
HEEE - Handler for Exceptionally
Exceptional Exceptions

Author(s)

Vegard Solheim
Olafur Johan M. Trollebø
Lars Walter Westby
Aleksander Steen

Bachelor in Software Engineering
20 ECTS

Department of Computer Science and Media Technology
Norwegian University of Science and Technology,

18.05.2016

Supervisor(s) Ivar Farup

HEEE - Handler for Exceptionally Exceptional Exceptions

Sammendrag av Bacheloroppgaven

Tittel: HEEE - Handler for Exceptionally Exceptional Excep-
tions

Dato: 18.05.2016

Deltakere: Vegard Solheim
Olafur Johan M. Trollebø
Lars Walter Westby
Aleksander Steen

Veiledere: Ivar Farup

Oppdragsgiver: Innit AS

Kontaktperson: Joakim Jøreng, joakim@innit.no

Nøkkelord: Feilhåndtering, Javascript, Laravel, PHP, AngularJS
Antall sider: 189
Antall vedlegg: 8
Tilgjengelighet: Åpen

Sammendrag: All programvare har feil, hvorav mange programmer-
ingsspråk uttrykker de som unntak. Innit AS drifter pro-
gramvare for deres kunder, og foreløpig håndterer alle
feilrapporter fra deres systemer manuelt. De ønsker der-
for å få utviklet et system for å motta, prosesserer og or-
ganisere disse feilrapportene. Vårt system, H3E, vil utføre
de oppgavene, og fra dette datasettet tilby en utvikler-
orientert grafisk oversikt over alle feilrapporter, så de kan
fokusere på å rette opp feil.

i

HEEE - Handler for Exceptionally Exceptional Exceptions

Summary of Graduate Project

Title: HEEE - Handler for Exceptionally Exceptional Excep-
tions

Date: 18.05.2016

Authors: Vegard Solheim
Olafur Johan M. Trollebø
Lars Walter Westby
Aleksander Steen

Supervisor: Ivar Farup

Employer: Innit AS

Contact Person: Joakim Jøreng, joakim@innit.no

Keywords: Exceptions, Javascript, Laravel, PHP, AngularJS
Pages: 189
Attachments: 8
Availability: Open

Abstract: All software has errors, which in many programming lan-
guages are expressed as exceptions. Innit AS is hosting
software for its customers, and currently manually has to
handle exception reports from its systems. They therefore
wished to have developed a system to receive, processes
and organise those exception reports from a multitude
of externally hosted systems. Our system, H3E, will han-
dle those tasks, and from that data provide a developer-
centric graphical overview of all reports received for de-
velopers to focus on fixing issues

i

HEEE - Handler for Exceptionally Exceptional Exceptions

Preface

We would like to thank all the people that has helped us develop this software. Ivar Farup
for providing excellent critique in the writing of this thesis report plus assistance in any
development related matter we had. Joakim Jøreng for being available to answer all our
questions and thoughts at any time of the day and giving us the opportunity to develop
this software for his company. Eivind Johansen for providing extremely helpful feed-
back in regard to our graphical presentation. Øivind Kolloen and Mariusz Nowostawski
providing valuable design pointers, guidelines and best practices in API creation plus
technical assistance whenever we had issues with AngularJS. Rune Hjelsvold for giving
us in-depth knowledge of database design and critical help during the development of
our database triggers and events. Last but not least, all the exceptional and high quality
teachers we’ve had over the last three years.

ii

HEEE - Handler for Exceptionally Exceptional Exceptions

Contents

Preface . ii

Contents . iii

List of Figures . vii

1 Introduction . 1

1.1 Project Inception . 1

1.2 Project Description . 2

1.2.1 Purpose . 3

1.2.2 Product Objectives . 3

1.3 Learning Objectives . 3

1.4 Audience . 4

1.5 Field of Study . 4

1.6 Project Organisation . 5

1.7 Academic Background . 5

1.8 Glossary . 6

1.9 Document Structure . 6

2 Project Management . 8

2.1 Development Methodology . 8

2.2 Task Board . 8

2.3 Meetings . 11

2.3.1 Meetings with Employer . 11

2.3.2 Meetings with Supervisor . 11

2.3.3 Group Meetings . 12

3 Requirements . 13

3.1 Use-case overview . 13

3.2 Design Requirements . 14

3.3 Data Requirements . 16

3.4 General Requirements . 17

3.5 User Types . 19

3.6 Architectural Draft . 19

4 Technical Design . 21

4.1 Languages and Frameworks . 21

4.2 Coding Conventions . 23

4.3 Back-end Architecture . 25

4.4 Front-end Architectural Overview . 26

4.5 Syslog . 28

iii

HEEE - Handler for Exceptionally Exceptional Exceptions

4.6 Database Design . 30

5 Implementation . 33

5.1 Graphical Design Considerations . 33

5.2 Exception Report Format . 34

5.3 API-specification . 36

5.4 System Administration and Configuration 39

5.5 Heat . 40

5.5.1 Heat Degradation . 41

5.5.2 Heat Degradation Recalculation . 47

5.5.3 Heat Map Data Transfer . 48

5.5.4 Heat Map Data Conversion . 49

6 Development Process . 50

6.1 Tools . 50

6.2 Data Model Development . 54

6.3 Issues and Bugs Encountered . 55

6.3.1 Front-end . 55

6.3.2 Back-end . 58

6.4 Working with Live Data . 59

7 Testing and Quality Assurance . 61

7.1 Code Review . 61

7.2 Unit Testing Tools . 61

7.2.1 Front-end . 61

7.2.2 Back-end . 64

7.3 Static Analysis . 64

7.4 Integration Testing . 67

7.5 Performance . 67

7.6 Demonstrations . 68

7.7 GUI Feedback Demonstration . 69

8 Discussion . 70

8.1 Target Achievements . 70

8.1.1 Achieved Learning Objectives . 70

8.1.2 Achieved Task Objectives . 71

8.1.3 Achieved Product Objectives . 71

8.2 Team and Process Discussion . 72

8.2.1 Division of Workload . 72

8.2.2 Time Schedule Assessment . 72

8.3 Critique and Alternative Approaches . 75

8.3.1 Process . 75

8.3.2 Product . 77

8.4 Further Work and Extendable Features . 79

iv

HEEE - Handler for Exceptionally Exceptional Exceptions

9 Conclusion . 81

Bibliography . 82

A Project Plan . 84

B Project Contract . 102

C Meeting Summaries . 104

C.1 Desember 2015 - Pre-Meeting with Innit 104

C.1.1 Things to read/learn . 104

C.1.2 What system should do . 104

C.1.3 Questions and answers . 104

C.2 016.01.13 - First Meeting with Innit . 105

C.3 2016.01.19 - Second Meeting with Innit 108

C.4 2016.01.27 - Third Meeting with Innit . 111

C.5 2016.03.07 - First Demo Meeting with Innit 113

C.6 2016.04.26 - Second Demo Meeting with Innit 114

C.7 2016.05.13 - Final Demo Meeting with Innit 116

C.8 2016.04.15 - GUI Feedback Meeting . 117

D API Structure . 118

D.1 Exceptions route . 118

D.2 ExceptionTypes route . 119

D.3 ExceptionContexts route . 119

D.4 Severity Rating route . 119

D.5 Applications route . 119

D.6 Installation route . 119

D.7 Reports route . 120

D.8 Statistics route . 120

D.9 Graph route . 121

D.10 Syslog route . 121

D.11 Supported global arguments across all routes 122

E Refactored Code . 123

E.1 Front-end . 123

E.1.1 Grapher.Controller . 123

E.2 Back-end . 124

E.2.1 Graph Controller . 124

E.2.2 Refactoring to adhere to code standard 124

F Images . 126

G Readme . 131

G.1 Front-end . 131

G.2 Back-end . 132

H Time Log . 135

H.1 Time Log Vegard . 135

v

HEEE - Handler for Exceptionally Exceptional Exceptions

H.2 Time Log Aleksander . 147

H.3 Time Log Lars . 155

H.4 Time Log Olafur . 167

vi

HEEE - Handler for Exceptionally Exceptional Exceptions

List of Figures

1 Overview of the system. 2

2 Screenshot of the JIRA task board, taken February 15th. 10

3 General use case diagram of the required functionality. 13

4 Use case overview of the system’s exception-oriented functionality. 14

5 Use case overview of the system’s syslog-related functionality. 15

6 An early sketch of the overview screen. Heat map is the shaded area in the
top right. 16

7 An early sketch of the overview screen with information on site traversal. . 17

8 Initial data model requirements. 18

9 Module diagram with back-end on the left and front-end on the right. . . . 20

10 Sample code for displaying coding conventions of front-end 24

11 Sample code for displaying coding conventions of back-end 25

12 High-level back-end architectural overview. 27

13 Front-end architectural overview. 28

14 Illustration of syslog. 29

15 Model of the main database. 31

16 Model of the read-only syslog database. 32

17 Front-end heat map design. The graph shows the heat over time for the
currently selected applications. The bottom green bar is the heat map
showing current heat for this application, with a number for the heat in
absolute value. 33

18 Front-end application overview design. The green bar is a heat map for
this application. The graph shows number of exceptions of each type for
this application. The right side shows all installation URLs for this appli-
cation, and the bottom – which continues further down the page – shows
all the single exceptions for this application in descending order by time
and date. 34

19 Format for adding a new exception report 35

20 Initial draft of API structure. 37

21 Final API structure . 38

22 Example of content in front-end configuration file 40

23 Example data from .env-file . 40

24 Code for generating linear degradation graph data 42

25 Using linear input and linear degradation, degradation value in the legend 43

26 Code for generating exponential input and degradation graph data 44

vii

HEEE - Handler for Exceptionally Exceptional Exceptions

27 Using exponential input and exponential degradation. Top and bottom
random values for input multiplier in the legend 44

28 Code for generating linear input and exponential degradation graph data . 45

29 Uses linear input and exponential degradation. Multiplier in the legend . . 45

30 Code for generating linear input and exponential degradation graph data . 46

31 Uses linear input and exponential degradation. Multiplier in the legend . . 46

32 Format the /graph route returns. 58

33 Format the /graph route returns for applications. 59

34 Screenshot of the Karma coverage dashboard from March, mid-way in
development. Each row is a module in the front-end. 62

35 Sample code for mocking a service . 64

36 Screenshot of the Sonar results after an analysis 65

37 Screenshot of Sonar’s issue overview . 66

38 Original Gantt diagram from the planning stage 73

39 Resulting Gantt diagram of the actual time schedule 74

1 Concept-code for heat recalculation. 126

2 Front-end overview . 127

3 Front-end graph settings . 127

4 Front-end single exception report . 128

5 Front-end application overview . 128

6 Front-end syslog display . 129

7 Front-end report display . 129

8 Front-end report display . 130

viii

HEEE - Handler for Exceptionally Exceptional Exceptions

1 Introduction

Software does not run flawlessly. Problems happen, and in many programming languages
these problems cause exceptions. Such exceptions can be caught in the code, handling
the problem and allowing the software to keep running, or they can go uncaught and
cause further trouble for the system. Exceptions can be caused by tiny inconsequential
information notifications or connection failures – events that are expected to happen –
to potentially devastating system errors and information state failures. Thus exceptions
are both expected and a large part of modern software development, and reports about
exceptions can tell a lot about how a software module works, or does not work.

The company Innit AS is a medium-size software development and hosting company
with 21 employees[1] as of spring 2016. As Innit hosts software for their customers,
they are responsible for keeping software running as intended. When exceptions happen
that are not caught and handled in the software itself, Innit receives reports from the
software about what went wrong, what caused it, which parts of the software or modules
were affected, any data input just prior to the exception, and more. This information is
gathered, stored, and analysed in order to maintain and improve the affected software.

Formerly Innit did this work all manually. All their systems were sending their excep-
tion report to an IRC-channel that Innit hosted, where they had to manually parse all
the information and attempt to gleam any potential trends from the large amounts of
information reported. Even though they only had a few dozen exceptions occurring in a
typical day, each report is easily be several hundred words of densely packed information.

Because reading this information and in particular attempting to find any trends man-
ually is both quite difficult and very time consuming, Innit have requested the develop-
ment of an automated system to receive and manage these exception reports.

1.1 Project Inception

Already before the bachelor project descriptions were released, our group, which had
worked together for almost a year at that time, was contacted by Joakim, our main
contact person at Innit. He offered to let us have this project, as they required a stable and
competent team to develop a system that could be used reliably during daily operations.
We were quite interested, and upon receiving the project description a few days later,
readily agreed it was a good project for us.

During our contact with the employer we quickly found the project was, while con-
crete enough to quickly get a feeling for what to do, flexible enough to give us real
freedom of choice for development tools, methodology, and scope. Innit knew very well
that this project would require us to learn new frameworks and tools, and were quite
willing to assist in this process. This is also why the recommended AngularJS and the
PHP-framework Laravel were chosen, since they have in-house experience with those
and could provide guidance and assistance if needed, see Section 4.1.

1

HEEE - Handler for Exceptionally Exceptional Exceptions

1.2 Project Description

The system had the working title of HEEE, short for Handler for Exceptionally Excep-
tional Exceptions. The system’s main functionality is to receive, parse and organise ex-
ception reports, and provide a user friendly GUI and a multitude of graphical statistics
about the exceptions occurring.

The systems functionality is to:

• Receive, parse and store exception reports in a fitting format.
• Display exception statistics in a graphical format.
• Potential extra features:

◦ Automatically propose new issues for adding to the JIRA issue tracking system.
◦ A hybrid mobile application for Android and iOS, for receiving exception re-

port notifications and check the exception statistics.
◦ End-of-the-month-report, giving a summary of how the past month has been.

Figure 1: Overview of the system.

To elaborate on the features mentioned. The system’s back-end will receive exception
reports from hosted systems running on Innit’s servers. Our system then parses and or-
ganise the reports in a local database. The back-end supplies an API for statistics about
the exception reports and meta-information about them.

The system’s front-end is a separate system that requests information through the
back-end’s API, and through integration with a third-party tool creates graphical dia-
grams and displays them. The system will be running on a local Debian server at Innit,
and only requires communication between the front-end and the back-end, both being
on the local network.

Regarding the extra features; they are not within the explicit scope of the project, but
the employer has expressed interest in those features if we have sufficient time to develop
them. However they are not mandatory features the system needs before delivery. The
end-of-the-month-report is a report that, as the name implies, will be dynamically created
and show a summary of the past month with several categories of statistics, and perhaps
small trivia about the system and developers; e.g. who fixed the most reports.

The name HEEE – pronounced H-triple-E – is the short version for the working name

2

HEEE - Handler for Exceptionally Exceptional Exceptions

Handler for Exceptionally Exceptional Exceptions. In lack of a better name, we chose it
for the humour value. While we intended to only use H3E as a working title and come
up with a proper name during the development process, both we and Innit became so
familiar with that it simply stuck. In the end we decided to keep it, to no objection from
neither Innit nor our supervisor.

1.2.1 Purpose

The purpose of the project is to relieve the developers at Innit of having to manually parse
through the exception reports that are constantly coming in, thus increases the effective-
ness of receiving and managing exception reports. The system is intended to make it far
easier for them to see longer-term trends and potential correlations that would be very
difficult to spot by manually reading through all the reports. In addition the operations
staff at Innit will get a subsystem for viewing all syslog-related information.

1.2.2 Product Objectives

With this project, we wish to develop a system that:

• Can receive, parse, and store exception reports in a suitable data model.
• Can display exception statistics in a variety of ways, increasing understanding of

potential problems.
• Allow Innit operations staff to browse and filter syslog-formatted log files in an

efficient manner.

1.3 Learning Objectives

The intention of the Bachelor Thesis is to get experience working on a larger project over
a longer period of time, where we organise, plan, develop and deliver on our own. While
we are delegating tasks and thus not learning equally, all team members are expected to
learn at least some of all the points in the list below.

• The Javascript- and PHP-based frameworks AngularJS and Laravel, see Section 4.1.
• Use of professional development tools like task runners, code analysis- and project

management tools, see Section 6.1.
• Integrate with existing tools for graphical representation of statistics.
• Develop a completely modular system, where modules can easily be replaced.
• Use a Kanban-based continuous development process.
• Work for a real employer with other expectations than in an academic setting.
• Create a product that will be used in an commercial setting.
• Handle exception reports and report data in a professional manner.
• Work with a operations-defined standard format for data storage, such as syslog,

see Section 4.5 [2].

In addition to this, the team members must learn and understand how to work in a
systematic process and to create a scientific assessment of this work, together with the ca-
pability of self-reflection based on the work that is done. This work must be documented
and presented in an scientifically sound way, with consideration of scientific ethics and
the impact such work might have on individuals and society as a whole [3].

3

HEEE - Handler for Exceptionally Exceptional Exceptions

1.4 Audience

Target Audience

The target audience here is mainly the developers and operations staff at Innit AS. The
system will be running locally on a server at Innit, and the information displayed stat-
ically on screens in the development and operations offices. Thus we do not have to
take into account that non-technical audience will be viewing or using the software. It is
also important to keep in mind this system will not be much interacted with, but mainly
available to give a fast overview what is currently happening.

Report Audience

The main audience for this project report are those already related to the project in any
way, that being staff of the employer, our supervisor, the examiners, and potentially any
future employer. As this is very specific development for one employer’s particular use
cases, we see it as less likely that a larger audience will be interested in viewing the
development process.

This report assumes of the reader a general knowledge of web development, soft-
ware development processes, and typical IT-terminology such as front-end and back-end,
HTTP-protocol, APIs, and more, though particular abbreviations and terminologies can
be gleamed from the glossary, see Section 1.8. In addition some knowledge about soft-
ware development tools is expected, though in-depth experience is not necessary. The
main tools we have used are listed in Section 6.1. Parts of the report will be easier to
understand given some basic knowledge of AngularJS and Laravel and their structure,
though the report is fully understandable without such knowledge.

1.5 Field of Study

This project will introduce the team to several fields and concepts within software devel-
opment, some of which we have had cursory introductions to over the past few years of
study, and some of which will be entirely new to us. The main areas we will be are as
follows, but not limited to:

• RESTful API-design
• Application development for Debian
• Relational database design and use of an ORM-tool
• Web application front-end and back-end frameworks
• Web application development

Scope Limitations

Within the broad areas of study mentioned in Section 1.5, some limitations are set in
order to make the scope of the project manageable.

• The system will only be running on Debian, no development has to be done for
Windows or Macintosh. If we have sufficient time, we might create a mobile appli-
cation. See the project description in Section 1.2.

• The creation and display of statistic graphics will be done through integration of
an existing third-party tool/package.

• Since the application will only be running locally, authentication is not necessary.

4

HEEE - Handler for Exceptionally Exceptional Exceptions

Both the reporting interface and the back-end’s API will only be available over local
network.

• We will only have to supply a format for data from external systems. Innit will take
care of rewriting the reporting in their systems.

• The employer supplies read-only access to a syslog database for any infrastructure
reports.

1.6 Project Organisation

Project leader – Vegard Solheim As the project leader Vegard carries responsibility for
paperwork like meeting notes, writing and formatting of plans and the thesis re-
port, etc. In addition he will be mainly working on back-end development and
database design.

Design/Technical staff – Aleksander Steen As technical staff Aleksander carries respon-
sibility for the database system, syslog-related tasks, the ShareLatex-stack where
we write this thesis, code analysis tools, commit hooks, and more. In addition he is
working on design and development of the front-end, and syslog-related function-
ality on the back-end.

Back-end – Olafur Johan Trollebøe Olafur has the main responsibility for back-end de-
velopment, and handling the database models and Eloquent.

Front-end/technical staff – Lars Walter Westby Lars has main responsibility for front-
end development and design, and has the responsibility for configuring tools such
as task runners, code analysis, and such.

Supervisor – Ivar Farup As our supervisor, Ivar is the point of contact for any issues or
information we require regarding the project as a whole, and will as an external
third-party give feedback and discuss our ideas, suggestions, and the format and
content of the thesis.

Employer – Innit, represented by Joakim Jøreng The employer defines the system re-
quirements and provides technical considerations and feedback on the develop-
ment process. They are represented by Joakim, which is our main contact at Innit,
together with other staff of the employer that are relevant for a meeting.

1.7 Academic Background

All four team members have been studying Bachelor in Software Engineering at Norwe-
gian University of Science and Technology. While we have all followed the same study
program, some choices of optional courses have been different, and we have differed
greatly in preferred topics to focus on. Thus we have arrived here after two and a half
year with similar knowledge and experience, but quite different areas of expertise – a
fact that displays itself in the areas of responsibility in the project organisation, see Sec-
tion 1.6

Lars, and to some degree Aleksander, have by far the most experience designing and
building user-facing functionality. Aleksander has had extra courses in systems manage-
ment, and has long experience setting up and running several different server systems.

5

HEEE - Handler for Exceptionally Exceptional Exceptions

Olafur and Vegard have both focused more on the systems development, and have had
additional coursework in software security and secure development.

Relevant to the project, we all have some experience with PHP, Javascript and mobile
development as well as HTML and CSS, briefly using some frameworks in the aforemen-
tioned languages. A general knowledge of and experience with relational models and
databases is in place as well. None of us have had optional courses that are particularly
relevant to the project, though the knowledge and experience from mostly unrelated
courses can still be partially transferred. We all have some experience with projects and
project management, though Vegard is the most proficient in this area. We have never
worked on a project as large as this before, but we are all confident it will not provide
any insurmountable problems.

1.8 Glossary

Throughout the report there will be some acronyms and references to people and con-
cepts. In this section we will list what we hope are all the potentially ambiguous or
otherwise unexplained pieces of the text.

HEEE. Handler for Exceptionally Exceptions. Working title of the system.

Product or System. Context dependent, but generally refers to the entire HEEE system.

Employer. Innit AS, represented by Joakim Jøreng, see Section 1.6

Supervisor. Ivar Farup, see Section 1.6

Front-end. The part of the system handling display, graphics and user interaction. Writ-
ten in Javascript/AngularJS.

Back-end. The part of the system receiving exception reports, communicating with the
database, and supplying an API to the front-end. Written in PHP/Laravel.

API. Generally refers to the RESTful API the back-end supplies to the front-end to request
information.

Toaster. Refers to a little pop-up in the lower right part of the screen, giving the user
information about events or similarly.

Route Refers to a path in an URL, and generally refers to a path in the back-end’s API.
For instance, in ‘test.com/v1/statistics/application/:applicationID’, the ‘/statistic-
s/application/’ part is a route.

Main Route The same as a regular route, but is the first part of the path is the main
route. For instance, in ‘api.test.com/v1/statistics/application/:applicationID’, the
‘/statistics/’ part alone is the main route.

1.9 Document Structure

This thesis is structured in large part after sections in the Software Development Life
Cycle, even though the development itself is fully agile and not remotely similar to the
traditional waterfall development process. The report is structured as follows:

6

HEEE - Handler for Exceptionally Exceptional Exceptions

Introduction This chapter presents the project and scope to the reader, introduces the
team, employer and supervisor, and provides other general information about the
project.

Project Management This chapter introduces the reader to the development process
and major choices made early in the project

Requirements This chapter provides more detailed information about the project’s re-
quirements.

Technical Design This chapter provides an overview of our choice of languages and
frameworks, conventions to use, how we interpret the requirements, and architec-
tural and database design.

Implementation This chapter contains the result of our architectural and design deci-
sions and implementation choices.

Development Process This chapter contains the larger part of information regarding
our tools and development process.

Testing and Quality Assurance This chapter provides in-depth information about how
we did testing, retrieved feedback, and ascertained quality, performance and main-
tainability.

Discussion This chapter contains discussion about the project as a whole, comparing
objectives with the resulting product, team self-assessment, and self-critique and
alternative choices.

Conclusion This chapter concludes the report in a brief conclusion of the project and
report.

7

HEEE - Handler for Exceptionally Exceptional Exceptions

2 Project Management

2.1 Development Methodology

Within the team we already had some experience with continuous development, i.e.
Kanban, along with some Scrum. The group composition, internal dynamics, knowledge
and motivation all favoured an agile methodology, and we have found e.g. a sprint-
based methodology to be unnecessary for forcing progress. Because the employer was
uncertain about the required amount of work to develop this system, they had some
additional functionality that could be added in case there was too little work for a full
bachelor thesis. This unknown factor greatly favoured an agile methodology, together
with our negligible experience with this kind of system to estimate sufficiently well for
Scrum sprints, thus rendering the sprints quite impractical.

However Kanban could potentially provide too few restrictions and guidelines, and
cause us to not have sufficiently good information feedback loops and cause a lacklustre
review process on our work. This can be at least partially mitigated by strict rules on
version control and code reviews, see Section 6.1 about version control. In addition,
since it is not limited to sprints or similarly, we might get too few deadlines to work by,
and thus not get work done in time. This can be mitigated by planning with set deadlines
and demo-dates. In that way we can get the benefits of a sprint-esque work flow, while
having the flexibility of Kanban, though without the benefit of a set backlog per sprint.
Lastly, without actual sprints it could become more difficult to learn from previous work
tasks and mis-estimation. This can be partially mitigated by paying particular attention
to previous estimates during review sessions, both internally to the group and during
meetings with our supervisor.

Despite the possible drawbacks, for the reasons mentioned above we unanimously
decided to use Kanban as described by Henrik Kniberg and Mattias Skarin as our de-
velopment methodology [4]. We incorporated some features from Scrum in an adapted
form, most notably weekly and bi-weekly meetings with respectively the supervisor and
the employer, see Section 2.3. Neither our supervisor nor the employer had any objec-
tions to our choice of methodology, given that we set some deadlines for when particular
demos should be ready and displayed.

The team readily agreed soon after receiving the initial requirements description that
we would use an agile development methodology. While the outline of the system was
sufficiently clear and did not warrant any particular methodology, the employer ex-
pressed a wish to avoid any kind of waterfall-esque development process. In addition
the employer explicitly wanted us to have as full freedom as practically feasible to test
several different approaches.

2.2 Task Board

The task board is central to a Kanban process, being one of the three main points high-
lighted by Kniberg [4]. While a physical task board might be preferable for a small team

8

HEEE - Handler for Exceptionally Exceptional Exceptions

like ours, we did not have a single room available for us to use during the entire semester.

For task tracking we started out with Trello. It is a simple and much used board-style
task tracker that we have some experience with from earlier projects. Its reliable, easy
to use, free, and with only four people on the team we reckoned that a more advanced
tracker was not needed.

When the Professional Programming course began, which two of the four team mem-
bers of us are following, it was recommended for reasons of learning benefits to use
the Atlassian stack, with Bitbucket for repository and NTNU-hosted JIRA and Confluence
for task tracking and documentation respectively. See Section 6.1 about the tool usage.
The Atlassian stack was recommended due to it being much used in enterprise devel-
opment, and using such a rather advanced tool would be advantageous in learning real
professional development.

Swim lanes are a common feature in Scrum and Kanban boards where one can, for
instance, have all the tasks of one person to always be shown in a single horizontal lane,
separated from other people’s tasks. For instance all tasks assigned to Alice are gathered
in one swim lane at the top, separated horizontally from all Bob’s tasks, which are all
gathered in between Alice’s and Charlie’s horizontal swim lanes. We wished to have swim
lanes per person and sorted hierarchically, i.e. first separated by front-end, back-end, or
mobile system, then separated by user stories. However combining the per-person swim
lanes with a such a hierarchical setup was not supported in JIRA’s Kanban board, and we
had to manage without the per-person swim lanes.

Figure 2 shows a screen shot of the JIRA task board. We used epics, essentially a
hierarchical top-level item underneath which one can group tasks for better visibility, to
delimit tasks relating to the front-end, back-end, mobile client, documentation, and the
informational website required by the university. For subdividing work within each epic
we used user stories. The user stories represented larger chunks of each system, modules
if you like. Most, if not all, regular tasks that actually represents work are created as
sub-tasks to each user story, in order to delimit. Thus we could have one person work
on tasks within the Exception-story in the back-end epic, while another person worked
on the Application-story in the back-end epic, and they would both know exactly what
the other person is working on, and could easily avoid messing up each others files and
code.

This epic to user story to sub-task structure effectively created a three-layer hierarchy
for regular planned work and features. Other types of work however, e.g. bug fixes and
certain improvements, were often made as regular tasks side by side with the user stories,
and not as sub-tasks to a user story.

In the to-do column can be seen stories and tasks specifically for the back-end epic.
The front-end and the mobile application epics both have a similar structure, while the
documentation and informational website epics follow a more straightforward structure
without as much subdividing; mostly because the tasks are more interconnected, and
there is less work in total.

As can be seen in Figure 2, we went with only the three default columns: ‘to-do’,
‘in progress’ and ‘done’. Because we had explicit rules that another team member do a
code review before a task is completed and code is pushed to the master branch, we did
not have a need for a ‘testing’ column; the branch one worked on sent a pull request to

9

HEEE - Handler for Exceptionally Exceptional Exceptions

Fi
gu

re
2:

Sc
re

en
sh

ot
of

th
e

JI
R

A
ta

sk
bo

ar
d,

ta
ke

n
Fe

br
ua

ry
15

th
.

10

HEEE - Handler for Exceptionally Exceptional Exceptions

master, requesting somebody to do a code review and approve the pull request.

We had some issues with JIRA not allowing one to archive completed stories and
tasks, bar fully deleting them. This caused the Kanban board to expand very quickly,
with the completed-column taking up a great lot of space vertically. We never found a
good solution to this, and are amongst the reasons we – while using JIRA throughout
most of the project – are not very satisfied with it.

2.3 Meetings

2.3.1 Meetings with Employer

We scheduled to have meetings with Innit every other Wednesday, though this did not
happen in reality. Due to the substantial travel distance, we instead had two meetings
over Skype, and several text-only ‘meetings’ where we simply sent our contact at Innit
some questions and received answers later on, at times with some discussion around
alternatives and asking advice. We had a total of 5 physical meetings with Innit; the
first in December to discuss the project and initial requirements, two later in January
to elaborate on the system requirements and discuss proposals of ours, one in March to
demonstrate the at the time completed features of the front-end and back-end. The last
meeting was at the end of April, where we showcased the feature completed product –
feature completed being that no more features or functionality will be added, the only
tasks left being refactoring and other under-the-hood changes that does not change the
functionality of the product.

Typically for the meetings we had a list of questions which we sequentially discussed
our way through. The list was usually sent a few days before the meeting so Innit could
prepare. In addition to those questions, we had a retrospective discussion of the progress,
any particular problems we met that they could provide assistance on, and the backlog
for the next few weeks. The employer did not explicitly control the backlog, but offered
advice on what to prioritise, how to do some tasks, and some tools that could be useful.

The group leader was responsible for taking notes and writing a meeting summary
afterwards. These summaries can be seen in Appendix C

2.3.2 Meetings with Supervisor

Meetings with our supervisor was scheduled for every Tuesday morning. With the meet-
ings scheduled every week it was far easier to cancel a meeting we felt we did not need,
than having to set up additional ones. Before the first few meetings we sent the newest
draft for the project plan / thesis report, so that he could read through and comment on
it. After the first few meetings we simply made an account for Ivar on the ShareLatex
stack we were writing the thesis on, so that he could read and comment directly in the
document itself. This greatly improved the feedback loop for both parties, as he could
check the document at a moments notice if needed, did not depend on us to send the
most recent report – which if sent early could be quite outdated by the time of the meet-
ing, or if sent late would give him little time to prepare –, and he could himself choose
how to read it, whether in the LATEXsource code or the generated PDF-document.

Usually we spent the entire hour set off for the meeting, having a partial retrospective
and partial planning meeting, with the supervisor asking critical questions to ascertain
our continued progress. Several times we displayed very work-in-progress demos in order

11

HEEE - Handler for Exceptionally Exceptional Exceptions

to receive constructive criticism and discuss potential issues with a given design decision.

2.3.3 Group Meetings

Group meetings usually were not planned beforehand; they were quite ad hoc whenever
we realised a group decision had to be made. This was not a conscious decision of ours;
rather it was part of utilising agile flexibility to the fullest, combined with us doing most
work sitting together on the campus.

We had a core working time of 09.00 to 15.00, generally to 16.00 on all days, and
even if a person was not available in person, all group members were available in a
common Facebook-chat we keep running continuously.

12

HEEE - Handler for Exceptionally Exceptional Exceptions

3 Requirements

3.1 Use-case overview

In this section we will display the functionality requirements of the system in the form
of several use case diagram. The first diagram, Figure 3, is a fully generalised use case
diagram displaying the required main functionality in a user-oriented way. The two sec-
ondary use case diagrams, Figures 4 and 5 are more technically oriented and displays
initial ideas for separating parts of the system into modules.

System

Developer

Internal database

External syslog database

Operations

Read single
exception report

View all exceptions (
application | installation |

exception type)

Search for
exceptions

Display monthly
overview reports

View statistics (
application | heat |

exception type)

View syslog
overview

External systems

Report exceptions

Figure 3: General use case diagram of the required functionality.

Figure 3 displays the functionality from the users perspective, without any indication
of how it is to be implemented or modularised. The functionality is focused on overviews,
single views of exceptions and syslog reports, and filtering options. The single use case of
displaying a monthly overview report is a task that was later added when it became ob-
vious we worked far too fast for the initial requirements to be enough work for the entire
thesis period. It is a functionality to create, perhaps automatically, a monthly overview
report with aggregated statistics about the month’s exceptions. It can also be used before
a month is done, to see how the month is going so far.

While it is not explicitly functionality as seen by the user, we have added a use case
where external systems deliver the reports to the systems internal database. This to show
how and where information enters the system. Note that the syslog database will not
receive data through or in any way related to our system, and how it receives information
is thus not shown in the diagram.

It has not been specified in the use case diagrams whether users will use desktop

13

HEEE - Handler for Exceptionally Exceptional Exceptions

computers, laptops, tablets or mobile phones, but this is noted and defined as a part of
the design requirements, see Section 3.2.

Developer

System

Read single
exception report

View all exceptions

View statistics

Read monthly
overview report

Internal database

Create application
statistics

Create heat
statistics

Create exception
type statistics

Create exception
statistics

«uses»

«uses»

«uses»

«uses»

Retrieve statistics

View filtered
exceptions

«extends»

«uses»

«uses»

External systems

Report exception

Figure 4: Use case overview of the system’s exception-oriented functionality.

Figures 4 and Figure 5 show more technically oriented use case diagrams, with some
indications of where one can start to divide architecture. As can be seen from the figures,
as well as in the general functionality overview in Figure 3, developers and operations
personnel will generally want to see completely different data. Developers wish to see
a lot of statistics about the system, filtered on e.g. applications, installations, exception
types and more, as well as sometimes reading single exception reports. Operations gener-
ally only care about syslog-reports, and this will be requested from a separate read-only
syslog database that will be run separately by the employer.

As developers per the requirements stated by Innit will check the syslog-data far more
often than operations personnel might check the exception data, only the first have been
added as a use case, but since the system will not have any internal separation between
the developer-data and operations-data, both parties can easily see each other’s data and
statistics.

The syslog-specific use case overview in Figure 5 is very simple, giving an indication of
how much of the syslog part of the system is meant to be running with minimal or no user
interaction. The front-end will mainly be continuously displaying current information
about systems, while the back-end will generally only respond to incoming exception
reports and API-requests. Only the front-end part running per individual user and the
mobile application will be receiving any particular input. See more about the front-end
design in Section 3.2

3.2 Design Requirements

The most requested feature of the system is what has come to be called the heat map.
The heat map is simply a full-screen view dedicated to showing a transparently coloured

14

HEEE - Handler for Exceptionally Exceptional Exceptions

System

Operations personnel

View syslog
overview

Read single syslog
report

External syslog database

Developer

Figure 5: Use case overview of the system’s syslog-related functionality.

graph; the colour depending on how ‘hot’ the situation currently is, i.e. how quickly are
the exception reports currently coming in, multiplied with the severity/priority of the
exceptions; that is whether the exceptions occurring are only informational and barely
worth noticing, or potentially critical and must be handled immediately, and several
stages

The graphical overview will be one or more types of diagrams that will display more
elaborated information about what the heat map is an immediate indication of; how fast
are exception reports coming in, and what severity are they. These graphical representa-
tions are intended to be highly configurable and can be filtered on multiple conditions,
e.g. applications, specific installations or applications, types of exceptions, severity, time
and date, amount, etc.

In Figure 6 can be seen one of the early sketches for the overview design. The heat
map is the shaded area in the top right. In the top left corner of is a list of the most recent
exception reports, below that is a graph of the heat during the past 30 days. At the right
of that, in the middle right, is a list of each application’s heat. In the bottom left is a
diagram for heat or exception data, and in the bottom right is a bar graph of heat and
exception data. Most of these were intended to be customisable.

At this early stage we expected Innit wanted a fair bit of information available on
the overview screen since the system was mainly intended to be on constant display
without interaction. Later they specified that the heat map could encompass most of the
screen, with additional information left to the remaining parts of the application which
developers would access and check manually.

Figure 7 contains some further information about how the site is laid out and how
it is traversed. It is a somewhat later sketch, from when Innit had stated they wanted
less information on the main page, rather favouring several sub-pages for additional
information. The entire site is laid out as a single-page site, where the container in the
middle of the picture is the main container for the site. From there, the main content
rectangle is swapped out as partials in order to change content. The partials themselves
can then be overlaid with modals to display other content temporarily without removing
the partial from display memory.

For instance the main container in Figure 7 has a fixed navigation bar on the top. In

15

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 6: An early sketch of the overview screen. Heat map is the shaded area in the top
right.

this sketch it also has a fixed sidebar on the left, but that was later moved into the partials
so it would not be displayed unnecessarily in the overview. The partial to the right for
instance only has a large graph at the top and as of the picture, undecided content below.
The left partial however contains a smaller graph in the top left corner, and a list of the
applications or installations that most recently received exception reports, in the top
right corner. Upon selecting one, the user is taken to a modal with further information
about the installation or exception. Below this is a content container intended for general
exception data, though still undecided as to the specific content at the time.

3.3 Data Requirements

During January, February and early March, the amount of data required to be stored
increased a fair bit, reflected in the discussion about database design, see Section 4.6.
Since the employer both wanted to have statistical information presented in a graphical
way, filtered by several different variables such as application, installation, exception
types, and so forth, in addition to naturally being able to check specific exceptions in
order to figure our what happened, why it happened, and how to fix it. We discussed
some back and forth what information was required, and used the five W’s as a way to
figure out what information the employer needed to understand and fix any causes for
exceptions [5].

Who – which customer was affected? This requires some kind of customer-identifying
information, the specific installation name for instance.

What – what exception occurred? This requires the exception name, and potentially

16

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 7: An early sketch of the overview screen with information on site traversal.

other identifying information of the exception type and exception message.

Where – where did the exception occur? This requires an application name, file name,
and the line number where the exception occurred.

When – when did the exception occur? This simply requires a time stamp.

Why – why did the exception occur? This requires at a minimum a stack trace, and
perhaps some other state information.

We partially used this technique of asking ourselves – with some sample exception
reports from Innit available – what kind of information we ourselves would need to find
and repair an issue in a program, and what other information would be – while not
strictly necessary – practical for checking a single exception or reading the aggregated
statistics. This self-interrogation based on the five W’s quickly gave us a good outline
of the information we needed to store. The information and the exception reports from
Innit culminated in a draft of the data required, displayed in Figure 8. More fields were
later added as their need became obvious, though the initial draft did cover a good part
of the data required.

3.4 General Requirements

In addition to the specific requirements covering the design and data, there are some
general requirements for the entire system and development process.

17

HEEE - Handler for Exceptionally Exceptional Exceptions

language: ‘php’ // language in which exception occurred
location: ‘server’ // client or server side
created: timestamp // when exception occurred

application:
name: ‘’ // name of application
baseurl: ‘’ // name/url of the installation

client: //if exception occurred at client
username:‘’
name:‘’
browser:‘’

action:
method: ‘get’, // GET, POST, PUT, PATCH, DELETE
data: [] // for instance POST-data
sqlquery: [query-string] // when DB-related exceptions

exception: // json encoded dump
type: ‘’ // type of exception
file: ‘’ // full file path
line: ‘’ // line number that caused exception
message: ‘’ // some kind of message
stacktrace: ‘’

Figure 8: Initial data model requirements.

• While not explicitly required it is highly recommended to build the front-end in
AngularJS and the back-end in Laravel, because Innit have both experience and
expertise with these frameworks. See more about AngularJS and Laravel in Sec-
tion 4.1.

• The system must be able to integrate information from a separate read-only syslog-
database that the operations department are running. See more about syslog in
Section 4.5.

• The system should be as modular as practically possible to make it. In particular the
front-end and back-end should be entirely separated and be replaceable without
any rework of the other.

• We are to create a format in which the exception reports will be received, and
the employer will take care of re-writing their reporting modules to fit it. For the
format, see Section 3.3.

• No authentication is required. All systems will be running on the local network.
• Initially we were to assume only large screens. With us taking on a mobile app

displaying a web view, this requirement has been changed to the site needing to
scale for any screen size.

• It is preferable to do configuration through options in the system itself, or with
configuration files.

18

HEEE - Handler for Exceptionally Exceptional Exceptions

3.5 User Types

While this is not a system intended for wide-range private deployment as mentioned in
Section 1.4, there are two rather distinct types of users.

Developers. The developers are the main audience for the system, with the default
overview and the application/installation/exception type overviews being in re-
sponse to the their requirements. As Innit have stated, it is the developers whom
need this system the most to replace their current manual parsing of exception
reports.

The main overview, as well as all the information regarding exceptions, exception
types, applications and for the most part installations are thus designed with devel-
opers in mind. They wish to get a quick and useful overview in order to prioritise
time better, before diving into the single reports.

Operations. Operations’ requirements are thus, while no less important, a smaller part
of the development process and the finished product. This is also noticeable in that
the syslog part of the system requested by operations is almost entirely separated
from the remainder of the system data-wise, as can be seen in the data models, see
Section 4.6.

Operations mainly require overview of the network and server hardware equip-
ment, and will for the most part not have any need for all the exception data.

3.6 Architectural Draft

After the first meeting with Innit, we created an initial architectural draft based on the
information we had and current understanding at the time. This draft evolved somewhat
over the course of the next few weeks until the end of January. This work resulted in
Figure 9, which is a very high-level model of the system and its different parts.

Figure 9 shows the relevant system borders and points of interaction. The external
systems – represented here only by a single subsystem-box – will be sending information
into the system via an externally available API. These reports are then processed in any
way we find to be necessary, though the processing part might end up changing roles or
disappearing altogether. A database module that will contain all database management
logic will receive both the exception reports to be stored and all requests from the main
data request API. It is also the only module allowed to have direct contact with the two
databases, which can be read about in further detail in Section 4.6. The syslog database
is controlled by Innit and our product will have read-only access to the data stored there.
More about syslog can be read in Section 4.5. Any and all storage of information will be
done in our products own database. The API will be a simple RESTful interface providing
data in JSON-format.

In the front-end, the data service will be a typical AngularJS service that utilise the
back-end’s API and retrieve data requested by other modules. Unlike the back-end, which
generally only responds to and processes input and requests, the front-end will have a
controller that is continuously running, requesting data from the back-end and updating
the views. As the system will be running on a display in the developers’ office continu-
ously with no or minimal user input, it will have to be running on its own accord. The

19

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 9: Module diagram with back-end on the left and front-end on the right.

graphics segment will generally handle the regular AngularJS views, as well as contain
the package for drawing graphics.

It is worth noting that we expected modules and subsystem borders to change a fair
bit during development. However the draft provided an important starting point for dis-
cussing access points, system borders, database management, and more. Given this in-
formation, much of which can be read in the meeting summaries in Appendix C. We
also created several detailed architectural diagrams which can be seen in back-end ar-
chitecture in Section 4.3, front-end architecture in Section 4.4 and API-specification in
Section 5.3.

20

HEEE - Handler for Exceptionally Exceptional Exceptions

4 Technical Design

4.1 Languages and Frameworks

As was mentioned in requirements in Section 3.4 it was highly recommended to develop
the back-end in Laravel and the front-end in AngularJS; amongst others because Innit
had quite a bit of experience and expertise with the frameworks, for Laravel see Sec-
tion 4.1 and for AngularJS see Section 4.1. We did some research on the two, in addition
to researching alternatives; mainly plain PHP for the back-end, and Javascript, React.js,
Ember and jQuery for the front-end. Ultimately we did follow the employer’s recommen-
dations and chose Laravel and AngularJS, where for the latter we chose version 1, as
v2 was still in beta at the time we started. While stability was unlikely to be an issue,
there were far more learning and helpful resources available for version 1, which was an
important factor as none of us had used AngularJS before.

For design we did not have any particular recommendations to go by from Innit, and
researched Bootstrap, PureCSS, Foundation, Less and Sass. We ultimately chose Boot-
strap for design, and Less as CSS pre-processor which helps out with CSS syntax. We had
a fair bit of experience with Bootstrap from earlier projects, and found it both simple and
nice enough to use, considering none of us are particularly well versed in design. The
Bootstrap-version is an Angular-friendly version that does not require jQuery as a depen-
dency, and has a bit of Angular-friendly features and usability. We chose Less partially
because we found it nice and simple to use, and both HotTowel and Bootstrap uses it.
Thus we found it widely enough accepted and presumably practical enough for our use.

Such a mix of languages and frameworks, having from zero knowledge to some pre-
vious experience, gave us a good combination of building on knowledge and learning
how to learn a new framework. This creates an interesting environment of building on
experience and exploring entirely new technologies and approaches.

