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ABSTRACT 

 

Drilling operations may encounter mud loss which becomes especially aggravated in 

naturally fractured formations. The dynamics of fluid loss is a complex process, affected 

by both the rheology and the composition of the fluid as well as by the fracture 

morphology. A deep understanding of the underlying physics, in particular non-

Newtonian fluid flow and particle transport in rough-walled fractures, is required to 

combat fluid loss by use of e.g. LCM.  

 

Previous studies have shown increased aperture channelization and particle transport in 

the direction perpendicular to the shear displacement with Newtonian fluids. The 

motivation for and goal of this thesis is to investigate how non-Newtonian fluid flow and 

particle transport behave in rough-walled fractures subject to shear.  

 

One rough-walled fracture with average aperture equal to 0.5 mm and Hurst exponent 

equal to 0.75 was created by using the recursive subdivision technique. The fracture 

surfaces were shifted 0.01 m in either coordinate direction. A test matrix of 108 

simulations were completed for the two shearing scenarios with flow applied in x- and y-

direction.   

 

Conclusions drawn from the study include increased fluid channelization for large values 

of the ratio between yield stress value and applied pressure difference. The fluid's ability 

to carry particles was greater in the direction perpendicular to the shear displacement. In 

addition, the distributions of average cross sectional aperture perpendicular to fluid flow 

was more rough when flow was applied along the direction of shear displacement, leading 

to yield dominant flow.  

 

  



 

 

SAMMENDRAG 

 

I boreoperasjoner kan slamtapsituasjoner oppstå, og særlig i naturlig frakturerte 

formasjoner. Fysikken bak slamtap er en kompleks prosess som påvirkes både av 

reologien og komposisjonen til fluidet, samt av sprekkens morfologi. For å motvirke 

slamtap, for eksempel ved hjelp av metoder som LCM, er det nødvendig med en dypere 

forståelse av den underliggende fysikken, spesielt ikke-Newtonsk strømning og 

partikkeltransport i ruveggede sprekker.  

 

Tidligere studier har vist økende kanalisering av sprekkåpning og partikkeltransport i 

retning normalt til forskyvning med Newtonsk fluid. Motivasjonen og målet med 

oppgaven er å undersøke hvordan ikke-Newtonwsk strømning og partikkeltransport 

oppfører seg i ruveggede sprekker dannet ved forskyvning.  

 

En sprekk med gjennomsnittlig åpning på 0.5 mm og med Hurst eksponent lik 0.75 ble 

laget ved hjelp av rekursiv inndelingsteknikk. Sprekkoverflatene ble forskjøvet med 0.01 

m i begge koordinatretninger. En testmatrise på 108 simuleringer ble gjennomført for de 

to forskjellige forskyvningsscenarioene med pålagt strømning i x- og y-retning.  

 

Konklusjoner fra studien inkluderer økende kanalisering av fluidstrømning for høye 

verdier av forholdet mellom flytpunkt og pålagt trykkforskjell. Fluidets evne til å bære 

partikler var høyere i retning normalt til forskyvning. Distribusjonen av gjennomsnittlig 

tverrsnittssprekkåpning normalt til strømningsretninger var mer ru som fører til 

dominerende flytstyrkestrømning. 
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1 OVERVIEW 

 

Drillers may encounter mud losses which become especially aggravated in naturally 

fractured formations. The dynamics of fluid loss is a complex process, affected by both 

the rheology and composition of the fluid as well as by the fracture morphology. A deep 

understanding of the underlying physics, in particular non-Newtonian fluid flow and 

particle transport in rough-walled fractures, is required to combat fluid loss by use of e.g. 

LCM.   

 

The motivation for and goal of this study is to achieve a greater understanding of how 

fluid properties and fracture morphology affect flow in fractures subject to shear. The 

recursive subdivision technique was used to create rough-walled fractures satisfying the 

lubrication theory approximation. In addition, an algorithm was developed to introduce 

shifting in the coordinate directions in the XY-plane. PROPANICA, a research code 

developed by Alexandre Lavrov was used to simulate non-Newtonian fluid flow and 

particle transport. The author has developed numerous scripts written in C++, python, 

windows batch and UNIX shell code in order to increase simulation capacity and to 

visualize and present the results.  

 

Two fractures with applied shear displacement were created and flow of non-Newtonian 

drilling fluid was simulated with flow either normal or parallel to shifting. The effects of 

yield stress, plastic viscosity, applied pressure difference and direction of flow were 

investigated in a test matrix consisting of 108 individual simulations. One particle source 

node was located near the inlet boundary of the model for all simulations. The fractures 

consist of 64x64 cells with grid-spacing equal 0.01 m in the coordinate directions. The 

initial Hurst exponent was set equal to 0.75 prior to shearing.   

 

In particular the ratio between the yield stress and the applied pressure difference affected 

the channelization of fluid flow. Channelization of fluid flow and particle transport 

become more pronounced for increasing ratio of yield stress and applied pressure 

difference, both for flow parallel and perpendicular to shearing.  The fluid's ability to 

carry particles was greater for the latter case. When comparing pressure distributions for 

Newtonian and non-Newtonian fluids, the local pressure varies in regions with closed 

apertures. Plastic viscosity did not affect fluid channelization or particle transport.   

 

A literature study on the fundamentals of flow in shear-induced fractures with Newtonian 

fluid is included to provide the reader insight in previous findings. This thesis aims to 

reflect previous short-comings in the literature.  
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2 INTRODUCTION 

2.1 Shear-induced flow anisotropy 

 

The drilling fluid dynamics are affected by properties of the fluid, by the fracture aperture 

and morphology. The latter plays an important role in controlling fluid losses. It is 

difficult to obtain the characteristics of a fracture through laboratory samples due to its 

limited size. Tortuosity, contact areas and original channeling may not be representative 

in small-scale samples, and thus the sample's hydro-mechanical properties cannot be 

transferred to real life fracture fields.   

 

Koyama et al. (2006) highlighted previous shortcomings in the literature by studying the 

effect of aperture evolution due to shear displacement for different sample sizes. These 

findings highly impact the understanding of coupled hydro-mechanical analysis in 

fractured rocks. Fractured rocks were investigated with different shear displacements up 

to 0.02 m with different sample sizes. Two surfaces were digitally scanned and 

numerically manipulated. The fracture aperture distribution was created by defining three 

contact points between the two surfaces. One of the surfaces was of smaller size in order 

to enable large shear displacement. The evolution of the aperture field revealed that larger 

apertures appeared more frequently in the case of increased shear displacement as shown 

in Fig. 2.1.1. The effect was more pronounced for the case with the largest sample. 

 

 
Fig. 2.1.1 - Aperture evolution due to shearing - Larger apertures appear more frequently for 

greater shear displacement. After Koyama et al. (2006). 
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Fractures with large shear displacement and smaller sample size show greater aperture 

correlation and reaches a stationary level of the Hurst exponent. Incompressible fluid 

flow following the cubic law was numerically simulated to study the shear-induced flow 

anisotropy. The transmissivity and aperture distribution showed that the fracture aperture 

increases anisotropically both parallel and perpendicular to the shear displacement 

direction. The effect was more pronounced in the perpendicular direction and for greater 

shear displacements (Koyama, et al., 2006). The unidirectional flow showed significant 

fluid channelization due to shearing (Koyama, et al., 2006). 

 

 
 

Fig. 2.1.2 - Hurst exponent as function of shear displacement with sample sizes A and B, where 

size of B is larger than A. The exponent increases for increased shear displacement for both sizes 

and reaches a stationary level at larger shear displacement. After Koyama et al. (2006).  

 

 

The Hurst exponent increased for increasing shear displacement for all sample sizes 

tested by Koyama et al. (2006). The different samples reached a stationary level at large 

shear displacement, as illustrated in Fig. 2.1.2.  
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2.2 Solute transport in sheared fractures 

 

Natural fractures can be characterized by their typical anisotropy in aperture fields before 

shearing (Vilarrasa, et al., 2011). Further fracture evolution may develop due to shear 

displacement, creating continuous channels adding additional anisotropy to the fracture 

aperture distribution.   

 

How does the shearing anisotropy affect solute transport in fractures? Vilarrasa et al. 

(2011) studied the effect of fluid flow and solute transport in shear-induced fractures 

through numerical modeling. In similarity to Koyama et al. (2006) two fracture surfaces 

were digitally scanned and numerically manipulated to simulate shear displacement from 

1 mm up to 20 mm with 1 mm steps. The transmissivity was calculated for each element, 

and the fluid was assumed to follow the cubic law.  

 

The Reynolds equation was used to describe the fluid flow in the fractures. Constant 

pressure boundary conditions were applied on the boundaries parallel to the global flow 

direction. No-flow boundary conditions were applied on two of the boundaries. Entrance 

and exit pressure were held constant. The fluid flow was simulated both parallel and 

perpendicular direction at different shear displacements.   

 

When flowing perpendicular to the shear displacement, the unidirectional flow was 

significantly higher compared to flow parallel to the shear. The results indicate 

channelization perpendicular to direction of shear displacement. Clustered particle paths 

were more dominant with increased shear displacement (Vilarrasa, et al., 2011).  

