored within the
map that contains the class function pointer and the type of the function and stores it into
the mappedPair variable. It then casts the class function pointer back to the correct type.
If the type is void, the "Args" are 4 and 6, which are both ints the typeCastedFunc would
end up being "void SomeClass::*(int, int)". It the figures out if the typeCastedFunc is the
same type as the original type of the class function pointer. Then it calls the type casted
function using the class object that was passed in together with the function call.

Event

Engine has one EventHandler. The event handler is responsible for taking in any input
that is given to the program, like keyboard or mouse. SDL2 is used for taking care of the
events. The events that happen, like a key on the keyboard is pressed, the mouse is
moved or one of the mouse buttons are clicked, are packed into the message system that
is used. As soon as the keys are pressed the events are triggered by sending out the
message to the components that are listening to it.

this->postMessage(Message(this, "keyDown",
static_cast<int>(SDLEvent.key.keysym.sym)));

By invoking the postMessage function you pass the object (this), the type of event
("keydown") and the key that was pressed (SDLEvent.key.keysym.sym). The object is
the EventHandler. It all gets packaged into a message and sent.

void receiveMessage(const Message & message) override
 {
 if (message.getSenderType() == typeid(EventHandler))
 {
 if (static_cast<const char*>(message.getVariable(0)) == "keyDown")
 {
 int number = message.getVariable(1);

The receiveMessage is where one receives the message and executes what the message
wants you to do. The first thing that is done is to check where the message came from,
once it finds that it is from the EventHandler, it the checks what type of event it is, the it
extracts the information from the package and executes the actions it is told to do.

Graphical User Interface

Like with the , the graphical user interface in our engine is also loaded fromactors
XML-files and it can also be written by C++ code for special occasions. The
XML-system is the same as explained earlier in the actors segment, just with different
names and categories. The graphical user interface is divided into states and each states

Listing 9.12: Example sending message

Listing 9.13: Example receive message

28

has different elements that needs to be displayed. An example of a state might be a main
menu, this main menu can then have elements like; four buttons, one slider and a panel.
The XML-files for the graphical user interface is per state rather than per element

Here is an example of how the xml-file for running state of our program looks like:

<GuiElements>
 <Button>
 <name>newlevel</name>
 <fontPath>res/fonts/gui.ttf</fontPath>
 <positionX>-0.9</positionX>
 <positionY>-0.9</positionY>
 <widthInPixels>0.1</widthInPixels>
 <heightInPixels>0.1</heightInPixels>
 <meshVerticesPath>res/models/quad.obj</meshVerticesPath>
 <shaderPath>res/shaders/basicAnimationShader</shaderPath>
 <texturePath>res/gui/textures/buttonAtlas.png</texturePath>
 <textureAtlasSize>2</textureAtlasSize>
 <visible>true</visible>
 </Button>
 <Container>
 <name>actionBar</name>
 <positionX>0</positionX>
 <positionY>-0.9</positionY>
 <visible>true</visible>
 <meshVerticesPath>res/models/quad.obj</meshVerticesPath>
 <shaderPath>res/shaders/basicShader</shaderPath>
 <shaderPathBoxes>res/shaders/basicAnimationShader</shaderPathBoxes>
 <texturePath>res/gui/textures/actionbar.png</texturePath>
 <texturePathBoxes>res/gui/textures/inventoryBox.png</texturePathBoxes>
 <textureAtlasSizeX>1</textureAtlasSizeX>
 <textureAtlasSizeY>3</textureAtlasSizeY>
 <numberOfBoxesX>4</numberOfBoxesX>
 <numberOfBoxesY>1</numberOfBoxesY>
 <distanceBetweenBoxes>0</distanceBetweenBoxes>
 <widthInPixelsBoxes>0.1</widthInPixelsBoxes>
 <heightInPixelsBoxes>0.1</heightInPixelsBoxes>
 <borderTop>0</borderTop>
 <borderBottom>0</borderBottom>
 <borderLeft>0</borderLeft>
 <borderRight>0</borderRight>
 <movableItems>false</movableItems>
 <destroyable>false</destroyable>
 <activatable>false</activatable>
 <presetItems>
 <texturePath>res/gui/textures/actionbarCopy.png</texturePath>
 <texturePath>res/gui/textures/actionbarColorPicker.png</texturePath>
 <texturePath>res/gui/textures/actionbarErase.png</texturePath>
 <texturePath>res/gui/textures/actionbarResize.png</texturePath>
 </presetItems>
 </Container>
</GuiElements>

More elements could be added to this state by just adding a new <button> or another

Listing 9.14: XML-file example

29

element tag below the first one.

The graphical user interface uses an class named GuiFactory. When the program starts
all the XML-Files needed are loaded into memory when its state is ran. If the state is left
all the objects get deleted but the XML-file is still in memory so it can easily be accessed
if the state needs to be loaded again. The factory creates and handles all the states of the
graphical user interface by knowing what state the game is in. The XML-files has to be
named after its corresponding game state for it to be loaded whit the correct state. After
reading the XML-file for the state its going to load the factory starts creating elements
that belongs to the state. An element can be anything that the graphical user interface
needs to take care of or draw on the screen.
List of elements currently in our engine:

Bar - Can be used for health/mana bars, loading bars or other bar looking
elements.
Button - Simply a button that is clickable
Check box - A box that can be either true or false when you click it.
Drop down menu - A list of different options that can be chosen.
Container - This can be used for a lot, inventory system, level selection, character
selection, etc.
Panel - This is just a simple texture displayed, mostly used for backgrounds.
Slider - Used to for example control the volume of the audio.
Textbox - text input.

Interacting

when interacting with the graphical user interface you expect stuff to happen. Buttons
should be clickable and sliders should be movable, and they should also do stuff based
on their current state. To accomplish this the graphical user interface needs to have
listeners. Currently you need to manually add a listener in the factory to the specific
element you want to listen too. You do this by subscribing to an element using its
element name. When that specific is interacted with it will send a message to the factory
with its new state and then you can run whatever code or function you want from there to
make the interaction do something.

Animations

The graphical user interface does not have its own animation component and does not
really use real animations but rather it changes its texture when the state of the element
changes. For example the button has three different states, clicked, mouse over and not
clicked. Each state uses its own kind of texture to look like it has been pressed or
moused over. There is support for having the button use animations, for example having
the button shine every few second but this is not in use currently.

30

Particles

Using particles in games makes the game more alive and satisfying to play. We want to
give the player the best experience possible so we added a basic particle system to the
engine.

This system is used for:

Weather
Explosion
Debris
Fountains
Protjectile trail
Visual feedback to the user

We added a couple of different weather particle systems so we could easily choose
between having snow, rain or objects like leaves fall down from the sky. This helps the
user to be more immersed in the game and adds to the realism. For explosions we made
objects that collided shoot out smaller fragments of itself so it looks like it exploded on
impact, this is similar to debris, which would knock of tiny bits of rocks when a rock
collided with objects. Fountains were mostly used for experimenting to see how gravity
affected particles and giving us a visual cue so we can check if everything is working as
expected. Projectile trail was used to give the player some hints of how the projectiles
flew through the air and lastly we used it to give users some feedback so if they pick up
an object for example, it would shoot out a few particles to confirm that you actually
picked up the item and not just made it disappear.

This system is efficient because we can tell the graphics processing unit to draw all the
particles in a single pass thereby giving us the flexibility to have millions of particles on
screen without slowing the game down in terms of frames per second. Our graphics
library, , calls this for instancing . Instancing works by giving the graphicsOpenGL [1]
processing unit an array of positions and a single mesh to fill all the positions instead of
uploading the same mesh with a single position every draw call. This safes a lot of time
since the central processing unit is slow compared to the graphics processing unit, so
both can run at maximum speed instead of having to wait for data to be transferred
between the units.

glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER,
this->vertexArrayBuffer[this->POSITION_VB]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * positions.size(),
&positions[0], GL_STREAM_DRAW);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 0, (void*)0);

Listing 9.15: Uploading all positions to the graphics processing unit

https://dev.imt.hig.no/confluence/display/KREM/Technology#Technology-OpenGL
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-1

31

As you can see from the code block, all we have to do is buffer the vector "positions" to
the graphics processor to process and draw as fast as it possibly can. Positions is a vector
which holds all the positions in forms of three floats, one for each axis in a three
dimensional world, so the graphics processing unit know where to draw and how many
to draw as the amount of positions corresponds to the amount of particles we want to
draw on screen.

We are not limited to only upload positions as we write our own shaders and we used
this to our advantage as we added support for different textures and colors. This way we
can for example fill the sky with snowflakes that vary from completely white to a slight
shade of blue, giving us a much more realistic visualization of our own little world.

void main()
{
 color = colors;
 texCoord = texCoords;
 gl_Position = transform * vec4(vertex + positions, 1.0);
}

void main()
{
 vec4 texel = texture2D(texture0, texCoord);
 if (texel.a <= 0.5)
 {
 discard;
 }
 colors = color * texel;
}

As we can see from this simple shader, all we do is to tell each object what its offset is,
which is named "positions" in our shader, and pass the color to the fragment shader
which multiplies it with the color from the texture we sampled.

Physics

We tried and wanted to implement the physics through an interface early on during the
development of Medieval Brawl. We wanted to do this to make it easy to replace or
expand, as we had planned to use the same codebase for the bachelor thesis back then.
After toying around and learning the Box2D library it proved to be somewhat finicky to
make a general interface for communication, so we scrapped that idea and coupled
box2d loosely with the rest of the game logic. The loosely coupling in this sense means
that there are very few lines of code which need replacement inside the main codebase to
replace the backend physics library. Most of the physics from Kremengine is kept within
the PhysicsHandler and PhysicsComponent class. areCustom Physics Components

Listing 9.16: Instancing vertex shader with textures

Listing 9.17: Instancing fragment shader with colors

https://dev.imt.hig.no/confluence/display/KREM/Actors#Actors-CustomPhysicsComponents

32

written for many actors, which have their own set of Box2D code, but this is isolated
outside of Kremengine. The update function for the physics component ensures that the
graphical transformation is always identical to the Box2D body. The need to have the
physical body at a different location than the transformation is supported through the use
of .Custom Components

One of the major advantages of coupling the library directly to the engine is that you can
freely use all the tools of the library without making methods through the instance.
Creating joints or motors can be done by any actor by speaking directly to the library or
by using one of the helper functions in the PhysicsHandler class.

The PhysicsComponent class supports any type of shape supported by Box2D, as well as
any body type and size supported. Other settings include restitution, friction, density and
sensors which prevent or help the actor to achieve certain actions. Physics component
also decides which the actor is in by checking the velocity.state

All the positions and references to points in space are refered to in three dimensions, but
Box2D is only a two-dimensional physics library. This is done on purpose to make it
easy to replace the 2D physics with a 3D one. One team member spent a day learning
and replacing Box2D with a 3D physics library for learning purposes, and to see how
easy it was.

Renderer

The renderer is responsible for visualizing everything for the user. Its job is rasterization,
which means that it takes the completed scene, either three- or two dimensional, and
raster every pixel so the monitor can display what the scene actually looks like to the
user. Our renderer is built upon which provides us with a software abstractionOpenGL
of the graphics processing unit .[2]

How our renderer work is that we give every object in the scene a transformation matrix,
which contains position, scaling and rotation, which is used to tell the graphics
processing unit how to display the mesh in the scene. This matrix is often referred to as
the model matrix multiplied with the view matrix even though you are free to call it
whatever you want. The view projection is what we usually referred to as the camera,
which controls what the user see in the world.

The camera is not a camera as a normal person might think, which shoots pictures and
videos, but just a mathematical matrix. This matrix tells the graphics processing unit
what field of view it should display, what aspect ratio the monitor has, which reduces
image distortion, and how far or near objects should be drawn. This helps with
performance as drawing things we do not see is a waste of processing power. All of this
is then multiplied with another matrix, which is usually called view matrix, that keeps
track of the cameras position, what direction is up and what way it is facing.

https://dev.imt.hig.no/confluence/display/KREM/Actors#Actors-CustomPhysicsComponents
https://dev.imt.hig.no/confluence/display/KREM/Technology#Technology-OpenGL
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-2

33

All this information is calculated on the central processing unit and is then given to the
graphics processing unit to set up the scene and starts rasterizing the image for the user.

Resource Management

The early days of Medieval Brawl stored all data directly on whichever object used it.
This means that if an actor needed a sprite, the sprite would be stored directly on the
graphics component of said actor. This is obviously very bad as the memory would be
spent very inefficiently. We migrated to a solution where all resources of a certain type
would be loaded into its respective handler. The result of this is very many handlers
which do very similar jobs.

figure 9.8: A simple illustration of our resource management

Each resource handler has a map containing all resources of that type, which can be
retrieved by filename.

This system has some flaws, but they have not been prioritized by anyone on the team as
the issues are somewhat insignificant for the thesis, but interesting nonetheless. One
issue is that there is no limit to how many resources can be loaded, so the application
would eventually run out of memory if you loaded too many resources without quitting.
This has been a non-issue for both this project and Medieval Brawl as computers today
are more than capable of loading the amount of resources the application is using. An
issue with speed would likely occur before the issue with memory, as searching through
a changing map is slow.

A different issue is regarding code and maintenance of Kremengine as new resource
types are required and old types are replaced. This could become difficult to handle and
maintain over time and requires a significant amount of refactoring. A common resource
handler for all resources is not atypical. All objects wishing for a resource would have to
go through this handler. The handler would restrict how much memory any resource type
can occupy, and how much total resource can be held in memory. Whenever a new

34

resource is requested which is not in the cache, the top handler would discard the least or
last requested resource to make space for a new one. This is just one possible solution
which is already miles ahead of what we currently have.

figure 9.9: A simplified version of what an improved resource handler could look like

Technical Design References

[1] Martin Thomas (2013). [online] Available at: OpenGL Instancing Demystified. http://
www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r32

 [Accessed 17 May 2016].26

[2] Wikipedia. (2016). [online] Available at: Game engine. https://en.wikipedia.org/w/in
 [Accessed 17 Maydex.php?title=Game_engine&oldid=716577481#Rendering_engine

2016].