Laravel

Laravel is a PHP-based framework inspired by Java. It focuses on doing common tasks
such as authentication, routing, sessions and such within the framework itself, thereby
reducing the amount of boilerplate code the developer need to write [6]. Since we for
the back-end did not find any alternatives that we deemed better, we simply defaulted to
the employers recommendation of Laravel.

Laravel is what we later came to call a ‘magic’ framework, meaning that many tasks
are done implicitly, and there are no real clues as to where something is called and why
something is done. This follows from Laravel utilising dependency injection as one of its
main design patterns. This focus upon hidden functionality and general ‘magic’ makes
its code very easily readable, at the cost of call-trees that could be difficult to follow, and
worse yet to debug.

We did in several cases find it to do too much ‘magic’ for our preference, especially
in cases of input validation where we had to override the framework, or simply make

21

HEEE - Handler for Exceptionally Exceptional Exceptions

it stop processing input in the way it is supposed to do. In addition it could at times
be too influenced by what could be called ‘niche functionality’ that interfered with the
general development process, or simply lacking in areas which standard PHP has already
covered. One particular issue we encountered during development was lack of memory
when fetching large amounts of data from the database. When retrieving and sending a
few megabytes of data, the back-end simply crashed because Laravel ran out of memory.
We never actually managed to fix this, and merely had to sidestep it by chunking data in
smaller chunks and limiting the amount of data a single API request could contain.

Eloquent

Eloquent is an Object-Relational Mapping tool, implemented using the ActiveRecord pat-
tern [7]. Object-Relational Mapping is a way of mapping objects in program logic to
the relational structure that a database uses for organising data, and managing the data
stored in a relational format using object-oriented code. ORM is intended to hide away
at least part of the database communication, and optimise it through optimised queries
and caching, in addition to making database communication more portable.

Eloquent is the default ORM tool for Laravel, and it is close to built into the Laravel
framework, requiring no setup other than the URL and login information of the database
to be used. This made it highly practical as a starting point when we had to begin learning
and using Laravel for the back-end. However it did cause us several major issues, see
Section 6.2.

Database

The data the system is intended to store is simple organised textual data in a set format,
the kind of data well suited for a relational database. Since we had the most experience
with relational databases, and the employer had no particular preference, we decided to
go with MariaDB. The choice of MariaDB instead of MySQL is due to further optimisation
in the former, and that it better supports some types of triggers that we later found we
did need.

Since both of the databases have the exact same interface it did not matter to the rest
of the system which we chose. In fact that equal interface became quite important later,
as we – to our great relief – found that Rsyslog worked just as fine with MariaDB even
though it is developed for use with only MySQL.

AngularJS

AngularJS is a Javascript framework that follows the model-view-controller (MVC) pat-
tern. It is one of the most popular Javascript frameworks, and is sponsored and main-
tained by Google and a community of both individuals and corporations. Its main goal
is to simplify both development and testing of single-page applications, and to provide a
lightweight framework for dynamic web pages in general.

We used it for the front-end, to make a single-page application containing several
views with heat map, graphs, incoming data, viewing single exceptions, and a lot more.

After a initial learning curve, angular was a breeze to work with. We originally had
some issues learning the framework, and how to test our application properly but these
issues fixed themselves as we got more fluent and experienced with the framework.

22

HEEE - Handler for Exceptionally Exceptional Exceptions

Bootstrap

Bootstrap is an open-source front-end web framework that contains a large amount of
design templates for a huge lot of CSS-elements for all from typography and buttons to
entire navigation bars. It provides a simple ‘mobile-first’ framework which handles much
of the dynamic scaling to make it work on a multitude of devices, leaving the developer
able to focus on the content.

Because the original Bootstrap depends on jQuery, and thus handles the Document
Object Model (DOM) in a radically different way from how AngularJS does it, there were
some onsiderations to be made. However since we at the time did not know of Angular
Bootstrap – also called AngularStrap – we are using the UI Bootstrap project, which is a
Bootstrap-implementation based on AngularJS, made by the AngularUI Team [8].

Less

Less is one of the more popular CSS pre-processors available, and it extends the default
CSS by adding concepts from regular programming languages such as variables and
functions (mixins), in order to make CSS more maintainable and extendable. Since CSS
by default is a declarative language, lacking many of the concepts from programming
languages, it can be a lot of work to update parts of the design or structure since all
values are hard-coded. Less adds such concepts, and compiles into regular CSS before it
is put into production. Running Less before pushing is one of the tasks automated with
the use of the taskrunner.

4.2 Coding Conventions

This section will elaborate briefly on the coding style and conventions we have adopted
in this project. Note that due to some differences in industry conventions for Laravel
and AngularJS there are also some differences between conventions in the front-end and
back-end code, as can be gleamed from Figure 10 and Figure 11, though they are not
elaborate samples.

• Laravel – https://github.com/laravel/docs[9]
• AngularJS – https://github.com/johnpapa/angular-styleguide [10]
• HTML/CSS Google conventions -

https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml[11]
• API Best Practices -

http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api[12]

The list above describes where we have found the initial conventions and style guides
for the project, and though we have adapted them somewhat – within reasonable limits
– to fit our preferences, we have taken care to not make the project too unfamiliar or
difficult to read for anyone only used to other styles. As seen in the project plan, see
Appendix 9, we initially chose Google’s AngularJS style guide, though we soon after
finishing the project plan changed this to John Papa’s AngularJS style guide, noted in
the aforementioned list. No particular reason caused this change, it was simply that Lars,
being responsible for front-end development, preferred the latter style guide, and that
John Papa’s guide is endorsed by the Angular team.

23

HEEE - Handler for Exceptionally Exceptional Exceptions

In general we have opted for a similar coding style in both the front-end and the
back-end. For instance we use space before a starting curly bracket, and space behind ‘if’-
branches, in addition to being generous with whitespace in general. For the back-end we
have opted to follow the PHPDoc-format, while the front-end follows the JSDoc-format.

Since we had no previous knowledge of API design and development, we attempted
to use the API Best Practices as a guidebook. While the API did not become perfect, it
does follow a good hierarchical and consistent structure, see Section 5.3.

/**
* For easier lookup we create a hashmap on an object’s property
* resolving to itself.
*
* @param {Array} array Array of Objects to index.
* @param {String} property Name of property to index hashmap on.
* @returns {Object} Hashmap of original array of objects.
*/

function createHashMap(array, property) {
var map = {};
for (var i = 0; i < array.length; i++) {

map[array[i][property]] = array[i];
}

return map;
}

Figure 10: Sample code for displaying coding conventions of front-end

Figure 10 displays a sample of code from the front-end following out coding conven-
tions. All functions require a JSDoc-comment with both a comment explaining in natural
language what the function does, and other details deemed worth mentioning. All pa-
rameters and the return value are added with an explanation and note of which type is
expected. Function and variable names also follow the camel-case convention. The func-
tion calls that are snake-case as the PHP standard functions, which are implemented with
snake-case.

The function itself follows a standard of assigning temporary variables first, often with
an inline comment if deemed necessary – which it is not here due to the function being
short and having a good JSDoc-comment. Curly braces start on the same line and are
ended on the line after the last line of code inside it. This is a matter of style preference
rather than official conventions, but we have adopted it in both the front-end and back-
end. We have adopted a medium amount of whitespace, as a compromise between the
differing preferences of the team members.

The code example is not a large elaborate sample, but briefly gives an idea of how the
code is written and structured.

Figure 11 shows a sample of code following the back-end’s coding conventions. As
with the front-end code, all functions require a PHPDoc-comment with both a comment
explaining in natural language what the function does, and other details worth explain-
ing. All arguments and the return value have an explanation of it and the expected type
as per the PHPDoc standard.

24

HEEE - Handler for Exceptionally Exceptional Exceptions

/**
* Query Function that allows retrieval of exceptions with given
* exception context IDs passed as a string.
*
* @param Builder $query
* @param string|array $ids String containing the IDs of the exception
* contexts we want.
* @return Builder $query
*/

public function scopeWhereInExceptionContextIDs($query, $ids) {
if ($ids != null) {

// If $ids is not an array, we need to explode it,
// otherwise we just let it pass, as the only other
// outcome would be an array.
if (!is_array($ids)) {

// Explode the values on comma. If there is no comma there,
// it will just return the normal string as array.
$ids = explode(’,’, $ids);

}
$query->whereIn($this->table . ’.exception_context_id’, $ids);

}
return $query;

}

Figure 11: Sample code for displaying coding conventions of back-end

In the code itself we have the curly braces starting on the same line as the decla-
ration it belongs to, and the ending curly brace on the line after the last code inside
it. We generally do not use very much whitespace inside parentheses, but whitespace
is added before and after operators, as with the dot in the ‘whereIn’-function call argu-
ment. Vertical whitespace is added at necessity, and is often addressed with ending curly
braces on their own lines. It is worth mentioning that in the back-end we elected to use
‘$this->table’ instead of hard-coding the table names, to make it change-proof.

Note that some line wraps in the code sample are not part of the actual code, and are
merely artefacts of the slimmer LATEXarticle documents.

4.3 Back-end Architecture

This section will give an high-level architectural overview of the back-end. Based on the
requirements in Chapter 3 there were a few details important for the back-end architec-
ture that we had to consider. In particular, the back-end needed an externally available
API for communication with the front-end, and to receive the exception reports from the
systems Innit are hosting. Innit did not state any requirements relevant for the inter-
nal data flow of the back-end, other than the languages and frameworks mentioned in
Section 4.1, leaving us quite free to create an internal architecture of our preference.

We consider the systems that are sending exception reports ‘Hosted Systems’, such as
in Figure 12. The ‘Hosted Systems’ is indicating the multitude of systems Innit is hosting
for other customers, which will be sending exception reports. The arrow from it to the
API simply indicate they are sending data to the controllers through the API.

25

HEEE - Handler for Exceptionally Exceptional Exceptions

The API-interface is not an actual interface-type class as in languages such as Java,
but rather a specification for what is available in the routes-file. The routes-file is a file
containing all the URLs the system will accept and which class and function to route the
request to. The arrow going from the API to the controllers simply indicate communica-
tion, and not any particular type of communication. While not strictly necessary, we built
in versioning of the APIs so software can use older versions of the API, and not cause
errors the instant someone changes the interface. The API is further elaborated upon in
Section 5.4.

All the controller-classes in the figure are actual controllers, extending the main
Controller-class built into the Laravel framework. They contain all the main logic in
the system, receiving requests, storing or retrieving data, and performing any other pro-
cessing. In Laravel, controllers can be shared between several routes, but we have opted
to have dedicated controllers per top level route; e.g. the routes ‘/reports/monthly’ and
‘/reports/yearly’ are both in the top-level route ‘/report’ and use the ReportController
along with all other routes that start with ‘/report’, while the routes ‘/statistics/total’ and
‘/statistics/application/:id’ are both in the ‘/statistics’ top-level route, using the Statistic-
sController.

All the models mentioned are Eloquent object-relational models, converting data be-
tween the objects in the program logic and the relational tables in the database. This
is done using the object-relational mapper (ORM) Eloquent, which is supplied with and
used as default by Laravel. Read more about the Eloquent ORM in Section 4.1. The mod-
els are thus void of any real program logic and act only as translators between the real
logic in the controllers and the database.

Figure 12 thus gives a full, if simplified, picture of how the back-end is built up. Re-
quests to the API are routed to the relevant controller, which contains any necessary
logic for retrieving data through the models and creating a response. Any necessary logic
for handling data is done in the controllers. The connections between the controllers,
models, and the database have been simplified by grouping the modules into a single
container. How the controllers interact with the modules can be quite dynamic, and de-
tailing all that through regular connections would make the diagram unreadable. There-
fore we have opted to have simple connections from controllers to modules, indicating
communication, with the same from modules to the database.

Note that some controllers and models have for the purpose of simplicity been com-
bined.

4.4 Front-end Architectural Overview

This section will give an high-level architectural overview of the front-end. As with Sec-
tion 4.3 it will be a simplified high level architectural overview, based on the require-
ments stated in Chapter 3. While Innit did not state any particular requirements about
the architecture of the front-end, their recommendation of AngularJS, along with some
of the design requirements such as continuously running graphs and heat map, put a fair
bit of constraints on the system flow and state handling of the system.

Initially the only differentiation we had was what AngularJS put constraints on;
whether data should be stored locally on the client or retrieved every time it was needed,
where logic should be placed, and a basis for where to divide the front-end into modules.

26

HEEE - Handler for Exceptionally Exceptional Exceptions

Controllers

Models

Database

Hosted SystemsAPIFront-end

Application

ExceptionApplication ExceptionType Heat

OriginalObjectInstallation SeverityRating Syslog

ExceptionTypeException OriginalObject

Installation Heat SeverityRating SyslogStatistics

Report

Figure 12: High-level back-end architectural overview.

This was used as a basis for the AngularJS modules, factories and services.

In Figure 13 the rounded box ‘H3E’ represents the entire system, with all of its con-
figuration files and other dependencies. The first step after this was elaborating how the
front-end would be separated in terms of modules. These modules contain the main logic
of the system, being the ‘controllers’ in the Model-View-Controller pattern on which An-
gularJS is built. The models thus contain the programmatic logic, and communicates with
the view that the user is seeing and interacting with, and they are completely standalone
so that modules with their views can easily be removed without potentially ruining or
removing system state other modules depend on.

The actual state of the system is contained in the factories, whose classes are sin-
gletons processing the data from the back-end. Thus they are the ‘models’ in MVC. In
this way, containing the actual data and state. The services retrieve the requested data
through the back-end’s API, and deliver the data to the factories for processing. The ser-
vices are only called by factories, while the factories are only called by the standalone
modules. In this way it is similar to a 3-layered architecture, though the similarity is not
complete as each layer does not keep its own state and all necessary logic, and assumes
there is a layer above it that will use its functionality.

27

HEEE - Handler for Exceptionally Exceptional Exceptions

Be aware that the overview in Figure 13 only displays the main modules and con-
ceptual handlers involved, and is not a proper representation of the internal runtime
flow. This structure follows the typical AngularJS structure of modules using factories,
directives, services, etc. It is assumed the reader has some knowledge of how AngularJS’
works, but it is by far not a prerequisite to understand the overview. For an introduction
to what AngularJS is, see Section 4.1

Modules

Factories

Services

H3E.applications H3E.syslogH3E.statusH3E.exceptions

H3E.locale H3E.layout H3E.router

H3E.exceptionH3E.application H3E.heat H3E.logger

H3E.syslogH3E.statistics H3E.util H3E.routes

H3E.application

H3E.locale H3E.syslogH3E.statistics

H3E.exception

H3E

Figure 13: Front-end architectural overview.

4.5 Syslog

Syslog is a method for communicating information from devices, networking equipment
and other units to a central logging server. It is a collection of standards defining logging
format, required information and such.

The purpose of syslog is to provide a standardised logging format for most system and
networking-related events such as login events, software errors, hardware state changes,
and far more, providing the user with information, analysis and debug messages from
the system. The systems can be all from enterprise grade routers and other networking
hardware, to the Linux kernel on a home server using Rsyslog for reporting. All syslog-
messages use a specific format that must adhere to the syslog standard for the daemon
to be able to interpret it correctly. The message contains amongst other things, the fol-
lowing:

• Identifying information such as IP-address, MAC-address, or equivalent.

28

HEEE - Handler for Exceptionally Exceptional Exceptions

• Timestamps.
• Facility information, being an integer between 0 and 23, including endpoints, defin-

ing what kind of unit or device sent the message.
• Severity label, being an integer between 0 and 7, including endpoints, representing

a application-defined severity from emergency (0) to debug information (7).
• The message itself, containing things like error messages and stack traces.

In the simplest form syslog consists of three systems; the log reporting software, a
service daemon collecting the logs at a central server, and lastly a system that stores and
analyses the aforementioned logs [2]. The idea with syslog is to collect and store logs
generated by software and hardware from all systems in a network, whether it is VoIP-
phones, printers, switches, routers computers or software. When the logs are stored they
can be automatically analysed, or simply stored for manual review.

Because syslog was merely a de facto standard since the 80s – IETF documenting the
status quo as-is in 2001 and creating a standard for it in 2009 – it evolved into a plethora
of different implementations which are not all compatible with each other.

Syslog devices

Syslog server

Operations
C

he
ck

 s
ys

lo
g

Store messages

Se
n

d
 a

le
rt

Figure 14: Illustration of syslog.

Innit did not at the time have a syslog database running, but wanted one and let us
take the choice of which syslog standard and application to use. We opted to use Rsyslog,
which is an high-performance open-source syslog daemon for forwarding log messages
over an TCP/IP-network, and which is included in Debian-based Linux distributions. At
its basis the Rsyslog daemon service only collects information about the kernel health
and root login events through SSH, and stores them in rotating text files on the local
host, and can either keep storing it or send it to some other system for more permanent
storage.

29

HEEE - Handler for Exceptionally Exceptional Exceptions

We decided upon Rsyslog due to it being in wide spread use, is built for high per-
formance, it having a stable community, and because using an established software for
parsing incoming syslog messages is far safer than attempting to write parsing software
on our own.

Since we are choosing an established application for parsing the syslog messages and
inserting the data into the database we have to rely on Rsyslog’s own database structure,
and cannot change anything in the database structure, which is less than ideal for our
purposes, see Section 4.6.

4.6 Database Design

Because so much of the product’s functionality is based around storage and retrieval of
the exception reports, the database design is central to creating a good product. From In-
nit we early on received some example exception reports, containing the general pieces
of information we would need to store. Based on these reports we created the initial
database models. There was not very much work required in creating this first version
of the database model as we both had some ideas from the meeting before New Years
as to what information was required, and while the reports better specified the informa-
tion, they did not necessitate any reconsideration of the initial model. Thus after building
the initial data model in the first week, it incrementally evolved alongside creating the
exception report format throughout January, with the central parts of the model remain-
ing constant throughout. However as development proceeded, the changes to the data
model over time was substantial. To read how we got to this resulting data model, see
Section 6.2. In this section we will describe the resulting data model in detail.

Figure 15 shows the product’s main storage database, and is for the most part a fully
normalised model, designed with efficiency in mind while avoiding duplicating informa-
tion. Each application has been separated from its installations to achieve full normalisa-
tion. The same goes for exceptions by separating it from its exception types, and similarly
for several other tables. Full normalisation – hence avoiding data duplication and incon-
sistency – was arguably not as much a requirement from Innit as it was a requirement
from ourselves. While some amount of data queries could become more complex to cre-
ate, going away from normalising the data model was never a real option for us, bar the
syslog table for reasons further described later in this section.

The core parts of the database table are the exceptions, applications, heat and syslog
tables, given a definition of core tables as those which not only exist for purpose of
normalisation, contain sub-elements belonging to a single other element, or in other
ways are made to simplify queries and behaviour.

The exceptions table contains the actual exception data that have been sent to the
system. It is backed up by the original_objects table containing the raw unprocessed
exception report that was submitted, which the employer wanted in order to retain a
full copy of the report for archival reasons. To avoid duplication of data, the exception
types of each exception was relocated to a table of its own, the exception_types table.
The exception_contexts table contains the context of each occurring exception, i.e. the
file name and line number where an exception occurred. The context was separated out
into a table on its own both to de-duplicate data, and to making queries exceptions from
a single context far simpler and faster to execute.

30

HEEE - Handler for Exceptionally Exceptional Exceptions

-{PK} installationID
-installationName

installations

-{PK} exceptionTypeID
-exceptionTypeName

exception_types

-{PK} applicationID
-applicationName
-mode

applications

-{PK} exceptionID
-createdAt
-message
-stacktrace
-client_data
-url
-method
-data
-sqlquery

exceptions

0..* 1

10..*

1

0..*

-{PK} syslogID
-hostname
-ip
-info
-ignored

syslog

-{PK} severityID
-severity_name

severity_ratings

-{PK} originalObjectID
-exceptionData

original_objects

-{PK} exceptionContextID
-filename
-line_number

exception_contexts

0..* 1

0..*

1

1

1

1

1..*

*
*

*

-{PK} currentHeatID
-timestamp
-heat

current_heat

0..*

1

1

0..*

-{PK} historicHeatID
-timestamp
-heat

historic_heat

0..*
1

0..*

1

-timestampLastChange

settings_changes

Figure 15: Model of the main database.

The severity_ratings table is a measure to de-duplicate information from the excep-
tion_contexts table, in addition to also simplifying some queries for all exception con-
texts and – by implication – exceptions with a particular severity rating. This measure
is important, since the three-way relation between exception_types, severity_ratings and
applications would otherwise be far more difficult to write, and potentially magnitudes
more computationally intensive to retrieve.

The applications table naturally contains a list of all the applications that have thus
far sent exception reports to the database, and the installations table is merely the sub-
table containing all installations of each application. The applications table could be read
the other way around, being a de-duplication measure from the installations table, but
because the application table is so important for the three-way relation and the heat-
storage we consider it the core table of the two. Applications is thus used for retrieving
heat – heat being a product of a particular exceptions’ severity values, put together in
an more easily discernible format for graphing – per combination of application and
exception type, and to retrieve severity ratings for each combination of exception type
and applications.

The heat storage tables – heat being a product of a particular exceptions’ severity
values, put together in an more easily discernible format for graphing –, current_heat and
historic_heat contains the current heat per application and exception type combination,
and the historic heat data per application and exception type combination, respectively.
The heat tables are somewhat of a special case scenario, because they have exactly the

31

HEEE - Handler for Exceptionally Exceptional Exceptions

same columns, data types and relations. We decided however that for simpler queries
and management that the current and historic heat data were best set in separate tables.
For more information on heat and heat management, see Section 5.5.

The settings_changes table is also a somewhat special case, only being used for storing
the timestamp for when somebody last updated an exception context’s severity rating or
the severity rating of an application and exception type combination, the latter being the
three-way relation.

Note that tables such as applications, installations, exception types and such tables are
not preemptively set, but entries are added dynamically as new such units send exception
reports with new exception types.

Syslog Database

As have been mentioned in the use case section, the syslog-functionality is a mostly stan-
dalone feature required by the operations department. This is reflected in the database
model where the syslog-table is entirely isolated from the other tables. We have con-
sidered this thoroughly, and have not found any reason to have a relation between the
syslog-table and the other tables.

SystemEvents

-ID
-CustomerID
-ReceivedAt
-DeviceReportedTime
-Facility
-Priority
-FromHost
-Message
-NTSeverity
-Importance
-EventSource
-EventUser
-EventCategory
-EventID
-EventBinaryData
-MaxAvailable
-CurrUsage
-MinUsage
-MaxUsage
-InfoUnitID
-SysLogTag
-EventLogType
-GenericFileName
-SystemID

SystemEventsProperties

-ID
-SystemEventID
-ParamName
-ParamValue

Figure 16: Model of the read-only syslog database.

The fact that we could not change the syslog database seen in Figure 16 at all, due
to it being defined and set by Rsyslog, necessitated some unfortunate duplication of in-
formation. The syslog database is large, potentially containing hundreds of millions of
records that are not normalised. Without indexing on particular columns that we would
need, we could not use that database for continuous retrieval of data. Thus the syslog
table in the main database is essentially a compromise between our preferred database
design and a predefined database structure set by Rsyslog. This compromise means du-
plicating some columns from the syslog database into our product’s own database, in
order to have them normalised and indexed so we can retrieve data from it continuously,
without creating a huge processing overhead in retrieving only unique entries.

32

HEEE - Handler for Exceptionally Exceptional Exceptions

5 Implementation

5.1 Graphical Design Considerations

Designing a front-end that was compliant with standards for universal design was per-
haps a more important thing for us than for Innit. At least they did not mention it in
the earlier stages, though they greatly appreciated that we had taken the initiative on
universal design.

We wanted to take advantage of the site’s capabilities to create a responsive, modern
and fluent design that follows modern web development standards and would be usable
in a multitude of situations, from very close up to a good distance away from the screen
such as with the overview screen in Section 1.4. In addition, while it is outside the scope
of this project, it is possible that a mobile application version of this system will be created
in the near future, in which case having the front-end compliant with universal design
and using responsive design could greatly reduce the amount of work necessary to make
a reasonable mobile application.

One major consideration was the design of the heat map, see Figure 17, in particu-
lar since it was the main feature Innit wanted with the entire system. During our GUI
feedback meeting with an expert at campus, see Section 7.7, the use of colours as in-
dicators was pointed out. Initially we had a fixed colour for the heat map, displayed as
a background to the heat status graph on the status page. Using colour alone to dis-
play heat could be very ambiguous for colour blind users. We therefore re-designed the
heat map with less focus on the colour usage, and more focus on easy to read text and
unambiguous symbol usage instead.

Figure 17: Front-end heat map design. The graph shows the heat over time for the cur-
rently selected applications. The bottom green bar is the heat map showing current heat
for this application, with a number for the heat in absolute value.

Site navigation is done in a very standard way, with a main navigation bar at the top

33

HEEE - Handler for Exceptionally Exceptional Exceptions

of the page, and sub-navigation bars on the left side of the screen, see Figure 18. For
outlining we used a standardised way of filling the chosen menu item with the colour
blue, and in the main navigation bar the text also changes from grey to white. Since the
colour is only used to outline it compared to the other menu items, the use of colours is
perfectly acceptable in this case.

Figure 18: Front-end application overview design. The green bar is a heat map for this
application. The graph shows number of exceptions of each type for this application.
The right side shows all installation URLs for this application, and the bottom – which
continues further down the page – shows all the single exceptions for this application in
descending order by time and date.

Many buttons such as for configuration, inserting data, deletion, etc., use symbols
instead of text. We have opted to use the Glyphicon Halflings icons through Bootstrap as
they are compliant with universal design and responsive design, are not bound by strict
copyright rules, and the icons are well known to give an accurate relation between icon
and the function it represents, e.g. a cogwheel for settings or an ‘X’ for deletion or closing
a window. Note that the Glyphicon Halflings set are normally not available for free, but
the creator has made them available for use with Bootstrap at no cost [13]. This usage
can be seen in Figure 18, where the button for opening the settings window uses the
almost globally recognised cogwheel.

Fully responsive design has not been a major focus for this project. It has always been
a consideration, but we have not made extensive testing on smartphone-sized screens, as
the functionality and design preferences of Innit has been focused on typical TV-, laptop-
and desktop sized screens.

For images of the front-end that was not displayed here, see Appendix F

5.2 Exception Report Format

Creating the exception report which our back-end system were to receive format was an
important task that had to be done early, along with the data models for database stor-
age. We were tasked with creating this format, then Innit would re-write their reporting
modules to send reports in that format. We needed to build a format that would not
require an excess of information, but would still be sufficiently future-proof in the sense
that no (major) overhauls or changes were required once the system is deployed due to
lack of information.

34

HEEE - Handler for Exceptionally Exceptional Exceptions

To achieve this Innit gave us several example exception reports with the type of infor-
mation they were sending in their old system. With those as a basis, and while building
the initial back-end architecture we built an initial format proposal which we presented
to Innit at a meeting in January. They were quite satisfied with it and had no particu-
lar details to append. Throughout January and early February the initial format evolved
somewhat as we built working demos of the back-end, and go to testing with actual semi-
real data, though no major structural changes were needed; we only added or renamed a
few of the fields as we saw it needed, and when Innit in late February had a few proposed
columns to be added before the testing with real data would begin.

Method: POST
URL: /exceptions/
Data:
{

‘language’:‘php’,
‘location’:‘server’, // ‘server’ or ‘client’
‘created’: ‘2016-01-01 12:34:56’, // YYYY-MM-DD hh:mm:ss
‘application’: {

‘name’: ‘Test Application’
‘baseurl’: ‘http://www.test.com’,
‘mode’: ‘production’ // ‘developer’, ‘test’ or ‘production’

},
‘client’: {

‘username’: ‘User Name’,
‘name’: ‘Real Name’,
‘browser’: ‘Mozilla Firefox 5.0’

},
‘action’: {

‘url’: ‘http://www.test.com/’, // Where the exception occurred.
‘method’: ‘get’, // get, post, put, patch, delete
‘data’: {}, // POST-data
‘sqlquery’: ‘[sqlstring]’

},
‘exception’: {

‘type’: ‘PDOException’,
‘file’: ‘index.php’,
‘line’: 5,
‘message’: ‘What went wrong!’,
‘stacktrace’: ‘[Stacktrace as String]’

}
}

Figure 19: Format for adding a new exception report

While elements such as the API in Figure 21 kept changing and evolving throughout
the entire development process, the exception report format did not need any changes
after we started receiving real data. The only adjustments made were how strict the input
validation had to be. Due to unforeseen circumstances, on Innit’s request we ended up
removing close to all input validation. We did not wish to do so, though due to how the
employer’s systems sent data there were too many pitfalls in what kind of data was sent
in. Normally this would have been highly insecure, a fact we expressed to the employer,

35

HEEE - Handler for Exceptionally Exceptional Exceptions

but they assured us that since the system would only run on the local network and only
fed data from their reporting module, the risk was acceptable. Thus there is only the
most rudimentary input validation currently in working order, in essence only checking
whether some of the fields are the correct type.

5.3 API-specification

A preliminary API-specification was prioritised early along with the reporting format, see
Section 5.2, with the intention of both agreeing with the employer on which functionality
is central, and having it slowly evolve as development and testing showed what worked
best. While we had ideas and rough sketches of the API already before new years and
the official thesis start, it evolving steadily as we realised new use cases and found better
ways of implementation.

The API intentionally follow the principles of a stateless RESTful API; i.e. it uses the
regular HTTP-request methods GET, POST, PUT, PATCH and DELETE, and operates on
uniform resource identifiers (URIs) [14]. This means the API treats every request as an
independent transaction, and all communication only consist of independent request-
response pairs. Thus one cannot refer to or assume knowledge of previous API-requests,
giving some overhead with information that must be added in every single request, e.g.
an authentication token. However being stateless gives a simpler, more reliable and more
scalable API. Simpler because it requires no logic for sharing or moving state, sessions
or anything of the kind; more reliable since it does not require allocation or memory for
a session or complex state handling; more scalable as one can simply add new servers
without any intricacies of sharing or moving state, handling sessions, dynamic allocation
of memory for session data, etc. For the server it is essentially respond and forget, with
no state to clean up for the server in case the client dies during the transaction. Some
transactions might be simpler with a stateful session, but we had no such occurrences.

We did not find the API to lose any particularly advantageous features for our use by
being stateless, and could thus save quite a bit of development time. Since Laravel has
built-in features for creating RESTful APIs, the development time for setting up the API-
interface itself was almost negligible; only the actual logic that is called to retrieve the
requested information takes some time to develop, and even that is considerably easier,
being stateless and completely decoupled from other parts of the API.

A major advantage with a simple decoupled API like this is that the entire interface
can be re-used for both the interactive desktop and mobile clients, in addition to the
originally intended minimally-interactive front-end.

The initial stages of the API was concocted in early January, almost immediately after
receiving the first indications and examples from Innit about what information a user
would require. After that, the API evolved as we worked throughout January and Febru-
ary, having better clarified what the employer wanted, and us finding better paths of
implementation. Over the two months the API changed quite dramatically, most parts of
the interface either receiving major overhauls and redesigns, or being replaced altogether
by better designs.

As an example, the first draft of the API structure looked like in Figure 20. This was the
absolutely first idea, partly based on ideas bred during the Christmas holiday, and partly
from the first meeting in January. Needless to say, it would not have been sufficient for all

36

HEEE - Handler for Exceptionally Exceptional Exceptions

/exception
/all

/id/:id
/date/:date

/from/:id
/application

/all
/:name

/statistics
/all
/total
/:id

/all
/total
/last/:last_entries
/data/:from/:to

Figure 20: Initial draft of API structure.

the requirements. It proved a good starting point however and it quite quickly evolved
to better suit our needs, resulting in the API structure seen in Figures 21A and 21B. This
figure only shows the URIs and GET-arguments available. The full API structure with
explanatory comments can be seen in Appendix D.

It is worth nothing that Figures 21A and 21B are the result of a long evolving process,
and several of both the routes and sub-routes came to be as a result of the develop-
ment process, and not the initial few requirements meetings with the employer. This has
been in accord with our agile development methodology, and through keeping in con-
stant communication with the employer throughout the entire process. For instance the
/severityRatings, /exceptionContexts and /reports routes were added as late as in early-
and mid-March, after feedback during the demonstration of the system in early March.

The /graph route was actually added as late as the end of April, during a major bout
of refactoring. It is the result of moving much logic from the front-end to the back-end,
logic concerning transforming data into the format the graph package requires to cre-
ate the graphs. There was a major discussion whether this would be acceptable to do,
as it arguably introduces some coupling between the front-end and the back-end which
we were to avoid. However by making simplifying the communication and data han-
dling the main focus, we managed to avoid explicit coupling while significantly reducing
complexity and lines of code. For more detail on this improvement, see Section 6.3.1.

37

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 21: Final API structure

All routes are configured to use these return values:

* Request that yields data: Content and status code 200 (OK).
* Request that yields no data: Empty array and status code 200 (OK).
* Invalid ID of a specific item:
"Resource not found" and status code 404 (Not Found).
* Invalid URL (Non-existent route):
"Resource not found" and status code 404 (Not Found).
* Invalid query (Failed validation):
Array with error messages and status code 422 (Unprocessable Entity).

GET-arguments starting with *

/exceptions
* after=:exceptionID
* from=:timestamp
* exception_type_ids=:exceptionTypeID, comma-separated list
* installation_ids=:installationID, comma-separated list
* application_ids=:applicationID, comma-separated list
* search=:string

/exceptions/:exceptionID

/exceptionTypes
/exceptionTypes/:exceptionTypeID

/exceptionContexts
/exceptionContexts/:exceptionContextID

* application_id=:applicationID
* context_ids=:contextID, comma-separated list

/severityRatings
/severityRatings/:severityRatingID
/severityRatings/application/:applicationID

/applications
/applications/:applicationID

/installations
/installations/:installationID

* application_ids=:applicationID, comma-separated list

/reports
/reports/monthly
/reports/monthly/:year-month
/reports/yearly
/reports/yearly/:year

* from=:date
* to=:date

21A First part of the final API structure.

38

HEEE - Handler for Exceptionally Exceptional Exceptions

/statistics
/statistics/total
/statistics/application/:applicationID
/statistics/application/:applicationID/total
/statistics/installation/:installationID
/statistics/installation/:installationID/total
/statistics/exceptionType/:exceptionTypeID

All non-‘/total’-routes support the following:
* from=:date
* to=:date
* modes=:modes, comma-separated list

/syslog
/syslog/:syslogID
/syslog/hosts
/syslog/hosts/:syslogID

* ignored=:true/:false
* gt=:number
* lt=:number
* host=:name

/graphs
/graphs/application/:applicationID
/graphs/exceptionType/:exceptionTypeID
/graphs/mixed
/graphs/total

* mode=:mode, ‘heat’ or ‘exceptioncount’
* timespan=:timespan
* application_ids=:application_IDs, comma-separated list,
only for /exceptionType and /mixed
* exception_type_ids=:exception_type_IDs, comma-separated
list, only for /application and /mixed

Global arguments
All endpoints support chunking using these arguments
* limit=:limit
* offset=:offset
* orderBy=:fieldName

21B Second part of the final API structure

5.4 System Administration and Configuration

Front-end

The front-end system is configurable using the file appConfig in the root folder. appConfig
keeps track of all configuration parameters necessary for the system to function correctly,
e.g. such as toaster-arguments – where a toaster is the small information pop-up in the
lower right corner of the screen – , locale settings, and more. It also contains the variables
necessary for locating the back-end’s API end point, such as the example in Figure 22

The reason for choosing configuration files is that Innit during the initial require-
ments phase expressed that they prefer text files for initial setup and configuration. In

39

HEEE - Handler for Exceptionally Exceptional Exceptions

‘RESTAPI’: ‘https://ex.ankazhi.info’,
‘API_VERSION’: ‘/v1’,
‘ROUTE_SYSLOG’: ‘/syslog’,
‘ROUTE_EXCEPTIONS’: ‘/exceptions’,

Figure 22: Example of content in front-end configuration file

addition the intent is that one can e.g. simply change the few relevant lines in order to
change which back-end is queried; one can easily change to a back-end that is hosted
somewhere else entirely, or use another version of the API. With multiple versions of
the API available, one can more easily upgrade the back-end API without breaking the
front-end’s dependency on the API functionality, and the front-end can be upgraded to
the new API while the old version is still using the old version. Naturally the main benefit
is avoiding any hard-coded endpoints or other information of the kind, and once some
information is set in a configuration file, it would not make sense to keep other parts of
the configuration in another type of storage.

Back-end

In much the same way as the front-end, back-end configuration is done through a dedi-
cated configuration file. In this case it is a default Laravel-specific environment file called
‘.env’, which contains all the data required for operation such as system mode, database
endpoint, credentials, and API-end point. Since our system uses both the dedicated in-
ternal database for storage, and relies on an separate syslog-database external to the
product to retrieve syslog data, the configuration file contains both the database connec-
tions as in the example in Figure 23.

APP_ENV=local
APP_DEBUG=true
APP_KEY=SomeRandomString

DB_HOST=localhost
DB_DATABASE=dbName
DB_USERNAME=someUsername
DB_PASSWORD=superSecretPassword

DB_HOST2=localhost
DB_DATABASE2=dbName2
DB_USERNAME2=someUsername
DB_PASSWORD2=superSecretPassword

API_VERSION=v1

Figure 23: Example data from .env-file

5.5 Heat

Some kind of feature that could at a glance immediately tell developers and operations
staff how the systems are coping was a greatly requested feature by the employer. This
request resulted in what is called heat maps. Heat maps are a graphical representation

40

HEEE - Handler for Exceptionally Exceptional Exceptions

of how a system is running, that instead of showing absolute values – thus requiring the
onlooker to know what absolute value is fine, cause for concern, or critical – shows the
values are percentages or relative values, relative to either some previous maximum or
an pre-set absolute maximum. Heat is then, as mentioned in Section 4.6, a product of a
particular exceptions’ severity values, put together in an more easily discernible format
to make it easier to use and graph.

Heat Calculation

There are two sources of heat values. One is a constant heat value based on which excep-
tion type a given exception belongs to. The other is a heat value taken from the context
an application occurred in; in which application the exception occurred, and where in
that application it occurred. This latter factor is intended to adjust for the fact that some
exception types can be almost irrelevant in one application or part of the code, while
the same types can be absolutely critical in other applications, or even simply in another
part of the same application. For instance, if a ObjectNotFoundException were to happen
sometime when displaying a little used sub-page of an application, that might be trivial,
while another ObjectNotFoundException could be critical if the missing object is a central
part of the login process.

Calculating the heat from exceptions is kept simple, and done as follows each time a
new exception is input:

1. A new exception comes in.
2. The system retrieves its exception type and context severity values.
3. The retrieved values are added together, and then added to the current heat value

for that combination of exception type and application.
4. The database is updated with the new current heat value.

Note that this updating is done with the use of database triggers and events. Points 2,
3 and 4 are done by a trigger that is activated when a new exception is entered into the
database. In addition, there are two events running at regular time intervals; one event
handles the heat degradation, see Section 5.5.1, and another event handles moving the
current_heat values to the historic_heat table every hour, see Section 4.6

For displaying heat the front-end can request the historic heat data, of which is taken a
snapshot every set time unit – usually less often than heat degradation -, and request the
current heat data as often as the user wishes to. As a consequence, the historic heat data
will be less fine-grained than if one keeps the front-end up and running, continuously
polling the back-end for new heat data. However since it is the current heat that is most
important, this is not seen as a major issue. In addition the employer can change how
often historic data is stored, though with some more work than the other configuration
options, since it requires change to a trigger in the database.

5.5.1 Heat Degradation

A major consideration was how to trigger the reduction function. Initially we considered
running it every time heat was added to the specific database entry, and degrading the
value by a corresponding amount of time since the last time it degraded, but we quickly
reasoned this could cause hours or even days where no degradation would happen. In
general we wished to have all functionality in the back-end only run in response to input,

41

HEEE - Handler for Exceptionally Exceptional Exceptions

<?php
$n = 0;

for ($i = 0; $i < 300; $i++) {
$n = $n + rand(10, 40);
$n = $n - 30;

print $n . ’
’;
}
?>

Figure 24: Code for generating linear degradation graph data

not have any timers that would trigger functions. However we found no other sufficiently
good alternative to using a timer to trigger heat degradation reliably.

While heat increases are calculated each time a new exception comes in, heat degra-
dation is run automatically approximately every configurable interval of time. Retrieving
heat values is done through the API, which simply retrieves the value from the database,
no calculation required at all. We reason that this setup will scale rather well, albeit that
is not a requirement. The database handles transactions and thus concurrency, and there
should not be any issues with lost exceptions or failed degradation updates until well
after some other part of the system is likely to be the bottleneck.

In addition to when to trigger the degradation, the way of degrading the heat value
over time is quite important. The employer did not specify any particular way this should
be done, and it was left to our judgement to find a good technique for handling degra-
dation. In the following sections is testing of the alternatives, with simulated data, the
code used to simulate the data, and the resulting heat values graphed.

Linear Increase and Linear Degradation

One possibility was linear increase and degradation. Each incoming exception report
would add an amount of heat based on its severity, and at each regular time interval
a fixed amount of heat would be removed. An example is shown in Figure 25. As can
be seen, the heat is very unstable, and quickly either the incoming heat overwhelm the
degradation and the heat simply keep increasing, or the degradation overwhelm the
input and go into negative values. The middle case in the figure is almost stable, though
does go somewhat down to negative values. However even with the middle case, Innit
would have to continuously adjust the degradation in line with the amount of incoming
exception reports to keep it stable, and we would have to take care to avoid the heat
becoming negative.

Adjusting the degradation value would be very difficult since it would be a global
adjustment of degradation, while the different exception types and combinations would
have wildly differing heat increases. It took several attempts of trial and error with the
numbers to get them low enough to graph without either the top of bottom degradation
values completely overshadowing the middle ground, and for such unknown quantities
of incoming heat, linear increase and degradation would not be sufficiently good. The
code for generating the graph data can be seen in Figure 24

42

HEEE - Handler for Exceptionally Exceptional Exceptions

Sheet1

Page 1

-1500

-1000

-500

0

500

1000

1500

Linear degradation, -20 Linear degradation, -25 Linear degradation, -30

Figure 25: Using linear input and linear degradation, degradation value in the legend

Exponential Increase and Exponential Degradation

Another possibility is the case of an exponential function for both increase and decrease;
the more heat is available the larger the increase in heat would be, which would fit the
use case that an application producing a lot of heat in a short amount of time is extra
critical, see Figure 27. However the increase would depend on the initial data, so that
if an application for instance ran for days without any incoming exceptions, the degra-
dation could become low enough that even a large amount of exceptions would make
a barely noticeable change, or if enough exceptions came in at once it could produce
runaway heat that could take a long time to subside. Both of these cases are displayed
in Figure 27, where random numbers generated with the code in Figure 26 were used to
simulate input. In addition there would always have to be some heat from the start, else
multiplying with zero would produce the unfortunate amount of zero heat. Both issues
could be fixed by adding both a fixed value and an exponential for all exceptions, but
that still leaves the risk of runaway heat, where a major case could potentially cause an
integer overflow.

It is worth mentioning that even finding values for increase and degradation where
the values would not immediately go to zero – due to the floor()-function, which was
added to avoid getting numbers with potentially tens of digits after the decimal point
– or into the millions took a significant amount of attempts. We found it to be highly
unstable and thus a very poor alternative.

Linear Increase and Exponential Degradation

A third alternative was linear input and exponential degradation. In comparison to the
two previous alternatives, having linear increase and exponential degradation proved to
make the degradation inherently stable; i.e. it will always go towards an equilibrium, see

43

HEEE - Handler for Exceptionally Exceptional Exceptions

<?php
$n = 100;

for ($i = 0; $i < 100; $i++) {
$n = $n * (rand(11, 15) / 10);
$n = floor($n*0.8);

print $n . ’
’;
}
?>

Figure 26: Code for generating exponential input and degradation graph data

0

200

400

600

800

1000

1200

1400

1600

1800

Rand 11-15 Rand 11-15 Rand 11-15 Rand 11-14 Rand 11-14 Rand 11-14

Figure 27: Using exponential input and exponential degradation. Top and bottom ran-
dom values for input multiplier in the legend

44

HEEE - Handler for Exceptionally Exceptional Exceptions

<?php
$n = 0;

for ($i = 0; $i < 300; $i++) {
$n = $n + rand(10, 40);
$n = floor($n*0.8);

print $n . ’
’;
}
?>

Figure 28: Code for generating linear input and exponential degradation graph data

0

50

100

150

200

250

300

Exponential degradation 0.7 Exponential degradation 0.8 Exponential degradation 0.9

Figure 29: Uses linear input and exponential degradation. Multiplier in the legend

Figure 29, based on data generated with the code in Figure 28. That is because with a
large heat value, any single added value will be an increasingly smaller percentage of
the total value, while a fixed percentage of the total value is removed at each degrada-
tion event. Thus with small heat values the degradation will get increasingly smaller in
absolute value, while any added heat value will be a larger percentage of the total heat
value.

To provide a concrete example on why linear increase and exponential degradation
is more stable; with a heat value of 1000, adding ten heat would only add one percent
of the initial value, while degrading by 5% would remove 50 heat. In the case of a small
heat value like 100, adding ten heat would be adding 10% to the heat value, while
degrading by 5% would only remove five heat. Thus the value would by itself go towards
an equilibrium between increase and degradation.