 

 
Fig. 2.2.1 - Schematic view on breakthrough curves. A refers to the reference case, B to flow 

parallel to the shear displacement and C to flow perpendicular to the shear displacement. After 

Vilarrasa et al. (2011). 
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Breakthrough curves from the study illustrated in Fig. 2.2.1 show that particle travel 

velocity increases for increasing shear displacement. The mean particle travel time is 

smaller in the direction perpendicular to the shear displacement.  

 

In reality, the flow rate increase due to shearing is more pronounced in the early stages of 

shifting up to 7-8 mm. Larger displacements can reduce the permeability of the fracture 

leading to less increase of flow rate due to gouge formation. This means that the 

velocities at high displacements may become overestimated (Vilarrasa, et al., 2011). 

 

2.3 Lubrication theory approximation 

 

In this section the lubrication theory is introduced and an expression for the root mean 

square of the aperture distribution is derived in order to obtain geometric conditions for 

the validity of the lubrication theory approximation for the fractures used in this study.  

 

The lubrication theory assumes no inertie and that pressure does not vary along the z-axis. 

Zimmerman et al. (1991) performed an analysis of the lubrication theory on a rough-

walled fracture following a sinusoidal variation. The Reynolds equation was studied 

under the simplification of 1-D, as follows:  

  

  
       

  

  
     (2.1) 

 

where p is pressure, x is the coordinate in the direction of flow and      is the aperture 

along the x-axis. The rough-walled fracture is assumed to follow a sinusoidal 

perturbation:  

 

 
                

   

 
   

 

(2.2) 

 

where δ is the non dimensional amplitude of the roughness variation and λ the 

wavelength. Integrating Eq. 2.2 by using the definition of the hydraulic aperture given by: 

 

    
 

 
  

  

     

  

  

 

 
 
 

 (2.3) 

 

the following expression is obtained: 

 

  
    

 
      

 
 

   
  

  
 (2.4) 
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where h denotes the hydraulic aperture and m the mean aperture. The expression in Eq 

2.4 is a first approximation of the solution to the full Navier-Stokes equation. By 

comparing Eq 2.4 to the higher order lubrication theory (Zimmerman, et al., 1991) given 

by: 

 

  
    

 
      

 
 

   
  

 
 

    
           

      
  

 
  

  
  

 
 

 

  (2.5) 

  

an equation containing the correction due to non-zero values of the ratio between the 

standard deviation, σ, and the wavelength can be obtained (Zimmerman, et al., 1991). The 

standard deviation can be expressed, as follows: 

 
  

   

  
 (2.6) 

 

Substituting Eq 2.6 into the second term in brackets in Eq. 2.5, yields: 

 
       

 

 
 

 

 

 
(2.7) 

where 

 
       

   

 

        

   
  

 
 

 

 

(2.8) 

By definition the magnitude of the roughness is within the range: 

 

        
 

(2.9) 

 

The correction term,   , is at its maximum when the wavelength is at its largest. The 

maximum value of the    is equal to      at       , seen in Fig. 2.3.1.  
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Fig. 2.3.1 -       plotted for different values of roughness.  

 

By assuming that the relative magnitude of the correction term is less or equal to 0.1 of 

the value predicted by the lubrication theory (Zimmerman, et al., 1991), Eq 2.7 becomes: 

 
      

 

 
 

 

      (2.10) 

Rearranging yields 

 
 

 
  

    

    
      (2.11) 

 

The standard deviation, or root mean square (RMS) on a grid with M cells in both x-

direction and y-direction can be calculated, as follows: 

 

     
 

        
              

   

   

   

   

 

 

(2.12) 

The RMS and the grid spacing in both x and y-direction of a square fracture determines 

whether or not the numerical fracture is within the lubrication theory approximation, as 

follows: 

    

  
     (2.13) 

 

    

  
     (2.14) 

 

2.4 Rheological effects on mud losses 

 

Drilling in naturally fractured formations can lead to significant fluid loss and in some 

cases cause severe drilling problems. The industry uses various methods for preventing 
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mud loss such as proper fluid selection and by deployment of Lost Circulation Materials 

(LCM). The latter method is a fluid system consisting of particles of varying size 

designed to bridge the fracture aperture, essentially reducing or curing the lost circulation. 

The particles added to the fluid system typically range from one micrometer to the 

required bridging width of the fracture.   

 

Various designer mud systems have been developed with different areas of application 

with different results of curing the mud losses. E.g LCM can be added to the fluid system 

prior to entering the vulnerable formation as pre-treatment or it can be added when the 

incident occurs. The amount necessary to avoid and cure lost circulation varies 

extensively and it is difficult to calculate the probability of lost circulation incidents. In 

addition, use of heavy LCM systems can permanently damage the productivity of the well 

in the fracture areas.   

 

Majidi et al. (2010) showed that the rheological properties of the fluid system greatly 

affect mud losses in fractured formations and that the fluid system should be designed 

according to the rheological parameters in conjunction with LCM. A mathematical model 

was developed to investigate the effect of yield stress and shear-thinning on mud losses in 

fractured formations. A constant overpressure was assumed and different cases with 

different rheological parameters were tested. Majidi et al. (2010) showed that the ultimate 

mud losses were essentially controlled by the yield stress. The ultimate mud losses 

significantly decrease with increasing yield stress as shown in Fig. 2.4.1a.  

 

  
(a) (b) 

 
Fig. 2.4.1 - (a) The effect of yield stress on ultimate volume of losses (b) The effect of yield stress 

on cumulative volume of losses as a function of time. After Majidi et. al (2010). The ultimate lost 

volume is reduced for greater values of yield stress (a). The yield stress also affects the 

cumulative volume curves, where stationary values are reached faster for high yield stress values. 

 

Mud losses stabilize faster for fluids with large yield stress values (Fig. 2.4.1b). It takes a 

long period of time before fluids with low yield stress value stabilize at the ultimate lost 

volume. Ultimate fluid losses were unaffected by change of plastic viscosity.  
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3 THEORY 

 

In this section the governing fluid flow and particle transport equations are derived to 

give the reader insight in the mathematical model of the simulations. In addition, an 

algorithm for generating self-affine surfaces used in this study is introduced.  

 

3.1 Fluid flow governing equations 

 

Flow of visco-plastic fluids in complex geometries is encountered when drilling fluid 

escapes into natural fractures. In some cases plug regions are predicted theoretically 

(Lipscomb & Denn, 1984), however studies have shown that such yield surfaces cannot 

exist in such complex flow fields, and thus the flow and deformation must occur at all 

interior points (Frigaard & Ryan, 2004).   

 

Fluid flow equations can be found by solving the conversavtion of mass and momentum 

conservation given by: 

       (3.1) 

 

                  (3.2) 

 

respectively, where   is the velocity vector,   is density, p is pressure and   is the shear 

stress vector. The lubrication theory approximation is assumed valid, thus flow is locally 

fully-developed (Lipscomb & Denn, 1984). The velocitity functions can be expressed as 

              , where    is the velocity in the direction of flow and    is the 

velocity perpendicular to flow (Fig  3.1.1). 

 
Fig. 3.1.1 - Illustration of fluid flow between two parallel plates. 

Assuming incompressible flow and that the conservation of mass is satisfied, the 

following conclusions can be drawn: 

            (3.3) 
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            (3.4) 

 

        (3.5) 

 

where τ  is the shear stress.  The x-component of the momentum equation can be written, 

as follows: 

     

  
   

  

  
 

 
(3.6) 

Integrating on both sides yields: 

 
      

  

  
      

  

  
       

 
(3.7) 

Due to assumed symmetry around the x-axis,     . The shear stress,    , exceeds the 

yield stress,   , for values where: 

        
  

 
  
   

 

 

(3.8) 

At the walls,     , there is no flow because non-slip boundary condition is assumed at 

the fracture walls, thus     . By integrating Eq. 3.7 an expression for velocity in x-

direction can be obtained (Lipscomb & Denn, 1984), as follows:  

 

 
      

     

  
  

  

  
  

  

 
                  (3.9) 

 

substituting Eq. 3.8 (      ) into the Eq. 3.9 the following expression is obtained for 

the velocity of the plug in the central region:  

 

 
     

  
    

  
  

  

  
  

  

 
               (3.10) 

 

We then consider the case of pressure-driven flow between rough surfaces. Assuming that 

the angles of the planes are small, the lubrication theory can be assumed valid, essentially 

meaning that the flow is locally fully-developed in a conduit of varying aperture:  

 

     

  
  

  

  
   (3.11) 
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Integrating Eq. 3.11 yields: 

 

 
     

  

  
   (3.12) 

 

A yield surface exists at: 

      
  

 
  
  

 
 

(3.13) 

 

Substituting the expression into the x-component of the momentum equation: 

 

 
     

  
       

  
  

  

  
  

  

 
                 (3.14) 

 

The flow rate per unit width is equal to: 

 

 
   

          

  
  

    

  

  

  
 

    
 

 
  

    

  

  

  
 

  

 
 

 
  

    

  

  

  
 

  

    

   

(3.15) 

 

where 

 
     

    

 
 (3.16) 

 

and w(x) is the aperture distribution along the x-axis. A similar procedure can be used to 

obtain the flow rate in y-direction for a flow in a three-dimensional fracture. Substituing 

Eq. 3.17  into Eq. 3.16 and rearranging yield: 

 

   

 
 

                                            
  

  
  

   

 

 
  

   

  

  
 

 

  

  
 

        

  

  
 

 

  

    

       

  

  
   

  

  
  

   

 

  (3.17) 

 

 

   

 
 
 

 
                                            

  

  
  

   

 

 
  

   

  

  
 

 

  

  
 

        

  

  
 

 

  

    

       

  

  
   

  

  
  

   

 

  (3.18) 
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3.2 Particle transport governing equation 

 

The solute transport in rock fractures is valid under the assumption that the lubrication 

theory is valid and that the flow is incompressible. The concentration equation (Lavrov, 

2011) can be written as follows:  

 

   

  
        (3.19) 

 

where              is the solute concentration and   is the fluid velocity vector. The 

governing equation in scalar form is: 

   

  
   

  

  
   

  

  
   (3.20) 

 

   and    are the velocities in x- and y-direction averaged across the fracture aperture, as 

follows: 

 

   
 

 
      

   

    

   (3.21) 

 

 

   
 

 
      

   

    

   (3.22) 
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3.3 Recursive subdivision technique 

 

The recursive subdivision technique is an algorithm for generating a self-affine surface. 

