Bachelor Project:

BNTNU

Platfor mer Generation Al

Authors: Christer Peltoperd Somby
Henning Einar Luick
Jonas Dalheim Reitan
Kristoffer Eidsa

Date: 18.05.2015
Supervisors: Mariusz Nowostawski
Simon McCallum

Table of Contents

L PrEfaCe . 5
2. LISt Of FIQUIES .. o e 5
B Listof Tables o 7
4 Listof LIStiNgSot e e 8
D SaMMENAIag . ..ot e 9
6. ADStract ... 10
7. INtrOdUCHION . .o 11
7.1 Project DesCription e 12
7.2Background 12
7.2.1Why wechosetodothis 12
7.3AcademicBackground 13
TAAUdIENCE ... 13
TS5 Product AUdIENCEot e 13
7.6 DocUMENt SITUCLUrEo 14
77 ROIES . 14
7.8 Development Framework 14
7.9Terminology ...t e 15
7.10 Introduction references 15
8. REQUITEMENES ... e e 15
O.Technical Design e 16
0.1Technologyot e 17
9.2Program FlOwW 18
0.3 SUDSYStEMS . ..o e e 18
0.3 1 ACtOrFactory . ..o e 18
0.3 L L ACIOIS .t 19
0.3 L1 ACIOrSAES . ..ot 22
032 ANIMELIONS .. oottt 23
0.3.3 C0NS0lE ... 25
0.8 4 EVENt .. 27
9.35CGraphical UserInterface 27
036 Particles 29
0.3 7 PNYSICS ot 31
0.3 8 RENdErer ... 32
9.39ResourceManagement e 33
9.4 Technical Design References 34
10. Development ProCesst 34
10.1 Development TOOISottt e e 35
10.2 Development Workflow 35

10.3Project Workflowo e 36

J10.3.0 SCIUM ottt e e e e e 36

10 4Working Hours . ..ot 36
11 World Generationuuii e e e 37
111 APProacheso 39
11.1.1 Deterministic Random Generationccovuivn... 39
11.1.2 Line by line Approach, our selected approach 41
11.1.2.1 Lineby Linefaled Implementation 42
11.1.2.2 Successful implementation of Lineby Line Approach 44
11.1.2.2.1 Storing and Loading from the database using Line by Line
ApPProach 46
11.1.3NOISBAPPrOaCh . ..ot e 48
11.1.3.1 Implementing Noise Approach 49
11.1.32LearningWIithNOISe ... 51
11.1.33Libnoiseo 52
11.1.3.4 Obstacle Placement UsingNoise 52
1114 TilebytileApproach 55
11.2World Collision ... 59
11.2.1 Marching Squares Algorithm 60
11.2.2 The problem withtilecollison 63
113 0Ur CNOICE ..ottt e e e 65
11.4 World Generation References, 65
12. User feedback andtestingc. i 66
121 Userfeedback 67
12.1.1 Passiveuser feedback i 67
12.1.2 Activeuserfeedback i 67
12.1.30urapproach 68
12, 2 TOSiNG oottt et 69
1220 0Interna testingot e 70
1222Publictestingt 71
13, DEPIOYMENt ..o e 71
13 L Ingtaler . 72
131 1Problems 72
13.2 Deployment References ... 72
T4, DISCUSSION ottt ettt e e e e e e e e e e 72
14.1 GroupWork andWorkload i 73
14.2 Further Developmentt 73
14.2.1 CooperativePlay i 74
15, CONCIUSION .ttt e e e e e 74
16. APPENAICES . ..ot e e 75
17. A Project Plan e 76
18.B. Progektavtale e 84
10. C.Toggl .o 87

20. D. Medieva Brawl 150

21. E. Bachelor Work Log

Preface

Thanks to Mariusz Nowostawski for being our supervisor, helping us with the bachel or
thesis whenever we needed it, and giving us directions so we were headed the right path.
Thanks to Simon J. R. McCallum for answering bachelor thesis related question that we
had. Thanks to Adne Midtlin for being available for business related questions. We
would also like to thank everyone that participated in the testing of our agorithm.

List of Figures

figure 9.1 program flow

figure 9.2 actor factory - Actor UML

figure 9.3 actors - sequence for actor updating without a custom category

figure 9.4 actors - possible for sequence for actors updating with a custom category
figure 9.5 actorstates - statemachine for actors

figure 9.6 actorstates - actorstate hierarchy

figure 9.7 animations - example of atile atlas

figure 9.8 resource management - asimpleillustration of our resource management
figure 9.9 resource management - a simplified version of what aimproved resources
handler could look like

figure 11.1 world generation - small platform

figure 11.2 world generation - without grid-locked movement

figure 11.3 deterministic level generation - level example

figure 11.4 deterministic level generation - more advanced level

figure 11.5 line by line approach - the red line shows the input

figure 11.6 line by line approach - the next output

figure 11.7 line by line approach - the Al generated two straight linesin arow
figure 11.8 successful implementation of line by line approach - illustration of
datastructure of leveldata

figure 11.9 successful implementation of line by line approach - figure illustrating table 2
figure 11.10 successful implementation of line by line approach - a chunk from
anywherein the level

figure 11.11 implementing noise approach - example of output from fractal noise
figure 11.12 implementing noise approach - example on how noise lines up with old
platformer levels

figure 11.13 implementing noise approach - image taking directly from the game Super
Mario Bros.

figure 11.14 libnoise - voronoi pattern

figure 11.15 obstacle placement using noise - spike filler algorithm

figure 11.16 tile by tile approach - outputs

figure 11.17 tile by tile approach - the Al will take in «1 tile, position: 2,5» as input.
figure 11.18 tile by tile approach - the Al gave «Right» as outpui.

figure 11.19 tile by tile approach - This time the output was «Up».

figure 11.20 tile by tile approach - Complete platform could look like this.

figure 11.21 marching squares algorithm - platform before and after applying algorithm
figure 11.22 marching squares algorithm - what the user sees

figure 11.23 marching squares algorithm - cases

figure 11.24 marching squares algorithm - comparison

figure 11.25 the problem with tile collision - two ground tiles from a separate game
together with the player on top for illustration purposes

figure 11.26 the problem with tile collision - the block is being pushed up to the left, and

left on the right

figure 11.27 the problem with tile collision - clipped edges of a square body makes
movement better

figure 12.1 internal testing - flat level

figure 12.2 internal testing - level with variation

List of Tables

table 1 technology
table 2 successful implementation of line by line approach - table 2
table 3 storing and loading from the database using line by line approach

List of Listings

listing 9.1 actors - XMLelement example

listing 9.2 actors - a graphicscomponent example

listing 9.3 actors - aexample XML-file for actor

listing 9.4 actors - registering a new component

listing 9.5 actors - registering a new component category for the physicscomponent
listing 9.6 actors - overridden update function still calls parent

listing 9.7 animations - variables

listing 9.8 aniamtions - animation class

listing 9.9 console - function pointer storage

listing 9.10 console - insertion function to map

listing 9.11 console - search and call function

listing 9.12 event - example sending message

listing 9.13 event - example receive message

listing 9.14 graphical user interface - XML-file example

listing 9.15 particles - updating all positions to the graphics processing unit

listing 9.16 particles - instancing vertex shader with textures

listing 9.17 particles - instancing fragment shader with colors

listing 11.1 line by line failed implementation - implementation of line by line approach
listing 11.2 storing and loading from the database using line by line approach - loading
datafrom the SQL database

listing 11.3 storing and loading from the database using line by line approach - leveldata
Is randomized

listing 11.4 implementing noise approach - the various inputs to perlin noise

listing 11.5 implementing noise approach - basic level layout

listing 11.6 obstacle placement using noise - spike filler algorithm

listing 11.7 tile by tile approach - implementation of tile by tile approach

listing 11.8 marching squares algorithm - adding a new solid tile to the vector for the
algorithm

listing 11.9 marching squares algorithm - example from marching squares algorithm

10

Sammendrag

Sammendrag av Bachelor oppgaven

Tittel
Dato

Deltakere

Veileder

Oppdragsgive
r

Kontaktperso
n

Negkkelord
Antall sider
Antall vedlegg

Tilgjengelighe
t

Sammendrag

Platformer Generation Al
18.05.2016

Christer P. Somby
Henning E. Luick
Kristoffer Eidsa

Jonas D. Reitan

Mariusz Nowostawski

Kremen

Jonas Dalheim Reitan Jonasdr@hotmail.com +4791871237

Thesis, Al, Game Engine, Programming, C++, Level Generation

?

Apen

Kremengine er en spillmotor skrevet fragrunnen av i C++14 . Den
stetter bade 3D og 2D. Vi laget var egen motor slik at vi kunne ha
maksimal kontroll over niva genererings algoritmen og redusere tiden
det tar Ateste ting siden vi visste hvordan alt fungerte. Det er mange
forskjellige mater &takle oppgaven vi satt for oss selv. Vi
eksperimenterte med mange forskjellige algoritmer for aleae
datamaskinen hvordan a generere gode nivaer konsekvent.

Det vi endte opp med er en niva generator som bruker linje for linje
framgangsmaten for bakken spilleren skal ga paog stay
fremgangsmaten for taket i verdenen vares.

Abstract

Abstract for Bachelor Project

11

Title
Date

Participants

Super visor
Employer

Contact
Per son

Keywords
Pages
Attachments
Availability
Abstract

Platformer Generation Al
18.05.2016

Christer P. Somby
Henning E. Luick
Kristoffer Eidsa

Jonas D. Reitan

Mariusz Nowostawski
Kremen

Jonas Dalheim Reitan Jonasdr@hotmail.com +4791871237

Thesis, Al, Game Engine, Programming, C++, Level Generation

?

Open

Kremengine is agame engine written from scratch in C++14. It
supports both 3D and 2D. We made our own engine so we could have
maximum control of the level generation algorithm and reduce time it
take to test things as we knew how everything worked. Thereisalot
of different ways to approach the task we set for ourselves. We
experimented with alot of different algorithms to learn the computer
how to generate good levels consistently.

What we ended up with isalevel generator that usesthe line by line
approach for ground for the player to walk on and the noise approach
for the ceiling of our world.

12

| ntroduction

Project Description

The project we are doing is very interesting and can be complex, what we really wanted
to work with was something that learns, that is why we are making alevel generator that
can learn how to make better levels. The level generator uses user feedback to get a
general sense of how the level was, if it was bad, it will down prioritize the patterns that
do not work together, likewise, if it was good, if will prioritize the patterns that work
together. The reason we chose to do user feedback rather than doing self learning by
observing the players behavior as a primary way of getting data, is because user
interaction can be both very enjoyable coupled with the brainpower and independence of
humans. Seeing something evolve through the playing of many people is something that
is fascinating to observe and can also be a powerful tool for level making in games. Just
being able to see what the best level isfor players of all agesand all difficulties that can
be directly used or be the influencer of great level making.

Background

The bachelor group consists of four game programming students who intend to start a
game development company after finishing our degree. Because of that we wanted to
built a flexible and expandable game engine during last semester in the game
programming course, with the intent of writing our bachelor assignment in it. During this
semester we focused everything on the game engine, so we did not give the bachel or
much thought.

We had afew meetings during the second week of January where we discussed what we
wanted to do, and we seemed to be most interested in working with Al or virtual redlity.
None of us owned the proper hardware to work efficiently with virtual reality so we
quickly settled for some research and pioneering in the field of Al. We ended up settling
for some form of level generation Al. After discussing this with Associate Professor
Simon J. R. McCallum and Associate Professor Mariusz Nowostawski, we decided on
creating an Al which would eventually generate generally good levels. The Al would
achieve this by sending what it considered good levels to voluntary participants, who in
turn would give feedback back to the server and the Al would learn from that.

All four of us have different areas of interest and experience within game devel opment,
and the project isfairly large, so we found thisto be the perfect fit for us.

Why we chose to do this

Many big companies pay video game testerg[1] to test their game and level design,
because there is no precise definition of good level design. The quality of alevel or a
game s subjective, but that do not mean that there is not a generally good way of

https://dev.imt.hig.no/confluence/display/KREM/Introduction+references#Introductionreferences-1

building them. The tool we are writing hopes to discover the generally good way to build
ageneric platform level.

There are many examples of smart level generation, but most of these are using a self
written algorithm with no external learning. Our tool will generate better levels as more
people use it and give feedback, and will hopefully eventually be able to generate close
to perfect generic platform levels.

We were allowed to be four on this project because of its scope and complexity, in
addition to the fact that it isafairly unexplored subject. We are planning to start a game
development company after we are are finished with the degree, which is an additional
reason for developing thistool, asit could be used by us among others in the future to
speed up the development process of platform games.

Academic Background

The entire team is studying game programming at NTNU Gjevik. We have all made
severa prototype games as well as a game engine during our study. All members are
proficient with c++. Most members also have some experience with other languages. We
have made games for both Windows and Android. We are all Windows users, so
multiplatform support is very limited.

Audience

Demo Audience

The demo will be used to demonstrate what we have done for NTNU in Gjevik. It will
showcase the strengths and weaknesses of the generation algorithm, and demonstrate
how it can be used in areal business setting. Gjavik University College can useit as
advertisement to show off what their students are capable of after a completed bachelor
degree. For usit will be a project we can add to our portfolio when searching for ajob.

Thesis Audience

Thethesisis created for NTNU in Gjevik for research and teaching. It will also be used
by scholars who wish to delve deeper into the generation than we have. We will explain
most of the termsin great detail, so the thesis will be understood by most people who
have no prior experience in the field of artificial intelligence or world generation. See
section Development Tools for full overview of the tools used in this project.

Product Audience

The product is aimed towards game creators and academics. For game programmers it

13

could be agood tool for them to use to find out how their levels evolve or use it to make
their own generation by using out input. For academics, it can be interesting to see our
findings and possibly learn from it and maybe even extend it.

Document Structure
Summary of the chapters in the document:

1. Introduction: Introduction to the document, background of the project, the projects
framework, terminology and the audiences for the product.

2. Requirements: Describes the requirements we set for the program.

3. Technical Design: Describes the technology, system architecture, program flow
and subsystems.

4. Development Process: Describes how we worked, what tools we used and our
work hours.

5. World Generation: Describes the different approaches that were attempted, how
world collision is handled and what our final choice of algorithm was.

6. User feedback and testing: Describes our methods of aquiring user feedback and
the testing process.

7. Deployment: Describes how the installer was built.

Discussion: Describes our work and possibilities of further devel opment.

9. Conclusion: Contains a summary of what was done.

©

Roles

We have no team leader for the project. The reason for that is so we could see how well
we work together as ateam and how fast we are at arriving at a decision. Christer P.
Somby did alot of odds and ends, working on some level generation, console, installer
and database. Henning E. Luick did alot of stuff to sort out issuesin the engine,
networking and level generation. Henning's level generation idea was the one that was
chosen. Jonas D. Reitan did pathfinding, level generation using noise, engine fixes and
graphics. Kristoffer Eidsa mostly worked on database integration and user feedback, but
he also worked on GUI, engine and level generation. Our supervisor is Mariusz
Nowostawski, he helped us with ideas on level generation and all the questions we
needed answering on the problems we encountered during the project.

Development Framework

Creating atool for level generation can be something exciting to work on that requires
you to change the projects direction in order to better accomplish the goal by using other
types of algorithms. The goal of the project is very ambitious considering the amount of
time needed to research different methods and try them. So we neede a framework that

14

can help us keep track and steer us towards the end goal. That is why we chose to use
Scrum as our framework. [2]

The scrum sprints are set to last one week each, with weekly spring meetings to review
and refill the sprint backlog. The meetings are held every friday at 16:00. Daily scrums
are also held to keep people updated on the progress of the project. The sprint leader was
usually Henning E. Luick, hetook theinitiative to keep us on track when we held the
meetings.

A gantt chart was set up so we could keep track of when we should be at a certain point.
Itisfound in Appendix A. There are 4 milestones that to be completed. The earliest
prototype was set there so we had something we could show and see if it truly was
progressing. The later milestones were for collecting data to see the progress of the
algorithm and see whether or not we needed to modify something to progress towards
the goal.

Terminology

® |DE - Integrated Development Environment (ex. Visual Studio)

® SDL - Simple DirectMedia Layer. Used to handle low level events from the
operating system.

® 2D - Two-Dimensional.

® 3D - Three-Dimensional.

® XML - Extensible Markup Language.

® CPU - Central Processing Unit. Processes computer instructions.

® GPU - Graphics Processing Unit. Processes graphics to be displayed on adisplay.

® OpenGL - Open Graphics Library. Used to send data to the GPU.

® GUI - Graphical User Interface.

® Al - Artificial Intelligence. Create intelligent software like learning or pathfinding.

® ANN - Artificial Neural Network. Uses neural networks to learn machines.

®* MDP - Markov Decision Processes. Mathematical framework for modeling
decision making.

I ntroduction references

[1] Wikipedia. (2016). Game testing. [onling] Available at: https://en.wikipedia.org/w/in
dex.php?title=Game_testing& oldid=714107300#cite _ref-Bethke52 8-0 [Accessed 18
May 2016].

[2] Wikipedia.org (no date). Scrum (software development). [online] Available at: https:/
/en.wikipedia.org/wiki/Scrum_(software_development) [Accessed 18 may 2016].

15

https://dev.imt.hig.no/confluence/display/KREM/Introduction+references#Introductionreferences-2
https://dev.imt.hig.no/confluence/display/KREM/A.+Project+Plan#A.ProjectPlan-A
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=714107300#cite_ref-Bethke52_8-0
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=714107300#cite_ref-Bethke52_8-0
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)

16

Requirements

There are some requirements that we have of our code base and program. For the code
base the code should be well written, easily maintainable and expandable and well
commented. For the level generation we require it to be fast, it can not have it be slow. If
it isslow, people will get impatient in between levels, therefore it has to have a clearly
defined maximum time it can use to generate alevel. For the database, we want it to

have expandable space aswell as being reliable. The program should also not crash and
be reliable to use.

Technical Design

Technology

The entire system iswritten in C++, using the C++14 standard. All coding isdonein
Visual studio 2015. We freely use all features and shortcuts offered by Visual Studio
2015 as we want to familiarize us with this IDE. If the C++ standard library supports a
required feature, this should be used rather than any third party library.

The program uses SDL 2.04 to create the programs window and manage input.
SDL_Mixer is used for the audiosystem. OpenGL is a cross-language, cross-platform
application programming interface for rendering 2D and 3D vector graphics. The
OpenGL version we are using is version 4.5, but support for earlier versions are also
there. The system uses XML -files(Extensible Markup Language) for loading actors. We
use TinyXML-2 for parsing of XML-files. Notepad and Notepad++ is used to manually
modify XML-files. Box2D isthe physics system used. Other libraries used are described

in the sections about the systems using them.

Table 1:

Library
SDL2
SDL_Mixer
SDL_Font

std_image

OpenGL

glu

glew

glm

Box2D
libnoise
Raknet
mysglcppconn
tinyxml2

lua

17

Short Description

Window and input management
Audio

Handles text rendering

Image loading library supporting png, jpeg
and gif

Graphics renderer

OpenGL utility Library

OpenGL Extension Wranger Library
OpenGL Math. Math library

Physics system

Noise generation library

Networking

MY SQL database driver library
XML parser

Scripting language

Program Flow

The program starts by initalizing all core components which require initialization.
Renderer, external data handlers and subcomponents like the particle system and the
database are initialized here.

After general initialization , the application will run through aloop held by the run()
function inside the Engine class. The loop checks for the current application State and
inititializes said game state. Initialization of application states are mostly just changing
the Graphical User Interface. Once the initialization is done, the run() functions calls on
a separate loop which is responsible for updating the current state.

The most important application state to update is the running state. This state iswhere al
the game logic and gameplay happens. The other states are mostly traversing menus.

. GameLogic - EventHandler - GUIFactory - PhysicsHandler . ActorFactory

update)

SN .

update()

[
>

update()

updateall)
]

-

figure 9.1: flow of logic layer

Subsystems

This section describes the game engine’ s systems. To see the actual APl documentation
for each system with al the methods and data, refer to the doxygen documentation.

Actor Factory

Engine has one ActorFactory. The ActorFactory is responsible for creating and deleting
al drawn objects other than GUI and particles on the screen. We will call these objects
entities or game objects. These entities are defined by the Actor class. Actors use the

entity-component-system where each component is an instance of the ActorComponent
class. Components are identified by its name and can easily be accessed by the actor or

18

19

sibling components. In addition to creating actors, the ActorFactory is aso responsible
for creating components for each actor. Thisis done by using component factories, and
is covered under actors.

ActorFactory

C

Actor

ActorlD

+id :integer
+name : string

-id : ActoriD
-actorComponentMap : map<string, ActorComponent*= ActorComponent
-actorStates : map=int, |ActorState*=

-id]v'_rmg

+update() : void o -acwicomponentMap : map=string, ActorComponent*>
+addComponent(component * ActorComponent*, componantiD - string) * vaid -ac es - mapsint, lActorState™>
+getComponenticomponentlD : string) : ActorComponent*
+onDeath() ; void +update() : void
+onHit(} : void +onDeath() : void
+onSpawn() : void +onSpawn() : void

IActor State

Figure 9.2: ActorUML
Actors

All actorsin our program are loaded from XML-files, but it is possible to create actors
purely from c++ code if the need rises. Y ou may want to code an actor in c++ if it needs
aspecial relationship to a class outside of Kremengine. The reason for using XML files
is that you do not need to recompile the source code for each change, and it also makes it
easier to make small changes to actors clutters the code less.

All components used by the actor and details regarding the components are specified in
the XML-file when loading from file. Every piece of datais stored inside
XML-elements. Thisis used to make it as easy as possible to extend, with no regards to
efficiency. XML-elements are represented by

Listing 9.1: XML-Element example

<El enent Nane> el enent Val ue </ El enent Nane>

Components are generally XML-elements with XML-elementsinside.

20

Listing 9.2: A GraphicsComponent example

<G aphi csConponent >
<si zeX>1. 0</si zeX>
<si zeY>1. 0</si zeY>
<si zeZ>0. 001</ si zeZ>
<xFr anes>4</ xFr anes>
<yFranes>2</ yFranes>
<ani mat ed>t r ue</ ani mat ed>
<nmeshVerti cesPat h>r es/ nodel s/ cube. obj </ meshVerti cesPat h>
<t ext ur ePat h>r es/ t ext ures/ char act er s/ j akkhei nmf wal ki ng. png</t ext ur ePat h>
<shader >r es/ shader s/ basi cAni mat i onShader </ shader >
</ Graphi csConponent >

We have no contingency for faultsin the XML-syntax or element contents. The one
creating the XML file is responsible for making sure that the syntax and content is
correct. Faults in syntax or content may lead to a crash in the application, depending on
the severity of the error. All components have default values where it makes sense. An
empty physicsComponent will give you a1 by 1 square box, where all sensors are
disabled and there is no rotation, which is what we consider default. However, an empty
AudioComponent will not set any default sounds, making the component essentially
useless on its own. An exception to thisruleisif you have set a category on the
component, which is covered below.

Listing 9.3: Example XML -file of an actor

<Act or >
<Type>Movi ngObj ect </ Type>
<Act or Name>Ti nedBl ock</ Act or Nane>
<Net wor kLevel >1</ Net wor kLevel >
<Conmponent s>
<G aphi csConponent >
<si zeX>1</si zeX>
<si zeY>1</si zeY>
<si zezZ>1</ si zeZ>
<ani mat ed>t r ue</ ani nat ed>
<nmeshVerti cesPat h>r es/ nodel s/ cube. obj </ meshVerti cesPat h>
<t ext ur ePat h>res/ t ext ures/ti medBl ock. png</t ext ur ePat h>
<shader >r es/ shader s/ basi cAni mat i onShader </ shader >
</ Gr aphi csConponent >
<Physi csConponent >
<cat egor y>Ti nedBl ock</ cat egor y>
<col | i si onCat egor y>Chj ect </ col | i si onCat egory>
<shape>box</ shape>
<bodyType>1</ bodyType>
<density>1</density>
<x| nPi xel s>1</ x| nPi xel s>
<yl nPi xel s>1</yl nPi xel s>
<restitution>0</restitution> <!--bouncyness-->
<friction>0.0</friction>
<gravity>0</gravity>
<fi xedRot ati on>t rue</fi xedRot ati on>
</ Physi csConponent >
</ Conponent s>
</ Act or >

As mentioned earlier, ActorFactory is also responsible Components through component
factories. Component factories have to be registered for the ActorFactory to know what
kind of componentsit is allowed to create. Kremengine registeres all the default
components (e.g. graphics, physics and audio) of any game, but custom components can
easily be registered should the need arise.

listing 9.4: registering a new component

Conponent Fact or yCr eat or | npl enent at i on<Fl ashOnHi t Conponent >
fl ashOnHi t Fact ory(" Fl ashOnHi t Conponent "
engi ne. get Act or Fact ory() - >get Conponent Fact oryFactory());

In addition to creating custom components, one can aso create custom categories on any
component. Creating and setting custom categories gives you the option to override key
functions of this component. Thisis very useful for game logic or ssmple Al. Custom
categories have to be registered after the Component is registered.

21

listing 9.5: registering a new component category for the physics component

Conponent Cr eat or | npl enent at i on<Physi csTi nedBl ock>

physi csConponent 5(" Ti nedBl ock",

engi ne. get Act or Fact ory() - >get Conponent Fact or yFact ory() - >get Fact or y(" Physi
csConponent ")) ;

A component with a custom category can still call on all meaningful methods of the
parent.

listing 9.6: overridden update function still calls parent

voi d Physi csMovi ngPl at f orm : updat e(fl oat del taTi me) override
{

Physi csConponent : : update(deltaTine); //Here the parent function is being
called froma child

/1 below here is code that is specific for the MyvingPl atform actor
float pos = std::cos(this->position += (this->speed * deltaTine));
if (this->position >= glm:two_pi<float>())

{
this->position -= glm:two_pi<float>();
}
body- >Set Li near Vel ocity({ this->direction.x * pos, this->direction.y *
pos });
}

KremEngine: ActorFactory Actor JActorComponent

updateallfloat dt)

X

update(flcat dt)

» update|float dt)

B

figure 9.3: sequence for actor updating without a custom category

KremEngine: ‘ActarFactory Actar ‘CategoryActorComponent | | -ActorComponent

updatedlificat ¢t} |
v update(float dt)]
—F update(float dt) N

| parent:update(float dt)
'

figure 9.4: possible sequence for actor updating with a custom category
Actor States

ActorStates are states for actors to be in. Every actor hasto be in exactly one state at any
given time. The states are in afinite state machine.

22

23

figure 9.5: Sate machine for actors. Figure created using [4]

The states are designed to handle details surrounding an actor and its movements. An
dropping actor may move slower horizontally than awalking one for instance. The state
of the actor depends mostly on the velocity. The exception to thisisif the actor is dead.
An actor isin the dead state when his health drops to zero or is set to be dead manually.
The primary responsibility of these states is to make sure that the correct animation is
being played for the actor. More features are in place, but are not currently in use.

<<Interface>>
lActorState

+update() - int
+anter() void
+eave() - void

=

ASWalking ASDefault ASldle

#parentActor : Actor
R #physicsComponent <
#animationComponent

figure 9.6: Actor state hierarchy

The state machine and method can be expanded upon. One might want a concurrent state
machine in amore complex game. A concurrent state machine handles multiple
concurrent states. An example where this would be useful could be where the character
hasto act differently depending on e.g weather or equipment, which can not be handled
in aglobal actor state. Game programming patterns[3] was very helpful in learning more
about state machines.

Animations

Animations are something we use to change the representation of an object, either at a
per frame basis or per action. We use this to give the game more life by having actors
look like they are walking by animating their feet or by giving feedback to the user that a
button has been pressed.

We use per frame on objects that we want to look like humans performing an action, like

https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-4
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-3

walking, and we use per action on objects that only change when a certain action occurs,
for example amouse click on a button.

The way this system works is by telling the graphical processing unit what part of the
texture to sample from when drawing the actorsto the screen. We can tell it to sample
from texture coordinate 0,0, which will choose the texture in position 0,0 in the tile atlas
(seefigure 9.7) which would draw a black sgquare.

W

figure 9.7: example of an tile atlas.

Instead of drawing colored boxes we used it to draw characters walking by simply
looping through for example [0,0] up to [4,0], which would give us 0 in the y-axisand O
to 4 in the x-axis. Thiswill create the illusion of human like actions of the character in
the game even if heisjust dliding across the floor logic-wise.

The following code block is the shader code we used to tell the graphical processing unit
what to sample from the texture.

Listing 9.7: Variables

int colums = int(size.Xx);

float x = spriteNo % col ums;

float y = spriteNo / col ums;

vec4 texel = texture2D(textureO, (vec2(x, y) + vec2(l.f, 1.f) *
texCoord) / size);

It is mathematically figuring out what coordinate the "spriteNo" corresponds to and
draws that texture onto the position of the actor on screen. All texturesin arein
coordinates from [0,0] to [1,1] so we need to divide the texture coordinate by the amount
of picturesin thetile atlas on the horizontal and vertical plane, this means that the boxes
on figure 9.7 would be divided up to 1/5, or 0.2 per texture. Given the spriteNo 7, we
would get [2,1], which would give us the texture coordinate corresponding to the yellow
box with a star inside because it is counting from 1 instead of O.

Everything in the game that need a per frame animation uses the animation class. This
classisresponsible for telling the animation system what frame to start on, how many
frames to animate and how fast to animate them. It consists of a very simple update and
getFrame function.

24

Listing 9.8: animation class

voi d Animation::update(float deltaTinme)

{

this->current Frame += this->ani nati onSpeed * del taTi ne;

}

int Animation::getFrane()

{
return this->firstFrane + (static_cast<int>(this->currentFrane) %
t hi s- >anmount O Fr anes) ;

}

The update function is responsible for updating the animation per frame by the amount
we want, so we can tell it to loop through its entire animation in how many frames we
want. For example loop through all of its 5 frames every second. We use getFrame() to
figure out what frame we want to display at the current frame the game is currently
rendering, which is sent to the animation subsystem. This function takes the offset frame
into the tile atlas, named firstFrame in code, and adds the frame it is currently trying to
display. An example of this could be atile atlas with 30 frames and we only want to
display the last 10, so we set the firstFrame to be 20 and give it 10 frames to loop
through.

Console

Writing the console was a venture into finding away to make a console dynamic, having
only one call for the program to handle. It did not end up being fully implemented, but
the planned implementation was al so more time consuming compared to doing it the
easy way. Which would be to add a parser that just checks the command sent into a
function full of if statements that can call any function that you wanted to add.

The storing of the functions is placed into a class that has the appropriate functions for
inserting and searching and calling. It stores any type of class function pointer, and those
class functions have to belong to the same class. So a class to store the functions was
needed. That class stores a copy of the Engine object, from which it can access most
systems within the program. This class object is stored together with the class function
pointer storage object.

Listing 9.9: Function pointer storage

t ypedef voi d(SoneC ass: : *funcPtr) (void);
std::map<std::string, std::pair<funcPtr, std::type_index>> pairFuncs;

Inlisting 9.9 we see atype definition for a class function pointer which is call funcPtr

26

that takes void as an argument. This means that when we store the function pointer, the
arguments that the function hasis not passed along to the storage of the funcPtr variable.
This means that we have to store away the type of function. That is where the pair in the
map comes in. It stores the function pointer together with the type of the function.

Listing 9.10: Insertion function to map

t enpl at e<t ypenane func>
void insert(std::string mappi ngNane, func f1)
{

//1find the type of the function pointer

auto typeT = std::type_index(typeid(fl));

[l pair the function pointer with the type

pai r Funcs. i nsert (std:: make_pai r (mappi ngNane,
std::nake_pair(reinterpret_cast<funcPtr>f1, typeT)));
}

Thistemplated function in listing 9.10 is for inserting the class function pointersinto the
map that stores the class function pointer and the type of the class function pointer. The
typeT variable isto temporarily store and find the type of the function, it stores the
arguments of the function. The function then inserts the name of the function and pairsit
with the class function pointer after casting it to afunction that takes no arguments and
pairsit with the type of class function pointer.