[3] Gameprogrammingpatterns.com. (2014). State · Design Patterns Revisited · Game
. [online] Available at: Programming Patterns http://gameprogrammingpatterns.com/stat

 [Accessed 17 May 2016].e.html

[4] Evan Wallace. (2010). . [online]Finite State Machine Designer - by Evan Wallace
Available at: [Accessed 17 May 2016].http://madebyevan.com/fsm/

http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
https://en.wikipedia.org/w/index.php?title=Game_engine&oldid=716577481#Rendering_engine
https://en.wikipedia.org/w/index.php?title=Game_engine&oldid=716577481#Rendering_engine
http://gameprogrammingpatterns.com/state.html
http://gameprogrammingpatterns.com/state.html
http://madebyevan.com/fsm/

35

Development Process

Development Tools

The tools we used for our development were as following:

For coding:

Visual Studio 2015. This was our integrated development environment of choice
because it is something we are all familiar with and it speeds up development with
its intelligent code completion and performance measurements.
SourceTree. We prefer the graphical user interface and ease of use compared to
writing commands manually in command line.
Bitbucket. We used this because we got a educational edition from school, so it
was the only free option we had available.
Notepad++. A light text editor with more features than normal Notepad. Used to
take notes or read code without having to open the integrated development
environment.
Notepad. A really simple text editor that comes with Microsoft Windows.

for database:

MYSQL workbench. Early on we used PHPmyadmin but we switched hosting
service and the new one do not support PHPmyadmin easily because of security
reasons, so we decided to switch since we where not really bothered and switching
was easier than getting PHPmyadmin to work with the new host.

For art, sketching, graphs and discussing ideas:

Adobe Photoshop. We really like the flexibility it gives us when it comes to
in-game art and textures.
Gimp. A free alternative to Photoshop because not everyone had Photoshop
available.
MS Paint. It has less features than other image editors, so it is faster and easier to
use when sketching ideas.
draw.io. For creating graphs.

For talking and working together:

Microsoft Skype. A voice over internet protocol program with screen sharing,
which is exactly what we need when we are not able to meet.
Google Docs. A real time text editor makes it easier to see what others are doing
so we do not end up doing the same thing.

36

Development Workflow

Every new sprint each group member would pick up tasks from the sprint backlog,
which were placed in the in progress tab. The group members would the work on their
own branches and do their work. That way, you would not be detrimental to the peoples
work. When the work was fully implemented, it would be pushed onto the main branch.

If someone needed help, another group member would usually assist them as long as
they were not busy. Many times there would be an issue that was very complicated,
therefore two people would usually work together to get it solved.

When we started the project, we were not very proficient with working on branches, so
there was usually a lot of mess. This got better after a month when people started getting
accustomed to how to work with branches. We did not have an intermediary branch,
therefore we usually pushed the changes we had on our branches to the main branch.
When the tasks were done, the member would then go and place the issue as solved.
Then they would pick up a new task to be done. There were exceptions where a large
task had a part of it done, it would then be placed back into the backlog. Which would
then be picked up later when it needed finishing.

Project Workflow

Scrum

We mostly followed the scrum workflow. We had a meeting every morning at 09:00 to
discuss what we were working on as well as what we planned to work. We did not write
logs for the daily scrum meetings. The daily scrum was not very strict, it was not
mandatory due to the fact that we were four people in the team. Most mornings there
would be two to four people joining the meetings. Most of the meetings were under 15
minutes, the shortest were 5 minutes.

Each friday we had a sprint meeting where we discussed the previous sprint and planned
the next. This process usually took 1 hour. During the meeting we discussed what we
needed to add to the backlog as well as what was finished. This was also an extended
meeting where we could discuss various topics that popped up during the week. We also
discussed improvements in our workflow during the meetings.

All of these meeting were done over skype.

Working Hours

During the development the team was working for at least 35 hours a week. There was
no set schedule, the team worked at whatever hour they wished. There was also a weekly
gathering set up at 09:00 on tuesdays so the team could join up and have face to face

37

interaction to help each other with the code and do code reviews, as well as come up
with ideas on how to solve problems they encountered.

38

World Generation
Platform games have branched into many different subgenres, and the levels in the
subgenres often have different subtypes og gimmicks.

Most of the very early platform games were in a two dimensional world, using only the
x- and y-axis for width and heigth, respectively. You would traverse the x-axis by using
the mapped keys on the input device for left and right movement. Traditional platform
games let you jump with a jump key, which was the primary way of traversing the
y-axis. Climbing was also introduced at a very early stage of platform history, as seen in
the original Donkey Kong (1981). This was usually done by pressing the up-key[13]
while colliding or standing at the bottom of a climbable object.

Scrolling

Scrolling in computer games is the act of shifting the view from one part of the game
world to a different view in the same level or world. Bubble Bobble(1986) solved[14]
this was to swap the whole screen with a neighboring screen once the player reached the
edge. In Super Mario Bros(1985) the camera was locked to the player (Mario or[15]
Luigi), and would only scroll horizontally, meaning that the movement and vertical
platforming was limited to the height of the screen. Later iterations of the Super Mario
series and newer games improved on this and allowed for vertical scrolling in different
forms .[16]

The original The Legend of Zelda (1986) combined both seamless scrolling (like in[17]
Super Mario Bros.) and moving the screen once the player reached the edge. (One would
assume that there were technical limitations for this. All technical difficulties to scrolling
the screen have since been overcome.

Platforms

Classic platform games like the original Mega Man series, (1987) and many other[20]
(even to this day), use tile based platforming. This means that the level is divided in a
grid with a set size.

 figure 11.1: Small platform

Figure 11.1 shows a small section of a tile based platform game. Red blocks are solid

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-20

39

tiles and yellow blocks are enemy spawn points. Even though the world and spawn
points were in this grid, the movement of all objects on the screen were fluid, meaning
you did not move from grid to grid, but from position to position.

figure 11.2: without grid-locked movement

The other popular terrain generation method is to place each object in a precice location
instead of in a grid. This requires more time, but will generally look better and give the
level/game a feeling of higher quality.

Approaches

Creating a level generator that actually learns is something very few have tried before,
there is really no information on the topic other than some Super Mario clones and maze
generators. This lead to a huge challenge as we had to improvise and try things ourselves
to find the perfect solution, which was not all that easy.

We came up with a few ideas on how to do this that might actually work and a bunch
more than would never work. Our ideas will be discussed in more detail but here is a
quick overview:

Artificial Neural Network (ANN)
Noise (Perlin, Fractal, Worms)
Markov Decision Process (MDP)
Deterministic Random Generation

ANN used neural networks to recognize patterns in a level and tried to reproduce them.

Noise approach used Perlin noise to generate a curve (height map) to place the world on,
which would generate the floor of the level. There is a lot of different noise functions
and it is hard to find the best one, but we ended up using Perlin.

MDP is not actually using Markovs algorithm but is heavily inspired by it. You pick a
starting point (a node) and try to get to a certain point (goal node) and by giving every
node you visit a score, you can determine if the path you followed was good or not. You
will end up with a bunch of good and bad paths to pick between when generating a level.

Deterministic random generation is a random generation based on point to point
generation in random directions with determined parameters.

40

Deterministic Random Generation

This approach is not based on any set algorithm. It uses random generation to generate
levels. The basic premise is that you pick a point, which is usually the starting point of
the level, then you choose a direction and give it a length. Then you continue doing that
until you have your level. But there is a problem if you just leave it at that, there will be
walls that are unscalable, holes that are too deep and just flat levels. To solve this, we
need to have something to fill in the faults of the level. This is best explained with an
example: Your jump height is 3 blocks. You have a level that is generated. It goes: Right
4, right 4, up 5, right 5, down 3, right 6. See figure 11.3.

Figure 11.3: Level example

From the figure, we can see that you can not possibly scale the purple wall with only the
ability to jump 3 high. To solve this we need to give the generation a way to handle it.
We could just put a block there or place stairs, but that would not make for an interesting
level. So the way we do it is by going up one on the purple wall, skipping one block
towards the left, the start generating to the left. Then, after a length is given to it, it will
go that far, then go one more to the left and start generating blocks upward until it
reaches the level of the purple wall. Then it skips one block the the right and generates
blocks until it touches the purple wall. The length it is given is left 4. See figure 11.4.

Figure 11.3: More advanced level

This makes for a lot more interesting way of generating levels. But the problem with this
is that the learning potential of it is rather limited. You can teach it good lengths for
platforms, how far it should go up and down and how far it should go in a straight line
before making other obstacles.

41

Although this generation can be good and also fast, it requires huge amount of work to
make it good.

Line by line Approach, our selected approach
This approach is similar to the tile-by-tile approach in the sense that it generates objects
in a given direction based on the input to the AI, except this time whole lines are
generated instead of just a tile at a time. Like the first approach this will also start
generating from a location which will act as the starting position for the player, and
generate lines either vertically or to the left(towards the goal). This approach also
generates bottomless pits at random intervals affected by the AI.

The lines generated have a random component to them. Multiple straight lines can also
be generated in a row if the AI decides so.

The green tiles are all one output from the AI. One can view them as: "Generate 5
horizontal tiles".

Figure 11.5: The red line shows the input, while the green line is the output. We can see
that the AI decided to create a straight line upwards.

42

Figure 11.6: The next output.

Figure 11.7: The AI generated two straight lines in a row.

The rest of the generation will continue in similar fashion as the tile-by-tile generation
until the generation is completed. The time of completion depends on the
implementation
Line by Line failed Implementation

We implemented this using a modified version of Markov Decision Process. This
version can handle multiple "layers" of states, and returns multiple outputs.

enum direction

Listing 11.1: Implementation of Line by line approach

43

{
 GAP,
 UP,
 DOWN,
 RIGHT
}

//Output is represented by an int, which represents a direction, and
number of tiles
struct Output
{
 int direction;
 int lengthInTiles;
}

const int = MAX_LEVEL_LENGTH;
const int = MAX_PLATFORM_LENGTH; //technically not max, but won't
generate a new segment if the last segment reaches or surpasses this
number

2DVector tilePosition{0,0}; //The position where the next tile will be
generated

void generateTerrain()
{
 currentLength = 0;
 vector<Output> outputVector;
 while(currentLength > MAX_LEVEL_LENGTH)
 {
 outputVector.emplace_back(createSegment(outputVector));
 }
}

Output createSegment(vector<Output> outputVector)
{
 OutPut returnOutput = MDP.getOutput(outputVector);

 2DVector directionInVector;
 switch(returnOutput.direction)
 {
 case GAP:
 break;
 case UP:
 directionInVector.y+=1;
 break;
 case DOWN:
 directionInVector.y-=1;
 break;
 case RIGHT:
 directionInVector.x +=1;
 break;
 }
 if (returnOutput.direction != GAP)
 {
 for (auto i = 0; i < returnOutput.lengthInTiles; i++)
 {
 tilePosition += directionInVector;

44

 createTile(tilePosition);
 }
 int newOutput = MDP.getOutput(outputVector);
 //create new tile as long as a gap is not returned by the ANN
 if (newOutput.direction == GAP)
 {
 outputVector.emplace_back(newOutput);
 }
 }
 if (returnOutput.direction == GAP)
 {
 for (auto i = 0; i < returnOutput.lengthInTiles; i++)
 {
 tilePosition.x +=1;
 }
 }
}

We could not teach this algorithm how to learn to generate levels using the database,
which is why this implementation was discarded.
Successful implementation of Line by Line Approach

This approach is built from the ground up to store and load from the remoteSQL
Database, which is one of the primary reasons for its success. The level data is stored
inside a struct within the object which handles the level loading.

figure 11.8: Illustration of datastructure of LevelData

LevelData contains 5 chunks. Chunks are a way of separating a level into smaller pieces
to more easily analyze what is going on behind the scenes. Each chunk is ten units wide
and ten units high, or 100 units total. This means that the total level width is 50. We
settled for shorter levels to get more precise from users. The balance betweenfeedback
precise feedback and too short level is a very thin line, but we seem to have found it.
Some plans regarding feedback of specific chunks were also in place, but we decided
against it for the sake of the user experience. One idea was to have the user pick out his
favorite chunk and least favorite chunk, and apply stronger modifiers for those, but it
turned out to be too impractical.

Each position in every chunk has a SlotValue object. SlotValue contains a horizontal and

45

vertical floating point value. These values represent how far in each direction tiles will
be created once a tile reaches one of the positions, rounded down to first integer. The
horizontal value will always finish generating its set of tiles before the vertical begins.
The difference in height can never be greater than 9, and the highest point a tile can ever
be generated at is 9, while to lowest is 0. This is to limit the generation and training of
the AI. The AI is trained faster by limiting the state space. If the state space was near
infinite, user feedback would have very little impact with this algorithm, as chances are
that other users would never get to reach the tiles the first user gave feedback on. In
addition to making the AI learn faster, it also makes it easier to read and track progress
of the database when you only have a few thousand entries to keep track of rather than
millions.

The algorithm which updates the database ensures that the values are never set to
generate levels below 0 or above 9. The world generator is fully able to generate such
levels, and this is intentional because it makes it easy for us to see if something has gone
wrong somewhere during the training.

This table shows how the first 4 lines in a table are generated. Assume that generation
starts where x=0 and y=5. We exclude gaps and enemies for now

Table 2

line number 1 2 3 4

position x = 0,y = 5 x = 2,y = 3 x = 10, y = 0 x = 18, y = 3
(note: the x
position here is
moved to the
second chunk)

Slotvalues horizontal=2.1,
vertical=-2

horizontal=8,
vertical=-6.5.

horizontal=8,
vertical=3.4

horizontal=4,
vertical=0

figure 11.9: figure illustrating table 2

In addition to just tiles lined up against each other, the generation also adds gaps and
enemies. Gap size, gap density are loaded from the SQL database and used to decide
how often and how wide the gaps should be. Gaps are limited in size to ensure that the
player can leap over them. The gap size parameter is also more like a guideline than the

46

actual size. So there is still a random component to the gap size to give the levels a new
feel each time. Gap density is also a parameter which acts more like a guideline than a
static amount of tiles before the next gap. The chance of the first tile being a gap is 0%.
After that the percentage increases. How much it increases depends on the gap density
parameter. Some levels with have no gaps. The enemies density parameter behaves in a
similar manner.

There is a difficulty balance in place to make sure that any given level has some
obstacle, and on the other side it also makes sure no level is riddled with obstacles.

figure 11.10:a chunk from anywhere in the level. One can assume a fairly high gap
density judging by the two gaps so close to eachother.