Each existing cell is subdivided recursively, meaning that a new midpoint is created and 

the number of cells are expanded. The number of levels, denoted  , is the variable that 

determines the depth of recursion.The algorithm has both internal and external 

consistency, meaning that the object is continous in any scale and that the 3D-orientation 

is unaltered when rotated or resized (Fournier, et al., 1982). The steps of recursion are 

illustrated in Fig 3.3.1. 

 

 

 
 

(a) N = 0 

 
 

(b) N = 1 

 

 

(c) N = 2 

 
 

(c) N = 3 

 
 

Fig. 3.3.1 - The number of level represents the number of times each cell is subdivided into four 

new cells. Different levels are represented in (a-d). 

Each fracture cell consists of four nodes, thus the total number of nodes is equal to: 

              (3.23) 

 

Elevations at corner nodes are set equal to zero. The boundary nodes are recursively 

subdivided level by level. The elevation at boundary nodes placed at              and 

              is calculated by adding the elevation values from the two sourrounding 

nodes vertically. The elevation at boundary nodes placed at              and 
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              is calculated by adding values of the two sourrounding nodes 

horizontally. In addition, a fractional brownian motion term,   , is added to each data 

point in order to obtain a realistic fracture surface expressed as follows: 

                        (3.24) 

 

where        is the standard normal distribution,    is the scaling factor, C is the c-value, 

n is the level of recursion and   is the Hurst exponent.  

 

The elevation at the inner points of the grid is computed using diagonal elements, 

meaning that the surrounding values of surface height at the four nodes and the fBm-term 

are added (Fournier, et al., 1982). 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 3.3.2 - The recursive subdivision technique first generates the nodes on the four sides of the 

grid. Each node is calculated by using the sourrounding two nodes. The inner points are created 

by using the surface elevation values at the the sourrounding four nodes, as shown in (a-c). 

 

3.4 Numerical fracture properties 

 

Two fracture surfaces are created by using the algorithm described in section 3.3. 

Apertures at all node points are calculated as follows: 

                                        (3.25) 

 

where      is the local aperture,   is the separation distance and          and          are 

the elevation height of the two surfaces. When the two surfaces overlap, the aperture 

value is set equal to zero. The separation between the two surfaces affects the aperture 

and influences the number of the nodes that are fully closed (       .   

 

The fracture aperture and topography are also determined by three other parameters, 

namely the Hurst exponent, c-factor and scaling factor.  
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3.4.1 Scaling factor 

 

The scaling factor affects the local amplitude of the fracture surface. Low values will 

even out aperture towards the mean height and thus reduce the standard deviation of the 

apertures.  

    
    

     (3.26) 

 

In the extreme case where the scaling factor approaches zero, the fracture aperture will 

approach the separation   for all local apertures. The effects of the scaling factor are 

illustrated in Fig. 3.4.1.  

 

 
 

Scale = 10 

 
 

Scale = 0.1 

 
 

Scale = 0.001 

 
 

Scale = 0.0001 

 
 

Scale = 0.00001 

 
 

Scale = 0.000001 
 

 

Fig. 3.4.1 - The scaling factor affects the amplitude of the fracture (Hanssen, 2012). 
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3.4.2 C-factor 

 

The c-factor affects the smoothness of the terrain by merging local vertexes. For higher 

values the terrain becomes less rough. The effects are illustrated in Fig. 3.4.2. 

 

 

Fig. 3.4.2 - Increasing c-factor leads to greater merging of local vertexes and creates an even 

terrain. (Hanssen, 2012) 

   

 
c = 0.5 

 
c = 0.75 

  
c = 1.0 

 
c = 2.0 

 
c = 3.0 

 
c = 4.0 

 
c = 5.0 

 
c = 10.0 

 



 

24 

 

3.4.3 Hurst exponent 

 

The fractal auto-correlation is determined by the Hurst exponent. By assuming that the 

exponent ranges from   to   and that      is an ordinary Brownian motion, the moving 

average of       can be characterized as the fractional Brownian motion of the Hurst 

exponent (Mandelbrot & Van Ness, 1968).   

 

For values       the series tends to have a long-range positive auto-correlation. High 

values are likely to be followed by high values and low values are likely to be followed 

by low values. For values       the series have a long-range switching between high 

and low values. The fractional Brownian motion is completely uncorrelated for      . 

Fig. 3.4.3 illustrates cross-sections of computer generated fractures with varying Hurst 

exponent. 

 

 

 
 

Fig. 3.4.3 - Cross section of fracture aperture with varying Hurst exponent. The solid line 

represent the completely uncorrelated series (     ). When comparing the dashed lines to the 

uncorrelated series you can see the switching between high and low values for       and the 

long-range positive auto-correlation for      . 

 

Cracks created by brittle fractures generally have a Hurst exponent close to    . This is 

supported by a wide range of experimental data (Talon, et al., 2010). 
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3.5 Shear displacement 

 

Two identical surfaces are created with the number of levels equal to: 

              (3.27) 

 

where          is the number of levels that the fracture will be reduced to after applied 

shear displacement. The upper surface is shifted by    and/or    nodes in the coordinate 

direction. The shifted area is then reduced to the initial number of levels         . The area 

highlighted yellow in Fig. 3.5.1 represents this area. 

 
Fig. 3.5.1 - Schematic of the numerical method used for shear displacement. 

The numerical method used for calculating the aperture after shear displacement is 

described as follows
1
: 

 for                      
  for                     
   Aperture[x,y] = Surface1[x,y] - Surface2[x+ δx, y+ δy] + α  
 

Comparing the algorithm in this study to the method used in (Koyama, et al., 2006), 

similar results are obtained, as shown in Fig. 3.5.2. Shear displacement leads to flow 

channels normal to the shearing direction and they become more pronounced for 

increasing shear displacement. The results from both (Koyama, et al., 2006) and 

(Vilarrasa, et al., 2011) are based on a technique where the aperture field is defined when 

the two surfaces have three contact points. In reality, a brittle fracture would have several 

contact areas either from direct contact between the two surfaces or from bridging 

material removed from the formation due to shearing. The algorithm described above is 

based on the distance between the surfaces, and areas where the two surfaces overlap are 

                                                 
1
 The full algorithm can be found in Appendix A.3.1. 

2
 The pressure plots without normalization can be found in Appendix A1.  

Surface 1 (N+1)
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set equal to zero. Thus, greater contact areas are achieved when reducing the distance 

between the two surfaces. This method is suggested as an alternative method for creating 

shear-induced natural fractures.  

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

 

Fig. 3.5.2 - Aperture distribution for different shear displacement in x-direction. The figure 

illustrates the effect of increasing shear displacement (a-f). Flow channels become more 

pronounced with increasing shear displacement. The values of shear displacement is (a) 0.01 m, 

(b) 0.02 m, (c) 0.03 m, (d) 0.04 m, (e) 0.05 m and (f) 0.06 m. Aperture can be read from the color 

bar. 
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3.6 Estimation of Bingham plastic flow pressure criteria 

 

Calculating the required pressure to avoid plugging of non-Newtonian fluid flow in 

rough-walled fractures is a complex task. However, good estimates can serve as 

approximations to the applied pressure requirements. In this section, an estimate for the 

required pressure difference is introduced. The estimate is used in the simulations of this 

study.  

 

In the case of fluid flow between two parallel plates with constant aperture, the required 

pressure gradient can be calculated as follows: 

 
 
  

  
  

   

 
 (3.28) 

 

For complex fractures the limit cannot be calculated that easily. The aperture distribution 

is varying in both coordinate directions such that w in Eq. 3.28 is undefined. If the 

fractures do not have any overlapping areas the minimum aperture node of the 

distribution can serve as an over-estimated input to the criteria in Eq. 3.28. If there is an 

obstacle or a small area of low aperture one would over-estimate the required pressure, 

mainly because the fluid can simply flow around low transmissivity area. Alternatively, 

the arithmetic average of the aperture distribution can be used, requiring less pressure 

difference compared to the minimum aperture method. The problem with this method 

occurs when you have an aperture distribution with cross-sections of very low aperture. 