Listing 9.11: Search and call function

t enpl at e<t ypenane Type, typenane R typenane... Args>
voi d searchAndCal | (std::string mappedNane, R object, Args&& .. args)
{
auto maplter = pairFuncs. find(nmappedNane);
aut o mappedPair = maplter->second;
/] Cast the general functionpointer(void) to the type it really is
aut o typeCastedFunc = reinterpret_cast<Type(SonmeC ass::*) (Args
...)>(nmappedPair.first);
assert (mappedPai r. second == std::type_i ndex(typei d(TypeCastedFunc)));
(obj ect - >*TypeCast edFunc) (std: : f orwar d<Args>(args)...);

The searchAndCall function in listing 9.11 takes in the return type of the class function
pointer, the object that you want to call the function from and the name of the function
together with any arguments that it had originally, like you would send variables into any
other function. The functions that are used by a console usually do not return anything,
therefore the return type is usually void, but it was written like that because it can be
used for various other systems that use function pointers. The first thing the function

27

does isto find the function within the map, then it finds the pair that is stored within the
map that contains the class function pointer and the type of the function and stores it into
the mappedPair variable. It then casts the class function pointer back to the correct type.
If thetypeisvoid, the "Args" are 4 and 6, which are both ints the typeCastedFunc would
end up being "void SomeClass::* (int, int)". It the figures out if the typeCastedFunc is the
same type as the original type of the class function pointer. Then it calls the type casted
function using the class object that was passed in together with the function call.

Event

Engine has one EventHandler. The event handler is responsible for taking in any input
that is given to the program, like keyboard or mouse. SDL 2 is used for taking care of the
events. The events that happen, like akey on the keyboard is pressed, the mouseis
moved or one of the mouse buttons are clicked, are packed into the message system that
isused. As soon as the keys are pressed the events are triggered by sending out the
message to the components that are listening to it.

Listing 9.12: Example sending message

t hi s- >post Message(Message(this, "keyDown"
static_cast<int>(SDLEvent. key. keysym sym));

By invoking the postM essage function you pass the object (this), the type of event
("keydown") and the key that was pressed (SDL Event.key.keysym.sym). The object is
the EventHandler. It all gets packaged into a message and sent.

Listing 9.13: Example receive message

voi d recei veMessage(const Message & nmessage) override

{
i f (message. get Sender Type() == typei d(Event Handl er))

{

if (static_cast<const char*>(nessage.getVariable(0)) == "keyDown")

{

i nt nunber = nessage. getVariable(1);

The receiveM essage is where one receives the message and executes what the message
wants you to do. Thefirst thing that is done is to check where the message came from,
onceit findsthat it is from the EventHandler, it the checks what type of event it is, the it
extracts the information from the package and executes the actions it is told to do.

Graphical User Interface

Like with the actors, the graphical user interface in our engineis also loaded from
XML-filesand it can aso be written by C++ code for special occasions. The
XML-system is the same as explained earlier in the actors segment, just with different
names and categories. The graphical user interface is divided into states and each states

has different elements that needs to be displayed. An example of a state might be amain
menu, this main menu can then have elements like; four buttons, one slider and a panel.
The XML-filesfor the graphical user interface is per state rather than per element

Hereis an example of how the xml-file for running state of our program looks like:

Listing 9.14: XML -file example

<Cui El enent s>
<Button>
<nane>new evel </ nane>
res/fonts/gui.ttf</fontPath>
<posi tionX>-0.9</positionX>
<positionY>-0.9</positionY>
<wi dt hl nPi xel s>0. 1</ wi dt hl nPi xel s>
<hei ght | nPi xel s>0. 1</ hei ght | nPi xel s>
<neshVerti cesPat h>r es/ nodel s/ quad. obj </ meshVerti cesPat h>
<shader Pat h>r es/ shader s/ basi cAni mat i onShader </ shader Pat h>
<t ext ur ePat h>res/ gui / t ext ures/ butt onAt| as. png</t ext ur ePat h>
<textureAt| asSi ze>2</textureAt| asSi ze>
<vi si bl e>true</vi si bl e>
</ But t on>
<Cont ai ner >
<nane>act i onBar </ nane>
<posi ti onX>0</ posi ti onX>
<positionY>-0.9</positionY>
<vi si bl e>t rue</vi si bl e>
<meshVerti cesPat h>r es/ nodel s/ quad. obj </ meshVerti cesPat h>
<shader Pat h>r es/ shader s/ basi cShader </ shader Pat h>
<shader Pat hBoxes>r es/ shader s/ basi cAni nat i onShader </ shader Pat hBoxes>
<t ext ur ePat h>res/ gui / t ext ures/ acti onbar. png</t ext ur ePat h>
<t ext ur ePat hBoxes>r es/ gui / t ext ur es/ i nvent or yBox. png</t ext ur ePat hBoxes>
<textureAtl asSi zexX>1</textureAtl asSi zex>
<textureAtl asSi zeY>3</textureAtl asSi zeY>
<nunber Of BoxesX>4</ nunber O BoxesX>
<nunber O BoxesY>1</ nunber O BoxesY>
<di st anceBet weenBoxes>0</ di st anceBet weenBoxes>
<wi dt hl nPi xel sBoxes>0. 1</ w dt hl nPi xel sBoxes>
<hei ght | nPi xel sBoxes>0. 1</ hei ght | nPi xel sBoxes>
<bor der Top>0</ bor der Top>
<bor der Bot t on®0</ bor der Bot t on>
<bor der Lef t >0</ bor der Lef t >
<bor der Ri ght >0</ bor der Ri ght >
<novabl el t ens>f al se</ novabl el t ens>
<destroyabl e>f al se</ destroyabl e>
<activat abl e>f al se</ acti vat abl e>
<presetltens>
<t ext ur ePat h>r es/ gui / t ext ur es/ act i onbar Copy. png</ t ext ur ePat h>
<t ext ur ePat h>res/ gui / t ext ures/ acti onbar Col or Pi cker. png</t ext ur ePat h>
<t ext ur ePat h>res/ gui /t ext ures/ acti onbar Er ase. png</ t ext ur ePat h>
<t ext ur ePat h>res/ gui / t ext ures/ acti onbar Resi ze. png</t ext ur ePat h>
</ presetltens>
</ Cont ai ner >
</ Gui El ement s>

More elements could be added to this state by just adding a new <button> or another

28

29

element tag below the first one.

The graphical user interface uses an class named GuiFactory. When the program starts
all the XML-Files needed are loaded into memory when its state isran. If the state is left
all the objects get deleted but the XML-fileis still in memory so it can easily be accessed
If the state needs to be loaded again. The factory creates and handles all the states of the
graphical user interface by knowing what state the gameisin. The XML-files hasto be
named after its corresponding game state for it to be loaded whit the correct state. After
reading the XML -file for the state its going to load the factory starts creating elements
that belongs to the state. An element can be anything that the graphical user interface
needs to take care of or draw on the screen.

List of elements currently in our engine:

® Bar - Can be used for health/mana bars, loading bars or other bar looking
elements.

Button - Simply a button that is clickable

Check box - A box that can be either true or false when you click it.

Drop down menu - A list of different options that can be chosen.

Container - This can be used for alot, inventory system, level selection, character
selection, etc.

Panel - Thisisjust asimple texture displayed, mostly used for backgrounds.

¢ Slider - Used to for example control the volume of the audio.

® Textbox - text input.

Interacting

when interacting with the graphical user interface you expect stuff to happen. Buttons
should be clickable and sliders should be movable, and they should also do stuff based
on their current state. To accomplish this the graphical user interface needs to have
listeners. Currently you need to manually add alistener in the factory to the specific
element you want to listen too. Y ou do this by subscribing to an element using its
element name. When that specific isinteracted with it will send a message to the factory
with its new state and then you can run whatever code or function you want from there to
make the interaction do something.

Animations

The graphical user interface does not have its own animation component and does not
really use real animations but rather it changes its texture when the state of the element
changes. For example the button has three different states, clicked, mouse over and not
clicked. Each state uses its own kind of texture to look like it has been pressed or
moused over. There is support for having the button use animations, for example having
the button shine every few second but thisis not in use currently.

Particles

Using particles in games makes the game more alive and satisfying to play. We want to
give the player the best experience possible so we added a basic particle system to the
engine.

This system is used for:

® Weather

Explosion

Debris

Fountains

Protjectile trail

Visual feedback to the user

We added a couple of different weather particle systems so we could easily choose
between having snow, rain or objects like leaves fall down from the sky. This helps the
user to be more immersed in the game and adds to the realism. For explosions we made
objects that collided shoot out smaller fragments of itself so it looks like it exploded on
impact, thisis similar to debris, which would knock of tiny bits of rocks when arock
collided with objects. Fountains were mostly used for experimenting to see how gravity
affected particles and giving us avisual cue so we can check if everything isworking as
expected. Projectile trail was used to give the player some hints of how the projectiles
flew through the air and lastly we used it to give users some feedback so if they pick up
an object for example, it would shoot out afew particles to confirm that you actually
picked up the item and not just made it disappear.

This system is efficient because we can tell the graphics processing unit to draw all the
particles in asingle pass thereby giving us the flexibility to have millions of particles on
screen without slowing the game down in terms of frames per second. Our graphics
library, OpenGL, callsthisfor instancing [1]. Instancing works by giving the graphics
processing unit an array of positions and a single mesh to fill all the positions instead of
uploading the same mesh with a single position every draw call. This safesalot of time
since the central processing unit is slow compared to the graphics processing unit, so
both can run at maximum speed instead of having to wait for data to be transferred
between the units.

Listing 9.15: Uploading all positionsto the graphics processing unit

gl Enabl eVertexAttri bArray(1);

gl Bi ndBuf f er (GL_ARRAY_BUFFER,

t hi s->vertexArrayBuffer[this->POSITI ON_VB]);

gl Buf f er Dat a(GL._ARRAY_BUFFER, si zeof (gl m:vec3) * positions.size(),
&posi tions[0], G._STREAM DRAW ;

gl VertexAttribPointer(1, 3, G._FLOAT, G._FALSE, 0, (void*)0);

30

https://dev.imt.hig.no/confluence/display/KREM/Technology#Technology-OpenGL
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-1

31

Asyou can see from the code block, all we have to do is buffer the vector "positions” to
the graphics processor to process and draw as fast as it possibly can. Positionsis a vector
which holds all the positions in forms of three floats, one for each axisin athree
dimensional world, so the graphics processing unit know where to draw and how many
to draw as the amount of positions corresponds to the amount of particles we want to
draw on screen.

We are not limited to only upload positions as we write our own shaders and we used
this to our advantage as we added support for different textures and colors. Thisway we
can for example fill the sky with snowflakes that vary from completely white to a slight
shade of blue, giving us a much more realistic visualization of our own little world.

Listing 9.16: Instancing vertex shader with textures

voi d mai n()

{

color = col ors;
texCoord = texCoords;
gl _Position = transform* vec4(vertex + positions, 1.0);

}

Listing 9.17: Instancing fragment shader with colors

voi d main()

{

vecd texel = texture2D(texture0, texCoord);
if (texel.a <= 0.5)
{

di scard;

}

colors = color * texel;

}

As we can see from this simple shader, all we do isto tell each object what its offset is,
which is named "positions” in our shader, and pass the color to the fragment shader
which multiplies it with the color from the texture we sampled.

Physics

We tried and wanted to implement the physics through an interface early on during the
development of Medieval Brawl. We wanted to do this to make it easy to replace or
expand, as we had planned to use the same codebase for the bachelor thesis back then.
After toying around and learning the Box2D library it proved to be somewhat finicky to
make a general interface for communication, so we scrapped that idea and coupled
box2d loosely with the rest of the game logic. The loosely coupling in this sense means
that there are very few lines of code which need replacement inside the main codebase to
replace the backend physics library. Most of the physics from Kremengine is kept within
the PhysicsHandler and PhysicsComponent class. Custom Physics Components are

https://dev.imt.hig.no/confluence/display/KREM/Actors#Actors-CustomPhysicsComponents

written for many actors, which have their own set of Box2D code, but thisisisolated
outside of Kremengine. The update function for the physics component ensures that the
graphical transformation is always identical to the Box2D body. The need to have the
physical body at a different location than the transformation is supported through the use
of Custom Components.

One of the mgjor advantages of coupling the library directly to the engine is that you can
freely use dl the tools of the library without making methods through the instance.
Creating joints or motors can be done by any actor by speaking directly to the library or
by using one of the helper functions in the PhysicsHandler class.

The PhysicsComponent class supports any type of shape supported by Box2D, aswell as
any body type and size supported. Other settings include restitution, friction, density and
sensors which prevent or help the actor to achieve certain actions. Physics component
also decides which state the actor isin by checking the velocity.

All the positions and references to points in space are refered to in three dimensions, but
Box2D isonly atwo-dimensional physics library. Thisis done on purpose to make it
easy to replace the 2D physics with a 3D one. One team member spent aday learning
and replacing Box2D with a 3D physics library for learning purposes, and to see how

easy it was.

Renderer

The renderer is responsible for visualizing everything for the user. Itsjob is rasterization,
which means that it takes the completed scene, either three- or two dimensional, and
raster every pixel so the monitor can display what the scene actually looks like to the
user. Our renderer is built upon OpenGL which provides us with a software abstraction
of the graphics processing unit [2].

How our renderer work is that we give every object in the scene a transformation matrix,
which contains position, scaling and rotation, which is used to tell the graphics
processing unit how to display the mesh in the scene. This matrix is often referred to as
the model matrix multiplied with the view matrix even though you are freeto call it
whatever you want. The view projection is what we usually referred to as the camera,
which controls what the user seein the world.

The camerais not a camera as a normal person might think, which shoots pictures and
videos, but just a mathematical matrix. This matrix tells the graphics processing unit
what field of view it should display, what aspect ratio the monitor has, which reduces
image distortion, and how far or near objects should be drawn. This helps with
performance as drawing things we do not see is awaste of processing power. All of this
Is then multiplied with another matrix, which is usually called view matrix, that keeps
track of the cameras position, what direction is up and what way it is facing.

32

https://dev.imt.hig.no/confluence/display/KREM/Actors#Actors-CustomPhysicsComponents
https://dev.imt.hig.no/confluence/display/KREM/Technology#Technology-OpenGL
https://dev.imt.hig.no/confluence/display/KREM/Technical+Design+References#TechnicalDesignReferences-2

All thisinformation is calculated on the central processing unit and is then given to the
graphics processing unit to set up the scene and starts rasterizing the image for the user.

Resour ce M anagement

The early days of Medieval Brawl stored all data directly on whichever object used it.
This means that if an actor needed a sprite, the sprite would be stored directly on the
graphics component of said actor. Thisis obvioudly very bad as the memory would be
spent very inefficiently. We migrated to a solution where all resources of a certain type
would be loaded into its respective handler. The result of thisisvery many handlers
which do very similar jobs.

MeshHandler TextureHandler
-textures : map=string Mesh*= -textures : map=string, Texture*=
+HoadMesh(filePath : string) : Mesh* +loadTexture(filePath : string) : Texture*
I S = F
| e |
1 1 w1 1
i e i
! uses ! I TTeel. uses i
uses luses uses luses
I - 1 L T L
TextBox GraphicsComponent WeatherParticles

figure 9.8: A simpleillustration of our resource management

Each resource handler has a map containing all resources of that type, which can be
retrieved by filename.

This system has some flaws, but they have not been prioritized by anyone on the team as
the issues are somewhat insignificant for the thesis, but interesting nonetheless. One
issue isthat thereis no limit to how many resources can be loaded, so the application
would eventually run out of memory if you loaded too many resources without quitting.
This has been a non-issue for both this project and Medieval Brawl as computers today
are more than capable of loading the amount of resources the application isusing. An
issue with speed would likely occur before the issue with memory, as searching through
achanging map is slow.

A different issue is regarding code and maintenance of Kremengine as new resource
types are required and old types are replaced. This could become difficult to handle and
maintain over time and requires a significant amount of refactoring. A common resource
handler for all resourcesis not atypical. All objects wishing for aresource would have to
go through this handler. The handler would restrict how much memory any resource type
can occupy, and how much total resource can be held in memory. Whenever a new

33

resource is requested which is not in the cache, the top handler would discard the least or
last requested resource to make space for anew one. Thisisjust one possible solution
which is already miles ahead of what we currently have.

<<Interface>>
IResourceHandler

+loadResource(filePath : string) : Resource*

&

TextureHandler
. |extures : map=string, Texture*=

PrimaryResourceHandler #—— |+loacResourca(filePatn : string) : Texture*

-resources : map=string, ResourceHandler*>

+loadResource(filePath : string, resource : ResourceHandler*) : ResourceHandler* .1 MeshHandler
N A A " | meshes: map=string.Mesn*> [4

+loadResource(filePath : string) : Mesh®

! ! !
| uses iuses luses

TextBox GraphicsComponent | |WeatherParticles

figure 9.9: A simplified version of what an improved resource handler could look like

Technical Design References

[1] Martin Thomas (2013). OpenGL Instancing Demystified. [online] Available at: http://
www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r32
26 [Accessed 17 May 2016].

[2] Wikipedia (2016). Game engine. [online] Available at: https://en.wikipedia.org/w/in
dex.php?title=Game_engine& oldid=716577481#Rendering_engine [Accessed 17 May
2016].

[3] Gameprogrammingpatterns.com. (2014). State - Design Patterns Revisited - Game
Programming Patterns. [online] Available at: http://gameprogrammingpatterns.com/stat
e.html [Accessed 17 May 2016].

[4] Evan Wallace. (2010). Finite Sate Machine Designer - by Evan Wallace. [online]
Available at: http://madebyevan.com/fsm/ [Accessed 17 May 2016].

http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
http://www.gamedev.net/page/resources/_/technical/opengl/opengl-instancing-demystified-r3226
https://en.wikipedia.org/w/index.php?title=Game_engine&oldid=716577481#Rendering_engine
https://en.wikipedia.org/w/index.php?title=Game_engine&oldid=716577481#Rendering_engine
http://gameprogrammingpatterns.com/state.html
http://gameprogrammingpatterns.com/state.html
http://madebyevan.com/fsm/

35

Development Process

Development Tools

The tools we used for our development were as following:
For coding:

® Visual Studio 2015. Thiswas our integrated development environment of choice
because it is something we are all familiar with and it speeds up development with
itsintelligent code completion and performance measurements.

® SourceTree. We prefer the graphical user interface and ease of use compared to
writing commands manually in command line.

® Bitbucket. We used this because we got a educational edition from school, so it
was the only free option we had available.

® Notepad++. A light text editor with more features than normal Notepad. Used to
take notes or read code without having to open the integrated devel opment
environment.

® Notepad. A really simple text editor that comes with Microsoft Windows.

for database;

®* MY SQL workbench. Early on we used PHPmyadmin but we switched hosting
service and the new one do not support PHPmyadmin easily because of security
reasons, so we decided to switch since we where not really bothered and switching
was easier than getting PHPmyadmin to work with the new host.

For art, sketching, graphs and discussing ideas:

® Adobe Photoshop. Wereally like the flexibility it gives us when it comesto
In-game art and textures.

® Gimp. A free alternative to Photoshop because not everyone had Photoshop
available.

®* MSPaint. It has |less features than other image editors, so it is faster and easier to
use when sketching idess.

® draw.io. For creating graphs.

For talking and working together:

® Microsoft Skype. A voice over internet protocol program with screen sharing,
which is exactly what we need when we are not able to meet.

® Google Docs. A real time text editor makesit easier to see what others are doing
so we do not end up doing the same thing.

Development Wor kflow

Every new sprint each group member would pick up tasks from the sprint backlog,
which were placed in the in progress tab. The group members would the work on their
own branches and do their work. That way, you would not be detrimental to the peoples
work. When the work was fully implemented, it would be pushed onto the main branch.

If someone needed help, another group member would usually assist them aslong as
they were not busy. Many times there would be an issue that was very complicated,
therefore two people would usually work together to get it solved.

When we started the project, we were not very proficient with working on branches, so
there was usually alot of mess. This got better after a month when people started getting
accustomed to how to work with branches. We did not have an intermediary branch,
therefore we usually pushed the changes we had on our branches to the main branch.
When the tasks were done, the member would then go and place the issue as solved.
Then they would pick up a new task to be done. There were exceptions where alarge
task had a part of it done, it would then be placed back into the backlog. Which would
then be picked up later when it needed finishing.

Project Workflow

Scrum

We mostly followed the scrum workflow. We had a meeting every morning at 09:00 to
discuss what we were working on as well as what we planned to work. We did not write
logs for the daily scrum meetings. The daily scrum was not very strict, it was not
mandatory due to the fact that we were four people in the team. Most mornings there
would be two to four people joining the meetings. Most of the meetings were under 15
minutes, the shortest were 5 minutes.

Each friday we had a sprint meeting where we discussed the previous sprint and planned
the next. This process usually took 1 hour. During the meeting we discussed what we
needed to add to the backlog as well as what was finished. This was also an extended
meeting where we could discuss various topics that popped up during the week. We also
discussed improvements in our workflow during the meetings.

All of these meeting were done over skype.

Working Hours

During the development the team was working for at least 35 hours a week. There was
no set schedule, the team worked at whatever hour they wished. There was also aweekly
gathering set up at 09:00 on tuesdays so the team could join up and have face to face

36

interaction to help each other with the code and do code reviews, as well as come up
with ideas on how to solve problems they encountered.

37

World Generation

Platform games have branched into many different subgenres, and the levelsin the
subgenres often have different subtypes og gimmicks.

Most of the very early platform games were in atwo dimensiona world, using only the
x- and y-axis for width and heigth, respectively. Y ou would traverse the x-axis by using
the mapped keys on the input device for left and right movement. Traditional platform
games let you jump with ajump key, which was the primary way of traversing the
y-axis. Climbing was also introduced at a very early stage of platform history, as seenin
the original Donkey Kong (1981 [13]). Thiswas usually done by pressing the up-key
while colliding or standing at the bottom of a climbable object.

Scrolling

Scrolling in computer games is the act of shifting the view from one part of the game
world to adifferent view in the same level or world. Bubble Bobble(1986 [14]) solved
this was to swap the whole screen with a neighboring screen once the player reached the
edge. In Super Mario Bros(1985 [15]) the camerawas locked to the player (Mario or
Luigi), and would only scroll horizontally, meaning that the movement and vertical
platforming was limited to the height of the screen. Later iterations of the Super Mario
series and newer games improved on this and allowed for vertical scrolling in different
forms[16].

The original The Legend of Zelda (1986 [17]) combined both seamless scrolling (likein
Super Mario Bros.) and moving the screen once the player reached the edge. (One would
assume that there were technical limitations for this. All technical difficulties to scrolling
the screen have since been overcome.

Platforms

Classic platform games like the original Mega Man series, (1987 [20]) and many other
(evento this day), usetile based platforming. This meansthat the level isdivided in a
grid with a set size.

figure 11.1: Small platform

Figure 11.1 shows asmall section of atile based platform game. Red blocks are solid

38

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-20

tiles and yellow blocks are enemy spawn points. Even though the world and spawn
points were in this grid, the movement of all objects on the screen were fluid, meaning
you did not move from grid to grid, but from position to position.

figure 11.2: without grid-locked movement

The other popular terrain generation method is to place each object in a precice location
instead of in agrid. Thisrequires more time, but will generally look better and give the
level/game afeeling of higher quality.

Approaches

Creating alevel generator that actually learnsis something very few have tried before,
thereisreally no information on the topic other than some Super Mario clones and maze
generators. Thislead to a huge challenge as we had to improvise and try things ourselves
to find the perfect solution, which was not all that easy.

We came up with afew ideas on how to do this that might actually work and a bunch
more than would never work. Our ideas will be discussed in more detail but hereisa
quick overview:

® Artificial Neural Network (ANN)

® Noise (Perlin, Fractal, Worms)

®* Markov Decision Process (MDP)

® Deterministic Random Generation

ANN used neural networks to recognize patternsin alevel and tried to reproduce them.

Noise approach used Perlin noise to generate a curve (height map) to place the world on,
which would generate the floor of thelevel. Thereisalot of different noise functions
and it is hard to find the best one, but we ended up using Perlin.

MDP is not actually using Markovs algorithm but is heavily inspired by it. You pick a
starting point (a node) and try to get to a certain point (goal node) and by giving every
node you visit a score, you can determineif the path you followed was good or not. Y ou
will end up with abunch of good and bad paths to pick between when generating alevel.

Deterministic random generation is a random generation based on point to point
generation in random directions with determined parameters.

39

40

Deter ministic Random Gener ation

This approach is not based on any set algorithm. It uses random generation to generate
levels. The basic premiseisthat you pick a point, which is usually the starting point of
the level, then you choose a direction and give it alength. Then you continue doing that
until you have your level. But there is a problem if you just leave it at that, there will be
walls that are unscalable, holes that are too deep and just flat levels. To solve this, we
need to have something to fill in the faults of the level. Thisis best explained with an
example: Your jump height is 3 blocks. You have alevel that is generated. It goes: Right
4, right 4, up 5, right 5, down 3, right 6. See figure 11.3.

Figure 11.3: Level example

From the figure, we can see that you can not possibly scale the purple wall with only the
ability to jump 3 high. To solve this we need to give the generation away to handleit.
We could just put a block there or place stairs, but that would not make for an interesting
level. So theway we do it is by going up one on the purple wall, skipping one block
towards the left, the start generating to the left. Then, after alengthisgiven toit, it will
go that far, then go one more to the left and start generating blocks upward until it
reaches the level of the purple wall. Then it skips one block the the right and generates
blocks until it touches the purple wall. The length it is given isleft 4. See figure 11.4.

1" T 1T

Figure 11.3: More advanced level

This makes for alot more interesting way of generating levels. But the problem with this
isthat the learning potential of it is rather limited. Y ou can teach it good lengths for
platforms, how far it should go up and down and how far it should go in a straight line
before making other obstacles.

41

Although this generation can be good and also fagt, it requires huge amount of work to
make it good.

Line by line Approach, our selected approach

This approach is similar to the tile-by-tile approach in the sense that it generates objects
in agiven direction based on the input to the Al, except thistime whole lines are
generated instead of just atile at atime. Like the first approach thiswill also start
generating from alocation which will act as the starting position for the player, and
generate lines either verticaly or to the left(towards the goal). This approach also
generates bottomless pits at random intervals affected by the Al.

The lines generated have a random component to them. Multiple straight lines can also
be generated in arow if the Al decides so.

The green tiles are all one output from the Al. One can view them as: "Generate 5
horizontal tiles".

010203040506070809101112

01
02
03
04
05
06
07
08
09
10
1
12

Figure 11.5: Thered line shows the input, while the green line is the output. We can see
that the Al decided to create a straight line upwards.

42

04050607080910111213 1415

01
02
03
04
05
06
07
08
09
10
1
12

Figure 11.6: The next output.
040506070809101112131415

01
02
03
04
05
06
07
08
09
10
1
12

Figure 11.7: The Al generated two straight linesin arow.

Therest of the generation will continue in similar fashion as the tile-by-tile generation
until the generation is completed. The time of completion depends on the
Implementation

Lineby Linefailed Implementation

We implemented this using a modified version of Markov Decision Process. This
version can handle multiple "layers" of states, and returns multiple outputs.

Listing 11.1: Implementation of Line by line approach

enum di rection

Rl GHT
}

//Qutput is represented by an int, which represents a direction, and
nunber of tiles
struct CQutput
{
int direction;
int |lengthlnTiles;

const int = MAX_LEVEL_LENGTH,

const int = MAX PLATFORM LENGTH, //technically not max, but won't
generate a new segnent if the |ast segment reaches or surpasses this
nunber

2DVector tilePosition{0,0}; //The position where the next tile will be
gener at ed

voi d generateTerrain()

{
currentLength = O;
vect or <Qut put > out put Vect or;
whi | e(currentLength > MAX_LEVEL_LENGTH)
{
out put Vect or . enpl ace_back(cr eat eSegment (out put Vector));
}
}

Qut put creat eSegnent (vect or <Qut put > out put Vect or)

{
Qut Put returnQutput = NMDP. get Qut put (out put Vector);

2DVect or directionl nVector;
swi tch(returnQutput.direction)

{
case GAP:
br eak;
case UP:
directionlnVector.y+=1;
br eak;
case DOWN:
directionlnVector.y-=1;
br eak;
case RI GHT:
directionlnVector.x +=1;
br eak;
}
if (returnQutput.direction != GAP)
{
for (auto i = 0; i < returnQutput.lengthlnTiles; i++)
{

tilePosition += directionlnVector;

createTile(tilePosition);
}
i nt newQut put = MDP. get Qut put (out put Vector);
//create newtile as long as a gap is not returned by the ANN
if (newQutput.direction == GAP)

{
out put Vect or. enpl ace_back(newCut put) ;
}
}
if (returnCQutput.direction == GAP)
{
for (auto i = 0; i < returnQutput.lengthlnTiles; i++)
{

tilePosition.x +=1;

}

We could not teach this algorithm how to learn to generate levels using the database,
which iswhy this implementation was discarded.
Successful implementation of Line by Line Approach

This approach is built from the ground up to store and load from the remoteSQL
Database, which is one of the primary reasons for its success. The level datais stored
inside a struct within the object which handles the level loading.

<<struct>> <<struct=>
LevelData Chunk

+japsize : loat <seores[10][10] : Slofvalues

+gnemyDensity : float '
' +
T 10:0.. 100

<<structs=»

SlotValues

=horizontal : float
=vertical : foat

figure 11.8: Illustration of datastructure of LevelData

LevelData contains 5 chunks. Chunks are away of separating alevel into smaller pieces
to more easily analyze what is going on behind the scenes. Each chunk is ten units wide
and ten units high, or 100 units total. This means that the total level width is 50. We
settled for shorter levelsto get more precise feedback from users. The balance between
precise feedback and too short level isavery thin line, but we seem to have found it.
Some plans regarding feedback of specific chunks were also in place, but we decided
against it for the sake of the user experience. One idea was to have the user pick out his
favorite chunk and least favorite chunk, and apply stronger modifiers for those, but it
turned out to be too impractical.

Each position in every chunk has a SlotValue object. SlotVaue contains a horizontal and

vertical floating point value. These values represent how far in each direction tiles will
be created once atile reaches one of the positions, rounded down to first integer. The
horizontal value will always finish generating its set of tiles before the vertical begins.
The difference in height can never be greater than 9, and the highest point atile can ever
be generated at is 9, while to lowest is 0. Thisisto limit the generation and training of
the Al. The Al istrained faster by limiting the state space. If the state space was near
infinite, user feedback would have very little impact with this algorithm, as chances are
that other users would never get to reach the tiles the first user gave feedback on. In
addition to making the Al learn faster, it also makes it easier to read and track progress
of the database when you only have a few thousand entries to keep track of rather than
millions.

The algorithm which updates the database ensures that the values are never set to
generate levels below 0 or above 9. The world generator is fully able to generate such
levels, and thisisintentional because it makesit easy for usto see if something has gone
wrong somewhere during the training.

This table shows how the first 4 linesin atable are generated. Assume that generation
starts where x=0 and y=5. We exclude gaps and enemies for now

Table2

line number 1 2 3 4

position x=0y=5 X=2y=3 x=10,y=0 x=18,y=3
(note: the x
position hereis
moved to the
second chunk)

Slotvalues horizontal=2.1, horizontal=8, horizontal =8, horizontal=4,

vertical=-2 vertical=-6.5. vertica=3.4 vertica=0

I - -

012345678 9101112131415161718192021 22
figure 11.9: figureillustrating table 2

In addition to just tiles lined up against each other, the generation aso adds gaps and
enemies. Gap size, gap density are loaded from the SQL database and used to decide
how often and how wide the gaps should be. Gaps are limited in size to ensure that the
player can leap over them. The gap size parameter is also more like a guideline than the

45

46

actual size. So thereis still arandom component to the gap size to give the levels anew
feel each time. Gap density is also a parameter which acts more like a guideline than a
static amount of tiles before the next gap. The chance of the first tile being a gap is 0%.
After that the percentage increases. How much it increases depends on the gap density
parameter. Some levels with have no gaps. The enemies density parameter behavesin a
similar manner.