Storing and Loading from the database using Line by Line Approach

The database stores five different sets of data used for generating levels. These five sets
are all stored in a single table, but in five separate columns. Those colums contain 1000
floating points each. There are 1000 floating points because there are 5 chunks in a level,
each with 10 times 10 tiles, who each have two scores (a vertical and horizontal) as
shown in . 5 times 10 times 10Successful implementation of Line by Line Approach
times two equals 1000. These values are stored in this manner for efficiency and
simplicity. The values are loaded to a five temporary vectors, one for each column, and
later stored properly in oldLevelData. Gap density, gap size and enemy density are
loaded from the database in a similar manner. There are five sets of these values as well.

We postprocess on the local computer instead of storing the numbers in differently on
the SQL server to make use of the additional processing power on the computer. There is
still a noticeable network delay even when loading the numbers this way.

47

std::vector<float> scores[5];
parentEngine->getDatabaseHandler()->retrieveData("SELECT Input1, Input2,
Input3, Input4, Input5 FROM LevelScores", columns, scores[0], scores[1],
scores[2], scores[3], scores[4]);
int chunkcounter = 0;
int i = 0;
for (auto eachScoreTable = 0; eachScoreTable < 5; eachScoreTable++)
{
 for (auto i = 0; i < 1000;)
 {
 for (auto j = 0; j < 5; j++)
 {
 for (auto y = 0; y < 10; y++)
 {
 for (auto x = 0; x < 10; x++)
 {
 oldLevelData[eachScoreTable].chunks[j].scores[y][x].horizontal =
scores[eachScoreTable][i++];
 oldLevelData[eachScoreTable].chunks[j].scores[y][x].vertical =
scores[eachScoreTable][i++];
 }
 }
 }
 }
}

Once all the data is loaded, a randomly selected column will be used to generate the
level.

levelData = oldLevelData[rand() % 5];

The level is then loaded as described .here

The player will be prompted once he completes the level, where he is asked how much
he liked or disliked the level. The program will then iterate through every selected
starting tile , and find the current trend for the AI. If a player liked the levelfigure 11.9
somewhat, then the AI will encourage the current trend somewhat by modifying the
score towards the same direction the trend is going. If the player strongly disliked the
level, the AI will discourage the current trend for the selected tiled by moving the score
away from the trend.

Table 3:

Starting tile number

position x = 0,y = 5 x = 2,y = 3

selected Slotvalues horizontal=2.1, vertical=-2 horizontal=8, vertical=-6.5.

listing 11.2: loading data from the SQL database

listing 11.3: level data is randomized

https://dev.imt.hig.no/confluence/display/KREM/Successful+implementation+of+Line+by+Line+Approach#SuccessfulimplementationofLinebyLineApproach-moose

48

other values1 horizontal=3.1, vertical=-3 horizontal=5, vertical= 3.2.

other values2 horizontal=4.1, vertical=-5 horizontal=3, vertical= 4.5.

other values3 horizontal=0.1, vertical=0 horizontal=2, vertical=-1.5.

other values4 horizontal=2.1, vertical=1 horizontal=6, vertical=-0.8.

We assume that the player liked the level, and we will take a quick look at the first two

starting tiles to see what the current trend for these tiles is.

 We start by finding all the average values, starting from the first horizontal to the last
vertical we get: 2., -1.8, 4.8, -0.22

Now you compare the average with what the player liked. If the player liked a level that
is above the average, the average will be increased. This is done by increasing one of the
random values for the corresponding position in the database. These steps are repeated
until all starting tiles are iterated through. The principle with random selecting is inspired
by the random access pattern []. The idea is that will get a high variance in the levels19
due to the random nature of this pattern, while still being fair and moving towards a
better generation AI over a long period and many iterations. One alternative is to always
replace the oldest values, but we decided against that to save time on both
implementation and the time it would take for the database to rearrange all tables by age
after every feedback.

Noise Approach

When we got the idea of having a randomly generated world where we would use some
sort of AI to place all the game objects, we had to consider of all the possibilities we
could think of. One of these were using a noise function. The first thing we needed for
the noise approach was a way to generate noise. We started researching all the different
noise algorithm but ended up using Perlin noise, created by Ken Perlin, which was
explained by Hugo Elias .[1]

We started by implementing the version of Perlin noise Hugo Elias wrote, which is some
sort of fractal noise and not actual Perlin noise , but it was simply too slow for our[2][3]
requirements. We explain why under . This lead us back to searching forLibnoise
alternatives to implementing a proper noise function. We ended up using an external
library to help us get the results we want, named .Libnoise [4]

This library gave us more than we needed, as it got support for voronoi, checkerboard,
spheres and more but a[5] s we were struggling with performance, we thought a proper
library would be much more optimized compared to what we could do, which is why we
went that route. This turned out to be a good choice as we cut down loading times from 3
minutes down to 7 seconds at the same test. We used Visual Studios performance
explorer to determine the differences in time between the library and our approach.

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-19
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-1
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-2
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-3
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-4
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-5

49

Libnoise only supports three dimensional Perlin noise, but it is easy to go down in
dimensions compared to up so we just used one dimension for now, which is what we
use for telling the world generator what height every object should generate at.

Perlin noise is really useful for us because we can easily get the next height without
actually creating the object and then get its position, which cuts down memory
requirements and load times as we know what happens next without having to actually
generate a random number for the next object. Another benefit is that we can easily
know what the next potential blocks would be and figuring out a pattern while
generating instead of going over the world with multiple passes, which is another time
saver when it comes to computer resources and memory usage as we only have to
generate the world in one go and not having to go back and loop through all game
objects to find the patterns.
Implementing Noise Approach

Using noise generators in games are quite common , especially for generating height[6]
maps for three dimensional worlds and we wanted to create a height map for a two
dimensional world as that is what platformers are. We started implementing fractal noise
from scratch and looked at how we wanted things to be in our world.

figure 11.11: example of output from fractal noise .[7]

figure 11.12: example on how noise lines up with old platformer levels .[8]

As we can see on , the various graphs fractal noise generates looks veryfigure 11.11

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-6
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-7
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-8

50

similar to levels in two dimensional platformer games, like the one displayed in figure
, which is a picture from the game Donkey Kong Country from 1994. The black11.12

line represents the layout on top of an actual picture from the game. This is what this
approach tries to replicate.

Libnoise got a lot of different variables we can tweak to theoretically find the perfect
curve to match a professionally hand crafted level like the one on . We knowfigure 11.12
this from looking at the example graph and the level and comparing them together, so we
need to learn the computer how to produce similar levels. This is where the challenging
part comes, as the various inputs to the noise function can produce levels you simply can
not beat or levels that is completely flat, all of which we want to avoid. By tweaking the
values by hand, we found something we were happy with so the knowlearning algorithm
what to expect and where to start from.

noise::module::Perlin noise;
noise.SetSeed(static_cast<int>(time(NULL)));
noise.SetOctaveCount(6);
noise.SetFrequency(1.0);
noise.SetPersistence(1.0 / 2.0);

This are the values used to produce a somewhat interesting level, so the learning
algorithm will have to change these values up and down to find the maximum and
minimum values to generate interesting levels that is also doable. The problem with this
is that we can not easily categorize levels from easy to hard, unless we generate every
level possible and use to figure out what people thought were hard andUser feedback
easy.

To generate a basic level layout we use the following (simplified) block of code:

Listing 11.4: The various inputs to perlin noise

51

const unsigned int length = 100;
double height = 3.0;
for (unsigned int i = 0; i < length; i++)
{
glm::vec3 position{ i,
static_cast<int>((noise.GetValue(static_cast<double>(i / 4.0), 0.0, 0.0)
* height)), 0.0 };
this->actors.emplace_back(actorFactory->createActor(
dynamic_cast<ActorData*>(&PlatformData("res/actors/tileAtlases/castleFg_r
and.xml")), //create actor
{ static_cast<int>(position.x), static_cast<int>((position.y * height),
position.z }, //set position
glm::vec2(0, 0)));
//texture to use
collisionDataVector.push_back(CollisionData{ {
static_cast<int>(layer2.x), static_cast<int>((layer2.y + (height)) *
1.5f) }, 1.f });
}

We place blocks between 0 and length on the x-axis and use the noise.GetValue function
to figure out what height to place the blocks which is amplified by the height variable to
give the level more variety in height. The static_cast<int> makes sure every block is
placed exactly one unit in the height plane so it looks like , because thatfigure 11.13
is the style of game we are trying to replicate.

figure 11.13: image taken directly from the game Super Mario Bros. .[9]

Learning With Noise

To create an algorithm that actually learns with this approach will be very hard because
there is no pattern in how noise are generated through the different variables, so it would
not know if the direction it was heading is good or not, which is why we have to make it
look like it is learning. This can easily be achieved by creating a predefined set of rules
to the world generation algorithm and use these in a smart way, which we discuss more
in detail in the section.Obstacle Placement Using Noise

We looked at how Super Mario World, from 1990, was designed and wanted to[10]
replicate the way the world is built up. They have designed the game to be gradually
more challenging the further into the game you get so we need the learning algorithm to
be kind to beginners and become gradually more challenging. It got a maximum of two

Listing 11.5: basic level layout

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-9
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-10

52

themes per level, with evenly spaced out safe spots where the player can take a break and
get control over the situation. These themes can can be for example ground and rotating
platforms. The entire level would then consist of only places to stand and platforms that
rotate around a point to create elevators, the level designers then add enemies to places
where they know the player will likely be after a certain challenge to kill them if they
stop paying attention.

To implement this using algorithms is not as easy as you might think without User
 as every player got a different skill level and a easy level for us might be hardfeedback

for others. This approach would end up with an average difficult level all the time, so
really good players would not be rewarded for their skills and beginners would probably
not be able to beat the game. Something we could do to fix this would be to have a
database for every player so every game would be different and tailored to your skill.
The problem with this is that the learning algorithm needs thousands of inputs to
generate something reasonable, which is simply too much for a single player to do.
Libnoise

The only reason to choose libnoise for this project is that it has been developed for years
and is optimized for speed, which is exactly what games need. Our own approach
worked, but it took up to three minutes to load a realistically sized level. This time was
measured with Visual Studios own performance explorer. Having to wait three minutes
in between each level is unacceptable. Another benefit with using a library that the
project do not need but it was an interesting experiement, was all the various noise
variants libnoise provided. This meant that we could test out variants we did not consider
and potensially get better results, even though this is unlikely as the results do not
produce curves that represents levels as we were looking for, but rather open caves or
worms looking caves. Examples of this can be seen on .figure 11.14

figure 11.14: voronoi pattern .[18]
Obstacle Placement Using Noise

As we have discussed in , even hand crafted levels looksImplementing Noise Approach
like noise, so the layout is not important if generated in a proper way. What matters are

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-18

53

where objects are placed. This is where the learning comes in, or what looks like
learning. We created a few hand made algorithms to fill the level for us with all the
various obstacles the project got support for. One of these are the spike filler algorithm.

On we can see how the spikes are place in naturally generated pits. Thefigure 11.15
yellow spikes are generated because the algorithm made a successful run, which means it
found a suitable gap, placed two spikes and filled the surrounding with boxes, here
visualized as red cubes. As shows, the noise pattern creates a u-shape whichfigure 11.15
matches the red boxes placed in the level.

figure 11.15: spike filler algorithm

54

int blocksToCheck = 5;
if (spike)
{
 glm::vec3 previousPosition = { i - 1,
static_cast<int>((noise.GetValue(static_cast<double>((i - 1) / 4.0), 0.0,
0.0) * height)), 0.0 };
 glm::vec3 nextPosition;
 if (previousPosition.y > position.y)
 {
 int spikesToPlace = 1;
 for (int h = 1; h < blocksToCheck; h++)
 {
 nextPosition = { i + h,
static_cast<int>((noise.GetValue(static_cast<double>((i + h) / 4.0), 0.0,
0.0) * height)), 0.0 };
 if (nextPosition.y == position.y) //equal heights
 {
 spikesToPlace++;
 }
 else //next block moved up or down
 {
 h = blocksToCheck;
 }
 }
 if (nextPosition.y > position.y) //next block moved up
 {
 for (int g = 0; g < spikesToPlace; g++) //fill the gap from original
position to last checked position
 {

this->actors.emplace_back(actorFactory->createActor(&ActorData("res/actor
s/movingSpike.xml"), { position.x + g, position.y - 0.5f, position.z }));
 for (int k = 1; k <= heightToFill + 1; k++) //loops through all
considered positions and fill them
 {

this->actors.emplace_back(actorFactory->createActor(dynamic_cast<ActorDat
a*>(&PlatformData("res/actors/tileAtlases/castleFg_rand.xml")), {
position.x + g, position.y - k, position.z }, glm::vec2(0, 0)));
 collisionDataVector.push_back(CollisionData{ {
static_cast<int>(position.x + g), static_cast<int>(position.y - k) }, 1.f
});
 }
 }
 i += (spikesToPlace-1);
 }
 }
}

This algorithm have a predefined parameter which can be changed depending on the
difficulty of the level, for the explanations sake, the project uses the value 5. For every

Listing 11.6: Spike filler algorithm

55

block we consider placing into the world, we check if the previous block was above the
next. We repeat this step as long as the previous block is still at the same level. When we
have checked amount of blocks equal to blocksToCheck, we will check if the next block
is above the current block we are currently at, if this is true, we will fill the gap with
spikes. This will try to find u-shaped pits across the entire level and fill them with spikes
as long as the gap is equal to or shorter than the blocksToCheck variable.

Using this kind of logic, we can define a lot of various obstacles and make the levels
look smarter. The learning will only consider amount of objects to place, so an easy level
might only have 3 pits with spikes even though the level got 6 suitable spots for them.

Tile by tile Approach

The tile-by-tile approach generates the terrain one tile at a time. The first tile will act as
the starting position for the player, and from there on out an algorithm will decide the
position of the next tile. One way to decide the next tile is to send the last few generated
tiles as input to the agent, and get a position for a new tile as output. The output needs to
have a random component to it, as to not generate the same levels for each user who uses
this particular trained AI. Controlling the randomness is somewhat difficult because this
approach only has four different out if you do not allow diagonal tile generation, and
only three outputs in certain cases if you disallow generation backwards.

figure 11.16: outputs

The green square is the current tile. The red is the previous tile, so we can not generate
the next tile in that position. The blue ones could be implemented by tweaking the
algorithm, and the yellow ones are the primary available outputs. The fourth output is
«ending the segment». Most platformers need «gaps» or «bottomless pits» .