The average would then not be representative for these regions and thus could lead to 

under-estimation of the required overpressure.   

 

 
Fig. 3.6.1 - The minimum average aperture path perpendicular to flow direction. 
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Instead, one can calculate the average aperture of the cross-section with the minimum 

average aperture (Fig. 3.6.1), similar to the method used in (Talon, et al., 2010), as 

follows:  

 

 
            

     
 
   

   
 
     

 
   

   
    

     
 
   

   
   (3.29) 

 

where         is the minimum average cross-sectional aperture. The minimum applied 

pressure difference to obtain fluid flow for Bingham fluid is given by: 

 
   

       

       
 (3.30) 

 

where    is the length of the fracture. 
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4 NUMERICAL MODELING 

 

Numerous fluid flow and particle transport models have been developed and laboratory 

experiments have been carried out the last decades. This is still an on-going research.  

( (Novotny, 1977), (Daneshy, 1978), (Amadei & Illangasekare, 1994), (Chen, et al., 2005) 

(Adachi, et al., 2007) and (Auradou, et al., 2010)). This chapter describes the approach 

used in this study. 

4.1 Modeling 

 

In this study the software PROPANICA, a research code developed by Alexandre Lavrov, 

is used to perform fluid flow and particle transport simulations. The fractures are created 

by a software based on the recursive subdivision technique named 

PROPANICAGRIDDER, also developed by Alexandre Lavrov. PROPANICAGRIDDER 

is modified by the author to include shifting in both x-direction and y-direction and to 

rotate the fracture mesh 90 degrees clock-wise in order to simulate flow perpendicular to 

the initial set-up.  

 

The computer generated fracture used in this study has the following variables: 

 Number of levels 

 Separation between the surfaces 

 Grid spacing in x- direction (Δx) 

 Grid spacing in y-direction (Δy) 

 Hurst exponent 

 Scaling factor 

 C-factor 

 Randomizer  

The unique and randomly created feature of each fracture is assigned a value such that the 

fracture can be regenerated if one wants to alter the other variables. This value is called 

the randomizer and is denoted R.  

 

One rough-walled fracture with average aperture of 0.005 m was created by using the 

recursive subdivision technique. Roughly one percent of the local fracture apertures were 

closed. Input values can be found in Tab. 4.1.1: 

 
 
Tab. 4.1.1- Fracture surface input. 

The initial fracture had a dimension of 128 x 128 cells with 0.01 m grid spacing in both x- 

and y-direction. One of the two fracture surfaces was shifted one node in the x-direction 

N α Δx Δy H Fs C R

(-) (m) (m) (m) (-) (-) (-) (-)

6 0.02 0.01 0.01 0.75 0.02 3.00 2230
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for the first scenario (Fig. 4.1.1) and one node in y-direction for the second scenario (Fig. 

4.1.2). The shifted fractures were then reduced to a lower number of levels, equal to 64 x 

64 cells. Fluid flow was performed in both the perpendicular (denoted    ) and parallel 

direction (denoted       ) to shear displacement.   

 

A total number of 108 cases with varying fluid properties of the non-Newtonian fluid and 

fracture specifications were completed. The fluid properties of particular interest were 

yield point value and plastic viscosity. In addition, fluid properties were tested for 

different pressure differences (i.e. entrance pressure minus exit pressure).  

 

The applied pressure difference was kept constant at the inlet and outlet. The model 

implemented in the PROPANICA code is valid under the lubrication theory 

approximation and assumes fluid incompressibility and that particle dispersion is 

negligible. Fracture walls are assumed perfectly impermeable, meaning no fluid leak-off 

through the two surfaces. The cases were simulated with one particle source node placed 

at     and      for flow in x-direction and       and      in y-direction.   

 

 
 

Fig. 4.1.1- 3D image of the fracture aperture. The lower fracture surface is shifted one node in the 

x-direction. Note the channelization perpendicular to shifting (dashed line). 
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Fig. 4.1.2 - 3D image of the fracture aperture. The lower fracture surface is shifted one node in the 

y-direction. Note the channelization perpendicular to shifting (dashed line) 

 

Simulations were run in decoupled mode meaning that velocity and pressure distribution 

are calculated before the particle transport and are not affected by particle concentration. 

PROPANICA uses an iterative solution method described in (Patankar, 1980). To achieve 

accurate results the iterations are looped until the relative variation in the pressure field 

drops below a given exit tolerance and the error in the x-flow rate between column nodes 

drops below a given flow rate exit tolerance. The exit tolerance values are given in Tab. 

4.1.2:  

 

 
 

Tab. 4.1.2 - Calculation looping conditions. 

 

The target time for the particle transport computation was as follows: 

 
          

     

     
 (4.1) 

 

where    is a user specified constant set equal to 2 for all simulations,    is number of 

nodes in either direction and       is the average velocity in the global flow direction. 30 

time steps are created for each case ranging from 0 to        . The Courant number given 

by:   

 

Exit tolerence flow x-dir Exit tolerence pressure

(-) (-)

1.0e-7 1.0e-3
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  (4.2) 

 

which controls the time step of the particle transport and was set equal to 0.5 for all cases. 

The semi-Lagrangian method is used to compute the particle transport. Based on this 

computation, particle concentration on the grid is obtained at each time step, and 

breakthrough curves are plotted at locations specified by the user. The semi-Lagrangian 

method is unconditionally stable for Courant numbers less than unity (Staniforth & Côté, 

1991). 

 

4.2 Test matrix 

 

The test matrix (Tab. 4.2.1) consists of a comprehensive sensitivity analysis of each of the 

four scenarios illustrated in Fig. 4.2.1. A sensitivity analysis on the fluid rheology was 

completed. In addition, fluid channelization due to shear displacement and varying non-

dimensional yield stress was studied. The non-dimensional yield stress is given by: 

 

 
   

       

      
  (4.3) 

 

The ratio of the average velocities in the coordinate direction can be written as follows:  

 

         

       
 

 

(4.4) 

 

where          represent the velocity in along direction of flow and is        the velocity 

perpendicular to flow. All cases were post-processed individually with pressure fields, 

velocity distribution and breakthrough curves calculated by the flow equations found in 

section 3.1. The breakthrough curves calculate the particle concentration at node lines 

perpendicular to flow as a function of time, as follows:  

 

 

          

  

   

 (4.5) 

 

where c is concentration.  
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) (d) 

 

Fig. 4.2.1 - Schematic view of different simulation scenarios. The icons on the right side of the 

different scenario refers to the different cases further on in this study. 
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Tab. 4.2.1 - Test Matrix - The case number labels (a-d) refers to the different simulation scenarios 

(a-d) from Fig. 4.2.1. The pressure calculations in simulations 79-81 did not converge at the initial 

T. The overpressure was increased to 270 000 Pa to achieve convergence.  

 

  

ΔP τy µpl H Lx = Ly wavg T

a b c d (Pa) (Pa) (Pas) (-) (m) (m) (-)

1 28 55 82 500000 0 0.001 0.75 0.64 4.8e-4 0.0000

1 29 56 83 500000 0 0.010 0.75 0.64 4.8e-4 0.0000

3 30 57 84 500000 0 0.030 0.75 0.64 4.8e-4 0.0000

4 31 58 85 500000 25 0.001 0.75 0.64 4.8e-4 0.1333

5 32 59 86 500000 25 0.010 0.75 0.64 4.8e-4 0.1333

6 33 60 87 500000 25 0.030 0.75 0.64 4.8e-4 0.1333

7 34 61 88 500000 50 0.001 0.75 0.64 4.8e-4 0.2665

8 35 62 89 500000 50 0.010 0.75 0.64 4.8e-4 0.2665

9 36 63 90 500000 50 0.030 0.75 0.64 4.8e-4 0.2665

10 37 64 91 350000 0 0.001 0.75 0.64 4.8e-4 0.0000

11 38 65 92 350000 0 0.010 0.75 0.64 4.8e-4 0.0000

12 39 66 93 350000 0 0.030 0.75 0.64 4.8e-4 0.0000

13 40 67 94 350000 25 0.001 0.75 0.64 4.8e-4 0.1904

14 41 68 95 350000 25 0.010 0.75 0.64 4.8e-4 0.1904

15 42 69 96 350000 25 0.030 0.75 0.64 4.8e-4 0.1904

16 43 70 97 350000 50 0.001 0.75 0.64 4.8e-4 0.3808

17 44 71 98 350000 50 0.010 0.75 0.64 4.8e-4 0.3808

18 45 72 99 350000 50 0.030 0.75 0.64 4.8e-4 0.3808

19 46 73 100 200000 0 0.001 0.75 0.64 4.8e-4 0.0000

20 47 74 101 200000 0 0.010 0.75 0.64 4.8e-4 0.0000

21 48 75 102 200000 0 0.030 0.75 0.64 4.8e-4 0.0000

22 49 76 103 200000 25 0.001 0.75 0.64 4.8e-4 0.3332

23 50 77 104 200000 25 0.010 0.75 0.64 4.8e-4 0.3332

24 51 78 105 200000 25 0.030 0.75 0.64 4.8e-4 0.3332

25 52   79* 106 250000 50 0.001 0.75 0.64 4.8e-4 0.5330

26 53   80* 107 250000 50 0.010 0.75 0.64 4.8e-4 0.5330

27 54   81* 108 250000 50 0.030 0.75 0.64 4.8e-4 0.5330

Case number
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4.3 Post processing of data 

 

This section outlines some of the methods used to present the results in this study. A 

detailed flow chart of the simulation procedure is provided in Appendix A2. 