To further ascertain that the exponential degradation is fully stable, the code in Fig-
ure 28 was adjusted slightly to add a major amount of heat at long intervals, as seen in
Figure 30. At the start, and every 30 intervals the code will add a fixed amount of 400
heat to the system, to see how well it copes with the rapid and sudden increase.

45

HEEE - Handler for Exceptionally Exceptional Exceptions

<?php
$n = 0;

for ($i = 1; $i < 300; $i++) {
$n = $n + rand(10, 40);
$n = floor($n*0.8);

if (($i % 30) == 0) {
$n = $n + 400;

}

print $n . ’
’;
}
?>

Figure 30: Code for generating linear input and exponential degradation graph data

0

100

200

300

400

500

600

700

Exponential degradation 0.7 Exponential degradation 0.8 Exponential degradation 0.9

Figure 31: Uses linear input and exponential degradation. Multiplier in the legend

As can be seen in Figure 31, the exponential degradation handles such sudden peaks
quite gracefully. The increase is large compared to the typical heat in the system, but it
quickly subsides to ‘normal’ levels, since the size of the chunk – in absolute value – scales
with the amount of heat. After it reaches ‘normal’ levels it tapers off, at just the values
seen in Figure 29 where the heat input – while using a random function – is quite stable.

Concluding on Alternative

With the previous three cases in mind, we decided upon using linear value increments
and exponential degradation due to its stability as Figure 29 displays nicely, thus re-
quiring the least amount of care during operation since it is stable no matter the size
of the exponent, only changing at what approximate value it reaches the equilibrium.
If the heat goes very high, it will quite quickly subside so that it does not overshadow
other applications for too long, and the implementation above cannot make current heat

46

HEEE - Handler for Exceptionally Exceptional Exceptions

negative unless the employer configures the system with a negative multiplier.

A fair advantage, though it was not a requirement at any point, is that the formula for
exponential degradation is very simple both to understand and to calculate. The formula
can be seen in Equation (5.1).

n = n · x (5.1)

Where n is the current value, and x is the percentage of the original value to keep, in the
range 0 < x < 1.

5.5.2 Heat Degradation Recalculation

A topic of some debate was whether we were going to recalculate heat and its degrada-
tion backwards in time if an exception type severity rating or exception context severity
rating was changed. Naturally it would only be recalculated for the relevant exception
type and context combination, but how long to recalculate for, if recalculating at all, was
a subject of some debate that was important for the general heat degradation. A linear
degradation would have been far easier to recalculate, as one could simply add or re-
move the difference in heat value for that exception type and context combination. Since
we went ahead with exponential degradation, the only practical way to recalculate heat
and degradation would be to go back to a given point in time, take the heat at that time,
then recalculate for all exceptions and degradation intervals in order of occurrence since
that starting point in time.

Recalculating since a point in time in that way seems computationally intensive, and
that was also the case one could make for not recalculating anything, simply going with
the new severity rating onwards from the time of the change. While whether to recal-
culate will be up to Innit’s choosing, some back-of-the-envelope calculations shows that
the recalculation is far from as computationally heavy as one would immediately expect.
Even with a worst case scenario of sequentially recalculating 100 000 exceptions having
arrived over a week, with degradation every 30 seconds, would still only be about 300
000 multiplications and additions for the exceptions, and approximately 20 000 degra-
dation events.

Because we do not need to update the database with the intermediate results for each
exception or degradation, the calculation part can arguably be completed within 800
000 processor operations, potentially meaning far less than 800 000 clock cycles due
to instruction level parallelism in the CPU. Even using 800 000 clock cycles, it would
still only take in the order of two to three hundred microseconds. Because intermediate
results and much of the input data can be cached on the CPU, much of the input data will
already be present on the CPU. The only computationally intensive task that could cause
issues is if hundreds of requests to the database have to be done repeatedly, causing far
higher delays than the computation itself. Even with this, calculation times should even
in the worst of cases stay in the order of a few tens of milliseconds.

By far the largest factor in how long this calculation would take is the time spent
physically moving data. Moving data internally between the CPU and memory would
not cause a significant overhead, as accessing internal RAM takes between 20 and 150
nanoseconds, depending on type and quality of RAM and motherboard. Much of the data
could also be prefetched and cached on the CPU itself. It is data not in RAM that could
cause issues, e.g. if several seeks would have to be done with a hard drive – each seek

47

HEEE - Handler for Exceptionally Exceptional Exceptions

typically being in the order of 10 milliseconds – the transfer alone could cross a hundred
milliseconds. The absolute worst case would be fetching data from a hard drive that has
to spin up, something that can take several seconds. However we should generally be
able to make the code fully latency safe, it is the processing time that was potentially
problematic.

Despite the non-zero likelihood of significant data fetching latency; on the basis of
this back-of-the-envelope calculation we agreed that processing capability would not be
a cause for limiting any backwards calculation. For the calculation above, it is worth
noting that 100 000 exceptions are at least one magnitude above what is expected even
in bad cases, and likely two to three magnitudes more than a typical week.

In the end Innit decided, based on our advice and because they did not expect to use
it much, that the recalculation gave far less benefits than the required work and potential
pitfalls was worth and the feature was put on indefinite hold. Any implementation thus
never got any further than tentative concept-code and was never pushed to the repository.
For the concept-code, see Figure 1 in Appendix F.

5.5.3 Heat Map Data Transfer

The back-end offers an API route to retrieve all the current heat values, which the front-
end then rearranges into the format is required for its current task. Because the current
heat values degrade, and new exceptions can come in at any time, the front-end needs
to retrieve all the data again ever so often. Retrieving everything each time is not a very
scalable solution due to the potential size of the response, but some more back-of-the-
envelope calculations show that for the scale of use Innit intends the response has a
margin of two magnitudes in size before retrieving all the data becomes problematic.
Unfortunately we cannot avoid having to retrieve all the data, as much of it is needed
very often on the main overview page that also has to be running independent of input.

Innit expects in the area of 2050 applications, including the different modes (de-
veloper, testing, production), each having about 3040 exception types. With the higher
numbers, this gives a total of 1200 combinations of applications and exception types.
Each entry is 1020 bytes large in the response, so with the larger of the numbers, this
becomes ≈ 39.06 kilobytes. This is also without any compression, which is shown in
Section 7.5 to decrease the size of typically transferred data by a significant percentage.

Retrieving all the data every time is obviously not ideal, but the amount of data is
almost negligible and is highly unlikely to increase significantly. In addition all the trans-
fers will be over Innit’s local network, where transfer speeds typically are far greater and
the latency far less than transferring the same data over the open Internet.

There are some ways to reduce the data transferred; most simple is to periodically
check whether the current heat has been degraded or any new exceptions have arrived
since the last time data was retrieved. A second way is to only retrieve the data that has
changed since last time, and a third would be to only retrieve the needed data just as it
is required. However the latter two alternatives was put away after a lengthy discussion
because it would be a fair bit of rework, and most of the data is almost always needed.
The information from Innit about how many applications and exception types – informa-
tion they have available already through their manual handling of all exception reports
– showed that the size of the response was highly unlikely to ever get noticeably large.

48

HEEE - Handler for Exceptionally Exceptional Exceptions

5.5.4 Heat Map Data Conversion

Heat Map Data Conversion In order for the heat map to show a proper colour to indicate
how much heat has accumulated, some conversion of data has to happen. Note that the
heat map can show heat for all systems, any single one application, any one exception
type, and any combination of exception types and applications, including one or more of
all the previous.

Initially the front-end receives the heat data mentioned in Section 5.5.3, and also
receives the averaged historic heat for the last period of time, of which the default is
a month. The front-end then converts the current heat for the chosen total/type/appli-
cation/combination to a percentage of the average value of the previous time period,
using Equation (5.2). Depending on how the system is configured, the average heat will
typically have a position 2 and 5 in the array of colours, where green is 1 and red is 10.

((n× 100)/m)/x (5.2)

Where n is current heat from the chosen source, m is the average heat for the chosen
source, and x is an arbitrary value for reducing the result to an integer, in the range 0 <
x < 10.

The part (n · 100)/m gives how large a percentage the current heat is compared to
the average heat value. E.g. with 126 as current heat, and average being 75, it gives
(126 · 100)/75 = 168, or 168% more than average heat. To get this value simply into a
heat map colour, we have an array with 10 colours, ranging from green to red via yellow.
Then one can divide the current heat percentage with x, and then round down to get a
position in the array – and thus which colour – the percentage has. The value x is entirely
arbitrary, and is added in this way to allow easy configuring of what colour the average
value should have, and by implication which colours the current heat values will get.

As an example, if one does floor(168/30) = 5 with the heat from the previous cal-
culation, the heat will give exactly yellow, and the reddest position will be at 300% of
average heat or above. To change where yellow and red is, one can simply increase the
divisor. Having a divisor of 40 gives floor(168/40) = 4, a slightly greener colour than
position 5, and the reddest position is at 400 or higher percentage of average heat. Note
that the function floor() is used only for readability.

49

HEEE - Handler for Exceptionally Exceptional Exceptions

6 Development Process

6.1 Tools

Version Control

We decided early on to use Git for version control. This was barely a decision as much
as nobody even considering any other option. We already had quite a lot of experience
with Git. It is by now the de facto industry standard for version control, and it has been
greatly recommended both during our education and by friends and colleagues. Both the
employer and our supervisor supported our choice.

We started out with GitHub for hosting the repositories, but due to its integration with
Confluence and JIRA – which we used due to the Professional Programming course – we
moved all the repositories to Bitbucket in late January. The system uses two repositories
to separate the front-end and back-end systems. Neither of the repositories will be pub-
licly available during the development process. Whether they are open after having been
handed over the employer will be at their discretion.

IDE

We had early on decided we would use the IDE PHPStorm, from JetBrains. The IDE, while
not important to the product’s completed functionality, is central to a good development
environment for the team. We had during the year before received warm recommenda-
tions about Webstorm/PHPStorm from friends and colleagues, and the team has a fair bit
of experience with the related Java IDE IntelliJ, also from JetBrains. Webstorm is made
for Javascript, and PHPstorm is for both PHP and Javascript; i.e. Webstorm’s functionality
is a subset of PHPStorm’s.

In the past our team has used both Eclipse and Notepad++ for web development, but
the latter is unsuitable for anything but tiny projects, and we did not have particularly
positive experience with Eclipse mainly due to lacking features and missing functional-
ity, and general discomfort with its workspace. In addition, Jetbrains supplies all students
with free access to their entire suite of IDEs. In light of these factors, there was no real
discussion about which IDE to use; we had informally but unanimously decided on PHP-
Storm even before the project began.

Task Tracker

For task tracking we started out with Trello, but switched to the Atlassian stack a month
later; i.e. Bitbucket, Confluence, and the issue tracker JIRA, whereas the latter two are
hosted by the university. See Section 2.2

A particular feature we were incentivised to use were the smart commits feature of
the integration between JIRA and Bitbucket. It allows one to add some particular tags
in the commit messages, which Bitbucket will pick up on and send to JIRA, which then
updates the actual task or issue with the new state, comment, time logged, comment, or
anything else added in the message. In theory this should lessen overhead since we did

50

HEEE - Handler for Exceptionally Exceptional Exceptions

not have to manually update tasks on the task board. In practice however, during the first
two months we always had the task board up to find the tag of the particular task, and
afterwards had to check JIRA to make sure the smart commit actually worked, which it
quite often did not to begin with. As we became more comfortable with the work flow
and we learned to avoid any quirks, it became reliable enough that we did start to save
some overhead, though the time saved was never significant. For more information about
how we used the JIRA task board, see Section 2.2.

There were some inefficiencies with using a large enterprise tool however, in large
part due to some trouble getting all the integrations up and working properly. Even after
that, we had issues configuring JIRA due to inherent limitations in how it handled swim
lanes on the Kanban board.

We did have some issues with JIRA. Amongst other things, we never found the option
to archive completed tasks and stories, and thus the Kanban-board quickly filled up with
months old tasks. This is not an issue had we been using Scrum, as each completed
sprint is effectively its own archive. However JIRA does not seem to have very good
support for Kanban, as quite a bit of complaints we have happened upon while searching
for solutions also state quite explicitly. We managed to partially avoid this nuisance by
adding custom filters – filters that decided which tasks were visible in the task board –
though it was not an ideal solution.

Another quirk was inconsistent design between JIRA and Confluence; while they
mostly had the same theme, colour scheme and such, small things like placement of
buttons, implementation of contextual menus – or lack thereof – and in particular the
options pages created confusion and cost us a not insignificant amount of time during
the first month after adopting the Atlassian stack. JIRA is incredibly click-heavy. Every-
thing required clicking somewhere, with a partial or, more often, a full page-refresh as
the result. While not being a major issue per se, it could be fatal to concentration and
pull one out of ‘the flow’.

As the project progressed, we did manage to handle or avoid some of the issues,
learning the peculiarities of JIRA, though we never quite managed to find it as simple
and useful as Trello. It is worth noting that JIRA is an enterprise-size task tracker, while
Trello generally targets small to medium sized development teams, and thus has entirely
different target audiences. Had it not been for the Professional Programming course, we
likely would not have started using JIRA in the first place, and might even have moved
back to Trello as JIRA and Confluence was somewhat unnecessary for our purposes. We
we do however not regret learning the stack as we will very likely use it again after
completing the education.

Documentation Tools

As mentioned in Section 6.1, we used the Atlassian stack for much of the work. This
included using Confluence as a wiki-like tool for documenting the project. We did initially
document many of our thoughts and ideas in a regular LATEXdocument, mainly because
we had started to draft some ideas well before Christmas, as soon as we learned of the
project and its purpose. This kept going to some degree far into January, before we got
access to Confluence and got it set up properly for our use.

In addition we had some API- and format-specific documentation duplicated to a page

51

HEEE - Handler for Exceptionally Exceptional Exceptions

that was returned when one called the API’s root URL. This provided any user with the
most necessary of documentation on how to use the API and which formats were used
for input and responses without having to dive into Confluence. There was also some
diagrams and general information that was only in the project report; some of which
later got duplicated to Confluence.

In early February we started getting some proper documentation going on Conflu-
ence, though there were still some diagrams and documentation that were solely in the
LATEXinformation document, or that were still duplicated and not always properly up-
dated. By the February-March month switch, all major documentation had been moved
to Confluence, and was kept updated regularly there.

Confluence was somewhat unnecessary though, as the system did not really require
very much documentation. Much of the documentation was due to the Professional Pro-
gramming course, which effectively had us create more documentation than strictly nec-
essary with the purpose of learning professional documentation practices. It was a good
learning experience, though due to what information was required in the thesis report
and what needed to be on Confluence, we never managed to avoid a significant amount
of duplication, which would in most enterprise settings be considered bad practice.

Task Runner

Task runners are tools that can be set up to run groups of tasks in various situations.
Typical uses are for running several other tools and/or commands in succession, often
periodically or in automatic response to some other situation. Using task runners in this
way both simplifies development as one can get much done with a few commands, once
the task runner is set up, and it assures that the tasks are done in the exact same way
every time, removing potential human errors.

We are using the task runner Gulp on the front-end to simplify and streamline the
development process. Gulp is set up to automate tasks such as serving the code, wiring
together dependencies, linting, running tests, and building and deploying code. For long
the go-to default task runner has been Grunt, which works mostly using configuration
files. Gulp is a newer task runner that has gained a major foothold, and it uses a more
code-like configuration style compared to Grunt. We tested both tools, and landed on
Gulp– mostly due to personal preferences in the team, rather than one being objectively
better than the other. We prefer the configuration style of Gulp, and it being the newer
of the tools did not count negatively. There were lots of pre-made configuration files for
both, so that did not affect our choice.

Text Editor

In earlier reports we had often used Google Docs, but we have found it to be highly
impractical for longer reports with larger bibliographies and cross-referencing the text.
We did briefly consider Google Docs and Office365, but the preference for LATEXwas far
greater than any advantage WYSIWYG – What You See Is What You Get – text editors
could surpass. LATEXis superior in terms of writing long academic reports, handling multi-
file reports and bibliographies, and the resulting output is automatically very well for-
matted. With that in mind we had some strong preferences for writing in LATEX, and we
would prefer to have an real-time online collaborating tool. We also considered using
local LATEXinstallations, and sharing the documents via Git, though with excellent alter-

52

HEEE - Handler for Exceptionally Exceptional Exceptions

natives for real-time online collaboration, collaboration via Git was passed over.

There are two major alternatives for online collaborating when writing in LATEX, Over-
leaf and ShareLatex. They are both real-time online collaborating tools for writing in
LATEX, and we tested both of them for reports in the previous semester. Overleaf had
an advantage in that their free community subscription allowed several people to col-
laborate, and only limited storage space, while ShareLatex limited on the amount of
collaborators. However we found that ShareLatex’s stack was open source, with in-depth
documentation on how to set it up locally. Because of that we chose ShareLatex, and set
up the stack on Aleksander’s server.

Only later did we find that NTNU has a premium subscription for ShareLatex, and
never actually needed to set up the stack on our own. Since we had already set it up
however we decided to run with the self-hosted stack. The self-hosted stack does not
provide the kind of assured redundant storage that the ShareLatex site provides, but
Aleksander has some reasonable redundancy and backup set up, and with us regularly
downloading the full source for additional separate backup, we reasoned it was more
than safe enough for us. As a bonus, the private server likely provides us with far more
processing power for faster compilation than the hosting sites provide.

Graph Package

As was one of our initial learning objectives described in Section 1.3, we wished to find
an existing third-party package to create and display the graphs. It would have to be
reasonably lightweight, provide good looking graphs, and have indications of fair activity
and update schedule. Given these rather generic requirements, we discovered several
packages which we started comparing. While there were good alternatives, based on our
requirements we decided upon the Angular Chart package [15].

Angular Chart provides reactive graphs, meaning that it updates automatically if the
input data is changed. We find it simple to implement and use, it is very lightweight, and
it has a reasonably active update schedule. It is used on the status page containing the
heap map, and twice on the overview page for the two graphs showing heat and number
of exceptions.

Time Tracking

For tracking time spent we started out manually tracking our time spent on the project
in a spreadsheet. This worked out reasonably well, and we have seen many other previ-
ous groups have done this. When the course Professional Programming started we were
recommended to use a proper tracking tool, like Toggl. Toggl was recommended and it
seemed quite good during our brief preliminary testing, and as such we moved all our
tracked time to Toggl in mid-January and used it from there on. All the time logs can be
seen in Appendix G.2.

There are some not entirely insignificant differences in how each team member tracked
time spent. While Vegard and Olafur incorporated or tracked time spent for eating or
other non-project activities, mostly as ‘no project’ or ‘other’, Aleksander skipped tracking
such activities, and Lars tracked only time explicitly spent on specific issues in the issue
tracker. This causes some noticeable differences in total time tracked, though it should
be noted that all team members have spent approximately the same amount of time
working on the project.

53

HEEE - Handler for Exceptionally Exceptional Exceptions

The differences in time tracking mainly stems from different types of work and the
practicality of separating out tracked tasks. For instance, report-work does not use the
issue tracking that development does, making it less practical to track it in regards to
issues, or any similar handle.

Also note that the time logged is somewhat incomplete because work with the thesis
presentation and potential deployment-related work for Innit takes place after thesis
delivery. It is uncertain how much this will amount to, but it will likely be in the proximity
of 200 hours in total for the team.

6.2 Data Model Development

This section will be describing how the data model described in Section 4.6 came to be. It
was a long and far more dynamic process than we expected. We had from earlier courses
been instructed to – as far as possible – understand the data that would be required and
design a data model for it during the initial stages of a project. Of course we have had
mishaps in former projects that have required updates to the data model, but none of it
had led us to anticipate the scale of changes the data model would undergo during the
projects development phase. While the data model seen in Figure 15 is a little expansive
for a relatively small project, it originally consisted of the exceptions, exception_types,
installations, applications, and syslog tables. Note though that we did not entirely expect
the data model to stay fixed; we knew some kind of severity rating and perhaps some
storage of historic heat would be necessary. However going from five to eleven tables
was in the least an unexpected result, though looking back it was arguably inevitable.

The first addition was the severity_table in mid-February, containing the severity rat-
ing of each exception type. This was a employer wish in order to sort by severity. In
addition it was necessary for calculating the heat from each application or installation,
for the front-page overview graphs and heat map.

The second and far larger addition was after the demonstration of the system in early
March. Requirements of how severity is set and stored changed a fair bit to the side of
significant rework and additional work was required. We initially got the impression that
severity was a simple value based on which type of exception it was, expanded to making
heat value be a product of two separate severity values, where the first is a severity value
for each exception type for each application, and the second is a far more dynamically
set severity value based on the exception context, i.e. where in the application code it
occurred. For additional discussion of how the heat and severity values are handled, see
Section 5.5. This addition thus required – after quite a lot of group discussion of how
to do it – the exception_context, current_heat, historic_heat, settings_changes and the
original_objects tables which were all added over the course of two weeks.

The three-way relation necessary between exception_types, applications, and the re-
cently created severity_ratings tables proved to be a large issue, as our ORM Eloquent
does not support three-way relations, and it was stated by the author that such support
will not be implemented. To circumvent this issue a solution that only partially used Elo-
quent functionality had to be improvised, where the remainder of the query used raw
SQL-statements. For instance the relation could not be set up using Eloquent, and de-
manded some less than ideal solutions, since querying the relation cannot be done too
well with the standard Eloquent query-builder.

54

HEEE - Handler for Exceptionally Exceptional Exceptions

Amongst the details discussed with Innit was whether an application should be able to
have different states, i.e. development, testing and production. Innit greatly wanted this,
and in order to enforce the difference we had to implement composite/partial primary
keys for the table in question. However Eloquent does not support composite keys out-
of-the-box [16], causing some further issues with setting up the table with the composite
keys, and querying them properly. We were thus left with three options; create unique
keys for the pairs of keys in relation tables, extend the Eloquent framework ourselves to
support composite keys, or scrap Eloquent altogether.

Because scrapping Eloquent at this point would be quite problematic, requiring quite
a lot of rework of our database interaction, in addition to Eloquent being the default ORM
and almost built into Laravel, the option was never really considered a real alternative.
Extending Eloquent ourselves or, more likely, adding code that had already been devel-
oped by others that have had the same issues with Eloquent, was a considerably better
alternative, though at the time it seemed as creating unique keys for each of the pairs of
keys would require the least work, or in the least break the lest amount of functionality
that would be hard to fix.

With the knowledge of experience, in retrospect extending Eloquent seems it would
have been the best option. Creating unique keys seemed simple and the least error-
prone, but it proved not to be so simple, since an internal MySQL-/MariaDB-limit on key
prefix length limits the length of unique keys to 767 bytes, or 255 characters (a limit
in InnoDB). The exception contexts table required unique keys, but because one of the
columns that was to be used was set to a maximum of 2048 characters, we could not set
it unique. In the end we decided to reduce the column to 255 characters, and accept any
potential issues it could create. Thus if a system submits an exception report with a file
path longer than 255 characters, it will cut off at 255 and potentially not be unique. If
this happens we might be forced to abandon the unique check for this table altogether.
Cutting off like that is naturally not an ideal solution, as cutting off the remainder of a
path in itself can cause it to be equal to another entry’s path, and thus fail the unique
requirement. See Section 8.3.2 for additional thoughts on the matter.

6.3 Issues and Bugs Encountered

6.3.1 Front-end

Static Data Storage

During the project’s initial stages, it seemed like a good idea to store much of the static
data, such as exception types and application names in the browser’s local storage. Saving
data we rely to be up-to-date on the initial page load, however seems like a questionable
solution in hindsight. Since every exception the system receives can be from a new system
or be of a new type, storing these definitions hold no real benefit. The intention was to
reduce the amount of requests sent to the back-end by avoiding asking for data that had
already been retrieved. Despite the good intentions, keeping the data up-to-date proved
to be nothing but unnecessary overhead. The locally stored data can never be trusted to
be up-to-date, so every new exception has to check if the data required is available, and
request it if necessary. Since those parts of the data will likely always be cached in server
memory, the only savings would be a tiny – on the order of a few kilobytes at most –
every minute or so.

55

HEEE - Handler for Exceptionally Exceptional Exceptions

Usually these issues are easily circumvented by simply checking and/or retrieving any
data that has arrived since the last check/retrieval. However we found during testing
that the checking would not reduce the data transfer significantly enough to warrant the
increase in code complexity. In fact we found retrieving such static data every time to be
the simplest solution, causing the least amount of delay for the user.

Editing Severity Ratings

One of the features the employer wanted was a the ability to edit the severity values of
both exception contexts and exception types through the front-end. An issue that sur-
faced here – and is mentioned in the Heat-Section 5.5 – is how to handle other front-end
users when a value has been updated, in particular because the system is stateless. The
obvious fix is making the front-end poll the back-end continuously for any changes to
severity values. Exactly how to handle such polling however was not without its discus-
sions, as checking each and every timestamp on the severity ratings entries would have
been far more work for the database than we deemed acceptable. Thus we avoided the
issue by having an entirely new database table, the settings_changes table, whose single
purpose is to contain the latest timestamp for when any severity rating has been changed,
see Section 4.6. Creating single tables for such a use case is generally frowned upon, but
we could come up with no solution that would be as fast and simple, while not requiring
significant changes to the data model.

The front-end polls the back-end continuously, and whenever a client recognises that
its data is outdated, it prompts the user to refresh the page. This refresh is also done
automatically if no response is given within 30 seconds, for instances of the front-end
such as the TV overview screen mentioned in the Project Description in Section 1.2. The
user can cancel a refresh and even disable the polling feature completely for the duration
of the session, if working with out-of-date data is acceptable.

Front-end Graph Data Format

Formatting the statistical data from the back-end into a format that the third party
graph package demands required a large amount of highly complex code. In fact, the
grapher.controller-file that contained the logic for converting the graph data into the cor-
rect format was by far the largest file in the project based on lines of code. It was also
contained an unreasonable amount of the most complex code. This reformatting is also
mentioned in Appendix E.1.1

Upon reaching the stage of feature completion at the end of April, the graph controller
underwent thorough consideration about how it could be improved. We realised that the
complexity of the controller was in large part due to several differing formats on the
returned data from the back-end, much of which required its own very similar code to
handle.

To exemplify, combinations of application and exception type statistics we needed to
display.

• Selected exception types for one application
• Selected exception types for two or more applications
• Selected exception types for all applications
• One exception type for all applications

56

HEEE - Handler for Exceptionally Exceptional Exceptions

• All exception types for one application

While some may seem overlapping, they had to be handled differently because they
were to display the data in different ways; e.g. aggregated number of exceptions per
selected application, or number of exceptions per selected application and exception
type combination. While it did not give risky edge cases, the different cases were just
different enough that the code could not be generalised and combined without making
it completely unmaintainable.

After some debate in the team, we found that the logic could be significantly simplified
by having the back-end serve the data in a manner consistent with how the graph package
requires the data.

To interject, this kind of adhering to a package’s required format is generally grossly
frowned upon as it potentially introduces major coupling between the back-end and
the front-end, something both Innit and we wished to avoid. However, in this case we
deemed it worth the partial coupling because of the greatly simplified code and increased
maintainability.

We added a /graph main route for retrieving the graph data. See Section 5.3 for more
information on the API. The functionality was separated out as the dedicated /graph-
route in order to reduce the coupling to a minimum, and because we did not have time to
change all the formats in all the routes. This also gave us the opportunity to test whether
such a unified format would actually work without breaking large parts of the front-end
relying on the current API. We found that having a unified format – while not the most
practical format in all situations – in total would prove beneficial, and we would have
changed all routes to use the same format given sufficient time, thus avoiding coupling
altogether.

The change is thus not only negative due to introducing coupling between the sys-
tems, but is arguably positive as a proof-of-concept ready for a potential later change that
would be beneficial to the whole system, regardless of the graph package.

As concrete benefits the graph.controller-file and related logic in other files was shrunk
by far in excess of a thousand lines of code, much of which was the most complicated
and difficult to maintain in the entire front-end, and replaced with simple back-end API
calls. The back-end did have a significant increase in lines of code, in the order of 600
lines of code, though far less than the decrease in the front-end. The added code in the
back-end is also far less complex since the routes are completely separated from each
other, and most of the added code are merely handling of edge cases.

Added benefits of this change includes a noticeably shorter delay for the user in dis-
playing the graph, though we do not have exact numbers on this. Creating the format
on the back-end when it is first retrieved is far more efficient than first retrieving it on
the back-end, then going through code with a processing time scaling of O2 or O3 –
depending on the data to show – in order to transform it to the graph format. While the
amount of data was small and is likely to stay that way, thus not being important that
the transformation scaled so poorly, it was still fully avoidable and preferable to do so.

Figure 32 shows the format of the /graph main route. Note that in any one response
it will only have either ‘application’, ‘exceptiontype’, ‘mixed’ or ‘total’ on the second level
in the response-array, not mixed in as they are in the figure. We have simply added them

57

HEEE - Handler for Exceptionally Exceptional Exceptions

{
"graphs": {

"application": {
"url": "application\/{id}",
"description": "Gives graph data for a single
application. Exception type IDs must be supplied."

},
"exceptiontype": {

"url": "exceptiontype\/{id}",
"description": "Gives graph data for a single
application. Exception type IDs must be supplied."

},
"mixed": {

"url": "mixed\/",
"description": "Gives graph data for mixed types.
Exception type IDs and Application IDs must be supplied."

},
"total": {

"url": "total\/",
"description": "Gives graph data for all exceptions
(Total). Given as a single data entry"

}
}

}

Figure 32: Format the /graph route returns.

together in order to show what data it can contain. Figure 33 shows the format with a
single type of data, as the response looks like in reality.

6.3.2 Back-end

Heat Degradation Trigger

While working on the heat degradation functionality in the database mentioned in Sec-
tion 5.5.1, we encountered an issue with the heat degradation trigger. It was set to run
every minute, passing over every record in the current_heat table. This event in turn
would fire off a procedure that degraded the heat in each record, with the degradation
based on how long it had been since the last degradation event for that record – we rea-
soned we had to check time since last degradation, since concurrent events could cause
a table to be locked, making a degradation event late.

As we tested the main event procedure, we kept getting a result where the database
said the rows were affected – aka. a successful operation – but the table was left in a
state where one could not update any values. Debugging the issue took several hours
before we found the cause of the issue. Because we expected internal loops to have their
own local scope, an iterator name was reused. However we found that the variables were
all in a global scope, where the iterator would be reset to 0 each time the internal loop
degraded a single record in current_heat table, whereas the outer loop would never reach
the end, and thus remain in an undefined state when all the entries had been passed over.
Giving the internal iterator another name fixed the issue.

58

HEEE - Handler for Exceptionally Exceptional Exceptions

{
"graphs": {

"application": {
"url": "application\/{id}",
"description": "Gives graph data for a single
application. Exception type IDs must be supplied."

},
"application": {

"url": "application\/{id}",
"description": "Gives graph data for a single
application. Exception type IDs must be supplied."

},
"application": {

"url": "application\/{id}",
"description": "Gives graph data for a single
application. Exception type IDs must be supplied."

}
}

}

Figure 33: Format the /graph route returns for applications.

Note that because the typical amount of exceptions incoming per day turned out to
be far lower than we initially planned for, degradation was later changed to every half
hour making a few seconds margin of error was fully acceptable, in turn allowing us to
remove the checking of the number of seconds since last degradation.

6.4 Working with Live Data

Our system have been receiving live data from Innit since late March, and this bears
with it the potential for receiving potentially sensitive person and business data. This
was noted as a risk in the project plan, see Appendix 9, and to alleviate this risk we
decided early together with the employer that we would not build the system with all
the requirements for handling personal data. Despite this, we did assume it could happen
and set all reporting traffic to only go over HTTPS. This turned out to be a reasonable
assumption, as we several times throughout the spring received sensitive data.

The issue lies in that the data we received was live production data, exceptions gen-
erated by real world users and potentially containing confidential or otherwise sensitive
data. Because of this, the first order of business for Olafur and Aleksander every day, in-
cluding weekends, was to manually check all exception reports that had arrived the past
24 hours and look for data like social security numbers, passwords, uniquely identifying
information such as full addresses and phone numbers, and other similar types of data.
If we found them, we would write them down, purge the database, and notify Innit,
sending them the data so they could find where it originated and modify their reporting
module to remove such data before sending the exception reports.

Receiving real world data has been a great tool during development for testing our
solutions, and asserting full real world functionality of all system features. However it
also did cost us some time in finding, logging and reporting all such potential pieces

59

HEEE - Handler for Exceptionally Exceptional Exceptions

of data. In addition, every time we received anything highly sensitive, like social secu-
rity numbers, we purged the back-end’s database. This was somewhat impractical as in
particular testing the graphing functionality often required several days worth of data
to fully test. The full purging was because the API was publicly available – though not
searchable by search engines – since receiving live data required that Innit had access to
the API in order to POST data, and the API was without any authentication.

Note that authentication was never a part of the requirements, as this will not be an
issue when the system is fully deployed at Innit’s offices, inside their local network, thus
with no external access to the system.

60

HEEE - Handler for Exceptionally Exceptional Exceptions

7 Testing and Quality Assurance

7.1 Code Review

From the first stages we have had a strict rule that all committed code must be reviewed
by another team member. This has been implemented through always working on a
repository branch instead of master, and that a pull request into master must be reviewed
and accepted by at least one other team member.

Naturally the size of the pull request somewhat limits how strict the rule is. Often we
have been fine with a single other team member reviewing the code, with the precondi-
tion that all unit tests and linting passed without issues.

We have also had some unofficial norms on the size of the pull requests in order to
make reviewing them simpler; it was expected that one attempted to limit the size of
each pull request to a maximum of a few hundred lines. This was on large part because
Bitbucket did not have code highlighting in the pull request view, making reading larger
amounts of code quite taxing. Of course avoiding large pull requests was not always
possible, and there were at several occasions requests of up to a thousand lines of code.
The most important was however to keep commits at a reasonable size, preferably not
more than 200 lines of code per commit. Most commits were far smaller than this, since
as a general rule a commit should only cover a single issue.

Limiting the size in this way, and having strict rules on code review helped ascertain
that committed code was sufficiently following our rules and guidelines for code struc-
ture and readability, see Section 4.2 about coding standards. There were often comments
added on pull requests that certain parts should be clarified with more or better com-
ments, and some parts should be restructured somewhat. Pull requests were therefore
declined on a reasonably regular basis, an action often considered to be an important
hallmark of whether such code review rules actually work and are accepted by the team.

7.2 Unit Testing Tools

7.2.1 Front-end

Thanks to AngularJS’ focus on testability, writing unit tests for the front-end application
was made relatively easy through the use of Jasmine and Karma, which work well with
AngularJS and has a lot of official documentation available.

Karma is a task runner for tests, much like how Gulp is a general task runner; it
sets up a temporary web server and runs all the Jasmine tests. Jasmine is a ‘Behavior
Driven Development’ testing framework for Javascript which does not rely on browsers.
Jasmine sets up and mocks the environments that are required for each test, and then
runs through the testing code, see Section 7.2.1 for how mocking dependencies is done.
One simply describe an easily readable condition for software – i.e. what values and
formats to expect, not ‘it should look like this’ –, a function to run, and what Jasmine
should expect.

Having automated tasks run the tests make unit testing an semi-automatic feature of

61

HEEE - Handler for Exceptionally Exceptional Exceptions

Fi
gu

re
34

:S
cr

ee
ns

ho
t

of
th

e
K

ar
m

a
co

ve
ra

ge
da

sh
bo

ar
d

fr
om

M
ar

ch
,m

id
-w

ay
in

de
ve

lo
pm

en
t.

Ea
ch

ro
w

is
a

m
od

ul
e

in
th

e
fr

on
t-

en
d.

62

HEEE - Handler for Exceptionally Exceptional Exceptions

the setup. For instance, each time we run Gulp for setting up the web server it runs the
unit tests, and also does linting of the code using JShint and JSCS, to spot inconsistencies
and errors. The most common way to run the tests is simply using ‘gulp test’. We could
have the unit tests run automatically whenever the code is updated or the file is saved,
but because the unit tests takes some time to complete, we have opted not to do that.
In addition fully automatic testing tended to be a nuisance during development. Hence
we manually run the unit tests through Gulp, though it is recommended to do so quite
often.

Jasmine and Karma also provides us with excellent coverage reports, thorough code
examination, detailed code review and complexity reports, as seen in Figure 34. The
figure shows an example of the resulting Karma dashboard after all the tests have been
run. The first row is a high level overview of the test coverage of the entire system, i.e.
the /app root folder. All the rows after that are a breakdown of the test coverage per
folder – effectively being per module, as a folder in AngularJS most often is equivalent to
a module – showing percentage of statements, conditional branches, functions and lines
of code that are covered by tests.

In addition we have Plato, which is a static code analysis tool that provides linting,
along with statistics about lines of code, complexity and maintainability values, and es-
timates of errors in the code. If run often it also gives a good historic record of the
development and changes in e.g. complexity, maintainability and estimated errors.

Front-end Mocking

As is typical in unit tests, every module in the front-end is set up individually and all the
functions are tested in isolation. When setting up the environment for the module, the
module will assume that all the other parts of the program has been created and will
be available for use. These other parts have to be mocked to make the testing environ-
ment robust and completely reproducible; all the dependencies are replaced with static
mocked objects which offer the same functionality the module or function being tested
expects is available.

For instance the factory that handles exceptions expects that a service is available for
requesting exception data from the back-end. The code in Figure 35 is a sample of how
such a mocked service is created with the functionality expected, and injected into the
exceptionFactory. The real service’s functions are also tested, but in their own separate
unit tests.

In Figure 35 the mocked service is created with two functions, search and getExcep-
tionTypes. When one of the tests run code that asks the service for one of these functions,
instead of requesting data from the back-end, the mocked object simply returns static
data. AngularJS handles the details of how this is handled, but essentially the factory
uses dependency injection to get whatever dependencies it needs, which makes it easy
to just give it a fake dependency. The function being tested remains blissfully ignorant
of where the dependencies came from and how they are implemented, as long as they
provide the functionality the function requires.

Since AngularJS is built with dependency injection and mocking in mind, there are
libraries available for mocking typical cases such as HTTP-calls, for when we are test-
ing the services themselves. The HTTP-mocking module hijacks all HTTP-requests and

63

HEEE - Handler for Exceptionally Exceptional Exceptions

module(’H3E.exceptionFactory’, function($provide) {
exceptionService = {

getExceptionTypes: function() {
var q = $q.defer();
q.resolve([

{id: 1, name: ’type 1’},
{id: 2, name: ’type 2’},
{id: 3, name: ’type 3’}

]);
return q.promise;

},
search: function() {

var q = $q.defer();
q.resolve([

{id: 1, exception_type_id: 1},
{id: 2, exception_type_id: 3}

]);
return q.promise;

}
};

$provide.value(’exceptionService’, exceptionService);
});

Figure 35: Sample code for mocking a service

returns a static set of data, just like the regular mocking of objects.

7.2.2 Back-end

Laravel is shipped with and configured for using PHPUnit as the default system for run-
ning unit tests. Unlike the elaborate set up on the front-end with several different tools
and automation, the back-end stayed so small and simple that we initially intended to
have the tests run automatically quite often. However, because we run the unit tests
in total isolation, all the local database tables are set up and inserted data into before
each single test, and then dropped again after each test. This makes unit testing in the
back-end a rather slow endeavour, typically taking a minute each time.

While developing we also run the code continuously against the local database, testing
that it affects the tables correctly. If the unit tests were run continuously, they would have
to drop and re-create the tables for each test to avoid duplicate unique keys, and this
would greatly interfere with the manual testing while developing.

For these two reasons in particular – that the unit tests are slow, and manual testing
while developing – we opted not to have unit tests run automatically on the back-end.

7.3 Static Analysis

As mentioned in Section 7.2 we used Sonar and SonarQube for static analysis of the
code base – both front-end and back-end – due to former experience using the tools, and
knowing they are quite useful and reliable. For the back-end, Sonar was coupled with
the Xdebug PHPUnit module for code review.

64

HEEE - Handler for Exceptionally Exceptional Exceptions

Sonar was hosted on Aleksander’s server, where we pulled down all code pushed to
the respective master branches, and both run the code through analysis and deploy the
system for integration testing, see Section 7.4.

Figure 36: Screenshot of the Sonar results after an analysis

Figure 36 displays the Sonar Dashboard’s main overview of the back-end, with the
most important pieces of information. However, since Laravel is not directly supported
in Sonar, there is an error causing it to show that no tests has been run in the second
column from the left; the line ‘Unit Test Success’ and the line below it. Equal to how
Karma shows the test coverage on the front-end in Figure 34, the Sonar dashboard shows
test coverage of the back-end in the leftmost column, along with the number of files,
functions and lines of code in the second column from the left.

The rightmost column shows the estimated percentage of technical debt – code that
should be cleaned up and generalised – along with an estimate of how much time it
would take to clean up all the technical debt, and a graph of the technical debt over
time. It should be mentioned that the technical debt estimated time is far from accurate
on a small scale, and we have earlier found it to be off by several hundred percent in
either direction. However on the large scale it might be a good approximation, assuming
the very wrong estimations at least partially cancel each other out.

At the top of the third line from the left, the percentage of code that has been du-
plicated and potentially can be merged and generalised is shown. The perhaps most
important part of Sonar are the five indicators below that; the amount of each type of
issue displayed in descending order of importance. Clicking on the number brings one to
another display where one can browse the reason for every issue, their exact position in
the code, and often a suggested way to fix the issue.

Figure 37 shows how the issue overview looks. Since there are no blockers, critical or
major issues, it is set to display minor issues, containing issues such as code not following
coding conventions. Each pink line is an issue containing some information about it.
When one clicks on one of them, a larger window appears as seen in the bottom of the
screenshot, containing reason for marking the issue, more information about it, and often
some information or suggestion as to how it can be solved.

Note that some issues in Figure 37 are in the Laravel files, not our files. For instance,
the app/Console/Commands/Inspire.php and the app/Console/Kernel.php files are Lar-
avel’s own files. Thus the default Laravel files does impact our issue rating somewhat
since we had not at the time excluded all the default files, but the impact was not very
large.

65

HEEE - Handler for Exceptionally Exceptional Exceptions

Fi
gu

re
37

:S
cr

ee
ns

ho
t

of
So

na
r’s

is
su

e
ov

er
vi

ew

66

HEEE - Handler for Exceptionally Exceptional Exceptions

7.4 Integration Testing

During the development we set up an external system which we used for system and
deployment testing for testing our system. This was a self-hosted solution hosting a func-
tional front – and back-end on Aleksander’s private home server. The server were config-
ured to automatically pull/fetch any updates merged into the the git repositories’ respec-
tive master branches, and the setup is deployed automatically but the testing/feature-run
is done manually.

The solution was used by Innit to test-run their newly re-designed exception modules,
and already in late February we started receiving exception reports from their reporting
modules. The test-system was set up with HTTPS as the information reported could be
of a compromising factor. This proved to be worth it, since we several times received
usernames and passwords together, national identification numbers, full names, date of
birth, address, e-mails, and more.

We also received an enterprise grade level L2/L3 switch from Innit which supported
syslog, that Aleksander used and incorporated into his local network to retrieve the syslog
formats used and test the syslog-related functionality of our solution.

Upon actual deployment of the system, our own ‘HEEE’ infrastructure will be disman-
tled and deleted. Everything will be hosted locally at Innit’s offices, on their local network
behind their firewall, and thus requiring less strict security. Thus the added security cur-
rently implemented will not be necessary once the system is finished and deployed.

7.5 Performance

Creating a lightweight back-end which potentially has to serve thousands of requests in
parallel – it is highly unlikely to reach those numbers, but we have to assume it can
happen – without noticeable service degradation is both important and quite difficult. In
order to test as close to real-world performance as we could we chose to use the popular
tool iperf. It is a specialised network performance testing tool, capable of generating a
large amount of requests to web servers in order to ascertain their performance, scal-
ability and how well the service degrades under massive load. Our with iperf testing
revealed that the back-end can quite easily handle 10 000 queries per second, given that
the bandwidth is not a bottleneck.

In addition we ran Google’s PageSpeed analysis, which uncovered that Gzip was not
enabled – despite us believing it was – and could, if enabled, save approximately 80%
of bandwidth usage between the back-end and any software using the API. Potentially
enabling such compression could negatively affect the back-end’s performance, and since
the front-ends can be quite a lot weaker, the decompression could be noticeable. However
after enabling Gzip we did not notice any increase in server CPU usage or I/O, other than
the fact that the amount of data sent and received was significantly smaller. In fact the
performance hit was so small as to be unmeasurable within the margin of error. Thus
Gzip will be enabled by default in the back-end.

We tested our infrastructure using a VM on Aleksander’s server, which has a maximum
network bandwidth of 100 Mbit downstream and 10 Mbit upstream. This is respectively
one and two magnitudes lower than the server on which the back-end will be hosted
when in use, which has a 1000/1000 local connection at Innit’s premises. Since we had a

67

HEEE - Handler for Exceptionally Exceptional Exceptions

limited uplink in the testing environment we needed to make an efficient back-end from
the start that was able to receive exception reports from Innit while we were developing
and running tests.