56

figure 11.17: The AI will take in «1 tile, position: 2,5» as input.

figure 11.18: The AI gave «Right» as output

The AI gave «Right» as output. We now send both tiles of the segment as input. It is
important to send more than just the last output as input for the next tile, as the outputs
are very limited, and would seem mostly random if you wanted varied generation.

57

figure 11.19: This time the output was «Up»

This time the output was «Up». This time all three tiles are sent as input, and this cycle
repeats itself until the AI returns «Gap» as output, at which point the generation will start
over again at a new position somewhere to the right of the gap.

 figure 11.20: A complete platform could look like this.

Pros:

The biggest advantage is the precise control over each tile you get. Every single tile is
specifically tailored towards the rest of the inputs.

58

Cons:

Training the AI to generate realistic levels using this approach is difficult because
platform levels consist of mostly straight lines. Creating straight lines with this approach
would require the output to be mostly trained towards generating the same output as the
last input. This generates situations where you could get an unusually long straight line.
Otherwise the AI would be trained to generate something looking like .figure 11.20

Implementations:

We implemented this method by using Neural Networks(Artificial Neural
Networks/ANN). An advantage and disadvantage of using ANN is that user feedback
will affect every weigth in some way. This is advantageous when the user likes most
patterns in a level, where all patterns will get a higher chance of occuring, and
advantageous when he dislikes a level and all patterns are horrendous. Its
disadvantageous when there is a perfect mix of bad and good patterns. All bad patterns
will be graded as a "good" pattern if the player likes the level, and all good patterns will
be labeled as "bad" if the level in general is bad. This could be avoided by asking very
specific questions regarding the level, or even maybe ask the user to mark which parts of
the level are bad, but this is impractical for both the user and our data analysis. We want
to keep the feedback interface as user friendly as possible.

59

2DVector currentPosition {0,0} //has two public variables x and y

...

enum direction
{
 GAP,
 UP,
 DOWN,
 RIGHT
}

//Output is represented by an int, which represents a direction
//The vector is empty on the first call. Neural networks require the same
amount of input each time. The neural network will fill empty inputs with
dummy input
void generateTerrain(vector<int> outputVector)
{
 int newOutput = ANN.getOutput(outputVector);
 //create new tile as long as a gap is not returned by the ANN
 switch(newOutput)
 {
 case GAP:
 break;
 case UP:
 currentPosition.y+=1;
 break;
 case DOWN:
 currentPosition.y-=1;
 break;
 case RIGHT:
 currentPosition.x +=1;
 break;
 }
 if (newOutput != GAP)
 {
 outputVector.emplace_back(newOutput);
 createTile(currentPosition);
 generateTerrain(outputVector);
 }
}

The above code has no randomness added to it, so it will always generate the same level

until the network is trained slightly differently. ANN normally has no inapt way of

adding randomness to its output. One could modify the behavior of the ANN to return a

random output between some values, or add some form of randomness outside of the

neural network. The weakness of the last method is that it will not be affected by the AI,

so if the random implementation is sub-optimal, it has no way of improving itself.

Listing 11.7: implementation of Tile by tile approach

60

World Collision

Here we cover a big stepping stone to smooth movement and collision. Tile based world
generation comes with some problems which you evade with smooth landscapes.

Marching Squares Algorithm

The problem with tile collision was solved using the Marching Squares Algorithm .[12]
The purpose for using the algorithm is to draw a long line along all the edges of a piece
of landscape, instead of having Box2D create bodies from all actors.

figure 11.21: platform before and after applying algorithm

The algorithm takes in a two dimensional array consisting of integers as input, where the
integers are either 1 or 0. These numbers represent a complete platform in the level in
addition to the empty spaces around this platform. Ones represent a collision block, and
zeroes represent empty space. In practice this means one has to push a 1 to a vector or
list every time a new tile which is meant to be used to the world is generated.

collisionDataVector.push_back(CollisionData{ { xPositionOfBlock,
yPositionOfBlock}, 1.f });

After the whole level is parsed this way, the PhysicsHandler class fills inn the empty
spaces with zeroes. Normally one would have to use other values than only 0 and 1, but
our world consists of only sharp edges and no curves or slopes, and the curves are either
90 degrees or 270 degrees, which these values portray perfectly when following the
algorithm. Only using 0 and 1 allows us to skip a step of the algorithm, speeding up the
process slightly.

Listing 11.8: Adding a new solid tile to the vector for the algorithm

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-12

61

figure 11.22: what the user sees; what is sent to the physics handler; final numbers for
look-up table

The details between the two last pictures is very technical and can be studied more
deeply on the Marching Squares wikipedia page , but the general gist of it is that you[12]
take four numbers: the top left number, the one next to it, the one below that one, and
finally the one to the right of the current number. You should end up on the number
below where you started. This gives us 0000 in binary. Convert this number to decimal
and you get the number in the top left square in the last picture. To get the next square
you start from the second number on the top row and traverse the same path, giving you
0000 again, or 0 in the decimal. the third square is composed of 0010, which is 02 in
decimal.

figure 11.23: cases

By replacing the numbers of the squares with the lines in the look-up table you will get
something that looks like the platform above, except the all corners are cut. In The lines
are drawn inside a switch statement by the physics handler, where all cases of cut corners
are replaced by a 90 degree turn in the direction the corner is cut, giving us the correct
line. Drawing starts from the first non-zero square starting from the top left and going

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-12

62

right. The switch marks each traversed node as visited, and calls itself recursively with
the position of the next node. Marching Squares will stop generating lines as soon as a
node is visited twice, which means the algorithm has created a complete line around a
platform.

figure 11.24: comparison

The first shape above illustrates how the object would look like if the lines were drawn
exactly from the algorithm. The second shape is just for comparison.

63

//case 2 and 13 are equivalent for our project as we only care about the
lines and not whether or not we are on the inside or outside of what's
physical
//only one of the if checks can be true
case 2:
case 13:
 if (direction.x < 0) //this check is true if we the previous tile was to
the right of this one, making sure we draw to the right
 {
 returnVector.back().x -= 0.5; //we move towards the left
 newVector = returnVector.back(); //we start the next line from our
current position after moving half a square to the left
 newVector.y -= 0.5; //we now move downwards
 returnVector.push_back(newVector);
 direction = { 0,-1 }; //we are going downwards. this is information
required by the next square
 if (!(newVector == originPoint))
 {
 i += 1;
 }
 }
 if (direction.y > 0) //this check is true if we the previous tile was
below this one, making sure we draw upwards
 {
 returnVector.back().y += 0.5;
 newVector = returnVector.back();
 newVector.x += 0.5;
 returnVector.push_back(newVector);
 direction = { 1,0 };
 if (!(newVector == originPoint))
 {
 j += 1;
 }
 }
 break;

The problem with tile collision

We use Box2D as our . Box2D is a two dimensional physics library, sophysics library
when a collision between two object occurs, the library has to decide how it wants to
push the objects apart in the vertical and horizontal dimensions. In weWorld Generation
made clear that we are going for a tile based world and how a tile based world is
constructed. In Kremengine the world is made by placing square next to eachActors
other with no space between them.

Listing 11.9: Example from Marching Squares algorithm

64

figure 11.25: two ground tiles from a separate game together with the player on top for
illustration purposes [11]

When a collision between a player and the ground occurs, the ground will stay put
because it has a static bodytype. Static bodies can not be moved physically under any
circumstance, and can only change position by manually setting a new position. The
player will constantly be pushed up by Box2D as long as it only collides with one side of
a single object, but as soon as it collides with the top of one object and the side of
another, there is a chance that the box will get stuck in a loop, depending on how deep
the object is stuck in the sides of the second object.

figure 11.26: the block is being pushed up to the left, and left on the right [11]

The first object pushes the object up, which is perfectly fine, but the second object
pushes the object in the opposite direction of where it is moving. This will make it look
like the object is standing still when it is simultaneously moved up.

One cheap solution to this problem, which we used in Medieval Brawl, is to make the
players and enemies circular. This does not solve the problem and causes some other
minor issues regarding standing on ledges which one might want to avoid. A similar
solution is to clip the ledges of a polygon. This is better than the circular solution but still
has some of the same issues regarding ledges and you can still lose momentum when
stuck between tiles since you are pushed lightly away from the direction you are moving.

figure 11.27: clipped edges of a square body makes movement better.[11]

65

Our choice

When we decided on AI for world generation as the topic for our thesis, we already had
some ideas in mind on how we wanted to do it. We wanted the generated levels to be
fairly generic to put the levels in as many realistic settings as possible. Many of the
modern platform games have a wide variety of level «types». Some are mostly vertical,
some are horizontal, some are climbing focused, some revolve around dodging obstacles
on a vehicle. We wanted to focus on a single level type, and make that one as good as
possible.

The type of level we decided on have both horizontal levels and horizontal scrolling with
tile based platforming. These types of levels have enough complexity to make interesting
levels, while still being simple enough to improve through a learning algorithm.

We are not concerned with the time it takes to generate a level as long as it is withing a
reasonable time, only the level quality.

World Generation References

[1] Freespace.virgin.net. (no date). . [online] Available at: Perlin Noise http://freespace.vi
 [Accessed 14 May 2016].rgin.net/hugo.elias/models/m_perlin.htm

[2] Stefan Gustavson. (2005). [online] Available at: Simplex noise demystified. http://we
 [Accessed 14 May 2016].bstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

[3] Gamedev.stackexchange.com. (2011). [online]Understanding Perlin Noise.
Gamedev.stackexchange.com. Available at: http://gamedev.stackexchange.com/question

 [Accessed 14 May 2016].s/18330/understanding-perlin-noise/18331#18331

[4] (2007). Jason Bevins. libnoise: a portable, open-source, coherent noise-generating
 [online] Available at: [Accessed 14 Maylibrary for C++. http://libnoise.sourceforge.net/

2016].

[5] Jason Bevins. (2007). [online] Available at: libnoise: Documentation. http://libnoise.s
 [Accessed 14 May 2016].ourceforge.net/docs/group__generatormodules.html

[6] Wikipedia. (2016). [online] Available at: Procedural generation. https://en.wikipedia
 [Access.org/w/index.php?title=Procedural_generation&oldid=716861707#Video_games

ed 17 May 2016].

[7] Scratchapixel.com. (2012). [online] Available at: Pattern Examples. http://www.scrat
 [Accessedchapixel.com/old/lessons/3d-advanced-lessons/noise-part-1/pattern-examples/

17 May 2016].

[8] Dkc-atlas.com. (2016). [online] Available at: DKC Atlas. http://www.dkc-atlas.com/
[Accessed 17 May 2016].

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://gamedev.stackexchange.com/questions/18330/understanding-perlin-noise/18331#18331
http://gamedev.stackexchange.com/questions/18330/understanding-perlin-noise/18331#18331
http://libnoise.sourceforge.net/
http://libnoise.sourceforge.net/docs/group__generatormodules.html
http://libnoise.sourceforge.net/docs/group__generatormodules.html
https://en.wikipedia.org/w/index.php?title=Procedural_generation&oldid=716861707#Video_games
https://en.wikipedia.org/w/index.php?title=Procedural_generation&oldid=716861707#Video_games
http://www.scratchapixel.com/old/lessons/3d-advanced-lessons/noise-part-1/pattern-examples/
http://www.scratchapixel.com/old/lessons/3d-advanced-lessons/noise-part-1/pattern-examples/
http://www.dkc-atlas.com/

66

[9] Wikipedia. (2016). [online] Available at: Super Mario Bros. https://en.wikipedia.org/
 [Accessed 17 May 2016].w/index.php?title=Super_Mario_Bros.&oldid=720413576

[10] Thegamedesignforum.com. (2016). [online]Reverse Design: Super Mario World.
Available at: [Accessed 17http://thegamedesignforum.com/features/RD_SMW_1.html
May 2016].

[11] Iforce2d.net. (2013). . [online] AvailableGhost vertices - Box2D tutorials - iforce2d
at: [Accessed 17 May 2016].http://www.iforce2d.net/b2dtut/ghost-vertices

[12] Wikipedia. (2015). . [online] Available at: Marching squares https://en.wikipedia.or
 [Accessed 17 May 2016].g/wiki/Marching_squares

[13] Wikipedia. (2016). . [online] Available at: Donkey Kong (video game) https://en.wik
 [Accessed 17 May 2016].ipedia.org/wiki/Donkey_Kong_(video_game)

[14] Wikipedia. (2016). . [online] Available at: Bubble Bobble https://en.wikipedia.org/wi
 [Accessed 17 May 2016].ki/Bubble_Bobble

[15] Wikipedia.(2016). [online] Available at: Super Mario Bros.. https://en.wikipedia.or
. [Accessed 17 May 2016].g/wiki/Super_Mario_Bros

[16] Shaun Inman. (2016). [online] Available at: http://blog.mimeoverse.com/post/57706
 [Accessed 17 May 2016].0703/following-yesterdays-analysis-of-super-mario

[17] Wikipedia. (2016). . [online] Available at: The Legend of Zelda https://en.wikipedia.
 [Accessed 17 May 2016].org/wiki/The_Legend_of_Zelda

[18] Jason Bevins (2005). [online] Available at: libnoise: Documentation. http://libnoise.
 [Accessed 18 May 2016].sourceforge.net/docs/classnoise_1_1module_1_1Voronoi.html

[19] Wikipedia. (2016). [online] Available at: Random access. https://en.wikipedia.org/w
 [Accessed 18 May 2016].iki/Random_access

[20] Wikipedia. (2016). [online] Available at: Mega Man (video game). https://en.wikipe
 [Accessed 18dia.org/w/index.php?title=Mega_Man_(video_game)&oldid=713617125

May 2016].

https://en.wikipedia.org/w/index.php?title=Super_Mario_Bros.&oldid=720413576
https://en.wikipedia.org/w/index.php?title=Super_Mario_Bros.&oldid=720413576
http://thegamedesignforum.com/features/RD_SMW_1.html
http://www.iforce2d.net/b2dtut/ghost-vertices
https://en.wikipedia.org/wiki/Marching_squares
https://en.wikipedia.org/wiki/Marching_squares
https://en.wikipedia.org/wiki/Donkey_Kong_(video_game)
https://en.wikipedia.org/wiki/Donkey_Kong_(video_game)
https://en.wikipedia.org/wiki/Bubble_Bobble
https://en.wikipedia.org/wiki/Bubble_Bobble
https://en.wikipedia.org/wiki/Super_Mario_Bros
https://en.wikipedia.org/wiki/Super_Mario_Bros
http://blog.mimeoverse.com/post/577060703/following-yesterdays-analysis-of-super-mario
http://blog.mimeoverse.com/post/577060703/following-yesterdays-analysis-of-super-mario
https://en.wikipedia.org/wiki/The_Legend_of_Zelda
https://en.wikipedia.org/wiki/The_Legend_of_Zelda
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1Voronoi.html
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1Voronoi.html
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/w/index.php?title=Mega_Man_(video_game)&oldid=713617125
https://en.wikipedia.org/w/index.php?title=Mega_Man_(video_game)&oldid=713617125

67

User feedback and testing
Since we are making an algorithm that improves over time by people playing trough
levels we are heavily dependent on testing the levels and algorithm and also people
giving feedback to to improve the algorithm

User feedback

When creating an algorithm to generate 2D-platformer levels by using a learning AI
there are different approaches you can use when it comes to the learning part of the AI.
Since our goal is to make the algorithm learn and get better by having a player play
trough the generated levels, we need to have some form of user feedback that the
algorithm can use to learn how to make better levels. We looked into two types of user
feedback for this task. We call them active and passive user feedback.