4.3.1 Pressure plots 

 

The pressure plots in this thesis had to be normalized in order to be able to compare the 

different distributions due to varying fluid properties
2
. Very little difference would be 

visible otherwise. The following procedure was used to create normalized pressure plots: 

The pressure scaling value is given by: 

 
        

               

              
 (4.6) 

 

where ref denotes the Newtonian reference case, and BH denotes the different Bingham 

cases with varying T. The Newtonian case has the largest applied pressure gradient and 

thus: 

                              (4.7) 

 

The normalized values of the fluid pressure,   , used for comparing the different cases 

with the reference case are calculated as follows: 

 
        

                         

         
 (4.8) 

 

where  

                (4.9) 

 

 

This method was developed by the author to emphasize the difference in pressure 

distribution due to varying fluid properties.  

 

4.3.2 Velocity fields 

 

The original velocity plots were difficult to compare due to the initial resolution. Instead  

the velocity plots presented display every fourth vector in the mesh in order to make it 

                                                 
2
 The pressure plots without normalization can be found in Appendix A1.  
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easier to  the different cases. The method is valid because the fluid flow follows 

streamlines in the fracture grid. The original velocity fields can be found in Appendix A1.  
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5 RESULTS 

 

This section presents the results from the simulations. Raw velocity data are included in 

Appendix A.6.1-4 for future references. The results are later discussed in Chapter 6.   

 

Particle transport become more clustered and channelized for increasing non-dimensional 

yield stress. In addition, the fluid's ability to carry particles is enhanced for greater values 

of T, as seen in Fig 5.1.1-2.  

 

For increasing non-dimensional yield stress, the normalized pressure increases upstream 

of regions with contact areas between the two surfaces. The effect is enhanced for 

increasing non-dimensional yield stress, particularly when the applied pressure gradient is 

parallel to the shear displacement as seen in Fig 5.2.1-2.  

 

The velocity distributions become more channelized for increasing non-dimensional yield 

stress, meaning that the ratio of the velocity in the global flow direction to the velocity 

perpendicular to global flow direction increases.  
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5.1 Particle transport 

 
 FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 

 
 

 

 

 

 

(a) 

  
 

 

 

 

 

 

(b)  

  
 

 

 

 

 

(c)  

  
 

 

 

 

 

(d) 

  
 

Fig. 5.1.1 - Particle concentration for increasing T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 0.53 

for left column and 0.50 the right column. Shear displacement along x-axis. Concentration values 

can be read from the color bar on the right-side. 
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 FLOW PARALLEL TO SHIFTING 

 
 

FLOW PERPENDICULAR TO SHIFTING 
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(b)  

  
 

 

 

 

 

(c)  

  
 

 

 

 

 

(d) 

  
 

Fig. 5.1.2 - Particle concentration for increasing T values: (a) 0.00 (b) 0.18 (c) 0.37 and (d) 0.53. 

Shear displacement along y-axis. Concentration values can be read from the color bar on the 

right-side. 
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5.2 Pressure distribution 

 
 

 

FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 
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(b)  

  
 

 

 

 

 

(c)  

  
 

 

 

 

 

(d) 

  
 

Fig. 5.2.1 - Pressure distributions of Bingham plastic compared to Newtonian fluid flow (a) for 

increasing T (b-d) values as follows:  (b) 0.19 (c) 0.38 and (d) 0.53 for left column and 0.50 the 

right column. Shear displacement along x-axis. Normalized pressure values can be read from the 

color bar on the right-side. Dark blue dots represent closed local aperture. 
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 FLOW PARALLEL TO SHIFTING 

 
 

FLOW PERPENDICULAR TO SHIFTING 
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(c)  

  
 

 

 

 

 

(d) 

  
 

Fig. 5.2.2 - Pressure distributions of Bingham Plastics compared to Newtonian fluid flow (a) for 

increasing T (b-d) values as follows: (b) 0.18 (c) 0.37 and (d) 0.53. Shear displacement along y-

axis. Normalized pressure values can be read from the color bar on the right-side Dark blue dots 

represent closed local aperture. 
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5.3 Velocities 

 
 FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 
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Fig. 5.3.1 - Velocity distribution for increasing T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 0.53 for 

left column and 0.50 the right column. Shear displacement along x-axis. 
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 FLOW PARALLEL TO SHIFTING 
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Fig. 5.3.2 - Velocity distribution for increasing (a-d) T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 

0.53. Shear displacement along y-axis. 
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Fig 5.3.3 shows that the average velocity in the principal flow direction is significantly 

higher for flow perpendicular to the shear displacement. The effect becomes more 

pronounced with increasing non-dimensional yield stress. This behavior occurs for both 

fractures. 

 
Fig. 5.3.3 - Comparison of average velocity in the coordinate directions perpendicular and parallel 

to shear displacement. Both fluid velocities are in the direction parallel to applied pressure 

gradient. Data points for T = 0.50 is excluded for Fracture 1 because different T values of the two 

scenarios were used.   
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5.4 Viscosity 
 

Fig. 5.4.1 shows that particle transport is unaffected by plastic viscosity. The average 

velocity component is greater for unidirectional flow perpendicular to shear displacement 

compared to flow parallel to shear displacement as shown in Fig. 5.4.2-3. The average 

velocity component increases for decreasing viscosity. 

 

 Prel = 0.00 

 

Prel = 0.53 

 

 

 

 

 

 

(a) 

  
 

 

 

 

 

 

(b) 

  
 

 

 

 

 

(c) 

  
 

Fig. 5.4.1 - Particle concentration plots for varying plastic viscosities (a) 0.001 Pa s (b) Pa s 0.01 

(c) 0.03 Pa s.  
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(a) 

 
 

(b) 

 

Fig. 5.4.2 - Average velocity component in flow-direction for varying viscosities. Shear 

displacement applied in x-direction. Flow (a) parallel and (b) perpendicular to shear displacement 

direction. Unidirectional fluid velocity is higher for (b). The initial fracture surfaces were shifted 

one node in y-direction. 

 

 

 

(a) 

 
 

(b) 

 

Fig. 5.4.3- Average velocity component in flow-direction for varying viscosities. Shear 

displacement applied in y-direction. Flow (a) parallel and (b) perpendicular to shear displacement 

direction. Unidirectional fluid velocity is higher for (b). The initial fracture surfaces were shifted 

one node in x-direction. 
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5.5 Shear displacement and fluid properties  

 

The yield stress dominates the fluid when the global flow direction is parallel to the shear 

displacement (Fig. 5.5.1). The effect becomes more pronounced for increasing non-

dimensional yield stress. The Bingham number, B, is given by: 

   
       

   
  

   
 (5.1) 

 

where    is the average velocity in the global flow direction. It physically represents the 

ratio between the yield stress and viscous forces (Frigaard & Ryan, 2004).  

 
 

Fig. 5.5.1 - The Bingham number plotted against the non-dimensional yield stress. δ expresses the 

shifting and the term in the brackets represents the direction of shear displacement.  

 

In the cases where the fluid flow direction is perpendicular to the direction of shear 

displacement the cases follow a linear trend as seen in Fig 5.5.2. While for cases where 

the fluid flow direction is parallel to the direction of shear displacement, the behavior is 

no longer linear. 
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Fig. 5.5.2 - The ratio of velocity parallel and perpendicular to the applied pressure-gradient 

plotted against non-dimensional yield stress.   
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5.6 Breakthrough curves 

 

Due to numerical dispersion, breakthrough curves were inaccurate and thus omitted in 

this study. Breakthrough curves are illustrated in Fig 5.6.1.  

 
(a) 

 
(b) 

 

Fig. 5.6.1 - Breakthrough curves of particle transportation at node lines perpendicular to flow at 

Nx = 3, 10, 20, 30, 40, 50 and 60. Fluid flow is in parallel to shear displacement in (a) and 

perpendicular to shear displacement in (b). The two cases are both Newtonian with           
   and              .  
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6 DISCUSSION 

 

6.1 Analytical  

 

To maintain fluid flow for a Bingham plastic, the applied pressure gradient has to exceed 

a certain value dependant on the yield stress of the fluid and the local aperture. When the 

condition is not satisfied, the plug occupies the entire cross-section. The complexity of 

the fracture makes it difficult to draw conclusions directly from Eqs. 3.17-18. However, 

some conclusions may be drawn. 

The criteria for fluid flow yields: 

 

 
 
  

  
   

    

 
 (6.1) 

 
 

 
 

 
 
  

  
   

    

 
 (6.2) 

 

When the yield stress value of the fluid approaches zero, fluid flow will occur regardless 

of aperture, and if obstacles such as bridging material or overlap between the two fracture 

surfaces are present, the fluid will simply flow around the obstacle. In both cases, Eqs. 