The VM was allocated 4 vCPU and 2GB of RAM plus a 100GB vDisk running the
operating system Xbuntu 14.04 LTS (Ubuntu with XFCE). We tested first placing the
DB and OS on a current generation SSD which gave us expected high results when we
queried the DB continuously. Later on we tested the system by storing it on a regular
hard drive, which has much slower IOPS than a SSD. This worked out quite well, even
when the database was hammered with queries.

Considering that the back-end will be only used for in-house purposes, and based on
those results, Innit should have no performance issues in their local environment within
two magnitudes of the anticipated usage pattern.

Heat Recalculation Performance

One potential performance bottleneck is the case where several days of heat recalculation
had to be done when a severity rating was changed. We had to consider this carefully,
both how to retrieve the data for the recalculation and how to do the computation itself.
However after a short back-of-the-envelope calculation in Section 5.5.2, we realise this
calculation will not be anywhere near the bottleneck we feared it could be.

Since the heat recalculation has been put on indefinite hold, any concerns about heat
recalculation performance issues are no longer as important.

7.6 Demonstrations

Per the original schedule we were going to have three demonstrations of the system as
it neared completion: early march, late march, and a final full system demonstration
and acceptance test in late April. Due to our unexpectedly fast development pace we
had a full-system demonstration already on March 7th, which also served as an early
acceptance test of the features and design. Neither the front-end or back-end were com-
plete, and not all features were ready to use yet, but most was completed sufficiently
that the design theme and layout, data retrieval, much of the processing, and all major
architectural decisions had already been completed.

We found the demo in total to be quite beneficial to us, as we in the weeks before had
less communication with the employer than usual due to heavy workload on their side,
and thus had made some design decisions we could not be entirely certain the employer
would like. In addition the employer had not seen prototypes earlier that were anywhere
near as complete, and they could have decided we had went off in the wrong direction.
However all our worries were rendered moot as he employer was greatly satisfied with
what we had done at the time. We got some very good feedback for improvements,
in addition to some requested changes to the heat map / severity requirements which
required a bit of rework.

We also had a meeting in late April to showcase our near final product. They were
very satisfied with out work and was amazed at how well the application had formed.
We received several pointers on some small graphical improvements they would like so
we could improve it further design-wise before the deadline.

The last demonstration was done over a Skype conference call May 13th before fi-

68

HEEE - Handler for Exceptionally Exceptional Exceptions

nal delivery in May, where we showcased the ultimately final product to them with the
proposed changes from our last meeting in late April.

7.7 GUI Feedback Demonstration

As with most projects that have a GUI, it is both useful and often necessary to get a
third-party to review the design decisions. Because our team consists of only developers
having little knowledge and experience with user interaction and UI design, we took the
opportunity that arise from working at a university campus; to have an expert in the field
of UX- and UI-design, assistant professor Eivind Arnstein Johansen, review our system.

In mid-April we had a meeting, using him as an complete outsider with no previous
knowledge of the project and thus completely lacking any bias towards our design deci-
sion. We were rather surprised and satisfied that he had nothing in particular to note on
the overall setup and design, which using the Bootstrap-framework – see Section 4.1 –
used responsive design and was generally mobile-ready at the time. In addition to this
we received valuable input on details we had overlooked, such as how to make the lists
more readable, colour usage and colour contrast, size and spacing of elements, and other
such small but very important details. As an added bonus he gave some tips regarding
what content we could add on the application overview site, a page that had been mostly
empty at the time.

69

HEEE - Handler for Exceptionally Exceptional Exceptions

8 Discussion

8.1 Target Achievements

8.1.1 Achieved Learning Objectives

A central objective for our team is whether we have fulfilled the learning objectives stated
in Section 1.3, and how we have incorporated the fields of study described in Section 1.5
into our work.

Foremost bears mentioning the frameworks we have used; while the division of work-
load have significantly affected how fluent each team members can be said to be in each
of the frameworks, we consider this objective fulfilled. Olafur has had the main respon-
sibility for the back-end development and thus Laravel, and Lars has had the main re-
sponsibility for the front-end and thus AngularJS. Despite the responsibilities, all four
team members have gained notable insight and experience with the frameworks, both
with general development and in a professional development situation. Similarly all team
members have gained significant experience with the Kanban development methodology,
described in Section 2.1, and the use of professional development tools such as: JIRA, de-
scribed in Section 2.2 and Section 6.1, Confluence, described in Section 6.1, task runners,
described in Section 6.1, and code analysis tools described in Section 7.2 and Section 7.3.

Integration of a third-party tool for graphical representation has been fulfilled through
the integration of a Javascript graph package, see Section 6.1. A module-based system
has been achieved on the front-end through the module structure that is built into Angu-
larJS, where the file and folder structure represents both modules and in large part their
dependencies. On the back-end it has been achieved through how main routes are sepa-
rated as an inherent side effect of the RESTful API-structure. Using a operations defined
standard has been done by using the IEEE-defined syslog-standard, see Section 4.5.

Working for an commercial employer to create a product to be used in an commercial
setting has been a major learning experience for the team. While the employer took care
to support the development as an academic project, we have gained valuable insight from
having worked in the intersection of academic and commercial settings. In particular the
team had to develop the entire system and handle live data in a professional manner,
where the live data could potentially contain sensitive person- and business information,
see Section 6.4.

Through achieving these learning objectives, we have visited and developed our un-
derstanding of the designated fields of study, see Section 1.5. RESTful API-design has
been used to great extent in the back-end’s API, and both the front-end and the back-
end have been structured in large part from the stateless RESTful design. We have also
through incorporating RESTful design into our patterns of thought, gained noticeable
benefits in areas such as how to simplify object interfaces and manage modularisation in
a system. As the database design not only was designed initially but had to change greatly
throughout the development, we have gained far deeper understanding in relational
database design and implementation. Similarly, while we only had academic knowledge

70

HEEE - Handler for Exceptionally Exceptional Exceptions

of ORM-tools formerly, using Eloquent for database communication have changed this
academic knowledge to personal experience. In particular having to circumvent issues
and limitations of Eloquent and some SQL-query issues, gave benefits in deeper under-
standing of relational databases and ORM-tools in general.

The only field of study we have not achieved much further knowledge in is developing
for Debian. Developing in high-level languages, the only considerations for the platform
has been which supporting software tools to choose, e.g. Rsyslog described in Section 4.5.

8.1.2 Achieved Task Objectives

Where previous courses have always focused on a particular part of the software devel-
opment life cycle, we have through this project gained experience in project management
and most of the software development life cycle. From the project inception and aggre-
gating requirements to system hand-off, we have had to handle on our own any issues
occurring, in the process gaining understanding of how such problems occur and how to
prepare for and avoid them. Systematic and professional software development can be
taught, but it arguably cannot be properly understood without the first-person experience
of such a project.

As a thesis project we not only had to develop the system, but also learn to and han-
dle professional and, to a certain degree, scientific tasks such as proper documentation of
process and product, self-reflection upon ones personal work, and seeking criticism with
the purpose of self-improvement and improving the project. In the case of heat genera-
tion and degradation, we experimented and documented our results in-depth, see Sec-
tion 5.5.1. In addition, working with live data potentially containing sensitive personal-
and business information demanded rigorous scientific ethics in regards to our handling
and proper removal of such data, and notifying the employer for them to improve their
reporting routine, see Section 6.4.

8.1.3 Achieved Product Objectives

With the project description in Section 1.2 in mind, we have completed all the main fea-
tures, arguably in excess. Receiving, parsing and storing reports in a suitable data model,
being the main back-end feature, was in large part completed in late March and has
functioned with live data ever since. The main front-end feature were the heat map and
the graph pieces, and as its completed design and functionality is thoroughly described
in Section 5.1.

The initial expectations and requirements of the employer were relatively low as they
originally intended a far smaller and less thoroughly designed product. For this reason
they added suggestions on extendable features. As the employer later noted in the first
demo meeting, the product we had created far exceeded their expectations; the main
features were far more well designed and thought through than they anticipated.

Despite so thorough a focus on the main features, we achieved to implement an addi-
tional feature; the monthly report feature, which also concluded with an increased scope
and was integrated into the front-end. The syslog-functionality too was merely an af-
terthought, and assumed to be so small that it was not set up as a main feature, though
added as a product objective, while in reality it received a good amount of consideration
and development time.

71

HEEE - Handler for Exceptionally Exceptional Exceptions

We are unfortunately not able to definitely state that the purposes described in Sec-
tion 1.2.1 are fulfilled before the system is fully deployed and integrated into Innit’s work
process. However the fact that it has worked very well in testing since Innit started send-
ing live data in early March is a notable achievement in its own, and bodes well for full
deployment.

8.2 Team and Process Discussion

8.2.1 Division of Workload

The intended roles and areas of work are listed in Section 1.6. The workload on the
front-end proved to be higher than expected causing Lars to work full-time on it from
the start. Aleksander started out with infrastructure, tools and some development on
both back-end and front-end, but later switched to a majority of front-end development.
Olafur did some ad hoc work on the front-end later in the spring, but generally kept
to the back-end throughout the entire project. He also had to struggle with some issues
regarding Eloquent and the database management, as some features which we required
were unsatisfactorily or not at all implemented, see Section 6.2. Vegard started out on the
back-end, but moved over to working almost full-time on the report, with some back-end
and database-related work, and some refactoring on the front-end.

Despite the assigned work, all team members got some hands-on experience with the
database design, back-end and front-end, as we always worked together on campus. By
working together, we often had group-wide discussions and ad hoc meetings regarding
general design and implementation issues we encountered, keeping all members up to
date on progress and knowledge about the tools and frameworks.

The team members’ skill sets very well complemented each other; we barely ever
had any situations where somebody did not have anything to do or had to wait for
others to complete their tasks before work could be continued. Due to the ability to
fluidly delegate work upon necessity, and that all team members were generally aware
what others were working on, the workload was split very evenly amongst the four team
members. In addition we prioritised working on the report from the project inception,
causing some reduction in available development resources, but left us with far more
time to improve and perfect the product when nearing delivery. The workload was very
difficult to ascertain before beginning development, though in total we found that the
roles were well assigned and stayed reasonably fixed.

8.2.2 Time Schedule Assessment

Here we will compare the initial time schedule we created during the project plan phase
with a resulting time schedule containing the time actually spent and the actual dates
for demos, both displayed as Gantt-diagrams; Figure 38 is the original estimate, and
Figure 39 is the resulting diagram of actual time spent and dates of completion.

During the pre-project phase there were initially some differences, namely the testing
and deciding on tools took a few days less than expected. Apart from that, the length of
time and dates are as we originally planned; the research and learning new frameworks
being an intermittent task we did when we had available time.

72

HEEE - Handler for Exceptionally Exceptional Exceptions

U
nt

itl
ed

 G
an

tt
Pr

oj
ec

t
04

-M
ay

-2
01

6

G
an

tt
C

ha
rt

4

...
...

...

20
15

20
16

W
ee

k
50

W
ee

k
51

W
ee

k
52

W
ee

k
53

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

W
ee

k
14

W
ee

k
15

W
ee

k
16

W
ee

k
17

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

07
/1

2/
15

14
/1

2/
15

21
/1

2/
15

28
/1

2/
15

04
/0

1/
16

11
/0

1/
16

18
/0

1/
16

25
/0

1/
16

01
/0

2/
16

08
/0

2/
16

15
/0

2/
16

22
/0

2/
16

29
/0

2/
16

07
/0

3/
16

14
/0

3/
16

21
/0

3/
16

28
/0

3/
16

04
/0

4/
16

11
/0

4/
16

18
/0

4/
16

25
/0

4/
16

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

S
ys

te
m

 f
ea

tu
re

 c
om

pl
et

e
S
ys

te
m

 d
el

iv
er

y
de

ad
lin

e
#

10
5

Pr
oj

ec
t

re
po

rt
 d

ea
dl

in
e

#
65

#
11

0
#

10
7

Pr
oj

ec
t

pr
es

en
ta

tio
n

#
68

Pr
oj

ec
t

pl
an

 d
el

iv
er

y
#

97
#

12
8

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

re
-p

ro
je

ct

 [
 0

4/
01

/1
6

-
21

/0
1/

16
]

 T

es
t

an
d

ch
oo

se
 t

oo
ls

 [
 0

4/
01

/1
6

-
22

/0
1/

16
]

 R

es
ea

rc
h

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 L

ar
av

el
/L

um
en

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 A

ng
ul

ar
JS

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

de
liv

er
y

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 S

ig
ne

d
pr

oj
ec

t
co

nt
ra

ct
 d

el
iv

er
y

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 W

ri
te

 p
ro

je
ct

 r
ep

or
t

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t
de

ad
lin

e

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

re
pa

re
 p

ro
je

ct
 p

re
se

nt
at

io
n

 [
 0

6/
06

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

1/
01

/1
6

-
19

/0
2/

16
]

 A

rc
hi

te
ct

ur
e

 [
 1

1/
01

/1
6

-
15

/0
1/

16
]

 R

ou
gh

 a
rc

hi
te

ct
ur

e

 [
 1

8/
01

/1
6

-
19

/0
2/

16
]

 D

et
ai

le
d

ar
ch

ite
ct

ur
e

 [
 2

2/
02

/1
6

-
22

/0
2/

16
]

 A

rc
hi

te
ct

ur
e

de
si

gn
 r

ea
dy

 f
or

 im
pl

em
en

ta
tio

n

 [
 2

1/
01

/1
6

-
17

/0
5/

16
]

 D

ev
el

op
m

en
t

 [
 2

1/
01

/1
6

-
29

/0
4/

16
]

 S

ys
te

m
 d

ev
el

op
m

en
t

 [
 0

3/
02

/1
6

-
03

/0
2/

16
]

 G

en
er

al
 A

PI
 s

pe
ci

fic
at

io
n

co
m

pl
et

ed

 [
 2

3/
02

/1
6

-
23

/0
2/

16
]

 D

et
ai

le
d

A
PI

 s
pe

ci
fic

at
io

n
co

m
pl

et
ed

 [
 2

3/
02

/1
6

-
23

/0
2/

16
]

 W

or
ki

ng
 b

ac
k-

en
d

re
le

as
ed

 f
or

 t
es

t

 [
 0

7/
03

/1
6

-
07

/0
3/

16
]

 W

or
ki

ng
 f

ro
nt

-e
nd

 d
em

on
st

ra
tio

n

 [
 1

8/
04

/1
6

-
18

/0
4/

16
]

 W

or
ki

ng
 f

ul
l s

ys
te

m
 d

em
on

st
ra

tio
n

 [
 2

9/
04

/1
6

-
29

/0
4/

16
]

 S

ys
te

m
 f

ea
tu

re
 c

om
pl

et
e

 [
 2

9/
04

/1
6

-
17

/0
5/

16
]

 D

eb
ug

gi
ng

 a
nd

 r
ef

in
em

en
t

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 S

ys
te

m
 d

el
iv

er
y

de
ad

lin
e

Fi
gu

re
38

:O
ri

gi
na

lG
an

tt
di

ag
ra

m
fr

om
th

e
pl

an
ni

ng
st

ag
e

73

HEEE - Handler for Exceptionally Exceptional Exceptions

U
nt

itl
ed

 G
an

tt
Pr

oj
ec

t
04

-M
ay

-2
01

6

G
an

tt
C

ha
rt

4

...
...

...

20
15

20
16

W
ee

k
50

W
ee

k
51

W
ee

k
52

W
ee

k
53

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

W
ee

k
14

W
ee

k
15

W
ee

k
16

W
ee

k
17

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

07
/1

2/
15

14
/1

2/
15

21
/1

2/
15

28
/1

2/
15

04
/0

1/
16

11
/0

1/
16

18
/0

1/
16

25
/0

1/
16

01
/0

2/
16

08
/0

2/
16

15
/0

2/
16

22
/0

2/
16

29
/0

2/
16

07
/0

3/
16

14
/0

3/
16

21
/0

3/
16

28
/0

3/
16

04
/0

4/
16

11
/0

4/
16

18
/0

4/
16

25
/0

4/
16

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

S
ys

te
m

 f
ea

tu
re

 c
om

pl
et

e
S
ys

te
m

 d
el

iv
er

y
de

ad
lin

e
#

10
5

Pr
oj

ec
t

re
po

rt
 d

ea
dl

in
e

#
65

#
11

0
#

10
7

Pr
oj

ec
t

pr
es

en
ta

tio
n

#
68

Pr
oj

ec
t

pl
an

 d
el

iv
er

y
#

97
#

12
8

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

re
-p

ro
je

ct

 [
 0

4/
01

/1
6

-
21

/0
1/

16
]

 T

es
t

an
d

ch
oo

se
 t

oo
ls

 [
 0

4/
01

/1
6

-
22

/0
1/

16
]

 R

es
ea

rc
h

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 L

ar
av

el
/L

um
en

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 A

ng
ul

ar
JS

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

de
liv

er
y

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 S

ig
ne

d
pr

oj
ec

t
co

nt
ra

ct
 d

el
iv

er
y

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 W

ri
te

 p
ro

je
ct

 r
ep

or
t

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t
de

ad
lin

e

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

re
pa

re
 p

ro
je

ct
 p

re
se

nt
at

io
n

 [
 0

6/
06

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

1/
01

/1
6

-
19

/0
2/

16
]

 A

rc
hi

te
ct

ur
e

 [
 1

1/
01

/1
6

-
15

/0
1/

16
]

 R

ou
gh

 a
rc

hi
te

ct
ur

e

 [
 1

8/
01

/1
6

-
19

/0
2/

16
]

 D

et
ai

le
d

ar
ch

ite
ct

ur
e

 [
 2

2/
02

/1
6

-
22

/0
2/

16
]

 A

rc
hi

te
ct

ur
e

de
si

gn
 r

ea
dy

 f
or

 im
pl

em
en

ta
tio

n

 [
 2

1/
01

/1
6

-
17

/0
5/

16
]

 D

ev
el

op
m

en
t

 [
 2

1/
01

/1
6

-
29

/0
4/

16
]

 S

ys
te

m
 d

ev
el

op
m

en
t

 [
 0

3/
02

/1
6

-
03

/0
2/

16
]

 G

en
er

al
 A

PI
 s

pe
ci

fic
at

io
n

co
m

pl
et

ed

 [
 2

3/
02

/1
6

-
23

/0
2/

16
]

 D

et
ai

le
d

A
PI

 s
pe

ci
fic

at
io

n
co

m
pl

et
ed

 [
 2

3/
02

/1
6

-
23

/0
2/

16
]

 W

or
ki

ng
 b

ac
k-

en
d

re
le

as
ed

 f
or

 t
es

t

 [
 0

7/
03

/1
6

-
07

/0
3/

16
]

 W

or
ki

ng
 f

ro
nt

-e
nd

 d
em

on
st

ra
tio

n

 [
 1

8/
04

/1
6

-
18

/0
4/

16
]

 W

or
ki

ng
 f

ul
l s

ys
te

m
 d

em
on

st
ra

tio
n

 [
 2

9/
04

/1
6

-
29

/0
4/

16
]

 S

ys
te

m
 f

ea
tu

re
 c

om
pl

et
e

 [
 2

9/
04

/1
6

-
17

/0
5/

16
]

 D

eb
ug

gi
ng

 a
nd

 r
ef

in
em

en
t

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 S

ys
te

m
 d

el
iv

er
y

de
ad

lin
e

Fi
gu

re
39

:R
es

ul
ti

ng
G

an
tt

di
ag

ra
m

of
th

e
ac

tu
al

ti
m

e
sc

he
du

le

74

HEEE - Handler for Exceptionally Exceptional Exceptions

The most striking differences are in the architecture and development phases. The
general architecture was completed on time, at the same time as the project plan delivery.
In practice the detailed architecture was a more continuous work in progress that was not
deemed mostly complete until mid-February, though some minor but noticeable changes
did occur, e.g. in the amount of views on the front-end, and the division of routes on the
back-end.

While the official start of development was not until we delivered the project plan,
the early testing of the frameworks and potential architectural decisions led to code that
was re-used and built upon, thus in practice starting the development phase a week and
a half early. Granted, it was not entirely unexpected as we had been thinking about and
considering the project for several weeks before New Years, already having several ideas
brooding upon starting planning in early January.

The general API completion was rather unexpectedly on schedule; we deemed it com-
pleted two days before estimated. However all the deadlines after that the time estimates
ended up significantly off. A detailed API format for posting exception reports was not
finished until the day when we also released the mostly completed back-end for testing,
a task that itself was done over two weeks earlier than expected. The API for retriev-
ing data however underwent several modest additions and configuration as the project
continued.

We did a front-end demo a little over two weeks before we initially anticipated. It is
worth noting that both the front-end and back-end both had far more finished function-
ality than anticipated at that stage. This is despite the front-end proving to be far more
work than expected, not only because it stopped being a simple display for the infor-
mation requested from the back-end, but also because the employer changed their mind
upon a few occasions, requiring significant rework, see Section 6.2.

The last demonstration was nicely on time, with the demonstration on April 16. and
the deadline being at April 20. Innit never really cared much about the deadlines, mostly
focused on allowing us the freedom of a good development process and end result. From
this full-system demonstration onwards only a few small features were implemented,
before calling it feature complete.

Notable pieces of development that cost us the most time has been lack of knowledge
of- and experience with Javascript/AngularJS and PHP/Laravel, and noteworthy issues
relating to the frameworks that are described in Section 4.6 and Section 4.1. Since we
anticipated and prepared for this, we argue that we have completed more work with
better quality in a shorter amount of time than planned for, generally recognised as a
successful project.

8.3 Critique and Alternative Approaches

8.3.1 Process

There is a saying that goes ‘nothing is as permanent as a temporary solution’. There
is a major reason for this, because most commonly the limitations of a project is not
in amount of work or quality, but rather in time and resources. While we have had
somewhat more time and resources available than often is during a bachelor thesis, we
certainly have not been able to avoid the issues that plague a project.

75

HEEE - Handler for Exceptionally Exceptional Exceptions

In this section we will be listing up points of self-critique, unfortunate or outright bad
decisions, and in general parts of the project we could or should have done better.

Documenting and Duplication

Documenting decisions was at times left off for too long, at times forgetting it before
we suddenly needed it, or Vegard allocated time for himself to do it. Since Vegard often
did documentation for others, it sometimes meant the documentation could become too
abstract – documenting the intention rather than the implementation – and potentially
crucial details could be, and likely have been, overlooked or forgotten. There was also
an issue when for example new features were implemented, but never documented -
resulting in the other team members not being aware of functionality that was necessary
or would have helped greatly. This was partially of remedied by always working together
on campus, everybody being available for assistance. Since this was an repeated issue it
would have been better to enforce a strict documentation policy from the beginning of
this thesis.

In addition to being late at documenting, we tended to duplicate some documentation
between the index page for the back-end, information documents on our ShareLatex-
stack, and Confluence. While we intended to keep everything in Confluence, only having
the interface duplicated to the index page for the back-end, we only properly gathered
the documentation in one place by mid-February. Confluence was rarely used since only
two of the groups members had the professional programming course which required it,
and the fact that the index page of the API was faster and easier to access.

Versioning

Throughout development there were some less than ideal situations where versions of
the front-end and back-end did not line up very well, breaking front-end code depending
on the API. While we did have some versioning set up for the back-end API, see Sec-
tion 5.4, it was mostly intended for use in production, though it would certainly have
worked during development. Regardless of how it would have been implemented, with
versioning some major – albeit mostly insignificant – nuisances could have been pre-
vented, avoiding some front-end situations where updates to API usage had to be com-
pleted in the same commit as another issue, breaking our commit rules of only adding
code belonging to one issue per commit.

For instance, the back-end API version – or API level – 0.7.1 would work with front-
end 0.7.1. In a case where the back-end updated to 0.8.0, changing some part of the API
would still allow front-end to use API version 0.7.1. Simultaneously another branch of
the front-end could be updated to use API version 0.8.0.

Had we started over again, we would have been strict on versioning from the start,
with corresponding versions on the back-end and front-end to handle changes in the API
versions. As a secondary benefit it would make the static code analysis statistics over
time for more useful, since we could far more easily see the impact various versions
made, rather than track down dates for particular commits.

Front-end for Innit

We should have set up and made available earlier a front-end for Innit to play around
with and test the features. This would not have been much work, as we did set one up

76

HEEE - Handler for Exceptionally Exceptional Exceptions

eventually, at little time expenditure. This would have let Innit test the front-end earlier
and better than only at the demo meetings. However it is not guaranteed that it would
have improved the feedback loop as all our contacts at Innit became very busy as the
spring progressed. It never really affected us much, as we never had to redo something
due to working in the wrong direction, though we find it somewhat unlikely that Innit
would have had more time for testing and feedback than they allocated for meetings.

8.3.2 Product

Use of Laravel

As was partly elaborated on in Section 4.1, we were not entirely appreciative of Laravel
due to some quirks and lack of functionality in the framework. A potential risk in using
Laravel is that there is only a single person, Taylor Otwell, doing the absolute majority
of development, to the scale of 95-98% of both number of commits and lines of code
committed [17]. This makes the entire project quite dependant on the single person being
active and managing the framework development well. Note that there is a larger large
and active community, indicating it might very well take over development of Laravel
should Mr. Otwell ever stop developing it. Since the employer warmly recommended
Laravel, we considered it a fully acceptable risk.

However as mentioned in Section 4.1, we had some issues with memory limitations,
together with some other annoying, but otherwise inconsequential issues. In retrospect
we could have remedied some of the memory issues and assured high performance by
using e.g. C++ for some parts or even the whole back-end. While less used in web
development, C++ can provide considerably better performance than PHP for simple
serving of API. There are major libraries available for such usage, but we have not done
sufficient research on the subject to state for a fact whether C++ certainly would have
been a better alternative for us. C++ also demands more development work and has
less built-in security than the ‘magic’ provided by Laravel. One major noteworthy point is
that quirks about Laravel and its built-in ORM have perhaps cost us more development
time than regular back-end development has, and it is thus not certain that Laravel has
cost less time than a back-end in full C++ would have.

Use of Eloquent

Eloquent, being a sub-project under the Laravel framework project, suffers from the same
dependency upon the same single person doing the majority of development [18]. While
there is, as with Laravel, a reasonably large and active community that likely would be
ready to take over the project if necessary, the dependency upon a single person would
have made a decision to use another ORM tool more likely.

We had several issues with Eloquent during the development process, most of which
are enumerated in Section 6.2, with the main issues being lack of support for three-way
relations and lack of support for composite/partial keys, the latter for which the main
developer said that he would not add support [16]. Considering the issues we have had
with Eloquent, and that so commonly used features as composite/partial keys would not
be implemented, we would in retrospect very likely have chosen another ORM tool for
the development. In particular if we had chosen something else than Laravel to develop
the back-end, another ORM would have been an obvious choice, although we have not
done sufficient research on the area to say which ORM tools would have been the most

77

HEEE - Handler for Exceptionally Exceptional Exceptions

likely.

Composite Keys Issue

The issues we had with composite keys in Eloquent, thoroughly examined in Sections 6.2,
and mentioned in Section 8.3.2, cost us a significant amount of time and effort. In ret-
rospect, for the composite keys issue we should likely have used existing code to extend
Eloquent, and even after having cut down the length of the file path column and set up
the code to use that, it might have been better for maintainability and avoiding potential
issues. It would have been preferable not to deliver a system with a data model restrict-
ing path lengths to 255 characters, considering that path lengths often reach numbers in
the mid hundreds as it is. While about a hundred characters is a fair margin, additional
margin is always preferable.

It is also not unlikely that somebody else have completed extending Eloquent in the
way we required, though we did not find any references to such completed code, only
bits and pieces of code that could partly alleviate the issue. Extending a framework would
have been a good learning experience, something we know from some minor changes we
made elsewhere in the Laravel framework. Regardless, it has been a significant learning
experience having to repair and work around issues that arise.

Unified Format

As was noted in Section 6.3.1, despite the good intentions from the start, the API re-
sponse format from the main routes ended up varying quite a bit, and it was only around
feature completion we managed to come up with a fully unified response format. How-
ever that was too late to change all the routes on the back-end and the data handling on
the front-end to use the new format, and thus it was only the /graph route that used it,
functioning as a reasonably good test for the format.

We should have made such a unified format earlier, or at least attempted to unify
it. It would have been very difficult to come up with a properly working format in the
beginning, considering how much the data model changed over time, see Sections 4.6
and 6.2. However considering how finished the data model was in late March, we should
at that time have attempted the rework, although it is not unlikely that such an attempt
even then would have been premature or simply would not have worked out.

It is worth noting that everything the team knows and has learnt about creating APIs
and using RESTful communication has been during this project period, with a few snip-
pets of information picked up at random in other settings. Because we knew so little,
and the API had to be specified very early to allow development, we gave ourselves too
little time to learn, with the risk of creating a bad structure. As this section notes this did
to some degree happen, with the lack of a single unified format, although the formats
in use are not bad. We will argue that the resulting implementation is reasonably well
adjusted to the typical use, and the lack of this unified format is not a major issue for
maintainability and further work.

Data Abstraction Layer

We found only late in the project that Laravel is built to support an abstracted interface
between the logic of the system and the data models. This could be used to provide an
unchanging interface for retrieving data that would work regardless of how the data

78

HEEE - Handler for Exceptionally Exceptional Exceptions

is stored. Currently the back-end’s logic uses the data models of Eloquent as a semi-
abstraction to retrieve data from the database, but the logic still depends on the overall
database design, and can break upon changing the data model.

For instance one could call for ‘all exception types from a given application’ in both
the current implementation, and with a data abstraction layer. The current version would
likely have issues if the relation between exceptions and applications changed; e.g. if
we added a new table as a relation between installations and applications. The data
abstraction layer however, if implemented well, would let the logic remain unaffected
even if we re-implemented the data model with a new design.

Thus the current implementation allows the logic to be affected by changes to the
data model. This is less than ideal, though we assumed using the models in this semi-
abstracted way was the preferred implementation until we in early May found that Lar-
avel supported a fully abstracted data layer. Had we known this from the design stages,
a not insignificant fraction of data model changes and issues could have had their impact
greatly reduced.

8.4 Further Work and Extendable Features

This section will lists potential further work and extendable features of the system. Each
feature will be briefly described, with some ideas for implementation and assessment of
the idea’s potential and likely workload. Several of the mentioned features are unlikely to
even be considered due to inherent complexity, difficulty and amount of work required.
This in particular covers the features that would require machine learning.

Unify format for all routes. As noted in Section 8.3.2 one could rework all the back-
end routes to use only the unified format as in the /graph main route. While the
workload would be far from insurmountable, the development and testing would
be significant.

Integrate with JIRA. An integration with JIRA could filter out the most important ex-
ception reports and automatically or semi-automatically post issues on JIRA for the
developers. This was initially an idea for this thesis project as additional work, see
Section 1.2. It was later scrapped by Innit, see Section 8.1.3. It is most certainly a
possibility for the future, though it would likely cost significant time and resources
to design and implement what would likely have to be a machine learning algo-
rithm, that would post only the most important issues.

Mobile Application. Since the front-end is designed as a web-view, it should not prove
too difficult to complete the remaining adaptations for it to be usable on a mobile
phone. However, as mentioned in Section 8.1.3, we are quite uncertain how well
the very graphing system which makes the front-end good for large screens, would
work on a small screen. It could also be used as a notification system if certain
heat-thresholds were met, very similar e.g. Facebook’s push-notifications, a feature
which presumably would not require very much work to implement. It could also
be implemented as a dedicated application, in which case adapting the web-view
would not be necessary.

Notification system. Some simple notification system could be added without a mobile
application, e.g. sending messages to a mobile phone or using e-mail. The latter

79

HEEE - Handler for Exceptionally Exceptional Exceptions

would be very simple, while the former would likely not be much harder, by using
some third-party system for sending phone messages that handles payment.

User Authentication. Authentication could be implemented on both the front-end and
back-end so it could be available outside the local network. While adding authenti-
cation late in development is generally highly insecure, we have implemented the
system with a fair bit of consideration for potentially later adding authentication. In
particular the back-end, with Laravel handling most authentication, would require
very few changes.

Widget-based user interface. The front-end could allow drag & drop of elements to
rearrange them to a personal preference. This type of interface could allow adding
new features simply by importing new widgets, or similarly, resulting in a fully
personalised and unique interface design.

Translation of the front-end. Currently the front-end is only available in English. We
have added angular-translate to the project, and set up all text to be retrieved from
string-files. Thus the only requirement would be to translate all the strings to the
new language.

Creating own syslog parser. Currently Rsyslog has some drawbacks, in particular re-
garding the database tables as mentioned in Section 4.6. While a new syslog-parser
would alleviate these issues, it would also be a rather large project on its own. Us-
ing Rsyslog for sending messages, and only using a new or customised parser for
receiving and adding to the database would be a significantly simpler project, it
would likely still require a great deal of work.

Implement machine learning. Machine learning could be used to automatically find
which exceptions are bad and which are acceptable, after an initial learning period.
Currently the user has to set the severity for for all exception types manually, which
is not ideal. Such an machine learning project would be rather difficult however,
and likely well outside the scope of what could be achieved in a bachelor thesis.

Desktop Application. The front-end could be implemented as a desktop application in-
stead of a web-view relying on a browser. This would also depend on whether a
mobile application would use the web-view or a dedicated application. It is diffi-
cult to estimate how much work this would require, though it would likely involve
slightly more work than building the front-end in the first place required.

Data Abstraction Layer. One could change retrieving data on the back-end from hav-
ing the logic directly interact with the data model, to interact with a data layer in
between the logic and the data model, so that any changes to the database model
would be invisible to the logic; the data interface would be unchanged. See Sec-
tion 8.3.2. This would be a fair bit of work, but changing one main route at a time
would allow the work to be split over a longer period of time.

Integration with development tools. Some integration with development tools could
allow links in the front-end to lead directly to the relevant task, issue or commit,
much like how the Atlassian stack has issue links between Bitbucket, Confluence
and JIRA.

80

HEEE - Handler for Exceptionally Exceptional Exceptions

9 Conclusion

We have reached this point after several months of developing a system for Innit in a
professional setting. The process has been invaluable for us, both in terms of learning
new frameworks and tools, but perhaps the most in experiencing and managing a full
software development project from start to finish in a close to real world situation. We
have greatly benefited from working full days for months on end on a single project,
rather than splitting time between a multitude of smaller projects. We have developed
the product we aimed for, a product we can be proud of.

We have in this project managed to work together as a professional team for a long
period of time, see Section 8.2. We have set and completed a list of results, effects and
learning goals that we wished to accomplish by the end of this thesis, and we will ar-
gue that we have completed them all in a more than satisfactory fashion, see achieved
learning objectives in Section 8.1.1, and achieved task objectives in Section 8.1.2.

We have gained valuable insight and experience with modern agile development
methodologies, software development professionalism, and perhaps most importantly,
working together as a team in a project that is important for the customer.

In this project we have developed an application that is highly extensible, maintain-
able, and which matches both our personal and Innit’s requirements, see product objec-
tives in Section 8.1.3. In short time the product will be officially delivered to our em-
ployer, and Innit will from that point on-wards hopefully be noticeably more efficiently
in discovering issues in and improving their software.

81

HEEE - Handler for Exceptionally Exceptional Exceptions

Bibliography

1 Innit AS. Historie (online). 2015. URL: http://innit.no/om-selskapet/ (Visited
2016.01.05).

2 Gerhards, R. Request for Comments: 5424. The Syslog protocol (online). 2009. URL:
https://tools.ietf.org/html/rfc5424 (Visited 2016.02.23).

3 NTNU Gjøvik. Bachelor’s Thesis (online). 2016. URL: http://english.hig.no/cours
e_catalogue/student_handbook/2015_2016/courses/avdeling_for_informatikk_og_
medieteknikk/imt3912_bachelor_s_thesis (Visited 2016.05.03).

4 Kniberg, H. & Skarin, M. 2010. Kanban and Scrum making the most of both. InfoQ,
C4Media Inc.

5 Wikipedia Community. Five Ws (online). 2016. URL: https://en.wikipedia.org/w/i
ndex.php?title=Five_Ws&oldid=708846467 (Visited 2016.03.09).

6 Otwell, T. & et. al. A PHP-Framework for Web Artisans (online). 2016. URL: https:
//github.com/laravel/laravel (Visited 2016.4.11).

7 Otwell, T. Eloquent: Getting Started (online). 2016. URL: https://laravel.com/docs
/5.2/eloquent (Visited 2016.4.13).

8 AngularUI Team. UI Bootstrap (online). 2016. URL: https://angular-ui.github.io/bo
otstrap/ (Visited 2016.05.03).

9 Otwell, T. & et. al. Laravel Docs (online). 2016. URL: https://github.com/laravel/d
ocs (Visited 2016.01.25).

10 Papa, J. & et. al. Angular Style Guide (online). 2016. URL: https://github.com/joh
npapa/angular-styleguide (Visited 2016.01.25).

11 Google. Google HTML/CSS Style Guide (online). 2016. URL: https://google.github.
io/styleguide/htmlcssguide.xml (Visited 2016.01.25).

12 Sahni, V. Best Practices for Designing a Pragmatic RESTful API (online). 2016.
URL: http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api (Visited
2016.01.25).

13 Kovarik, J. License (online). 2016. URL: https://glyphicons.com/license/ (Visited
2016.05.03).

14 Fielding, R. T. Architectural Styles and the Design of Network-based Soft-
ware Architectures. CHAPTER 5 Representational State Transfer (REST) (online).
2000. URL: https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.ht
m (Visited 2016.03.02).

82

http://innit.no/om-selskapet/
https://tools.ietf.org/html/rfc5424
http://english.hig.no/course_catalogue/student_handbook/2015_2016/courses/avdeling_for_informatikk_og_medieteknikk/imt3912_bachelor_s_thesis
http://english.hig.no/course_catalogue/student_handbook/2015_2016/courses/avdeling_for_informatikk_og_medieteknikk/imt3912_bachelor_s_thesis
http://english.hig.no/course_catalogue/student_handbook/2015_2016/courses/avdeling_for_informatikk_og_medieteknikk/imt3912_bachelor_s_thesis
https://en.wikipedia.org/w/index.php?title=Five_Ws&oldid=708846467
https://en.wikipedia.org/w/index.php?title=Five_Ws&oldid=708846467
https://github.com/laravel/laravel
https://github.com/laravel/laravel
https://laravel.com/docs/5.2/eloquent
https://laravel.com/docs/5.2/eloquent
https://angular-ui.github.io/bootstrap/
https://angular-ui.github.io/bootstrap/
https://github.com/laravel/docs
https://github.com/laravel/docs
https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide
https://google.github.io/styleguide/htmlcssguide.xml
https://google.github.io/styleguide/htmlcssguide.xml
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
https://glyphicons.com/license/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

HEEE - Handler for Exceptionally Exceptional Exceptions

15 Touffe-Blin, J. Angular Chart (online). 2016. URL: https://jtblin.github.io/angular
-chart.js/ (Visited 2016.05.09).

16 Aebersold, S. & Otwell, T. Eloquent should support composite keys (online). 2016.
URL: https://github.com/laravel/framework/issues/5355 (Visited 2016.4.12).

17 Otwell, T. & et. al. Contributors to Laravel (online). 2016. URL: https://github.com
/laravel/laravel/graphs/contributors (Visited 2016.4.13).

18 Otwell, T. & et. al. Contributors to Eloquent (online). 2016. URL: https://github.c
om/illuminate/database/graphs/contributors (Visited 2016.4.13).

83

https://jtblin.github.io/angular-chart.js/
https://jtblin.github.io/angular-chart.js/
https://github.com/laravel/framework/issues/5355
https://github.com/laravel/laravel/graphs/contributors
https://github.com/laravel/laravel/graphs/contributors
https://github.com/illuminate/database/graphs/contributors
https://github.com/illuminate/database/graphs/contributors

Project Plan

Group H3E - Handler for Exceptionally

Exceptional Exceptions

Bachelor’s thesis IMT3912

Vegard Solheim, Olafur Johan Trollebø,
Lars Walter Westby, Aleksander Steen

Spring 2016

1

HEEE - Handler for Exceptionally Exceptional Exceptions

A Project Plan

84

Contents

1 Introduction 3
1.1 Background . 3
1.2 Learning Objectives . 3
1.3 Performance Objectives . 3
1.4 Target Audience . 4

2 Project scope 4
2.1 Field of Study . 4
2.2 Scope Limitations . 4
2.3 Project Description . 5

3 Project Organisation 6
3.1 Roles and Responsibility . 6
3.2 Project Rules . 6
3.3 Meetings and routines . 7
3.4 Resource responsibilities . 7

4 Planning and development process 8
4.1 Development process . 8
4.2 Framework usage . 8
4.3 Version control . 9

5 Development tools 9
5.1 Documentation and standards . 11
5.2 Risk assessment . 12
5.3 Choice of language . 12
5.4 Legal . 13

6 Resource planning 13
6.1 Gantt schema . 13
6.2 Work Breakdown Structure . 15
6.3 Time- and resource plan . 16

A Group rules document 18

2

1 Introduction

1.1 Background

Software does not run flawlessly. Problems happen, and often these problems
are caught in the form of exceptions, handling the problem and keeping the
software running while the problem itself is reported. Exceptions can be tiny
inconsequential information notifications or connection failures - events that
are expected to happen - to potentially devastating bugs and information state
failures. Thus exceptions are both expected and a large part of modern software
development, and reports from exceptions can tell a lot about how a software
module works, or doesn’t work.

The company Innit AS is a medium-size software development and hosting
company1. As Innit develops and hosts software for customers, they are re-
sponsible for keeping software running as intended. When exceptions happen,
Innit receives reports from the software about what went wrong, what caused
it, if it worked out, and parts of the software or modules were affected. This
information can and is gathered, stored, and analysed in order to maintain and
improve the affected software.

Innit have requested the development of a system for automated receiving
and managing exception reports, and displaying a statistical overview of the
exceptions.

1.2 Learning Objectives

• Learn the Javascript- and PHP-based frameworks AngularJS and Laravel,
respectively.

• Use of professional development tools like taskrunners, code analysis and
project management tools.

• Integrate with existing tools for graphical representation of statistics, i.e.
diagrams.

• Develop a completely modular system, where modules can easily be re-
placed.

• Use a Kanban-based continuous development process.

• Work with a real customer having high expectations, creating a product
that is likely to actually be used.

• Handle exceptions and exception reports in a professional manner.

1.3 Performance Objectives

With this project, we wish to develop a system that:

• Increases the effectiveness of receiving and managing exception reports.

3

• Can display exception statistics in a variety of ways, increasing under-
standing of potential problems.

• Makes it easier for Innit to identify potential problems in their software.

• Allow Innit operations staff to browse and filter Syslog log files in a more
efficient manner than before.

1.4 Target Audience

The target audience here is mainly the developers and operations staff at Innit
AS. The system will be running locally on a server at Innit, and the information
displayed statically on screens in the development and operations offices. Thus
we do not have to take into account that non-technical audience will be viewing
or using the software. It is also important to keep in mind this is not a system
that will be worked very actively with, but viewed at a distance every once in
a while.

2 Project scope

2.1 Field of Study

• RESTful API-design

• Debian-based application development

• Relational database design

• Web application front-end and back-end frameworks

• Web application development

2.2 Scope Limitations

• The system will only be running on Debian, no development has to be
done for Windows or Macintosh. If we have sufficient time, we might
create a mobile application. See the project description 2.3.

• The creation and display of statistic graphics will be done through inte-
gration of an existing third-party tool/package.

• Since the application will only be running locally, authentication is not
necessary. Both the reporting interface and the statistics API will only be
available over local network.

• We will only have to supply a format for data from external systems. Innit
will take care of rewriting the reporting in existing systems.

4

Figure 1: Overview of the system

2.3 Project Description

The system we are to develop has the working title of H3E, short for Handler
for Exceptionally Exceptional Exceptions. The systems main functionality is to
receive and organise exception reports, and display statistics about the reports.

The systems functionality is to:

• Receive, store and organise exception reports in a preset format, i.e. Sys-
log.

• Display exception statistics in a graphical format.

• Automatically propose new issues for adding to the JIRA issue tracking
system.

• Extra features:

– A hybrid mobile application for Android and iOS, for receiving ex-
ception report notifications.

– End-of-the-month-report, giving a summary of how the past month
has been.

To elaborate on the bullet points mentioned above. The system’s back-end
will receive exception reports from hosted systems running on Innit’s servers.
The system will then parse and organise the reports in a local database, and
potentially automatically propose new issues that can be added to the issue
tracking system. The back-end will supply an API for statistics about the
exception reports and meta-information about them.

The systems front-end will be a separate system that will request information
from the back-end through the back-end’s API, and through integration with a
third-party tool will create graphical diagrams and display them on a screen.

The system will be running on a local Debian server at Innit, and only
requires communication between the front-end and the back-end, both being on
the local network.

5

Regarding the added points about extra features. They are not within the
explicit scope of the project, but the customer have expressed interest in having
those features if we have the time leftover to develop them. However they should
not be seen as mandatory features to be done before system delivery. The hybrid
mobile application will be an application displaying a web view of the statistics
site, and able to subscribe to categories like applications, installations, types of
bugs, etc., and receive notifications about those subscribed items. The end-of-
the-month-report is a report that, as the name implies, will be automatically
created and sent out via. e-mail. It will contain a summary of the past month
with several categories of statistics, and perhaps small trivia about the system
and developers; e.g. who fixed the most reports.

3 Project Organisation

3.1 Roles and Responsibility

Project Leader - Vegard Solheim
Responsible for meeting notes, writing and formatting the thesis, updating time
schedules. Working on back-end development.