Passive user feedback

The passive user feedback is called passive because it is not actually collecting feedback
directly from the player himself. Instead it is collecting data throughout the level when a
player is playing trough a generated level. The program will collect different data and
variables while the player is playing and store this to further improve the algorithm by
using the data collected. The learning part of this is to use the data to generate levels
based on how the player is playing. This can also be used in real time while player is
playing to alter the generation ahead of the player. For example if the player is cruising
trough the level and is having absolutely no problem defeating the challenges that the
algorithm is giving, the algorithm can then see this with the data it has been collecting
and generate a more difficult part ahead to make the level feel challenging. In the same
way the algorithm can also make the levels feel easier if the player is having a really
hard time. With this method we can make the player feel like the level has a perfect
difficulty and when they improve the levels also improve their difficulty. With this
approach the player might get the perfect difficulty curve and levels might be more
enjoyable when the difficulty changes to the players skill.

Active user feedback

The active user feedback is called active because it is collecting feedback directly from
the opinions of the player. We want to ask the player questions before and after a
playthrough to gather the information we need for our algorithm. Before the playthrough
we want to find out how the player feel about their skill level and the experience they
have playing 2D-platformer games. These answers are stored and used for later by
helping us see how experienced and skilled the player is and taking this into account
when the player is answering the questions that comes after the playthrough. For
example the player might find a level extremely difficult to complete but only because

68

the player has little or no experience playing 2D-platformer games. If this happens and
we tell the algorithm that the level generated was extremely difficult, we end up
"tricking" the algorithm into thinking that levels that experienced players actually find
really easy is extremely hard and this will make the algorithm worse. The optimal
algorithm will generate levels with different difficulty based on the experience of the
player.

After the player has played through a generated level the user is again asked a few
questions. The questions revolve around asking the player about the difficulty of the
level, how fun the level was, rating the level and/or the overall design of the level. The
answers from the player is collected and based on what the player has answered the
algorithm gets updated. The algorithm takes data from the level that was played through
and alter the algorithm based on if the level feedback was positive or negative. The
algorithm can be saved in different ways: online, offline or per session. The per session
approach will make the algorithm generate better levels for a player for just one session
before it is reset, the offline approach will only develop the algorithm for one particular
computer while the online approach will evolve the algorithm for everyone. The online
approach also lets us see how the algorithm evolves over time and we can then actually
find out if the algorithm is actually improving or not, since we can take a look at the
algorithm and see how it has been evolving.

Our approach

For our algorithm we have decided to go with the active user feedback approach. The
reason we did this is because we are interested in seeing how our generated levels would
evolve when players had a active saying in which levels where good or not instead of
having the program figure it out from data. We have decided to only as the player two
questions after each level. The reason for this is that we want to collect data from every
level but answering questions can be a boring task for a player and they might end up
being annoyed or bored and leave us less feedback to work with. We also use questions
that are easy and quick to answer to also make it more likely that players would put the
effort inn to actually answer. We do not ask the player about the experience of the player
and so on before they play because we focused on the algorithm creating just one level
and not having more difficulties to choose from.

The questions we decided to ask the players is: "Was the level fun?" and "Please rate the
level. (from 1 to 3 stars).

Was the level fun?

This question is what we consider to be the easiest and fastest way to figure out if the
player found the generated level to be good. We think that if the player found the level to
be fun the level must also have been at least somewhat decent, and since our game play
is pretty limited we do not think that the game play alone can carry a boring level. The

69

question has some problems that we have to take into consideration though. The question
only asks for the entire level, but the player might have enjoyed some parts of the levels
and hated the rest, so when answering the question the player does not quite know what
to answer. An solution to this that we considered was asking the player about different
parts of the level, but this felt tedious for the player to answer and asking questions like:
"Was the beginning fun?" felt strange and questions like: "What count as the beginning?"
would come up. To make it so we only needed the one question we have made the levels
short enough so that the player can feel like the whole level was either fun or not and
that the player remembers the entire level.

Please rate the level

This question is also very easy and quick to answer after first answering the one above.
The player can rate the level he just played and give it anywhere between one and three
stars. The reason we went for a three star rating system is because we wanted three
ratings that kinda meant bad, okay or good. If you have a rating system consisting of a
lot of options people tend to pick answers on the end of the scale or the one in the very
middle. This makes the other options kind of useless since they are not used enough and
we also felt like we did not need them to make the algorithm better. The rating is then
used to make more drastic changes to the algorithm based on the rating and the first
question.

When the player answer the question the new data gets sent to the database. In the
database we have the five last entries saved and the newest one replaces the oldest one.
In the beginning we considered saving every entry but we figured that it would be too
much data to store and we really did not need to have all the data but rather just the last
few entries since the algorithm is evolving constantly. It would however be an
interesting thing to have so you could look back at it later and see how the algorithm was
at a certain point in time. We also considered saving every entry done and info about the
session and player submitting the data but we did not want to deal with ethical issues like
privacy and having to make an terms of service agreement to ask if we could use data
collected from the player and we also felt like it did not add to much knowing these
things.

Testing

Getting data from testing is a big part of our algorithm. We wanted to test the algorithm
both internally in the team and publicly with other people. In the beginning the aim was
to get people we know and also strangers to test the algorithm. The plan was to release
the program online and have people test it there since the data gets saved to our online
database. This became hard to do when our did not want to work and we had toInstaller
scratch the online testing. This did not limit our testing too much because we had already

70

talked about the risk of letting strangers testing and now that risk was gone. The risk
with online testing is mostly about players answering incorrectly on our questions and
"tricking" the algorithm to think bad levels are fun and vice versa. Other things to take
into consideration is security regarding the database, for example SQL injection or some
experienced developers would maybe be able to get the database info out of our code and
tinkle with the data or ruin the database entirely. We are using prepared SQL statements
so SQL injections should not be a problem. People tricking the algorithm should not be a
problem since we think most people would have been honest and therefor the numbers of
people being honest would out shine people trying to ruin the algorithm, but the security
risk might have been a problem. Without the installer working we where still able to
make some friends and family test our algorithm.

Internal testing

The internal testing was done throughout the entire bachelor period. We tested the
algorithm a lot every time changes where made to see if it was producing levels like we
wanted it too. After every change we also reset all the data in the database so that the
algorithm would start from scratch in case something unexpected would happen after a
change that we did not think about if the change was big enough. After a while when the
algorithm worked mostly like we wanted it we did a new reset and started testing it with
intention of seeing if the level would eventually become a good and fun one. After a
reset the newly generated levels would be mostly a flat line like his:

figure 12.1: flat level.

Then after testing the levels for some time it would start to look closer to how a fun and
engaging 2D-platformer level looks like when it is professionally made for a game.

71

Those levels looked mostly like this:

figure 12.2: level with variation.

 After we reach the more playable and fun levels we decided to let other people have a

go at the algorithm to see if it would improve further and create better levels or see other

consequences of having people not involved in the project test the game.

Public testing

For public testing we chose to only invite friends and family because we know what type
of players they are so we could get a better range of skill, from beginner to professional,
this also meant that we could monitor the results to avoid people messing with the
algorithm as we had limited data to start from. We settled on gathering data from ten
people excluding the team. The algorithm requires more tests than ten people could
provide, but even with the limited amount of people testing the algorithm, we still
managed to get some interesting results. Compared to our , we sawInternal testing
similar results in the layout of the level, but the algorithm evolved at a faster rate because
of the larger pool of data we could gather. The team observed how different people
played the game and how they answered the survey afterwards. Looking at the results we
found out that we would need a lot more than ten people for future testing and to see if
the algorithm evolved into what we expect, but we got a good first impression on how it
worked in reality and we are happy with the results so far.

72

Deployment

Installer

We use Visual Studio installer for our installer. To get it to work, you only need to[1]
install it and use Visual Studio to compile an installer. Everything is pretty much just
drag and drop. You choose a folder and drag all the different resources needed into the
project. You can also include all the merge modules that you need to run the project.[2]

Problems

There we a lot of problems concerning the installer. It will run perfectly fine on
computers that are used by gamers and developers. This is due to the fact that they have
most of the DLLs already installed on their computers. This was attempted to be solved
using cygwin using the "ldd [programname].exe" command and Dependency Walker[3] [

. Even using those two programs, we were unable to solve the issues of missing DLLs.4]
But there was another problem there as well. Even after adding the DLLs that were
needed, we still encountered problems. This pointed towards there being 64-bit DLLs
being used when it was supposed to use 32-bit DLLs, But all the compiled DLLs were
32-bit. The problem might lie in one of the libraries that require a DLL that does not
show up on programs that allow you to see the DLLs needed. It is highly probable that
mysqlcppconn.dll is causing the problems due to the fact that it does not have proper
support for compiling it for Visual Studio 2015.

Deployment References

[1] Microsoft.com (2015). [online] AvaiMicrosoft Visual Studio 2015 Installer Projects.
lable at: https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509f

 b8933b9 [Accessed 14 May 2016].

[2] Microsoft.com (2013). . [online] Available at: About Merge Modules https://msdn.mic
 rosoft.com/library/aa367434 [Accessed 14 May 2016].

[3] cygwin.com (no date). [online] Available at: Cygwin. https://www.cygwin.com/ [Acc
essed 14 May 2016].

[4] dependencywalker.com (no date). [online] Available at: Dependency Walker. http://w
 ww.dependencywalker.com/ [Accessed 14 May 2016].

https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-1
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9
https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9
https://msdn.microsoft.com/library/aa367434
https://msdn.microsoft.com/library/aa367434
https://www.cygwin.com/
http://www.dependencywalker.com/
http://www.dependencywalker.com/

73

Discussion

Group Work and Workload

We decided at the start of the bachelor period that no one in the team should be the
group leader for the entire period. We ended up having no group leader at all. What we
did instead was that we where going to vote whenever there was a disagreement and a
decisions was needed to be made. In the event of a tie there should always be one person
with a double vote so that we could push the disagreement in a direction and a final
decision could be made. The person with the double vote would rotate every time the
double vote was used. The first person to receive the double vote was Jonas and the
double vote was never needed because most our disagreement ended with either
everyone finally agreeing or a three to one vote. Early on in the bachelor period we had
the requirement that each member of the team had to work a minimum of 40 hours, we
where thinking that a full time job is approximately 40 hours a week and that we could
do the same for our bachelor. We did not factor in people having other courses or that
when you have a full time job you do not actually work the full eight hours everyday and
you can have a few breaks in there but when we where tracking our time we only tracked
actually working time. Therefor we changed the requirement down to 35 hours. This lead
to the timed track actually being more inline with work actually being done and the work
people did was a bit better since they did not need to push them self. Still even with 35
hours minimum people sometimes worked a bit more than that.

During the development each individual in the team got more and more locked into
certain roles due to working on certain part of the engine a lot. This lead to it being
easier to ask a person to do something in a specific part of the engine instead of doing it
themselves, because it would either be faster or other people would not know how and
would have to first learn how that part worked before they could implement what they
wanted. This lead to some small problems with time being used waiting. Since we did
not have a set time frame of when you had to do work on the bachelor project, a person
might need something at nine in the morning, but the person that knew how to get that
done might not be awake before later in the day. This was however not a huge problem
since there was a lot to work on and you could mostly just do something else while
waiting for the other part.

Further Development

Even though everyone on the team has learned a lot and find the concept really
interesting, we as a team have decided that we do not want to work on the algorithm
anymore after the bachelor project has concluded. The reason for this is that we are
planning on creating an indie development game company and with that, our main focus
will be creating games. We do not think that this algorithm will net us any money. Early
on we where looking into if you could create an algorithm with a program that other

74

companies could use to generate levels for their 2D-games and then maybe sell this
program. We quickly found out that the program would either be to limited for this or it
would take us a lot of years to make it somewhat decent and we just do not think that this
is worth our time as a company.

Cooperative Play

We were interested in adding a cooperative playmode from the beginning, and we were
especially invested in figuring out how multiplayer effected the gameplay experience on
the levels. Seeing how the feedback differs from single-player would be quite the
learning experience. Some of the issues we foresaw were that co-op would make it
harder to track AI improvements over time. SDL_Net, a network library we used during
Medieval Brawl, was also replaced with RakNet early on, and we were excited to test it
out. Early prototyping showed that RakNet was more user friendly than SDL_Net, and
levels are actually playable co-op right now with RakNet. The database hurdle was just
way too huge for it to be worth investing time in. The psycological effect it has on a
person when he plays with someone else rather than alone is still something we would
like to experiment with in the future.

75

Conclusion
When we started working we really wanted to create a perfect algorithm for generating
2D platformer levels. The more we worked on this the more we realized that this is not a
feasible task, at least not without spending a big portion of your life dedicated to this task
alone. What we ended up with is is an algorithm that is able to learn and generate 2D
platformer levels that resembles hand crafted levels used in similar games. The algorithm
is specific for 2D platformers of this type and is not easily modified to support other
types of platformers.

We also made significant improvements to our own engine which we would like to use
for future projects either for prototyping or creating simple games. We know that our
engine is good for creating 2D platformers and until we get a lot of prefabricated assets
for other game engines we think that our engine is the best for us for creating these types
of games. Developing a bigger project where you have to use tools at a professional
level, time tracking and management models as a group has made us learn a lot about
how the industry work. This is a very good experience to have when we are going to
start our own company after the bachelor period has concluded.