3.17-18 would simplify to the well-known Cubic law for Newtonian fluids: 

 
    

  

   

  

  
 (6.3) 

 

 
    

  

   

  

  
 (6.4) 

 

One way to describe the influence of non-Newtonian properties is to compare the flow 

rate for Newtonian fluid with Bingham plastic, as follows: 

 

 

 
     

    
  

 
  

   
  
  

 
 

  
  

 

        
  
  

 
 

  
    

       
  
  

 
  

   
  
  

 (6.5) 
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 (6.6) 

 

where BH and N denote Bingham fluid and Newtonian fluid flow respectively. The 

viscosity of the Newtonian fluid is assumed to be equal to the plastic viscosity of the 

Bingham fluid. Rearranging Eq. 6.5-6 yields: 

 
 

     

    
    

 

 
 

    

        
     

   

        
 

 

    (6.7) 

 

 
 

     

    
    

 

 
 

    

        
     

   

        
 

 

    (6.8) 

 

The fluid flow conditions in x- and y-direction from Eqs. 6.1-2 can be written, as follows: 

    

         
    (6.9) 

  
    

         
    (6.10) 

 

Flow rates for Bingham plastics can be expressed by Newtonian flow, as follows: 

 
              

 

 
 

    

        
     

   

        
 

 

     (6.11) 

 

 
             

 

 
 

    

        
     

   

        
 

 

     (6.12) 

 

Define the variables    and   , as follows: 

   
    

         
 (6.13) 

 

   
    

         
 (6.14) 

 

The fluid flow equations for Bingham plastics yield: 

    

                                   

 
  

   

  

  
   

 

 
      

             
  (6.15) 
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  (6.16) 

 

When the pressure gradient is applied in the x-direction we can see that the flow rate is 

equal to zero when     , thus: 

 
   

 

 
      

       (6.17) 

 

In addition, we know that all simulations were run with grid spacing equal to 0.01 m and 

the fracture with the largest maximum aperture had a maximum aperture close to 0.001 

m. The minimum aperture is equal to zero, since all fractures have areas with closed 

aperture. The ratio between grid spacing and aperture then has to be within the range: 

 
   

  

      
    (6.18) 

 

When the aperture approaches zero, the ratio between the grid spacing and aperture will 

increase such that    exceeds its maximum value, and thus plugging will occur. 

Additionally, the ratio between the yield stress value and pressure difference in the 

fracture will affect whether or not flow occurs: 

    
  

  
    (6.19) 

 

The entrance pressure of the fracture would depend on the mud pump rates and the 

environment which the drilling fluid invades. For high pressure fluid flow is likely to 

occur. Further into the formation the invasion of mud would stop because the 

overpressure no longer exceeds the yield stress of the drilling fluid leading to plugging. 

The applied pressure difference in Eq. 6.19 would approach zero and T would exceed its 

maximum value.  

 

Additionally when comparing pressure difference in the fracture, the applied pressure is 

likely to vary more extensively in the direction of flow, thus the pressure difference in y-

direction is smaller when compared to the pressure difference in x-direction. For greater 

values of T the flow will behave more channelized in the direction of flow. Flow with low 

values of T is likely to behave more like Newtonian and less channelized as the 

conditions for flow are satisfied in both x- and y-direction.  

 

The plastic viscosity is not included in any of the conditions and will not affect the 

channelization of fluid flow or affect particle transport paths, seen from Eq. 3.20. It is 
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inversely proportional to the flow rate, as follows:    

 

    
 

 
 (6.20) 

 

6.2 Channelization of fluid flow 

 

The fluid flow and particle transport are affected by the fractures' natural anisotropy and 

by the aperture channels appearing normal to the direction of shifting due to shear 

displacement. When comparing the cases with applied pressure gradient perpendicular to 

shear with parallel to shear, the flow velocities along the applied pressure gradient are 

greater for all cases (Fig. 5.3.3). The velocity distributions (Fig. 5.3.1-2a) for the 

Newtonian cases also reveal that the fluid flows around the closed apertures leading to 

greater channelization in areas with high transmissivity. These results comply with the 

findings in (Koyama, et al., 2006), (Vilarrasa, et al., 2011) and (Yasuhara, et al., 2006).   

 

 

 Fracture 1 Fracture 2 

 

 

 

 

 

(a) 

 

  
 

 

 

 

 

(b) 

 

 

 

  
 

Fig. 6.2.1 - Cross sectional average aperture perpendicular to flow. (a) Flow along shear 

displacement (b) Flow normal to shear displacement.  
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How do the non-Newtonian fluid properties affect channelization of fluid? As discussed 

in section 6.1 the fluid velocities in both x- and y-direction will differ from the Newtonian 

cases when T increases. In addition, the applied pressure gradient has to surpass the yield 

stress of the fluid to avoid plugging, hence greater channelization of fluid flow is 

expected when the yield stress increases compared to the applied pressure gradient (Eq. 

6.1-2).  

 

Fluid flow while the applied pressure gradient is applied perpendicular to shear 

displacement exhibits a linear ratio between the velocity-ratio and T (Fig 5.5.2). For 

higher values of T and in the case of applied pressure gradient parallel to shifting, the 

behavior deviates from the linear relationship. This may be explained by looking at the 

average cross sectional apertures of the fractures. The terrain is smooth when flowing 

perpendicular to shear displacement and rough when flowing parallel (Fig 6.2.1). In 

addition, the minimum cross sectional average aperture for both fractures are smaller 

parallel to shifting compared to perpendicular. When the same fluid properties and 

pressure gradient are applied, the cases with flow direction parallel to shifting are more 

likely to exhibit yield dominant behavior due to lower average aperture. Fig 5.5.1 shows 

that these cases have higher Bingham numbers meaning that the yield forces dominate the 

flow, leading to increased channelization.   

 

In general, fluid channelization is more pronounced for higher values of T regardless of 

fluid flow direction and fracture in this study. Fig 6.2.2 compares Newtonian fluid flow 

with a viscous Bingham plastic on the same fracture and with the same direction of flow. 

By comparing (a) and (d) in Fig. 5.3.1-2 the same behavior is found for all four flow 

scenarios.  

 

 
(a) 

 
(b) 

 

Fig. 6.2.2 - (a) Newtonian fluid (b) Bingham plastic with T = 0.53. Channelization is more 

pronounced for the Bingham fluid, e.g. at x = 0.28.  
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6.3 Pressure distributions 

 

The anisotropy of the fracture affects the Newtonian fluid pressure distributions as seen in 

Fig 5.2.1a and Fig 5.2.2a. Pressure is maintained in regions with low aperture and in areas 

with closed aperture, while the opposite behavior occur in regions with higher aperture. 

But how do the non-Newtonian fluid properties and the direction of shear affect the 

pressure distributions? The relative change in local pressure becomes more pronounced 

for increasing T, both for fluid flow parallel and perpendicular to the shear displacement 

(Fig. 5.2.1-2). The change is more pronounced for flow parallel to shifting. This may be 

explained by looking at the velocity distributions in Fig. 5.3.1-2. Fluid flows around areas 

with closed aperture, leading to an increase of pressure upstream of the obstacle. As 

discussed in section 6.2, the fluid flow becomes more channelized for increasing T.  

 

6.4 Evaluation of fractures 

 

The aperture frequency plots of the fractures used in this study (Fig. 6.4.1) is similar to 

the fractures used in (Koyama, et al., 2006). The fractures have a slowly varying aperture 

which satisfies the lubrication theory approximation according to Eq. 2.13-14. 

 
Fig. 6.4.1 - The Frequency plots of the two fractures with shear displacement of 10 mm. 

 

The Hurst exponent was set equal to      for all simulations before shear displacement, 

but as shown in (Koyama, et al., 2006) the Hurst exponent increases when shear 

displacement is applied. From Fig. 2.1.2, one can see that the Hurst exponent reaches its 

stationary level at large shear displacements, and thus one can expect the fractures to have 

a Hurst exponent within the range      and     . In addition, brittle fractures due to shear 

displacement generally have a Hurst exponent close to     (Hansen, et al., 2000), such 

that one could expect the fractures used in this study to have a Hurst exponent closer to 
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Fig. 6.4.2 illustrates a phenomenon that occurs when creating computer-generated 

fractures with the algorithm described in Section 3.5. Cross sectional areas of the fracture 

perpendicular to shearing have regions with great contrast between high and low values 

of local aperture. The main cause of this phenomenon is that aperture in overlapping 

regions between the two surfaces, are set equal to zero.  

 

There are still some features that are not considered in this study. The fractures assume a 

constant morphology throughout the simulation meaning that the local aperture does not 

vary due to effects of fluid flow and solute transport. The phenomena of removal of 

bridging materials and erosion of fracture walls are not considered at all. 

 

 
Fig. 6.4.2 - Aperture distribution of fracture 2. Color bar on the right shows the aperture values in 

metres. Shear displacement in the y-direction. 