Thereisadifficulty balance in place to make sure that any given level has some
obstacle, and on the other side it also makes sure no level isriddled with obstacles.

-*l

figure 11.10:a chunk from anywhere in the level. One can assume a fairly high gap
density judging by the two gaps so close to eachother.
Storing and L oading from the database using Line by Line Approach

The database stores five different sets of data used for generating levels. These five sets
are all stored in asingletable, but in five separate columns. Those colums contain 1000
floating points each. There are 1000 floating points because there are 5 chunksin alevel,
each with 10 times 10 tiles, who each have two scores (a vertical and horizontal) as
shown in Successful implementation of Line by Line Approach. 5 times 10 times 10
times two equals 1000. These values are stored in this manner for efficiency and
simplicity. The values are |loaded to afive temporary vectors, one for each column, and
later stored properly in oldLevel Data. Gap density, gap size and enemy density are
loaded from the database in a similar manner. There are five sets of these values as well.

We postprocess on the local computer instead of storing the numbers in differently on
the SQL server to make use of the additional processing power on the computer. Thereis
still a noticeable network delay even when loading the numbers this way.

listing 11.2: loading data from the SQL database

std::vector<float> scores[5];

par ent Engi ne- >get Dat abaseHandl er () ->retri eveDat a(" SELECT | nput 1, |nput2
I nput3, Input4, Input5 FROM Level Scores”, colums, scores[0], scores[1],
scores[2], scores[3], scores[4]);

int chunkcounter = 0;

;gi Lajtg;eachScoreTable = 0; eachScoreTable < 5; eachScoreTabl e++)
{for (auto i = 0; i < 1000;)
{for (auto j = 0; j <5; j++)
{for (auto y = 0; y < 10; y++)
{for (auto x = 0; x < 10; x++)
{

ol dLevel Dat a[eachScor eTabl e] . chunks[j].scores[y][X]. horizontal =
scor es[eachScoreTabl e] [i ++];

ol dLevel Dat a[eachScor eTabl e] . chunks[]].scores[y][X].vertical =
scor es[eachScoreTabl e] [i ++];

}
}
}
}
}

Once dl the datais loaded, arandomly selected column will be used to generate the
level.

listing 11.3: level dataisrandomized

| evel Data = ol dLevel Data[rand() % 5];

Thelevel isthen loaded as described here.

The player will be prompted once he completes the level, where he is asked how much
he liked or disliked the level. The program will then iterate through every selected
starting tile figure 11.9, and find the current trend for the Al. If aplayer liked the level
somewhat, then the Al will encourage the current trend somewhat by modifying the
score towards the same direction the trend is going. If the player strongly disliked the
level, the Al will discourage the current trend for the selected tiled by moving the score
away from the trend.

Table 3:
Starting tile number
position x=0y=5 X=2y=3
selected Slotvalues horizontal=2.1, vertica=-2 horizontal=8, vertical=-6.5.

a7

https://dev.imt.hig.no/confluence/display/KREM/Successful+implementation+of+Line+by+Line+Approach#SuccessfulimplementationofLinebyLineApproach-moose

other valuesl horizontal=3.1, vertical=-3 horizontal=5, vertical= 3.2.

other values2 horizontal=4.1, vertical=-5 ' horizontal=3, vertical= 4.5.
other values3 horizontal=0.1, verticd=0 horizontal=2, vertical=-1.5.
other value4 horizontal=2.1, verticd=1 | horizontal=6, vertical=-0.8.

We assume that the player liked the level, and we will take a quick look at the first two
starting tiles to see what the current trend for thesetilesis.

We start by finding all the average values, starting from the first horizontal to the last
vertical we get: 2., -1.8, 4.8, -0.22

Now you compare the average with what the player liked. If the player liked alevel that
Is above the average, the average will be increased. Thisis done by increasing one of the
random values for the corresponding position in the database. These steps are repeated
until all starting tiles are iterated through. The principle with random selecting is inspired
by the random access pattern [19]. The ideaisthat will get a high variance in the levels
due to the random nature of this pattern, while still being fair and moving towards a
better generation Al over along period and many iterations. One alternative isto always
replace the oldest values, but we decided against that to save time on both
implementation and the time it would take for the database to rearrange all tables by age
after every feedback.

Noise Approach

When we got the idea of having a randomly generated world where we would use some
sort of Al to place all the game objects, we had to consider of all the possibilities we
could think of. One of these were using a noise function. The first thing we needed for
the noise approach was away to generate noise. We started researching all the different
noise algorithm but ended up using Perlin noise, created by Ken Perlin, which was
explained by Hugo Elias[1].

We started by implementing the version of Perlin noise Hugo Elias wrote, which is some
sort of fractal noise and not actual Perlin noise [2][3], but it was simply too slow for our
requirements. We explain why under Libnoise. This lead us back to searching for
alternatives to implementing a proper noise function. We ended up using an external
library to help us get the results we want, named Libnoise [4].

Thislibrary gave us more than we needed, as it got support for voronoi, checkerboard,
spheres and more [5] but as we were struggling with performance, we thought a proper
library would be much more optimized compared to what we could do, which iswhy we
went that route. This turned out to be a good choice as we cut down loading times from 3
minutes down to 7 seconds at the same test. We used Visual Studios performance
explorer to determine the differences in time between the library and our approach.

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-19
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-1
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-2
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-3
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-4
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-5

Libnoise only supports three dimensional Perlin noise, but it is easy to go downin
dimensions compared to up so we just used one dimension for now, which is what we
use for telling the world generator what height every object should generate at.

Perlin noise is really useful for us because we can easily get the next height without
actually creating the object and then get its position, which cuts down memory
requirements and load times as we know what happens next without having to actually
generate arandom number for the next object. Another benefit is that we can easily
know what the next potential blocks would be and figuring out a pattern while
generating instead of going over the world with multiple passes, which is another time
saver when it comes to computer resources and memory usage as we only have to
generate the world in one go and not having to go back and loop through all game
objects to find the patterns.

Implementing Noise Approach

Using noise generators in games are quite common [6], especially for generating height
maps for three dimensional worlds and we wanted to create a height map for atwo
dimensional world as that is what platformers are. We started implementing fractal noise
from scratch and looked at how we wanted things to be in our world.

— TN //'_"-..____ P
. .
Ry

frequency = 1, scale =1 +

PN o —

frequency = 2, scale = 0.5 +

e W i, S i, WY

frequency = 4, scale = 0.25 4

frequency = 8, scale = 0,125 +

frequency = 16, scale = 0.0625

0 NS

figure 11.11: example of output from fractal noise [7].

figure 11.12: example on how noise lines up with old platformer levels[8].

Aswe can see on figure 11.11, the various graphs fractal noise generates |looks very

49

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-6
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-7
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-8

50

similar to levelsin two dimensional platformer games, like the one displayed in figure
11.12, which is a picture from the game Donkey Kong Country from 1994. The black
line represents the layout on top of an actual picture from the game. Thisiswhat this
approach tries to replicate.

Libnoise got alot of different variables we can tweak to theoretically find the perfect
curve to match a professionally hand crafted level like the one on figure 11.12. We know
this from looking at the example graph and the level and comparing them together, so we
need to learn the computer how to produce similar levels. Thisis where the challenging
part comes, as the various inputs to the noise function can produce levels you simply can
not beat or levelsthat is completely flat, all of which we want to avoid. By tweaking the
values by hand, we found something we were happy with so the learning algorithm know
what to expect and where to start from.

Listing 11.4: Thevariousinputsto perlin noise

noi se: : nodul e: : Perlin noi se;

noi se. Set Seed(static_cast<int>(time(NULL)));
noi se. Set Cct aveCount (6) ;

noi se. Set Frequency(1. 0);

noi se. Set Persi stence(1.0 / 2.0);

This are the values used to produce a somewhat interesting level, so the learning
algorithm will have to change these values up and down to find the maximum and
minimum values to generate interesting levels that is also doable. The problem with this
isthat we can not easily categorize levels from easy to hard, unless we generate every
level possible and use User feedback to figure out what people thought were hard and

easy.

To generate abasic level layout we use the following (simplified) block of code:

51

Listing 11.5: basic level layout

const unsigned int length = 100;

doubl e hei ght = 3.0;

for (unsigned int i = 0; i < length; i++)

{

gl m:vec3 position{ i,

static_cast<int>((noise. GetVal ue(static_cast<double>(i / 4.0), 0.0, 0.0)
* height)), 0.0 };

t hi s->actors. enpl ace_back(act or Fact ory- >cr eat eAct or (

dynam c_cast <Act or Dat a*>(&Pl atfornDat a("res/actors/til eAtl ases/castl eFg_r
and.xm ")), [//create actor

{ static_cast<int>(position.x), static_cast<int>((position.y * height),
position.z }, //set position

gl m:vec2(0, 0)));

//texture to use

col | i si onDat aVect or. push_back(Col |'i si onDat a{ {
static_cast<int>(layer2.x), static_cast<int>((layer2.y + (height)) *
1.5f) }, 1.f });

}

We place blocks between 0 and length on the x-axis and use the noise.GetValue function
to figure out what height to place the blocks which is amplified by the height variable to
give the level more variety in height. The static_cast<int> makes sure every block is
placed exactly one unit in the height plane so it looks like figure 11.13, because that
isthe style of game we are trying to replicate.

figure 11.13: image taken directly from the game Super Mario Bros. [9].

L earning With Noise

To create an algorithm that actually learns with this approach will be very hard because
there is no pattern in how noise are generated through the different variables, so it would
not know if the direction it was heading is good or not, which is why we have to make it
look likeit islearning. This can easily be achieved by creating a predefined set of rules
to the world generation algorithm and use these in a smart way, which we discuss more
in detail in the Obstacle Placement Using Noise section.

We looked at how Super Mario World, from 1990, was designed [10] and wanted to
replicate the way the world is built up. They have designed the game to be gradually
more challenging the further into the game you get so we need the learning algorithm to
be kind to beginners and become gradually more challenging. It got a maximum of two

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-9
https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-10

themes per level, with evenly spaced out safe spots where the player can take a break and
get control over the situation. These themes can can be for example ground and rotating
platforms. The entire level would then consist of only places to stand and platforms that
rotate around a point to create elevators, the level designers then add enemies to places
where they know the player will likely be after a certain challenge to kill them if they
stop paying attention.

To implement this using algorithmsis not as easy as you might think without User
feedback as every player got a different skill level and aeasy level for us might be hard
for others. This approach would end up with an average difficult level al the time, so
really good players would not be rewarded for their skills and beginners would probably
not be able to beat the game. Something we could do to fix thiswould be to have a
database for every player so every game would be different and tailored to your skill.
The problem with thisis that the learning algorithm needs thousands of inputs to
generate something reasonable, which is simply too much for asingle player to do.
Libnoise

The only reason to choose libnoise for this project isthat it has been developed for years
and is optimized for speed, which is exactly what games need. Our own approach
worked, but it took up to three minutesto load arealistically sized level. Thistime was
measured with Visual Studios own performance explorer. Having to wait three minutes
in between each level is unacceptable. Another benefit with using alibrary that the
project do not need but it was an interesting experiement, was all the various noise
variants libnoise provided. This meant that we could test out variants we did not consider
and potensially get better results, even though thisis unlikely as the results do not
produce curves that represents levels as we were looking for, but rather open caves or
worms looking caves. Examples of this can be seen on figure 11.14.

meddulesVoronod

figure 11.14: voronoi pattern [18].
Obstacle Placement Using Noise

Aswe have discussed in Implementing Noise Approach, even hand crafted levels looks
like noise, so the layout is not important if generated in a proper way. What matters are

52

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-18

53

where objects are placed. Thisiswhere the learning comes in, or what looks like
learning. We created a few hand made algorithms to fill the level for us with all the
various obstacles the project got support for. One of these are the spike filler algorithm.

On figure 11.15 we can see how the spikes are place in naturally generated pits. The
yellow spikes are generated because the algorithm made a successful run, which meansiit
found a suitable gap, placed two spikes and filled the surrounding with boxes, here
visualized as red cubes. Asfigure 11.15 shows, the noise pattern creates a u-shape which
matches the red boxes placed in the level.

Noise: o

Outcome:

figure 11.15: spike filler algorithm

Listing 11.6: Spikefiller algorithm

int bl ocksToCheck = 5;

if (spike)

{

gl m:vec3 previousPosition = { i - 1,
static_cast<int>((noise. GetVal ue(static_cast<double>((i - 1) / 4.0), 0.0,

0.0) * height)), 0.0 };
gl m:vec3 next Position;
if (previousPosition.y > position.y)
{
int spikesToPl ace = 1,
for (int h = 1; h < blocksToCheck; h++)
{
next Position = { i + h,
static_cast<int>((noise. GetVal ue(static_cast<double>((i + h) / 4.0), 0.0,
0.0) * height)), 0.0 };
if (nextPosition.y == position.y) //equal heights

{
spi kesToPl ace++
}
el se //next block noved up or down
{
h = bl ocksToCheck;
}
}
if (nextPosition.y > position.y) //next block nmoved up
{

for (int g = 0; g < spikesToPl ace; g++) //fill the gap fromorigina
position to | ast checked position

{

t hi s->actors. enpl ace_back(act or Fact ory- >cr eat eAct or (&Act or Dat a("r es/ act or

s/ novi ngSpi ke. xm "), { position.x + g, position.y - 0.5f, position.z }));
for (int k = 1; k <= heightToFill + 1; k++) //loops through al

consi dered positions and fill them

{

t hi s->actors. enpl ace_back(act or Fact ory- >cr eat eAct or (dynami c_cast <Act or Dat
a*>(&Pl atformData("res/actors/til eAtl ases/castleFg_rand.xm ")), {
position.x + g, position.y - k, position.z }, glm:vec2(0, 0)));
col l'i si onDat aVect or. push_back(Col | i si onDat af{ {
static_cast<int>(position.x + g), static_cast<int>(position.y - k) }, 1.f
1)
}
}
i += (spi kesToPl ace-1);
}
}

}

This algorithm have a predefined parameter which can be changed depending on the
difficulty of the level, for the explanations sake, the project uses the value 5. For every

block we consider placing into the world, we check if the previous block was above the
next. We repeat this step as long as the previous block is still at the same level. When we
have checked amount of blocks equal to blocksToCheck, we will check if the next block
is above the current block we are currently at, if thisistrue, we will fill the gap with
spikes. Thiswill try to find u-shaped pits across the entire level and fill them with spikes
aslong asthe gap is equal to or shorter than the blocksToCheck variable.

Using thiskind of logic, we can define alot of various obstacles and make the levels
look smarter. The learning will only consider amount of objects to place, so an easy level
might only have 3 pits with spikes even though the level got 6 suitable spots for them.

Tile by tile Approach

Thetile-by-tile approach generates the terrain onetile at atime. Thefirst tile will act as
the starting position for the player, and from there on out an algorithm will decide the
position of the next tile. One way to decide the next tile isto send the last few generated
tiles as input to the agent, and get a position for a new tile as output. The output needs to
have a random component to it, as to not generate the same levels for each user who uses
this particular trained Al. Controlling the randomness is somewhat difficult because this
approach only has four different out if you do not allow diagonal tile generation, and
only three outputsin certain casesif you disallow generation backwards.

figure 11.16: outputs

The green square is the current tile. The red is the previous tile, so we can not generate
the next tilein that position. The blue ones could be implemented by tweaking the
algorithm, and the yellow ones are the primary available outputs. The fourth output is
«ending the segment». Most platformers need «gaps» or «bottomless pits» .

55

56

010203040506070809101112

01
02
03
04

os| |

06
07
08
09
10

1

12

figure 11.17: The Al will takein «1 tile, position: 2,5» as input.

010203040506070809101112

01

02

03
04
05
06
07
08
09
10
1
12

figure 11.18: The Al gave «Right» as output

The Al gave «Right» as output. We now send both tiles of the segment asinput. It is
important to send more than just the last output as input for the next tile, as the outputs
are very limited, and would seem mostly random if you wanted varied generation.

010203040506070809101112

01

02

03

05

08

10
1
12

09|

o mil

06
07

figure 11.19: Thistime the output was «Up»

This time the output was «Up». Thistime all three tiles are sent as input, and this cycle

repeats itself until the Al

returns «Gap» as output, at which point the generation will start

over again at a new position somewhere to the right of the gap.

010203040506070809101112

01
02
03
04
05
06
07
08
09
10
1

12

figure 11.20: A complete platform could look like this.

Pros.
The biggest advantage is

the precise control over each tile you get. Every singletileis

specifically tailored towards the rest of the inputs.

57

Cons:

Training the Al to generate realistic levels using this approach is difficult because
platform levels consist of mostly straight lines. Creating straight lines with this approach
would require the output to be mostly trained towards generating the same output as the
last input. This generates situations where you could get an unusually long straight line.
Otherwise the Al would be trained to generate something looking like figure 11.20.

Implementations:

We implemented this method by using Neural Networks(Artificial Neural
Networks/ANN). An advantage and disadvantage of using ANN is that user feedback
will affect every weigth in some way. Thisis advantageous when the user likes most
patternsin alevel, where all patternswill get a higher chance of occuring, and
advantageous when he dislikes alevel and al patterns are horrendous. Its
disadvantageous when there is a perfect mix of bad and good patterns. All bad patterns
will be graded asa"good" pattern if the player likes the level, and all good patterns will
be labeled as "bad" if the level in general is bad. This could be avoided by asking very
specific questions regarding the level, or even maybe ask the user to mark which parts of
the level are bad, but thisisimpractical for both the user and our data analysis. We want
to keep the feedback interface as user friendly as possible.

58

Listing 11.7: implementation of Tile by tile approach

2DVector currentPosition {0,0} //has two public variables x and y

enum di rection

{
GAP,
UP,
DOV,
Rl GHT
}
/1 Qutput is represented by an int, which represents a direction
/1 The vector is enpty on the first call. Neural networks require the sane
anount of input each tinme. The neural network will fill enpty inputs with
dumy i nput
voi d generateTerrain(vector<int> outputVector)
{

int newCQut put = ANN. get Qut put (out put Vect or) ;
//create newtile as long as a gap is not returned by the ANN
swi t ch(newCut put)

{
case GAP:
br eak;
case UP:
current Posi tion.y+=1;
br eak;
case DOMN:
current Posi tion.y-=1;
br eak;
case RI GHT:
current Position. x +=1;
br eak;
}
if (newCQutput !'= GAP)
{
out put Vect or . enpl ace_back(newQut put) ;
createTil e(currentPosition);
gener at eTerr ai n(out put Vect or) ;
}

The above code has no randomness added to it, so it will aways generate the same level
until the network istrained slightly differently. ANN normally has no inapt way of
adding randomness to its output. One could modify the behavior of the ANN to return a
random output between some values, or add some form of randomness outside of the
neural network. The weakness of the last method isthat it will not be affected by the Al,
so if the random implementation is sub-optimal, it has no way of improving itself.

59

World Collision

Here we cover a big stepping stone to smooth movement and collision. Tile based world
generation comes with some problems which you evade with smooth landscapes.

Mar ching Squares Algorithm

The problem with tile collision was solved using the Marching Squares Algorithm [12].
The purpose for using the algorithm is to draw along line along al the edges of a piece
of landscape, instead of having Box2D create bodies from all actors.

figure 11.21: platform before and after applying algorithm

The algorithm takes in atwo dimensional array consisting of integers as input, where the
integers are either 1 or 0. These numbers represent a complete platformin the level in
addition to the empty spaces around this platform. Ones represent a collision block, and
zeroes represent empty space. In practice this means one has to push a 1 to a vector or
list every time anew tile which is meant to be used to the world is generated.

Listing 11.8: Adding a new solid tileto the vector for the algorithm

col |'i si onDat aVect or. push_back(Col |'i si onData{ { xPositionO Bl ock,
yPositi onOf Bl ock}, 1.f });

After the whole level is parsed this way, the PhysicsHandler classfillsinn the empty
spaces with zeroes. Normally one would have to use other values than only 0 and 1, but
our world consists of only sharp edges and no curves or slopes, and the curves are either
90 degrees or 270 degrees, which these values portray perfectly when following the
algorithm. Only using 0 and 1 allows us to skip a step of the algorithm, speeding up the
process slightly.

60

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-12

00|00|02]03]01
02|01|06|13|08
06|/11]07|09]|00
04|12|12|08|00

=] [=NeN=)

00
0
00~
00
00

CO00O0O
(=)

0

figure 11.22: what the user sees; what is sent to the physics handler; final numbers for
look-up table

The details between the two last picturesis very technical and can be studied more
deeply on the Marching Squares wikipedia page[12], but the general gist of it isthat you
take four numbers: the top left number, the one next to it, the one below that one, and
finally the one to the right of the current number. Y ou should end up on the number
below where you started. This gives us 0000 in binary. Convert this number to decimal
and you get the number in the top left square in the last picture. To get the next square
you start from the second number on the top row and traverse the same path, giving you
0000 again, or 0 in the decimal. the third square is composed of 0010, whichis02in
decimal.

Look-up table contour lines

Case0 Casel Case? C(Case3

[® I : .] LJ fy I

ffase 4 Case5 ase b Casel
] [

o I 's] m lj

Case 8 (Case 9 Case 10 Case 11

— L]

o0 L y
Case 12 Case 13 Case 14 Case 15
figure 11.23: cases

By replacing the numbers of the squares with the lines in the look-up table you will get
something that 1ooks like the platform above, except the all corners are cut. In The lines
are drawn inside a switch statement by the physics handler, where all cases of cut corners
arereplaced by a 90 degree turn in the direction the corner is cut, giving us the correct
line. Drawing starts from the first non-zero square starting from the top left and going

61

https://dev.imt.hig.no/confluence/display/KREM/World+Generation+References#WorldGenerationReferences-12

right. The switch marks each traversed node as visited, and calls itself recursively with
the position of the next node. Marching Squares will stop generating lines as soon as a
node is visited twice, which means the algorithm has created a complete line around a
platform.

figure 11.24: comparison

The first shape aboveillustrates how the object would look like if the lines were drawn
exactly from the algorithm. The second shapeisjust for comparison.

62

Listing 11.9: Example from Mar ching Squares algorithm

//case 2 and 13 are equivalent for our project as we only care about the
I ines and not whether or not we are on the inside or outside of what's
physi cal
/1only one of the if checks can be true
case 2:
case 13:

if (direction.x < 0) //this check is true if we the previous tile was to
the right of this one, naking sure we draw to the right

{

returnVector. back().x -= 0.5; //we nmove towards the |eft

newVector = returnVector.back(); //we start the next |ine from our
current position after noving half a square to the left

newector.y -= 0.5; //we now nove downwar ds

ret urnVect or. push_back(newVect or);

direction ={ 0,-1 }; //we are going downwards. this is information
requi red by the next square

if (!'(newector == originPoint))

{

i += 1
}
}

if (direction.y > 0) //this check is true if we the previous tile was
bel ow t his one, making sure we draw upwards

{
returnVector. back().y += 0.5;

newVect or = returnVector. back();
newector.x += 0.5;
returnVect or. push_back(newect or) ;
direction = { 1,0 };
if (!'(newector == originPoint))
{
=1
}
}

br eak;

The problem with tile collision

We use Box2D asour physicslibrary. Box2D isatwo dimensional physicslibrary, so
when a collision between two object occurs, the library has to decide how it wants to
push the objects apart in the vertical and horizontal dimensions. In World Generation we
made clear that we are going for atile based world and how atile based world is
constructed. In Kremengine the world is made by placing square Actors next to each
other with no space between them.

63

figure 11.25: two ground tiles from a separate game together with the player on top for
illustration purposes [11]

When a collision between a player and the ground occurs, the ground will stay put
because it has a static bodytype. Static bodies can not be moved physically under any
circumstance, and can only change position by manually setting a new position. The
player will constantly be pushed up by Box2D aslong asit only collides with one side of
asingle object, but as soon asit collides with the top of one object and the side of
another, there is a chance that the box will get stuck in aloop, depending on how deep
the object is stuck in the sides of the second object.

figure 11.26: the block is being pushed up to the left, and left on the right [11]

The first object pushes the object up, which is perfectly fine, but the second object
pushes the object in the opposite direction of where it is moving. Thiswill make it look
like the object is standing still when it is simultaneously moved up.

One cheap solution to this problem, which we used in Medieval Brawl, isto make the
players and enemies circular. This does not solve the problem and causes some other
minor issues regarding standing on ledges which one might want to avoid. A similar
solution isto clip the ledges of a polygon. Thisis better than the circular solution but still
has some of the same issues regarding ledges and you can still lose momentum when
stuck between tiles since you are pushed lightly away from the direction you are moving.

\

figure 11.27: clipped edges of a square body makes movement better.[11]

65

Our choice

When we decided on Al for world generation as the topic for our thesis, we already had
some ideas in mind on how we wanted to do it. We wanted the generated levels to be
fairly generic to put the levelsin as many realistic settings as possible. Many of the
modern platform games have awide variety of level «types». Some are mostly vertical,
some are horizontal, some are climbing focused, some revolve around dodging obstacles
on avehicle. We wanted to focus on asingle level type, and make that one as good as
possible.

The type of level we decided on have both horizontal levels and horizontal scrolling with
tile based platforming. These types of levels have enough complexity to make interesting
levels, while still being simple enough to improve through a learning algorithm.

We are not concerned with the time it takes to generate alevel aslong asit iswithing a
reasonable time, only the level quality.

World Generation References

[1] Freespace.virgin.net. (no date). Perlin Noise. [online] Available at: http://freespace.vi
rgin.net/hugo.elias/model '/m_perlin.htm [Accessed 14 May 2016]._

[2] Stefan Gustavson. (2005). Smplex noise demystified. [online] Available at: http://we
bstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf [Accessed 14 May 2016].

[3] Gamedev.stackexchange.com. (2011). Understanding Perlin Noise. [onling]
Gamedev.stackexchange.com. Available at: http://gamedev.stackexchange.com/question
§/18330/understanding-perlin-noise/18331#18331 [Accessed 14 May 2016].

[4] Jason Bevins. (2007). libnoise: a portable, open-source, coherent noise-generating
library for C++. [online] Available at: http://libnoise.sourceforge.net/ [Accessed 14 May
2016].

[5] Jason Bevins. (2007). libnoise: Documentation. [onling] Available at: http://libnoise.s
ourceforge.net/docs/group__generatormodul es.html [Accessed 14 May 2016].

[6] Wikipedia. (2016). Procedural generation. [online] Available at: https://en.wikipedia
.org/w/index.php?title=Procedural_generation& oldid=716861707#Video_games [Access
ed 17 May 2016].

[7] Scratchapixel.com. (2012). Pattern Examples. [online] Available at: http://www.scrat
chapixel.com/ol d/lessons/ 3d-advanced-1 essons/noi se-part- 1/pattern-exampl es/ [Accessed
17 May 2016].

[8] Dkc-atlas.com. (2016). DKC Atlas. [online] Available at: http://www.dkc-atlas.com/
[Accessed 17 May 2016].

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://gamedev.stackexchange.com/questions/18330/understanding-perlin-noise/18331#18331
http://gamedev.stackexchange.com/questions/18330/understanding-perlin-noise/18331#18331
http://libnoise.sourceforge.net/
http://libnoise.sourceforge.net/docs/group__generatormodules.html
http://libnoise.sourceforge.net/docs/group__generatormodules.html
https://en.wikipedia.org/w/index.php?title=Procedural_generation&oldid=716861707#Video_games
https://en.wikipedia.org/w/index.php?title=Procedural_generation&oldid=716861707#Video_games
http://www.scratchapixel.com/old/lessons/3d-advanced-lessons/noise-part-1/pattern-examples/
http://www.scratchapixel.com/old/lessons/3d-advanced-lessons/noise-part-1/pattern-examples/
http://www.dkc-atlas.com/

[9] Wikipedia. (2016). Super Mario Bros. [online] Available at: https://en.wikipedia.org/
w/index.php?itle=Super_Mario_Bros.& oldid=720413576 [Accessed 17 May 2016].

[10] Thegamedesignforum.com. (2016). Reverse Design: Super Mario World. [online]
Available at: http://thegamedesignforum.com/features/RD_SMW _1.html [Accessed 17
May 2016].

[11] Iforce2d.net. (2013). Ghost vertices - Box2D tutorials - iforce2d. [online] Available
at: http://www.iforce2d.net/b2dtut/ghost-vertices [Accessed 17 May 2016].

[12] Wikipedia. (2015). Marching squares. [online] Available at: https://en.wikipedia.or
g/wiki/Marching_sguares [Accessed 17 May 2016].

[13] Wikipedia. (2016). Donkey Kong (video game). [online] Available at: https://en.wik
Ipedia.org/wiki/Donkey_Kong_(video_game) [Accessed 17 May 2016].

[14] Wikipedia. (2016). Bubble Bobble. [online] Available at: https://en.wikipedia.org/wi
ki/Bubble Bobble [Accessed 17 May 2016].

[15] Wikipedia.(2016). Super Mario Bros.. [online] Available at: https://en.wikipedia.or
g/wiki/Super_Mario_Bros. [Accessed 17 May 2016].

[16] Shaun Inman. (2016). [online] Available at: http://blog.mimeoverse.com/post/57706
0703/following-yesterdays-analysis-of-super-mario [Accessed 17 May 2016].

[17] Wikipedia. (2016). The Legend of Zelda. [online] Available at: https://en.wikipedia.
org/wiki/The_Legend of _Zelda[Accessed 17 May 2016].

[18] Jason Bevins (2005). libnoise: Documentation. [online] Available at: http:/libnoise.
sourceforge.net/docs/classnoise 1 _1module 1 1Voronoi.html [Accessed 18 May 2016].

[19] Wikipedia. (2016). Random access. [online] Available at: https://en.wikipedia.org/w
iki/Random_access [Accessed 18 May 2016].

[20] Wikipedia. (2016). Mega Man (video game). [onling] Available at: https://en.wikipe
dia.org/w/index.php?titte=Mega Man_(video_game)& oldid=713617125 [Accessed 18
May 2016].

66

https://en.wikipedia.org/w/index.php?title=Super_Mario_Bros.&oldid=720413576
https://en.wikipedia.org/w/index.php?title=Super_Mario_Bros.&oldid=720413576
http://thegamedesignforum.com/features/RD_SMW_1.html
http://www.iforce2d.net/b2dtut/ghost-vertices
https://en.wikipedia.org/wiki/Marching_squares
https://en.wikipedia.org/wiki/Marching_squares
https://en.wikipedia.org/wiki/Donkey_Kong_(video_game)
https://en.wikipedia.org/wiki/Donkey_Kong_(video_game)
https://en.wikipedia.org/wiki/Bubble_Bobble
https://en.wikipedia.org/wiki/Bubble_Bobble
https://en.wikipedia.org/wiki/Super_Mario_Bros
https://en.wikipedia.org/wiki/Super_Mario_Bros
http://blog.mimeoverse.com/post/577060703/following-yesterdays-analysis-of-super-mario
http://blog.mimeoverse.com/post/577060703/following-yesterdays-analysis-of-super-mario
https://en.wikipedia.org/wiki/The_Legend_of_Zelda
https://en.wikipedia.org/wiki/The_Legend_of_Zelda
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1Voronoi.html
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1Voronoi.html
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/w/index.php?title=Mega_Man_(video_game)&oldid=713617125
https://en.wikipedia.org/w/index.php?title=Mega_Man_(video_game)&oldid=713617125

User feedback and testing

Since we are making an algorithm that improves over time by people playing trough
levels we are heavily dependent on testing the levels and algorithm and also people
giving feedback to to improve the algorithm

User feedback

When creating an algorithm to generate 2D-platformer levels by using alearning Al
there are different approaches you can use when it comes to the learning part of the Al.
Since our goal isto make the algorithm learn and get better by having a player play
trough the generated levels, we need to have some form of user feedback that the
algorithm can use to learn how to make better levels. We looked into two types of user
feedback for this task. We call them active and passive user feedback.