What we ended up with is a bachelor thesis that included something from every course
included in the entire game programming degree.

76

Appendices

77

A. Project Plan
Kremen

Group Members:

Christer P. Somby

Henning E. Luick

Kristoffer Eidså

Jonas D. Reitan

1.1 Goal

1.1.1 Background

1.1.2 Project goal

1.2 Scope

1.2.1 Project description

1.2.2 Delimitation

1.3 Projectorganization

1.3.1 Roles and Responsibilities

1.4 Software Development

1.4.1 Description of software model

1.5 Risks

1.5.1 Identify and analyze project risks

1.5.2 Plan for handling the biggest risks

1.6 Development Process

1.6.1 Development Process

1.6.2 Gantt-diagram

1.6.3 Comments

PROJECT PLAN

1.1 Goal

https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.u3qj32vsingv
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.1lyyrj3w5i11
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.9amcuquun4ur
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.frbbdayrcjf7
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.8ktzb8rg0kmp
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.ead72c4xvpzi
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.h56ji6q091io
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.1bqfmfs18t4b
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.bjd2ec045lz
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.u8j5j4xkrepn
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.g215idjkskpw
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.kwh6ino0lq7b
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.2tbvazbjn0l0
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.7okuaav1afcz
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.3kag623xjxhi
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.2yf693hjkigv
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.d8r2vsvult00

78

1.1.1 Background

We made the start of a game engine during our game programming course during our 5th
semester, and decided to continue working on that during our planning phase. We will be
using our engine during this bachelor to make the level generation tool. We are all very
interested in Artificial Intelligence, so we wanted to delve deeper into that topic during
the thesis. We have some experience within the topic and wish to improve on that and
hopefully discover something interesting about level design in the process.

Our team consists of Kristoffer Eidså, Henning E. Luick, Jonas Reitan and Christer P.
Somby and we call ourselves Kremen.

1.1.2 Project goal

By the end of the project we will have learned more of the following subjects:

Intelligent level generation
Learning AI using established and new algorithms
Gathering of user statistics for better learning of AI’s.
Medium scale networking and data collection

We wish to accomplish the following product goals by the end of the bachelor period:

We will have implemented highly advanced AI
This will be accomplished by using artificial neural network or genetic
algorithms or a combination of both.

Have completely implemented networking using ZeroMQ

1.2 Scope

1.2.1 Project description

We are going to write an AI that can tell whether or not a platform level is good or not.
The AI will do a test through the level to see if it’s beatable, then it will present the level
to the user. The user then plays the map, when the user is finished, he will rate the map.
This will be extra data the AI receives to then be better at choosing levels that are good.

This AI will also use the users inputs or movements to teach itself how a player would
solve a map and use this in the way it beats levels. (There are some risks of the levels not

79

being complicated enough after some time. So this needs to be considered)

The levels the AI will test are going to be randomly generated by some sort of AI that
learns how to make platform levels. It might work together with the solving AI to learn
how to make better maps.

1.2.2 Delimitation

We are not going to make an advanced 2d platformer but rather a tool used for level
generation in 2d platform games. The generated levels will contain many common
features in platform games, but we will not be able to include all features. New features
can be added in the future, but the AI has to be recalibrated (by user tests) to include
those in new generated levels.

The tool will be specifically tailored for our engine, but the algorithms we end up using
should still be applicable to other tools.

If the make system that is planned for the project turns out to be too much work
compared to what is initially expected, it will be dropped.

1.3 Projectorganization

1.3.1 Roles and Responsibilities

All team members will work on all parts of the project, and we have a shared
responsibility to make sure the project turns out as good as possible.

Henning is responsible for the networking.
Christer is responsible for the make system.

Kristoffer and Jonas are responsible for the AI.

These responsibilities are by no means final and may change during the course of the
bachelor. Any person that wishes to work in a specific field is allowed to do this.

80

1.4 Software Development

We have decided to choose RUP and Scrum as our software development
methodologies.

1.4.1 Description of software model

We are going to use sprints from the scrum model. Every friday at 16:00 we are going to
have a sprint meeting to discuss what we have accomplished that week and to find out
what each person should work on for the coming week.

From the RUP model we are using the way they divide everything up in phases. We start
off with planning and gradually switch over to development. Our project depend on user
feedback so we want to do testing parallel to development.

1.5 Risks

1.5.1 Identify and analyze project risks

Time - We may use to much time on creating the program. If we use to much time on
this we may have too little time collecting the data we need.

Too complex - We might get stuck on a particular part of the program that is too
complex for our knowledge.

Group problems - Any problems with the group. I.E fighting over stuff, someone
leaving.

Money - If for some reason the project will cost too much money for us to handle.

1.5.2 Plan for handling the biggest risks

81

Time: we hope that our sprint meetings will help us plan good enough so we don’t
encounter a problem where time is an issue.

Too complex: If we find something that seems hard to solve we will have a discussion
about if it’s worth trying or not and either try or scrap it based on this decision

Group problems: solved by following the rules that we all signed.

Money: Solved by following the rules and we also plan on not using very much money
at all..

1.6 Development Process

1.6.1 Development Process

We are using the atlassian set of tools, Jira, Confluence and Bitbucket. These will
manage our time spent, issues and such.

A daily scrum will be held every day at 09:00 to discuss what we have done, what we
will do, if we have any issues and add or remove tasks/issues.

A sprint meeting will be held every friday at 16:00 where we will do a review of what
was done during the week and add bigger tasks and issues and discuss these. Estimated
duration of these meetings is 1 hour.

A work log will be kept where group members will write what the did during the day and
what they are planning on doing the next day.

1.6.2 Gantt-diagram

82

1.6.3 Comments

Our development phase consists of 14 one-week sprints. Each sprint ends with a meeting
to discuss the next sprint. The product backlog will be updated and additional tasks will
be added if needed.

The development period is split into four milestones. The first one is a prototype to show
the potential use of the project. The second one is the MVP(Minimum Viable Product),
which is the first version where we start larger scale user data collection. The Beta
Version is a more finished product which will have a mostly fleshed out user data
collection and will also mostly be finished. And the last one is the finished product.

When we reach a milestone, we will see whether we are on track to finishing the project.
If we notice that we are not going to be able to reach what we set out to do, we will
reduce the project parameters. We will also add or remove planned or useless features.

Testing will be done during the development process, because we need user data to see
whether or not the AI that is being developed actually learns from the data collected. The
first phase of testing will be the initial gathering of data. This data might be useless to us

83

1.

2.

3.

4.

5.

6.

7.

8.

9.

later, but we need to gather it and analyze it to see if it is of use, and then we will modify
the data collection if needed. If we notice that we are actually able to collect data earlier,
the MVP milestone will be pushed forward.

Rules:

In the event of disagreements, we will vote on the proposals. In the event of a
tie, one person will be given a double vote. If a decision is decided by a double
vote, the double vote is then rotated to another person.

If a group member does not complete the work he has promised, but has done
his best and asked for assistance with the task he was given and it turned out
to be too much, no penalty will be given.
If a group member does not complete the work he has promised and has
given the task much less time than expected, a warning will be given. In the
event of multiple warnings, rule 6 will be applied.

Exceptions for rule 2 could be: Death in the family, illness, no access to
computer and other unpredictable events that the other members of the
group agree are valid.

For anyone taking the Professional Programming (IMT3602) during the same
semester as the bachelor, it is expected that they work at least 40 hour a week.
Group members are expected to pick up new tasks if their task is completed
with less than the designated time.
In the case of them not taking Professional Programming, it is expected that
the work at least 35 hours a week.

In the case a member has breached rule 2 or 4 a total of 3 times, the member
will be dismissed from the group. Members that don’t wish to be a part of the
bachelor will be dismissed from the group.

In the case of dismissal, the member in question will be stripped of all rights
to the documents (project plan, bachelor document, design document, etc),
repositories, asset with limited licenses. Dismissed members will not be
compensated for any eventual expenses.

All expenses are divided equally among all members.

All member can sign documents on behalf of the group.

All members can call for a meeting. The person that calls for the meetings are

84

9.

10.

11.

responsible for the meeting agenda.

During meetings, members are expected to devote all their attention to the
meeting.

We have no project leader.

Signed:

_____________________________ _____________________________

 Jonas Reitan Henning Luick

_____________________________ _____________________________

 Christer Somby Kristoffer Eidså

85

B. Prosjektavtale

86

87

88

C. Toggl

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

D. Medieval Brawl
Medieval Brawl

Installer: https://www.dropbox.com/sh/07bcrmhaafqvl3o/AABHKwj12Zr4hev3zCfMRg
fda?dl=0

Repo: https://bitbucket.org/Almightyquad/roguelike-game-programming on the master
branch.

We also made another game with the engine in android, which is on the Android branch.

Description of the game

Summary

https://www.dropbox.com/sh/07bcrmhaafqvl3o/AABHKwj12Zr4hev3zCfMRgfda?dl=0
https://www.dropbox.com/sh/07bcrmhaafqvl3o/AABHKwj12Zr4hev3zCfMRgfda?dl=0
https://bitbucket.org/Almightyquad/roguelike-game-programming
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.1nsysfv2iju0
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.u984kpobxrba

152

Technology

Graphics

Audio Handling

Android

File Handling in Android

AI

Level editor

Font:

Filehandling

Networking

Event handling

Physics

Libraries used

Engine Architecture

Engine

ActorFactory

Actors and Components

User interface structure

Enemies

Heroes

Items

Game balance

Reflection

Responsibilities

Shared responsibilities:

Christer:

Kristoffer:

Henning:

Jonas:

https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.jr7f53mu1tll
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ug8jsmd86qnl
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.rjj0g3teq5or
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4aka25jrcp0
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.6rc7ax0fm62
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.x1wm85dn64fz
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dkvvo8zhzvtm
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.bzoptl352aj3
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.r840im8ejwcf
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.1dcpquorjmff
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.tb71eswigcck
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ijxi7fd01q5r
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.qu38dovmm4rg
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.k8g60puxwfvm
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.sy5gvkvm11ho
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.qxsyexnv0qs2
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.2baet263t9sf
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.5bac3suekod7
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.5r69cfstnh53
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.84dcq2phota8
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.kenffkekgkr8
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ti83erjucgir
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ewuk5k8fdt17
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4x6twxe1ezjw
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.xj2g9x2j71ip
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.nbk7ji5xu0f6
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4zsos8zd8p5g
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dhkq18t6fwmb
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.nso5213gk02w

153

Lessons learned

Our experiences

Christer:

Kristoffer:

Henning:

Jonas:

Terminology:

Engine: Not really an engine, more of a tool.

Engine component: General term for what the engine can use

Actor: All objects in the game.

Actor component: Parts of an actor that make up the actor.

GUI element: example: Button, slider, dropdown, …

GUI state: Main menu, running, game over, …

Android NDK: Android Native Development Kit

Description of the game

Summary

We decided during the summer that we would be working on a roguelike, where we look
at all the interesting design of some of the games in the genre, and improve on that. We
set out to create a game with a seamless procedurally generated random world, with a
crafting system and vendors. The player would progress by upgrading his equipment and
finding new weapons. We set out by aiming high and delivering whatever we had
enough time to do.

We were able to implement about half of the game elements that we wanted to, and we
believe we made the best game we could make with the tech we wanted to implement

https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dpn3u1rvw7sp
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.im5mygqyqftk
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ck1aksdtu2r
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.f6r3xmxpgytw
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.e48u9sqep5g6
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.yyn0cjlmtaic

154

and the time we had.

Medieval Brawl has a randomly generated world, where the world is created with tiles,
which are placed in 8x8 chunks (more on this later), which are seamlessly connected to
each other, We have four fairly diverse enemies and the player can find three different
weapons. The weapons are also somewhat unique. All enemies and weapons are
spawned randomly throughout the entire world.

The player can choose between four different characters, which have some
distinguishing features. The players can also spawn with set items, which can distinguish
them even further with just one line of code. This is mostly done to display flexibility
and ease of use of the engine, and not really utilized to it’s full potential.

The engine currently support up to 32 player multiplayer, but starts getting very choppy
at around 6 players. This number will go up and down depending on the hardware of the
host and clients. In Medieval Brawl the players can fight in co-op against the horde of
monsters with the spawned loot.

Players can pick up and drop items as they see fit, and there is some strategic element to
how to beat the game. The player(s) beat Medieval Brawl after defeating the final boss
which spawns after a certain amount of enemies have been killed in a single session.

Technology

Graphics

Our engine uses modern OpenGL and OpenGL ES 3 for drawing on various platforms.
We decided to use a OpenGL version that also was supported for mobile phones and we
also wanted to use the modern features ES3 offered, so we had to remove compatibility
for older phones to make the game look better and not use the newer OpenGL version.

One of the main features we wanted from ES3 was instancing so we could add particle
effects without having one draw call per particle, which would slow down any device.
We used this particle effect system to add a weather effect, which is currently displayed
as snow on our desktop game and leaves on our mobile game. The particles are also used

155

for entities in our engine, an example for this is when you pick up a star on the mobile
game, it bursts out tiny stars in various red-orange colors, while on our desktop game we
attach particles to projectiles, like arrows and magic.

Since we use OpenGL, everything is done in 3D, so we got a lot of flexibility even
though our games are mainly 2D. This means that we can have actual 3D parallax
background instead of layers and have 3D models in game. One example of 3D models
we use are cubes for platforms in our desktop game.

We have a skybox implement which supports two texture and will fade between them
based on the time of the day. In our desktop game, we use a day and night skybox but on
our android version we use it as a parallax background effect and have a static picture
that rotates at a much slower rate. This way we can use the skybox for multiple purposes
in a lot of different type of games.

Very late into the development cycle we started implementing framebuffer objects
(FBOs) so we could add various effects to the world. We started off by creating a
lighting system where we would draw circles with a certain color and then multiply this
with the world to give light sources like torches actual light while everything else in the
world had a dark ambient to it.

This can be used to other things aswell, for example by using the stencil buffer, we could
stencil out the background and overlay a blood texture to apply blood to the ground
where something dies to increase immersion.