Design/Technical staff - Aleksander Steen
Responsible for tools working correctly, i.e. ShareLatex, code analysis tools,
commit hooks, etc and the design and development of the front-end.

Back-end - Olafur Johan Trollebøe
Responsible of the back-end development.

Front-end/backend/technical staff - Lars Walter Westby
Responsible for automated taskrunner tasks, front-end architecture and general
Angular/Laravel technical support.

Supervisor - Ivar Farup
As our supervisor he is the point of contact for any issues or information we
require regarding the project as a whole, and will as an external third-party give
feedback and discuss our ideas, suggestions and the format and content of the
thesis.

Customer - Innit v/ Joakim Jøreng
The customer defines the system requirements, and provides technical consid-
erations, expertise, and feedback on the development process.

3.2 Project Rules

• If there are any disagreement, a vote will be called to solve the matter. In
case of a tie, the supervisor will decide.

6

• Vegard Solheim will be our group leader, and will ensure the group is
functioning and keeping the project on track. All issues will be voted
upon in a democratic manner.

• If a member does not contribute to the project, a warning will be given.
If no improvement in a reasonable time, a vote will be called to decide
further action.

• All members of the group are to be considered full members, and can sign
on behalf of the entire group if two or more members are present.

For the signed document, see appendix A.

3.3 Meetings and routines

For meetings we have decided to go with planning more meetings than are likely
to be necessary, since it is easier to cancel a meeting when it is not needed, rather
than scheduling new meetings whenever necessary.

In particular for our supervisor and Innit it is easier to schedule far into the
future. Our group is far more adaptable, as we only have one subject in addition
to the thesis - everyone having the same subject - and can thus adapt and plan
depending on when our supervisor and Innit are available.

We have thus planned to have a meeting with our supervisor at 09.15 every
Tuesday. Meetings with the customer is scheduled be on Wednesdays every
other week.

3.4 Resource responsibilities

Innit will be supplying the project group with any required or relevant hardware
and tools that are not available for free through NTNU or free student licenses.
In addition the customer will be responsible for creating formats, but where
the project group desires to do so, we have a large freedom to create our own
formats where preferable.

Innit is also responsible for always having a dedicated contact person, irre-
spective of individuals being sick or otherwise indisposed.

The project group will be responsible for planning meetings and supplying
the customer with sufficient information for having productive meetings, inform-
ing the customer about progress and creating and displaying demos. The project
group will also be responsible for handling issues related to the university and
our time schedules.

7

4 Planning and development process

4.1 Development process

The outline of the system is quite clear, and does not warrant any particular
development process. However the customer has expressed explicitly that they
wish to give us close to full freedom to test different approaches. In addition
there are additional modules they wish to have developed, in case workload is
insufficient for a bachelor thesis. This, while not specifically demanding it, does
make agile development preferable.

Internally in the group we have some experience with continuous develop-
ment, i.e. Kanban, and have found it to work quite well for us. The group com-
position, internal dynamics, knowledge and motivation for work have proved to
make e.g. a Sprint-based framework unnecessary for forcing progress and re-
sults. In addition we agreed that we do not have sufficient experience with this
type of system to estimate sufficiently well for Scrum sprints, thus rendering
sprints somewhat impractical.

For these reasons we have unanimously decided we wish to go forth with
Kanban as described by Henrik Kniberg and Mattias Skarin for our development
process2. It will incorporate some features from Scrum in an adapted form,
most notably a weekly or bi-weekly retrospective meeting that will be held in
conjunction with meetings with the supervisor.

We have conferred with our supervisor whom does not have any objections
to our choice. Neither does the customer, which has no particular preference
and expresses a wish for us to have close to full freedom of how we wish to
arrange development. They merely require that we have demos ready at some
points during development, but leave us the freedom to choose when, where,
and how much should be ready.

As mentioned in subsection 3.3 we will incorporate weekly meetings with
our supervisor, and bi-weekly meetings with the customer.

4.2 Framework usage

We have decided to use the frameworks AngularJS and Laravel for the front-end
and back-end, respectively. This was strongly recommended by the customer as
they have quite a lot of experience with both frameworks, and would thus be far
more able to provide support for our development. After learning the basics and
trying them out, we agreed with the customer that it is a good recommendation.

For AngularJS it is also a choice whether to use Angular v1 or v2. The
customer did not have any particular opinion or recommendation on that matter,
and left it to us to decide. We have decided to go with Angular v1, as v2
only recently became available and is still in beta. The customer supports this
decision. There are far more learning and helpful resources available for version
1, which is important as none of us have much experience using AngularJS. We
also discussed the use of ReactJS which also is a good alternative, but we opted
for not using it.

8

As for graphical presentation and elements, we decided to use Bootstrap due
to some prior knowledge and experience, and Less, a CSS pre-processor, both
because of having seen the use of such a framework in previous projects, as well
as recommendations through best practice guides and frequent use in Yeoman
packages and similar project skeleton generators. What AngularJS module we
will end up using for graphs is still undecided, but several have been tested and
had their pros and cons discussed. Having a mix of frameworks we have never
used before and some we have prior experience with creates a nice environment
we feel we can grasp, while it also lets us explore new technology and approaches.

Thanks to AngularJS’ focus on testability, continuously writing unit tests for
the front-end application is made easy through the use of Jasmine and Karma,
which work well with AngularJS and has a lot of official documentation available.
Automatic tasks also make actually executing the tests easy, once our task-
runner is configured. Automated linting in JShint and JSCS for front-end code
is also set up to warn for code inconsistencies and errors through out taskrunner,
Gulp. The back-end will primarily use PHPUnit for unit tests (which Laravel is
primarily configured for) while using Sonar coupled with PHPmetrics for code
review.

4.3 Version control

We have decided to use Git for version control, and use BitBucket for hosting
the repositories. The system uses two repositories to separate the front-end and
back-end systems. Neither of the repositories will be publicly available during
the development process. Whether they are open after having been handed over
to Innit will be up to them.

The decision to go with Git is due to it having been recommended greatly
during our education, has become more or less an industry standard, and we
have a fair lot of experience using it. Both the customer and supervisor supports
our choice.

We have decided to go with BitBucket as the host due to the integration
with Confluence and JIRA, both of which we will use in a subject parallel to
the thesis.

5 Development tools

JetBrains PHPstorm
PHPStorm has been strongly recommended by friends and colleagues - and all
larger frameworks for those two languages. The team has a lot of experience
with the related IDE IntelliJ, which uses the same IDE kernel as PHPStorm for
Java development. In addition, JetBrains supplies all students with free access
to their entire suite of IDEs. In light of that, we have decided to use PHP-
Storm for both front-end and back-end development. We have used Eclipse and
Notepad++ for web development in the past, but with PHPstorm’s native Lar-
avel support and AngularJS plugins, we unanimously decided to skip the other

9

two candidates.

ShareLatex
ShareLatex is a online real-time collaboration tool for writing LATEX. We have
good experience with using LATEXto write reports, and writing the report in it
was a given from the beginning. We tested both OverLeaf and ShareLatex be-
forehand, and decided to go with ShareLatex on the background of recommenda-
tions, as well as its compilation being far faster than OverLeaf’s. A ShareLatex
premium licence is available through NTNU. However we had already set up
the freely available ShareLatex stack on a group members servers and decided
to use that. It does not provide the kind of assured redundant storage that
hosting the report on the ShareLatex site would provide, though we consider it
to be sufficiently safe storage for our purpose. For some added safety all group
members will be downloading the source files whenever changes have been done.
As a bonus, the private server provides us with far more computational power
for faster compilation than the hosting sites provides.

We did briefly consider using Google Docs and Office365, though we quickly
decided to write in LATEX, since the latter is superior in terms of writing long aca-
demic reports and handling multi-file reports and bibliographies. While Google
Docs is free, and Office365 is available for free through NTNU, that did not put
them anywhere close to the available tools and options of LATEX.

Sonar/PHPmetrics With experience from a previous Java-project where we used
Sonar in combination with Maven for automatic static code analysis, we have
decided to keep using Sonar for the static analysis. Due to Maven being a Java-
specific tool, we opted to use PHPMetrics as replacement for it.

Gulp
To simplify and streamline the development process we use a taskrunner tool
to run automated tasks such as serving the code, wiring dependencies, linting,
testing and building. The go-to standard taskrunner has been Grunt for many
years, which works heavily based on configuration files. A newer taskrunner
that has gained a lot of heat is Gulp, which works in more of a code-like fashion
for its configuration setup, as opposed to Grunt. After looking at both tools
and weighing them against each other, we decided to go for Gulp, for a number
of reasons. The biggest reason would be the way the configuration files are
written, which worked in favour of our group’s preferences. The fact that gulp
seems to be considered the new and more modern tool also helped us choose.
Many preconfigured taskrunner files exist for both tools, so the availability of
pre-written tasks did not matter as much to us when choosing.

Trello
Trello is a well known and much used work planning tool which all members of
the group have some experience using. We are of the opinion it has the best user
interface and usability, after having tested a wide variety of Scrum or Scrum-
related work planning tools in a project the preceding autumn.

10

JIRA
Due to several of the group members having the course Professional Program-
ming, where we will be working with and reviewing the bachelor project devel-
opment process and code, we have decided to create a JIRA-space in addition
to the Trello-board. We have been and will be using Trello until the JIRA-space
is set up and ready to use. When that happens, we will make a choice whether
to continue with Trello, completely switch over to JIRA, or use Trello for the
work tracking and JIRA for issue tracking.

Confluence
As a part of Professional Programming course we will be using Confluence for
Wiki-esque purposes like documentation and document management. This will
be in addition to, but not overlapping with, the ShareLatex stack where we
write the project report.

MariaDB/PHPMyadmin
We quickly decided to go with a relational database, both due to we having far
more experience with relational models, and because we only have to store sim-
ple organised textual data in a set format. We did consider NoSQL databases,
but we found no good arguments in favour of NoSQL for the kind of report data
we are to store.

Having chosen relational database, we had some discussion whether to choose
MySQL or MariaDB, but eventually landed on the latter due to external rec-
ommendations. MariaDB is said to be faster/better optimised and generally
better in use, while the APIs and interfaces are essentially equal to MySQL.

The customer expressed no particular preference regarding choice of database
system, but essentially assumed we would use MySQL or MariaDB.

5.1 Documentation and standards

All the code should naturally follow the standards described below. All code
should be documented as it is written, with PHPDoc or equivalent written
as every function is written, and inline comments during or immediately after
writing the code. One can optionally run Sonar on the code before merging a
branch with master. Upon merging or pushing code to master, our server will
automatically pull down master and run it through Sonar and PHPMetrics. All
standards, protocols and similar should be documented on Confluence.

Unit-tests should either be written before or alongside writing the func-
tionality. Any non-trivial component that can reasonably be tested must have
unit-tests. Naturally functionality that can’t easily be isolated for unit testing
does not require tests, but one should strive to test as much as possible.

The front-end application is continuously linted for code inconsistencies, fol-
lowing configuration files we have set up and can easily change. This ensures

11

each member’s individual coding style is less obvious, and the project follows a
standard as a whole.

For standards we have decided to simply follow the best practice for each of
the frameworks and languages, as listed below.

• Laravel - https://github.com/laravel/docs3

• AngularJS - https://google.github.io/styleguide/angularjs-google-style.html4

• HTML/CSS Google conventions -
https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml5

• API Best practices -
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api6

5.2 Risk assessment

In the table 1 we have listed all risks to the system and development process
that we have been able to identify. All risk having a risk equal to or higher than
medium (i.e. very low * very high, low * high and medium * medium) have
been listed with precautions reducing likelihood and/or impact in table 2

Table 1: Table of potential risks
No. Issue Probability Impact
1 Unable to finish the project Medium High
2 A team member is long-term sick Medium Medium
3 ShareLatex is down or loss of ShareLatex

source
Low High

4 BitBucket is down Very low Low
5 Total source code corruption Very low Very high
6 Contracting entity no longer wants the

project done
Low Medium

7 Group disputes Low Medium
8 Inaccurate time estimation High Low
9 Hardware malfunction resulting in loss of

code, e.g loss of laptop
Low Low

10 Customer contact person is rendered indis-
posed for an extended period of time.

Low High

11 There are privacy issues with the system Medium High

5.3 Choice of language

The customer have specified that the front-end should be made ready for an
indefinite number of language. English and Norwegian are required languages

12

Table 2: Table of solving aforementioned risks.
No. Preventative Action Incident Resolving
1 Make use of agile methods and

methodology to keep project on
tracks

Hand in whatever has been completed

2 Make sure at least two group mem-
bers know each part of the code

If a member is ill over a extended period
of time, the project leader will decide
further action and will be responsible for
keeping the ill member updated on the
project

3 Regular backups. Download source
after editing.

Switch over to NTNU-license ShareLa-
tex instead of self-hosted version

5 Regularly commit to an online
source version control repository

Restore project from older working ver-
sion

8 Accept some mis-estimates Re-evaluate backlog. Learn from previ-
ous estimates and take on less work at
a time

10 Innit will be responsible for always
having a contact person available

A new contact person from Innit will be
appointed

11 Innit has stated they’ll take respon-
sibility for avoiding sending any
privacy-related information to the
system

No action. Innit has stated they’ll take
care of it.

and will be support from the start. The customer does not have any require-
ments for back-end language, and thus it will be made to use English by default
without any built-in internationalisation.

5.4 Legal

We have not identified any potential legal issues with the system, with the caveat
that Innit handles all potential privacy issues as promised. All code developed
will be released with an MIT-license.

6 Resource planning

6.1 Gantt schema

Gantt-schema created in the open-source freeware GanttProject7.

13

U
nt

itl
ed

 G
an

tt
Pr

oj
ec

t
19

-J
an

-2
01

6

G
an

tt
C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Pr
e-

pr
oj

ec
t

04
/0

1/
16

28
/0

1/
16

R
es

ea
rc

h
04

/0
1/

16
22

/0
1/

16

Le
ar

n
ba

si
c

La
ra

ve
l/L

u.
..0

4/
01

/1
6

28
/0

1/
16

Le
ar

n
ba

si
c

An
gu

la
rJ

S
04

/0
1/

16
28

/0
1/

16

Te
st

 a
nd

 c
ho

os
e

to
ol

s
04

/0
1/

16
28

/0
1/

16

Pr
oj

ec
t p

la
n

04
/0

1/
16

28
/0

1/
16

Pr
oj

ec
t p

la
n

de
ad

lin
e

28
/0

1/
16

28
/0

1/
16

D
el

iv
er

y
of

 s
ig

ne
d

pr
oj

...
28

/0
1/

16
28

/0
1/

16

Pr
oj

ec
t r

ep
or

t
29

/0
1/

16
18

/0
5/

16

W
rit

e
pr

oj
ec

t r
ep

or
t

29
/0

1/
16

18
/0

5/
16

Pr
oj

ec
t r

ep
or

t d
ea

dl
in

e
18

/0
5/

16
18

/0
5/

16

Pr
oj

ec
t p

re
se

nt
at

io
n

19
/0

5/
16

06
/0

6/
16

Pr
ep

ar
e

pr
oj

ec
t p

re
se

n.
..1

9/
05

/1
6

06
/0

6/
16

Pr
oj

ec
t p

re
se

nt
at

io
n

06
/0

6/
16

06
/0

6/
16

Ar
ch

ite
ct

ur
e

11
/0

1/
16

28
/0

1/
16

R
ou

gh
 a

rc
hi

te
ct

ur
e

11
/0

1/
16

15
/0

1/
16

D
et

ai
le

d
ar

ch
ite

ct
ur

e
18

/0
1/

16
28

/0
1/

16

Ar
ch

ite
ct

ur
e

de
si

gn
 c

o.
..

29
/0

1/
16

29
/0

1/
16

D
ev

el
op

m
en

t
01

/0
2/

16
19

/0
5/

16

AP
I s

om
et

hi
ng

 s
om

et
hi

...
05

/0
2/

16
05

/0
2/

16

Sy
st

em
 d

ev
el

op
m

en
t

01
/0

2/
16

19
/0

5/
16

W
or

ki
ng

 b
ac

k-
en

d
de

m
...

02
/0

3/
16

02
/0

3/
16

W
or

ki
ng

 fr
on

t-e
nd

 d
em

...
16

/0
3/

16
16

/0
3/

16

W
or

ki
ng

 fu
ll

sy
st

em
 d

e.
..

20
/0

4/
16

20
/0

4/
16

Sy
st

em
 d

el
iv

er
y

de
ad

li.
..

18
/0

5/
16

18
/0

5/
16

20
15

20
16

W
ee

k
51

W
ee

k
52

W
ee

k
53

W
ee

k
1

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

W
ee

k
6

W
ee

k
7

W
ee

k
8

W
ee

k
9

W
ee

k
10

W
ee

k
11

W
ee

k
12

W
ee

k
13

W
ee

k
14

W
ee

k
15

W
ee

k
16

W
ee

k
17

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

14
/1

2/
15

21
/1

2/
15

28
/1

2/
15

04
/0

1/
16

11
/0

1/
16

18
/0

1/
16

25
/0

1/
16

01
/0

2/
16

08
/0

2/
16

15
/0

2/
16

22
/0

2/
16

29
/0

2/
16

07
/0

3/
16

14
/0

3/
16

21
/0

3/
16

28
/0

3/
16

04
/0

4/
16

11
/0

4/
16

18
/0

4/
16

25
/0

4/
16

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

Pr
oj

ec
t

pl
an

 d
ea

dl
in

e
Pr

oj
ec

t
pr

es
en

ta
tio

n
#

10
7

#
65

S
ys

te
m

 d
el

iv
er

y
de

ad
lin

e
#

68
#

97
Pr

oj
ec

t
re

po
rt

 d
ea

dl
in

e
#

10
5

#
11

0

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

re
-p

ro
je

ct

 [
 0

4/
01

/1
6

-
22

/0
1/

16
]

 R

es
ea

rc
h

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 L

ar
av

el
/L

um
en

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 L

ea
rn

 b
as

ic
 A

ng
ul

ar
JS

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 T

es
t

an
d

ch
oo

se
 t

oo
ls

 [
 0

4/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 P

ro
je

ct
 p

la
n

de
ad

lin
e

 [
 2

8/
01

/1
6

-
28

/0
1/

16
]

 D

el
iv

er
y

of
 s

ig
ne

d
pr

oj
ec

t
co

nt
ra

ct

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t

 [
 2

9/
01

/1
6

-
18

/0
5/

16
]

 W

ri
te

 p
ro

je
ct

 r
ep

or
t

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 P

ro
je

ct
 r

ep
or

t
de

ad
lin

e

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

9/
05

/1
6

-
06

/0
6/

16
]

 P

re
pa

re
 p

ro
je

ct
 p

re
se

nt
at

io
n

 [
 0

6/
06

/1
6

-
06

/0
6/

16
]

 P

ro
je

ct
 p

re
se

nt
at

io
n

 [
 1

1/
01

/1
6

-
28

/0
1/

16
]

 A

rc
hi

te
ct

ur
e

 [
 1

1/
01

/1
6

-
15

/0
1/

16
]

 R

ou
gh

 a
rc

hi
te

ct
ur

e

 [
 1

8/
01

/1
6

-
28

/0
1/

16
]

 D

et
ai

le
d

ar
ch

ite
ct

ur
e

 [
 2

9/
01

/1
6

-
29

/0
1/

16
]

 A

rc
hi

te
ct

ur
e

de
si

gn
 c

om
pl

et
e

 [
 0

1/
02

/1
6

-
19

/0
5/

16
]

 D

ev
el

op
m

en
t

 [
 0

5/
02

/1
6

-
05

/0
2/

16
]

 A

PI
 s

om
et

hi
ng

 s
om

et
hi

ng
 m

os
tly

 d
on

e

 [
 0

1/
02

/1
6

-
19

/0
5/

16
]

 S

ys
te

m
 d

ev
el

op
m

en
t

 [
 0

2/
03

/1
6

-
02

/0
3/

16
]

 W

or
ki

ng
 b

ac
k-

en
d

de
m

o
de

ad
lin

e

 [
 1

6/
03

/1
6

-
16

/0
3/

16
]

 W

or
ki

ng
 f

ro
nt

-e
nd

 d
em

o
de

ad
lin

e

 [
 2

0/
04

/1
6

-
20

/0
4/

16
]

 W

or
ki

ng
 f

ul
l s

ys
te

m
 d

em
o

de
ad

lin
e

 [
 1

8/
05

/1
6

-
18

/0
5/

16
]

 S

ys
te

m
 d

el
iv

er
y

de
ad

lin
e

6.2 Work Breakdown Structure

Figure 2: Module diagram of the system

Figure 2 shows the separated modules of the system. The line indicates the
separation between the back-end on the left, and the front-end on the right. The
front-end, by using AngularJS, is implicitly built as a Model-View-Controller,
where the three modules represent each part.

• The external systems as the systems the customer is hosting for customers,
which will be sending the exception reports.

• The report receiver will be providing the API and receiving and handling
the reports.

• The processing module will be handling general system management and
configuration, though it might end up being removed.

• The database module is, as the name implies, a module for handling all
connections to the database, so that neither the receiving or processing
module, nor the API-module needs to have their own database connec-
tions.

• Syslog database is an external database, managed by the operations de-
partment, and will e read-only for this system.

• The database is a MariaDB-instance storing all the exception reports.

15

• The API-module will be providing the API for requesting exception data
and statistics for the front-end, and potentially for the mobile applications

• The data service is the front-ends model, and handles requesting data
from the back-ends API. As with the database connection this should be
handled by a single module for easier modification of the API and usage
of it.

• The controller is the controller module for handling timers and the data
flow to the view, and responding any input from the view.

• The graphics module is the view module, handling displaying everything,
and being the module receiving external input from users.

6.3 Time- and resource plan

This section features a breakdown of the workload for each person on the team
and the priorities for each person. Note that all numbers or percentages given
are approximations and not to be taken as more than guidelines.

For all the group members it is expected that about 10% of available working
time will be spent on group meetings and meetings with the supervisor and
customer. In addition it is expected that another 10% will be spent on updating
the project report and source code documentation, with the exception of the
group leader will which spend 20% or more on the report and documentation.

During pre-project phase
The group leader will spend 50% or more time on the project plan and related
documentation. The remaining time will be on learning Laravel and AngularJS,
and assisting in creating architecture and API-specification.

The rest of the group will spend approximately equal time (30/30/30) on
testing tools, learning Laravel/AngularJS, and architecture and API-specification.

During development phase
Vegard and Olafur will have their main focus on back-end development and the
reporting API. In addition Vegard will spend a days worth of work per week on
writing the report.

Lars and Aleksander will have their main focus on front-end development
and graphical design.

During pre-delivery phase Pre-delivery phase starts a month before the project
report delivery, when the system under development should be scope complete,
and remaining development work is code optimisation and fixing bugs. The
group leader will be spending about 50% of work on the project report, with
20% - or about a days worth of work - of assistance from each of the other group
members. The remaining time will for all group members be spent on said code
optimisation and bug fixing.

16

References

1 Innit AS. Historie [website]. Innit AS; 2015 [updated 2015; cited 2016.01.05].
Available from: http://innit.no/om-selskapet/.

2 Kniberg H, Skarin M. Kanban and Scrum making the most of both. InfoQ,
C4Media Inc.; 2010.

3 Otwell T, et al. Laravel Docs [website]. GitHub.com; 2016 [updated 2016;
cited 2016.01.25]. Available from: https://github.com/laravel/docs.

4 Papa J, et al. Angular Style Guide [website]. GitHub.com; 2016 [updated
2016; cited 2016.01.25]. Available from: https://github.com/johnpapa/
angular-styleguide.

5 Google. Google HTML/CSS Style Guide [website]. Github.io; 2016 [updated
2016; cited 2016.01.25]. Available from: https://google.github.io/styleguide/
htmlcssguide.xml.

6 Sahni V. Best Practices for Designing a Pragmatisk RESTful API [website].
Vinay Sahni; 2016 [updated 2016; cited 2016.01.25]. Available from: http:
//www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api.

7 Barashev D, et al. About GanttProject [website]. GanttProject Team; 2016
[updated 2016; cited 2016.01.18]. Available from: http://www.ganttproject.
biz/about.

17

A Group rules document

Figure 3: Signed group rules document

18

HEEE - Handler for Exceptionally Exceptional Exceptions

B Project Contract

102

HEEE - Handler for Exceptionally Exceptional Exceptions

C Meeting Summaries

C.1 Desember 2015 - Pre-Meeting with Innit

C.1.1 Things to read/learn

• Laravel
• Check out Homestead.
• Angular JS
• Taskrunners, e.g. Grunt or Gulp
• Syslog
• Yeoman.

C.1.2 What system should do

• Useing established standards is preferred. Check out Syslog
• Frontend in Angular JS:
• Must show choosable and filterable overview of exceptions
• Be able to filter on e.g. files, classes, modules, customers, exception types.
• Completely modular. Modulers should be easily replaceable
• Will get back to how much to make of the graphical.
• Backend in Laravel
• Receive, organise and store exception reports.
• Pre-specified format for the exception reports.
• Potentially create new issues in issue tracking system.
• Separate exceptions from development and from operations.
• To be run on Debian 8.
• Format: Currently manual handling of reports received in an IRC-channel.

C.1.3 Questions and answers

• Use as direct API or parsing of text from existing reporting channel? API, and likely
POST-calls with JSON-data or something like that. If there are good reasons
they can change the functionality for reporting in the existing systems.

• Requirements to format of data? Not certain yet, check out Syslog. Also check if
there are other good standards that could work.

• Special requirements for presentation of data? Look for other applications or
packages for presentation of data and generation of diagrams

104

HEEE - Handler for Exceptionally Exceptional Exceptions

C.2 016.01.13 - First Meeting with Innit

Meeting Summary Information meeting
Duration: 3 hours
Date: 2016.01.13

Present:
Joakim Jøreng, Marius Haugen (both Innit)
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: 2016.01.27

Announcements
No particular announcements were voiced.

Agenda for the meeting

• Discuss questions we sent to Innit earlier.
• Discuss framework choices and alternatives.
• Discuss extensions to the project.

Discussion
Most of the questions sent beforehand were satisfyingly answered, and we got answers
to a whole lot of other questions as well during the meeting. Generally it was an informa-
tional meeting, discussing the questions sent, ideas about architecture and system/mod-
ule separations. In particular some in-depth information about how best to modularize
the front-end system based on the experiences those at Innit have had.

Innit left us full freedom as to which development process we wish to follow, and supports
our choice of Kanban.

Retrospective discussion
Innit has the impression we are working well, and have no particular points to raise
regarding the progress we are making.

For next weeks

• Further familiarize ourselves with Laravel, Angular, and test the more optimized
API-specific micro-framework Lumen.

• Create more detailed outlines of system architectures and APIs/interfaces.
• Continue the current progress we are making on the project plan.

105

HEEE - Handler for Exceptionally Exceptional Exceptions

Meeting Questions Summary

• Authentication, login for the site or the API, or connection- and authentication-less?
State-less authentication? (Token being given after login, used until it expires) Idea
is that all systems that is to report are behind the local firewall. Isn’t priority
to build authentication for the API. All systems that will report are hosted at
Innit.

• Resolution, what res will the screen run at? Do we need to make a responsive design
for many devices? Presumably only large screens (1920x1080). Assume only large
screens. Don’t use large frameworks, try to keep it small and without too
many heavy dependencies. Small Bootstrap and equivalent is likely enough.
Can check out Foundation. Will be viewed on several screens. Don’t assume
any mobile sizes, most if not all screens will be 40-60 inches and full HD.

• What kind of data does the solution make? Some dummy data would be nice to
have so we can design our database around it. We decided to use MariaDB seeing
as we are looking at a format that fits relation databases well. Maybe at least some
screenshots of the IRC chatlog thing. We’ll get back to this. Can be taken over
mail/video meeting/other. There is currently one standard for the reports, but
they’re very adaptable as to new standards for it. All systems will always use
the same standard, thus if we have a proposal then all systems will receive
that quickly. We will receive a mail on this, and feel free to request updates on
it relatively often.

• We will make our solution compatible with Syslog, probably make two different
views to separate sysadmin from developer "feeds" on the GUI to separate the con-
tent (sysadmin probably has no interest in developer feeds). Do you use standard
syslog format, and what solution do you use presently to store/receive all the Sys-
log data? Would it be feasible to change your setup, so we could get Syslog/current
exception handling to post to our back-end. Otherwise we will create middleware
that receives Syslog messages on a specific port, then send it to our solution as a
POST. This probably the better option if you don’t want to change your current
setup. Aleksander can setup a Syslog server, so we don’t need dummy data for that
if you use a standard Syslog setup. We’ll get back to this. See answer to ques-
tion 3, about dummy data. Can be taken over mail/video meeting/other. No
current Syslog server at the moment, Aleksander will test out different solutions.
Probably end up talking to a syslog solution API instead of direct DB connection.
Innit Drift said they would give me a syslog switch if we needed, probably would
be cool. Linux server.

• Any preference on data type, we discussed using post and examining the data when
received what type it is and act accordingly. Potentially just have the exception
format be the same, so that any exception adapts the Syslog format. See answer
to question 3, about dummy data.

• Customisation, would you want to be able to change the format of incoming mes-
sages on the back-end easily, and/or be able to accept different types of exceptions
with simple configuration? Do you want us to make the back end very adaptable,
meaning it accepts a lot of different input types but processes it correctly? See
answers to question 3, about dummy data. All systems will use the same stan-
dardised format, and if a change occurs then it will propagate to all systems.

106

HEEE - Handler for Exceptionally Exceptional Exceptions

• Do you want us to make some sort of algorithm that sees if there are a lot of one
type of exception from one particular client/software and make an visual alert to
the developer that made it, or a general alert dashboard? There should be some
differentiated handling of different types of exceptions. E.g. PDO-/database
connection exceptions can be critical after the first, while NotFoundExcep-
tions are typical and isn’t a problem unless it happens way too much. Will
have to come back on the specifics, but keep it in mind. We’ll likely get a
overview system/report with generated exception reports, though it doesn’t
reflect the actual usage patterns. Self note: Test if a degradation-graph, where
each exception happening gives more "points", and then the "points" degrades

• We need information on the issue tracker, if we are going to automatically create
new issues when exception reports come in. Not prioritised, only a bonus for
Innit. They use JIRA, and it would be nice to have, but only if we have time.
Can have it propose issues while each issue have to be accepted manually.
That way somebody knows it has been added, and it won’t potentially spam
the issue tracker with erroneous/useless/unnecessary data. If done, prefer to
have it done on the front-end through the back-ends API.

• Are there different issue types, eg. minor, major, critical? Do you want them han-
dled differently? Possibly the internal Syslog types? See answer to the algorithm
for handling different types of exceptions. This will be further handled later,
doesn’t have a perfect answer yet.

• Ownership/copyright of the code and repository? Innit will own and control
repository.

• Are you going to control the database, alternatively you have an existing Syslog
database? We can just do pretty much what we want, and they’ll adapt their
software and get it set up on the server.

• Configuration-file or web-interface for configuration? Go with web-interface. In
particular it is by far preferable in order to handle all things issue-related (see
question about issue tracker).

Import things to note:

• Do injections properly
• Have some proper overview of the modules that are used.
• Be certain about best practices for single page vs. multi-page sites with Angular.
• Could be fun with ‘leaderboards’ for whom generates the most exceptions.

Things to be able to sort by

• Customer
• Class
• File
• Module
• Type of exceptions
• Meeting every other week.

107

HEEE - Handler for Exceptionally Exceptional Exceptions

C.3 2016.01.19 - Second Meeting with Innit

Meeting Summary Q&A Skype meeting
Duration: 1 hour 20 minutes
Date: 2016.01.19

Present:
Joakim Jøreng, Ronny Bohrmann (both Innit)
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: 2016.01.27

Announcements
Unplanned Q&A meeting. Requested by both parties and agreed upon the day before the
meeting.

Agenda for the meeting

• Questions relevant to architecture, API-specification and development.

Discussion
See appended Q&A-sheet for the questions discussed.

108

HEEE - Handler for Exceptionally Exceptional Exceptions

Meeting Questions Summary

• Should one be able to filter by customers? Does a customer have more than one
system?
It is relevant to get information about which user was using the system when
the exception was created, instead of actual filtering per user/customer. Can
have the actual username that caused the exception as part of the normal
reporting data, instead of The "Client"-part in the API specification is which
application, not the actual customer or user. No need to take special care
about this. Could be added some particular information about customer/user,
e.g. ID, username, email, other relevant fields.

• What languages are you using in house?
Mainly PHP and Javascript. All languages will be using the same format. The
actual type, line number + character column, and stacktrace dump can be dif-
ferent depending on languages, but this shouldn’t be a problem as it’s handled
as text.

• Do any of the systems share users, or are there unique users for every system? Say
John Doe can also show up in other systems. Would it be beneficial to have a list of
users encountered, or just have the information coupled with the exception in case
of problems with that specific user account (Credentials, permissions and the likes)
See answer to question 1. Generally no, not in a way that we specifically have
to take care of.

• The field "location" in the log-message. How would an eventual "client" be han-
dled there? Would it first send it to an internal system and then forwarded to
us? An exception happening in our system (during development) would be a
client-exception instead of server. Another way to check would be that most
Javascript-exceptions (Except for Node) would be client exceptions. Set lo-
cation to client when? Client would help separate between errors in the
APIs/back-end systems and errors happening client-side, like in the browser/on
clients machine. All messages will be sent through the systems, none directly
from the client machine.

• Do you use any custom exceptions in your applications, or do you only use the
standard variants, like PDOException, NotFoundException? They do have some
custom exceptions. Need to have dynamic adding of new types of exceptions
added after the system is created. Aka. definitely no manual adding of types
in the database.

• Syslog. What kind of gear? Seems that most manufacturers that use syslog doesn’t
follow the same log format. We need to know what kind of equipment that we
should support. Web servers? Switches? HP or Cisco gear? We’ll be borrowing a
switch from operations to get the exact Syslog format used.

• Custom E-mail warnings if something user defined happens(or doesn’t happen?),
is this something you want? Don’t know. This can be a potential feature if we
have leftover time.

• Could there be any privacy related issues from the exception reports? There are
possibilities for this, but will be handled by Innit. Not an issue for development
for us

• Specific license for the system? Is important for what code and what graph mod-

109

HEEE - Handler for Exceptionally Exceptional Exceptions

ules/tools can be used. Will come back to this on next meeting
• Will/should state information of the machine/server be sent as part of the reports,

and handled thus? Not really important as of now. Make opening for adding
this later, since it might not be very far into the future.

• Severity based on type of exception? "Hardcode" manually into database or into
source code, or have it in a separate config file? Should be done in a separate
config file on the back-end, but the information will be loaded to the front-end.
Depends a little whether statistics will be calculated on back-end or front-end,
and how the information is delivered. Manual adding of severity "points" in
the config is most preferable. For the heatmap, the heat will always have to
be separated on which application/installation in addition to which type of
exception. Naturally this will be filterable manually.

• How are different installations of the same application separated? The application
name will be the same, but the URL will be different depending on which
installation is reporting. Different versions will be reported how?

• Authentication for exception reports API? We don’t have to create authentica-
tion, but should be possibilities for adding it later. Possibilities for extending
should be handled by the system being fully modular. We can assume that all
external system uses SSH or VPN to the local network.

110

HEEE - Handler for Exceptionally Exceptional Exceptions

C.4 2016.01.27 - Third Meeting with Innit

Meeting Summary General discussion
Duration: 1 hours 30 minutes
Date: 2016.01.27

Present:
Joakim Jøreng (Innit)
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: Not planned.

Announcements
No particular announcements were made.

Agenda for the meeting

• Accept and sign the project contract.
• Display the low-fi prototype for front-end
• General information

Discussion
Discussed the questions appended below.

111

HEEE - Handler for Exceptionally Exceptional Exceptions

Meeting Questions Summary

• Specific license for the system? Is important for what code and what graph mod-
ules/tools can be used. We’re going with MIT-license.

• Modular vs fixed design. (Show image). Will be going with fixed design that
can be configured per part in the design. Prefer to have the heatmap as a all-
page background colour rather than a single limited coloured box. Be careful
with nuances of the colours, while keeping the other data readable. Heatmap
should only be for the one most critical application. We’ll be talking with
Eivind regarding usability and general UX. Have several different types of
static sites that can be switched between, while not fully configurable without
creating new sites/changing the code per site. Have one overview that’s not
intended to be clicking anything at all, for the main screen overview. Separate
overviews that are intended for actual interaction, for when it’s accessed lo-
cally individually. Assumption that when something goes wrong, one will have
to check it manually for further information.

• State of syslog

◦ syslog(LOG_ERR, "Something bad has happened");
◦ Switch
◦ We have Apache/PHP logs working

• What kind of features would be good? If we have time, what extra features would
you like the most?

◦ Authentication Not very interested.
◦ Mobile hybrid app (iPhone + Android) As of now, the most preferable al-

ternative.
◦ JIRA integration/issue tracker Likely too annoying for the developers, not

preferable.
◦ End-of-the-month-reporting. Combines all the data at the end of the month,

and sends out a summary report to ‘insert group of people’. May also contain
particular trivia, e.g. who to blame for the most exceptions.

Most preferable feature: hybrid mobile app. A system where users "subscribe"
to applications, and receive push-notifications if one of the subscribed applica-
tions goes critical. Second most preferable feature: end-of-the-month-report.

• Only integration with JIRA for issue tracking, or more generic integration with
issue trackers?

Import things to note:

• Consider which kinds of meta-information are interesting to display and play around
with. E.g. icons for the source of the exception, like server-icon for server side ex-
ception, client-icon for client-side, etc.

• Check out Ionic for creating hybrid phone apps.

112

HEEE - Handler for Exceptionally Exceptional Exceptions

C.5 2016.03.07 - First Demo Meeting with Innit

Meeting Summary Demo and feedback
Duration: 2 hours
Date: 2016.03.07

Present:
Ronny Bohrmann, Joakim Jøreng, Marius Haugen (Innit)
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: No date set.

Agenda for the meeting

• Displaying a demo of the system. Front-end connected to the back-end.

Discussion
The severity of most exception types are more difficult to set beforehand, because it can
both depend on which application, installation, and the context of the use. E.g. it would
be worse to get a 404 or similar with a POST-request compared to a GET-request. Seems
most likely to have a severity set per exception type in the config, and have an additional
context-based severity rating that is made based on some kind of config-input done later.

Perhaps the reports themselves should send the rating if it’s supposed to have one,
and if there isn’t a rating, then it’ll either be set as unrated, or simply a middle-ground.
A potential problem is where exceptions aren’t caught correctly, and thus will report the
cause as "storage file" or something similar, even though the issue is actually somewhere
else. Is rather important to have the system automatically identify the same exception-
s/error situations happening several times in a limited time. Check later whether this is
dependent of time or not, and within how long a time frame.

For next week(s)

• Should be able to filter on the front-end based on if it’s development, testing or
production environment. Should also be shown which environment an exception is
from, default to production only

• Check that filtering on version is possible, and that version is displayed.
• Check that the list of applications doesn’t become a list too far down.
• Check parsing of base URL whether an application or installation already exists, or

to add a new one.
• Config option whether to send exceptions to the system or not during development.
• Add feature to set an exception for review. I.e. it has to be manually marked as seen.

Can have some kind of local installation of the system for receiving the exceptions,
so that the developer himself can review the exceptions received.

• Can add that heat-calculation uses a context-severity rating in the report multiplied
with the exception type severity rating. The exception type severity rating will be
set in config, and the context-severity rating will be set somewhere else, but where
is not certain yet.

113

HEEE - Handler for Exceptionally Exceptional Exceptions

C.6 2016.04.26 - Second Demo Meeting with Innit

Meeting Summary Demonstration
Duration: 1 hour 30 min.
Date: 2016.04.26

Present:
Joakim Jøreng, Marius Haugen, Ronny Bohrmann
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: No date set

Announcements
No particular announcements were made.

Agenda for the meeting

• Demonstration of feature complete system.
• Receive final feedback on small things to improve.

Retrospective discussion

• While reading a single exception, bold the start of each line, for easier reading.
• Make a reasonable README.txt for installation and simple use.
• Increase size and readability of the report view. Have the first one automatically be

un-minified.
• Check that all views are in proper containers.
• Try out having the heat colour as a large bar on the top or bottom 1/3 of the status

view, so it doesn’t make the graph unreadable. Alternatively have the colours start
from white instead of green, aka. going white to yellow to red.

114

HEEE - Handler for Exceptionally Exceptional Exceptions

Meeting Questions Summary

• Should anything be built to be cached? Up to the team’s best judgement.
• Any further endpoint/data sets than what we have thus far? Not that Innit can

come up with immediately.
• Should we avoid skewing the results on the front page due to some applications

having far more installations, and some installations having far more users than
the others? Perhaps use an exponential function to reduce the effect it has. Not
within the scope of the project.

• How far back should historical heat data be stored? Just store everything. Not
large enough amount of data to become an issue.

• How far back should historical data be changed when as severity rating be changed?
Max a week perhaps? A week would be nice, but as of now recalculation will not
be implemented due to its limited benefit compared to the potentially major
pitfalls it can cause. In particular how to avoid concurrency issues if multiple
updates to the same severity rating are attempted at the same time.

• Should the current heat be reset at some time? Perhaps each night, or each end
of week? No point watching leftover heat from previous week at least, though
perhaps from the weekend is relevant, thus resetting Friday night, so one can see
if stuff failed during the weekend. No need, let the degradation handle avoiding
spillover heat affecting new days and weeks.

• Do you want to be able to change severity ratings for exception types in the front-
end, or only do it in the database itself? Changing is potentially risky, and can
demand a high amount of recalculation of historic data, depending on answers to
the previous questions. See question 5; recalculation will not be implemented.

• How often do you want historic heat data to be stored? Are you likely to change
how often to store? Up to the team’s best judgement.

• Should one be able to remove fixed exception occurrences from the graph, and
thus remove its contributed heat? This will require a fair bit of extra logic and state
being stored, in order to remove only the proper degraded amount of heat from a
fixed exception, instead of its initial heat added. E.g. a report that three hours ago
added 10 heat to the graph, and just now was fixed would (with 50% degrading
per hour) remove 1.25 heat now: 100.5

3

= 12.5% of initial heat to be removed. No
need.

115

HEEE - Handler for Exceptionally Exceptional Exceptions

C.7 2016.05.13 - Final Demo Meeting with Innit

Meeting Summary Demonstration
Duration: 50 minutes
Date: 2016.05.13

Present:
Joakim Jøreng, Ronny Bohrmann (Innit)
Vegard Solheim, Aleksander Steen, Lars Walter Westby, Olafur Trollebøe
Next meeting: No more meetings

Announcements
H3E is complete and the team will be delivering the thesis report later the same day.
Innit will take over the repositories by copying the entire repositories and uploading it to
their own repositories.

Agenda for the meeting

• Demonstration of the finished H3E-system

Discussion Innit is very satisfied with the solution we have created for them. There were
some small quality-of-life improvements that could be made regarding clicking check-
boxes, gradients and fonts. These are small configurations we will make for Innit in the
coming few days. We will dismantle our systems after the thesis presentation is com-
pleted.

Retrospective discussion
The development process has worked out very well, and the team has noticeably taken
in all constructive criticism and used it to improve the solution. The communication
between the team and Innit could have been better, in part because Innit has been very
busy during the spring.

116

HEEE - Handler for Exceptionally Exceptional Exceptions

C.8 2016.04.15 - GUI Feedback Meeting

• Exceptions: Take care with the contrast in e.g. the heat map and similarly.
• Exceptions: What are normal numbers for heat. Can show what the maximum val-

ues for the colours on the heat map. Preferably the same for the full-screen heat
map.

• Exceptions: Could move colours in the list of latest exceptions to just before the
name of the exceptions. Can also symbolise colour with amount of "flames" or
similarly. Preferably have some way of showing which exception belongs to which
hour. Can also remove the year and month from the date, and perhaps even day.
Columns sorted as "timestamp" "heat indicator" "exception name". Make certain it
is easy to read what belongs to each line. Can have a tiny bit more space between
each line. Add which application an exception occurred in.

• Exceptions: Higher contrast on the menu buttons. Colour contrast analyser.
• Applications: Could set grey as undefined. Black is a little too "beyond critical".
• Applications: Space between each character in the name labels for the graphs (let-

ter spacing).
• Applications: "All applications" overview have a tile-based overview, showing which

applications have the most heat.
• Applications: On each application the graph can show per installation/customer,

not per exception type.
• Applications: The same columns in the exception types list as in the exceptions

view. Change list to list of exceptions types with a counter for how many times
that type has occurred, and a type does not repeat in the list but rather have an
"expand" functionality for showing all.

• Syslog view: fix list in better way, e.g. severity as small colour box.

117

HEEE - Handler for Exceptionally Exceptional Exceptions

D API Structure

All arguments to routes or return values are listed in bullet points.

Exception Handler API example usage

All routes are configured to use these return values:

• Request that yield data: Content and status code 200 (OK).
• Request that yield no data: Empty array and status code 200 (OK).
• Invalid item ID: "Resource not found" and status code 404 (Not Found) E.g /excep-

tions/0).
• Invalid URL (Non-existent route): "Resource not found" and status code 404 (Not

Found).
• Invalid query (Failed validation): Array with error messages and status code 422

(Unprocessable Entity).

D.1 Exceptions route

/exceptions/
Lists all exceptions

Arguments specific to /exceptions/:

• after=:exceptionID – Gives all exception data received after a given ID, e.g:
after=50 gives exceptions from 51 and later.