Passive user feedback

The passive user feedback is called passive because it is not actually collecting feedback
directly from the player himself. Instead it is collecting data throughout the level when a
player is playing trough a generated level. The program will collect different data and
variables while the player is playing and store thisto further improve the algorithm by
using the data collected. The learning part of thisisto use the datato generate levels
based on how the player is playing. This can also be used in real time while player is
playing to alter the generation ahead of the player. For exampleif the player is cruising
trough the level and is having absolutely no problem defeating the challenges that the
algorithm is giving, the algorithm can then see this with the data it has been collecting
and generate a more difficult part ahead to make the level feel chalenging. In the same
way the algorithm can also make the levelsfeel easier if the player ishaving areally
hard time. With this method we can make the player feel like the level has a perfect
difficulty and when they improve the levels also improve their difficulty. With this
approach the player might get the perfect difficulty curve and levels might be more
enjoyable when the difficulty changes to the players skill.

Active user feedback

The active user feedback is called active because it is collecting feedback directly from
the opinions of the player. We want to ask the player questions before and after a
playthrough to gather the information we need for our algorithm. Before the playthrough
we want to find out how the player feel about their skill level and the experience they
have playing 2D-platformer games. These answers are stored and used for later by
helping us see how experienced and skilled the player is and taking this into account
when the player is answering the questions that comes after the playthrough. For
example the player might find alevel extremely difficult to complete but only because

67

68

the player has little or no experience playing 2D-platformer games. If this happens and
we tell the algorithm that the level generated was extremely difficult, we end up
"tricking" the algorithm into thinking that levels that experienced players actually find
really easy is extremely hard and this will make the algorithm worse. The optimal
algorithm will generate levels with different difficulty based on the experience of the

player.

After the player has played through a generated level the user is again asked afew
questions. The questions revolve around asking the player about the difficulty of the
level, how fun the level was, rating the level and/or the overall design of the level. The
answers from the player is collected and based on what the player has answered the
algorithm gets updated. The agorithm takes data from the level that was played through
and alter the algorithm based on if the level feedback was positive or negative. The
algorithm can be saved in different ways: online, offline or per session. The per session
approach will make the algorithm generate better levels for a player for just one session
before it is reset, the offline approach will only develop the algorithm for one particular
computer while the online approach will evolve the agorithm for everyone. The online
approach aso lets us see how the algorithm evolves over time and we can then actually
find out if the algorithm is actually improving or not, since we can take alook at the
algorithm and see how it has been evolving.

Our approach

For our algorithm we have decided to go with the active user feedback approach. The
reason we did this is because we are interested in seeing how our generated levels would
evolve when players had a active saying in which levels where good or not instead of
having the program figure it out from data. We have decided to only as the player two
guestions after each level. The reason for thisis that we want to collect datafrom every
level but answering questions can be a boring task for a player and they might end up
being annoyed or bored and leave us less feedback to work with. We also use questions
that are easy and quick to answer to also make it more likely that players would put the
effort inn to actually answer. We do not ask the player about the experience of the player
and so on before they play because we focused on the algorithm creating just one level
and not having more difficulties to choose from.

The questions we decided to ask the playersis. "Wasthe level fun?' and "Please rate the
level. (from 1 to 3 stars).

Wastheleve fun?

This question is what we consider to be the easiest and fastest way to figure out if the
player found the generated level to be good. We think that if the player found the level to
be fun the level must also have been at |east somewhat decent, and since our game play
is pretty limited we do not think that the game play alone can carry aboring level. The

guestion has some problems that we have to take into consideration though. The question
only asks for the entire level, but the player might have enjoyed some parts of the levels
and hated the rest, so when answering the question the player does not quite know what
to answer. An solution to this that we considered was asking the player about different
parts of the level, but this felt tedious for the player to answer and asking questions like:
"Was the beginning fun?' felt strange and questions like: "What count as the beginning?"
would come up. To make it so we only needed the one question we have made the levels
short enough so that the player can feel like the whole level was either fun or not and
that the player remembers the entire level.

Pleaseratetheleve

This question is also very easy and quick to answer after first answering the one above.
The player can rate the level he just played and give it anywhere between one and three
stars. The reason we went for athree star rating system is because we wanted three
ratings that kinda meant bad, okay or good. If you have arating system consisting of a
lot of options people tend to pick answers on the end of the scale or the one in the very
middle. This makes the other options kind of useless since they are not used enough and
we also felt like we did not need them to make the algorithm better. The rating is then
used to make more drastic changes to the algorithm based on the rating and the first
guestion.

When the player answer the question the new data gets sent to the database. In the
database we have the five last entries saved and the newest one replaces the oldest one.
In the beginning we considered saving every entry but we figured that it would be too
much data to store and we really did not need to have all the data but rather just the last
few entries since the algorithm is evolving constantly. It would however be an

interesting thing to have so you could look back at it later and see how the algorithm was
at a certain point in time. We also considered saving every entry done and info about the
session and player submitting the data but we did not want to deal with ethical issues like
privacy and having to make an terms of service agreement to ask if we could use data
collected from the player and we also felt like it did not add to much knowing these
things.

Testing

Getting datafrom testing isabig part of our algorithm. We wanted to test the algorithm
both internally in the team and publicly with other people. In the beginning the aim was
to get people we know and also strangers to test the algorithm. The plan was to release
the program online and have people test it there since the data gets saved to our online
database. This became hard to do when our Installer did not want to work and we had to
scratch the online testing. This did not limit our testing too much because we had already

69

talked about the risk of letting strangers testing and now that risk was gone. The risk
with online testing is mostly about players answering incorrectly on our questions and
"tricking" the algorithm to think bad levels are fun and vice versa. Other thingsto take
into consideration is security regarding the database, for example SQL injection or some
experienced developers would maybe be able to get the database info out of our code and
tinkle with the data or ruin the database entirely. We are using prepared SQL statements
so SQL injections should not be a problem. People tricking the algorithm should not be a
problem since we think most people would have been honest and therefor the numbers of
people being honest would out shine people trying to ruin the algorithm, but the security
risk might have been a problem. Without the installer working we where still able to
make some friends and family test our algorithm.

Internal testing

The internal testing was done throughout the entire bachelor period. We tested the
algorithm alot every time changes where made to seeif it was producing levels like we
wanted it too. After every change we also reset all the data in the database so that the
algorithm would start from scratch in case something unexpected would happen after a
change that we did not think about if the change was big enough. After awhile when the
algorithm worked mostly like we wanted it we did a new reset and started testing it with
intention of seeing if the level would eventually become a good and fun one. After a
reset the newly generated levels would be mostly aflat line like his:

Start Goal

m

figure 12.1: flat level.

Then after testing the levels for some time it would start to look closer to how afun and
engaging 2D-platformer level looks like when it is professionally made for a game.

70

Those levels looked mostly like this:

figure 12.2: level with variation.

After we reach the more playable and fun levels we decided to | et other people have a
go at the algorithm to see if it would improve further and create better levels or see other
consequences of having people not involved in the project test the game.

Public testing

For public testing we chose to only invite friends and family because we know what type
of playersthey are so we could get a better range of skill, from beginner to professional,
this also meant that we could monitor the results to avoid people messing with the
algorithm as we had limited data to start from. We settled on gathering data from ten
people excluding the team. The algorithm requires more tests than ten people could
provide, but even with the limited amount of people testing the algorithm, we still
managed to get some interesting results. Compared to our Internal testing, we saw
similar resultsin the layout of the level, but the algorithm evolved at afaster rate because
of the larger pool of data we could gather. The team observed how different people
played the game and how they answered the survey afterwards. Looking at the results we
found out that we would need alot more than ten people for future testing and to see if
the algorithm evolved into what we expect, but we got a good first impression on how it
worked in reality and we are happy with the results so far.

71

72

Deployment

I nstaller

We use Visual Studio installer[1] for our installer. To get it to work, you only need to
install it and use Visua Studio to compile an installer. Everything is pretty much just
drag and drop. Y ou choose afolder and drag al the different resources needed into the
project. Y ou can also include all the merge modules[2] that you need to run the project.

Problems

Therewe alot of problems concerning the installer. It will run perfectly fine on
computers that are used by gamers and developers. Thisis dueto the fact that they have
most of the DLLs aready installed on their computers. This was attempted to be solved
using cygwin[3] using the "ldd [programname].exe" command and Dependency Walker|[
4]. Even using those two programs, we were unable to solve the issues of missing DLLSs.
But there was another problem there as well. Even after adding the DLL s that were
needed, we still encountered problems. This pointed towards there being 64-bit DLLSs
being used when it was supposed to use 32-bit DLLs, But all the compiled DLLs were
32-bit. The problem might lie in one of the libraries that require a DLL that does not
show up on programs that allow you to see the DLLs needed. It is highly probable that
mysglcppconn.dll is causing the problems due to the fact that it does not have proper
support for compiling it for Visual Studio 2015.

Deployment References

[1] Microsoft.com (2015). Microsoft Visual Studio 2015 Installer Projects. [online] Avai
lable at: https://visual studiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509f
b8933h9 [Accessed 14 May 2016].

[2] Microsoft.com (2013). About Merge Modules. [online] Available at: https://msdn.mic
rosoft.com/library/aa367434 [Accessed 14 May 2016].

[3] cygwin.com (no date). Cygwin. [onling] Available at: https.//www.cygwin.com/ [Acc
essed 14 May 2016].

[4] dependencywalker.com (no date). Dependency Walker. [online] Available at: http://w
ww.dependencywalker.com/ [Accessed 14 May 2016].

https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-1
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://dev.imt.hig.no/confluence/display/KREM/Deployment+References#DeploymentReferences-2
https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9
https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9
https://msdn.microsoft.com/library/aa367434
https://msdn.microsoft.com/library/aa367434
https://www.cygwin.com/
http://www.dependencywalker.com/
http://www.dependencywalker.com/

Discussion

Group Work and Workload

We decided at the start of the bachelor period that no one in the team should be the
group leader for the entire period. We ended up having no group leader at all. What we
did instead was that we where going to vote whenever there was a disagreement and a
decisions was needed to be made. In the event of atie there should always be one person
with adouble vote so that we could push the disagreement in adirection and a final
decision could be made. The person with the double vote would rotate every time the
double vote was used. The first person to receive the double vote was Jonas and the
double vote was never needed because most our disagreement ended with either
everyone finally agreeing or athree to one vote. Early on in the bachelor period we had
the requirement that each member of the team had to work a minimum of 40 hours, we
where thinking that a full time job is approximately 40 hours aweek and that we could
do the same for our bachelor. We did not factor in people having other courses or that
when you have afull time job you do not actually work the full eight hours everyday and
you can have afew breaks in there but when we where tracking our time we only tracked
actually working time. Therefor we changed the requirement down to 35 hours. Thislead
to the timed track actually being more inline with work actually being done and the work
people did was a bit better since they did not need to push them self. Still even with 35
hours minimum people sometimes worked a bit more than that.

During the development each individual in the team got more and more locked into
certain roles due to working on certain part of the engine alot. Thislead to it being
easier to ask a person to do something in a specific part of the engine instead of doing it
themselves, because it would either be faster or other people would not know how and
would haveto first learn how that part worked before they could implement what they
wanted. Thislead to some small problems with time being used waiting. Since we did
not have a set time frame of when you had to do work on the bachelor project, a person
might need something at nine in the morning, but the person that knew how to get that
done might not be awake before later in the day. This was however not a huge problem
since there was alot to work on and you could mostly just do something else while
waliting for the other part.

Further Development

Even though everyone on the team has learned alot and find the concept really
interesting, we as a team have decided that we do not want to work on the algorithm
anymore after the bachelor project has concluded. The reason for thisisthat we are
planning on creating an indie development game company and with that, our main focus
will be creating games. We do not think that this algorithm will net us any money. Early
on we where looking into if you could create an agorithm with a program that other

73

74

companies could use to generate levels for their 2D-games and then maybe sell this
program. We quickly found out that the program would either be to limited for this or it
would take us alot of yearsto make it somewhat decent and we just do not think that this
isworth our time as a company.

Cooper ative Play

We were interested in adding a cooperative playmode from the beginning, and we were
especialy invested in figuring out how multiplayer effected the gameplay experience on
the levels. Seeing how the feedback differs from single-player would be quite the
learning experience. Some of the issues we foresaw were that co-op would make it
harder to track Al improvements over time. SDL_Net, a network library we used during
Medieval Brawl, was also replaced with RakNet early on, and we were excited to test it
out. Early prototyping showed that RakNet was more user friendly than SDL_Net, and
levels are actually playable co-op right now with RakNet. The database hurdle was just
way too huge for it to be worth investing timein. The psycological effect it hason a
person when he plays with someone else rather than aoneis still something we would
like to experiment with in the future.

75

Conclusion

When we started working we really wanted to create a perfect algorithm for generating
2D platformer levels. The more we worked on this the more we realized that thisis not a
feasible task, at |east not without spending a big portion of your life dedicated to this task
alone. What we ended up with isis an algorithm that is able to learn and generate 2D
platformer levels that resembles hand crafted levels used in similar games. The algorithm
Is specific for 2D platformers of this type and is not easily modified to support other
types of platformers.

We also made significant improvements to our own engine which we would like to use
for future projects either for prototyping or creating simple games. We know that our
engine is good for creating 2D platformers and until we get alot of prefabricated assets
for other game engines we think that our engine is the best for us for creating these types
of games. Developing a bigger project where you have to use tools at a professional
level, time tracking and management models as a group has made us learn alot about
how the industry work. Thisis avery good experience to have when we are going to
start our own company after the bachelor period has concluded.

What we ended up with is abachelor thesis that included something from every course
included in the entire game programming degree.

76

Appendices

A. Project Plan

Kremen
Group Members:
Christer P. Somby
Henning E. Luick
Kristoffer Eidsa
Jonas D. Reitan

1.1Goa

1.1.1 Background

1.1.2 Project god

1.2 Scope

1.2.1 Project description
1.2.2 Delimitation

1.3 Projectorganization

1.3.1 Roles and Responsibilities

1.4 Software Devel opment

1.4.1 Description of software model

1.5 Risks

1.5.1 Identify and analyze project risks

1.5.2 Plan for handling the biggest risks

1.6 Development Process

1.6.1 Development Process

1.6.2 Gantt-diagram

1.6.3 Comments

PROJECT PLAN

1.1 Goal

77

https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.u3qj32vsingv
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.1lyyrj3w5i11
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.9amcuquun4ur
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.frbbdayrcjf7
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.8ktzb8rg0kmp
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.ead72c4xvpzi
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.h56ji6q091io
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.1bqfmfs18t4b
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.bjd2ec045lz
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.u8j5j4xkrepn
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.g215idjkskpw
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.kwh6ino0lq7b
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.2tbvazbjn0l0
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.7okuaav1afcz
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.3kag623xjxhi
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.2yf693hjkigv
https://docs.google.com/document/d/1FS1z8CZ-dg_8-nCwrxUYDTEyfV9F0nMdeT_cCMi_VaM/edit#heading=h.d8r2vsvult00

78

1.1.1 Background

We made the start of a game engine during our game programming course during our 5th
semester, and decided to continue working on that during our planning phase. We will be
using our engine during this bachelor to make the level generation tool. We are all very
interested in Artificial Intelligence, so we wanted to delve deeper into that topic during
the thesis. We have some experience within the topic and wish to improve on that and
hopefully discover something interesting about level design in the process.

Our team consists of Kristoffer Eidsd, Henning E. Luick, Jonas Reitan and Christer P.
Somby and we call ourselves Kremen.

1.1.2 Project goal

By the end of the project we will have learned more of the following subjects:

* |ntelligent level generation

® Learning Al using established and new algorithms

® Gathering of user statistics for better learning of Al’s.
® Medium scale networking and data collection

We wish to accomplish the following product goals by the end of the bachelor period:

* Wewill have implemented highly advanced Al
® Thiswill be accomplished by using artificial neural network or genetic
algorithms or a combination of both.
® Have completely implemented networking using ZeroMQ

1.2 Scope

1.2.1 Project description

We are going to write an Al that can tell whether or not a platform level is good or not.
The Al will do atest through the level to seeif it’s beatable, then it will present the level
to the user. The user then plays the map, when the user is finished, he will rate the map.
Thiswill be extradatathe Al receives to then be better at choosing levels that are good.

This Al will also use the users inputs or movements to teach itself how a player would
solve amap and use thisin the way it beats levels. (There are some risks of the levels not

being complicated enough after some time. So this needs to be considered)

The levelsthe Al will test are going to be randomly generated by some sort of Al that
learns how to make platform levels. It might work together with the solving Al to learn
how to make better maps.

1.2.2 Delimitation

We are not going to make an advanced 2d platformer but rather atool used for level
generation in 2d platform games. The generated levels will contain many common
features in platform games, but we will not be able to include all features. New features
can be added in the future, but the Al has to be recalibrated (by user tests) to include
those in new generated levels.

The tool will be specifically tailored for our engine, but the algorithms we end up using
should still be applicable to other tools.

If the make system that is planned for the project turns out to be too much work
compared to what isinitially expected, it will be dropped.

1.3 Projectorganization

1.3.1 Roles and Responsibilities

All team members will work on all parts of the project, and we have a shared
responsibility to make sure the project turns out as good as possible.

Henning is responsible for the networking.
Christer isresponsible for the make system.

Kristoffer and Jonas are responsible for the Al.

These responsibilities are by no means final and may change during the course of the
bachelor. Any person that wishes to work in a specific field is allowed to do this.

79

80

1.4 Softwar e Development

We have decided to choose RUP and Scrum as our software development
methodol ogies.

1.4.1 Description of software model

We are going to use sprints from the scrum model. Every friday at 16:00 we are going to
have a sprint meeting to discuss what we have accomplished that week and to find out
what each person should work on for the coming week.

From the RUP model we are using the way they divide everything up in phases. We start
off with planning and gradually switch over to development. Our project depend on user
feedback so we want to do testing parallel to development.

1.5 Risks

1.5.1 Identify and analyze project risks

Time - We may use to much time on creating the program. If we use to much time on
this we may have too little time collecting the data we need.

Too complex - We might get stuck on a particular part of the program that is too
complex for our knowledge.

Group problems - Any problems with the group. 1.E fighting over stuff, someone
leaving.

Money - If for some reason the project will cost too much money for us to handle.

1.5.2 Plan for handling the biggest risks

81

Time: we hope that our sprint meetings will help us plan good enough so we don’t
encounter a problem where timeis an issue.

Too complex: If we find something that seems hard to solve we will have a discussion
about if it’sworth trying or not and either try or scrap it based on this decision

Group problems: solved by following the rules that we all signed.

Money: Solved by following the rules and we al so plan on not using very much money
atall..

1.6 Development Process

1.6.1 Development Process

We are using the atlassian set of tools, Jira, Confluence and Bitbucket. These will
manage our time spent, issues and such.

A daily scrum will be held every day at 09:00 to discuss what we have done, what we
will do, if we have any issues and add or remove tasks/issues.

A sprint meeting will be held every friday at 16:00 where we will do areview of what
was done during the week and add bigger tasks and issues and discuss these. Estimated
duration of these meetingsis 1 hour.

A work log will be kept where group members will write what the did during the day and
what they are planning on doing the next day.

1.6.2 Gantt-diagram

January February March April May

Task Name + | Duration ~ Start + Finish -|| 812 0401 1101 1801 2501 0102 0802 1502 2202 2002 0703 1403 2103 2803 0404 1104 1304 2504 0205 0905 160

Planning 17 days Wed 06.01.16 Thu 28.01.16 [

Delivered Project Plan 0 days Thu28.01.16 Thu28.01.16 djum

Development 76 days Fri2e.0L16 Fril3.05.16 T 1

Sprint 1 5 days Mon 01.02.16 Fri 05.02.16 =l

sprint 2 5 days Mon 08.02.16 Fri12.02.16 "

Sprint 3 5 days Mon 15.02.16 Fri 19.02.16 T

Sprinta 5 days Mon 22.02.16 Fri 26.02.16 o

Sprint5 5 days Mon 29.02.16 Fri 04.03.16 =l

Sprint 6 5 days Mon 07.03.16 Fri11.03.16 3

Sprint 7 5 days Mon 14.03.16 Fri 18.03.16 H

Sprint g 5 days Mon 21.03.16 Fri 25.03.16

Sprint9 5 days Mon 28.03.16 Fri 01.04.16 H

Sprint 10 5 days Mon 04.04.16 Fri 08.04.16 =l

Sprint 11 5 days Mon 11.04.16 Fri15.04.16 -

Sprint 12 5 days Mon 18.04.16 Fri 22.04.16

Sprint 13 5 days Mon 25.04.16 Fri29.04.16 H

Sprint 14 5 days Mon 02.05.16 Fri 06.05.16

First prototype 0 days Mon 22.02.16 Mon 22.02.16 e 2202

Minimum Viable Product 0 days Mon 28.03.16 Mon 28.03.16 28.03

Beta Yersion 0 days Mon 25.04.16 Mon 25.04.16 *» 25.04

Finished Product 0 days Mon 09.05.16 Mon 09.05.16 » 09.05

Testing 30 days Mon 28.03.16 Fri 06.05.16 T 1

Gathering initial user data 5 days Mon 28.03.16 Fri01.04.16 I |1

Fixing issues 5 days Mon 04.04.16 Fri 08.04.16 -

Gather user data 5 days Mon 11.04.16 Fri 15.04.16 i '1

Analyze user data 5 days Mon 18.04.16 Fri 22.04.16 -

Gather user data 10 days Mon 25.04.16 Fri 06.05.16 I 1

Documentation 9 days Fri06.05.16 Wed 18.05.16 T 1

Writing report 7 days Fri06.05.16 Mon 16.05.16 I

Review report 2days Tue17.05.16 Wed 18.05.16 =

1.6.3 Comments

Our development phase consists of 14 one-week sprints. Each sprint ends with a meeting
to discuss the next sprint. The product backlog will be updated and additional tasks will
be added if needed.

The development period is split into four milestones. The first oneis a prototype to show
the potential use of the project. The second oneisthe MVP(Minimum Viable Product),
which isthe first version where we start larger scale user data collection. The Beta
Version isamore finished product which will have amostly fleshed out user data
collection and will also mostly be finished. And the last one is the finished product.

When we reach a milestone, we will see whether we are on track to finishing the project.
If we notice that we are not going to be able to reach what we set out to do, we will
reduce the project parameters. We will also add or remove planned or useless features.

Testing will be done during the development process, because we need user data to see
whether or not the Al that is being developed actually learns from the data collected. The
first phase of testing will be the initial gathering of data. This data might be useless to us

82

later, but we need to gather it and analyze it to seeif it is of use, and then we will modify
the data collection if needed. If we notice that we are actually able to collect data earlier,
the MV P milestone will be pushed forward.

83

Rules:

1. In the event of disagreements, we will vote on the proposals. In the event of a

tie, one person will be given a double vote. If a decision isdecided by a double
vote, the double voteisthen rotated to another person.

. If agroup member does not complete the work he has promised, but has done

his best and asked for assistance with the task he was given and it turned out
to be too much, no penalty will be given.

If a group member does not completethework he has promised and has
given thetask much lesstime than expected, a war ning will be given. In the
event of multiple warnings, rule 6 will be applied.

. Exceptionsfor rule 2 could be: Death in the family, illness, no accessto

computer and other unpredictable eventsthat the other membersof the
group agreearevalid.

. For anyonetaking the Professional Programming (IMT3602) during the same

semester asthe bachelor, it isexpected that they work at least 40 hour a week.
Group members are expected to pick up new tasksif their task is completed
with lessthan the designated time.

In the case of them not taking Professional Programming, it is expected that
thework at least 35 hours a week.

. Inthe case a member hasbreached rule 2 or 4 atotal of 3 times, the member

will be dismissed from the group. Membersthat don’t wish to be a part of the
bachelor will be dismissed from the group.

. In the case of dismissal, the member in question will be stripped of all rights

to the documents (project plan, bachelor document, design document, etc),
repositories, asset with limited licenses. Dismissed memberswill not be
compensated for any eventual expenses.

. All expenses are divided equally among all members.
. All member can sign documents on behalf of the group.

. All memberscan call for a meeting. The person that callsfor the meetingsare

responsible for the meeting agenda.

10. During meetings, members ar e expected to devote all their attention to the
meeting.

11. Wehaveno project leader.

Signed:

Jonas Reitan Henning Luick

Christer Somby Kristoffer Eidsa

85

B. Progektavtale

NTNU
Norges Teknisk-Naturvitenskapelige Universitet
NTNU i Gjovik, Avd. Informatikk og Medieteknikk

PROSJEKTAVTALE

mellom NTNU v/Avd. Informatikk og Medieteknikk (NTNU/AIMT) (utdanningsinstitusjon), og
Keemey (SEvEPLEce 1)

(oppdragsgiver), og

@W P \Sw-ttj 3 #megi Ebb
KV.bs//’(ril}/&\ Elwyﬁ ;{’Has D. }géﬁ/‘m

(student(er))

Avtalen angir avtalepartenes plikter vedrerende gjennomfaring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomfore prosjektet i perioden fra 7\&0{ /(’ til , 30 € |6 .

Studentene skal i denne perioden falge en oppsatt fremdriftsplan der ATMT yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til radighet kunnskap og
materiale som er nadvendig for 4 f& gjennomfart prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og pa et nivé tilpasset studentencs faglige kunnskaper. Oppdragsgiver plikter pa
foresporsel fra ATMT 4 gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomferingen av prosjektet dekkes pa falgende mate:

- Oppdragsgiver dekker selv gjennomforing av prosjektet nér det gjelder f.eks. materiell, telefon/fax, reiser
og nadvendig overnatting pi steder langt fra Gjevik/AIMT. Studentene dekker utgifter for ferdigstillelse
av prosjektmateriell.

- Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som er
brukt til prototypen. Dersom det er nedvendig med sterre og/eller spesielle investeringer for 4 fa
gjennomfort prosjektet, ma det gjares en egen avtale mellom partenc om eventuell kostnadsfordeling og
eiendomsrett.

3. AIMT star ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller at
prosjektet blir fullfert. Prosjektet ma anses som en cksamensrelatert oppgave som blir bedemt av
faglarer/veileder og sensor (intern og ekstern sensor). Likevel er det en forpliktelse for utaverne av
prosjektet 4 fullfare dette til avtalte spesifikasjoner, funksjonsnivé og tider.

4. Alle bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til publisering,
kan gjeres tilgjengelig via NTNUs institusjonelle arkiv hvis de har skriftlig karakter A, B eller C.

Tilgjengeliggjering i det dpen arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale
om publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjoring nar de
signerer denne prosjektavtalen, og mé evt. gi skriftlig melding til studenter og dekan om de i lapet av
prosjektet endrer syn pa slik offentliggjering.

Den totale besvarelsen med tegninger, modeller og apparatur s& vel som programlisting, kildekode mv. som
inngdr som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og
forskningsformal. Besvarelsen, eller vedlegg til den, mé ikke nyttes av AIMT til andre formél, og ikke
overlates til utenforstiende uten etter avtale med de gvrige parter i denne avtalen. Dette gjelder ogsd firmaer
hvor ansatte ved NTNU/AIMT og/eller studenter har interesser.

1

Prosjektavtale AIMT v200116

86

NINU
Norges Teknisk-Naturvitenskapelige Universitet
NTNU i Gjovik, Avd. Informatikk og Medietekniklc

6. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjer studenten(e) i
sin besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom
oppdragsgiver og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

7. Ut over den offentliggjering som er nevnt i punkt 4 har studenten(e) ikke rett til & publisere sin besvarelse,
det vare seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende
samtykke m4 foreligge i forholdet mellom student(er) og faglerer/veileder for det materialet som
faglaerer/veileder stiller til disposisjon.

8. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i Fronter. I tillegg leveres et cksemplar til
oppdragsgiver.

9. Denne avtalen utferdiges med et eksemplar til hver av partene. P4 vegne av AIMT er det dekan/prodekan
som godkjenner avtalen.

10. T det enkelte tilfelle kan det inngds egen avtale mellom oppdragsgiver, student(er) og AIMT som regulerer
neermere forhold vedrorende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og skonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) gnsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten AIMT som partner.

11. Nar NTNU/AIMT ogsé opptrer som oppdragsgiver, trer NTNU/AIMT inn i kontrakten bade som
utdanningsinstitusjon og som oppdragsgiver.

12. Eventuell uenighet vedrarende forstielse av denne avtale loses ved forhandlinger avtalepartene i mellom.
Dersom det ikke oppnas enighet, er partene enige om at tvisten lases av voldgift, etter bestemmelsene i
tvistemalsloven av 13.8.1915 nr. 6, kapittel 32.

13. Deltakende personer ved prosjektgjennomfaringen:

NTNU/AIMTs veileder (navn): 44:1,/{1,(\VA //ﬁ wo SQ("(WS k l

Oppdragsgivers kontaktperson (navn): }d‘ na s D /ee,, 4

Student(er) (signatur): _Adne Q.,/qn dato 2801 1€
%9 J gc% ‘ dato 28 .0/[.[6
7‘;/—’///0’///)’ %Zt'(—a' datoZS 6 1./&
Houning £ Luiot wo 2 b

J
Oppdragsgiver (signatur): gf/ku\,' & JLMA dato ?J .01 I£

Signert avitale leveres digitalt i Fronter(IMT3912)
Godkjennes digitalt av AIMTs dekan

Om papirversjon med signatur er onskelig, md papirversjon leveres til AIMT i tillegg.
Plass for evt sign:
AIMT Dekan/prodekan (signatur): dato

2

Prosjektavtale AIMT v200116

87

Attachment 1
Prosjektavtale

Kremen

Names of group members:
Christer P. Somby
Henning E. Luick
Kristoffer Eidsa

Jonas Reitan

Each group member has shared ownership as shown below
Name: Share:

Christer P. Somby 25%

Henning E. Luick 25%

Kristoffer Eidsa 25%

Jonas Reitan 25%

1. In the case of dismissal, the member in question will be stripped of all rights to the
documents (project plan, bachelor document, design document, etc), repositories,
asset with limited licenses. Dismissed members will not be compensated for any
eventual expenses.

2. In the event of disagreements, we will vote on the proposals. In the event of a tie,
one person will be given a double vote. If a decision is decided by a double vote, the
double vote is then rotated to another person.

C. Toggl

88

toggl
Summary report ©togg
2016-01-01 - 2016-12-31
Total 2062 h 49 min
621:10 624:50
625 h
505:59
469 h
310:48
313h
156 h
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
Jlan F‘eb I;Iar /:\pr lv‘1ay Jlun Jlul A‘ug S‘ep (I3ct l\’lov Dec
Projects Time entries

‘o N'eo.

. Spillprog bachelor 2062:49:17 world generation 308:57:08

world generating and data... 164:30:33

Installer 145:06:38
Console 118:57:05
Other 1325:17:53

89

Projects / Time entries

Spillprog bachelor

A* and world, discussing with Henning

A* and world, discussing with Henning, research
Added/learned libnoise

Added sql and boost

Added support for billboarding

added timedblock to the world generation, but nothing is spawned yet
adding 45 degree slopes

adding cube

adding custom component types

adding enemies and fixing/improving marching squares
adding enemy

adding fun enemies

adding pyramid

A* in World Implementation and theorycrafting

attempt at level generation using ANN

Attempting to install VM

Bachelor

back to more ANN stuff to get something general up and running first

box2d research for "gravity zones" and apparently over complicating stuff

bug fixing and improvements
confluence documentation

confluence, research and stuff
Confluence Settings

confluence writing

confluence writing about development process, noise, generation etc.
confluence writing and discussions
Console

Console / Cmake

consulting

creating a somewhat working level again
creating enemies

database

database integration

Database stuff

database, ui and world generation

Debugging and fixing new factory

Duration

2062:49:17

0:59:37

4:16:08

2:26:12

3:41:32

0:16:34

0:51:31

0:37:52

3:06:01

1:41:12

1:14:46

1:58:49

1:18:03

2:01:48

2:21:25

2:23:00

2:02:29

3:25:44

4:32:04

1:38:45

1:59:32

2:39:10

6:56:00

5:07:42

5:37:52

3:30:00

10:25:00

6:25:36

118:57:05

5:46:08

8:55:15

4:02:16

1:55:51

1:27:56

2:36:31

29:45:42

6:06:40

2:49:55

0

debugging database

Decided not to use zeromq. helped some people, did some research on more suited libraries

designing chunk ideas, world generation and consulting
did some ui stuff and world gen
Discussed stuff as a group. World generation, bugfix, tweaks.

discussing Al in gamelab

discussing confluence, bachelor and art stuff, changed some stuff, wrote some stuff

Discussing different noise algorithms and finding bottlenecks
Discussing generation techniques

Discussing spikes, UVs and mesh with Henning, tested cave algorithm
Discussing w/ Henning

documentation

Documentation

documentation /enemy stuff

documenting

document writing

enemy stuff

Engine actor improvements

Experimenting with make

figuring out how the custom state system works and looked up box2d stuff

figuring out mysql examples

Fill gap algorithm in world generation, tested spike/moving platform stuff, tried adding damage on

spikes, removed some unused crap

finished up some stuff, did some jira thingy and started adding a spring game mechanic

finishing the first version of database handler

Fixed bug where goal would not spawn, compile time benchmarking, testing multithreading,

testing various ideas(need feedback?)