Audio Handling

We are using SDL_MIXER for our sound system. We were trying to get OpenAL to
work but we ran into a few problems. We needed to make the Cmake file for openAL
ourselves and the one we made only seemed to work for one of us and we decided to just
run with SDL_MIXER because we did not want to spend too much time on the audio
system because we felt that other aspects of the engine was more important. When we
load sounds or music files we check to see if they already exist and if not we save them
to a map with sounds with a string identifier.

Our sound system is really basic with these possibilities at the moment:

Play music and sounds: We can play a sound or a music track loaded from our sound

156

map.

Mute music / sound - Mute sound and mute music are two different functions that
basically sets the volume to 0.

Change volume: You can change the volume to a specific number. This function works
great when linked to our sliders.

Change the master volume: changes both the sounds and the music at the same time.

stop/pause/resume music: we can stop, pause and resume the music. Especially great to
use these when we were making a game for Android since we needed to stop sounds
from playing while our application was minimized

We should look into using something different than SDL_MIXER if we decide to keep
using our engine in the future, since it is a bit too basic and lacks some core functions
that we want. For example SFML has a great function to play sounds from a location in
the world to make the game feel more alive and real. This is something we would want
with our future sound system and SDL_MIXER couldn’t do this the way we wanted it.

Android

We have a document for Android as well, which can be found here.

We have building and compiling for Android. There is a readme on the repo on how to
build it and deploy it to the phone. The game on the master branch may not run on
android due to the assets not being updated there, but the one on the Android branch
should run just fine.
We used the Android NDK for our building and ant for deploying. The original intention
was to make a make system, but time limitations made us only have the android make
system.
Many things you would see as easy on PC is a lot more tedious on Android. Examples
would be loading a file, keeping the window the same size when re-entering the
program, stopping music when the game is in the background, movement, touch (which
is the same as a mouse in some instances), and so on. Debugging can also be a challenge,
since you mostly get back stack information and memory locations, which takes some
time to learn how to read. So having logs in the project is very useful.

File Handling in Android

The file handling in Android is done slightly differently from PC. Everything in the APK
is compressed, so you have to use Androids AAssetManager to get out your files from
the assets folder. Everything you read here needs to be read into a buffer, which you can

https://docs.google.com/document/d/18wiwL4ac_tAuuDDph6GaFTgghCT5hZi4xzlGio_4jK8/edit#heading=h.xr5s8j84yd01

157

then put into a stream.
What you can also do is save files and such in the android filesystem. Which you need to
get using a seek from an Android function. The pach turns out to be something like:
“data/data/[yourpackagename]/Medieval Brawl/files”, writing to here can be done using
pretty much anything that reads and writes a file like fopen, ofstream and ifstream. This
location is also specific for your application, only you can read and write here.

AI

AI is applied to an actor by adding the AIComponent to it. The AI component takes a
string parameter as a path to a Lua file, but pure c++ code can be used if no string is
passed along. We wanted the implementation of lua to be 100% dynamic, but that
proved to be difficult, because none of us had any prior experience with Lua. Debugging
in non-pure Lua was also no easy task, so we went for more c++ oriented AI towards the
end of the project deadline.

Most of the difficulties with implementing Lua dynamically comes from the parameters
you need to send from the main codebase. The need to know which, how many, and how
many return parameters you need made it very tough to do with our knowledge.

Level editor

We are currently using the program Tiled to create our levels. Since our game world are
a tiled platformer Tiled works good for this project. We use our own level loader to parse
the Tiled files and create the graphics of the world with a tile atlas. We want to create
our own level some time in the future because we feel that Tiled is a bit clunky to use
and it makes it harder to just edit stuff and test on the fly. We didn’t create a level editor
for this project because the world was going to be randomly generated anyway.

Font:

We are using SDL_TTF because we wanted something that worked and didn’t take a lot
of time to learn or implement. We figured that we didn’t really need any advanced texts
in our game and our priorities were elsewhere in the engine. Like with our audio system
we really want to use something better if using the engine in the future, since SDL_TTF
doesn’t have a lot of customization. For example getting a outlined text would just create
a outlined text and remove everything in the middle of the text. The only customization
we have at the moment is changing the color of the text. Since we just make an
SDL_texture and make it into an openGL texture, the text also looks weird and stretched
depending on the size of the word or mesh that it is attached to and all our customization

158

happens in a shader. We didn’t find any font system that was really easy to implement or
that did enough of what we needed for this project so we just went with this solution.

Filehandling

Like the rest of the engine the graphical user interface is also loaded from xml files. We
looked into using lua to do everything for us and we actually had some lua code for gui
in the beginning. We found out that you needed to pre map functions you want to run to
use them in lua files and we found out that it would take some time to rewrite the code to
get this to work. Since we felt that the gui was already working great we decided to just
use our current way so one of us didn’t have to use all his time coding the gui.

There is a gui loader file that has the name of all the game states in it. This file is read
when we start our game and the gui handler creates all the states that it finds in this file.
The gui handler then tries to open an xml file with the name of each state. For example
RUNNING.xml. In each game state xml file all the gui elements that belongs to the state
is listed. All elements of the same kind has to be in order so for example every button
has to be in order. The file is then parsed and will look under each element to find their
property and create the element. When a gamestate is changed the gui handler will load
the correct state with the correct elements.

The elements that the user can interact with have a listener that is currently listed in the
bottom of the engine.cpp (This is supposed to be decoupled from the engine but since we
didn’t have time to decouple the game states this is the hacky solution for now). The
listener listens for messages that it is subscribed to and when they get the right kind of
message they will run the functions that is written in the listener.

Networking

We use SDL_net for networking in our engine. We wanted to use something more
flexible and easier to use, but because we already had SDL implemented we wanted to
keep everything as close to SDL as possible due to portability and familiarity with the
structure. Our engine currently only supports TCP packets. We decided for using TCP
because most of the speed problems and we minimize the packets as much as possible.
We are looking into further reducing the amount of data being sent to be able to support
more players.

159

All network clients only send their input to the host, and the host redirects the input to
the correct components of the engine(more on this later), and is handled the same way
input from the host is, with a one frame delay. The host sends the positions and velocity
of all living moving actors across the network. This can be improved by making sure that
the position that is being sent is in fact a new position, and not the same that was sent
last frame.

The client stores all this data in his own actor structure, and creates new actors when
necessary. The new actors are created with the velocity sent by the host. Old positions
are currently being overwritten by new ones, even if they are only 0.001 units apart (only
a few pixels). The game would feel more smooth for the client if he only updates the
position for each actor if the current position is more than a certain distance apart.

Deletion of actors is handled by the client and host individually. All deletion is handled
by the physics component(more about this under physics), so as long as the positions are
the same one frame earlier, they should be the same on the next frame, and the collision
should take care of the deletion. This is probably not a 100% safe assumption, but we
have not seen a situation where the client and host has desynced. This could be solved by
having the host send messages regarding deletion of actors as well as creations, and
prevent deletion altogether on the client side.

We wish to rewrite and replace SDL_net with ZeroMQ for the bachelor if we were to
improve on the engine. We also want to make the networking more flexible and
customizable for each game, so we would have to rewrite most of the contents already,
which is part of the reasoning for why some of the issues and weaknesses are not fixed.

Event handling

All our physical interface events are behind handled by SDL. This includes mouse
events, keyboard events and touch events. The event handler is isolated from the rest of
the game and engine, where the event handler only sends information around and other
components know what to do with it. Objects which subscribe to the eventhandler will
get the event that happened, and will make the own decisions on what to do with it. Most
of the events sent to subscribers are discarded as they are not used by that specific object.

All actors in the game can listen for input as long as they have the inputComponent(more
on this later). The gui handles input by checking for mouse input from the event handler.
If the mouse is clicked the gui elements on that particular game state checks if the mouse
click is inside their transform with a simple AABB check. If it is the function returns true

160

so the event handler can cancel out mouse events that should not happen when gui is
clicked. I.E firing a fireball when clicking the pause button. The mouse click function
also activates functions in the gui elements that does stuff when clicked. For example
buttons gets clicked, sliders gets slid and drop downs gets drop downed.

Physics

Kremengine uses Box2D as physics handler. All game objects which need to collide with
something need a body from the Box2D world. We also use box2d when moving objects
around in world space.

Libraries used

SDL

Box2D (Physics)

SDL_Mixer (Audio)

SDL_TTF (Fonts)

SDL_Net

OpenGL 3.3

Glew

LUA (AI)

glu

Engine Architecture

Engine

161

The heart brain of the engine is the Engine class. Engine is initialized when the player
starts the game and contains every single handler for all major engine components.
Engine also holds the gamestate, which is used for tracking where the player is in the
game. Gamestates are currently tied directly to the game, so the programmer has to go
directly into the engine and modify the gamestates if he wishes to do so. We currently
directly handle typical gamestates like “playing”, “hosting” and “main menu”. Each
gamestate has its own update function and initialization function. The update function
handles generic drawing and updates, as well as major game specific events, i.e changing
gamestates when player health drops to 0.

Engine also one of each major handler in the game. Handlers include PhysicsHandler,
GraphicsHandler, EventHandler, Network handlers and many more. Each handler is
derived from a base Handler class which provides some tools to make life easier for the
programmer. All handlers have a pointer to their parent (Engine). We would like to
include more functionality to the handler to make it act more as an interface for all
handlers.

Engine is also the main culprit for creating new Actor objects. Engine holds the
levelLoader, which loads all the tiles from their chunks (read more about this under
filehandling). All tiles are created as Actors (more on this under ActorFactory). New
enemies and items are spawned during a set interval in the update loop. The player
creation call also comes from the engine for the host and single player player actor. The
network creates all the client actors.

162

The engine object stores the Actorfactory and all Handlers. Handler inherit from
Handler. The Actorfactory stores all the Actors, an Actor can have many Components.

ActorFactory

ActorFactory is the hands for Engine. Engine has one ActorFactory, and that one
instance is responsible for creating and deleting all drawn objects other than GUI and
particles on the screen. ActorFactory takes an XML path, position and velocity as
parameters. Everything else that is needed is in the XML file (if it exists).

ActorFactory stores objects in two categories; moving and not moving. Moving actors
are primarily actors that can be moved. Players, projectiles, enemies and items fall under
this category. Non moving objects are tiles, background objects. Lightsources and
invisible collision blocks will probably fall under this category in the future. The moving
category is slightly misleading since you can have stationary enemies, which are
technically “not moving”. The differentiation is made to handle static objects differently
than everything else. Moving objects are stored in a map, with a name and an ID as
identifier, while non moving objects are stored in a much faster vector, to more easily
iterate between them during draw calls.

ActorFactory also holds all factories for component factories (more on this below).

163

Actors and Components

Every single actor has at least one component. Components are pieces of actors that
make up the whole of one actor. Our engine currently has the following components:

Animation: Added for actors who need multiple sprites. Tracks which sprite it is
currently on and the timer for switching sprite. Holds sprites for multiple actor states.

Audio: Used by actors who need to make a sound. Could for instance be added on the
sword actor when it hits an enemy to make a slash sound. Holds sounds for different
actions.

Combat: Used by actors who engage in some form of combat. Contains damage and/or
HP. Actors with a combat component need more than 0 hp to not be deleted. Fireballs
and enemies have damage, which deals their damage on contact with objects which are
masked for that collision.

Graphics: Used for all actors who need to be drawn from a file. Pure light actors would
not need this when we get that far.

AI: Mostly used for enemies, but can easily be used for more interesting items like
homing projectiles.

Input: The main actor for the player has input component. Input component receives
messages from the eventhandler, and are handled by the input component. Items which
are activated on input also uses the input component for flexible input handling. Input
can also come as network packets.

Particle:

Physics: This component is required by most actors. This creates a physical body for the
actor with the parameters from the xml file. This body is used for all collision handling.

The last two components are more game specific, and we will add functionality for
creating components outside of main codebase.

Inventory: This is used by components who can hold items. Enemies and players can
both own items with this component attached.

Pickup: Pickup is for actors who are mostly immobile which are intended as items for
the player to pick up. These are mostly new weapons and potions. Pickups can only be
picked up by actors with an inventory.

Actors can have any number of components, but some components make little sense
together in our game. You could have a game where an enemy can also be a pickup, but

164

this doesn’t fit in our game. Most actors are purely general, and only exist inside of the
engine, but we are decoupling more and more as we need them decoupled. The trend
looks to be to decouple everything over time.

Which components each actor has depends on the parameters loaded from the xml file.
Certain components require certain parameters, while others have default parameters,
and you only need to specify that you want the component. GraphicsComponent requires
filepaths to the mesh and texture, while AI can just be added by adding the AI
component. We have some debugging on the xml loading, so you can see if a parameter
is not set in the xml file by enabling xml debugging in the code.

User interface structure

The graphical user interfaces was intended to use some of the components of the actor
factory. We quickly figured out that it would be clunky and that the gui needed it owns
camera anyway so that the elements wouldn’t be in world space but be visible on the
screen all the time. Currently the gui is initiated in the engine by making a gui handler
element. The gui handler reads all the game states that the game needs from a gui loader
file. From this the gui creates all the states needed for the game through several gui state
objects. The gui state object has control over all the gui elements that we want to display
or use on that particular state.

The gui handler can find a certain element by searching through its state for a given
name. You can use this for several different things. For example changing the container
to be visible. This is used for the inventory system. The gui handler can also return
objects of the gui element you found so you can subscribe to them and get info when
they are clicked and updated wherever you want in the engine. We want to decouple the
button listeners from the engine since it is specific to the game created and not the
engine it self but we haven’t done this for now.

At the moment gui elements inherit from the gui state which inherit from the gui handler,
but nothing is using this to do anything simpler. We would like to rewrite the entire gui
system to be more flexible and to not duplicate code. We would like to use templates to
make a lot of the functions a lot cleaner and also override functions that do the same
thing.

We are currently having a draw call for every gui element. In the future we want to make
this a bit better and do it by instancing. The gui isn’t using too much resources right now
but in the future it may be a problem and therefore we should rewrite this part.

165

Enemies

Esmeralda: A crow that flies in the air and drops eggs on the player that does damage.

Chuck: throws a big rock at the player that does damage.

Kappa: jumps up and down and turns around when hitting a wall

Hestmeralda:

Heroes

Jakkheim: Jakkheim is our games young and inspiring hero. He is small and that is why
he is faster than the bigger characters. He also has more health than his girlfriend
Jackline because he is a male.

Jackline: Since she is the same race as Jakkheim she is faster than the bigger characters
as well. She has more mana than Jakkheim to make the two unique.