• from=:timestamp – Gives all exception data received after a given times-
tamp, e.g: from=2016-01-01T13:10:23Z gives everything received after that
timestamp. Can be used in conjunction with to=:timestamp for a granular
search of dates.
NB: ‘from’ and ‘after’ are mutually exclusive. Can only use one or the other.

• installation_ids=:installationIDs – Shows exceptions that belongs to any of
the installation IDs, given by a comma-separated string.

• exception_type_ids=:exceptionTypeIDs – Shows exceptions that has any of
the exception types IDs, given by a comma-separated string.

• application_ids=:applicationIDs – Shows exceptions that belongs to any of
the application IDs, given by a comma-separated string.

• search=:string – Shows exceptions that contain the string given.

/exceptions/:exceptionID
E.g: /exception/53 List a specific exception by ID

Special notes:
This route sorts by default with ID decrementing, as well as having a default limit
of 1000 records returned. This can be overruled by specifying ‘limit’ or ‘orderby’
parameters in the URL referenced in ’Supported global arguments across all routes’

118

HEEE - Handler for Exceptionally Exceptional Exceptions

D.2 ExceptionTypes route

/exceptionTypes/
Lists all exceptionTypes

/exceptionTypes/:exceptiontypeID
E.g: /exceptionType/2 List a specific exceptionType type by ID

D.3 ExceptionContexts route

/exceptionContexts/
Lists all exception contexts

/exceptionContexts/:exceptionContextID
E.g: /exceptionContexts/2 List a specific exception context by ID

• application_id=:applicationID – Gives all exception contexts data about all in-
stallations of a given application.

• context_ids=:contextIDs – Shows exception contexts that has any of the IDs,
given by a comma-separated string.

D.4 Severity Rating route

/severityRatings/
Lists all exceptionTypes

/severityRatings/:severityRatingID
E.g: /exceptionType/2 List a specific severity rating by ID

severityratings/application/:applicationID
E.g: severityratings/application/2 Lists the severity rating of each exception type
for a given application by ID

D.5 Applications route

/applications/
Lists all applications

/applications/:applicationID
E.g: /applications/1 List a specific application by ID

D.6 Installation route

/installations/
Lists all installations

/installations/:installationID
E.g: /installations/1 List a specific installation by ID

119

HEEE - Handler for Exceptionally Exceptional Exceptions

• application_ids=:applicationIDs – Shows installations that belongs to any
of the application IDs, given by a comma-separated string.

D.7 Reports route

/reports/
Index list with links to every report type.

/reports/monthly
Lists all End-Of-Month reports

/reports/monthly/:year-month
E.g: /reports/monthly/2016-03 List a specific End-Of-Month report

/reports/yearly
Lists all End-Of-Year reports

/reports/yearly/:year
E.g: /reports/yearly/2016 List a specific End-Of-Year report

All endpoints without specified dates support these arguments:

• from=:date - Gives all exception data received after a given date, E.g: since=2016-
01-01 gives everything received after that date, unless an upper limit is given with
to=:date

• to=:date - Gives all exception data received up to a given date, E.g: to=2016-02-
02 gives everything received before that date, unless an lower limit is given with
from=:date.

D.8 Statistics route

/statistics/
Lists all statistics

/statistics/total
Lists the total number of statistics by severity

/statistics/application/:applicationID
List the latest statistics for a given applications ID

/statistics/application/:applicationID/total
List the total statistics for a given applications ID

/statistics/installation/:installationID
List the latest statistics for a given installations ID

/statistics/installation/:installationID/total
List the total statistics for a given installation ID

/statistics/exceptiontype/:exceptionTypeID
List the latest statistics for a given exception type ID

120

HEEE - Handler for Exceptionally Exceptional Exceptions

All non-total endpoints support these arguments:

• from=:date - Gives all exception data received after a given date, e.g: since=2016-
01-01 gives everything received after that date, unless an upper limit is given with
to=:date

• to=:date - Gives all exception data received up to a given date, e.g: to=2016-02-
02 gives everything received before that date, unless an lower limit is given with
from=:date.

• modes=:modes - Allows filtering on modes, given in a comma-separated string.
If only production statistics should be shown, modes=production is used. If both
production and test should be shown, modes=production,test.

D.9 Graph route

/graphs/
Index list with links to every graph type.

/graphs/application/:applicationID
Show graph data for a specific application ID.

/graphs/exceptiontype/:exceptionTypeID
Show graph data for a specific exception type ID.

/graphs/mixed
Show graph data for multiple application IDs and exception type IDs. Used when
you have more than one of both types.

/graphs/total
Show graph data for all application IDs and exception type IDs as a single data-
point.

• mode=:mode - Which mode to use, must be either heat or exceptioncount
• timespan=:timespan - The timespan to fetch graph data about. If the value is 1,

the last 24 hours will be fetched. Everything else will be handled in days.
• application_ids=:applicationIDs - Comma-separated list of application IDs to fetch

information about. Only has value in either the exceptiontype or mixed route, does
nothing in application.

• exception_type_ids=:exceptionTypeIDs - Comma-separated list of application IDs
to fetch information about. Only has value in either the application or mixed route,
does nothing in exceptiontype.

D.10 Syslog route

/syslog/
Lists all syslog data

/syslog/:syslogID
List syslog data by ID

/syslog/hosts
Lists all syslog hosts

121

HEEE - Handler for Exceptionally Exceptional Exceptions

/syslog/hosts/:syslogID
List syslog entries by ID

• ignored=:yes/:no – retrieves only syslog hosts that is either ignored or not ignored
• gt=:number – retrieves only entries with priority higher than the number given
• lt=:number – retrieves only entries with priority less than the number given gt

and lt must be between 0 - 7, including endpoints. If outside bounds, not given, or
otherwise invalid, default values are used that retrieves every single entry.

• host=:name – retrieves all entries from a specific host

D.11 Supported global arguments across all routes

All endpoints can handle chunking of data, by using any of these parameters:

limit=:limit – Limits the result-set returned by the server to a given number.
If offset is not set, it will return the first results in the database.

offset=:offset – Offset the result set returned by the server from a given num-
ber. If limit is not set, it will return everything from the offset provided.

order_by=:fieldname – Order by any field, e.g line, file etc. Default behavior
is ascending, but by putting a "-" before the field will order descending, i.e. "-id".

122

HEEE - Handler for Exceptionally Exceptional Exceptions

E Refactored Code

This Chapter contains examples of code that has been refactored to satisfy the require-
ments for the course Professional Programming, in which we are to with our Bachelor
Thesis and the system development process in a professional manner. It will contain sev-
eral links to the relevant commits for the code that is being refactored, from the initial
code that needed refactoring to the finished code, and any intermittent refactoring work
that we see as relevant.

E.1 Front-end

E.1.1 Grapher.Controller

The first example of refactored code is a function that receives either statistical data
or straight up exception data, and converts it into a format required by the graphing
package we are using. The example is the formatToGraph function, found on line 468
onwards in the following direct historic link.

https://bitbucket.org/exhandle/h3e-frontend/src/c9210f925464f0d65195ce4df00e
5618bc150f32/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default
#grapher.controller.js-468

To list the issues with the initial implementation.

• The function is far longer than it should be
• It is not sufficiently documented, the amount and explanatory value of the com-

ments is poor.
• There are lots of non-informative variable names.
• It has a large amount of indentation that worsens readability.
• It has several long array specifiers which would be far more readable if made into

temporary local variables.
• There are large chunks of code that could and should be put into separate functions.

Refactored

In the following link, the code has been greatly refactored, and while it has expanded
from about 130 lines to 370 lines, much of that is separating functionality out into their
own functions, and large amounts of comments and whitespace. The functionality is
largely unchanged, but the readability has been greatly improved through fixing much
of the issues listed in the previous paragraph. https://bitbucket.org/exhandle/h3e-fro
ntend/src/a0bf2527252185c33a59fcefc2c30863fa4f2a0e/app/shared/grapher/grapher.
controller.js?fileviewer=file-view-default#grapher.controller.js-467

Refactored Again, Functionality Moved to Back-end

Also see Section 6.3.1 for the discussion on how we ended up refactoring it away from
the front-end altogether. The new code for the graph controller file can be seen here.

123

https://bitbucket.org/exhandle/h3e-frontend/src/c9210f925464f0d65195ce4df00e5618bc150f32/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-468
https://bitbucket.org/exhandle/h3e-frontend/src/c9210f925464f0d65195ce4df00e5618bc150f32/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-468
https://bitbucket.org/exhandle/h3e-frontend/src/c9210f925464f0d65195ce4df00e5618bc150f32/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-468
https://bitbucket.org/exhandle/h3e-frontend/src/a0bf2527252185c33a59fcefc2c30863fa4f2a0e/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-467
https://bitbucket.org/exhandle/h3e-frontend/src/a0bf2527252185c33a59fcefc2c30863fa4f2a0e/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-467
https://bitbucket.org/exhandle/h3e-frontend/src/a0bf2527252185c33a59fcefc2c30863fa4f2a0e/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default#grapher.controller.js-467

HEEE - Handler for Exceptionally Exceptional Exceptions

https://bitbucket.org/exhandle/h3e-frontend/src/35c4736a4a812a3e5f8e17ab8693
5348ea960a6f/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default

The code on the back-end that replaces the front-end code for transforming data into
the correct format can be seen here.

https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68
667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-defau
lt

E.2 Back-end

There has been much refactoring of smaller pieces of code on the back-end. The biggest
single refactoring event was in early May, involving major changes in the graphs con-
troller.

E.2.1 Graph Controller

After moving much functionality for the graph data format to the back-end
a few days earlier, the refactoring mentioned in Section E.1.1, we sat with a
reasonably large single blob of code that did everything. This blob even in-
cluded functionality to zero-pad the data for days/hours for empty hours/days.
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667f
a3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default

The code was not completely unreasonable, though there were a good bit of ad hoc
solutions that should be simplified and generalised. Some parts also required more com-
menting. For instance the functions ‘getHeatTimespanHourly’, ‘getHeatTimespanDaily’
and ‘getMixedExceptionCountTimespanDaily’ have been visibly shortened by better judg-
ing of what could and should be done on the front-end or the back-end.

In particular we noticed that zero-padding hours/days that had no exceptions was far
better to do on the front-end since it had all the keys required in the form of the very
labels that had been selected by the user. It was a typical example of refactoring and
moving some code, and ending up moving too much.

This refactoring resulted in a rather good bit cleaner code that did exactly
what it is intended to and nothing more; only serving the information requested.
Note that there are a large amount of if-else cases, and many functions seem
to be doing quite similar things. We considered all of this but found ourselves
unable to generalise them away without hurting readability more than benefit-
ing it. https://bitbucket.org/exhandle/h3e-backend/src/401061cf548d/app/Http/Con
trollers/GraphController.php?fileviewer=file-view-default

E.2.2 Refactoring to adhere to code standard

Another case of back-end refactoring was in the syslog controller. While not inherently
bad code, we did some work on it to make sure it adhered to the coding style and
standards we had established, for instance:

• Curly brackets should be to the right of a declaration, not on the next line.
• Making use of Eloquent functions for database queries when possible, instead of

using raw SQL-queries.
• When handling structured input, like JSON, transform it into an array/collection

124

https://bitbucket.org/exhandle/h3e-frontend/src/35c4736a4a812a3e5f8e17ab86935348ea960a6f/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-frontend/src/35c4736a4a812a3e5f8e17ab86935348ea960a6f/app/shared/grapher/grapher.controller.js?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/0c93bc53689a4057cefb2dfad68667fa3334bc3a/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/401061cf548d/app/Http/Controllers/GraphController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/401061cf548d/app/Http/Controllers/GraphController.php?fileviewer=file-view-default

HEEE - Handler for Exceptionally Exceptional Exceptions

for easier validation and handling.
• Using brackets ‘[]’ instead of ‘array()’ to submit an array into a function. Variables

should use ‘array()’ for the more verbose readability, making the intention com-
pletely clear to the reader.

The initial code is available here: https://bitbucket.org/exhandle/h3e-backend/src/f
8691cd75179604567c585b3586be66afdd5ea18/app/Http/Controllers/SyslogControlle
r.php?fileviewer=file-view-default

The result of this refactoring was a fair bit shorter code that adhered to our coding
style and standards. While this should always be ascertained before a pull request
is accepted, e.g. through the linting, this file managed to slip through the reviews.
https://bitbucket.org/exhandle/h3e-backend/src/25b07bba1c50375fb3998980bf09cc
cf57ed47da/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default

125

https://bitbucket.org/exhandle/h3e-backend/src/f8691cd75179604567c585b3586be66afdd5ea18/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/f8691cd75179604567c585b3586be66afdd5ea18/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/f8691cd75179604567c585b3586be66afdd5ea18/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/25b07bba1c50375fb3998980bf09cccf57ed47da/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default
https://bitbucket.org/exhandle/h3e-backend/src/25b07bba1c50375fb3998980bf09cccf57ed47da/app/Http/Controllers/SyslogController.php?fileviewer=file-view-default

HEEE - Handler for Exceptionally Exceptional Exceptions

F Images

Here follows sketches made during group discussions throughout the development pro-
cess, images that did not fit elsewhere in the report but are referred to for completeness.

Figure 1: Concept-code for heat recalculation.

126

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 2: Front-end overview. This is the starting view of the front-end, and contains two
customisable graphs, the latest incoming exceptions, a search field, and an overview of
exception types generating the most heat.

Figure 3: Graph settings. This is the settings window for customising what data to show
in the graphs.

127

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 4: Displaying a single exception report. Note that this is test-data, it is not a real
person.

Figure 5: Application overview. Each box is a link to each application, and changes colour
depending on the heat of the application.

128

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 6: Syslog display. The left navbar are all devices sending syslog reports. The left
part of the screen are the most critical syslog reports as described by the standard, sorted
in descending order of arrival. The right part are all syslog reports, sorted in descending
order of arrival.

Figure 7: Report display. This is the automatically generated monthly report feature,
displaying the overview page. It contains the number of exceptions per year, split by
production, development and test modes, along with a pie chart. Below it shows the
total number per application.

129

HEEE - Handler for Exceptionally Exceptional Exceptions

Figure 8: Report display. This displays all exceptions in a year, split by each application
and the mode (production, development or test), along with a line graph of the data.
Below the same data is displayed per month.

130

HEEE - Handler for Exceptionally Exceptional Exceptions

G Readme

This is a tutorial for setting up the "HEEE" front-end and back-end respectively.

G.1 Front-end

Dependencies

• Webserver of your choice. Tested with Apache2.
• Node.js - 0.12 or later. If earlier is wanted, such as 0.10 from apt package, remove

minification of css in gulp’s build task (cssnano).

Setting up the front-end

Option A: using the latest built version

1. Copy the "build" folder from the repository
(git@bitbucket.org:exhandle/h3e-frontend.git) into the web root.

2. Configure app/appConfig.js to match the backend setup.

Option B: building the app from source

1. Pull the repository down (git@bitbucket.org:exhandle/h3e-frontend.git)
2. Run ’sudo npm install - -production’ (double dash) and ’sudo bower install - -allow-

root (double dash) in the directory. If there is a warning about mismatch, pick the
latest.

3. Configure app/appConfig.js to match the backend setup.
4. Run ’sudo npm run build’ to build the application and generate a build folder.
5. Place the aforementioned folder into the web root.

131

HEEE - Handler for Exceptionally Exceptional Exceptions

G.2 Back-end

The setup has been tested extensively on Ubuntu 14.04 LTS. Should however work on
other Debian based operating systems.

Dependencies

All dependencies except PHP 7 and MariaDB exists in the apt repository. Other versions
might work, but only tested with these:

• rsyslog - 7.4.4-1 or later
• rsyslog-mysql - 7.4.4-1 or later
• PHP version: 7.0.3-9 or later
• 10.1.13-MariaDB or later
• Git
• Webserver of choice (Tutorial assumes Apache)

Installing and configuring the back-end

Enable download of MariaDB and install:

$ sudo apt−get i n s t a l l software−proper t i e s−common
$ sudo apt−key adv −−recv−keys −−keyserver hkp :// keyserver .

ubuntu . com:80 0xcbcb082a1bb943db
$ sudo add−apt−r e p o s i t o r y ’ deb [arch=amd64 , i386]
ht tp :// lon1 . mir ror s . d i g i t a l o c e a n . com/mariadb/ repo /10.1/ ubuntu

t r u s t y main ’
$ sudo apt−get update
$ sudo apt−get −y i n s t a l l mariadb−s e r ve r

Enable download of PHP7 and install plus required packages:

$ sudo apt−get i n s t a l l software−proper t i e s−common
$ sudo add−apt−r e p o s i t o r y ppa : ondre j /php
$ sudo apt−get update
$ sudo apt−get −y i n s t a l l php7 .0 php7.0−mbstring php7.0−xml

php7.0−mysql

Download rest of the dependencies:

$ sudo apt−get −y i n s t a l l r s y s l o g r sy s log−mysql apache2
l ibapache2−mod−php7 .0 g i t

Clone and pull down the repository:

$ g i t c lone username@bitbucket . org : exhandle /h3e−backend . g i t /
tmp/h3e−backend

Move repository to location to www data and chown it:

$ sudo mv /tmp/h3e−backend / var /www/
$ sudo chown www−data :www−data / var /www/h3e−backend
$ sudo chmod −R o+w / var /www/h3e−backend/ s to rage

Move the old webroot and symlink the public folder to the webroot:

132

HEEE - Handler for Exceptionally Exceptional Exceptions

$ sudo mv / var /www/html / var /www/html−old
$ sudo ln −s / var /www/h3e−backend/ pub l i c / var /www/html

Install Composer modules:

$ sudo php / var /www/h3e−backend/composer . phar s e l f −update
$ sudo php / var /www/h3e−backend/composer . phar i n s t a l l

Create database and user:

$ mysql −u root −p
Enter the password you chose dur ing i n s t a l l a t i o n o f MariaDB .

MariaDB > CREATE DATABASE ‘ h3e−backend ‘ ;
MariaDB > CREATE USER ’ h3e−backend ’@’ l o ca lho s t ’ IDENTIFIED BY

’ SecretPW ’ ;
MariaDB > GRANT ALL PRIVILEGES ON ‘ h3e−backend ‘ . ∗ TO ’ h3e−

backend ’@’ l o ca lho s t ’ ;

Move and edit the environment file:

$ sudo mv . env . example . env
$ sudo php a r t i s a n key : generate
$ sudo v i . env

Ensure tha t APP_KEY i s s e t to a va lue s t a r t i n g with base64 .
Change the DB_DATABASE , DB_USERNAME and DB_PASSWORD to what

you chose on the p r e v i o u s s t e p .
A l so change DB_DATABASE2 , DB_USERNAME2 and DB_PASSWORD2 to

t h e s e va lue s ,
i f you l e t r s y s l o g do the s e tup f o r you .

DB_DATABASE2 = Sys log
DB_USERNAME2 = r s y s l o g
DB_PASSWORD2 = (The password you chose in the d ia log during

i n s t a l l o f r s y s l o g)

Opt iona l
Change the v a l u e s o f the f o l l o w i n g two v a r i a b l e s i f need by .
They c o n t r o l the p e r c e n t tha t the heat c a l c u l a t i o n u s e s f o r

degradat ion , as w e l l as how o f t e n i t o c c u r s .
DEGRADATION_PERCENTAGE=10
DEGRADATION_TIMING_MINUTES=1

Migrate the database tables:

To c r e a t e the database s t r u c t u r e , a r t i s a n must be run .
However the database u s e r a l s o r e q u i r e s the

SUPER p r i v i l e g e f o r the i n i t i a l se tup , so we w i l l grant t h i s
and then revoke i t a f t e rward s .

mysql −u root −p
Enter the password you chose dur ing i n s t a l l a t i o n o f MariaDB .

MariaDB > GRANT SUPER ON ∗ .∗ TO ’ h3e−backend ’@’ l o ca lho s t ’ ;

133

HEEE - Handler for Exceptionally Exceptional Exceptions

Run the migrat ion :
$ sudo php a r t i s a n migrate : r e f r e s h

#I f a l l s u c c e ed s , we can revoke the super p r i v i l e g e s .
mysql −u root −p
Enter the password you chose dur ing i n s t a l l a t i o n o f MariaDB .
MariaDB > REVOKE SUPER ON ∗ .∗ FROM ’ h3e−backend ’@’ l o ca lho s t ’ ;

Check that it works: That is everything required to set up our backend. Try navigating to
the root document at server/v1/

If it shows an information documentation, you are good to go.

If however you get an 404 ’Page Not Found’ error, mod_rewrite is not enabled or the
.htaccess is not allowed to override the configuration.

Enable mod_rewrite :
Enable the mod and r e s t a r t Apache2
$ sudo a2enmod rewr i t e && sudo s e r v i c e apache2 r e s t a r t

I f the page s t i l l i s not shown , you need to al low over r ide .

Allow over r ide
Ed i t the D i r e c to ry fo r / var /www/ in the con f i gu ra t i on f i l e f o r

apache2 (/ e t c /apache2/apache2 . conf) .
sudo v i / e t c /apache2/apache2 . conf
Change AllowOverride from None to A l l

<Di rec to ry / var /www/>
Options Indexes FollowSymLinks
Al lowOverride A l l
Require a l l granted

</Direc tory>

Res t a r t Apache2
sudo s e r v i c e apache2 r e s t a r t

134

Detailed report
2016-01-04 - 2016-05-13

541 h 14 min 00 h 00 minTotal Billable

Bachelor thesis, Professional Programming selected as projects

Date Description Duration User
01-04 Report and project plan. Considering tools 06:00:00 Vegard Solheim

Bachelor thesis - [Project plan, Project report, Research] 09:00-15:00

01-05 Project plan. 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan, Project report, Research] 09:00-16:00

01-06 Work on project plan. Considering architecture 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan, Research] 09:00-16:00

01-07 Project plan. Learning tools 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan, Research] 09:00-16:00

01-08 Project plan. Learning Laravel 06:00:00 Vegard Solheim

Bachelor thesis - [Laravel, Project plan] 09:00-15:00

01-11 Course about project management and planning. 02:00:00 Vegard Solheim

Bachelor thesis 10:00-12:00

01-11 Project plan and report. Learning Laravel 04:00:00 Vegard Solheim

Bachelor thesis - [Laravel, Project plan] 12:00-16:00

01-12 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

01-12 Project plan and report. Learning Laravel 06:00:00 Vegard Solheim

Bachelor thesis - [Laravel, Project plan] 10:00-16:00

01-13 Meeting with customer. 05:00:00 Vegard Solheim

Bachelor thesis - [Meeting customer] 11:00-16:00

01-14 Project plan and report. API specification 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan] 09:00-16:00

01-15 Project plan. Learning Laravel. API Specification. 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan] 09:00-16:00

01-18 Project plan. API specification 07:00:00 Vegard Solheim

Bachelor thesis - [Project plan] 09:00-16:00

01-19 Meeting with supervisor 45:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:15-10:00

01-19 Skype meeting with customer 01:30:00 Vegard Solheim

Bachelor thesis - [Meeting customer] 10:00-11:30

01-19 Project plan. API specification. Architecture 04:30:00 Vegard Solheim

Bachelor thesis - [Project plan] 11:30-16:00

HEEE - Handler for Exceptionally Exceptional Exceptions

H Time Log

H.1 Time Log Vegard

135

01-20 GUI mocking and testing. Learning Laravel 07:00:00 Vegard Solheim

Bachelor thesis - [AngularJS, Group meeting, Laravel] 09:00-16:00

01-21 Learning Laravel 07:00:00 Vegard Solheim

Professional Programming - [Laravel] 09:00-16:00

01-22 Learning Laravel 05:00:00 Vegard Solheim

Professional Programming - [Laravel] 09:00-14:00

01-22 Professional programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

01-25 Project plan 04:44:53 Vegard Solheim
Bachelor thesis 09:20-14:04

01-25 Learning Laravel coding standards. 01:27:19 Vegard Solheim

Professional Programming - [Laravel, Research] 14:05-15:32

01-26 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

01-26 Project plan 06:00:00 Vegard Solheim
Bachelor thesis - [Project plan] 10:00-16:00

01-27 Meeting with Innit, incl. hour drive each way 03:30:00 Vegard Solheim

Bachelor thesis - [Meeting customer] 11:00-14:30

01-27 Learning AngularJS 45:00 min Vegard Solheim

Bachelor thesis - [AngularJS] 16:30-17:15

01-27 Checking out Haskell tutorial 01:15:00 Vegard Solheim

Professional Programming - [Learning other language] 17:15-18:30

01-28 Working on and delivered project plan 04:00:00 Vegard Solheim

Bachelor thesis - [Project plan] 09:00-13:00

01-28 Learning Laravel 03:00:00 Vegard Solheim

Professional Programming - [Laravel] 13:00-16:00

01-29 Learning Laravel 03:00:00 Vegard Solheim

Bachelor thesis - [Laravel] 09:00-12:00

01-29 Learning Laravel coding standards 02:00:00 Vegard Solheim

Professional Programming - [Laravel] 12:00-14:00

01-29 Professional programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

02-01 Discussing architecture and API design 02:00:00 Vegard Solheim

Professional Programming - [Front-end, Group meeting] 09:00-11:00

02-01 Creating use case diagram and architecture models 03:00:00 Vegard Solheim

Bachelor thesis - [Back-end, Front-end] 11:00-14:00

02-01 Moving info to Confluence 02:00:00 Vegard Solheim

Professional Programming 14:00-16:00

02-02 Worked on system architecture 02:00:00 Vegard Solheim

Bachelor thesis - [Back-end, Front-end] 09:00-11:00

02-02 Updated Confluence 01:00:00 Vegard Solheim

Professional Programming - [Confluence] 11:00-12:00

02-02 Learning to use JIRA and Confluence 04:00:00 Vegard Solheim

Professional Programming - [Confluence, JIRA] 12:00-16:00

02-03 Learning to use JIRA and Confluence 03:00:00 Vegard Solheim

Professional Programming - [Confluence, JIRA] 09:00-12:00

02-03 Development on back-end. Application route. 01:30:00 Vegard Solheim

Bachelor thesis - [Back-end, Developing] 12:00-13:30

02-03 Research JIRA plugins 30:00 min Vegard Solheim

Professional Programming - [JIRA, Research] 13:30-14:00

02-03 Development on back-end. Installation route. 01:15:00 Vegard Solheim

Bachelor thesis - [Back-end, Developing] 14:00-15:15

02-03 Development on back-end. Exception type route. 45:00 min Vegard Solheim

Bachelor thesis - [Back-end, Developing] 15:15-16:00

02-04 Learning about Laravel/PHPUnit testing 02:00:00 Vegard Solheim

Professional Programming - [Laravel] 09:00-11:00

02-04 Development on backend. Fixed PHPUnit bug 35:00 min Vegard Solheim

Bachelor thesis - [Back-end, Developing, Laravel] 11:00-11:35

02-04 Learning about Laravel/PHPUnit testing 55:00 min Vegard Solheim

Professional Programming - [Laravel] 11:35-12:30

02-04 Working on test cases for backend. 30:00 min Vegard Solheim

Bachelor thesis - [Back-end, Developing, Laravel] 12:30-13:00

02-04 Code review on pull request. 01:15:00 Vegard Solheim

Professional Programming - [Back-end, Code review, Laravel] 13:00-14:15

02-04 Working on test cases for backend. 01:00:00 Vegard Solheim

Bachelor thesis 14:15-15:15

02-05 Development on backend. Fixed file that didn't get committed 01:45:00 Vegard Solheim

Bachelor thesis - [Back-end, Developing] 09:00-10:45

02-05 Code review on pull request. 15:00 min Vegard Solheim

Professional Programming - [Back-end, Code review] 10:45-11:00

02-05 Created tests and fixed bug causing tests to fail 02:00:00 Vegard Solheim

Professional Programming - [Back-end, Developing, Laravel] 11:00-13:00

02-05 Research for Laravel 30:00 min Vegard Solheim

Professional Programming - [Laravel, Research] 13:00-13:30

02-05 Code review backend 45:00 min Vegard Solheim

Professional Programming - [Back-end, Code review] 13:30-14:15

02-05 Trying to configure JIRA 01:45:00 Vegard Solheim

Professional Programming - [Class, JIRA] 14:15-16:00

02-08 Preparing for meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Group meeting] 09:00-10:00

02-08 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 10:00-11:00

02-08 Research C-language 01:15:00 Vegard Solheim

Professional Programming - [Learning other language, Research] 11:00-12:15

02-08 Learning Laravel 02:45:00 Vegard Solheim

Professional Programming - [Laravel, Research] 12:15-15:00

02-09 Learning Laravel 05:00:00 Vegard Solheim

Professional Programming - [Laravel] 09:00-14:00

02-09 Professional programming class 01:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-15:00

02-09 Learning Laravel 45:00 min Vegard Solheim

Professional Programming - [Laravel] 15:00-15:45

02-10 Documenting decision on Confluence 35:00 min Vegard Solheim

Professional Programming - [Confluence, Documenting] 09:00-09:35

02-10 Code review 02:10:00 Vegard Solheim
Professional Programming - [Code review] 09:35-11:45

02-10 Updating diagrams 45:00 min Vegard Solheim

Bachelor thesis - [Confluence, Documenting] 11:45-12:30

02-10 Code review 30:00 min Vegard Solheim
Professional Programming - [Code review] 12:30-13:00

02-10 Updating diagrams 35:00 min Vegard Solheim

Bachelor thesis - [Confluence, Documenting] 13:00-13:35

02-10 Code review on pull request. 01:15:00 Vegard Solheim

Professional Programming - [Code review] 13:35-14:50

02-10 Updated documentation 01:10:00 Vegard Solheim

Bachelor thesis - [Confluence, Documenting] 14:50-16:00

02-11 Development on backend. 04:15:00 Vegard Solheim

Bachelor thesis - [Back-end, Developing, Laravel] 09:00-13:15

02-11 Development on backend, making tests 02:15:00 Vegard Solheim

Professional Programming - [Back-end, Developing] 13:15-15:30

02-12 Moving past timelog to Toggl 01:15:00 Vegard Solheim

Bachelor thesis 09:00-10:15

02-12 Project report 03:45:00 Vegard Solheim

Bachelor thesis - [Project report] 10:15-14:00

02-12 Professional programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

02-15 Project report 07:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-16:00

02-16 Meeting with supervisor 35:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-09:35

02-16 Project report 05:25:00 Vegard Solheim

Bachelor thesis - [Project report] 09:35-15:00

02-17 Documenting formats 02:30:00 Vegard Solheim

Professional Programming - [Back-end, Documenting] 09:00-11:30

02-17 Assisting bugfixing 01:00:00 Vegard Solheim

Professional Programming - [Back-end, Developing, Laravel] 11:30-12:30

02-17 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 12:30-16:00

02-18 Project report 01:40:00 Vegard Solheim

Bachelor thesis - [Project report] 09:20-11:00

02-18 Discussing front-end design 45:00 min Vegard Solheim

Professional Programming - [Front-end] 11:00-11:45

02-18 Project plan - database design and requirements 02:45:00 Vegard Solheim

Bachelor thesis - [Project report] 12:45-15:30

02-19 Project report 02:00:00 Vegard Solheim

Bachelor thesis - [Project report, Research] 09:00-11:00

02-19 Discussing front-end design 01:00:00 Vegard Solheim

Professional Programming - [Front-end] 11:00-12:00

02-19 Updating front-end diagram 02:00:00 Vegard Solheim

Professional Programming - [Documenting] 12:00-14:00

02-19 Professional programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

02-22 Project report 04:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-13:00

02-22 Project report 50:00 min Vegard Solheim

Bachelor thesis 14:30-15:20

02-22 Updating Confluence documentation 40:00 min Vegard Solheim

Professional Programming - [Confluence, Documenting] 15:20-16:00

02-23 Meeting with supervisor 45:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-09:45

02-23 Project report - fixing from meeting feedback 01:15:00 Vegard Solheim

Professional Programming - [Project report] 09:45-11:00

02-23 Updating diagrams 02:15:00 Vegard Solheim

Professional Programming - [Documenting] 11:00-13:15

02-24 Project report 07:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-16:00

02-25 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:00

02-29 Project report 03:57:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:57

02-29 Project report 02:45:00 Vegard Solheim

Bachelor thesis - [Project report] 13:15-16:00

03-01 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

03-01 Project report and updated diagrams 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 10:00-13:00

03-01 Updated documentation on Confluence 01:30:00 Vegard Solheim

Professional Programming - [Confluence, Documenting] 13:00-14:30

03-01 Project report 45:00 min Vegard Solheim

Bachelor thesis - [Project report] 14:30-15:15

03-02 Project report 02:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-11:00

03-02 Updating Confluence documentation 02:30:00 Vegard Solheim

Professional Programming - [Confluence, Documenting] 11:00-13:30

03-02 Project report 02:30:00 Vegard Solheim

Bachelor thesis - [Project report] 13:30-16:00

03-03 Project report 04:00:00 Vegard Solheim

Bachelor thesis - [Project report] 12:30-16:30

03-04 Project report 02:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-11:00

03-04 Project report 02:30:00 Vegard Solheim

Bachelor thesis - [Project report] 11:30-14:00

03-04 Professional Programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

03-07 Meeting with Innit 04:15:00 Vegard Solheim

Bachelor thesis - [Meeting customer] 11:00-15:15

03-08 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:15-10:15

03-08 Group meeting on how to do severity ratings 01:00:00 Vegard Solheim

Professional Programming - [Group meeting] 10:15-11:15

03-08 Recorded decision on Confluence 10:00 min Vegard Solheim

Professional Programming - [Confluence] 11:15-11:25

03-08 Discussing best database setup 01:00:00 Vegard Solheim

Professional Programming - [Group meeting] 11:25-12:25

03-08 Code review 10:00 min Vegard Solheim
Professional Programming - [Code review] 12:25-12:35

03-08 Project report 25:00 min Vegard Solheim

Bachelor thesis - [Project report] 12:35-13:00

03-08 Updating use case diagrams 55:00 min Vegard Solheim

Professional Programming - [Documenting] 13:00-13:55

03-08 Project report 01:35:00 Vegard Solheim

Bachelor thesis - [Project report] 13:55-15:30

03-09 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 08:45-12:15

03-09 Course in report writing 45:00 min Vegard Solheim

Bachelor thesis - [Class] 12:15-13:00

03-09 Project report 02:30:00 Vegard Solheim

Bachelor thesis - [Project report] 13:00-15:30

03-10 Working on informational website 03:45:00 Vegard Solheim

Bachelor thesis - [Infosite] 09:00-12:45

03-10 Reporting that Confluence is down 15:00 min Vegard Solheim

Professional Programming - [Confluence] 12:45-13:00

03-10 Working on informational website 03:00:00 Vegard Solheim

Bachelor thesis - [Infosite] 13:00-16:00

03-11 Project report 01:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-10:00

03-11 Small fixes on informational website 20:00 min Vegard Solheim

Bachelor thesis - [Infosite] 10:00-10:20

03-11 Updating documentation on Confluence 25:00 min Vegard Solheim

Professional Programming - [Confluence] 10:20-10:45

03-11 Project report 01:00:00 Vegard Solheim

Bachelor thesis - [Project report] 10:45-11:45

03-11 Discussing front-end filtering options 01:45:00 Vegard Solheim

Bachelor thesis - [Group meeting] 11:45-13:30

03-11 Documenting decision on Confluence 45:00 min Vegard Solheim

Professional Programming - [Confluence] 13:30-14:15

03-11 Professional Programming class 01:45:00 Vegard Solheim

Professional Programming - [Class] 14:15-16:00

03-14 Project report 02:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-11:00

03-14 Gantt diagram for actual time spent 30:00 min Vegard Solheim

Bachelor thesis - [Project report] 11:00-11:30

03-14 Project report 02:40:00 Vegard Solheim

Bachelor thesis - [Project report] 12:00-14:40

03-14 Updating database model diagram 01:20:00 Vegard Solheim

Professional Programming - [Documenting] 14:40-16:00

03-15 Meeting with supervisor 50:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:15-10:05

03-15 Updating database model diagram 02:55:00 Vegard Solheim

Professional Programming - [Documenting] 10:05-13:00

03-15 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 13:00-16:00

03-16 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:00

03-17 Project report 07:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-16:00

03-18 Discussing data model 01:00:00 Vegard Solheim

Bachelor thesis - [Back-end] 09:00-10:00

03-18 Learning AngularJS 04:35:00 Vegard Solheim

Professional Programming - [AngularJS] 10:00-14:35

03-29 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

03-29 Learning AngularJS 01:30:00 Vegard Solheim

Professional Programming - [AngularJS] 10:00-11:30

03-29 Refactoring front-end 04:30:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 11:30-16:00

03-30 Refactoring front-end 07:00:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 09:00-16:00

03-31 Refactoring front-end 01:30:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 09:00-10:30

03-31 Discussing and building algorithm for heat degradation 01:45:00 Vegard Solheim

Professional Programming - [Back-end, Group meeting] 10:30-12:15

03-31 Documenting heat functionality 01:25:00 Vegard Solheim

Professional Programming - [Documenting] 12:15-13:40

03-31 Refactoring front-end 02:20:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 13:40-16:00

04-01 Discussing API 01:00:00 Vegard Solheim

Professional Programming - [Group meeting] 09:00-10:00

04-01 Refactoring front-end 04:00:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 10:00-14:00

04-01 Fixed algorithm for heat degradation 50:00 min Vegard Solheim

Professional Programming - [Developing, Documenting] 14:00-14:50

04-01 Refactoring front-end 01:10:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 14:50-16:00

04-04 Refactoring front-end 03:00:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 09:00-12:00

04-05 Refactoring front-end 03:10:00 Vegard Solheim

Professional Programming - [AngularJS, Front-end] 09:00-12:10

04-05 Project report 03:50:00 Vegard Solheim

Bachelor thesis - [Project report] 12:10-16:00

04-06 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:00

04-06 Updated database documentation 01:00:00 Vegard Solheim

Professional Programming - [Confluence, Documenting] 12:00-13:00

04-06 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 13:00-16:00

04-07 Project report 05:30:00 Vegard Solheim

Bachelor thesis - [Project report] 08:45-14:15

04-07 Code review 30:00 min Vegard Solheim
Professional Programming - [Code review, Front-end] 14:15-14:45

04-07 Project report 45:00 min Vegard Solheim

Bachelor thesis - [Project report] 14:45-15:30

04-08 Project report 05:30:00 Vegard Solheim

Bachelor thesis - [Project report] 08:30-14:00

04-08 Professional Programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

04-11 Project report 04:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-13:00

04-12 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

04-12 Project report 05:00:00 Vegard Solheim

Bachelor thesis - [Project report] 10:00-15:00

04-13 Project report 01:20:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-10:20

04-13 Reading up on ORM 50:00 min Vegard Solheim

Professional Programming - [Research] 10:20-11:10

04-13 Project report 04:35:00 Vegard Solheim

Bachelor thesis - [Project report] 11:10-15:45

04-14 Project report 01:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-10:00

04-14 Project report 01:15:00 Vegard Solheim

Bachelor thesis - [Project report] 14:45-16:00

04-15 Project report 01:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-10:00

04-15 Meeting with GUI professor 01:00:00 Vegard Solheim

Professional Programming 10:00-11:00

04-15 Project report - code listing 02:30:00 Vegard Solheim

Professional Programming - [Project report] 11:00-13:30

04-15 Project report 45:00 min Vegard Solheim

Bachelor thesis - [Project report] 13:30-14:15

04-15 Professional Programming class 01:45:00 Vegard Solheim

Professional Programming - [Class] 14:15-16:00

04-18 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:30

04-18 Assisted with heat recalculation algorithm 01:00:00 Vegard Solheim

Professional Programming - [Back-end, Developing] 12:30-13:30

04-18 Project report 01:20:00 Vegard Solheim

Bachelor thesis - [Project report] 13:30-14:50

04-19 Meeting with supervisor 01:00:00 Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:00-10:00

04-19 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 10:00-13:30

04-19 Discussing heat data format and transfer 01:15:00 Vegard Solheim

Professional Programming - [Group meeting] 13:30-14:45

04-19 Project report 01:15:00 Vegard Solheim

Bachelor thesis - [Project report] 14:45-16:00

04-20 Project report 02:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-11:00

04-20 Discussing heat map 01:00:00 Vegard Solheim

Professional Programming - [Group meeting] 11:00-12:00

04-20 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 12:00-15:30

04-22 Project report 05:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-14:00

04-22 Professional Programming class 02:00:00 Vegard Solheim

Professional Programming - [Class] 14:00-16:00

04-25 Project report 04:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-13:00

04-25 Updating diagrams 02:30:00 Vegard Solheim

Professional Programming - [Confluence, Documenting] 13:00-15:30

04-26 Project report 03:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:00

04-26 Travel to meeting with Innit 01:30:00 Vegard Solheim

Bachelor thesis 12:00-13:30

04-26 Meeting with Innit 01:30:00 Vegard Solheim

Bachelor thesis - [Meeting customer] 13:30-15:00

04-26 Travel home from meeting with Innit 01:00:00 Vegard Solheim

Bachelor thesis 15:00-16:00

04-27 Project report 06:05:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-15:05

04-28 Project report 06:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-15:30

04-29 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:30

05-02 Project report 02:15:00 Vegard Solheim

Bachelor thesis - [Project report] 09:15-11:30

05-02 Brief chat with supervisor 30:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 11:30-12:00

05-02 Project report 04:00:00 Vegard Solheim

Bachelor thesis - [Project report] 12:00-16:00

05-03 Meeting with supervisor 50:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:15-10:05

05-03 Project report 05:05:00 Vegard Solheim

Bachelor thesis - [Project report] 10:10-15:15

05-04 Project report 06:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-15:30

05-05 Project report 03:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-12:30

05-05 Project report 02:15:00 Vegard Solheim

Bachelor thesis - [Project report] 13:15-15:30

05-06 Updating text about refactored code 01:15:00 Vegard Solheim

Professional Programming - [Documenting, Project report] 09:30-10:45

05-06 Updating API documentatiion 03:05:00 Vegard Solheim

Professional Programming - [Documenting, Project report] 10:55-14:00

05-06 Project report 15:00 min Vegard Solheim

Bachelor thesis - [Project report] 14:00-14:15

05-06 Professional programming class 01:45:00 Vegard Solheim

Professional Programming - [Class] 14:15-16:00

05-09 Project report 05:00:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-14:00

05-10 Meeting with supervisor 45:00 min Vegard Solheim

Bachelor thesis - [Meeting supervisor] 09:15-10:00

05-10 Project report 05:00:00 Vegard Solheim

Bachelor thesis - [Project report] 10:00-15:00

05-11 Project report 03:25:00 Vegard Solheim

Bachelor thesis - [Project report] 08:50-12:15

05-11 Project report 01:45:00 Vegard Solheim

Bachelor thesis - [Project report] 12:45-14:30

05-12 Project report 05:30:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-14:30

05-13 Project report 01:05:00 Vegard Solheim

Bachelor thesis - [Project report] 09:00-10:05

05-13 Meeting with Innit 50:00 min Vegard Solheim

Bachelor thesis - [Meeting customer] 10:05-10:55

05-13 Finishing up project report for delivery 03:05:00 Vegard Solheim

Bachelor thesis - [Project report] 10:55-14:00

Created with toggl.com

Detailed report
2016-01-01 - 2016-05-15

451 h 44 min 00 h 00 minTotal Billable

Date Description Duration User
01-04 Starting report and project plan. Considering and testing tools 6:00:00 Aleksander Steen

H3E 09:00-15:00

01-05 Work on report and project plan. Testing tools, setting up test architectures 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-07 Project plan and report. Learning tools and frameworks. Deciding repository architecture and
considerations. \\ \

7:00:00 Aleksander Steen

H3E 09:00-16:00

01-08 Work on project plan. Setting up test-architecture with Yeoman. Learning Laravel/AngularJS.
Setup Syslog server.

6:00:00 Aleksander Steen

H3E 09:00-15:00

01-11 Course on project management and planning at campus 2:00:00 Aleksander Steen

H3E 10:00-12:00

01-11 Project plan and report. Learning Laravel/AngularJS 4:00:00 Aleksander Steen

H3E 12:00-16:00

01-12 Meeting with supervisor. Project plan and report. Learning Laravel/AngularJS. Testing tools 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-13 Trip to Hamar. Meeting at contractors office. Travel back to Gjøvik 5:00:00 Aleksander Steen

H3E 11:00-16:00

01-14 Project plan and report. Learning Laravel/AngularJS. Sketching system architecture. Testing
tools. Working on API specification.

7:00:00 Aleksander Steen

H3E 09:00-16:00

01-15 Project plan. Learning Laravel/Lumen/AngularJS. Working on API specification. Syslog
research.