Fixed some bugs(Actually compiles now), added goal to world generation and fixed some errors in

various actor xmls

Fixed some bugs in world generator, read about a* edge placement, discussed some stuff with

Henning, network debugging

fixing memory bug

fixing network code

fixing proper cube mesh

fixing some animation and compile performance by rearranging includes
fixing stupid cpp files with template

Flashing stuff and figuring out stuff, bugfixing, shader stuff

friday meeting

0:51:40

3:51:46

3:48:24

5:03:51

5:00:00

4:14:25

5:23:50

10:07:00

2:54:15

4:14:26

0:18:08

16:18:03

24:18:16

5:57:35

0:37:42

18:25:49

7:41:57

8:12:39

0:22:55

1:26:42

1:08:00

5:44:00

3:24:10

0:52:01

6:04:59

1:47:.07

7:34:13

3:17:.00

5:04:38

1:49:14

2:34:10

3:46:29

4:22:29

4:27:08

91

fryday meeting

General object storage

generation algorithm improvements

generation improvements

group meeting at my place

hardcore merge

Helping eidséa

Helping Eidsa

Helping Jonas

Hopefully finishing touches on componentcreation
implementing ANN

implementing block and fixing contact listener
implementing block that tricks ur tiny human mind
Implementing database handler

implementing spring

Implementing user feedback gui

implementing zeromq in engine

improving gui

improving level generation

Installer

Installer, dependency

Installer (DLLs)

Installer testing

Lambda experimentation

Lan Console work

learning algorithms

level design discussing and how to do it

level design for world generation and looked at box2d documentation to solve my problems
Level Design Learning and looking at platforming A*
level design research and looking at various themes we might want to implement
level generation

Level Generation

Looked at optimization algorithms (heap, simplifying paths, etc.), a* improvements (weights) and

other things that might help us

Looked more into fixing database bug
made new art for confluence

Made world generator a bit smarter, still much to do. Read up about algorithms to solve some

problems.

Make stuff

2:09:21

4:48:03

1:58:39

0:15:03

3:00:00

2:39:53

0:10:30

5:14:28

0:10:47

0:57:22

1:02:14

4:02:44

3:21:36

11:42:29

2:05:53

22:46:25

1:48:10

60:51:02

14:36:03

145:06:38

5:10:32

5:39:24

5:10:49

1:02:32

1:00:00

4:01:31

1:43:00

3:54:14

3:221:19

1:42:35

9:29:12

60:55:56

5:48:40

2:03:26

1:14:39

6:57:31

14:21:43

92

making userfeedback work with database

MDP plan b

meeting

Meeting

meeting at jonas

meeting at mustad

Meeting at mustad

Meeting at Mustad

meeting at school

Meeting at school. World generation discussion and ideas
Meeting - Business

meeting, discussing

Meeting Jonas

meeting, more confluence stuff

Meeting Mustad

meeting with &dne

meeting with mariusz

Meeting with Mariusz

Meeting w/tweaking of gui, world and objects

Member function Pointer

Mem_fn storage

Merge to master, fixing conflicts, support eidsa, christer mvp
More A*, grid, pushed some stuff, still some stuff to do
more enemies

More general object storage

more generation stuff. looking into MDP

more marching squares improvements
MorningMeeting

morning meeting

Morning meeting

mostly documentation stuff

Moving database and stuff

mustad meeting

Mysql

Network Testing

Pathfinding

Performance testing with henning

Planned out object generation and looked at ways to implement it

planning level generation

16:47:29

0:26:29

1:43:37

41:43:35

12:30:20

1:28:00

1:27:07

1:01:45

5:20:00

7:03:00

1:13:00

6:30:30

9:30:00

4:09:00

1:28:00

0:50:01

2:31:20

2:25:21

1:29:42

7:38:57

3:06:20

1:16:28

0:46:00

1:45:29

0:27:00

1:37:50

3:05:07

0:58:09

3:21:07

0:41:00

4:08:57

5:14:39

1:28:29

4:42:11

1:12:00

22:49:58

0:38:00

4:56:15

3:21:10

93

played with coin at school
pressing f5 on confluence
pushed some broken stuff.
Raknet implementation
raknet work

read about reverse design on Mario to learn gradually increasing difficulty in level design

read about stl, mic, some tweaks to stuff

reading about level design

Reading about Machine learning

Reading about MDP

Reading Al stuff

reading and testing world generation stuff
Reading bachelor reports

Reading Curry

Reading GA

Reading game loop models

reading/looking at crossplatform compiling, world generation
Reading make stuff

Reading member function pointers

Reading on software models

Reading on Vulcan API

Read Variadic Templating

reevaluating tile-by-tile method

reimplementing actor loading

removing messaging between components
renaming the project

replace includes with forward declarations
replacing more sdl net code

Replacing sdl net with zeromq

Research

Research

research and note taking

researched good level design, world generation, group discussion on skype
researched NEAT (cgNEAT). World/level generation.

Researched stuff regarding writing a bachelor thesis, discussed/meeting, tried to fix a few bugs,

looked at a* stuff

Research/Implementation

researching and implementing FSM for actors

5:20:27

1:29:16

0:08:59

2:41:50

3:01:33

3:23:20

5:18:01

1:30:31

2:24:45

0:13:10

3:46:23

5:02:13

2:05:38

0:38:01

1:21:03

6:52:05

4:34:.07

2:37:05

2:40:55

0:37:11

5:18:54

5:48:50

2:24:26

3:46:34

4:49:32

0:38:23

2:07:50

1:29:46

2:05:38

20:42:28

12:38:49

4:55:07

7:29:00

5:50:35

7:26:16

12:58:01

17:19:07

94

running diagnostic tests

School

School meeting

School thing

scrum meeting

separating generation into sections and adding tinkering with AT
spike physics

Spring Meeting

Sprint meeting

Storing objects

Support

Support

tested some more world generation stuff
Tested some stuff for Henning

Testing ZeroMQ

thursday meeting

tried to fix database not working in debug. Gave up and did a workaround that works fine.

trying out mysql stuff

Trying to solve a weird bug in grid representation of world, need rework to solve issues with world

being in negative y, tested userfeedback

trying to sort out a few bugs, but the compiler don't agree with me
trying to understand database and stuff

Try to fix an error with make

tutorial from henning

tutorial from Henning

Tweaked world generation

Tweaking A* to work with physics, grid representation of world
weekly meeting

went to school

whiteboard sketching and testing stuff

Working in airport

Working in the air

Working on bus

world gen and hitting head against a wall

world generating and database stuff

World Generation

world generation

World generation

world generation

0:30:19

5:20:00

3:36:00

4:37:00

1:22:07

1:25:33

1:04:42

2:04:11

7:30:56

0:28:12

1:27:01

2:02:48

1:46:21

0:39:55

1:35:13

6:30:00

1:09:16

5:08:46

4:38:15

4:13:43

5:29:46

8:32:46

0:41:34

0:41:40

0:08:34

4:20:10

1:57:15

17:32:16

2:18:56

1:19:00

1:25:00

1:04:00

7:18:00

164:30:33

29:52:52

308:57:08

65:03:17

7:18:41

95

world generation and meeting with Mariusz

world generation and research

world generation and some research

world generation, new project test(didn't work), merge with master

world generation, reading/researching stuff

world generation testing

World Generation testing to see what might work or not

World generation testing, tweak the grid for A* and object spawning algorithm
world generation theories, research and planning

world generation with henning

world generation with jonas

world generation with layers and experimenting with stuff

world generation with more database integration

world generator

world generator stuff, rotating balls

world/level generation

world/level generation/research and testing some stuff

World Mechanics

world stuff

Writing about database, Henning crashed confluence so writing in notepad or something
writing about gui, user feedback and databases

writing about userfeedback and tweaking user feedback stuff

Writing and fixing stuff

writing client code

Writing in my document, worked with some box2d stuff that didn't work for my purpose
writing server code

Writing stuff about database

Wrote about noise algorithm and the challenges of finding the correct one
Wrote about noise at confluence, tested multi layered world generation

ZeroMQ

4:11:32
5:06:39
9:01:28
2:49:57
6:21:45
1:14:05
5:08:12
5:15:04
5:15:07
3:10:42
2:43:47
4:20:42
4:39:04
7:49:52
1:51:04
14:19:59
5:52:39
2:39:27
5:06:00
1:18:24
3:10:50
5:10:26
14:43:08
3:28:25
3:15:13
3:19:25
1:28:12
3:16:10
2:01:00
3:02:55

Created with toggl.com

96

Summary report O toggl

2016-01-01 - 2016-12-31
Total 516 h 18 min

Christerpsomby selected as users

152:34 158:00
134:11 dooin
119h
71:32
80 h
40 h
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
i]] "] I T] I T T]
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Projects Time entries

00

Installer 145:06:38
Console 118:57:05

. Spillprog bachelor 516:18:37

Level Generation 60:55:56
Other 191:18:58

97

Projects / Time entries

Spillprog bachelor
Attempting to install VM
Bachelor
Confluence Settings
Console
Console / Cmake
Documentation
Experimenting with make
General object storage
Helping eidsa
Helping Eidsa
Helping Jonas
Installer
Installer, dependency
Installer (DLLs)
Installer testing
Lambda experimentation
Lan Console work
Level Generation
Make stuff
Meeting
Meeting - Business
Meeting Jonas
Meeting Mustad
Member function Pointer
Mem_fn storage
More general object storage
Mysql
Performance testing with henning
Reading about Machine learning
Reading about MDP
Reading AI stuff
Reading bachelor reports
Reading Curry
Reading GA
Reading game loop models
Reading make stuff

Reading member function pointers

Duration

516:18:37

3:25:44

4:32:04

5:37:52

118:57:05

5:46:08

24:18:16

0:22:55

4:48:03

0:10:30

5:14:28

0:10:47

145:06:38

5:10:32

5:39:24

5:10:49

1:02:32

1:00:00

60:55:56

14:21:43

7:08:14

1:13:00

9:30:00

1:28:00

7:38:57

3:06:20

0:27:00

4:42:11

0:38:00

2:24:45

0:13:10

3:46:23

2:05:38

0:38:01

1:21:03

6:52:05

2:37:05

2:40:55

98

Reading on software models
Reading on Vulcan API

Read Variadic Templating
School

School meeting

School thing

Spring Meeting

Sprint meeting

Storing objects

Try to fix an error with make
tutorial from henning
Working in airport

Working in the air

Working on bus

0:37:11
5:18:54
5:48:50
5:20:00
3:36:00
4:37:00
2:04:11
5:03:46
0:28:12
8:32:46
0:41:34
1:19:00
1:25:.00
1:04:00

Created with toggl.com

99

Summary report O toggl

2016-01-01 - 2016-12-31
Total 499 h 18 min

Henningel selected as users

156:58 161:14
162h
111:10 122h
69:55 81h
41h
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
J‘an F‘eb I\IAar /;\pr lv‘1ay Jlun Jlul A‘ug S‘ep Cl)ct r\‘lov |:‘>ec
Projects Time entries
. Spillprog bachelor 499:18:25 . world generation 220:30:38

Other 278:47:47

Projects / Time entries Duration

Spillprog bachelor 499:18:25
- 0:59:37
adding 45 degree slopes 3:06:01
adding cube 1:41:12
adding custom component types 1:14:46
adding enemies and fixing/improving marching squares 1:58:49
adding enemy 1:18:03
adding fun enemies 2:01:48
adding pyramid 2:21:25
attempt at level generation using ANN 2:02:29
back to more ANN stuff to get something general up and running first 1:38:45
bug fixing and improvements 2:39:10
consulting 8:08:15
creating a somewhat working level again 4:02:16
creating enemies 1:55:51
database 1:27:56
database integration 2:36:31
Debugging and fixing new factory 2:49:55
Decided not to use zeromq. helped some people, did some research on more suited libraries 3:51:46
discussing Al in gamelab 4:14:25
documentation 16:18:03
documentation /enemy stuff 5:57:35
documenting 0:37:42
document writing 18:25:49
enemy stuff 7:41:57
Engine actor improvements 8:12:39
fixing memory bug 3:17:00
fixing network code 5:04:38
fixing proper cube mesh 1:49:14
fixing some animation and compile performance by rearranging includes 2:34:10
fixing stupid cpp files with template 3:46:29
friday meeting 4:27:08
fryday meeting 2:09:21
generation algorithm improvements 1:58:39
generation improvements 0:15:03
hardcore merge 2:39:53
Hopefully finishing touches on componentcreation 0:57:22
implementing ANN 1:02:14

2

100

101

implementing zeromq in engine
improving level generation

learning algorithms

level generation

MDP plan b

meeting

Meeting

meeting at jonas

meeting at mustad

meeting with adne

meeting with mariusz

more enemies

more generation stuff. looking into MDP
more marching squares improvements
MorningMeeting

morning meeting

mostly documentation stuff

planning level generation

played with coin at school

Raknet implementation

raknet work

reevaluating tile-by-tile method
reimplementing actor loading

removing messaging between components
renaming the project

replace includes with forward declarations
replacing more sdl net code

Replacing sdl net with zeromq
researching and implementing FSM for actors
running diagnostic tests

scrum meeting

separating generation into sections and adding tinkering with Al

spike physics
Testing ZeroMQ
thursday meeting
weekly meeting
went to school
world generation

world generation with jonas

1:48:10

14:36:03

4:01:31

9:29:12

0:26:29

1:27:19

2:28:37

3:00:01

1:28:00

0:50:01

2:31:20

1:45:29

1:37:50

3:05:07

0:58:09

3:21:07

4:08:57

3:21:10

5:20:27

2:41:50

3:01:33

2:24:26

3:46:34

4:49:32

0:38:23

2:07:50

1:29:46

2:05:38

17:19:07

0:30:19

1:22:07

1:25:33

1:04:42

1:3513

6:30:00

1:57:15

3:35:28

220:30:38

2:43:47

102

world generation with more database integration
writing client code
writing server code

ZeroMQ

4:39:04
3:28:25
3:119:25
3:02:55

Created with toggl.com

103

Summary report

2016-01-01 - 2016-12-31
Total 529 h 41 min

Jonas Reitan selected as users

155:12

O togg!

148:46
132:46 156h
92:55 117h
78 h
39h
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
-] I '] I T]] T T]
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Projects Time entries

. Spillprog bachelor 529:41:21

. world generation 88:26:30

. World Generation 29:52:52
Other 411:21:59

104

Projects / Time entries

Spillprog bachelor
A* and world, discussing with Henning
A* and world, discussing with Henning, research
Added/learned libnoise
Added sql and boost
Added support for billboarding
added timedblock to the world generation, but nothing is spawned yet
A* in World Implementation and theorycrafting
box2d research for "gravity zones" and apparently over complicating stuff
confluence documentation
confluence, research and stuff
confluence writing
confluence writing about development process, noise, generation etc.
confluence writing and discussions.
consulting
designing chunk ideas, world generation and consulting
Discussed stuff as a group. World generation, bugfix, tweaks.
discussing confluence, bachelor and art stuff, changed some stuff, wrote some stuff
Discussing different noise algorithms and finding bottlenecks
Discussing generation techniques
Discussing spikes, UVs and mesh with Henning, tested cave algorithm
Discussing w/ Henning

Fill gap algorithm in world generation, tested spike/moving platform stuff, tried adding damage on

spikes, removed some unused crap

Fixed bug where goal would not spawn, compile time benchmarking, testing multithreading,

testing various ideas(need feedback?)

Fixed some bugs(Actually compiles now), added goal to world generation and fixed some errors in

various actor xmls

Fixed some bugs in world generator, read about a* edge placement, discussed some stuff with

Henning, network debugging

Flashing stuff and figuring out stuff, bugfixing, shader stuff

group meeting at my place

level design discussing and how to do it

level design for world generation and looked at box2d documentation to solve my problems
Level Design Learning and looking at platforming A*

level design research and looking at various themes we might want to implement

Looked at optimization algorithms (heap, simplifying paths, etc.), a* improvements (weights) and

other things that might help us

Duration

529:41:21

4:16:08

2:26:12

3:41:32

0:16:34

0:51:31

0:37:52

2:23:00

1:59:32

6:56:00

5:07:42

3:30:00

10:25:00

6:25:36

0:47:00

3:48:24

5:00:00

5:23:50

10:07:00

2:54:15

4:14:26

0:18:08

5:44:00

6:04:59

1:47:07

7:34:13

4:22:29

3:00:00

1:43:00

3:54:14

3:21:19

1:42:35

5:48:40

105

made new art for confluence

Made world generator a bit smarter, still much to do. Read up about algorithms to solve some

problems.

meeting

Meeting

Meeting at Mustad

meeting at school

Meeting at school. World generation discussion and ideas
meeting, discussing

meeting, more confluence stuff

Meeting w/tweaking of gui, world and objects

Merge to master, fixing conflicts, support eidsa, christer mvp
More A*, grid, pushed some stuff, still some stuff to do
Morning meeting

mustad meeting

Network Testing

Pathfinding

Planned out object generation and looked at ways to implement it
pushed some broken stuff.

read about reverse design on Mario to learn gradually increasing difficulty in level design

read about stl, mic, some tweaks to stuff

reading about level design

reading and testing world generation stuff

reading/looking at crossplatform compiling, world generation

Research

research and note taking

researched good level design, world generation, group discussion on skype
researched NEAT (cgNEAT). World/level generation.

Researched stuff regarding writing a bachelor thesis, discussed/meeting, tried to fix a few bugs,

looked at a* stuff

Research/Implementation

Support

Support

tested some more world generation stuff
Tested some stuff for Henning

Trying to solve a weird bug in grid representation of world, need rework to solve issues with world

being in negative y, tested userfeedback

1:14:39

6:57:31

0:16:18

14:32:40

1:01:45

5:20:00

7:03:00

6:30:30

4:09:00

1:29:42

1:16:28

0:46:00

0:41:00

1:28:29

1:12:00

22:49:58

4:56:15

0:08:59

3:23:20

5:18:01

1:30:31

5:02:13

4:34:07

20:42:28

4:55:07

7:29:00

5:50:35

7:26:16

12:58:01

1:27:01

2:02:48

1:46:21

0:39:55

4:38:15

106

trying to sort out a few bugs, but the compiler don't agree with me
Tweaked world generation

Tweaking A* to work with physics, grid representation of world
whiteboard sketching and testing stuff

world generation

World Generation

world generation

world generation and meeting with Mariusz

world generation and research

world generation and some research

world generation, new project test(didn't work), merge with master
world generation, reading/researching stuff

world generation testing

World Generation testing to see what might work or not

World generation testing, tweak the grid for A* and object spawning algorithm
world generation theories, research and planning

world generation with henning

world generation with layers and experimenting with stuff

world generator

world generator stuff, rotating balls

world/level generation

world/level generation/research and testing some stuff

World Mechanics

world stuff

Wrote about noise algorithm and the challenges of finding the correct one

Wrote about noise at confluence, tested multi layered world generation

4:13:43
0:08:34
4:20:10
2:18:56
88:26:30
29:52:52
718:41
4:11:32
5:06:39
9:01:28
2:49:57
6:21:45
1:14:.05
5:08:12
5:15:04
5:15:07
3:10:42
4:20:42
7:49:52
1:51:04
14:19:59
5:52:39
2:39:27
5:06:00
3:16:10
2:01:00

Created with toggl.com

107

Summary report

2016-01-01 - 2016-12-31
Total 517 h 30 min

Kristoffer Eidsa selected as users

O togg!

156:24 156:50
157 h
127:51
118 h
76:24
79h
39h
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
J‘an F‘eb I\IAar /;«pr lv‘1ay Jlun Jlul A‘ug SK9p Cl)ct r\‘lov |:‘>ec
Projects Time entries
. Spillprog bachelor 517:30:54 world generating and data... 164:30:33

World generation 65:03:17
improving gui 60:51:02
Database stuff 29:45:42

Other 197:20:20

108

Projects / Time entries
Spillprog bachelor
Database stuff
database, ui and world generation
debugging database
did some ui stuff and world gen
figuring out how the custom state system works and looked up box2d stuff
figuring out mysql examples
finished up some stuff, did some jira thingy and started adding a spring game mechanic
finishing the first version of database handler
implementing block and fixing contact listener
implementing block that tricks ur tiny human mind
Implementing database handler
implementing spring
Implementing user feedback gui
improving gui
Looked more into fixing database bug
making userfeedback work with database
Meeting
meeting at jonas
Meeting at mustad
Meeting with Mariusz
Moving database and stuff
pressing f5 on confluence
Research
Sprint meeting
tried to fix database not working in debug. Gave up and did a workaround that works fine.
trying out mysql stuff
trying to understand database and stuff
tutorial from Henning
went to school
world gen and hitting head against a wall
world generating and database stuff
World generation
Writing about database, Henning crashed confluence so writing in notepad or something
writing about gui, user feedback and databases
writing about userfeedback and tweaking user feedback stuff
Writing and fixing stuff

Writing in my document, worked with some box2d stuff that didn't work for my purpose

Duration

517:30:54

29:45:42

6:06:40

0:51:40

5:03:51

1:26:42

1:08:00

3:24:10

0:52:01

4:02:44

3:21:36

11:42:29

2:05:53

22:46:25

60:51:02

2:03:26

16:47:29

17:34:04

9:30:19

1:27:07

2:25:21

5:14:39

1:29:16

12:38:49

2:27:10

1:09:16

5:08:46

5:29:46

0:41:40

13:56:48

7:18:00

164:30:33

65:03:17

1:18:24

3:10:50

5:10:26

14:43:08

3:15:13

Writing stuff about database 1:28:12

Created with toggl.com

109

Detailed report

2016-01-01

- 2016-

12-31

Total 2065 h 13 min

Date
02-01

02-01
02-01
02-01
02-01
02-01
02-01
02-01
02-01
02-01
02-02
02-02
02-02
02-02
02-02
02-02
02-02
02-02

02-02

110

Description
Bachelor

Spillprog bachelor
Meeting
Spillprog bachelor
MorningMeeting
Spillprog bachelor
Meeting
Spillprog bachelor
Meeting
Spillprog bachelor
Pathfinding
Spillprog bachelor
Research
Spillprog bachelor
Research
Spillprog bachelor
ZeroMQ

Spillprog bachelor
ZeroMQ

Spillprog bachelor
ZeroMQ

Spillprog bachelor
ZeroMQ

Spillprog bachelor
Meeting
Spillprog bachelor
MorningMeeting
Spillprog bachelor
Research
Spillprog bachelor
Testing ZeroMQ
Spillprog bachelor
Testing ZeroMQ
Spillprog bachelor
Pathfinding
Spillprog bachelor
Meeting

spillprog bachelor

- [Weekly]

Duration
4:32:04

09:00-13:32

0:52:00

09:00-09:52

0:50:00

09:00-09:50

0:27:26

09:15-09:42

0:01:09

09:40-09:41

6:26:54

09:41-16:08

3:04:21

09:53-12:58

1:12:40

13:07-14:19

1:19:17

21:31-22:50

0:36:09

23:14-23:50

0:25:36

00:49-01:15

0:41:53

01:40-02:22

0:10:36

09:00-09:11

0:08:09

09:03-09:11

4:41:09

09:11-13:52

0:43:07

09:12-09:55

0:52:06

16-11:08

2:39:05

11:00-13:39

1:27:00

15:00-16:27

© togg!

User

Christerpsomby
Kristoffer Eidsa
Henningel
Jonas Reitan
Jonas Reitan
Jonas Reitan
Kristoffer Eidsa
Kristoffer Eidsa
Henningel
Henningel
Henningel
Henningel
Kristoffer Eidsa
Henningel
Kristoffer Eidsa
Henningel
Henningel
Jonas Reitan

Jonas Reitan

111

02-02

02-02

02-02

02-02

02-03

02-03

02-03

02-03

02-03

02-03

02-03

02-03

02-03

02-04

02-04

02-04

02-04

02-04

02-04

02-04

02-04

Reading make stuff

Spillprog bachelor

Meeting

Spillprog bachelor

Pathfinding

Spillprog bachelor

Engine actor improvements
Spillprog bachelor

Meeting

Spillprog bachelor

Pathfinding

Spillprog bachelor

trying out mysq| stuff
Spillprog bachelor

Engine actor improvements
Spillprog bachelor

trying out mysql stuff
Spillprog bachelor

Make stuff

Spillprog bachelor

Engine actor improvements
Spillprog bachelor
Implementing database handler
Spillprog bachelor

Helping eidsa

Spillprog bachelor

Engine actor improvements
Spillprog bachelor
Implementing database handler
Spillprog bachelor
reimplementing actor loading
Spillprog bachelor

Mysql

Spillprog bachelor

Pathfinding

Spillprog bachelor

Debugging and fixing new factory
Spillprog bachelor
Experimenting with make

spillprog bachelor

Hopefully finishing touches on componentcreation

Spillprog bachelor

2:37:05

15:06-17:43

0:13:43

15:14-15:27

1:54:00

16:27-18:21

1:33:39

23:44-01:18

0:25:06
09:00-09:25

6:49:16

09:11-16:01

3:06:33

09:25-12:32

1:55:34

09:44-11:39

2:02:13

14:39-16:41

6:51:33

15:07-21:58

2:01:59

17:32-19:34

3:13:42

19:00-22:14

0:10:30

22:03-22:14

2:41:27

03:35-06:17

8:28:47

09:00-17:29

3:46:34

10:01-13:47

4:42:11

13:06-17:48

5:00:43
13:28-18:29

2:49:55

14:15-17:04

0:22:55

18:28-18:51

0:57:22

18:37-19:34

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Kristoffer Eidsa

Jonas Reitan

Kristoffer Eidsa

Henningel

Kristoffer Eidséa

Christerpsomby

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

112

02-05

02-05

02-05

02-05

02-05

02-05

02-05

02-05

02-05

02-05

02-05

02-06

02-06

02-07

02-07

02-07

02-07

02-07

02-07

02-07

02-07

Spillprog bachelor
Research/Implementation
Spillprog bachelor

figuring out mysql examples
Spillprog bachelor

finishing the first version of database handler

Spillprog bachelor
Try to fix an error with make
Spillprog bachelor

Try to fix an error with make
Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Sprint meeting

Spillprog bachelor
Research/Implementation
Spillprog bachelor

Try to fix an error with make
Spillprog bachelor

Make stuff

Spillprog bachelor

Research

Spillprog bachelor

fixing stupid cpp files with template

Spillprog bachelor
Make stuff

Spillprog bachelor

Research

Spillprog bachelor
Research/Implementation

Spillprog bachelor

creating a somewhat working level again
Spillprog bachelor
Research/Implementation

Spillprog bachelor

Support

Spillprog bachelor

Research

Spillprog bachelor

4:49:32

10:17-15:06

5:36:15

12:56-18:32

1:08:00

12:58-14:06

0:52:01

14:07-14:59

2:28:43

14:15-16:44

4:31:50

16:50-21:21

2:29:15

18:50-21:19

2:28:37
18:50-21:18

2:27:10

18:51-21:18

1:07:00

21:19-22:26

1:32:13

23:21-00:53

1:45:43

20:51-22:37

2:02:29

23:48-01:50

3:46:29

00:30-04:16

2:20:46

01:49-04:09

1:07:30

02:59-04:07

2:14:21

03:53-06:07

4:02:16

07:39-11:42

3:00:13

07:45-10:45

0:57:00

10:45-11:42

0:30:40

15:00-15:31

Henningel

Jonas Reitan

Kristoffer Eidsa

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidséa

Jonas Reitan

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Henningel

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Jonas Reitan

Jonas Reitan

Kristoffer Eidsa

113

02-07

02-07

02-07

02-07

02-07

02-07

02-07

02-07

02-08

02-08

02-08

02-08

02-08

02-08

02-08

02-08

02-09

02-09

02-09

02-09

02-09

improving gui
Spillprog bachelor
Make stuff

Spillprog bachelor
implementing zeromq in engine
Spillprog bachelor
tutorial from Henning
Spillprog bachelor
tutorial from henning
Spillprog bachelor
Console

Spillprog bachelor
improving gui
Spillprog bachelor
Replacing sdl net with zeromq
Spillprog bachelor
improving gui
Spillprog bachelor
World Generation
Spillprog bachelor
World Generation
Spillprog bachelor
World Generation
Spillprog bachelor

Decided not to use zeromq. helped some people, did some research on more suited libraries

Spillprog bachelor
improving gui
Spillprog bachelor
improving gui
Spillprog bachelor
World Generation
Spillprog bachelor
World Generation
Spillprog bachelor
Console

Spillprog bachelor
Meeting

Spillprog bachelor
Meeting

Spillprog bachelor
morning meeting

Spillprog bachelor

1:29:30
15:31-17:01

3:23:41

16:03-19:27

1:48:10

18:50-20:39

0:41:40

19:27-20:08

0:41:34

19:27-20:08

3:52:21
20:08-00:01

2:11:07

20:08-22:20

2:05:38

21:44-23:50

4:16:40

12:00-16:17

1:24:43

14:15-15:40

1:27:05

15:56-17:23

3:04:15

17:38-20:42

3:51:46

18:01-21:53

1:55:06

20:36-22:31

0:14:17

23:04-23:19

0:48:26

23:31-00:19

0:27:40

00:28-00:56

1:19:19

03:44-05:03

0:16:00

09:00-09:16

0:16:26

09:00-09:16

0:15:53

09:01-09:17

Kristoffer Eidséa

Christerpsomby

Henningel

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Jonas Reitan

Jonas Reitan

Jonas Reitan

Henningel

Kristoffer Eidsa

Kristoffer Eidsa

Jonas Reitan

Jonas Reitan

Christerpsomby

Christerpsomby

Kristoffer Eidséa

Henningel

114

02-09

02-09

02-09

02-09

02-09

02-09

02-09

02-09

02-09

02-09

02-10

02-10

02-10

02-10

02-10

02-10

02-10

02-10

02-10

02-10

02-10

02-11

Console

Spillprog bachelor
improving gui
Spillprog bachelor
Raknet implementation
Spillprog bachelor
raknet work
Spillprog bachelor
improving gui
Spillprog bachelor
Research
Spillprog bachelor
improving gui
Spillprog bachelor
World Generation
Spillprog bachelor
Console

Spillprog bachelor
Research
Spillprog bachelor
raknet work
Spillprog bachelor
Console

Spillprog bachelor

replacing more sdl net code

Spillprog bachelor
Console

Spillprog bachelor
improving gui
Spillprog bachelor
writing server code
Spillprog bachelor
World Generation
Spillprog bachelor
improving gui
Spillprog bachelor
consulting
Spillprog bachelor
Research