  

In reality, temperature changes of the mud and change in fracture morphology will 

influence the fluid flow (Yasuhara, et al., 2006). Upon start of fluid flow into the fracture, 

the removal of minerals working as bridging asperities can lead to a changes in average 

aperture (Yasuhara, et al., 2006). This phenomenon would highly impact the solute 

transport and fluid behavior of the fracture. The pressure difference within the fracture 

would have to surpass a much greater yield stress to aperture ratio. E.g. removal of 

bridging material leading to half the average aperture of the initial state would require two 

times the pressure gradient for the Bingham fluid to flow.   

 

In addition when fluid flow continuously enters the fracture for a long duration of time, it 

is likely that the flow would start eroding the fracture walls leading to an increase of 

average aperture (Yasuhara, et al., 2006) from the reduced state, leading to less 
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channelized flow. One can expect different flow regimes when drilling in naturally 

fractured formations affecting the fluid flow and particle transport.  

 

6.5 Particle transport 

 

The particle transport is mainly affected by the anisotropy of the aperture distribution. 

When comparing flow parallel and normal to shear displacement, the fluid's ability to 

carry particles is greater for the latter case as seen in Fig 6.5.1. Continuous channels in 

the fracture created by shear displacement or from initial anisotropy thus increase particle 

transport.  

 

Similar to velocity distributions, the particle transport becomes more channelized for 

increasing T as seen in Fig. 5.1.1-2.   

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 6.5.1 - Particle concentration plot for (a) Newtonian fluid with     and (b) Bingham Fluid 

with T = 0.50. The aperture distribution can be seen in (c). Shear displacement applied in x-

direction. A denotes flow in x-direction and B denotes flow in y-direction. The particle transport 

is enhanced in case B and the flow becomes more channelized with increasing T.  

 

6.6 Challenges 

 

Settling of particles from the drilling fluid is neglected in this study as it is run in de-

coupled mode, meaning that velocities and pressure distributions are calculated before 

transport of particles. The particles settling from the fluid or removed from the formation 

would affect local velocities, pressure distribution and particle transport. In addition, the 

fracture aperture field is constant throughout all simulations, not considering the removal 

of bridging material or degradation of formation rock which would also highly affect the 

simulations.   

 

The model also considers the fracture walls to be perfectly impermeable, meaning no 

leak-off to the surrounding formation. In reality the filter cake can be deposited and is 

dependent on a number of variables including the properties of the mud, particle size 

range and formation permeability. The influence of leak-off is important to understand 
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when dealing with ultimate volume losses of fluids, but the essentials of non-Newtonian 

flow in rough-walled fractures can be understood by studying the steady state solution 

without leak-off.  

 

Numerical dispersion is also a difficulty when simulations are run on fractures with areas 

of closed local apertures. The breakthrough curves from the simulations in this study 

exhibited too much dispersion and were therefore included and not interpreted in this 

study. It is possible to adjust the plots by zeroing out the negative values of particle 

concentration and adjusting concentrations above 100%. However, the results would no 

longer be accurate.  

 

Frigaard & Ryan (2004) pointed out the existence of a pseudo plug region for non-

Newtonian fluids flowing in a slowly varying aperture. The pseudo plug is a region 

between the true plug and the shear flow, and its existence would be a game changer of 

how we think of yield-stress fluid flow in fractures. The model implemented in 

PROPANICA does not account for the existence of the pseudo plug. 
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7 FUTURE WORK 

 

The author encourages future studies to include fractures with varying shear displacement 

in the analysis to study how fluid flow and solute transport are affected by increasing 

shear displacement. Additionally, it is suggested to develop a numerical model that 

includes different regimes for time-dependant change of aperture due to removal of 

bridging material and degradation of the fracture walls. The author also encourages future 

studies to develop a better model to reduce the numerical dispersion for cases with greater 

yield stress. 
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8 CONCLUSION 

 

Bingham fluid properties have been studied and tested on two fractures shifted in either 

coordinate direction. Fluid flow was performed both perpendicular and parallel to the 

direction of shear displacement. The following conclusions were drawn from the results: 

 Shear displacement creates flow channels perpendicular to shifting direction. The 

greater the shear displacement, the more pronounced the effect.  

 

 The ratio of yield stresses to viscous forces has higher values for flow parallel to 

shear displacement compared to perpendicular. The fracture terrain causes this 

behavior, because the aperture behaves less rough perpendicular to shear 

displacement. 

 

 The plastic viscosity affects the velocities. It does not affect the particle transport 

or channelization of fluid flow. In general, unidirectional fluid flow was greater in 

the direction perpendicular to shearing. The effect becomes more pronounced for 

increasing value of non-dimensional yield stress.  

 

 Channelization of fluid flow and particle transport is enhanced for increasing 

value of non-dimensional yield stress. This occurs for flow both parallel and 

perpendicular to the shear displacement.  

   

 The fluid's ability to carry particles increases when flow is applied perpendicular 

to shear displacement. The effect is more pronounced for fluids with high value of 

non-dimensional yield stress. 
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APPENDIX 

 

A.1 ORIGINAL PLOTS 

 FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 
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Fig. A.1 - Velocity distribution for increasing T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 0.53/0.50. 

Shear displacement along x-axis. 
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 FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 
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Fig. A.2 - Velocity distribution for increasing T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 0.53. Shear 

displacement along y-axis.  
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FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 
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Fig. A.3 - Pressure distribution for increasing T values: (a) 0.00 (b) 0.19 (c) 0.38 and (d) 0.53/0.50. 

Shear displacement along x-axis. Concentration values can be read from the color bar on the right-

side. Black dots represent closed local aperture. 
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 FLOW PARALLEL TO SHIFTING 

 

FLOW PERPENDICULAR TO SHIFTING 

 

 

 

 

 

(a) 

  
 

 

 

 

 

 

(b)  

  
 

 

 

 

 

(c)  

  
 

 

 

 

 

(d) 

  
 

Fig. A.4 - Pressure distribution for increasing T values: (a) 0.00 (b) 0.18 (c) 0.37 and (d) 0.53. Shear 

displacement along y-axis. Concentration values can be read from the color bar on the right-side. 

Black dots represent closed local aperture. 
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A.2 FLOW CHART AND WORKING DIAGRAM 

 

 

 

A. PROPANICAGRIDDER is a C++ code that generates rough-walled fractures based on 

the recursive subdivision technique. The modified version, edited by the author, 

includes the option to apply shear displacement in x- and/or y-direction. The code also 

creates a mesh file where the fracture terrain is rotated 90 degrees counter clockwise, 

so that the user can simulate flow in both x- and y-direction. PLOT_FRACTALS 

visualizes the fracture in 3D-space while PLOT_APERTURE_XY visualizes the 

aperture distribution in 2D in the XY-plane.   

 

B. The user locates different fractures in a separate directory specified in 

CASECREATOR. In addition, the user has to specify fluid properties and other 

simulation inputs. The script creates individual folders including all data necessary for 

simulations. The simulations can either be run on a personal computer or on a cluster. 

The latter method is preferred when comprehensive test matrixes are simulated. If run 

on cluster, several simulations can be run at the same time, thus RUNSIM.SH, a 

UNIX script starts simulations to avoid manual execution.  

 

PROPANICAGRIDDER

SET-UP EXECUTION POST-PROCESSING

CASE CREATOR RUNSIM

PROPANICA

VELOCOLLECTOR

BREAKTHROUGH

POSTPROCESSING

MASTER.PY

PLOT_FRACTALS

PLOT_APERTURE_XY

PLOT_CONCENTRATION.

PLOT_PRESSURE

PLOT_VELOCITIES.PY

VELODATA

PLOT_PRESSUREDIFF

A

B

C
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C. When the results from the simulations are ready, the raw-material is post-processed by 

python visualization scripts. If a comprehensive test-matrix has been simulated, it is 

preferable to use the Windows batch script POSTPROCESSING.BAT to queue post-

processing on your personal computer. The script starts post-processing in several case 

folders by copying the master python file into every case directory and executes the 

script. MASTER.PY calls on various post-processing scripts created for visualization 

of concentration distributions, pressure distributions, velocity fields in the fracture. 

BREAKTHROUGH and VELOCOLLECTOR are C++ scripts developed to gather 

velocity information and breakthrough curves into user-friendly SDV-formats that can 

easily be converted to a spread-sheet format.  