Dwarfid: Dwarfid is a 400 year old dwarf and have been through some wars. Therefore,
he has a lot more health than the other characters, but his age comes with a disadvantage,
making him as slow as his wizard friend Frode.

Frode: Frode is the same age as Dwarfid and have been to all the same wars. Since he is
a wizard he has tons of mana, but his age and body make him slow and fragile.

Items

Fireball: Fireball is a classic mage spell that shoots a ball of fire in a straight line
depending on where you aim. The spell costs mana and can only be cast when the player
has 20 or above mana. Does a lot of damage since it is dependent on mana.

Bowandarrow: The Bowandarrow is a weapon which has a string attached to a bow, with
magical arrows inside an invisible quiver. The arrows travel like arrows would in real
life. does a bit less damage than a fireball.

Sword: Sword is a melee weapon that does a lot of damage since it requires you to go up
to the enemies and endanger yourself.

Health and mana potion: Refills the health or mana of the player by 50. Does this
automatically and won’t save to the inventory or require the user to activate it. The
potion gets removed even if the player picking it up has full health or mana.

Game balance

166

We have focused a lot more on technology and implementation techniques than game
balance and content. We could make 5 iterations of the fireball and bow and arrow with
slight differences, and could create other enemies which just spawned other enemies or
fired arrows or fireballs towards the player, but these would just be other versions of
existing items and enemies. Even if our engine is flexible and easy to use, it would still
take some time to tweak these new items without learning anything new or displaying
any skill. And this is time we would rather spend on improving our code and tweaking
existing content.

Instead we chose to balance Medieval Brawl around having the objects in it be diverse
enough to be worth displaying.

The three power-ups for the player are created outside of the engine, and only require a
few lines of code each, but still display a lot of utility of the engine. The fireball fire in a
straight line, the bow fires in a cone, and the sword is a melee weapon which equips a
new physical body which shares a body joint(more on this later) with the player.

Reflection

Responsibilities

Shared responsibilities:

Content, optimization, error handling, actors, physics

Christer:

Android porting, Events.

Kristoffer:

GUI, pickups, inventory, audio

Henning:

Network, component system, decoupling

Jonas:

167

Graphics

Lessons learned

Don’t start porting to Android late, do it early. Add all the dependencies incrementally.

Sort files into folders. This is something that needs to be done, because the folder is
pretty much just chaos.

Make a coding standard before you start. Everything is currently just clutter.

Do templating early. Also, learn templating.

Our experiences

Christer:

I hate the Windows file system, it’s not case sensitive. So everyone can name any file or
directory whatever they want, someone names the folder for GUI, but loads from that
folder by doing “gui/somefile.txt”, which then in turn works on Windows, but not on a
Linux system like Android, since it’s case sensitive! So I ended up battling for a standard
in naming files and having people use the literal path to the files.

Just getting started on the Android porting was also very tedious. Going one step
forward, ending up going to steps back was a common thing in the beginning. I had to
scrap everything I had done after 5 days work and begin again because I tried to do a
make system. After scrapping it, I went over to the Android make. Basically, the porting
took a week more than expected.
Getting SDL ported was relatively painless, but adding more after that, like Box2D, was
challenging. But as soon as I got that working, everything else went smoothly. Until I
started with the file loading. But as always, get it working one time, and you can get it
working many times. I had to do different loading strategies for everything, some I just
had to pass the buffer I got from the loader, some I had to make a stream, some I had to
make a file in memory and some I just had to load using SDL specific loading. If you’d
like to know more about the process, you can read more on it here.

Kristoffer:

I have learned that coding graphical interfaces is a lot more work than i originally
thought. Every time you want to create a new gui element you have to think about a lot
of things. Gui elements needs a lot of different properties to be reusable for different
games and they need to be dynamic and easy to edit. They also need to run different
functions from game to game. Almost every gui element i have added to the engine have

https://docs.google.com/document/d/18wiwL4ac_tAuuDDph6GaFTgghCT5hZi4xzlGio_4jK8/edit#heading=h.xr5s8j84yd01

168

had functions added to them later because they suddenly needed something i didn’t think
about when i first created them. For example it's really simple to create buttons that can
be clicked. But then you remember that you might want a texture for three different
states. Some sound, the button may change its text when something happens, you may
want to move it around or the scale can change. This have made me think more about
what a class needs from the beginning so i don’t have to rewrite stuff later. So for the gui
elements that i added later in the development process where almost complete when i
was done adding them instead of a few days/weeks later. I also learned that gui is
complicated to get right and needs a lot of tweaking and flexibility to work good,
especially if you want to just reuse classes. I would also like to rewrite a lot of the
classes. Some of the classes is really hacky written, For example the slider. I also want to
override some functions that basically does the same for a lot of the classes to not have
duplicated code and use the inheriting that i was supposed to. I also want to use
templates. I decided to not do this for the project because I wanted to work on different
things in the engine and not focus all of my time on gui since i wanted to learn more
about actual game coding.

I also learned a lot about working on a code base that is really big. Since the codebase is
so huge everything you want to do or change may have consequences elsewhere in
someone else's code or maybe even in your own. I am now more careful when changing
stuff around and i always try to understand what the other people in my group has done
to not ruin their classes or function. Because of this i feel like i could work on almost any
part of the entire engine with little to no effort because i know the structure of the engine
really well.

Henning:

I did quite a bit of reading on both the Internet and the book for the course (game coding
complete), to try to sew together everything I’ve learned throughout the degree. I was
assigned to design a lot of the architecture behind the actor system, and really enjoy
working with architectural design even if I’m very inexperienced and new in the field.

Looking back at everything I’ve done I notice that some of the code is subpar, while
other pieces are fair to good, and the common denominator for all the good code is that it
is rewritten multiple times. I never looked back on how the core of the actorfactory is set
up after it was up and running (and to be fair, it is not an easy task to rewrite it at this
point), until a few weeks before the due date, at which point it would take too much time
to rewrite it. The same goes for the engine.cpp file. These are some of our weakest code
bits, and ironically the most important. So rewriting code is good. The collision system is
around it’s fourth iteration and is coming along nicely. The physics has undergone some
revision and is getting better. Through this project I have learned that when you traverse

169

unexplored areas, you will have to rewrite it at least once or twice, if not more (with very
few exceptions).

When we started making the game, I noticed how every small piece was fairly fast to
implement. The system was simple and adding new content was easy for multiple
reasons. The first reason is that there’s much less code and structure to organize when
implementing it, and the other reason is that I did it! It is often tempting to add content
because of how easy it is, even if it doesn’t really add that much to the engine (that we
ended up making, even if it is not really a true engine yet. not by a long shot). But
towards the end of the project I could probably solve one or two big parts per day
because of how complicated they were (and how tired I often was).

Jonas:

I was very interested in improving my OpenGL knowledge, so I looked at this project as
an opportunity to do so, as we wanted to have a lot of different tech in our engine. I
started off with looking at shaders, loading models and textures, various technologies
OpenGL could offer us and how to implement all of this into a neat and easy to use
package.

To save memory, I made a handler to check which assets where loaded and only load
new assets. This function returns a raw pointer so every object on screen that needs to be
drawn have a pointer to a shader, mesh and texture.

I always like to think about optimization, which is why I went this path. As all of the
textures, shaders and objects(mesh) are unique pointers, I could in theory check how
many pointers point to a certain object and delete any resources we currently don’t need.

This is something I planned to implement but the project never got to the scale where
this would be needed, so this is something I got on my “to do” list.

I didn’t really know a lot about shaders prior to this, other than the very basic shaders we
used in graphical programming course. So that is where I started, by implementing
lambertian shading, and from there it just escalated into all the shaders we currently use.

We have a specific shader for everything in our game so the shaders don’t do
unnecessary checks or look cluttered, this is something I researched and people
recommended having a lot of different shaders instead of having shaders doing things
you don’t really need.

So I went ahead and made a shader for every thinkable scenario we would encounter.
Our shaders range from basic with just a color, to just a texture, to multiple textures and
to textures where one is generated in code while the other is loaded from file.

170

When we started porting to Android I had to rewrite all of the shaders to support the
OpenGL ES3 format, which was very similar to what I’ve used as I went for the modern
approach.

My knowledge of models and drawing were also very limited to what we learned in
graphical programming so I went researched this a lot before starting to find an optimal
way. It turns out the method I used were the “hello world” of OpenGL and I realized
very late in the development cycle that I should have started using instancing at day one
as everything in our game are either cubes or quads. We’re currently using one draw call
per object, except for particles, which is very expensive. Using instancing would
probably improve our performance, even though our performance is fine as it is right
now (vsync stable 60 on phone, 500+ on windows).

After I discovered instancing, I started thinking about cool ways to implement this, so
the first thing I thought of was particle systems, so I made a simple weather system to
rain down blue boxes from the sky. This looked pretty cool so I increased the amount
and noticed I could go into the millions without any issues. I learned how to apply
textures to particles and that’s how our snow was born.

I started this project with some knowledge around SDL and it’s various libraries, as we
used SDL on previous game jams, so implementing those were a breeze. We had used
SDL_TTF before, but never with OpenGL, but this turned out to be easy with how my
texture class were built up.

Something I would have changed however is how we display the text. Right now, we
load the texture up to a shader and draw it onto a mesh, which means it will scale with
the mesh and look rather bad. I would like to redo this in the future by either adding the
font as a decal and apply it to an existing texture or look at distance field text to make the
scale better.

Theres still a few projects I would like to implement, like water with reflection and
ripples, multi textured particles for flame or spell effects, real time shadows using the
depth/stencil buffer.

One project I started with was a lighting system, where I planned to use framebuffer
objects to draw circular shapes onto and then multiply this with the existing world to
give it a really nice look where torches actually emitted light and everything else had a
dark ambient color to it.

I could also use this to apply textures to the world, like decals. Something I wanted to

171

implement was a blood splatter system where I would apply a texture, much like the
light, to the position something dies and stencil out the background to only draw blood
on the terrain.

This was sadly never completed because I had to prioritize other things.

Overall, I’ve learned a lot, but that’s as expected when we spend 8-12 hours a day for a
few months straight and I will definitely use what I’ve learned in future projects.

172

E. Bachelor Work Log

Bachelor Work Log:

13/01/2016 Wednesday

Undocumented work hours (03:15 - 05:30).

First day of discussing the bachelor project. We started off by writing down group rules
so we all agreed on everything before starting the development.

Discussed game design and ideas.

Workload:

Everyone: wrote in document.

(18:00 - 22:00).

Discussing tech.

ZeroMQ.

Discussing game design and ideas.

Workload:

Everyone: wrote in document.

28/01/2016 Thursday

Undocumented work hours (18:50 - 23:59).

Discussing and writing project plan.

Workload:

Everyone: wrote in document.

Spring meeting 19:00 05.02.2016

The meeting was postponed due to some miscommuncation about the meeting times.

The meetings are to start at 16:00 on fridays.

173

Jonas has double vote.

List:

Jonas

Henning

Christer

Eidså

Issues:

Pathfinding

Pathfinding AI

Level generation

Design (level generation)

Database implementation

Network

Console

Make

Data gathering

and how to use the data

UI

Document

Work:

Henning:

Christer: Make

Jonas: Pathfinding

Eidså:

Spring meeting 16:00 12.02.2016

174

1.

2.

3.

List:

Jonas(16:30)

Henning

Christer

Eidså

Discussing different methods of generating level:

Use perolin noise (1d). place platforms on top points. Multiple passes. generate
enemies on top points on next iteration etc.
Use perlin noise (2d/heightmap). use height thresholds to decide what is solid and
what is empty space/enemies/spikes etc.
Use ANN to generate tile for tile, starting from start tile. Generate enemies using
the same method after terrain is generated to make enemy placement feel better.
ANN trained users.

Meeting 13:30 16.02.2016

Meeting with Mariusz. Discussed level generation methods and database security.

Hash passwords but it’s impossible to prevent unauthorized access, can only reduce the
chances of it happening.

Experiment with Artificial Neural Network, Genetic Algorithm and Noise functions.
Find out what works the best for our case. Combine them all. Example: Noise for layout,
ANN for chunks and genetic for AI.

Sprint meeting 16:00 19.02.2016

List:

Jonas

Henning

Christer

Eidså

175

Discussing:

game mechanics -

level generation -

level mechanics -

spikes(moving up and down, moving between 2 tiles, stationary),
moving platform(any direction),
spring (increases jump height),
powerups (invincibility, double jump, jetpack, ranged weapon)
crouch
ledge grab
platforms that disappears

enemy design -

walking
flying
jumping/bouncing
stationary
ranged/melee
pathing enemies (moving along walls, roof, etc)

New weekly limit. Change from 40 down to 35.

Resources:

Cloudberry kingdom:
this game has the level generation we want ish.
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php
?page=1

http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php?page=1
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php?page=1

	Preface
	List of Figures
	List of Tables
	List of Listings
	Sammendrag
	Abstract
	Introduction
	Project Description
	Background
	Why we chose to do this

	Academic Background
	Audience
	Product Audience
	Document Structure
	Roles
	Development Framework
	Terminology
	Introduction references

	Requirements
	Technical Design
	Technology
	Program Flow
	Subsystems
	ActorFactory
	Actors
	ActorStates

	Animations
	Console
	Event
	Graphical User Interface
	Particles
	Physics
	Renderer
	Resource Management

	Technical Design References

	Development Process
	Development Tools
	Development Workflow
	Project Workflow
	Scrum

	Working Hours

	World Generation
	Approaches
	Deterministic Random Generation
	Line by line Approach, our selected approach
	Line by Line failed Implementation
	Successful implementation of Line by Line Approach
	Storing and Loading from the database using Line by Line Approach

	Noise Approach
	Implementing Noise Approach
	Learning With Noise
	Libnoise
	Obstacle Placement Using Noise

	Tile by tile Approach

	World Collision
	Marching Squares Algorithm
	The problem with tile collision

	Our choice
	World Generation References

	User feedback and testing
	User feedback
	Passive user feedback
	Active user feedback
	Our approach

	Testing
	Internal testing
	Public testing

	Deployment
	Installer
	Problems

	Deployment References

	Discussion
	Group Work and Workload
	Further Development
	Cooperative Play

	Conclusion
	Appendices
	A. Project Plan
	B. Prosjektavtale
	C. Toggl
	D. Medieval Brawl
	E. Bachelor Work Log