Spillprog bachelor
Console

Spillprog bachelor
writing client code

Spillprog bachelor

2:35:00

09:17-11:52

2:43:02

09:17-12:00

2:41:50

09:45-12:27

0:29:58

13:37-14:.06

0:05:16

15:15-15:21

1:44:39

15:33-17:17

2:37:53

16:56-19:34

2:56:33

19:15-22:11

1:15:46

21:07-22:23

0:10:36

22:11-22:22

2:31:35

00:00-02:31

1:31:21

01:17-02:49

1:29:46

03:26-04:56

2:27:35

04:48-07:16

2:00:03

12:00-14:00

3:19:25

12:40-15:59

3:48:15

13:13-17:01

3:30:43

14:30-18:01

0:35:45

16:25-17:00

1:25:15

17:03-18:28

2:49:25

19:20-22:09

3:28:25

01:11-04:39

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Kristoffer Eidsa

Jonas Reitan

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Henningel

115

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-11

02-12

02-12

02-12

02-12

02-12

02-12

02-12

02-12

Research
Spillprog bachelor
Console

Spillprog bachelor
Console

Spillprog bachelor
fixing network code
Spillprog bachelor
World Generation
Spillprog bachelor
morning meeting
Spillprog bachelor
improving gui
Spillprog bachelor
fixing network code
Spillprog bachelor
implementing ANN
Spillprog bachelor
World Generation
Spillprog bachelor
planning level generation
Spillprog bachelor
consulting
Spillprog bachelor
Research
Spillprog bachelor
Console

Spillprog bachelor
Console / Cmake
Spillprog bachelor
Console / Cmake
Spillprog bachelor
improving gui
Spillprog bachelor
World Generation
Spillprog bachelor
Meeting

Spillprog bachelor
Meeting

Spillprog bachelor
fryday meeting
Spillprog bachelor
consulting

Spillprog bachelor

2:23:18

03:06-05:29

1:50:42

04:27-06:17

3:34:32

06:19-09:54

0:51:57

06:46-07:38

3:02:55

08:47-11:50

0:31:28

09:02-09:33

10:34:14

09:30-20:04

4124

09:33-13:46

1:02:14

16:11-17:14

1:17:00

17:00-18:17

0:21:40

17:14-17:35

2:08:15

17:36-19:44

1:09:57

18:18-19:28

3:38:20

20:33-00:11

3:35:08

01:57-05:32

2:11:00

09:54-12:05

4:54:17

11:00-15:55

6:33:00

15:02-21:35

2:31:33

16:00-18:31

2:09:47

16:00-18:10

2:09:21

16:00-18:1

1:09:30

18:38-19:47

Jonas Reitan

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Henningel

Kristoffer Eidsa

Henningel

Henningel

Jonas Reitan

Henningel

Henningel

Jonas Reitan

Christerpsomby

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Kristoffer Eidsé&

Henningel

Henningel

116

02-12

02-13

0213

02-13

0213

0213

02-13

02-13

0213

02-14

02-14

02-14

02-14

02-14

02-14

02-14

02-14

02-14

02-14

02-15

02-15

02-15

Research
Spillprog bachelor
Research
Spillprog bachelor
planning level generation
Spillprog bachelor
Research
Spillprog bachelor
Support
Spillprog bachelor
Network Testing
Spillprog bachelor
Console

Spillprog bachelor

attempt at level generation using ANN

Spillprog bachelor
Console
Spillprog bachelor

attempt at level generation using ANN

Spillprog bachelor
Console

Spillprog bachelor
level generation
Spillprog bachelor
improving gui
Spillprog bachelor
consulting
Spillprog bachelor
level generation
Spillprog bachelor
Support
Spillprog bachelor
improving gui
Spillprog bachelor
Console

Spillprog bachelor
improving gui
Spillprog bachelor
Console

Spillprog bachelor
Meeting
Spillprog bachelor
Meeting

Spillprog bachelor

2:38:31

21:52-00:31

1:01:24
04:23-05:25

2:59:30

05:07-08:06

1:13:00

05:26-06:39

1:27:01
06:40-08:07

1:12:00

08:08-09:20

2:14:00

11:16-13:30

1:21:00

19:07-20:28

0:16:26

21:45-22:01

0:41:29

00:50-01:31

5:09:02

02:05-07:14

2:20:00

12:43-15:03

2:33:00

14:59-17:32

0:14:46

15:44-15:59

1:16:52

16:31-17:48

1:05:48

16:59-18:05

1:16:23

17:32-18:49

2:49:57

18:33-21:23

0:57:59

20:53-21:51

1:07:15

07:53-09:00

0:11:00

09:00-09:11

0:11:23

09:00-09:11

Jonas Reitan

Jonas Reitan

Henningel

Jonas Reitan

Jonas Reitan

Jonas Reitan

Christerpsomby

Henningel

Christerpsomby

Henningel

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

Henningel

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Christerpsomby

117

0215

02-15

02-15

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

02-16

0217

0217

0217

0217

02-17

02-17

improving gui
Spillprog bachelor
Console

Spillprog bachelor
Research
Spillprog bachelor
Research/Implementation
Spillprog bachelor
Console

Spillprog bachelor
improving gui
Spillprog bachelor
level generation
Spillprog bachelor
Meeting
Spillprog bachelor
Meeting
Spillprog bachelor
meeting with mariusz
Spillprog bachelor
Meeting with Mariusz
Spillprog bachelor
level generation
Spillprog bachelor
improving gui
spillprog bachelor
adding enemy
Spillprog bachelor
improving gui
Spillprog bachelor
World Mechanics
Spillprog bachelor
Console

Spillprog bachelor
Meeting
Spillprog bachelor
Reading GA
Spillprog bachelor
improving gui
Spillprog bachelor
Helping Eidsa
Spillprog bachelor
World Generation

Spillprog bachelor

6:01:17

12:00-18:01

2:02:00

12:15-14:17

6:13:33

16:00-22:13

1:00:12

03:28-04:28

5:01:25

04:42-09:43

3:49:28

09:30-13:19

1:48:06

11:35-13:23

2:05:51

13:01-15:07

1:24:00

13:16-14:40

1:16:20

13:23-14:40

1:10:11

13:30-14:41

1:52:37

15:21-17:13

0:28:15

15:22-15:51

0:07:43

17:50-17:58

0:33:55

17:56-18:30

1:33:26

19:25-20:58

0:41:44

07:19-08:00

0:03:00

09:00-09:03

1:21:03

09:59-11:20

4:45:53

11:00-15:46

0:34:40

12:42-13:16

5:03:00

12:57-18:00

Kristoffer Eidséa

Christerpsomby

Jonas Reitan

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

118

02-17

0217

02-18

02-18

02-18

02-18

02-18

02-18

02-18

02-18

02-18

02-18

0218

02-18

02-18

0218

02-19

02-19

02-19

02-19

02-19

improving gui

Spillprog bachelor

World Mechanics
Spillprog bachelor
Research

Spillprog bachelor
Reading Curry

Spillprog bachelor
Reading member function pointers
Spillprog bachelor
learning algorithms
Spillprog bachelor
Member function Pointer
Spillprog bachelor
Meeting

Spillprog bachelor
Meeting

Spillprog bachelor
improving gui

Spillprog bachelor

g ion algorithm impi

Spillprog bachelor

Discussing different noise algorithms and finding bottlenecks

Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor

more generation stuff. looking into MDP

Spillprog bachelor
MDP plan b
Spillprog bachelor
Console
Spillprog bachelor

back to more ANN stuff to get something general up and running first

Spillprog bachelor

generation improvements
Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

Research

Spillprog bachelor

1:20:22

15:52-17:13

1:06:01

19:58-21:04

0:34:15

01:47-02:21

0:38:01

04:15-04:53

2:40:55

04:53-07:34

4:01:31

06:45-10:47

0:50:23

07:34-08:24

0:50:18

09:00-09:50

1:46:45

09:00-10:47

2:32:22

11:09-13:41

1:58:39

12:11-14:10

10:07:00

13:15-23:22

0:07:53

13:41-13:49

2:33:119

15:57-18:30

1:37:50

17:01-18:39

0:26:29

18:48-19:14

3:36:28

07:47-11:23

1:38:45

08:06-09:45

0:15:03

10:01-10:16

3:30:34

12:29-16:00

2:08:00

13:17-15:25

Kristoffer Eidséa

Jonas Reitan

Jonas Reitan

Christerpsomby

Christerpsomby

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Kristoffer Eidsa

Henningel

Jonas Reitan

Kristoffer Eidséa

Kristoffer Eidsa

Henningel

Henningel

Christerpsomby

Henningel

Henningel

Kristoffer Eidsa

Jonas Reitan

119

02-19

02-19

02-19

02-19

02-19

02-19

02-19

02-19

02-19

02-20

02-20

02-20

02-20

02-20

02-20

02-20

02-20

02-21

02-21

02-21

02-21

improving level generation
Spillprog bachelor

Storing objects

Spillprog bachelor

Sprint meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

weekly meeting

Spillprog bachelor
improving level generation
Spillprog bachelor

Member function Pointer
Spillprog bachelor

Member function Pointer
Spillprog bachelor

General object storage
Spillprog bachelor
improving level generation
Spillprog bachelor

General object storage
Spillprog bachelor

General object storage
Spillprog bachelor

General object storage

Spillprog bachelor

reevaluating tile-by-tile method

Spillprog bachelor

improving level generation
Spillprog bachelor

More general object storage
Spillprog bachelor

General object storage
Spillprog bachelor

improving level generation

spillprog bachelor

Di ing generation

spillprog bachelor

Implementing user feedback gui

spillprog bachelor

2:05:33

14:01-16:06

0:28:12

14:39-15:08

2:03:45

16:00-18:03

2:03:40

16:00-18:04

2:03:27

16:00-18:04

1:57:15

16:07-18:04

0:49:01

18:04-18:53

0:02:30

18:43-18:46

2:34:00

19:59-22:33

1:26:03

08:40-10:06

312:27

10:17-13:30

0:50:12

10:34-11:25

0:10:10

13:16-13:26

1:18:15

13:52-15:11

2:24:26

14:24-16:48

0:36:31

18:23-18:59

0:27:00

20:16-20:43

1:03:23

12:26-13:30

2:58:15

12:40-15:38

2:54:15

13:00-15:55

1:17:05

14:56-16:13

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Henningel

Christerpsomby

Christerpsomby

Christerpsomby

Henningel

Christerpsomby

Christerpsomby

Christerpsomby

Henningel

Henningel

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidsa

120

02-21

02-21

02-21

02-21

02-21

02-22

02-22

02-22

02-22

02-22

02-22

02-22

02-22

02-22

02-22

02-22

02-23

02-23

02-23

02-23

02-23

Console

Spillprog bachelor

improving level generation
Spillprog bachelor

Member function Pointer
Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

(no description)

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

morning meeting

Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

Added/learned libnoise

Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

separating generation into sections and adding tinkering with AI

Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor

Merge to master, fixing conflicts, support eidsa, christer mvp

Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor

Console

Spillprog bachelor

trying to sort out a few bugs, but the compiler don't agree with me

Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

1:44:16
15:01-16:46

4:54:16

17:42-22:36

2:27:04

18:20-20:47

3:00:45

18:22-21:23

0:51:55

23:04-23:56

0:09:11

09:00-09:09

0:10:23

09:00-09:11

0:07:38

09:01-09:09

1:16:23

09:11-10:27

3:41:32

13:06-16:47

0:58:37

15:00-15:59

1:25:33

16:35-18:00

1:47:15

19:05-20:52

1:16:28

19:40-20:56

0:48:26

21:50-22:39

2:04:00

21:54-23:58

4:13:43

04:40-08:54

2:29:56

06:30-09:00

0:39:44

08:54-09:33

0:27:27

09:00-09:27

0:30:12

09:00-09:30

Christerpsomby

Henningel

Christerpsomby

Kristoffer Eidséa

Henningel

Christerpsomby

Kristoffer Eidséa

Henningel

Kristoffer Eidsa

Jonas Reitan

Kristoffer Eidséa

Henningel

Kristoffer Eids&

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

121

0223

02-23

0223

02-23

02-23

0223

02-23

02-23

0223

02-23

0223

02-23

02-24

02-24

02-24

02-24

02-24

02-24

02-24

02-24

02-24

morning meeting

Spillprog bachelor
Tweaked world generation
Spillprog bachelor

world generation

Spillprog bachelor

level generation

Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor
Implementing user feedback gui
Spillprog bachelor

level generation

Spillprog bachelor

adding fun enemies
Spillprog bachelor

Member function Pointer
Spillprog bachelor

meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting w/tweaking of gui, world and objects
Spillprog bachelor

more enemies

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

more enemies

Spillprog bachelor
Meeting - Business
Spillprog bachelor

Meeting

Spillprog bachelor

meeting with ddne
Spillprog bachelor

Meeting at Mustad
Spillprog bachelor

world generation, new project test(didn't work), merge with master

Spillprog bachelor

0:31:54

09:02-09:34

0:08:34

09:33-09:42

0:23:07

09:34-09:57

1:40:47

14:55-16:36

0:32:25

15:57-16:30

1:29:34

17:51-19:21

0:30:50

17:53-18:24

2:01:48

18:24-20:26

1:45:00

19:20-21:05

1:27:19

23:33-01:00

1:29:22

23:34-01:03

1:29:42

23:34-01:04

1:37:04

08:26-10:03

1:00:16

09:00-10:00

1:03:35

09:00-10:04

0:08:25
10:40-10:48

1:13:00

10:47-12:00

1:10:54

10:49-12:00

0:50:01

11:00-11:50

1:01:45

11:00-12:02

2:49:57

13:10-16:00

Henningel

Jonas Reitan

Henningel

Henningel

Kristoffer Eidsa

Kristoffer Eidsa

Henningel

Henningel

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Jonas Reitan

122

02-24

02-24

02-24

02-24

02-25

02-25

02-25

02-25

02-25

02-25

02-25

02-25

02-25

02-25

02-25

0225

02-25

02-25

02-25

02-25

02-26

adding enemy

Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

Console

Spillprog bachelor

Implementing user feedback gui
Spillprog bachelor

enemy stuff

Spillprog bachelor

adding pyramid

Spillprog bachelor

Discussing spikes, UVs and mesh with Henning, tested cave algorithm

Spillprog bachelor
spike physics
Spillprog bachelor
Meeting

Spillprog bachelor
morning meeting

spillprog bachelor

adding enemies and fixing/improving marching squares

Spillprog bachelor
Discussing w/ Henning

Spillprog bachelor

making userfeedback work with database
Spillprog bachelor

more marching squares improvements
Spillprog bachelor

making userfeedback work with database
Spillprog bachelor

Helping Eidsa

Spillprog bachelor

more marching squares improvements
Spillprog bachelor

more marching squares improvements

spillprog bachelor

making user work with
Spillprog bachelor

Console

Spillprog bachelor

morning meeting

Spillprog bachelor

1:10:20

14:48-15:58

0:52:22

17:00-17:52

4:25:00

17:30-21:54

2:01:51

19:54-21:55

1:00:09

00:09-01:09

2:21:25

01:23-03:45

4:14:26

02:17-06:32

1:04:42

0:13:08

09:00-09:13

0:12:48

09:00-09:13

1:58:49

09:14-11:12

0:18:08

09:14-09:32

1:12:53

11:02-12:14

1:16:21

11:53-13:10

1:47:16

12:16-14:03

0:32:30

12:20-12:52

0:08:20

14:26-14:34

1:40:26

14:49-16:30

2:02:32

16:26-18:29

4:03:46

20:50-00:54

0:17:05

09:00-09:17

Henningel

Kristoffer Eidséa

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Jonas Reitan

Henningel

Jonas Reitan

Henningel

Henningel

Jonas Reitan

Kristoffer Eidséa

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Henningel

Kristoffer Eidséa

Christerpsomby

Henningel

123

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-26

02-27

02-27

Meeting

spillprog bachelor

making user work with
Spillprog bachelor

Reading on software models
Spillprog bachelor

adding 45 degree slopes
Spillprog bachelor

making userfeedback work with database

Spillprog bachelor
Reading game loop models

Spillprog bachelor

adding 45 degree slopes

Spillprog bachelor

Sprint meeting

Spillprog bachelor

friday meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

A* and world, discussing with Henning
Spillprog bachelor

Reading game loop models

Spillprog bachelor

making userfeedback work with database

Spillprog bachelor
consulting
Spillprog bachelor

A* and world, discussing with Henning, research

Spillprog bachelor

making userfeedback work with database
Spillprog bachelor

Helping Eidsa

Spillprog bachelor

Helping Eidsa

spillprog bachelor

Level Design Learning and looking at platforming A*

Spillprog bachelor
adding custom component types

Spillprog bachelor

0:18:09

09:00-09:19

3:25:29

09:19-12:44

0:37:11

12:08-12:46

2:58:23

12:48-15:46

0:34:51

13:52-14:27

1:30:48

13:53-15:23

0:07:38

15:49-15:57

1:29:54

15:55-17:25

1:25:38

16:00-17:26

1:25:18

16:00-17:26

1:25:04

16:00-17:26

4:16:08

17:27-21:43

3:30:25

19:31-23:01

0:18:42

19:33-19:52

1:19:02

20:22-21:41

2:26:12

21:43-00:09

3:41:28

22:00-01:41

0:35:11

23:01-23:36

1:56:25

23:45-01:41

3:21:19

04:02-07:23

1:14:46

09:18-10:33

Kristoffer Eidséa

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidséa

Christerpsomby

Henningel

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidsé&

Jonas Reitan

Christerpsomby

Kristoffer Eidséa

Henningel

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

124

02-27

02-27

02-27

02-27

02-27

02-27

02-28

02-28

02-28

02-28

02-29

02-29

02-29

02-29

02-29

02-29

02-29

02-29

02-29

02-29

02-29

running diagnostic tests
Spillprog bachelor

replace includes with forward declarations

Spillprog bachelor

A* in World Implementation and theorycrafting

Spillprog bachelor

making userfeedback work with database
Spillprog bachelor
hardcore merge

Spillprog bachelor

Read Variadic Templating
Spillprog bachelor
Reading on Vulcan API
Spillprog bachelor
Database stuff

Spillprog bachelor
hardcore merge

Spillprog bachelor

fixing memory bug
Spillprog bachelor
Meeting

Spillprog bachelor
morning meeting

spillprog bachelor

Flashing stuff and figuring out stuff, bugfixing, shader stuff

Spillprog bachelor
fixing memory bug
Spillprog bachelor
Database stuff
Spillprog bachelor
Helping Eidsa
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor

making userfeedback work with database

Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor

0:30:19

10:33-11:04

2:07:50

11:04-13:12

2:23:00

13:32-15:55

1:37:00

15:35-17:12

1:16:45
16:01-17:18

4:57:49

17:42-22:39

5:18:54

14:41-20:00

3:07:09

19:32-22:39

1:23:08

21:45-23:08

0:53:50

23:08-00:02

0:16:49

08:54-09:11

0:09:20

09:00-09:09

4:22:29

09:11-13:34

2:23:10

09:26-11:49

4:01:19

13:58-17:59

1:21:42

15:00-16:21

0:29:33

16:25-16:55

0:17:13

18:54-19:11

2:57:53

19:11-22:09

2:07:18

20:06-22:13

0:07:44

23:53-00:01

Henningel

Henningel

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Jonas Reitan

Henningel

Jonas Reitan

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Henningel

Henningel

Kristoffer Eidsa

Henningel

125

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-01

03-02

03-02

03-02

03-02

03-02

03-02

03-02

03-02

Tweaking A* to work with physics, grid representation of world

Spillprog bachelor

researching and implementing FSM for actors
Spillprog bachelor

Database stuff

Spillprog bachelor

Tweaking A* to work with physics, grid representation of world

Spillprog bachelor
Database stuff
Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor

Added sql and boost
Spillprog bachelor
Database stuff

Spillprog bachelor

Reading game loop models
Spillprog bachelor

More A*, grid, pushed some stuff, still some stuff to do

Spillprog bachelor
Read Variadic Templating
Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor
morning meeting
Spillprog bachelor
Meeting

Spillprog bachelor
Meeting

Spillprog bachelor

Trying to solve a weird bug in grid representation of world, need rework to solve issues with
world being in negative y, tested userfeedback

Spillprog bachelor
Database stuff
Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor
Database stuff
Spillprog bachelor
Console

spillprog bachelor

2:42:26

09:11-11:53

2:04:09

11:13-13:17

1:54:30

11:32-13:26

1:37:44

12:09-13:46

3:02:38
14:17-17:19

1:36:33

14:30-16:07

0:16:34

14:53-15:09

1:09:14

18:12-19:21

1:50:52

18:24-20:14

0:46:00

18:42-19:28

0:51:01

21:44-22:35

1:23:11

23:19-00:42

0:17:04

09:00-09:17

0:16:46

09:00-09:17

0:02:00

09:15-09:17

4:38:15

09:17-13:55

1:29:25
09:17-10:47

0:18:04

10:23-10:41

2:29:02

11:14-13:43

4:27:02

13:21-17:48

Jonas Reitan

Henningel

Kristoffer Eidséa

Jonas Reitan

Kristoffer Eidsa

Henningel

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Christerpsomby

Henningel

Henningel

Kristoffer Eidsa

Jonas Reitan

Jonas Reitan

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Christerpsomby

126

03-02

03-02

03-02

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-03

03-04

03-04

03-04

03-04

Database stuff
Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor
Console

Spillprog bachelor
Meeting

Spillprog bachelor
morning meeting
Spillprog bachelor

Looked at optimization algorithms (heap, simplifying paths, etc.), a* improvements (weights)
and other things that might help us

Spillprog bachelor

Database stuff

Spillprog bachelor

Console

Spillprog bachelor

researching and implementing FSM for actors
Spillprog bachelor

Database stuff

Spillprog bachelor

researching and implementing FSM for actors
Spillprog bachelor

Database stuff

Spillprog bachelor

Database stuff

Spillprog bachelor

Fixed some bugs(Actually compiles now), added goal to world generation and fixed some

errors in various actor xmls
Spillprog bachelor

Helping Jonas

Spillprog bachelor
consulting

Spillprog bachelor

researching and implementing FSM for actors

Spillprog bachelor
researching and implementing FSM for actors
Spillprog bachelor
Morning meeting
Spillprog bachelor
morning meeting
Spillprog bachelor

Fixed bug where goal would not spawn, compile time benchmarking, testing multithreading,
testing various ideas(need feedback?)

Spillprog bachelor

1:25:37

15:50-17:16

3:37:20

18:38-22:15

2:07:00

19:53-22:00

0:05:59

09:00-09:05

0:05:24

09:00-09:06

5:48:40

09:18-15:07

3:03:42

10:30-13:34

7:06:32

11:05-18:12

1:27:41

11:08-12:36

1:00:36

13:56-14:57

1:15:33

16:56-18:11

1:26:13

17:03-18:29

0:36:48

21:53-22:29

1:47:07

22:23-00:10

0:10:47

22:46-22:56

0:56:35

22:52-23:48

0:59:32

23:48-00:48

1:31:27

01:19-02:51

0:19:00

09:00-09:19

0:17:35

09:00-09:18

6:04:59

09:20-15:25

Kristoffer Eidséa

Henningel

Christerpsomby

Jonas Reitan

Henningel

Jonas Reitan

Kristoffer Eidsé&

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Kristoffer Eidsé&

Jonas Reitan

Christerpsomby

Henningel

Henningel

Henningel

Jonas Reitan

Henningel

Jonas Reitan

127

03-04

03-04

03-04

03-04

03-04

03-04

03-04

03-04

03-04

03-04

03-05

03-05

03-05

03-05

03-06

03-06

03-06

03-06

03-06

03-06

03-06

Database stuff
Spillprog bachelor

fixing some animation and compile performance by rearranging includes

Spillprog bachelor
Performance testing with henning
Spillprog bachelor

Console

Spillprog bachelor

world generation

Spillprog bachelor

Meeting

Spillprog bachelor

Meeting

Spillprog bachelor

scrum meeting

Spillprog bachelor

Sprint meeting

Spillprog bachelor

Console

Spillprog bachelor

Console

Spillprog bachelor

Fill gap algorithm in world generation, tested spike/moving platform stuff, tried adding

damage on spikes, removed some unused crap
Spillprog bachelor

creating enemies

Spillprog bachelor

Console

Spillprog bachelor

Console

Spillprog bachelor

bug fixing and improvements

Spillprog bachelor

finished up some stuff, did some jira thingy and started adding a spring game mechanic

Spillprog bachelor
Console

Spillprog bachelor
world generation
Spillprog bachelor
implementing spring
Spillprog bachelor
world generation

Spillprog bachelor

4:59:29

11:00-16:00

2:34:10

11:22-13:56

0:38:00

13:02-13:40

2:21:35
13:40-16:02

0:45:16

13:56-14:41

0:30:21

16:00-16:30

0:28:29
16:00-16:29

0:28:02

16:00-16:28

0:36:00

16:02-16:38

4:36:59

17:22-21:59

0:06:53

14:34-14:41

5:44:00

22:05-03:49

1:55:51

22:15-00:11

0:41:34

22:48-23:30

3:20:23

02:17-05:38

2:39:10

11:46-14:26

3:24:10

13:29-16:53

3:43:32

14:31-18:14

1:46:39

15:40-17:26

1:36:48

19:40-21:17

3:12:34

20:14-23:27

Kristoffer Eidséa

Henningel

Christerpsomby

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Christerpsomby

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

128

03-06

03-06

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-07

03-08

03-08

03-08

03-08

03-08

03-08

Console

Spillprog bachelor
implementing spring
Spillprog bachelor
Console

Spillprog bachelor
Meeting

Spillprog bachelor
morning meeting
Spillprog bachelor
Morning meeting

Spillprog bachelor

Made world generator a bit smarter, still much to do. Read up about algorithms to solve

some problems.

spillprog bachelor

implementing block that tricks ur tiny human mind

Spillprog bachelor
world generation
Spillprog bachelor
Lambda experimentation

Spillprog bachelor

implementing block and fixing contact listener

Spillprog bachelor
renaming the project
Spillprog bachelor

Tested some stuff for Henning
Spillprog bachelor

consulting

Spillprog bachelor

debugging database

Spillprog bachelor

Mem_fn storage

Spillprog bachelor

Console

Spillprog bachelor

Console

Spillprog bachelor

Meeting

Spillprog bachelor

morning meeting

Spillprog bachelor

Fixed some bugs in world generator, read about a* edge placement, discussed some stuff

with Henning, network debugging

Spillprog bachelor

1:04:40
20:14-21:19

0:29:05

21:17-21:46

6:29:52

03:13-09:42

0:08:31

09:00-09:08

0:08:36

09:00-09:09

0:08:18

09:00-09:09

6:57:31

09:09-16:06

3:21:36

09:09-12:30

1:58:33

11:48-13:47

1:02:32

13:23-14:26

4:02:44

16:30-20:32

0:38:23

17:00-17:38

0:39:55

17:06-17:45

1:44:22

19:07-20:51

0:51:40

20:32-21:23

3:06:20

00:23-03:29

0:36:04

07:01-07:38

0:32:05

08:28-09:00

0:15:06

09:00-09:15

0:13:11

09:02-09:15

7:34:13

09:05-16:40

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Kristoffer Eidséa

Henningel

Jonas Reitan

Henningel

Kristoffer Eidséa

Christerpsomby

Christerpsomby

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

129

03-08

03-08

03-08

03-08

03-08

03-08

03-08

03-08

03-08

03-09

03-09

03-09

03-09

03-09

03-09

03-09

03-09

03-09

03-09

03-09

Looked more into fixing database bug
Spillprog bachelor

world generation

Spillprog bachelor

pressing f5 on confluence

Spillprog bachelor

tried to fix database not working in debug. Gave up and did a workaround that works fine.

Spillprog bachelor
Helping Eidsa
Spillprog bachelor

figuring out how the custom state system works and looked up box2d stuff

spillprog bachelor

Writing about ing crashed so writing in notepad or something

Spillprog bachelor
world generation
Spillprog bachelor
Console

Spillprog bachelor
Console

Spillprog bachelor
morning meeting
Spillprog bachelor
Morning meeting
Spillprog bachelor
Meeting

Spillprog bachelor

Writing in my document, worked with some box2d stuff that didn't work for my purpose

spillprog bachelor

Researched stuff regarding writing a thesis, di ing, tried to fix a few

bugs, looked at a* stuff
Spillprog bachelor
world generation
Spillprog bachelor

writing about gui, user feedback and databases

Spillprog bachelor
document writing
Spillprog bachelor
Console

Spillprog bachelor
Console

spillprog bachelor

2:03:26

09:22-11:26

2:02:45

10:29-12:32

1:29:16

11:26-12:55

1:09:16

15:26-16:36

0:14:00

16:18-16:32

1:26:42

16:36-18:02

1:18:24

18:02-19:21

1:21:55

22:39-00:01

1:04:00

23:33-00:37

2:34:47

01:23-03:57

0:05:02

09:00-09:05

0:04:53

09:00-09:05

0:04:06

09:00-09:04

3:15:13

09:04-12:19

7:26:16

09:05-16:31

2:12:34

10:25-12:37

3:10:50

12:20-15:31

2:00:49

14:04-16:05

3:11:37

16:04-19:16

0:46:41

21:14-22:00

Kristoffer Eidséa

Henningel

Kristoffer Eidséa

Kristoffer Eidsa

Christerpsomby

Kristoffer Eidsa

Kristoffer Eidsa

Henningel

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidséa

Kristoffer Eidsa

Jonas Reitan

Henningel

Kristoffer Eidsa

Henningel

Christerpsomby

Christerpsomby

130

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-10

03-11

03-11

03-11

03-11

03-11

03-11

03-11

03-12

Added support for billboarding

Spillprog bachelor

writing about user and ing user stuff

Spillprog bachelor
document writing
Spillprog bachelor
Console

Spillprog bachelor
Sprint meeting
Spillprog bachelor
Meeting

Spillprog bachelor
Meeting

Spillprog bachelor
scrum meeting
Spillprog bachelor
document writing
Spillprog bachelor
Console

Spillprog bachelor
Reading AI stuff
Spillprog bachelor
document writing
Spillprog bachelor

Wrote about noise algorithm and the challenges of finding the correct one

Spillprog bachelor
Console

Spillprog bachelor
document writing
Spillprog bachelor
Writing stuff about database
Spillprog bachelor
World generation
Spillprog bachelor
document writing
Spillprog bachelor
Console

Spillprog bachelor
Console

Spillprog bachelor
document writing

Spillprog bachelor

0:51:31

04:01-04:52

5:10:26

10:00-15:10

2:54:51

12:56-15:51

0:26:13

15:33-15:59

0:54:07

0:54:18

15:59-16:54

0:54:29
16:00-16:54

0:54:05

16:00-16:54

0:46:32

17:49-18:36

1:49:00

18:15-20:04

2:05:13

20:56-23:01

3:58:10

21:00-00:58

3:16:10

23:12-02:28

1:04:09

04:24-05:28

2:34:50

09:42-12:17

1:28:12

10:41-12:09

2:29:50

12:09-14:39

2:16:23

12:44-15:00

0:53:00

14:07-15:00

0:15:34

18:49-19:05

0:32:58

10:38-11:10

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidséa

Jonas Reitan

Henningel

Henningel

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Christerpsomby

Henningel

Kristoffer Eidsa

Kristoffer Eidséa

Henningel

Christerpsomby

Christerpsomby

Henningel

131

03-12

03-12

03-12

03-12

03-12

03-12

03-13

03-13

03-13

03-13

03-13

0313

03-13

03-13

03-13

03-13

03-13

03-14

03-14

03-14

03-14

world generation
Spillprog bachelor
world generation
Spillprog bachelor
Lan Console work
Spillprog bachelor
world generation
Spillprog bachelor
consulting
Spillprog bachelor
world generation
Spillprog bachelor
Console

Spillprog bachelor

Wrote about noise at confluence, tested multi layered world generation

Spillprog bachelor

world generation with layers and experimenting with stuff

Spillprog bachelor
Reading AI stuff
Spillprog bachelor
World generation
Spillprog bachelor
Console

Spillprog bachelor
Console

Spillprog bachelor
world generation
Spillprog bachelor
Reading about Machine learning
Spillprog bachelor
Reading about MDP
Spillprog bachelor
world generation
Spillprog bachelor
World generation
Spillprog bachelor
Console

Spillprog bachelor
World Generation testing to see what might work or not
Spillprog bachelor
Console

Spillprog bachelor

1:17:43

11:11-12:28

0:05:04

14:26-14:31

1:00:00

16:25-17:25

0:28:10

19:42-20:10

0:47:00
20:54-21:41

0:47:16

20:54-21:41

1:20:07

03:05-04:25

2:01:00

03:13-05:14

4:20:42

12:09-16:30

1:41:10

14:03-15:44

2:37:42

15:44-18:22

0:12:33

15:45-15:57

0:53:23

16:44-17:37

3:11:20

17:33-20:44

2:24:45

17:38-20:02

0:13:10

20:02-20:16

2:55:13

21:05-00:01

5:03:33

12:09-17:12

1:22:55

13:13-14:36

5:08:12

14:35-19:44

1:18:11

15:41-16:59

Henningel

Henningel

Christerpsomby

Henningel

Jonas Reitan

Henningel

Christerpsomby

Jonas Reitan

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Henningel

Christerpsomby

Christerpsomby

Henningel

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Christerpsomby

132

03-15

03-15

03-15

03-15

03-16

03-16

03-16

03-16

03-16

03-16

03-16

03-16

03-17

03-17

03-17

03-17

03-17

0317

0317

0317

03-17

School thing
Spillprog bachelor
went to school
Spillprog bachelor

Discussed stuff as a group. World generation, bugfix, tweaks.