7:00:00 Aleksander Steen

H3E 09:00-16:00

01-18 Project plan. Working on API specifications. 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-19 Meeting with supervisor. 0:45:00 Aleksander Steen

H3E 09:15-10:00

01-19 Skype Q\&A meeting with contractor 1:29:00 Aleksander Steen

H3E 10:01-11:30

01-19 Project plan. API-specification. Architecture. 4:29:00 Aleksander Steen

H3E 11:31-16:00

01-20 GUI mocking and testing. Writing gulp code. Learning Laravel/AngularJS. 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-21 Learning Laravel/AngularJS. 7:00:00 Aleksander Steen

H3E 09:00-16:00

HEEE - Handler for Exceptionally Exceptional Exceptions

H.2 Time Log Aleksander

147

01-22 Learning Laravel/AngularJS. Examining Apache SysLog. 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-25 Project plan. Syslog DB setup. 7:00:00 Aleksander Steen

H3E 09:00-16:00

01-26 Meeting with supervisor 1:00:00 Aleksander Steen

H3E 09:00-10:00

01-26 Syslog GUI view mocking 5:59:00 Aleksander Steen

H3E 10:01-16:00

01-26 Made Lo-Fi Syslog view prototype. 1:29:00 Aleksander Steen

H3E 22:30-23:59

01-27 Trip to Hamar. Meeting at contractors office. Travel back to Gjøvik 5:00:00 Aleksander Steen

H3E 11:00-16:00

01-28 Final Project plan. 4:00:00 Aleksander Steen

H3E 09:00-13:00

01-29 Setup HP 2510-24G switch from Innit, examined data logged. More Angular learning. 5:00:00 Aleksander Steen

H3E 09:00-14:00

02-01 Laravel Envoy setup and research 4:00:00 Aleksander Steen

H3E 00:00-04:00

02-01 Create bash script to deploy and setup server environment plus a script to append and
remove hosts from rsyslog config

3:00:00 Aleksander Steen

H3E 09:00-12:00

02-02 Laravel Syslog route, controller, model 6:00:00 Aleksander Steen

H3E 09:00-15:00

02-02 Learning about pre-/post hooks for Bitbucket 1:00:00 Aleksander Steen

H3E 15:00-16:00

02-03 Setup pre-/post hooks for Backend server 2:00:00 Aleksander Steen

H3E 09:00-11:00

02-03 laravel 2:10:00 Aleksander Steen
H3E 11:02-13:12

02-04 Store/delete Syslog data 5:00:00 Aleksander Steen

H3E 11:00-16:00

02-05 Syslog tests. Re-worked syslog route. Reworked the bash scripts to not fail hard. 6:00:00 Aleksander Steen

H3E 10:00-16:00

02-08 Syslog route refactoring 7:00:00 Aleksander Steen

H3E 09:00-16:00

02-09 Syslog route refactoring 7:00:00 Aleksander Steen

H3E 09:00-16:00

02-10 Syslog route refactoring 7:00:00 Aleksander Steen

H3E 09:00-16:00

02-15 Refactoring Syslog functions 1:57:56 Aleksander Steen

H3E 09:06-11:04

02-15 Refactoring Syslog functions 0:49:43 Aleksander Steen

H3E 12:15-13:05

02-15 Ignored argument to syslog hosts 1:12:43 Aleksander Steen

H3E 13:05-14:17

02-15 review olafurs pull request 28 0:11:50 Aleksander Steen

H3E 14:27-14:38

02-15 small fixes and update documantation 0:44:00 Aleksander Steen

H3E 14:39-15:23

02-16 Meeting with supervisor 0:48:24 Aleksander Steen

H3E 09:00-09:48

02-16 Angular refreshing 3:32:48 Aleksander Steen

H3E 09:48-13:21

02-16 Update confluence API spec 0:14:33 Aleksander Steen

H3E 13:21-13:35

02-16 Testing angular + restful api 0:23:45 Aleksander Steen

H3E 13:36-13:59

02-16 Learning how the frontend is setup 0:37:02 Aleksander Steen

H3E 14:08-14:45

02-16 Finalize syslog view mocking 0:13:07 Aleksander Steen

H3E 14:45-14:58

02-17 More work on syslog view 0:59:13 Aleksander Steen

H3E 09:21-10:20

02-17 Code Review Olafur's pull request 0:00:51 Aleksander Steen

H3E 10:20-10:21

02-17 Code Review Olafur's pull request 0:13:43 Aleksander Steen

H3E 10:22-10:35

02-17 Filter by host 0:47:24 Aleksander Steen

H3E 10:36-11:23

02-17 lunch 0:19:32 Aleksander Steen
(no project) 11:23-11:43

02-17 More work on syslog view 4:04:23 Aleksander Steen

H3E 11:48-15:52

02-18 Create jira issues 0:22:17 Aleksander Steen

H3E 09:45-10:07

02-18 Modal edit popups 0:01:50 Aleksander Steen

H3E 10:07-10:09

02-18 Use chunking instead of getting all the records 0:25:53 Aleksander Steen

H3E 10:09-10:35

02-18 Use chunking instead of getting all the records 0:00:03 Aleksander Steen

H3E 10:36-10:36

02-18 Routing 3:07:38 Aleksander Steen
H3E 10:36-13:43

02-18 Modals 2:26:56 Aleksander Steen
H3E 13:43-16:10

02-22 frontend development 1:00:04 Aleksander Steen

H3E 09:11-10:11

02-22 angular videos 5:42:41 Aleksander Steen

H3E 10:11-15:53

02-23 Meeting with supervisor 0:53:15 Aleksander Steen

H3E 09:00-09:53

02-23 edit report 2:07:26 Aleksander Steen
H3E 09:53-12:01

02-23 sort by after syslog hosts 0:23:25 Aleksander Steen

H3E 12:33-12:56

02-24 More work on syslog view 1:59:30 Aleksander Steen

H3E 09:15-11:15

02-24 More work on syslog view 3:53:37 Aleksander Steen

H3E 11:25-15:18

02-25 tie modal forms to the corresponding functions 0:55:02 Aleksander Steen

H3E 09:33-10:28

02-25 More work on syslog view 2:57:10 Aleksander Steen

H3E 11:10-14:07

02-29 fix syslog test in backend 0:13:42 Aleksander Steen

H3E 09:30-09:43

02-29 report 2:49:52 Aleksander Steen
H3E 09:43-12:33

02-29 Code Review Olafur's pull request 0:23:53 Aleksander Steen

H3E 12:33-12:57

02-29 firedrill 0:13:09 Aleksander Steen
H3E 12:57-13:10

02-29 report 0:15:04 Aleksander Steen
H3E 13:10-13:26

02-29 report 2:22:23 Aleksander Steen
H3E 13:34-15:56

03-01 angular 5:46:00 Aleksander Steen
H3E 09:11-14:57

03-02 troubleshooting backend 0:49:35 Aleksander Steen

H3E 09:05-09:54

03-02 angular 1:05:10 Aleksander Steen
H3E 09:54-10:59

03-02 angular HEEE-191 4:09:14 Aleksander Steen

H3E 11:07-15:16

03-04 syslog tests 2:27:53 Aleksander Steen
(no project) 09:35-12:03

03-07 meeting with init 7:00:28 Aleksander Steen

H3E 04:14-11:14

03-08 Meeting with supervisor 1:11:13 Aleksander Steen

H3E 09:08-10:20

03-08 front end discussion 0:53:20 Aleksander Steen

(no project) 10:20-11:13

03-08 syslog fixes 1:20:26 Aleksander Steen
H3E 11:35-12:55

03-08 report 2:13:02 Aleksander Steen
H3E 12:55-15:08

03-08 lars pull request 0:14:44 Aleksander Steen

H3E 15:08-15:23

03-09 front end discussion 1:14:00 Aleksander Steen

H3E 10:00-11:14

03-09 moved timelog from latex to toggl 0:15:09 Aleksander Steen

(no project) 11:25-11:40

03-09 course in report writing 1:00:00 Aleksander Steen

H3E 12:00-13:00

03-09 front end discussion 0:17:52 Aleksander Steen

H3E 13:05-13:23

03-09 report 1:45:29 Aleksander Steen
H3E 13:30-15:15

03-10 edit report 1:35:35 Aleksander Steen
H3E 09:47-11:22

03-10 Refactoring Syslog functions 1:37:55 Aleksander Steen

H3E 11:45-13:23

03-10 Refactoring Syslog functions 1:56:06 Aleksander Steen

H3E 13:36-15:33

03-11 olafur pull request||| 0:30:00 Aleksander Steen

H3E 09:30-10:00

03-11 angular 1:56:00 Aleksander Steen
H3E 10:01-11:57

03-14 bottom loader for syslog view 1:35:29 Aleksander Steen

H3E 09:23-10:58

03-14 review olafurs pull request 0:17:00 Aleksander Steen

H3E 11:22-11:39

03-14 angular 3:41:00 Aleksander Steen
H3E 11:40-15:21

03-15 Meeting with supervisor 1:02:00 Aleksander Steen

H3E 09:10-10:12

03-15 report 2:16:49 Aleksander Steen
H3E 10:13-12:30

03-15 angular 2:08:12 Aleksander Steen
H3E 12:30-14:38

03-16 angular 2:02:47 Aleksander Steen
H3E 09:33-11:36

03-16 angular 4:07:00 Aleksander Steen
H3E 11:44-15:51

03-17 angular 2:40:38 Aleksander Steen
H3E 09:10-11:50

03-17 angular 3:37:24 Aleksander Steen
H3E 12:17-15:54

03-18 angular 4:05:00 Aleksander Steen
H3E 09:05-13:10

03-29 Meeting with supervisor 1:02:10 Aleksander Steen

H3E 09:15-10:18

03-29 angular 3:05:04 Aleksander Steen
H3E 10:19-13:24

03-30 report and angular 5:58:12 Aleksander Steen

H3E 09:00-14:58

03-31 tests 6:17:24 Aleksander Steen
H3E 09:00-15:18

04-01 even more tests 3:20:53 Aleksander Steen

H3E 09:16-12:37

04-04 angular 6:35:00 Aleksander Steen
H3E 09:15-15:50

04-05 angular 6:37:00 Aleksander Steen
H3E 09:18-15:55

04-06 angular 6:31:00 Aleksander Steen
H3E 09:19-15:50

04-07 reports view HEEE-219 2:39:11 Aleksander Steen

H3E 09:19-11:58

04-07 (no description) 0:41:49 Aleksander Steen

H3E 12:14-12:56

04-07 angular 2:26:38 Aleksander Steen
H3E 12:56-15:23

04-11 report & infosite 3:25:31 Aleksander Steen

H3E 10:04-13:30

04-11 lars pull request 0:07:20 Aleksander Steen

H3E 13:30-13:37

04-11 report & infosite 2:19:00 Aleksander Steen

H3E 13:37-15:56

04-12 meeting with supervisor 0:48:00 Aleksander Steen

H3E 09:15-10:03

04-12 HEEE-243 + HEEE-228 + HEEE-279 5:21:59 Aleksander Steen

H3E 10:04-15:26

04-13 reports view 1:45:00 Aleksander Steen
H3E 09:09-10:54

04-13 reports view 0:33:54 Aleksander Steen
H3E 11:37-12:10

04-13 reports view tests 3:08:23 Aleksander Steen

H3E 12:21-15:30

04-14 refactoring 5:59:00 Aleksander Steen
H3E 09:11-15:10

04-15 refactoring 0:50:00 Aleksander Steen
H3E 09:08-09:58

04-15 front end 2:20:00 Aleksander Steen
H3E 11:30-13:50

04-15 meeting with eivvind gui 1:00:00 Aleksander Steen

H3E 22:00-23:00

04-18 angulr 0:17:43 Aleksander Steen
H3E 09:10-09:27

04-18 Code Review Olafur's pull request 0:17:00 Aleksander Steen

H3E 09:58-10:15

04-18 angular 4:34:00 Aleksander Steen
H3E 10:16-14:50

04-19 meeting with supervisor 0:51:00 Aleksander Steen

H3E 09:10-10:01

04-19 (no description) 2:05:14 Aleksander Steen

H3E 10:02-12:07

04-19 lars pull request 0:01:57 Aleksander Steen

H3E 12:07-12:09

04-19 Refactoring Syslog functions 3:32:38 Aleksander Steen

H3E 12:09-15:42

04-20 Report 2:53:11 Aleksander Steen
H3E 09:39-12:32

04-20 lars pull request 0:26:06 Aleksander Steen

H3E 12:32-12:58

04-20 fixing syslog tests 1:38:24 Aleksander Steen

H3E 13:38-15:17

04-21 fixing syslog tests 0:28:00 Aleksander Steen

H3E 09:17-09:45

04-21 angular 5:30:00 Aleksander Steen
H3E 22:00-03:30

04-26 syslog refactoring 6:30:00 Aleksander Steen

H3E 09:15-15:45

04-27 Report 1:52:00 Aleksander Steen
H3E 13:29-15:21

04-27 Edit front end design from innit feedback 5:10:00 Aleksander Steen

H3E 21:12-02:22

04-28 Report 5:15:00 Aleksander Steen
H3E 21:15-02:30

04-29 Report 5:45:00 Aleksander Steen
H3E 21:15-03:00

05-02 Report 6:08:00 Aleksander Steen
H3E 21:13-03:21

05-03 Meeting with supervisor 0:55:00 Aleksander Steen

H3E 09:15-10:10

05-03 report 0:43:43 Aleksander Steen
H3E 10:20-11:03

05-03 report 2:25:45 Aleksander Steen
H3E 11:29-13:55

05-03 Code Review Olafur's pull request 0:24:56 Aleksander Steen

H3E 13:55-14:20

05-03 reports view 0:50:24 Aleksander Steen
H3E 14:20-15:10

05-04 reports view 6:13:00 Aleksander Steen
H3E 09:25-15:38

05-05 reports view 0:46:20 Aleksander Steen
H3E 10:06-10:52

05-05 report 1:29:12 Aleksander Steen
H3E 11:05-12:35

05-05 Code Review Olafur's pull request 0:15:08 Aleksander Steen

H3E 12:44-12:59

05-05 Report 2:24:23 Aleksander Steen
H3E 13:07-15:31

05-06 reports_view 3:14:47 Aleksander Steen
H3E 09:25-12:40

05-09 front end 5:11:34 Aleksander Steen
H3E 09:00-14:12

05-10 meeting with supervisor 0:55:02 Aleksander Steen

H3E 09:09-10:04

05-10 angulr 3:49:33 Aleksander Steen
H3E 10:05-13:55

05-10 Code Review Olafur's pull request 0:30:23 Aleksander Steen

H3E 13:55-14:25

05-10 Report 0:01:02 Aleksander Steen
H3E 14:26-14:27

05-11 syslog tests 1:22:48 Aleksander Steen
H3E 09:26-10:49

05-11 proof-reading report 3:20:59 Aleksander Steen

H3E 10:50-14:11

05-12 lars pull request 0:25:10 Aleksander Steen

H3E 09:05-09:30

05-12 Code Review Olafur's pull request 0:14:15 Aleksander Steen

H3E 09:31-09:45

05-13 final meeting with employer 1:04:11 Aleksander Steen

H3E 10:00-11:05

Created with toggl.com

Detailed report
2016-01-04 - 2016-05-13

461 h 47 min 00 h 00 minTotal Billable

Date Description Duration User
01-04 research angular - hottowel 6:00:01 Larswalwes

H3E 09:00-15:00

01-05 john papa best practices 6:00:01 Larswalwes

H3E 10:00-16:00

01-06 frontend skeleton of hottowel 6:00:02 Larswalwes

H3E 09:00-15:00

01-07 laravel setup and testing 6:00:03 Larswalwes

H3E 09:00-15:00

01-08 best practices - git / testing 6:00:01 Larswalwes

H3E 09:00-15:00

01-11 bachelor tips tom røise, laracasts, hottowel 6:00:01 Larswalwes

H3E 09:00-15:00

01-12 discussion, farup, adjusting template 6:00:00 Larswalwes

H3E 09:00-15:00

01-13 meeting innit 6:31:05 Larswalwes

H3E 09:29-16:00

01-14 laracasts, api architecure 7:00:00 Larswalwes

H3E 09:00-16:00

01-15 db structure, gui basic ideas 4:00:04 Larswalwes

H3E 09:00-13:00

01-16 skeleton for front end 5:00:01 Larswalwes

H3E 11:01-16:01

01-18 api architeure ideas, skeleton front end, testing 7:00:01 Larswalwes

H3E 09:00-16:00

01-19 farup, innit skype, front end skeleton 6:00:02 Larswalwes

H3E 09:00-15:00

01-20 rough sketches of gui, gulp config 5:00:34 Larswalwes

H3E 10:00-15:00

01-21 gulp tasks, live reloading etc 4:00:01 Larswalwes

H3E 13:36-17:36

01-22 gulp tasks, angular directives research 7:00:01 Larswalwes

H3E 09:00-16:00

01-25 graphs setup, page demo 6:30:00 Larswalwes

H3E 09:00-15:30

01-26 farup, syslog talk 2:00:11 Larswalwes

H3E 09:00-11:00

HEEE - Handler for Exceptionally Exceptional Exceptions

H.3 Time Log Lars

155

01-27 project plan, i18n, remove jquery 3:00:01 Larswalwes

H3E 09:00-12:00

01-28 proofreading project plan 1:24:00 Larswalwes

H3E 09:22-10:46

01-28 set up frontend i18n and move away from jQuery 3:20:35 Larswalwes

H3E 10:47-14:07

01-29 settings module frontend 1:42:06 Larswalwes

H3E 09:25-11:07

01-29 logger module tests and code coverage report 2:06:56 Larswalwes

H3E 12:01-14:08

01-29 smart commits in JIRA 0:18:02 Larswalwes

H3E 14:38-14:56

02-01 factories architecture on frontend discussion 2:12:00 Larswalwes

H3E 09:24-11:36

02-01 heat directive and factory and exception factory and service skeleton 3:28:24 Larswalwes

H3E 11:57-15:25

02-02 heat generation discussion 1:45:00 Larswalwes

H3E 09:37-11:22

02-02 new overview min-info 2:19:00 Larswalwes

H3E 12:18-14:37

02-02 Git commits weren't working 0:58:27 Larswalwes

H3E 14:37-15:36

02-03 skeleton for factories 4:23:00 Larswalwes

H3E 09:31-13:54

02-03 factory tests 1:52:58 Larswalwes

H3E 13:54-15:47

02-04 finalize skeletons for factories/services 1:33:03 Larswalwes

H3E 09:24-10:57

02-04 failed config test attempts 3:47:00 Larswalwes

H3E 11:20-15:07

02-05 factory testing 3:42:07 Larswalwes

H3E 09:39-13:22

02-05 fixing node/phantomjs 0:10:54 Larswalwes

H3E 13:27-13:38

02-05 service tests 0:55:00 Larswalwes

H3E 13:45-14:40

02-05 service tests / IMT3602 1:34:33 Larswalwes

H3E 14:50-16:24

02-08 look over timelogs 0:04:47 Larswalwes

H3E 09:14-09:18

02-08 testing the rest of services 1:16:00 Larswalwes

H3E 09:19-10:35

02-08 try to get node working 0:36:00 Larswalwes

H3E 11:10-11:46

02-08 try to get node working 0:25:49 Larswalwes

H3E 11:56-12:22

02-08 service testing 0:47:07 Larswalwes

H3E 12:22-13:09

02-08 fix setup for module tests 1:29:54 Larswalwes

H3E 13:17-14:47

02-08 routerprovider tests 0:13:25 Larswalwes

H3E 14:49-15:02

02-09 directive tests 2:34:18 Larswalwes

H3E 09:24-11:58

02-09 commenting tests 0:30:02 Larswalwes

H3E 12:00-12:30

02-09 syslog backend handling discussion 1:00:01 Larswalwes

H3E 13:00-14:00

02-10 crash handling for gulp less task 0:32:32 Larswalwes

H3E 09:12-09:45

02-10 try to fix HEEE-6 language default 0:11:46 Larswalwes

H3E 09:48-10:00

02-10 try to fix HEEE-6 language default 0:32:55 Larswalwes

H3E 10:10-10:42

02-10 implement plato / wait for simon 0:34:19 Larswalwes

H3E 10:51-11:25

02-10 HEEE-63 fetch exception types and store in localstorage 4:16:05 Larswalwes

H3E 11:37-15:53

02-11 store exception types HEEE-63 2:34:55 Larswalwes

H3E 09:30-12:05

02-11 HEEE-106 exception batch fetching 2:42:52 Larswalwes

H3E 12:14-14:56

02-11 testing 0:40:26 Larswalwes
H3E 14:58-15:39

02-12 HEEE-115 commenting 1:06:16 Larswalwes

H3E 09:09-10:15

02-12 testing 0:50:06 Larswalwes
H3E 10:17-11:07

02-12 finishing exception controller tests 0:40:21 Larswalwes

H3E 11:17-11:57

02-12 exception factory test 1:32:17 Larswalwes

H3E 11:59-13:32

02-12 (no description) 0:28:11 Larswalwes

H3E 13:45-14:13

02-15 store exceptions in factory 0:06:36 Larswalwes

H3E 09:16-09:23

02-15 fix timestamp directive and test 0:41:35 Larswalwes

H3E 09:23-10:05

02-15 looking at CORS with Olafur 1:10:07 Larswalwes

H3E 10:05-11:15

02-15 change exception to save in factory 0:05:44 Larswalwes

H3E 11:15-11:20

02-15 exception refactoring to factory 1:44:52 Larswalwes

H3E 12:58-14:43

02-15 redoing tests to fit new exception architecture 0:47:14 Larswalwes

H3E 14:46-15:34

02-16 refactor set exception types 1:44:00 Larswalwes

H3E 09:32-11:16

02-16 sort exceptions into today and earlier 0:18:46 Larswalwes

H3E 11:41-12:00

02-16 failed date spit list directive 0:34:05 Larswalwes

H3E 12:11-12:46

02-16 tests 0:48:20 Larswalwes
H3E 12:49-13:38

02-16 util factory tests 1:05:54 Larswalwes

H3E 13:40-14:46

02-17 exception types race condition 0:43:01 Larswalwes

H3E 09:20-10:03

02-17 more heat discussion 1:03:13 Larswalwes

H3E 10:21-11:24

02-17 redo fetching of exceptions 2:26:46 Larswalwes

H3E 11:33-14:00

02-17 HEEE-143 0:11:35 Larswalwes
H3E 14:04-14:15

02-17 routing in app view 1:40:11 Larswalwes

H3E 14:24-16:04

02-18 continued routing in app view 0:53:15 Larswalwes

H3E 09:45-10:38

02-18 HEEE-59 cleaning up dependencies for modules 0:01:31 Larswalwes

H3E 10:49-10:51

02-18 (no description) 0:37:46 Larswalwes

H3E 11:05-11:43

02-18 missing tests 1:32:33 Larswalwes

H3E 13:38-15:11

02-19 application partials testing 0:22:31 Larswalwes

H3E 11:32-11:54

02-19 diagramming 1:37:07 Larswalwes
H3E 12:23-14:00

02-19 imt3602 2:02:23 Larswalwes
H3E 14:00-16:03

02-22 HEEE-156 exception details pop up 0:09:47 Larswalwes

H3E 09:14-09:24

02-22 HEEE-175 earlier excp if none today 1:11:46 Larswalwes

H3E 09:27-10:39

02-22 HEEE-156 exception details pop up 1:21:48 Larswalwes

H3E 10:54-12:16

02-22 HEEE-156 tests 0:43:14 Larswalwes

H3E 12:16-12:59

02-22 179 h3e label to directives 0:12:02 Larswalwes

H3E 13:20-13:32

02-22 171 loading spinner 2:24:07 Larswalwes

H3E 13:35-15:59

02-23 ivar meeting 0:40:09 Larswalwes
H3E 09:15-09:55

02-23 170 bottomloader refactor 0:49:47 Larswalwes

H3E 10:25-11:15

02-23 generate dummy data function 0:20:02 Larswalwes

H3E 11:30-11:50

02-23 180 continious excp checking 0:55:11 Larswalwes

H3E 15:45-16:40

02-24 180 exception continious checking tests 3:18:00 Larswalwes

H3E 09:30-12:48

02-24 146 log error on navigation error 0:32:01 Larswalwes

H3E 13:12-13:44

02-24 186 grapher 1:28:00 Larswalwes
H3E 14:00-15:28

02-25 186 grapher 2:32:09 Larswalwes
H3E 09:17-11:49

02-26 186 grapher 2:53:32 Larswalwes
H3E 10:41-13:35

02-29 186 grapher 7:17:22 Larswalwes
H3E 09:15-16:32

03-01 (no description) 3:07:27 Larswalwes

H3E 10:20-13:27

03-02 186 grapher testing 2:32:36 Larswalwes

H3E 09:33-12:05

03-02 186 readjust grapher for days with no exceptions 1:04:10 Larswalwes

H3E 12:07-13:11

03-02 186 application graphs 0:52:01 Larswalwes

H3E 15:08-16:00

03-03 186 application graphs 3:55:00 Larswalwes

H3E 10:20-14:15

03-04 186 grapher settings module 2:03:57 Larswalwes

H3E 09:13-11:17

03-04 186 grapher settings module 3:16:12 Larswalwes

H3E 11:37-14:54

03-07 innit meeting 4:30:01 Larswalwes

H3E 11:00-15:30

03-08 meeting with farup 0:55:02 Larswalwes

H3E 09:10-10:05

03-08 architecture discussion 1:00:01 Larswalwes

H3E 10:10-11:10

03-08 looking at pull request heee-169 0:11:49 Larswalwes

H3E 11:28-11:40

03-08 heee-186 rebasing 1:20:02 Larswalwes

H3E 11:40-13:00

03-08 186 fixing tests 1:11:47 Larswalwes

H3E 13:08-14:20

03-09 settings and severity discussion 1:10:01 Larswalwes

H3E 09:32-10:42

03-09 new settings view 2:36:28 Larswalwes

H3E 10:50-13:26

03-09 send mass severity update 2:01:06 Larswalwes

H3E 13:20-15:21

03-10 settings test 0:28:22 Larswalwes

H3E 09:35-10:03

03-10 Refactor grapher functions 1:10:46 Larswalwes

H3E 10:28-11:39

03-10 Refactor grapher functions 4:07:14 Larswalwes

H3E 11:58-16:05

03-11 Refactor grapher functions 4:04:26 Larswalwes

H3E 09:30-13:35

03-14 Refactor grapher functions 3:00:10 Larswalwes

H3E 09:30-12:31

03-14 Refactor grapher functions 3:05:36 Larswalwes

H3E 12:33-15:39

03-15 farup meeting 1:00:01 Larswalwes

H3E 09:15-10:15

03-15 Refactor grapher functions 4:58:28 Larswalwes

H3E 10:46-15:44

03-16 Refactor grapher functions 2:39:54 Larswalwes

H3E 09:10-11:50

03-16 Refactor grapher functions 1:47:00 Larswalwes

H3E 13:33-15:20

03-17 Refactor grapher functions 6:23:13 Larswalwes

H3E 09:33-15:56

03-18 Refactor grapher tests 1:03:09 Larswalwes

H3E 09:02-10:05

03-18 send mass severity update 1:02:37 Larswalwes

H3E 10:15-11:17

03-18 236 check all in severity updater 0:36:54 Larswalwes

H3E 11:52-12:29

03-29 236 check all in severity updater 1:27:57 Larswalwes

H3E 10:18-11:46

03-29 discussion on exception contexts 0:40:01 Larswalwes

H3E 11:46-12:26

03-29 Remove types from localstorage 3:14:16 Larswalwes

H3E 12:29-15:44

03-30 Remove types from localstorage 0:13:32 Larswalwes

H3E 00:12-00:25

03-30 contexts update form 1:51:11 Larswalwes

H3E 09:15-11:06

03-30 contexts update form 3:01:35 Larswalwes

H3E 20:39-23:41

03-31 Refactor grapher with vegard 1:26:13 Larswalwes

H3E 09:30-10:56

03-31 contexts update form 1:09:58 Larswalwes

H3E 10:56-12:06

03-31 contexts update form 1:02:09 Larswalwes

H3E 12:16-13:18

03-31 contxts update form 0:31:34 Larswalwes

H3E 13:18-13:50

03-31 ticketing system for loading 1:35:15 Larswalwes

H3E 14:05-15:40

04-01 ticketing system for loading 0:07:06 Larswalwes

H3E 09:18-09:25

04-01 Redo and rework test coverage 3:10:36 Larswalwes

H3E 09:27-12:38

04-01 261 - Exception factory tests 2:15:29 Larswalwes

H3E 12:41-14:56

04-04 261 - Exception factory tests 1:27:13 Larswalwes

H3E 09:10-10:37

04-04 217 grapher setting tests 0:12:00 Larswalwes

H3E 10:56-11:08

04-04 refactoring grapher with vegard 0:27:02 Larswalwes

H3E 11:08-11:35

04-04 217 grapher setting tests 1:14:37 Larswalwes

H3E 11:35-12:50

04-04 look at syslog pull request 1:11:53 Larswalwes

H3E 12:50-14:02

04-04 217 grapher setting tests 1:11:44 Larswalwes

H3E 14:07-15:18

04-05 polishing grapher, contex updating and new exception scanning 3:49:38 Larswalwes

H3E 09:15-13:04

04-05 last missing case in grapher controller 2:05:10 Larswalwes

H3E 13:05-15:10

04-06 last missing case in grapher controller 1:58:00 Larswalwes

H3E 09:05-11:03

04-06 last missing case in grapher controller 3:02:54 Larswalwes

H3E 11:03-14:06

04-06 last missing case in grapher controller 1:14:52 Larswalwes

H3E 14:36-15:51

04-07 remaining statistics tests 0:28:48 Larswalwes

H3E 09:30-09:59

04-07 polishing exception details and etc 3:47:23 Larswalwes

H3E 10:00-13:48

04-08 ask backend for severity changes 2:04:22 Larswalwes

H3E 13:06-15:10

04-11 Ask for severity changes and refresh popup 2:09:30 Larswalwes

H3E 09:32-11:42

04-11 severity change checker tests 1:54:59 Larswalwes

H3E 11:42-13:37

04-12 farup meeting 1:00:08 Larswalwes

H3E 09:12-10:12

04-12 search gui 1:29:34 Larswalwes
H3E 10:12-11:42

04-12 conitnious fetching of current heat 0:54:48 Larswalwes

H3E 12:16-13:11

04-12 fix display of exceptions app name 2:15:51 Larswalwes

H3E 13:11-15:26

04-13 write about issues had 0:38:27 Larswalwes

H3E 09:11-09:50

04-13 more tests and highlight tabs in exception page properly 1:34:23 Larswalwes

H3E 09:58-11:32

04-13 advanced search discussion 1:20:19 Larswalwes

H3E 11:45-13:05

04-13 change today to 24h 0:54:12 Larswalwes

H3E 13:05-14:00

04-13 change today graph to last 24h 0:59:56 Larswalwes

H3E 14:10-15:10

04-14 change today graph to last 24h 0:43:32 Larswalwes

H3E 09:16-09:59

04-14 accenture 3:12:04 Larswalwes
H3E 09:59-13:11

04-14 change today graph to last 24h 0:07:45 Larswalwes

H3E 13:11-13:19

04-14 change today graph to last 24h 1:35:37 Larswalwes

H3E 13:25-15:01

04-14 dynamic graph settings 0:53:27 Larswalwes

H3E 15:01-15:55

04-15 search filters 1:00:28 Larswalwes

H3E 09:07-10:07

04-15 meeting with design guru 1:07:09 Larswalwes

H3E 10:07-11:15

04-15 search filters and a little design redoing 1:33:10 Larswalwes

H3E 11:35-13:08

04-15 appication overview 0:37:09 Larswalwes

H3E 13:26-14:04

04-18 appication overview 2:14:00 Larswalwes

H3E 09:09-11:23

04-18 testing 1:14:44 Larswalwes
H3E 11:23-12:38

04-18 reading document 2:59:27 Larswalwes

H3E 22:30-01:30

04-19 farup meeting 1:04:13 Larswalwes

H3E 09:10-10:14

04-19 testing 1:40:13 Larswalwes
H3E 10:19-11:59

04-19 rolling average discussion 3:40:46 Larswalwes

H3E 12:00-15:41

04-20 testing 1:32:31 Larswalwes
H3E 09:29-11:02

04-20 Adjust heat from average value 0:50:16 Larswalwes

H3E 11:02-11:53

04-20 testing 0:32:46 Larswalwes
H3E 11:55-12:28

04-20 Heat adjustments to average 1:08:26 Larswalwes

H3E 12:56-14:04

04-20 Display heat in graph 1:11:12 Larswalwes

H3E 14:05-15:16

04-21 Display heat in graph 5:27:58 Larswalwes

H3E 09:30-14:57

04-22 Display heat in graph 4:23:50 Larswalwes

H3E 09:35-13:59

04-23 Display heat in graph 2:02:21 Larswalwes

H3E 01:30-03:32

04-25 Various and pull requests 3:12:12 Larswalwes

H3E 09:13-12:25

04-26 general clean up and address change in api 2:55:10 Larswalwes

H3E 09:15-12:10

04-26 innit meeting 3:45:20 Larswalwes

H3E 12:15-16:00

04-27 add context data to exceptions 1:11:33 Larswalwes

H3E 09:10-10:21

04-27 exception list directive 2:45:38 Larswalwes

H3E 10:21-13:07

04-27 Adjust frontend to handle mode filters 2:13:29 Larswalwes

H3E 13:15-15:28

04-28 make graph format for olafur 0:19:23 Larswalwes

H3E 09:14-09:34

04-28 test fixing 1:59:03 Larswalwes
H3E 09:35-11:34

04-28 gulp build 3:27:04 Larswalwes
H3E 11:35-15:02

05-02 gulp build 0:30:55 Larswalwes
H3E 09:15-09:46

05-02 gulp build testing and fixing 1:09:38 Larswalwes

H3E 09:50-11:00

05-02 set data to exception error handling 0:21:08 Larswalwes

H3E 11:00-11:21

05-02 HEEE-333 same exceptions list 1:32:47 Larswalwes

H3E 11:25-12:58

05-02 Write about mocking and grapher 0:54:00 Larswalwes

H3E 12:58-13:52

05-02 rewrite grapher 1:05:02 Larswalwes

H3E 13:55-15:00

05-03 farup meeting 0:59:39 Larswalwes

H3E 09:10-10:10

05-03 rewrite grapher 3:19:17 Larswalwes

H3E 10:11-13:30

05-03 rewrite grapher 0:29:06 Larswalwes

H3E 13:35-14:04

05-03 pull request and discussion 0:38:12 Larswalwes

H3E 14:05-14:43

05-03 minor fixes 0:12:48 Larswalwes
H3E 14:44-14:56

05-03 HEEE-341 heat value appearance 0:05:29 Larswalwes

H3E 14:57-15:02

05-04 grapher color picker 3:00:35 Larswalwes

H3E 09:30-12:31

05-04 various discussion 1:10:03 Larswalwes

H3E 12:33-13:43

05-04 handle unseen IDs in setdatatoexp 1:42:28 Larswalwes

H3E 13:42-15:24

05-04 handle unseen IDs in setdatatoexp 1:31:47 Larswalwes

H3E 15:51-17:23

05-05 Handle 0 apps and 0 types graph 1:05:34 Larswalwes

H3E 09:58-11:03

05-05 handle new apps and types in heat graph 0:52:40 Larswalwes

H3E 11:03-11:56

05-05 Refactor syslog view 3:26:47 Larswalwes

H3E 12:06-15:33

05-06 Refactor syslog view 1:48:01 Larswalwes

H3E 09:15-11:03

05-06 pull request 0:02:46 Larswalwes
H3E 11:04-11:06

05-06 Refactor syslog view 2:58:05 Larswalwes

H3E 11:06-14:04

05-07 Refactor syslog view 2:16:42 Larswalwes

H3E 23:26-01:42

05-08 fix stupid unignore syslog hosts function 0:06:25 Larswalwes

H3E 14:03-14:10

05-08 adjust grapher to new index format 0:18:02 Larswalwes

H3E 14:27-14:45

05-09 code example for report 0:24:08 Larswalwes

H3E 09:03-09:28

05-09 refactor reports view 1:55:00 Larswalwes

H3E 09:30-11:25

05-09 refactor reports view 1:37:50 Larswalwes

H3E 19:28-21:06

05-10 refactor reports view 0:33:55 Larswalwes

H3E 10:10-10:44

05-10 refactor reports view 2:56:57 Larswalwes

H3E 11:00-13:57

05-10 refactor reports view 1:19:16 Larswalwes

H3E 14:00-15:19

05-10 make favicon 0:45:07 Larswalwes
H3E 21:45-22:30

05-11 single year reports view 3:47:15 Larswalwes

H3E 09:16-13:04

05-11 single year reports view 0:04:07 Larswalwes

H3E 13:17-13:21

05-11 max height directive 0:35:13 Larswalwes

H3E 13:21-13:56

05-12 fixing up log 1:08:27 Larswalwes

H3E 09:06-10:15

05-12 various bug fixes 1:07:17 Larswalwes

H3E 10:15-11:22

05-12 Making tests 2:39:01 Larswalwes
H3E 11:22-14:01

05-12 clean up logs 0:33:14 Larswalwes

H3E 14:01-14:34

05-13 read through and edit paper 0:40:10 Larswalwes

H3E 09:23-10:04

05-13 innit meeting 0:52:18 Larswalwes

H3E 10:04-10:56

05-13 css fixing after meeting 0:34:40 Larswalwes

H3E 10:58-11:32

Created with toggl.com

Detailed report
2016-01-04 - 2016-05-13

416 h 52 min 00 h 00 minTotal Billable

H3E, Professional Programming selected as projects

Date Description Duration User
01-04 Starting report and project plan Considering and testin tools 6:00:00 Olafur Trollebo

H3E 09:00-15:00

01-05 Work on report and project plan. Testing tools, setting up test architectures 7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-07 Project plan and report. Learning tools and frameworks. Deciding repository architecture and
considerations.

7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-08 Work on project plan. Setting up test-architecture with Yeoman. Learning Laravel/AngularJS.
Setup Syslog servers

6:00:00 Olafur Trollebo

H3E 09:00-15:00

01-11 Course on project management and planning at campus 2:00:00 Olafur Trollebo

H3E 10:00-12:00

01-11 Project plan and report. Learning Laravel/AngularJS 4:00:00 Olafur Trollebo

H3E 12:00-16:00

01-12 Meeting with supervisor. Project plan and report. Learning Laravel/AngularJS. Testing tools 7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-13 Trip to Hamar. Meeting at contractors office. Travel back to Gjøvik 5:00:00 Olafur Trollebo

H3E 11:00-16:00

01-14 Project plan and report. Learning Laravel/AngularJS. Sketching system architecture. Testing
tools. Working

7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-15 Project plan. Learning Laravel/Lumen/AngularJS. Working on API specification. Syslog
research

7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-18 Project plan. Working on API specifications. 7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-19 Meeting with supervisor. 0:45:00 Olafur Trollebo

H3E 09:15-10:00

01-19 Skype Q&A meeting with contractor. 1:30:00 Olafur Trollebo

H3E 10:00-11:30

01-19 Project plan. API-specification. Architecture. 4:30:00 Olafur Trollebo

H3E 11:30-16:00

01-20 GUI mocking and testing. Writing gulp code. Learning Laravel/AngularJS 7:00:00 Olafur Trollebo

H3E 09:00-16:00

01-21 Creating tests in Laravel. Exception Route. Learning Laravel in general 7:00:00 Olafur Trollebo

H3E 09:00-16:00

HEEE - Handler for Exceptionally Exceptional Exceptions

H.4 Time Log Olafur

167

01-22 Tried fixing validation 2:00:00 Olafur Trollebo

H3E 09:00-11:00

01-22 Exception route 1:00:00 Olafur Trollebo

H3E 12:00-13:00

01-22 IMT3602 1:00:00 Olafur Trollebo
Professional Programming 14:00-15:00

01-25 Exception Route - Backend 0:58:29 Olafur Trollebo

H3E 09:41-10:40

01-25 Exception Route - Backend 0:42:18 Olafur Trollebo

H3E 11:28-12:10

01-25 Exception Route - Backend 1:04:11 Olafur Trollebo

H3E 12:21-13:25

01-25 Moving backend project from Github to BitBucket 2:41:00 Olafur Trollebo

H3E 14:19-17:00

01-28 Learning about best practices for Seeders in Laravel 0:45:00 Olafur Trollebo

Professional Programming 09:32-10:17

01-28 Migration/Seeder on Application Route - UPDATE: Had to do error fixing due to full path 0:41:00 Olafur Trollebo

Professional Programming 10:17-10:58

01-28 Application Route Controller 1:49:42 Olafur Trollebo

H3E 11:01-12:51

01-28 Application Route Tests 1:07:00 Olafur Trollebo

Professional Programming 13:03-14:10

01-29 Setup for Migrations/Seeders on Exception Route 0:46:00 Olafur Trollebo

Professional Programming 09:50-10:36

01-29 Bugfixes on the backend 0:29:00 Olafur Trollebo

H3E 10:36-11:05

01-29 Talking to Simon about Professional Programming 0:58:00 Olafur Trollebo

Professional Programming 11:06-12:04

01-29 Migration on Exception Route 0:10:05 Olafur Trollebo

H3E 12:34-12:44

01-29 Creating Models for the Exception Route 0:05:34 Olafur Trollebo

H3E 12:47-12:53

01-29 Research Models 0:06:35 Olafur Trollebo

Professional Programming 12:53-12:59

01-29 Creating Models for the Exception Route 0:08:06 Olafur Trollebo

H3E 12:59-13:07

01-29 Creating Seeders on Exception Route 1:18:29 Olafur Trollebo

Professional Programming 13:08-14:26

01-29 Professional Programming Lecture 0:30:00 Olafur Trollebo

Professional Programming 14:26-14:56

01-29 Creating Seeders on Exception Route 0:52:17 Olafur Trollebo

Professional Programming 15:39-16:31

01-30 Creating Controller and input route. 4:00:29 Olafur Trollebo

H3E 19:11-23:11

01-30 Creating the "show" route of Exceptions 0:24:41 Olafur Trollebo

H3E 23:11-23:36

01-30 Bugfixes related to DB, seeds and factories 0:51:12 Olafur Trollebo

H3E 23:37-00:28

01-31 Bugfixes on the backend - DB structure 0:21:44 Olafur Trollebo

H3E 00:28-00:50

02-01 Group Meeting - Front and backend 1:55:00 Olafur Trollebo

H3E - [planning] 09:05-11:00

02-01 Creating the "show" route of Exceptions 2:24:00 Olafur Trollebo

H3E - [backend] 11:10-13:34

02-01 Bugfix - HEEE-12. 2:20:00 Olafur Trollebo

H3E - [backend, bugfix] 13:34-15:54

02-01 Improved validation rules on incoming exceptions and some code cleanup 0:12:00 Olafur Trollebo

Professional Programming - [backend] 18:30-18:42

02-01 Deploying Backend 3:21:00 Olafur Trollebo

H3E - [backend] 19:04-22:25

02-02 Fixing backend that Aleksander broke 0:17:23 Olafur Trollebo

H3E - [backend, bugfix] 09:36-09:54

02-02 Sending mail to Innit 0:17:06 Olafur Trollebo

H3E 12:09-12:26

02-02 Creating issues in JIRA 1:31:53 Olafur Trollebo

Professional Programming 12:37-14:09

02-02 HEEE-40 0:37:14 Olafur Trollebo
Professional Programming - [backend] 14:09-14:47

02-03 Creating issues in JIRA 0:35:44 Olafur Trollebo

Professional Programming 09:41-10:17

02-03 Creating issues in JIRA 0:07:03 Olafur Trollebo

Professional Programming 10:21-10:28

02-03 Create Statistics route 1:03:18 Olafur Trollebo

H3E 10:50-11:53

02-03 HEEE-32 1:55:19 Olafur Trollebo
H3E - [backend] 12:01-13:57

02-03 HEEE-33 0:42:06 Olafur Trollebo
H3E - [backend] 14:22-15:04

02-03 HEEE-34 0:19:28 Olafur Trollebo
H3E - [backend] 15:11-15:30

02-03 HEEE-35 0:08:36 Olafur Trollebo
H3E - [backend] 15:30-15:39

02-03 HEEE-68 0:14:10 Olafur Trollebo
Professional Programming - [backend, testing] 15:42-15:56

02-04 HEEE-68 0:44:36 Olafur Trollebo
Professional Programming - [backend, testing] 09:25-10:10

02-04 HEEE-68 0:02:17 Olafur Trollebo
Professional Programming - [backend, testing] 10:30-10:32