Spillprog bachelor
discussing Al in gamelab
Spillprog bachelor

Working on bus

Spillprog bachelor

Working in airport

Spillprog bachelor

Working in the air

Spillprog bachelor

Morning meeting

Spillprog bachelor

morning meeting

Spillprog bachelor

did some ui stuff and world gen
Spillprog bachelor

world generation

Spillprog bachelor

Planned out object generation and looked at ways to implement it

Spillprog bachelor
Level Generation
Spillprog bachelor
(no description)

Spillprog bachelor
World generation
Spillprog bachelor
world generation
Spillprog bachelor
World generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation

Spillprog bachelor

4:37:00
09:00-13:37

5:00:00

09:00-14:00

5:00:00

09:00-14:00

4:14:25

09:30-13:45

1:04:00

04:30-05:34

1:19:00

06:01-07:20

1:25:00

08:15-09:40

0:08:49

09:00-09:08

0:08:09

09:00-09:08

5:03:51

12:00-17:04

2:13:47

17:05-19:18

4:56:15

20:21-01:17

3:59:03

08:06-12:05

0:07:42

09:01-09:08

2:17:19

09:33-11:50

1:04:57

10:58-12:03

3:08:51

13:00-16:09

2:58:55

14:33-17:32

0:51:22

15:41-16:33

0:36:01

17:04-17:40

1:10:06

19:40-20:50

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Henningel

Kristoffer Eidsa

Henningel

Kristoffer Eidséa

Christerpsomby

Henningel

Henningel

Henningel

133

03-17

03-17

03-18

03-18

03-18

03-18

03-18

03-19

03-19

03-19

03-19

03-19

03-19

03-19

03-19

03-20

03-20

03-20

03-20

03-20

03-20

World generation testing, tweak the grid for A* and object spawning algorithm

Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world gen and hitting head against a wall
Spillprog bachelor
read about stl, mlc, some tweaks to stuff
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation
Spillprog bachelor
tested some more world generation stuff
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor

researched good level design, world generation, group discussion on skype

Spillprog bachelor
World generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation

Spillprog bachelor

5:15:04

20:11-01:26

0:26:04

21:10-21:37

1:54:26

10:05-12:00

1:28:10

12:50-14:19

1:16:15

14:06-15:22

2:59:21

17:00-20:00

3:16:54

23:35-02:51

0:57:06

04:33-05:30

7:18:00

09:34-16:51

5:18:01

11:02-16:20

4:34:18
13:58-18:32

1:26:19

14:04-15:31

4:02:47

16:31-20:33

1:46:21

17:36-19:22

2:49:21

19:15-22:05

1:48:59

02:26-04:15

3:24:28

10:33-13:58

7:29:00

11:30-18:59

2:10:00

11:42-13:52

1:20:50

14:03-15:23

0:27:38

16:09-16:37

Jonas Reitan

Henningel

Henningel

Henningel

Christerpsomby

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidsé&

Christerpsomby

Christerpsomby

134

03-21

03-22

03-22

03-22

03-23

03-23

03-23

03-24

03-24

03-24

03-25

03-25

03-25

03-25

03-25

03-25

03-26

03-26

03-26

03-26

03-26

ui and world g

Spillprog bachelor
World generation
Spillprog bachelor

added timedblock to the world generation, but nothing is spawned yet

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

database

Spillprog bachelor

world generation theories, research and planning

Spillprog bachelor
Level Generation

Spillprog bachelor

trying to understand database and stuff
Spillprog bachelor

trying to understand database and stuff
Spillprog bachelor

Console

Spillprog bachelor

world generation

Spillprog bachelor

level design research and looking at various themes we might want to implement

Spillprog bachelor
Level Generation
Spillprog bachelor
level design discussing and how to do it
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation

Spillprog bachelor

6:06:40

08:27-14:33

3:33:34

10:03-13:36

0:37:52

14:48-15:25

2:18:34

20:52-23:11

4:53:25

10:12-15:05

1:27:56

13:38-15:06

5:15:07

20:34-01:49

3:08:38

04:20-07:28

3:29:22

10:21-13:50

2:00:24

14:15-16:15

4:21:04

01:22-05:43

3:09:51

11:41-14:51

1:42:35

15:43-17:25

2:05:22

17:33-19:39

1:43:00

18:21-20:04

0:08:38

21:16-21:25

2:22:26

00:36-02:59

0:43:06

01:16-01:59

1:06:56

05:26-06:32

1:06:34

11:09-12:15

0:29:48

17:22-17:52

Kristoffer Eidséa

Kristoffer Eidsa

Jonas Reitan

Henningel

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Kristoffer Eidséa

Kristoffer Eidséa

Christerpsomby

Henningel

Jonas Reitan

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

Christerpsomby

Henningel

Henningel

135

03-26

03-27

03-27

03-27

03-27

03-27

03-27

03-27

03-27

03-28

03-29

03-29

03-29

03-30

03-30

03-30

03-30

03-30

03-31

03-31

03-31

Level Generation
Spillprog bachelor

box2d research for "gravity zones" and apparently over complicating stuff

Spillprog bachelor
Level Generation
Spillprog bachelor

level design for world generation and looked at box2d documentation to solve my problems

Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world/level generation
Spillprog bachelor
Level Generation
Spillprog bachelor
Level Generation
Spillprog bachelor
World generation
Spillprog bachelor
World generation
Spillprog bachelor

researched NEAT (cgNEAT). World/level generation.

Spillprog bachelor
World generation
Spillprog bachelor
Level Generation
Spillprog bachelor
world generation

Spillprog bachelor

1:59:14

17:38-19:37

1:59:32

01:01-04:00

1:02:47

01:36-03:38

3:54:14

11:03-14:57

1:32:58

14:06-15:39

2:32:38

16:31-19:03

1:25:12

18:26-19:51

1:31:42

20:49-22:21

1:13:20

22:47-00:00

1:54:51

02:58-04:53

2:10:24

00:43-02:53

2:45:00

13:59-16:44

4:54:56

22:13-03:07

1:30:00

08:00-09:30

1:30:00

10:00-11:30

3:54:49

10:01-13:55

2:08:41

15:15-17:24

5:50:35

18:16-00:07

7:46:10

09:42-17:29

4:12:48

10:02-14:15

1:45:02

10:05-11:50

Christerpsomby

Jonas Reitan

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

Henningel

Henningel

Christerpsomby

Christerpsomby

Christerpsomby

Jonas Reitan

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Kristoffer Eidsa

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Henningel

136

03-31

03-31

03-31

04-01

04-01

04-01

04-01

04-01

04-01

04-01

04-01

04-01

04-02

04-02

04-02

04-02

world/level generation
Spillprog bachelor
world generation
Spillprog bachelor
world/level generation
Spillprog bachelor

world/level generation/research and testing some stuff

Spillprog bachelor
Level Generation
Spillprog bachelor
World generation
Spillprog bachelor
world generation
Spillprog bachelor
Meeting

Spillprog bachelor
Spring Meeting
Spillprog bachelor
Meeting

Spillprog bachelor
friday meeting
Spillprog bachelor
world generation
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Attempting to install VM
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor

read about reverse design on Mario to learn gradually increasing difficulty in level design

Spillprog bachelor
world generation
Spillprog bachelor
World generation
Spillprog bachelor
World generation
Spillprog bachelor
world generation

spillprog bachelor

2:49:00

13:14-16:03

1:54:47

16:27-18:21

3:35:00

17:01-20:36

5:52:39

04:13-10:05

0:55:37

12:05-13:01

2:25:20

12:10-14:35

1:13:56

14:52-16:06

0:38:01

16:00-16:38

0:38:01

16:00-16:38

0:37:16

16:00-16:37

0:40:57

16:01-16:42

2:56:03

17:39-20:35

3:04:01

17:49-20:53

3:25:44

18:02-21:27

0:35:05

21:22-21:57

3:57:23

23:06-03:04

3:23:20

03:47-07:10

5:56:55

09:16-15:12

1:35:40

11:07-12:42

3:42:15

12:42-16:24

1:54:13

15:33-17:28

Jonas Reitan

Henningel

Jonas Reitan

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Henningel

Jonas Reitan

Henningel

Kristoffer Eidséa

Kristoffer Eidsa

Henningel

137

04-02

04-02

04-02

04-03

04-03

04-03

04-03

04-03

0404

04-05

04-05

04-05

04-05

Level Generation
Spillprog bachelor
world/level generation
Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor
World generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation testing
Spillprog bachelor
Installer testing
Spillprog bachelor

designing chunk ideas, world generation and consulting

Spillprog bachelor
World generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
World generation
Spillprog bachelor
World generation
Spillprog bachelor
Installer

Spillprog bachelor

Meeting at school. World generation discussion and ideas

Spillprog bachelor
went to school
Spillprog bachelor
School meeting
Spillprog bachelor
went to school
Spillprog bachelor
World generation
Spillprog bachelor
Installer

Spillprog bachelor

6:52:53

16:35-23:27

3:01:03

18:30-21:31

0:10:00
23:28-23:38

3:57:44

23:58-03:56

4:59:16

12:02-17:01

6:30:58

13:16-19:47

1:14:05

16:03-17:17

5:10:49

17:34-22:45

3:48:24

18:35-22:23

5:03:50

18:52-23:56

1:46:54

21:33-23:19

6:10:52

23:52-06:03

3:00:02

11:48-14:48

2:24:46

18:19-20:44

2:04:26

00:04-02:08

7:03:00

09:00-16:03

3:36:34

09:00-12:36

3:36:00

09:00-12:36

3:35:28

09:00-12:36

1:38:14

16:32-18:10

4:08:50

02:30-06:38

Christerpsomby

Jonas Reitan

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Jonas Reitan

Kristoffer Eidsa

Henningel

Henningel

Kristoffer Eidsa

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidsa

Christerpsomby

138

04-06

04-06

04-06

04-07

04-07

04-07

04-08

04-08

04-08

04-08

04-08

04-08

04-08

04-08

04-09

World generation

Spillprog bachelor

world generation

Spillprog bachelor

World generation

Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Level Generation

Spillprog bachelor

reading about level design

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Meeting

Spillprog bachelor

Spring Meeting

Spillprog bachelor

friday meeting

Spillprog bachelor

reading and testing world generation stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

3:02:31

12:03-15:06

6:58:42

12:29-19:27

2:00:54

19:33-21:33

2:19:09

19:37-21:56

5:08:10

01:36-06:44

3:10:38

12:01-15:11

4:52:42

14:17-19:09

2:00:36

21:33-23:34

3:11:36

02:29-05:41

1:30:31

07:03-08:33

3:31:42

11:04-14:36

3:29:46

12:17-15:47

0:46:47

16:00-16:47

0:42:00

16:06-16:48

0:42:07

16:06-16:48

5:02:13

18:34-23:36

2:50:32
18:46-21:36

0:37:08

19:02-19:39

0:49:57

20:44-21:34

0:47:29

20:51-21:39

2:47:36

11:41-14:29

Kristoffer Eidsé

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Kristoffer Eidséa

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidsa

Kristoffer Eidsa

Christerpsomby

Henningel

Jonas Reitan

Christerpsomby

Henningel

Henningel

Kristoffer Eidsa

Christerpsomby

139

04-09

04-09

04-09

04-09

04-09

04-09

04-09

04-10

04-10

04-10

04-10

04-10

04-10

04-10

04-10

04-11

04-12

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

r ing ing at crossp| 'm iling, world generation

Spillprog bachelor
world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

whiteboard sketching and testing stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

meeting, discussing

Spillprog bachelor

Meeting Jonas

Spillprog bachelor

3:00:27

13:16-16:17

3:09:08

14:11-17:20

2:53:22

15:03-17:57

4:34:07

16:33-21:07

0:54:34

17:05-18:00

2:50:57

20:24-23:14

4:04:19

20:56-01:00

2:02:33

21:01-23:04

2:18:56

07:13-09:31

4:48:28

08:40-13:29

5:03:03

2:19:48

14:53-17:13

1:31:28

17:56-19:28

4:21:24

18:20-22:42

2:41:42

21:04-23:46

5:54:01

23:21-05:15

5:01:35

11:36-16:38

1:08:10

18:50-19:59

0:43:04

20:58-21:41

6:30:30

08:57-15:27

6:30:00

09:00-15:30

Henningel

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Henningel

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Henningel

Kristoffer Eidséa

Kristoffer Eidséa

Henningel

Jonas Reitan

Henningel

Kristoffer Eidsa

Henningel

Henningel

Jonas Reitan

Christerpsomby

140

04-12

04-12

04-13

04-13

04-13

04-13

04-14

04-14

04-14

04-14

04-15

04-15

04-15

04-15

04-15

04-15

04-15

meeting at jonas

Spillprog bachelor

thursday meeting

Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

Installer (DLLs)

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generation and meeting with Mariusz

Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Meeting with Mariusz
Spillprog bachelor
meeting with mariusz
Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
world generation

Spillprog bachelor

6:30:00

09:00-15:30

6:30:00

09:00-15:30

5:20:00

08:34-13:54

3:11:54

09:13-12:24

2:48:27

11:06-13:54

2:11:49

14:36-16:48

4:08:00

08:22-12:30

5:39:24

08:36-14:15

2:00:25

11:01-13:02

0:42:43

12:42-13:24

1:19:26

14:05-15:24

1:44:32

20:06-21:50

1:29:15

07:32-09:02

7:11:10

08:35-15:47

4:11:32

10:34-14:45

1:39:20

11:19-12:58

1:15:10

13:30-14:45

1:15:00

13:30-14:45

2:05:47

15:50-17:56

2:25:21

19:49-22:14

4:51:38

20:37-01:29

Kristoffer Eidséa

Henningel

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Kristoffer Eidsa

Kristoffer Eidsa

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Kristoffer Eidséa

Kristoffer Eidséa

Henningel

Henningel

Christerpsomby

Henningel

141

04-16

04-16

04-16

04-16

04-16

04-16

04-16

04-17

0417

04-17

04-18

04-18

04-19

04-19

04-19

04-20

world generator

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generation, reading/researching stuff

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

Installer, dependency

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

7:49:52

07:28-15:17

2:25:40

09:35-12:00

3:08:01

10:01-13:09

3:59:43

15:08-19:08

0:11:22

20:00-20:11

2:57:36

20:20-23:18

1:17:10

23:05-00:23

1:01:04

23:12-00:13

3:07:33

08:32-11:40

6:21:45

10:03-16:25

3:39:10

12:02-15:41

4:51:07

12:05-16:56

1:03:59

12:26-13:30

0:28:28
13:37-14:05

9:28:11

20:12-05:40

6:13:40

07:33-13:46

5:30:50

11:21-16:52

5:18:50

09:00-14:18

5:10:32

09:35-14:45

5:08:09

12:47-17:55

3:54:41

08:14-12:08

Jonas Reitan

Christerpsomby

Kristoffer Eidséa

Henningel

Christerpsomby

Christerpsomby

Henningel

Kristoffer Eidséa

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidséa

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidsé&

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

142

04-20

04-20

04-20

04-21

04-21

04-21

04-22

04-22

04-22

04-22

04-22

04-22

04-22

04-22

Installer
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
Installer
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Installer
Spillprog bachelor
world generation
Spillprog bachelor
Installer
Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
world generating and database stuff
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
Meeting

Spillprog bachelor
Spring Meeting
Spillprog bachelor
friday meeting
Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor
world generation

Spillprog bachelor

2:51:32
10:00-12:52

5:15:51

11:46-17:02

0:02:09

13:25-13:27

4:48:13

17:03-21:52

1:54:09

17:04-18:58

1:35:00

01:17-02:52

4:10:18

08:05-12:15

5:08:25

11:03-16:11

3:3312

11:50-15:24

1:52:39

16:40-18:32

1:36:09

20:07-21:43

3:12:29

23:30-02:42

2:16:48

10:49-13:05

4:49:39

11:03-15:53

1:39:42

11:46-13:26

1:04:33

14:58-16:03

0:30:45

16:00-16:31

0:31:53

16:02-16:33

0:30:46

16:03-16:33

0:09:41

16:33-16:43

1:35:57

16:45-18:21

4:32:26

17:42-22:15

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Christerpsomby

Henningel

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Henningel

Christerpsomby

Henningel

Christerpsomby

Kristoffer Eidsa

Henningel

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Christerpsomby

Henningel

Jonas Reitan

143

04-22

04-23

04-23

04-23

04-24

04-24

04-24

04-24

04-25

04-25

04-25

04-26

04-26

04-26

Installer

Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor
world generating and database stuff
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generation
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor
database integration
Spillprog bachelor
group meeting at my place
Spillprog bachelor
Meeting Jonas
Spillprog bachelor
meeting at jonas

spillprog bachelor

0:14:00

18:03-18:17

0:11:53

19:32-19:44

3:58:15

20:17-00:15

4:15:01
12:20-16:35

4:42:25

12:23-17:06

4:05:55

13:36-17:42

6:10:25

13:43-19:53

2:10:37
21:12-23:22

1:43:30

02:45-04:29

3:24:00

08:58-12:22

4:44:56

11:27-16:12

3:59:22

12:07-16:06

4:42:54
14:54-19:36

3:52:53

17:08-21:01

1:16:04

18:31-19:47

5:50:57

21:30-03:21

5:04:50

13:42-18:47

3:23:05

15:16-18:39

2:36:31

16:23-18:59

3:00:00

10:00-13:00

3:00:00

10:00-13:00

3:00:19

10:00-13:00

Christerpsomby

Christerpsomby

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Christerpsomby

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Jonas Reitan

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Jonas Reitan

Christerpsomby

Kristoffer Eidséa

144

04-26

04-26

04-26

04-26

04-27

04-27

04-27

04-27

04-27

04-27

04-28

04-28

04-28

meeting at jonas
Spillprog bachelor
world generation
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor
world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor
mustad meeting
Spillprog bachelor
Meeting Mustad
Spillprog bachelor
Meeting at mustad
Spillprog bachelor
meeting at mustad
Spillprog bachelor
world generating and database stuff
Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor
Installer

Spillprog bachelor
world generation
Spillprog bachelor

world generation with more database integration

Spillprog bachelor

world generating and database stuff

spillprog bachelor

3:00:01

10:00-13:00

0:58:57

13:47-14:46

0:51:50

13:54-14:46

0:45:36

13:57-14:42

2:12:36

22:39-00:51

1:44:21

22:47-00:31

1:52:30
02:10-04:02

1:28:29

11:00-12:28

1:28:00

11:00-12:28

1:27:07

11:00-12:27

1:28:00

11:00-12:28

3:36:28

12:27-16:04

6:33:54

12:28-19:02

1:40:25

13:36-15:17

0:18:25

16:02-16:20

2:22:20
21:20-23:42

0:32:34

02:13-02:45

4:07:34

02:20-06:28

6:06:49

12:03-18:09

4:39:04

12:18-16:57

3:45:31

13:13-16:58

Henningel

Henningel

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Henningel

Christerpsomby

Henningel

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidsa

145

04-28

04-28

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-29

04-30

world generating and database stuff

Spillprog bachelor
Checking on SQL debugging

(no project)

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

meeting

Spillprog bachelor

Meeting

Spillprog bachelor

Spring Meeting

Spillprog bachelor

friday meeting

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation with henning
Spillprog bachelor

Installer

Spillprog bachelor

world generation with jonas
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generator stuff, rotating balls
Spillprog bachelor

adding cube

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

pushed some broken stuff.

Spillprog bachelor

world generation

spillprog bachelor

2:21:09

18:28-20:49

2:23:52

18:33-20:57

4:21:29

21:47-02:08

2:46:35

23:06-01:52

3:57:23

12:02-16:00

1:48:44

14:17-16:06

0:16:18

16:00-16:16

0:12:33

16:00-16:12

0:12:17

16:00-16:12

0:34:39

16:06-16:41

0:52:14

16:12-17:04

3:10:42

16:16-19:27

1:01:58

16:25-17:27

2:43:47

16:41-19:25

0:11:54

18:16-18:28

1:51:04

20:06-21:57

1:41:12
20:07-21:49

2:17:11

20:21-22:38

0:34:49

21:18-21:53

0:08:59

23:40-23:48

3:05:37

16:48-19:53

Kristoffer Eidséa

Christerpsomby

Henningel

Christerpsomby

Kristoffer Eidsa

Henningel

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Henningel

Kristoffer Eidséa

Jonas Reitan

Henningel

Christerpsomby

Kristoffer Eidséa

Jonas Reitan

Jonas Reitan

146

04-30

05-01

05-01

05-01

05-01

05-01

05-01

05-01

05-02

05-02

05-02

05-02

05-03

05-03

05-03

05-03

05-03

05-03

05-04

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

fixing proper cube mesh
Spillprog bachelor

Installer

Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world generation

Spillprog bachelor

Installer

Spillprog bachelor

world generation and research
Spillprog bachelor

Installer

Spillprog bachelor

meeting at school

Spillprog bachelor

1:58:21
16:49-18:48

2:35:27

16:50-19:25

2:06:27

21:46-23:53

0:41:53

01:14-01:56

2:26:06

03:44-06:10

0:36:06
04:09-04:45

9:29:49

11:08-20:38

4:47:14

12:10-16:58

7:08:59

16:08-23:17

0:46:49

16:50-17:36

5:03:00

12:46-17:49

5:33:23

14:13-19:46

1:49:14

18:17-20:07

0:24:23

22:51-23:15

1:17:56

05:32-06:50

5:19:48

12:15-17:35

2:13:48

15:08-17:22

0:38:00

18:51-19:29

5:06:39

19:53-00:59

4:36:22

20:00-00:36

5:20:00

13:40-19:00

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Henningel

Henningel

Christerpsomby

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Christerpsomby

Kristoffer Eidséa

Henningel

Christerpsomby

Jonas Reitan

Christerpsomby

Jonas Reitan

147

05-04

05-04

05-04

05-05

05-05

05-05

05-05

05-05

05-06

05-06

05-06

05-07

05-07

05-07

05-07

05-07

05-07

05-07

05-07

05-07

05-08

School

Spillprog bachelor

played with coin at school
Spillprog bachelor

went to school

Spillprog bachelor

world generating and database stuff
Spillprog bachelor
research and note taking
Spillprog bachelor
Installer

Spillprog bachelor

world generation
Spillprog bachelor

world generation
Spillprog bachelor
Installer

Spillprog bachelor

world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor
Reading bachelor reports
Spillprog bachelor

world generation
Spillprog bachelor

world generation
Spillprog bachelor

world generation
Spillprog bachelor

world generating and database stuff
Spillprog bachelor
Installer

Spillprog bachelor

world generation
Spillprog bachelor

world generation
Spillprog bachelor
Installer

Spillprog bachelor
Installer

Spillprog bachelor

5:20:00

13:40-19:00

5:20:27

13:40-19:00

5:20:14

13:40-19:00

5:28:28

12:18-17:46

4:55:07

3:42:38
15:57-19:40

1:55:11

17:00-18:55

1:06:17

19:20-20:26

2:18:00
07:03-09:21

5:00:05

12:11-17:11

1:37:31

18:40-20:18

2:05:38

01:17-03:22

2:10:01

02:50-05:00

5:11:26

05:33-10:44

5:11:32

10:38-15:49

5:36:05

12:34-18:11

1:59:44

16:13-18:13

1:10:17

17:27-18:37

1:03:18

20:10-21:13

3:17:26

21:13-00:30

6:45:11

06:22-13:07

Christerpsomby

Henningel

Kristoffer Eidsa

Kristoffer Eidsé&

Jonas Reitan

Christerpsomby

Henningel

Henningel

Christerpsomby

Kristoffer Eidsa

Christerpsomby

Christerpsomby

Henningel

Jonas Reitan

Henningel

Kristoffer Eidséa

Christerpsomby

Henningel

Henningel

Christerpsomby

Christerpsomby

148

05-08

05-08

05-08

05-08

05-08

05-08

05-08

05-08

05-09

05-09

05-09

05-09

05-10

05-10

05-10

05-10

05-11

05-11

05-11

05-12

05-12

world generation and some research
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

enemy stuff

Spillprog bachelor

Installer

Spillprog bachelor

enemy stuff

Spillprog bachelor

enemy stuff

Spillprog bachelor
documenting

Spillprog bachelor
documentation /enemy stuff
Spillprog bachelor

world generating and database stuff
Spillprog bachelor

world stuff

Spillprog bachelor

Installer

Spillprog bachelor

Installer

Spillprog bachelor

Moving database and stuff
Spillprog bachelor

confluence, research and stuff
Spillprog bachelor

mostly documentation stuff
Spillprog bachelor

Installer

Spillprog bachelor

world generating and database stuff

Spillprog bachelor

discussing confluence, bachelor and art stuff, changed some stuff, wrote some stuff

Spillprog bachelor
documentation

Spillprog bachelor

world generating and database stuff
Spillprog bachelor

writing and

Spillprog bachelor

9:01:28

08:12-17:13

3:15:55

12:11-15:27

2:24:39

12:29-14:53

0:59:16

14:14-15:13

0:56:11

15:35-16:31

3:20:58
17:02-20:23

0:37:42

20:40-21:18

5:57:35

22:36-04:34

5:04:10

12:11-17:15

5:06:00

12:26-17:32

0:58:34

20:34-21:33

2:06:24
22:11-00:18

5:14:39

12:11-17:26

5:07:42

13:03-18:10

4:08:57

16:00-20:09

2:06:51

19:03-21:09

5:29:07

12:11-17:40

5:23:50

15:42-21:05

2:00:16

18:38-20:39

5:32:11

09:13-14:45

6:25:36

11:02-17:27

Jonas Reitan

Kristoffer Eidsa

Henningel

Christerpsomby

Henningel

Henningel

Henningel

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Kristoffer Eidsa

Jonas Reitan

Henningel

Kristoffer Eidséa

Jonas Reitan

149

05-12

05-12

05-12

05-12

05-13

05-13

05-13

05-13

05-13

05-13

05-13

05-13

05-14

05-14

05-14

05-14

05-14

05-14

05-15

05-15

05-15

document writing
Spillprog bachelor
Documentation
Spillprog bachelor
Confluence Settings
Spillprog bachelor
documentation
Spillprog bachelor
Writing and fixing stuff
Spillprog bachelor
confluence writing
Spillprog bachelor
documentation
Spillprog bachelor
Documentation
Spillprog bachelor
meeting, more confluence stuff
Spillprog bachelor
friday meeting
Spillprog bachelor
Meeting

Spillprog bachelor
Documentation
Spillprog bachelor
documentation
Spillprog bachelor
Writing and fixing stuff
Spillprog bachelor
confluence documentation
Spillprog bachelor
Documentation
Spillprog bachelor
documentation
Spillprog bachelor
Documentation
Spillprog bachelor
made new art for confluence
Spillprog bachelor
Confluence Settings
Spillprog bachelor
Writing and fixing stuff

spillprog bachelor

3:21:16

17:19-20:40

2:20:00

19:03-21:23

3:13:52

21:52-01:05

1:32:29

23:05-00:38

4:30:24

11:05-15:35

3:30:00

12:02-15:32

2:11:17

12:59-15:10

5:35:50

16:05-21:40

4:09:00

16:08-20:17

0:33:01

16:17-16:50

0:30:34

16:18-16:48

4:26:20

23:54-04:20

3:34:08

00:13-03:47

4:58:09

13:04-18:02

6:56:00

17:05-00:01

4:02:31

18:03-22:05

6:59:53

18:12-01:11

0:38:36

23:27-00:05

1:14:39

00:25-01:39

2:24:00

07:32-09:56

2:54:17

13:50-16:44

Henningel

Christerpsomby

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Henningel

Christerpsomby

Jonas Reitan

Henningel

Kristoffer Eidsa

Christerpsomby

Henningel

Kristoffer Eidsa

Jonas Reitan

Christerpsomby

Henningel

Christerpsomby

Jonas Reitan

Christerpsomby

Kristoffer Eidsa

150

05-15

05-15

05-15

05-15

Documentation

spillprog bachelor

writing about process, noise, generation etc.

Spillprog bachelor
Writing and fixing stuff
Spillprog bachelor
Documentation

Spillprog bachelor

6:30:03

16:28-22:58

10:25:00

18:20-04:45

2:20:18

20:02-22:22

0:44:56

23:46-00:31

Christerpsomby

Jonas Reitan

Kristoffer Eidsa

Christerpsomby

Created with toggl.com

D. Medieval Brawl

Medieval Brawl

Installer: https.//www.dropbox.com/sh/07bcrmhaafqvi 30/AABHKwj127r4hev3zCIMRg

fda2di=0

Repo: https:.//bitbucket.org/Almightyquad/roguelike-game-programming on the master
branch.

We a'so made another game with the engine in android, which is on the Android branch.

Description of the game

Summary

151

https://www.dropbox.com/sh/07bcrmhaafqvl3o/AABHKwj12Zr4hev3zCfMRgfda?dl=0
https://www.dropbox.com/sh/07bcrmhaafqvl3o/AABHKwj12Zr4hev3zCfMRgfda?dl=0
https://bitbucket.org/Almightyquad/roguelike-game-programming
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.1nsysfv2iju0
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.u984kpobxrba

Technology
Graphics
Audio Handling
Android
File Handling in Android
Al

Level editor

Font:

Filehandling

Networking

Event handling

Physics

Libraries used

Engine Architecture
Engine
ActorFactory
Actors and Components

User interface structure
Enemies
Heroes
Items
Game balance
Reflection

Responsibilities

Shared responsibilities:
Christer:

Kristoffer:

Henning:

Jonas.

152

https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.jr7f53mu1tll
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ug8jsmd86qnl
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.rjj0g3teq5or
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4aka25jrcp0
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.6rc7ax0fm62
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.x1wm85dn64fz
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dkvvo8zhzvtm
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.bzoptl352aj3
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.r840im8ejwcf
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.1dcpquorjmff
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.tb71eswigcck
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ijxi7fd01q5r
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.qu38dovmm4rg
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.k8g60puxwfvm
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.sy5gvkvm11ho
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.qxsyexnv0qs2
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.2baet263t9sf
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.5bac3suekod7
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.5r69cfstnh53
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.84dcq2phota8
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.kenffkekgkr8
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ti83erjucgir
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ewuk5k8fdt17
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4x6twxe1ezjw
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.xj2g9x2j71ip
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.nbk7ji5xu0f6
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.4zsos8zd8p5g
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dhkq18t6fwmb
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.nso5213gk02w

Lessons learned

Our experiences

Christer:
Kristoffer:

Henning:
Jonas:

Terminology:

Engine: Not really an engine, more of atool.

Engine component: General term for what the engine can use
Actor: All objectsin the game.

Actor component: Parts of an actor that make up the actor.
GUI element: example: Button, dlider, dropdown, ...

GUI state: Main menu, running, game ove, ...

Android NDK: Android Native Development Kit

Description of the game

Summary

We decided during the summer that we would be working on aroguelike, where we ook
at all the interesting design of some of the gamesin the genre, and improve on that. We
set out to create a game with a seamless procedurally generated random world, with a
crafting system and vendors. The player would progress by upgrading his equipment and
finding new weapons. We set out by aiming high and delivering whatever we had
enough time to do.