02-04 Fixing backend that Aleksander broke 0:39:00 Olafur Trollebo

H3E 10:32-11:11

02-04 Commenting the Statistics tests 1:05:11 Olafur Trollebo

H3E 11:58-13:04

02-04 Reviewing pull request with Vegard 0:08:04 Olafur Trollebo

Professional Programming 13:12-13:20

02-04 HEEE-78 0:30:44 Olafur Trollebo
H3E - [backend, planning] 13:20-13:51

02-04 Learning more laravel 0:06:06 Olafur Trollebo

H3E 14:12-14:18

02-04 HEEE-69 1:31:53 Olafur Trollebo
Professional Programming 14:22-15:54

02-04 HEEE-81 (Blocking HEEE-69 temporary) 1:05:47 Olafur Trollebo

H3E - [backend, refactor] 17:17-18:23

02-04 HEEE-69 0:13:41 Olafur Trollebo
Professional Programming 18:23-18:36

02-04 HEEE-69 1:07:50 Olafur Trollebo
Professional Programming 19:22-20:30

02-05 HEEE-78 1:00:00 Olafur Trollebo
H3E - [backend] 09:39-10:39

02-05 HEEE-53 0:07:47 Olafur Trollebo
H3E 11:45-11:53

02-05 HEEE-69 1:01:20 Olafur Trollebo
Professional Programming 11:53-12:54

02-05 HEEE-69 0:13:18 Olafur Trollebo
Professional Programming 13:13-13:26

02-05 Bugfixing 0:38:11 Olafur Trollebo
H3E 14:03-14:42

02-05 HEEE-53 0:01:15 Olafur Trollebo
H3E 14:46-14:47

02-05 Server went boom. Firefighting ahoy!! 0:05:23 Olafur Trollebo

H3E 14:48-14:53

02-05 HEEE-86 0:36:11 Olafur Trollebo
H3E 14:53-15:30

02-05 Helping Lars make tests 0:41:24 Olafur Trollebo

H3E 15:30-16:12

02-08 Meeting with Farup 0:56:05 Olafur Trollebo

H3E - [meeting] 10:05-11:01

02-08 Researching how to do HEEE-89 0:30:48 Olafur Trollebo

Professional Programming - [backend] 11:36-12:07

02-08 HEEE-89 2:55:35 Olafur Trollebo
H3E - [backend] 12:07-15:03

02-09 HEEE-89 0:24:55 Olafur Trollebo
H3E - [backend] 09:28-09:53

02-09 HEEE-95 0:12:32 Olafur Trollebo
H3E 10:18-10:30

02-09 HEEE-95 0:29:43 Olafur Trollebo
H3E 10:49-11:19

02-09 HEEE-95 2:00:55 Olafur Trollebo
H3E 11:57-13:58

02-09 HEEE-95 0:42:39 Olafur Trollebo
H3E 15:01-15:44

02-10 HEEE-95 1:48:41 Olafur Trollebo
H3E 09:22-11:11

02-10 HEEE-95 0:29:06 Olafur Trollebo
H3E 11:42-12:11

02-10 Fixing HEEE-95 for Pull Request 1:50:54 Olafur Trollebo

Professional Programming - [backend] 13:00-14:51

02-11 HEEE-103 0:34:35 Olafur Trollebo
H3E - [backend] 09:26-10:01

02-11 HEEE-101 0:42:22 Olafur Trollebo
Professional Programming - [backend, refactor] 10:24-11:06

02-11 HEEE-105 0:10:24 Olafur Trollebo
H3E 11:06-11:17

02-11 HEEE-101 0:23:49 Olafur Trollebo
Professional Programming - [backend, refactor] 11:17-11:40

02-11 HEEE-101 0:56:10 Olafur Trollebo
Professional Programming - [backend, refactor] 12:06-13:02

02-11 HEEE-36 0:19:21 Olafur Trollebo
H3E 13:25-13:45

02-11 HEEE-62 1:47:18 Olafur Trollebo
H3E - [frontend] 13:51-15:38

02-12 Code review 1:59:00 Olafur Trollebo
Professional Programming 14:06-16:05

02-13 HEEE-62 3:58:03 Olafur Trollebo
H3E - [frontend] 21:00-00:59

02-15 HEEE-53 0:10:34 Olafur Trollebo
H3E 09:42-09:52

02-15 Firefighting - CORS 1:00:00 Olafur Trollebo

H3E 09:52-10:52

02-15 HEEE-121 0:02:16 Olafur Trollebo
H3E 12:09-12:11

02-15 Misc work backend work 0:49:44 Olafur Trollebo

H3E 12:11-13:01

02-15 HEEE-128 1:19:43 Olafur Trollebo
H3E 13:01-14:20

02-15 Codereview - Pull Request 0:41:30 Olafur Trollebo

Professional Programming 14:20-15:01

02-16 Meeting Ivar Farup 1:42:00 Olafur Trollebo

H3E 09:05-10:47

02-16 HEEE-131 1:12:41 Olafur Trollebo
H3E 10:47-12:00

02-16 HEEE-131 0:26:01 Olafur Trollebo
H3E 12:11-12:37

02-16 HEEE-134 1:01:44 Olafur Trollebo
H3E 12:43-13:44

02-16 HEEE-134 0:12:33 Olafur Trollebo
H3E 14:45-14:58

02-17 Misc discussions - Code Review 1:18:00 Olafur Trollebo

H3E 09:02-10:20

02-17 Heat discussion regarding frontend 1:04:00 Olafur Trollebo

H3E - [frontend] 10:20-11:24

02-17 HEEE-138 1:59:36 Olafur Trollebo
H3E 11:41-13:41

02-17 HEEE-144 1:07:04 Olafur Trollebo
H3E - [backend] 14:12-15:19

02-18 HEEE-144 0:05:42 Olafur Trollebo
H3E - [backend] 09:30-09:36

02-18 HEEE-148 0:13:46 Olafur Trollebo
H3E 10:13-10:27

02-18 Researching how to do HEEE-142 0:40:09 Olafur Trollebo

Professional Programming 10:33-11:13

02-18 Application view discussion 0:17:56 Olafur Trollebo

H3E 11:13-11:31

02-18 HEEE-142 0:32:16 Olafur Trollebo
H3E 11:48-12:20

02-18 HEEE-142 0:32:45 Olafur Trollebo
H3E 12:38-13:11

02-18 Reopened and working on HEEE-142 0:09:39 Olafur Trollebo

H3E 13:42-13:52

02-18 Reopened and working on HEEE-142 and HEEE-162 0:51:37 Olafur Trollebo

H3E 14:14-15:06

02-19 Figuring out what to do - Creating issues 0:44:29 Olafur Trollebo

Professional Programming 11:11-11:55

02-19 HEEE-163 0:01:10 Olafur Trollebo
H3E 11:56-11:57

02-19 Code review - Pull Request 0:23:27 Olafur Trollebo

Professional Programming 11:57-12:20

02-19 HEEE-163 0:10:14 Olafur Trollebo
H3E 12:38-12:48

02-19 HEEE-163 - Subtask 165 0:13:20 Olafur Trollebo

H3E 12:48-13:02

02-19 HEEE-172 0:11:01 Olafur Trollebo
H3E 13:03-13:14

02-19 HEEE-167 0:21:59 Olafur Trollebo
H3E 13:47-14:09

02-19 Listening to Simon and replying 1:07:53 Olafur Trollebo

Professional Programming 14:11-15:19

02-19 HEEE-167 0:46:59 Olafur Trollebo
H3E 15:19-16:06

02-19 HEEE-167 0:18:09 Olafur Trollebo
H3E 23:28-23:46

02-19 HEEE-167 0:10:11 Olafur Trollebo
H3E 23:48-23:58

02-22 Pull Request - HEEE-167 0:12:41 Olafur Trollebo

H3E 10:57-11:10

02-22 HEEE-177 0:50:53 Olafur Trollebo
H3E 11:10-12:01

02-22 HEEE-178 1:34:01 Olafur Trollebo
H3E 14:18-15:52

02-23 Meeting Ivar Farup 0:57:00 Olafur Trollebo

H3E 09:00-09:57

02-23 Code review - Pull Request 0:21:31 Olafur Trollebo

Professional Programming 09:57-10:18

02-23 HEEE-178 0:41:00 Olafur Trollebo
H3E 10:18-10:59

02-23 HEEE-178 0:36:50 Olafur Trollebo
H3E 11:37-12:14

02-23 HEEE-178 0:05:21 Olafur Trollebo
H3E 12:14-12:19

02-23 HEEE-178 0:17:19 Olafur Trollebo
H3E 12:19-12:37

02-23 HEEE-178 0:20:00 Olafur Trollebo
H3E 12:37-12:57

02-24 Frontend work 1:00:04 Olafur Trollebo

H3E 01:09-02:09

02-24 HEEE-178 0:20:06 Olafur Trollebo
H3E 09:17-09:37

02-24 HEEE-178 0:33:08 Olafur Trollebo
H3E 09:43-10:16

02-24 HEEE-169 0:34:20 Olafur Trollebo
H3E - [frontend] 10:19-10:54

02-24 HEEE-183 0:12:14 Olafur Trollebo
H3E 10:57-11:09

02-24 HEEE-169 0:04:54 Olafur Trollebo
H3E - [frontend] 11:10-11:15

02-24 HEEE-169 0:57:52 Olafur Trollebo
H3E - [frontend] 11:36-12:34

02-24 Code review - Pull Request 0:11:15 Olafur Trollebo

Professional Programming 12:34-12:46

02-24 HEEE-169 0:35:16 Olafur Trollebo
H3E - [frontend] 12:46-13:21

02-24 HEEE-169 0:56:11 Olafur Trollebo
H3E - [frontend] 13:34-14:30

02-24 HEEE-169 0:26:56 Olafur Trollebo
H3E 14:30-14:57

02-24 HEEE-188 0:38:38 Olafur Trollebo
H3E 21:53-22:31

02-25 HEEE-169 0:39:23 Olafur Trollebo
H3E 09:20-10:00

02-25 Learning more about AngularJS testing 0:28:03 Olafur Trollebo

Professional Programming 10:00-10:28

02-25 Creating issue based on mail from Innit 0:04:11 Olafur Trollebo

H3E 10:54-10:58

02-25 HEEE-190 0:50:03 Olafur Trollebo
H3E - [backend] 10:58-11:49

02-25 HEEE-190 0:16:24 Olafur Trollebo
H3E - [backend] 17:46-18:03

02-29 Finding stuff to do 0:07:18 Olafur Trollebo

H3E 09:13-09:21

02-29 Figuring out how to do HEEE-192 0:45:18 Olafur Trollebo

Professional Programming 09:21-10:06

02-29 HEEE-192 0:42:43 Olafur Trollebo
H3E 10:06-10:49

02-29 Firefighting - SQL exceptions in the backend 0:25:30 Olafur Trollebo

H3E 10:49-11:14

02-29 HEEE-192 0:03:01 Olafur Trollebo
H3E 11:14-11:18

02-29 HEEE-192 0:38:20 Olafur Trollebo
H3E 11:36-12:14

02-29 HEEE-169 0:03:24 Olafur Trollebo
H3E 12:43-12:46

02-29 HEEE-169 0:57:39 Olafur Trollebo
H3E 13:23-14:21

02-29 Figuring out if statistics can output empty dates 0:18:32 Olafur Trollebo

H3E 14:21-14:39

02-29 HEEE-169 0:19:04 Olafur Trollebo
H3E 14:42-15:01

02-29 Creating issue to help out Lars with his graphing issue 0:09:56 Olafur Trollebo

H3E 15:05-15:15

02-29 Figuring out how to do HEEE-195 0:23:55 Olafur Trollebo

Professional Programming 15:15-15:39

02-29 HEEE-195 0:16:29 Olafur Trollebo
H3E 15:39-15:56

03-01 Fixing things for Innit to send exceptions 1:10:23 Olafur Trollebo

H3E 13:20-14:30

03-01 HEEE-198 0:10:09 Olafur Trollebo
H3E 14:30-14:40

03-02 Figuring out why exceptions are not inserted 0:16:09 Olafur Trollebo

H3E 09:23-09:40

03-02 HEEE-195 0:05:53 Olafur Trollebo
H3E 09:54-10:00

03-02 HEEE-195 0:10:55 Olafur Trollebo
H3E 10:02-10:13

03-02 Fixing documentation of API format 0:06:22 Olafur Trollebo

H3E 10:44-10:51

03-02 HEEE-195 0:08:10 Olafur Trollebo
H3E 10:51-10:59

03-02 Figuring out how to do HEEE-200 0:15:58 Olafur Trollebo

H3E 11:44-12:00

03-02 Figuring out how to do HEEE-200 0:04:37 Olafur Trollebo

H3E 12:46-12:51

03-02 HEEE-201 0:50:23 Olafur Trollebo
H3E 12:51-13:41

03-02 Figuring out how to do HEEE-200 0:27:33 Olafur Trollebo

H3E 13:42-14:09

03-02 HEEE-200 1:03:42 Olafur Trollebo
H3E 14:09-15:13

03-02 HEEE-204 0:02:34 Olafur Trollebo
H3E 15:49-15:51

03-03 Getting dev environment up and running 1:06:34 Olafur Trollebo

Professional Programming 09:20-10:27

03-03 HEEE-199 0:07:21 Olafur Trollebo
H3E 10:27-10:34

03-03 Getting dev environment up and running 0:16:40 Olafur Trollebo

Professional Programming 10:34-10:51

03-03 HEEE-199 0:13:24 Olafur Trollebo
H3E 10:54-11:08

03-03 HEEE-206 0:30:37 Olafur Trollebo
H3E 11:10-11:41

03-03 HEEE-206 0:14:47 Olafur Trollebo
H3E 12:33-12:47

03-04 Discussing our next steps and creating issues 1:04:42 Olafur Trollebo

H3E 09:50-10:55

03-04 Discussing our next steps and creating issues 0:04:51 Olafur Trollebo

H3E 11:13-11:18

03-04 HEEE-207 1:08:21 Olafur Trollebo
H3E 12:12-13:21

03-04 HEEE-207 1:28:20 Olafur Trollebo
H3E 13:21-14:49

03-04 Professional Programming Lecture 1:18:17 Olafur Trollebo

Professional Programming 14:49-16:08

03-07 Meeting with Innit at Hamar 4:20:00 Olafur Trollebo

H3E 11:00-15:20

03-08 Farup meeting and discussion afterwards about samples etc 2:05:02 Olafur Trollebo

H3E 09:10-11:15

03-08 Creating JIRA issues for Samples/Severity Rating 0:21:59 Olafur Trollebo

H3E 11:41-12:03

03-08 Asking Rune about MySQL Text 0:08:08 Olafur Trollebo

H3E 12:03-12:11

03-08 Creating JIRA issues for Samples/Severity Rating 0:25:28 Olafur Trollebo

H3E 12:11-12:37

03-08 Asking Rune about MySQL Text 0:11:21 Olafur Trollebo

H3E 12:37-12:48

03-08 Creating JIRA issues for Samples/Severity Rating 0:07:53 Olafur Trollebo

H3E 12:48-12:56

03-08 Figuring out how to do HEEE-208 (Threeway coupling) 1:53:03 Olafur Trollebo

Professional Programming 12:56-14:49

03-08 HEEE-208 0:34:29 Olafur Trollebo
H3E 14:49-15:24

03-09 Group Discussion 0:17:49 Olafur Trollebo

H3E 09:25-09:43

03-09 HEEE-205 0:06:44 Olafur Trollebo
H3E 09:44-09:50

03-09 Discussing settings view in frontend 0:51:24 Olafur Trollebo

H3E 09:50-10:41

03-09 HEEE-205 1:05:11 Olafur Trollebo
H3E 10:45-11:50

03-09 Learning more about Eloquent relationships 0:51:37 Olafur Trollebo

Professional Programming 12:02-12:53

03-09 HEEE-205 0:04:37 Olafur Trollebo
H3E 12:53-12:58

03-09 Discussing settings view in frontend 0:05:52 Olafur Trollebo

H3E 12:58-13:04

03-09 Discussing three-way coupling with the group 0:14:06 Olafur Trollebo

H3E 13:04-13:18

03-09 HEEE-205 0:02:07 Olafur Trollebo
H3E 13:18-13:20

03-09 Discussing three-way coupling with the group 0:02:22 Olafur Trollebo

H3E 13:20-13:23

03-09 Asking Rune about MySQL Text and Threeway coupling 0:14:55 Olafur Trollebo

H3E 13:23-13:38

03-09 HEEE-205 1:37:31 Olafur Trollebo
H3E 13:46-15:24

03-10 HEEE-205 1:31:06 Olafur Trollebo
H3E 09:51-11:22

03-10 HEEE-205 0:30:14 Olafur Trollebo
H3E 11:40-12:10

03-10 Failed attempts at fixing test coverage in IDE 0:31:19 Olafur Trollebo

Professional Programming 12:10-12:42

03-10 Asking Rune about MySQL Text and Threeway coupling 0:13:14 Olafur Trollebo

H3E 12:44-12:57

03-10 HEEE-212 2:20:34 Olafur Trollebo
H3E 13:08-15:28

03-10 HEEE-212 0:28:07 Olafur Trollebo
H3E 15:32-16:00

03-11 Pull Request review and setting up work 0:17:51 Olafur Trollebo

H3E 09:31-09:49

03-11 HEEE-209 0:23:54 Olafur Trollebo
H3E 09:49-10:13

03-11 HEEE-209 0:14:05 Olafur Trollebo
H3E 10:13-10:28

03-11 Asking Rune about MySQL Text and Threeway coupling - Rune still not here 0:04:56 Olafur Trollebo

H3E 10:34-10:39

03-11 HEEE-210 0:19:38 Olafur Trollebo
H3E 10:39-10:59

03-11 HEEE-210 0:08:44 Olafur Trollebo
H3E 11:20-11:29

03-11 HEEE-210 0:23:12 Olafur Trollebo
H3E 12:02-12:26

03-11 HEEE-210 0:06:09 Olafur Trollebo
H3E 12:26-12:32

03-11 Discussion 0:31:44 Olafur Trollebo
H3E 12:32-13:04

03-11 HEEE-210 0:17:47 Olafur Trollebo
H3E 13:05-13:23

03-11 Professional Programming Lecture 2:00:00 Olafur Trollebo

Professional Programming 14:00-16:00

03-14 HEEE-222 0:49:43 Olafur Trollebo
H3E 09:28-10:18

03-14 HEEE-223 0:39:57 Olafur Trollebo
H3E 10:18-10:58

03-14 Pull request for HEEE-222 and HEEE-223 0:05:03 Olafur Trollebo

H3E 11:16-11:21

03-14 HEEE-207 0:03:14 Olafur Trollebo
H3E 11:21-11:25

03-14 HEEE-207 0:15:12 Olafur Trollebo
H3E 11:26-11:41

03-14 HEEE-207 0:22:00 Olafur Trollebo
H3E 12:02-12:24

03-14 HEEE-207 0:26:38 Olafur Trollebo
H3E 12:24-12:50

03-14 Fixing merge conflicts 0:06:01 Olafur Trollebo

H3E 12:50-12:56

03-14 Creating issues in JIRA for test 0:14:16 Olafur Trollebo

Professional Programming 13:00-13:14

03-14 HEEE-224 0:17:34 Olafur Trollebo
H3E 13:14-13:32

03-14 Setting up test suites in PHPUnit 0:02:33 Olafur Trollebo

Professional Programming 13:32-13:35

03-14 HEEE-224 0:31:25 Olafur Trollebo
H3E 13:35-14:06

03-14 HEEE-224 0:46:04 Olafur Trollebo
H3E 14:06-14:52

03-14 HEEE-224 0:04:35 Olafur Trollebo
H3E 14:53-14:58

03-14 HEEE-225 0:26:25 Olafur Trollebo
H3E 15:01-15:27

03-15 Farup meeting and discussion afterwards about samples etc 1:00:04 Olafur Trollebo

H3E 09:15-10:15

03-15 HEEE-225 0:16:27 Olafur Trollebo
H3E 10:45-11:02

03-15 HEEE-224 0:41:10 Olafur Trollebo
H3E 12:02-12:43

03-15 HEEE-224 ExceptionsTests 0:04:40 Olafur Trollebo

H3E 12:43-12:48

03-15 HEEE-224 0:12:38 Olafur Trollebo
H3E 12:48-13:01

03-15 HEEE-224 1:32:42 Olafur Trollebo
H3E 13:07-14:40

03-15 HEEE-224 0:43:43 Olafur Trollebo
H3E 14:51-15:35

03-16 Reading about Laravel 0:30:28 Olafur Trollebo

Professional Programming 09:10-09:41

03-16 HEEE-224 0:49:58 Olafur Trollebo
H3E 09:41-10:31

03-17 Reading up on Laravel Best Practices 0:19:48 Olafur Trollebo

Professional Programming 10:00-10:20

03-17 HEEE-226 0:24:49 Olafur Trollebo
H3E 10:23-10:48

03-17 Talking about Syslog route 0:07:49 Olafur Trollebo

H3E 10:48-10:56

03-17 HEEE-226 0:05:23 Olafur Trollebo
H3E 10:56-11:02

03-17 HEEE-226 0:18:06 Olafur Trollebo
H3E 11:02-11:20

03-17 HEEE-226 1:06:29 Olafur Trollebo
H3E 11:36-12:42

03-17 HEEE-226 0:24:50 Olafur Trollebo
H3E 12:43-13:07

03-17 HEEE-229 0:41:08 Olafur Trollebo
H3E 13:12-13:53

03-17 HEEE-229 1:31:57 Olafur Trollebo
H3E 13:53-15:25

03-17 HEEE-229 0:28:42 Olafur Trollebo
H3E 15:25-15:54

03-18 HEEE-229 0:12:50 Olafur Trollebo
H3E 09:19-09:32

03-18 Creating issues in JIRA 0:25:31 Olafur Trollebo

Professional Programming 09:32-09:58

03-18 HEEE-233 0:57:02 Olafur Trollebo
H3E 09:58-10:55

03-18 Create issues in JIRA 0:17:38 Olafur Trollebo

Professional Programming 11:55-12:13

03-18 HEEE-237 0:11:26 Olafur Trollebo
H3E 12:18-12:29

03-18 HEEE-237 0:45:16 Olafur Trollebo
H3E 12:55-13:40

03-23 HEEE-238 0:12:11 Olafur Trollebo
H3E 16:36-16:48

03-23 HEEE-234 0:15:26 Olafur Trollebo
H3E 17:07-17:23

03-23 HEEE-234 0:21:52 Olafur Trollebo
H3E 17:23-17:44

03-29 Meeting with Ivar Farup 0:55:01 Olafur Trollebo

H3E 09:10-10:05

03-29 HEEE-231 0:19:33 Olafur Trollebo
H3E 10:27-10:47

03-29 Helping Lars figure out updateRatings 0:11:53 Olafur Trollebo

H3E 10:47-10:59

03-29 HEEE-231 0:57:18 Olafur Trollebo
H3E 10:59-11:56

03-29 Discussing 0:28:54 Olafur Trollebo
H3E 11:56-12:25

03-29 HEEE-231 0:15:00 Olafur Trollebo
H3E 12:25-12:40

03-29 HEEE-231 0:50:44 Olafur Trollebo
H3E 12:40-13:31

03-29 Creating issues in JIRA to help out the frontend 0:41:48 Olafur Trollebo

H3E 14:37-15:18

03-29 HEEE-247 0:19:00 Olafur Trollebo
H3E 15:19-15:38

03-29 HEEE-247 0:06:08 Olafur Trollebo
H3E 15:38-15:44

03-30 HEEE-246 0:59:55 Olafur Trollebo
H3E 09:18-10:18

03-30 HEEE-246 0:39:36 Olafur Trollebo
H3E 10:18-10:58

03-30 Reading up on database triggers for HEEE-245 0:13:59 Olafur Trollebo

Professional Programming 11:02-11:16

03-30 HEEE-245 0:25:45 Olafur Trollebo
H3E 11:16-11:42

03-30 HEEE-248 0:41:45 Olafur Trollebo
H3E 12:02-12:44

03-31 HEEE-249 1:05:52 Olafur Trollebo
H3E 09:43-10:49

03-31 Creating JIRA issues based on discussion about Heat 0:26:03 Olafur Trollebo

H3E 11:24-11:50

03-31 Creating JIRA issues based on discussion about Heat 1:03:30 Olafur Trollebo

H3E 12:09-13:12

03-31 HEEE-252 0:24:14 Olafur Trollebo
H3E 13:12-13:37

03-31 Creating JIRA issues based on discussion about Heat 0:14:19 Olafur Trollebo

H3E 13:40-13:55

03-31 HEEE-251 0:10:00 Olafur Trollebo
H3E 14:03-14:13

03-31 HEEE-254 0:08:07 Olafur Trollebo
H3E 14:13-14:21

03-31 HEEE-255 0:40:40 Olafur Trollebo
H3E 14:51-15:32

04-01 Creating JIRA issues 0:18:02 Olafur Trollebo

Professional Programming 09:06-09:24

04-01 HEEE-256 0:15:25 Olafur Trollebo
H3E 09:25-09:40

04-01 Creating JIRA issues for Heat 0:41:37 Olafur Trollebo

H3E 10:08-10:50

04-01 Reading up on database events for Heat degradation 0:05:40 Olafur Trollebo

H3E 10:50-10:56

04-01 Reading up on database events for Heat degradation 2:33:12 Olafur Trollebo

Professional Programming 11:15-13:48

04-01 HEEE-257 2:07:44 Olafur Trollebo
H3E 13:48-15:56

04-04 HEEE-257 1:25:29 Olafur Trollebo
H3E 09:31-10:56

04-04 Asking Kolloen about API 0:54:23 Olafur Trollebo

Professional Programming 10:57-11:51

04-04 Reworking on suggestion from Mariusz and Rune 0:14:56 Olafur Trollebo

H3E 12:22-12:37

04-04 HEEE-257 0:28:25 Olafur Trollebo
H3E 12:42-13:10

04-04 HEEE-258 0:18:28 Olafur Trollebo
H3E 13:14-13:32

04-04 Emergency damage control 0:50:53 Olafur Trollebo

H3E 13:32-14:23

04-04 HEEE-260 0:11:42 Olafur Trollebo
H3E 14:56-15:07

04-05 HEEE-264 0:57:51 Olafur Trollebo
H3E 09:42-10:40

04-05 HEEE-266 0:12:29 Olafur Trollebo
H3E 10:40-10:53

04-05 HEEE-266 0:20:13 Olafur Trollebo
H3E 11:23-11:43

04-05 HEEE-262 0:39:30 Olafur Trollebo
H3E 12:09-12:48

04-05 HEEE-259 0:22:14 Olafur Trollebo
H3E 13:27-13:49

04-05 Figuring out how to couple for trigger - HEEE-259 0:30:29 Olafur Trollebo

Professional Programming 13:49-14:20

04-05 HEEE-259 1:28:33 Olafur Trollebo
H3E 14:24-15:52

04-06 HEEE-259 0:48:56 Olafur Trollebo
H3E 09:33-10:22

04-06 Asking Rune about things 1:12:00 Olafur Trollebo

H3E 10:22-11:34

04-06 HEEE-259 0:14:44 Olafur Trollebo
H3E 11:39-11:54

04-06 HEEE-259 1:21:19 Olafur Trollebo
H3E 14:29-15:51

04-07 HEEE-268 0:16:41 Olafur Trollebo
H3E 09:19-09:36

04-07 Documenting what happened the last few days. 0:22:24 Olafur Trollebo

Professional Programming 09:38-10:01

04-07 Removing ON UPDATE from timestamp in current_heat 0:31:25 Olafur Trollebo

H3E 10:18-10:49

04-07 HEEE-259 0:47:52 Olafur Trollebo
H3E 11:03-11:51

04-07 HEEE-259 1:00:05 Olafur Trollebo
H3E 12:17-13:17

04-07 HEEE-271 0:22:23 Olafur Trollebo
H3E 13:59-14:21

04-07 Running tests before creating pull request 1:07:35 Olafur Trollebo

H3E 14:21-15:29

04-08 HEEE-271 0:26:12 Olafur Trollebo
H3E 10:35-11:01

04-08 HEEE-271 0:08:04 Olafur Trollebo
H3E 12:06-12:14

04-08 HEEE-271 0:23:35 Olafur Trollebo
H3E 12:14-12:37

04-08 Creating JIRA issues 0:04:41 Olafur Trollebo

Professional Programming 12:45-12:49

04-08 HEEE-274 0:32:44 Olafur Trollebo
H3E 12:49-13:22

04-08 Professional Programming 2:04:26 Olafur Trollebo

Professional Programming 14:15-16:20

04-11 HEEE-269 1:44:34 Olafur Trollebo
H3E 09:46-11:30

04-11 Trying to find a link I had long time ago for the report 0:05:42 Olafur Trollebo

H3E 12:04-12:10

04-11 Trying to find a link I had long time ago for the report 0:05:45 Olafur Trollebo

H3E 12:26-12:31

04-11 HEEE-269 1:22:58 Olafur Trollebo
H3E 12:31-13:54

04-12 Meeting with Ivar Farup 0:48:15 Olafur Trollebo

H3E 09:12-10:00

04-12 HEEE-269 0:23:37 Olafur Trollebo
H3E 10:25-10:48

04-12 HEEE-269 0:04:20 Olafur Trollebo
H3E 10:54-10:58

04-12 HEEE-269 0:13:24 Olafur Trollebo
H3E 10:58-11:11

04-12 HEEE-269 0:49:31 Olafur Trollebo
H3E 11:26-12:15

04-12 Creating issue in JIRA 0:19:35 Olafur Trollebo

Professional Programming 12:35-12:55

04-12 HEEE-282 0:12:46 Olafur Trollebo
H3E 12:55-13:08

04-12 HEEE-280 0:03:06 Olafur Trollebo
H3E 13:51-13:54

04-12 HEEE-282 0:17:07 Olafur Trollebo
H3E 13:54-14:11

04-12 Talking about frontend 0:31:46 Olafur Trollebo

H3E 14:11-14:42

04-12 HEEE-280 0:09:00 Olafur Trollebo
H3E 14:43-14:52

04-12 Reviewing pull requests! 0:03:18 Olafur Trollebo

H3E 14:52-14:56

04-12 HEEE-280 0:12:40 Olafur Trollebo
H3E 15:12-15:25

04-13 HEEE-281 0:52:39 Olafur Trollebo
H3E 10:01-10:54

04-13 HEEE-281 0:37:01 Olafur Trollebo
H3E 11:30-12:07

04-13 HEEE-290 0:56:41 Olafur Trollebo
H3E 12:08-13:04

04-13 Creating JIRA issues 0:14:17 Olafur Trollebo

Professional Programming 13:28-13:42

04-13 HEEE-293 0:25:31 Olafur Trollebo
H3E 13:42-14:08

04-13 Figuring out why things fail 0:07:53 Olafur Trollebo

H3E 14:08-14:16

04-13 HEEE-293 0:08:05 Olafur Trollebo
H3E 14:16-14:24

04-13 HEEE-294 0:32:13 Olafur Trollebo
H3E 14:27-14:59

04-13 Figuring out how to do HEEE-253 0:32:56 Olafur Trollebo

Professional Programming 15:03-15:36

04-14 Figuring out how to do HEEE-253 0:15:37 Olafur Trollebo

Professional Programming 10:08-10:24

04-14 Waiting for Aleksander to upload the images taken yesterday - Need them for the issue. 1:19:23 Olafur Trollebo

H3E 10:24-11:44

04-14 Figuring out how to do HEEE-253 - Resulted in resolving it in code 0:20:50 Olafur Trollebo

Professional Programming 12:39-13:00

04-14 HEEE-253 0:59:13 Olafur Trollebo
H3E 13:00-13:59

04-14 HEEE-253 1:38:09 Olafur Trollebo
H3E 13:59-15:37

04-14 HEEE-253 0:26:00 Olafur Trollebo
H3E 15:38-16:04

04-15 Discussing work 0:44:18 Olafur Trollebo

H3E 09:10-09:54

04-15 Meeting with Eivind 1:05:44 Olafur Trollebo

H3E 09:55-11:00

04-15 HEEE-295 0:19:51 Olafur Trollebo
H3E 11:32-11:52

04-15 HEEE-295 1:06:16 Olafur Trollebo
H3E 11:52-12:58

04-15 HEEE-295 1:15:18 Olafur Trollebo
H3E 13:03-14:18

04-15 Professional Programming Lecture 0:29:43 Olafur Trollebo

Professional Programming 14:18-14:48

04-15 HEEE-295 0:55:12 Olafur Trollebo
H3E 14:48-15:43

04-18 HEEE-253 0:00:56 Olafur Trollebo
H3E 09:27-09:28

04-18 Working with Pull request 0:14:09 Olafur Trollebo

H3E 09:29-09:43

04-18 HEEE-253 0:16:58 Olafur Trollebo
H3E 09:43-10:00

04-18 HEEE-253 1:43:17 Olafur Trollebo
H3E 10:25-12:09

04-18 Writing up HEEE-253 on the whiteboard 0:12:07 Olafur Trollebo

H3E 12:09-12:21

04-18 HEEE-253 0:06:57 Olafur Trollebo
H3E 13:25-13:32

04-18 Reading our report 0:39:26 Olafur Trollebo

H3E 13:32-14:12

04-18 Reading our report 0:05:37 Olafur Trollebo

H3E 14:39-14:44

04-19 Reading our report 0:53:25 Olafur Trollebo

H3E 10:18-11:12

04-19 HEEE-296 0:30:58 Olafur Trollebo
H3E 11:51-12:22

04-19 Discussing Rolling average 2:09:02 Olafur Trollebo

H3E 12:22-14:31

04-19 Creating JIRA issues 0:04:19 Olafur Trollebo

Professional Programming 14:37-14:41

04-19 HEEE-306 1:02:06 Olafur Trollebo
H3E 14:41-15:43

04-20 Fixing things I did yesterday up to standards 0:06:07 Olafur Trollebo

H3E 11:56-12:02

04-20 HEEE-306 2:06:53 Olafur Trollebo
H3E 12:12-14:19

04-20 HEEE-309 0:40:33 Olafur Trollebo
H3E 14:53-15:34

04-21 HEEE-306 1:12:37 Olafur Trollebo
H3E 09:47-11:00

04-21 HEEE-278 0:31:40 Olafur Trollebo
H3E 12:05-12:37

04-21 HEEE-278 0:57:58 Olafur Trollebo
H3E 12:50-13:48

04-21 Lars said something was wrong with averageheat - Nothing was wrong 0:11:15 Olafur Trollebo

H3E 13:48-13:59

04-21 HEEE-278 0:51:37 Olafur Trollebo
H3E 13:59-14:51

04-22 Reading up on events in MySQL - Figuring out how to do it every whole hour 0:36:33 Olafur Trollebo

Professional Programming 10:05-10:42

04-22 HEEE-312 0:10:47 Olafur Trollebo
H3E 10:47-10:58

04-22 HEEE-313 0:47:38 Olafur Trollebo
H3E 11:19-12:06

04-22 Discussing 0:09:16 Olafur Trollebo
H3E 12:53-13:03

04-22 HEEE-313 0:33:00 Olafur Trollebo
H3E 13:03-13:36

04-22 Commiting the last hours work 0:42:43 Olafur Trollebo

H3E 13:44-14:27

04-22 Creating JIRA issues for validation 0:14:35 Olafur Trollebo

Professional Programming 14:37-14:52

04-22 Code review 0:59:46 Olafur Trollebo
Professional Programming 15:05-16:05

04-25 Reviewing pull request and discussing possible changes 1:33:42 Olafur Trollebo

H3E 09:32-11:06

04-25 HEEE-314 0:14:23 Olafur Trollebo
H3E 11:24-11:39

04-25 HEEE-314 1:57:39 Olafur Trollebo
H3E 11:57-13:55

04-25 HEEE-314 0:22:49 Olafur Trollebo
H3E 14:02-14:25

04-25 HEEE-314 0:54:32 Olafur Trollebo
H3E 14:25-15:20

04-26 Creating JIRA issues 0:12:54 Olafur Trollebo

Professional Programming 09:13-09:25

04-26 HEEE-315 1:42:06 Olafur Trollebo
H3E 09:26-11:08

04-26 Waiting for Aleksander to approve the Pull Request 0:17:05 Olafur Trollebo

H3E 09:33-09:50

04-26 HEEE-315 0:07:43 Olafur Trollebo
H3E 11:42-11:50

04-26 Meeting with Innit 16:10:00 Olafur Trollebo

H3E 23:50-16:00

04-27 HEEE-316 1:19:22 Olafur Trollebo
H3E 09:58-11:17

04-27 Committing HEEE-316 0:09:06 Olafur Trollebo

H3E 11:54-12:03

04-27 HEEE-320 0:16:03 Olafur Trollebo
H3E 12:03-12:19

04-27 HEEE-325 0:09:57 Olafur Trollebo
H3E 12:41-12:51

04-27 HEEE-326 2:08:21 Olafur Trollebo
H3E 13:25-15:34

04-28 HEEE-326 0:48:18 Olafur Trollebo
H3E 09:28-10:16

04-28 HEEE-328 0:01:22 Olafur Trollebo
H3E 10:16-10:17

04-28 HEEE-327 0:06:01 Olafur Trollebo
H3E 10:18-10:24

04-28 HEEE-327 0:06:40 Olafur Trollebo
H3E 10:25-10:31

04-28 HEEE-327 0:12:21 Olafur Trollebo
H3E 10:32-10:44

04-28 HEEE-330 0:24:40 Olafur Trollebo
H3E 10:50-11:15

04-28 HEEE-330 3:45:52 Olafur Trollebo
H3E 11:38-15:24

05-02 HEEE-330 1:44:33 Olafur Trollebo
H3E 09:31-11:15

05-02 HEEE-330 0:13:29 Olafur Trollebo
H3E 11:33-11:46

05-02 HEEE-334 0:06:57 Olafur Trollebo
H3E 11:46-11:53

05-02 HEEE-330 1:47:13 Olafur Trollebo
H3E 11:53-13:40

05-02 HEEE-330 0:05:56 Olafur Trollebo
H3E 14:13-14:19

05-02 HEEE-332 0:02:23 Olafur Trollebo
H3E 14:32-14:34

05-02 HEEE-332 0:16:33 Olafur Trollebo
H3E 14:34-14:51

05-03 Meeting with Ivar Farup 1:00:11 Olafur Trollebo

H3E 09:10-10:10

05-03 Figuring out how to do HEEE-331 0:09:29 Olafur Trollebo

Professional Programming 10:30-10:40

05-03 HEEE-331 0:21:45 Olafur Trollebo
H3E 10:40-11:01

05-03 HEEE-331 0:03:35 Olafur Trollebo
H3E 11:20-11:23

05-03 Discussing with Lars regarding the graph route not working correctly 0:19:21 Olafur Trollebo

H3E 11:23-11:42

05-03 Figuring out what is wrong - and fixing it - HEEE-340 1:19:02 Olafur Trollebo

H3E 11:42-13:01

05-03 HEEE-339 0:45:41 Olafur Trollebo
H3E 13:06-13:52

05-03 Reviewing pull request and discussing possible changes 0:29:19 Olafur Trollebo

H3E 14:11-14:40

05-03 HEEE-345 0:05:41 Olafur Trollebo
H3E 14:51-14:56

05-03 HEEE-344 0:09:55 Olafur Trollebo
H3E 14:56-15:06

05-04 Creating JIRA issues 0:06:33 Olafur Trollebo

Professional Programming 09:33-09:39

05-04 Reading over the report and inputting stuff 0:33:23 Olafur Trollebo

H3E 09:40-10:13

05-04 HEEE-347 0:17:47 Olafur Trollebo
H3E 10:14-10:31

05-04 HEEE-347 0:41:41 Olafur Trollebo
H3E 10:31-11:13

05-04 HEEE-347 0:20:19 Olafur Trollebo
H3E 11:19-11:39

05-04 HEEE-347 0:22:16 Olafur Trollebo
H3E 11:39-12:01

05-04 HEEE-347 0:22:30 Olafur Trollebo
H3E 13:35-13:58

05-04 Reading coverage reports 0:36:44 Olafur Trollebo

H3E 14:42-15:18

05-05 HEEE-350 0:48:14 Olafur Trollebo
H3E 09:59-10:47

05-05 HEEE-353 1:58:27 Olafur Trollebo
H3E 10:47-12:46

05-06 Figuring out what is wrong with graph route 1:22:14 Olafur Trollebo

H3E 09:32-10:54

05-06 Figuring out what is wrong with graph route 0:35:37 Olafur Trollebo

H3E 11:03-11:39

05-06 Agreeing with Lars to edit the format being sent from the backend so that we do not have to
zeropad in the backend

0:07:51 Olafur Trollebo

H3E 11:39-11:47

05-06 HEEE-355 1:14:55 Olafur Trollebo
H3E 11:47-13:02

05-06 HEEE-351 0:25:01 Olafur Trollebo
H3E 13:02-13:27

05-06 HEEE-349 0:20:32 Olafur Trollebo
H3E 14:19-14:40

05-06 Simon 0:49:44 Olafur Trollebo
Professional Programming 14:40-15:29

05-06 HEEE-349 0:52:59 Olafur Trollebo
H3E 15:29-16:22

05-08 Fixing some small bugs with Graph and commiting the tests - Lacking Graph test at the
moment

0:13:29 Olafur Trollebo

H3E 14:50-15:03

05-08 HEEE-349 0:12:15 Olafur Trollebo
H3E 15:03-15:16

05-09 Finding code fragments for the report 0:29:45 Olafur Trollebo

H3E 09:10-09:40

05-09 HEEE-349 0:57:24 Olafur Trollebo
H3E 09:40-10:38

05-09 HEEE-349 0:51:57 Olafur Trollebo
H3E 10:39-11:31

05-09 HEEE-349 2:09:19 Olafur Trollebo
H3E 12:03-14:12

05-10 Meeting with Ivar Farup 1:00:00 Olafur Trollebo

H3E 09:05-10:05

05-10 Discussing with Lars what to do with Reports view 0:14:10 Olafur Trollebo

H3E 11:02-11:17

05-10 HEEE-358 0:30:31 Olafur Trollebo
H3E 11:37-12:07

05-10 HEEE-349 0:38:53 Olafur Trollebo
H3E 12:11-12:50

05-10 HEEE-349 0:21:28 Olafur Trollebo
H3E 12:50-13:11

05-10 HEEE-349 0:30:37 Olafur Trollebo
H3E 13:11-13:42

05-10 Fixing a small bug in ExceptionContext 0:51:40 Olafur Trollebo

H3E 13:53-14:44

05-10 HEEE-347 0:18:00 Olafur Trollebo
H3E 15:07-15:25

05-11 HEEE-347 0:40:33 Olafur Trollebo
H3E 09:18-09:58

05-11 HEEE-347 0:45:15 Olafur Trollebo
H3E 10:23-11:08

05-11 HEEE-347 1:14:20 Olafur Trollebo
H3E 11:26-12:40

05-11 Report - Finding refactored code in backend 0:09:04 Olafur Trollebo

H3E 12:56-13:05

05-11 Report - Finding refactored code in backend 0:39:40 Olafur Trollebo

H3E 13:18-13:57

05-11 Checking Codecoverage 0:26:46 Olafur Trollebo

H3E 13:57-14:24

05-12 Fixing up the timelog 1:34:59 Olafur Trollebo

H3E 09:10-10:45

05-12 Fixing an error in the backend related to null values 0:25:31 Olafur Trollebo

H3E 10:45-11:10

05-12 Reading report 0:22:40 Olafur Trollebo

H3E 12:47-13:10

05-12 Talking to Simon about the timelogs 0:20:12 Olafur Trollebo

H3E 13:10-13:30

05-12 Fixing up the timelog once again 0:44:59 Olafur Trollebo

H3E 13:30-14:15

05-12 Reading report 0:23:47 Olafur Trollebo

H3E 14:15-14:38

05-13 Skype meeting with Innit 0:50:10 Olafur Trollebo

H3E 10:05-10:55

05-13 Change the default degradation time and percentage 0:04:17 Olafur Trollebo

H3E 11:06-11:10

Created with toggl.com

	Preface
	Contents
	List of Figures
	Introduction
	Project Inception
	Project Description
	Purpose
	Product Objectives

	Learning Objectives
	Audience
	Field of Study
	Project Organisation
	Academic Background
	Glossary
	Document Structure

	Project Management
	Development Methodology
	Task Board
	Meetings
	Meetings with Employer
	Meetings with Supervisor
	Group Meetings

	Requirements
	Use-case overview
	Design Requirements
	Data Requirements
	General Requirements
	User Types
	Architectural Draft

	Technical Design
	Languages and Frameworks
	Coding Conventions
	Back-end Architecture
	Front-end Architectural Overview
	Syslog
	Database Design

	Implementation
	Graphical Design Considerations
	Exception Report Format
	API-specification
	System Administration and Configuration
	Heat
	Heat Degradation
	Heat Degradation Recalculation
	Heat Map Data Transfer
	Heat Map Data Conversion

	Development Process
	Tools
	Data Model Development
	Issues and Bugs Encountered
	Front-end
	Back-end

	Working with Live Data

	Testing and Quality Assurance
	Code Review
	Unit Testing Tools
	Front-end
	Back-end

	Static Analysis
	Integration Testing
	Performance
	Demonstrations
	GUI Feedback Demonstration

	Discussion
	Target Achievements
	Achieved Learning Objectives
	Achieved Task Objectives
	Achieved Product Objectives

	Team and Process Discussion
	Division of Workload
	Time Schedule Assessment

	Critique and Alternative Approaches
	Process
	Product

	Further Work and Extendable Features

	Conclusion
	Bibliography
	Project Plan
	Project Contract
	Meeting Summaries
	Desember 2015 - Pre-Meeting with Innit
	Things to read/learn
	What system should do
	Questions and answers

	016.01.13 - First Meeting with Innit
	2016.01.19 - Second Meeting with Innit
	2016.01.27 - Third Meeting with Innit
	2016.03.07 - First Demo Meeting with Innit
	2016.04.26 - Second Demo Meeting with Innit
	2016.05.13 - Final Demo Meeting with Innit
	2016.04.15 - GUI Feedback Meeting

	API Structure
	Exceptions route
	ExceptionTypes route
	ExceptionContexts route
	Severity Rating route
	Applications route
	Installation route
	Reports route
	Statistics route
	Graph route
	Syslog route
	Supported global arguments across all routes

	Refactored Code
	Front-end
	Grapher.Controller

	Back-end
	Graph Controller
	Refactoring to adhere to code standard

	Images
	Readme
	Front-end
	Back-end

	Time Log
	Time Log Vegard
	Time Log Aleksander
	Time Log Lars
	Time Log Olafur