We were able to implement about half of the game elements that we wanted to, and we
believe we made the best game we could make with the tech we wanted to implement

153

https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.dpn3u1rvw7sp
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.im5mygqyqftk
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.ck1aksdtu2r
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.f6r3xmxpgytw
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.e48u9sqep5g6
https://docs.google.com/document/d/1FU5U8wRq_TkBDzHe8_pBAHYs51MeoNi4foijw6GFyqs/edit#heading=h.yyn0cjlmtaic

and the time we had.

Medieval Brawl has arandomly generated world, where the world is created with tiles,
which are placed in 8x8 chunks (more on this later), which are seamlessly connected to
each other, We have four fairly diverse enemies and the player can find three different
weapons. The weapons are also somewhat unique. All enemies and weapons are
spawned randomly throughout the entire world.

The player can choose between four different characters, which have some
distinguishing features. The players can also spawn with set items, which can distinguish
them even further with just one line of code. Thisis mostly done to display flexibility
and ease of use of the engine, and not really utilized to it’s full potential.

The engine currently support up to 32 player multiplayer, but starts getting very choppy
at around 6 players. This number will go up and down depending on the hardware of the
host and clients. In Medieval Brawl the players can fight in co-op against the horde of
monsters with the spawned loot.

Players can pick up and drop items as they see fit, and there is some strategic element to
how to beat the game. The player(s) beat Medieval Brawl after defeating the final boss
which spawns after a certain amount of enemies have been killed in asingle session.

Technology

Graphics

Our engine uses modern OpenGL and OpenGL ES 3 for drawing on various platforms.
We decided to use a OpenGL version that also was supported for mobile phones and we
also wanted to use the modern features ES3 offered, so we had to remove compatibility
for older phones to make the game look better and not use the newer OpenGL version.

One of the main features we wanted from ES3 was instancing so we could add particle
effects without having one draw call per particle, which would slow down any device.
We used this particle effect system to add a weather effect, which is currently displayed
as snow on our desktop game and leaves on our mobile game. The particles are also used

154

for entitiesin our engine, an example for thisiswhen you pick up a star on the mobile
game, it bursts out tiny stars in various red-orange colors, while on our desktop game we
attach particles to projectiles, like arrows and magic.

Since we use OpenGL, everything is donein 3D, so we got alot of flexibility even
though our games are mainly 2D. This means that we can have actual 3D parallax
background instead of layers and have 3D models in game. One example of 3D models
we use are cubes for platforms in our desktop game.

We have a skybox implement which supports two texture and will fade between them
based on the time of the day. In our desktop game, we use aday and night skybox but on
our android version we use it as a parallax background effect and have a static picture
that rotates at amuch slower rate. This way we can use the skybox for multiple purposes
inalot of different type of games.

Very late into the development cycle we started implementing framebuffer objects
(FBOs) so we could add various effects to the world. We started off by creating a
lighting system where we would draw circles with a certain color and then multiply this
with the world to give light sources like torches actual light while everything elsein the
world had adark ambient to it.

This can be used to other things aswell, for example by using the stencil buffer, we could
stencil out the background and overlay a blood texture to apply blood to the ground
where something dies to increase immersion.

Audio Handling

We are using SDL_MIXER for our sound system. We were trying to get OpenAL to
work but we ran into afew problems. We needed to make the Cmake file for openAL
ourselves and the one we made only seemed to work for one of us and we decided to just
run with SDL_MIXER because we did not want to spend too much time on the audio
system because we felt that other aspects of the engine was more important. When we
load sounds or music files we check to see if they aready exist and if not we save them
to a map with sounds with a string identifier.

Our sound system isreally basic with these possibilities at the moment:

Play music and sounds: We can play a sound or amusic track loaded from our sound

155

map.

Mute music / sound - Mute sound and mute music are two different functions that
basicaly setsthe volumeto O.

Change volume: Y ou can change the volume to a specific number. This function works
great when linked to our dliders.

Change the master volume: changes both the sounds and the music at the same time.

stop/pause/resume music: we can stop, pause and resume the music. Especially great to
use these when we were making a game for Android since we needed to stop sounds
from playing while our application was minimized

We should look into using something different than SDL_MIXER if we decide to keep
using our engine in the future, since it isabit too basic and lacks some core functions
that we want. For example SFML has agreat function to play sounds from alocation in
the world to make the game feel more aive and real. Thisis something we would want
with our future sound system and SDL_MIXER couldn’t do this the way we wanted it.

Android
We have a document for Android as well, which can be found here.

We have building and compiling for Android. There is areadme on the repo on how to
build it and deploy it to the phone. The game on the master branch may not run on
android due to the assets not being updated there, but the one on the Android branch
should run just fine.

We used the Android NDK for our building and ant for deploying. The original intention
was to make a make system, but time limitations made us only have the android make
system.

Many things you would see as easy on PC is alot more tedious on Android. Examples
would be loading afile, keeping the window the same size when re-entering the
program, stopping music when the game isin the background, movement, touch (which
Is the same as a mouse in some instances), and so on. Debugging can also be a chalenge,
since you mostly get back stack information and memory locations, which takes some
timeto learn how to read. So having logs in the project is very useful.

File Handlingin Android

Thefile handling in Android is done dlightly differently from PC. Everything in the APK
is compressed, so you have to use Androids AAssetManager to get out your files from
the assets folder. Everything you read here needs to be read into a buffer, which you can

156

https://docs.google.com/document/d/18wiwL4ac_tAuuDDph6GaFTgghCT5hZi4xzlGio_4jK8/edit#heading=h.xr5s8j84yd01

then put into a stream.

What you can also do is save files and such in the android filesystem. Which you need to
get using a seek from an Android function. The pach turns out to be something like:
“data/data/[yourpackagename]/Medieval Brawl/files’, writing to here can be done using
pretty much anything that reads and writes afile like fopen, ofstream and ifstream. This
location is also specific for your application, only you can read and write here.

Al

Al isapplied to an actor by adding the AlComponent to it. The Al component takes a
string parameter as a path to a Luafile, but pure c++ code can be used if no string is
passed along. We wanted the implementation of luato be 100% dynamic, but that
proved to be difficult, because none of us had any prior experience with Lua. Debugging
In non-pure Lua was aso no easy task, so we went for more c++ oriented Al towards the
end of the project deadline.

Most of the difficulties with implementing Lua dynamically comes from the parameters
you need to send from the main codebase. The need to know which, how many, and how
many return parameters you need made it very tough to do with our knowledge.

Level editor

We are currently using the program Tiled to create our levels. Since our game world are
atiled platformer Tiled works good for this project. We use our own level loader to parse
the Tiled files and create the graphics of the world with atile atlas. We want to create
our own level some timein the future because we feel that Tiled is abit clunky to use
and it makesit harder to just edit stuff and test on the fly. We didn’t create alevel editor
for this project because the world was going to be randomly generated anyway.

Font:

We are using SDL_TTF because we wanted something that worked and didn’t take alot
of timeto learn or implement. We figured that we didn’t really need any advanced texts
in our game and our priorities were elsewhere in the engine. Like with our audio system
we really want to use something better if using the enginein the future, since SDL_TTF
doesn’t have alot of customization. For example getting a outlined text would just create
aoutlined text and remove everything in the middle of the text. The only customization
we have at the moment is changing the color of the text. Since we just make an
SDL_texture and make it into an openGL texture, the text also looks weird and stretched
depending on the size of the word or mesh that it is attached to and all our customization

157

happens in a shader. We didn’t find any font system that was really easy to implement or
that did enough of what we needed for this project so we just went with this solution.

Filehandling

Like the rest of the engine the graphical user interfaceis also loaded from xml files. We
looked into using luato do everything for us and we actually had some lua code for gui
in the beginning. We found out that you needed to pre map functions you want to run to
use them in luafiles and we found out that it would take some time to rewrite the code to
get thisto work. Since we felt that the gui was already working great we decided to just
use our current way so one of us didn’t have to use all histime coding the gui.

Thereisagui loader file that has the name of all the game statesin it. Thisfileisread
when we start our game and the gui handler creates all the states that it findsin thisfile.
The gui handler then tries to open an xml file with the name of each state. For example
RUNNING.xml. In each game state xml file all the gui elements that belongs to the state
islisted. All elements of the same kind hasto bein order so for example every button
has to bein order. Thefileisthen parsed and will look under each element to find their
property and create the element. When a gamestate is changed the gui handler will load
the correct state with the correct elements.

The elements that the user can interact with have alistener that is currently listed in the
bottom of the engine.cpp (Thisis supposed to be decoupled from the engine but since we
didn’t have time to decouple the game states thisis the hacky solution for now). The
listener listens for messages that it is subscribed to and when they get the right kind of
message they will run the functions that is written in the listener.

Networking

We use SDL_net for networking in our engine. We wanted to use something more
flexible and easier to use, but because we aready had SDL implemented we wanted to
keep everything as close to SDL as possible due to portability and familiarity with the
structure. Our engine currently only supports TCP packets. We decided for using TCP
because most of the speed problems and we minimize the packets as much as possible.
We are looking into further reducing the amount of data being sent to be able to support
more players.

158

All network clients only send their input to the host, and the host redirects the input to
the correct components of the engine(more on this later), and is handled the same way
input from the host is, with a one frame delay. The host sends the positions and velocity
of all living moving actors across the network. This can be improved by making sure that
the position that is being sent isin fact a new position, and not the same that was sent

last frame.

The client stores all this datain his own actor structure, and creates new actors when
necessary. The new actors are created with the velocity sent by the host. Old positions
are currently being overwritten by new ones, even if they are only 0.001 units apart (only
afew pixels). The game would feel more smooth for the client if he only updates the
position for each actor if the current position is more than a certain distance apart.

Deletion of actorsis handled by the client and host individually. All deletion is handled
by the physics component(more about this under physics), so as long as the positions are
the same one frame earlier, they should be the same on the next frame, and the collision
should take care of the deletion. Thisis probably not a 100% safe assumption, but we
have not seen a situation where the client and host has desynced. This could be solved by
having the host send messages regarding deletion of actors as well as creations, and
prevent deletion altogether on the client side.

We wish to rewrite and replace SDL_net with ZeroMQ for the bachelor if we were to
improve on the engine. We also want to make the networking more flexible and
customizable for each game, so we would have to rewrite most of the contents already,
which is part of the reasoning for why some of the issues and weaknesses are not fixed.

Event handling

All our physical interface events are behind handled by SDL. Thisincludes mouse
events, keyboard events and touch events. The event handler isisolated from the rest of
the game and engine, where the event handler only sends information around and other
components know what to do with it. Objects which subscribe to the eventhandler will
get the event that happened, and will make the own decisions on what to do with it. Most
of the events sent to subscribers are discarded as they are not used by that specific object.

All actorsin the game can listen for input as long as they have the inputComponent(more
on thislater). The gui handlesinput by checking for mouse input from the event handler.

If the mouse is clicked the gui elements on that particular game state checksif the mouse
click isinside their transform with asimple AABB check. If it is the function returns true

159

so the event handler can cancel out mouse events that should not happen when gui is
clicked. |.E firing afireball when clicking the pause button. The mouse click function
also activates functionsin the gui elements that does stuff when clicked. For example
buttons gets clicked, sliders gets slid and drop downs gets drop downed.

Physics

Kremengine uses Box2D as physics handler. All game objects which need to collide with
something need a body from the Box2D world. We aso use box2d when moving objects
around in world space.

Librariesused
SDL

Box2D (Physics)
SDL_Mixer (Audio)
SDL_TTF (Fonts)
SDL_Net

OpenGL 3.3

Glew

LUA (Al

glu

Engine Architecture

Engine

160

The heart brain of the engine is the Engine class. Engineisinitialized when the player
starts the game and contains every single handler for al major engine components.
Engine also holds the gamestate, which is used for tracking where the player isin the
game. Gamestates are currently tied directly to the game, so the programmer has to go
directly into the engine and modify the gamestates if he wishesto do so. We currently
directly handle typical gamestates like “playing”, “hosting” and “main menu”. Each
gamestate has its own update function and initialization function. The update function
handles generic drawing and updates, as well as major game specific events, i.e changing
gamestates when player health dropsto 0.

Engine aso one of each major handler in the game. Handlers include PhysicsHandler,
GraphicsHandler, EventHandler, Network handlers and many more. Each handler is
derived from a base Handler class which provides some tools to make life easier for the
programmer. All handlers have a pointer to their parent (Engine). We would like to
include more functionality to the handler to make it act more as an interface for all
handlers.

Engine is also the main culprit for creating new Actor objects. Engine holds the
levelLoader, which loads all the tiles from their chunks (read more about this under
filehandling). All tiles are created as Actors (more on this under ActorFactory). New
enemies and items are spawned during a set interval in the update loop. The player
creation call also comes from the engine for the host and single player player actor. The
network creates all the client actors.

161

Engine

Actorfactory Handlers

Actor Actar Handler

Component Component

The engine object stores the Actorfactory and all Handlers. Handler inherit from
Handler. The Actorfactory stores all the Actors, an Actor can have many Components.

Actor Factory

ActorFactory is the hands for Engine. Engine has one ActorFactory, and that one
instance is responsible for creating and deleting all drawn objects other than GUI and
particles on the screen. ActorFactory takes an XML path, position and velocity as
parameters. Everything else that is needed isin the XML file (if it exists).

ActorFactory stores objects in two categories; moving and not moving. Moving actors
are primarily actors that can be moved. Players, projectiles, enemies and items fall under
this category. Non moving objects are tiles, background objects. Lightsources and
invisible collision blocks will probably fall under this category in the future. The moving
category is dightly misleading since you can have stationary enemies, which are
technically “not moving”. The differentiation is made to handle static objects differently
than everything else. Moving objects are stored in amap, with aname and an ID as
identifier, while non moving objects are stored in a much faster vector, to more easily
iterate between them during draw calls.

ActorFactory also holds all factories for component factories (more on this below).

162

Actors and Components

Every single actor has at |east one component. Components are pieces of actors that
make up the whole of one actor. Our engine currently has the following components:

Animation: Added for actors who need multiple sprites. Tracks which spriteit is
currently on and the timer for switching sprite. Holds sprites for multiple actor states.

Audio: Used by actors who need to make a sound. Could for instance be added on the
sword actor when it hits an enemy to make a slash sound. Holds sounds for different
actions.

Combat: Used by actors who engage in some form of combat. Contains damage and/or
HP. Actors with a combat component need more than 0 hp to not be deleted. Fireballs
and enemies have damage, which deals their damage on contact with objects which are
masked for that collision.

Graphics: Used for all actors who need to be drawn from afile. Pure light actors would
not need this when we get that far.

Al: Mostly used for enemies, but can easily be used for more interesting items like
homing projectiles.

Input: The main actor for the player has input component. Input component receives
messages from the eventhandler, and are handled by the input component. Items which
are activated on input also uses the input component for flexible input handling. Input
can aso come as network packets.

Particle:

Physics: This component is required by most actors. This creates a physical body for the
actor with the parameters from the xml file. This body is used for al collision handling.

The last two components are more game specific, and we will add functionality for
creating components outside of main codebase.

Inventory: Thisis used by components who can hold items. Enemies and players can
both own items with this component attached.

Pickup: Pickup isfor actors who are mostly immobile which are intended as items for
the player to pick up. These are mostly new weapons and potions. Pickups can only be
picked up by actors with an inventory.

Actors can have any number of components, but some components make little sense
together in our game. Y ou could have a game where an enemy can also be a pickup, but

163

this doesn't fit in our game. Most actors are purely general, and only exist inside of the
engine, but we are decoupling more and more as we need them decoupled. The trend
looks to be to decouple everything over time.

Which components each actor has depends on the parameters loaded from the xml file.
Certain components require certain parameters, while others have default parameters,
and you only need to specify that you want the component. GraphicsComponent requires
filepaths to the mesh and texture, while Al can just be added by adding the Al
component. We have some debugging on the xml loading, so you can see if a parameter
Isnot set in the xml file by enabling xml debugging in the code.

User interface structure

The graphical user interfaces was intended to use some of the components of the actor
factory. We quickly figured out that it would be clunky and that the gui needed it owns
camera anyway so that the elements wouldn't be in world space but be visible on the
screen all the time. Currently the gui isinitiated in the engine by making a gui handler
element. The gui handler reads all the game states that the game needs from a gui loader
file. From thisthe gui creates all the states needed for the game through several gui state
objects. The gui state object has control over all the gui elements that we want to display
or use on that particular stete.

The gui handler can find a certain element by searching through its state for agiven
name. Y ou can use thisfor several different things. For example changing the container
to bevisible. Thisis used for the inventory system. The gui handler can also return
objects of the gui element you found so you can subscribe to them and get info when
they are clicked and updated wherever you want in the engine. We want to decouple the
button listeners from the engine since it is specific to the game created and not the
engineit self but we haven't done thisfor now.

At the moment gui elements inherit from the gui state which inherit from the gui handler,
but nothing is using this to do anything ssmpler. We would like to rewrite the entire gui
system to be more flexible and to not duplicate code. We would like to use templates to
make alot of the functions alot cleaner and aso override functions that do the same
thing.

We are currently having adraw call for every gui element. In the future we want to make
thisabit better and do it by instancing. The gui isn’'t using too much resources right now
but in the future it may be a problem and therefore we should rewrite this part.

164

Enemies

Esmeralda: A crow that fliesin the air and drops eggs on the player that does damage.
Chuck: throws a big rock at the player that does damage.

Kappa: jumps up and down and turns around when hitting awall

Hestmeralda:

Heroes

Jakkheim: Jakkheim is our games young and inspiring hero. Heis small and that is why
he is faster than the bigger characters. He also has more health than his girlfriend
Jackline because heisamale.

Jackline: Since sheisthe same race as Jakkheim she is faster than the bigger characters
as well. She has more manathan Jakkheim to make the two unique.

Dwarfid: Dwarfid is a400 year old dwarf and have been through some wars. Therefore,
he has alot more health than the other characters, but his age comes with a disadvantage,
making him as slow as his wizard friend Frode.

Frode: Frode is the same age as Dwarfid and have been to all the same wars. Since heis
awizard he has tons of mana, but his age and body make him slow and fragile.
Items

Fireball: Fireball is aclassic mage spell that shoots a ball of firein astraight line
depending on where you aim. The spell costs mana and can only be cast when the player
has 20 or above mana. Does alot of damage since it is dependent on mana.

Bowandarrow: The Bowandarrow is a weapon which has a string attached to a bow, with
magical arrowsinside an invisible quiver. The arrows travel like arrows would in real
life. does a bit less damage than afireball.

Sword: Sword is a melee weapon that does a lot of damage since it requires you to go up
to the enemies and endanger yourself.

Health and mana potion: Refills the health or mana of the player by 50. Does this
automatically and won’'t save to the inventory or require the user to activate it. The
potion gets removed even if the player picking it up has full health or mana.

Game balance

165

We have focused a lot more on technology and implementation techniques than game
balance and content. We could make 5 iterations of the fireball and bow and arrow with
dlight differences, and could create other enemies which just spawned other enemies or
fired arrows or fireballs towards the player, but these would just be other versions of
existing items and enemies. Even if our engineisflexible and easy to use, it would still
take some time to tweak these new items without learning anything new or displaying
any skill. And thisistime we would rather spend on improving our code and tweaking
existing content.

Instead we chose to balance Medieval Brawl around having the objectsin it be diverse
enough to be worth displaying.

The three power-ups for the player are created outside of the engine, and only require a
few lines of code each, but still display alot of utility of the engine. The fireball firein a
straight line, the bow firesin a cone, and the sword is a melee weapon which equips a
new physical body which shares a body joint(more on this later) with the player.

Reflection

Responsibilities
Shared responsibilities:

Content, optimization, error handling, actors, physics

Christer:

Android porting, Events.

Kristoffer:

GUI, pickups, inventory, audio

Henning:

Network, component system, decoupling

Jonas:

166

Graphics

L essons learned
Don't start porting to Android late, do it early. Add all the dependenciesincrementally.

Sort filesinto folders. Thisis something that needs to be done, because the folder is
pretty much just chaos.

Make a coding standard before you start. Everything is currently just clutter.

Do templating early. Also, learn templating.

Our experiences
Christer:

| hate the Windows file system, it’s not case sensitive. So everyone can nhame any file or
directory whatever they want, someone names the folder for GUI, but loads from that
folder by doing “gui/somefile.txt”, which then in turn works on Windows, but not on a
Linux system like Android, sinceit’s case sensitive! So | ended up battling for a standard
in naming files and having people use the literal path to the files.

Just getting started on the Android porting was also very tedious. Going one step
forward, ending up going to steps back was a common thing in the beginning. | had to
scrap everything | had done after 5 days work and begin again because | tried to do a
make system. After scrapping it, | went over to the Android make. Basically, the porting
took aweek more than expected.

Getting SDL ported was relatively painless, but adding more after that, like Box2D, was
chalenging. But as soon as| got that working, everything else went smoothly. Until |
started with the file loading. But as always, get it working one time, and you can get it
working many times. | had to do different loading strategies for everything, some | just
had to pass the buffer | got from the loader, some | had to make a stream, some | had to
make afilein memory and some | just had to load using SDL specific loading. If you'd
like to know more about the process, you can read more on it here.

Kristoffer:

| have learned that coding graphical interfacesis alot more work thani originally
thought. Every time you want to create a new gui element you have to think about a lot
of things. Gui elements needs alot of different properties to be reusable for different
games and they need to be dynamic and easy to edit. They also need to run different
functions from game to game. Almost every gui element i have added to the engine have

167

https://docs.google.com/document/d/18wiwL4ac_tAuuDDph6GaFTgghCT5hZi4xzlGio_4jK8/edit#heading=h.xr5s8j84yd01

had functions added to them later because they suddenly needed something i didn’t think
about when i first created them. For exampleit's really simple to create buttons that can
be clicked. But then you remember that you might want a texture for three different
states. Some sound, the button may change its text when something happens, you may
want to move it around or the scale can change. This have made me think more about
what a class needs from the beginning so i don’t have to rewrite stuff later. So for the gui
elementsthat i added later in the development process where almost complete when i
was done adding them instead of afew days/weeks later. | also learned that gui is
complicated to get right and needs alot of tweaking and flexibility to work good,
especialy if you want to just reuse classes. | would also liketo rewrite alot of the
classes. Some of the classesis really hacky written, For example the dlider. | also want to
override some functions that basically does the same for alot of the classesto not have
duplicated code and use the inheriting that i was supposed to. | also want to use
templates. | decided to not do this for the project because | wanted to work on different
things in the engine and not focus all of my time on gui since i wanted to learn more
about actual game coding.

| also learned alot about working on a code base that isreally big. Since the codebase is
so huge everything you want to do or change may have consequences elsewherein
someone else's code or maybe even in your own. | am now more careful when changing
stuff around and i always try to understand what the other people in my group has done
to not ruin their classes or function. Because of thisi feel like i could work on almost any
part of the entire engine with little to no effort becausei know the structure of the engine
really well.

Henning:

| did quite a bit of reading on both the Internet and the book for the course (game coding
complete), to try to sew together everything I’ ve learned throughout the degree. | was
assigned to design alot of the architecture behind the actor system, and really enjoy
working with architectural design even if I'm very inexperienced and new in the field.

Looking back at everything I’ ve done | notice that some of the code is subpar, while
other pieces are fair to good, and the common denominator for all the good codeis that it
is rewritten multiple times. | never looked back on how the core of the actorfactory is set
up after it was up and running (and to be fair, it isnot an easy task to rewriteit at this
point), until afew weeks before the due date, at which point it would take too much time
to rewrite it. The same goes for the engine.cpp file. These are some of our weakest code
bits, and ironically the most important. So rewriting code is good. The collision system is
around it’s fourth iteration and is coming along nicely. The physics has undergone some
revision and is getting better. Through this project | have learned that when you traverse

168

unexplored areas, you will have to rewrite it at least once or twice, if not more (with very
few exceptions).

When we started making the game, | noticed how every small piece wasfairly fast to
implement. The system was simple and adding new content was easy for multiple
reasons. Thefirst reason is that there’s much less code and structure to organize when
implementing it, and the other reason isthat | did it! It is often tempting to add content
because of how easy it is, eveniif it doesn’t really add that much to the engine (that we
ended up making, even if it is not really atrue engine yet. not by along shot). But
towards the end of the project | could probably solve one or two big parts per day
because of how complicated they were (and how tired | often was).

Jonas:

| was very interested in improving my OpenGL knowledge, so | looked at this project as
an opportunity to do so, as we wanted to have alot of different tech in our engine. |
started off with looking at shaders, loading models and textures, various technologies
OpenGL could offer us and how to implement al of thisinto aneat and easy to use
package.

To save memory, | made a handler to check which assets where loaded and only load
new assets. This function returns araw pointer so every object on screen that needsto be
drawn have a pointer to a shader, mesh and texture.

| always like to think about optimization, which iswhy | went this path. Asal of the
textures, shaders and objects(mesh) are unique pointers, | could in theory check how
many pointers point to a certain object and delete any resources we currently don’t need.

Thisis something | planned to implement but the project never got to the scale where
this would be needed, so thisis something | got on my “to do” list.

| didn’'t really know alot about shaders prior to this, other than the very basic shaders we
used in graphical programming course. So that iswhere | started, by implementing
lambertian shading, and from there it just escalated into all the shaders we currently use.

We have a specific shader for everything in our game so the shaders don’t do
unnecessary checks or look cluttered, this is something | researched and people
recommended having alot of different shadersinstead of having shaders doing things
you don't really need.

So | went ahead and made a shader for every thinkable scenario we would encounter.
Our shaders range from basic with just a color, to just atexture, to multiple textures and
to textures where one is generated in code while the other isloaded from file.

169

When we started porting to Android | had to rewrite all of the shaders to support the
OpenGL ES3 format, which was very similar to what I’ ve used as | went for the modern
approach.

My knowledge of models and drawing were also very limited to what we learned in
graphical programming so | went researched this alot before starting to find an optimal
way. It turns out the method | used were the “hello world” of OpenGL and | realized
very late in the development cycle that | should have started using instancing at day one
as everything in our game are either cubes or quads. We're currently using one draw call
per object, except for particles, which is very expensive. Using instancing would
probably improve our performance, even though our performanceisfine asit isright
now (vsync stable 60 on phone, 500+ on windows).

After | discovered instancing, | started thinking about cool ways to implement this, so
the first thing | thought of was particle systems, so | made a simple weather system to
rain down blue boxes from the sky. Thislooked pretty cool so | increased the amount
and noticed | could go into the millions without any issues. | learned how to apply
textures to particles and that’ s how our snow was born.

| started this project with some knowledge around SDL and it’ s various libraries, as we
used SDL on previous game jams, so implementing those were a breeze. We had used
SDL_TTF before, but never with OpenGL, but this turned out to be easy with how my
texture class were built up.

Something | would have changed however is how we display the text. Right now, we
load the texture up to a shader and draw it onto a mesh, which means it will scale with
the mesh and look rather bad. | would like to redo this in the future by either adding the
font as adecal and apply it to an existing texture or look at distance field text to make the
scale better.

Theres still afew projects | would like to implement, like water with reflection and
ripples, multi textured particles for flame or spell effects, real time shadows using the
depth/stencil buffer.

One project | started with was a lighting system, where | planned to use framebuffer
objectsto draw circular shapes onto and then multiply this with the existing world to
giveit areally nice look where torches actually emitted light and everything else had a
dark ambient color to it.

| could al'so use thisto apply textures to the world, like decals. Something | wanted to

170

implement was a blood splatter system where | would apply atexture, much like the
light, to the position something dies and stencil out the background to only draw blood

on theterrain.

Thiswas sadly never completed because | had to prioritize other things.

Overadl, I've learned alot, but that’ s as expected when we spend 8-12 hours aday for a
few months straight and | will definitely use what I’ ve learned in future projects.

171

E. Bachelor Work Log

Bachelor Work L og:
13/01/2016 Wednesday
Undocumented work hours (03:15 - 05:30).

First day of discussing the bachelor project. We started off by writing down group rules
so we all agreed on everything before starting the devel opment.

Discussed game design and ideas.
Workload:

Everyone: wrote in document.

(18:00 - 22:00).

Discussing tech.

ZeroMQ.

Discussing game design and ideas.
Workload:

Everyone: wrote in document.

28/01/2016 Thursday

Undocumented work hours (18:50 - 23:59).
Discussing and writing project plan.
Workload:

Everyone: wrote in document.

Spring meeting 19:00 05.02.2016
The meeting was postponed due to some miscommuncation about the meeting times.

The meetings are to start at 16:00 on fridays.

172

Jonas has double vote.
List:

Jonas

Henning

Christer

Eidsa

I ssues:

Pathfinding

Pathfinding Al

Level generation

Design (level generation)
Database implementation
Network

Console

Make

Data gathering

and how to use the data
Ul

Document

Work:

Henning:
Christer: Make
Jonas: Pathfinding
Eidsa:

Spring meeting 16:00 12.02.2016

173

List:
Jonas(16:30)
Henning
Christer
Eidsa

Discussing different methods of generating level:

1. Use perolin noise (1d). place platforms on top points. Multiple passes. generate
enemies on top points on next iteration etc.

2. Use perlin noise (2d/heightmap). use height thresholds to decide what is solid and
what is empty space/enemies/spikes etc.

3. Use ANN to generatetile for tile, starting from start tile. Generate enemies using
the same method after terrain is generated to make enemy placement feel better.
ANN trained users.

Meeting 13:30 16.02.2016
Meeting with Mariusz. Discussed level generation methods and database security.

Hash passwords but it’s impossible to prevent unauthorized access, can only reduce the
chances of it happening.

Experiment with Artificial Neural Network, Genetic Algorithm and Noise functions.
Find out what works the best for our case. Combine them all. Example: Noise for layout,
ANN for chunks and genetic for Al.

Sprint meeting 16:00 19.02.2016
List:

Jonas

Henning

Christer

Eidsa

174

Discussing:
game mechanics -
level generation -

level mechanics -

® gspikes(moving up and down, moving between 2 tiles, stationary),
® moving platform(any direction),
® gspring (increases jump height),
® powerups (invincibility, double jump, jetpack, ranged weapon)
® crouch
® |edgegrab
¢ platformsthat disappears
enemy design -
* walking
* flying
® jumping/bouncing
® dtationary
® ranged/melee
([]

pathing enemies (moving along walls, roof, etc)

New weekly limit. Change from 40 down to 35.

Resour ces:

Cloudberry kingdom:
this game has the level generation we want ish.
http://www.gamasutra.com/view/feature/170049/how_to_make insane procedura _.php

7page=1

175

http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php?page=1
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php?page=1

	Preface
	List of Figures
	List of Tables
	List of Listings
	Sammendrag
	Abstract
	Introduction
	Project Description
	Background
	Why we chose to do this

	Academic Background
	Audience
	Product Audience
	Document Structure
	Roles
	Development Framework
	Terminology
	Introduction references

	Requirements
	Technical Design
	Technology
	Program Flow
	Subsystems
	ActorFactory
	Actors
	ActorStates

	Animations
	Console
	Event
	Graphical User Interface
	Particles
	Physics
	Renderer
	Resource Management

	Technical Design References

	Development Process
	Development Tools
	Development Workflow
	Project Workflow
	Scrum

	Working Hours

	World Generation
	Approaches
	Deterministic Random Generation
	Line by line Approach, our selected approach
	Line by Line failed Implementation
	Successful implementation of Line by Line Approach
	Storing and Loading from the database using Line by Line Approach

	Noise Approach
	Implementing Noise Approach
	Learning With Noise
	Libnoise
	Obstacle Placement Using Noise

	Tile by tile Approach

	World Collision
	Marching Squares Algorithm
	The problem with tile collision

	Our choice
	World Generation References

	User feedback and testing
	User feedback
	Passive user feedback
	Active user feedback
	Our approach

	Testing
	Internal testing
	Public testing

	Deployment
	Installer
	Problems

	Deployment References

	Discussion
	Group Work and Workload
	Further Development
	Cooperative Play

	Conclusion
	Appendices
	A. Project Plan
	B. Prosjektavtale
	C. Toggl
	D. Medieval Brawl
	E. Bachelor Work Log