 

This procedure was developed by the author to make it possible to execute 108 cases during a 

short period of time. All scripts are modified or created by the author and are included in the 

Appendix (A3-5) for future references. 
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A.3 C++ CODES 

A.3.1 Modified PROPANICAGRIDDER 

 
#include <cmath> 

#include <iostream> 

#include <string> 

#include <stdexcept> 

#include <exception> 

#include <vector> 

#include <cmath> 

#include <cstdlib> 

#include <fstream> 

#include <ctime> 

#include <windows.h> 

 

using namespace std; 

 

double gauss() 

{ 

 int i; 

 double rnorm = 0.0; 

 

 for (i=1; i <= 12; i++ ) rnorm = rnorm + (float) rand()/RAND_MAX; 

 

 return( rnorm - 6.0 ); 

} 

 

void fractal(std::vector<std::vector<double>>& z, int scale, int n, double 

corner1, double corner2, double corner3, double corner4, double fc, double fH, 

double fs) 

{ 

 int i, j, level; 

 

 z[0][0]=corner1; 

 z[0][n]=corner2; 

 z[n][0]=corner3; 

 z[n][n]=corner4; 

 

 /* Build side boundaries */ 

 for (level=1; level<=scale; level++) { 

  for (i=n/(int)pow(2.,level); i<=n-n/(int)pow(2.,level);) { 

   z[i][0] = 0.5 * (z[i - n/(int)pow(2.,level)][0] + z[i + 

n/(int)pow(2.,level)][0]) + gauss() * fs * pow(fc, -fH * (double)level); 

   z[i][n] = 0.5 * (z[i - n/(int)pow(2.,level)][n] + z[i + 

n/(int)pow(2.,level)][n]) + gauss() * fs * pow(fc, -fH * (double)level); 

   i = i + n/((int)pow(2.,level-1)); 

  } 

  for (j=n/(int)pow(2.,level); j<=n-n/(int)pow(2.,level);) { 

   z[0][j] = 0.5 * (z[0][j - n/(int)pow(2.,level)] + z[0][j + 

n/(int)pow(2.,level)]) + gauss() * fs * pow(fc, -fH * (double)level); 

   z[n][j] = 0.5 * (z[n][j - n/(int)pow(2.,level)] + z[n][j + 

n/(int)pow(2.,level)]) + gauss() * fs * pow(fc, -fH * (double)level); 

   j = j + n/((int)pow(2.,level-1)); 

  } 

 } 

 

 /* Build inner points */ 

 for (level=1; level<=scale; level++) { 

  /* Center points of the level's squares are computed using diagonal 

elements */ 

  for (i=n/(int)pow(2.,level); i<=n-n/(int)pow(2.,level);) { 
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   for (j=n/(int)pow(2.,level); j<=n-n/(int)pow(2.,level);) { 

    z[i][j] = 0.25 * 

(z[i+n/(int)pow(2.,level)][j+n/(int)pow(2.,level)] + 

z[i+n/(int)pow(2.,level)][j-n/(int)pow(2.,level)] + z[i-

n/(int)pow(2.,level)][j+n/(int)pow(2.,level)] + z[i-n/(int)pow(2.,level)][j-

n/(int)pow(2.,level)]) + gauss() * fs * pow(fc, -fH * (double)level); 

    j = j + n/((int)pow(2.,level-1)); 

   } 

   i = i + n/((int)pow(2.,level-1)); 

  } 

   

  /* Boundary center points of the level's squares are computed using 

diagonal elements */ 

  for (i=n/(int)pow(2.,level); i<=n-n/(int)pow(2.,level);) { 

   for (j=n/(int)pow(2.,level-1); j<=n-n/(int)pow(2.,level-1);) 

{ 

    z[i][j] = 0.25 * (z[i][j+n/(int)pow(2.,level)] + 

z[i][j-n/(int)pow(2.,level)] + z[i-n/(int)pow(2.,level)][j] + 

z[i+n/(int)pow(2.,level)][j]) + gauss() * fs * pow(fc, -fH * (double)level); 

    j = j + n/((int)pow(2.,level-1)); 

   } 

   i = i + n/((int)pow(2.,level-1)); 

  } 

  for (i=n/(int)pow(2.,level-1); i<=n-n/(int)pow(2.,level-1);) { 

   for (j=n/(int)pow(2.,level); j<=n-n/(int)pow(2.,level);) { 

    z[i][j] = 0.25 * (z[i][j+n/(int)pow(2.,level)] + 

z[i][j-n/(int)pow(2.,level)] + z[i-n/(int)pow(2.,level)][j] + 

z[i+n/(int)pow(2.,level)][j]) + gauss() * fs * pow(fc, -fH * (double)level); 

    j = j + n/((int)pow(2.,level-1)); 

   } 

   i = i + n/((int)pow(2.,level-1)); 

  } 

 

 } /* Close for level */ 

 

 

} 

 

int main() 

{ 

 

 std::ofstream surfaces, inputs, rotsurf; 

 surfaces.open ("mesh.dat"); 

 inputs.open ("input.txt"); 

 rotsurf.open ("mesh_90ccw.dat"); 

 int max_l; 

 double H; 

 double scaling; 

 double c; 

 double dx; 

 double dy; 

 double mid_distance; 

 std::string random_level_zero; 

 int randomizer; 

 char userin; 

 int Sx; 

 int Sy; 

 

 

 

 

 // Userinput values 

 std::cout << "Enter the number of levels (an integer, e.g. 5): "; 

 std::cin >> max_l; 
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 std::cout << "Enter the Hurst exponent (a double between 0.0 and 1.0, 

e.g. 0.7): "; 

 std::cin >> H; 

 std::cout << "Enter the scaling factor (a double, e.g. 0.001): "; 

 std::cin >> scaling; 

 std::cout << "Enter c (a double, e.g. 2.0): "; 

 std::cin >> c; 

 std::cout << "Enter the randomizer (an integer, e.g. 5000. Using the same 

randomizer value in different runs of this program will produce identical 

meshes.): "; 

 std::cin >> randomizer; 

 std::cout << "Enter the separation between the two surfaces (a double, 

e.g. 0.002): "; 

 std::cin >> mid_distance; 

 std::cout << "Enter grid spacings." << std::endl; 

 std::cout << "Enter the grid spacing in the x-direction (a double, e.g. 

0.01): "; 

 std::cin >> dx; 

 std::cout << "Enter the grid spacing in the y-direction (a double, e.g. 

0.01): "; 

 std::cin >> dy; 

 std::cout << "Do you wish to include shifting? y/n: "; 

 std::cin >> userin; 

 

 

 //Write input values to inputs.txt 

 

 inputs << "=============================" << std::endl; 

 inputs << '\t' << "INPUT" << std::endl; 

 inputs << "=============================" << std::endl; 

 inputs << std::endl; 

 inputs << "Number of levels" << '\t' << static_cast<int>(max_l) << 

std::endl; 

 inputs << "Hurst exponent" << '\t' << '\t' << static_cast<double>(H) << 

std::endl; 

 inputs << "Scaling factor" << '\t' << '\t' << 

static_cast<double>(scaling) << std::endl; 

 inputs << "C factor" << '\t' << '\t' << static_cast<double>(c) << 

std::endl; 

 inputs << "Randomizer" << '\t' << '\t' << static_cast<int>(randomizer) << 

std::endl; 

 inputs << "Separation" << '\t' << '\t' << 

static_cast<double>(mid_distance) << std::endl; 

 inputs << "Grid Spacing x-dir" << '\t' << static_cast<double>(dx) << 

std::endl; 

 inputs << "Grid Spacing y-dir" << '\t' << static_cast<double>(dx) << 

std::endl; 

 

 

 // Determine bool values 

 bool usershift = false; 

 if ( userin == 'y' || userin == 'Y') { 

  usershift = true; 

  std::cout << "Enter shifting in x-direction (an integer, e.g. 10): 

"; 

  std::cin >> Sx; 

  std::cout << "Enter shifting in y-direction (an integer, e.g. 10): 

"; 

  std::cin >> Sy; 

  inputs << "Shifting" << '\t' << '\t' << "YES" << std::endl; 

  inputs << "Shifting x-dir" << '\t' << '\t' << int(Sx) << std::endl; 

  inputs << "Shifting y-dir" << '\t' << '\t' << int(Sy) << std::endl; 

  inputs << std::endl; 

  } 

 else if ( userin == 'n' || userin == 'N' ) { 
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  usershift = false; 

  inputs << std::endl; 

  inputs << "Shifting" << '\t' << '\t' << "NO" << std::endl; 

  inputs << std::endl; 

 } 

 else { 

  usershift = false; 

  inputs << std::endl; 

  inputs << "Shifting" << '\t' << '\t' << "NO" << std::endl; 

 } 

 

 if (usershift) { 

 

  max_l += 1; 

 

  int N = static_cast<int>(pow(2.0, max_l) ); 

  for (int i = 0; i <= randomizer; ++i) rand(); 

 

  std::vector<std::vector<double>> surf1, aperture; 

  for (int i = 0; i <= N; ++i) { 

   std::vector<double> row; 

   for (int j = 0; j <= N; ++j) { 

    row.push_back(0.0); 

   } 

   surf1.push_back(row); 

   aperture.push_back(row); 

  } 

 

  // surf1 

 

  fractal (surf1, max_l, N, 0.0, 0.0, 0.0, 0.0, c, H, scaling); 

    

  int M = static_cast<int>(pow(2.0, max_l-1) ); 

 

  double average_aperture = 0.0; 

  double min_aperture = mid_distance + surf1.at(0).at(0) - 

surf1.at(Sx).at(Sy); 

  double max_aperture = mid_distance + surf1.at(0).at(0) - 

surf1.at(Sx).at(Sy); 

  double rms = 0.0; 

  int countzero = 0; 

  for (int i = 0; i <= M; ++i) { 

   for (int j = 0; j <= M; ++j) { 

    // double apert = mid_distance + surf1.at(i).at(j) - 

surf2.at(i).at(j); 

    double apert = mid_distance + surf1.at(i).at(j) - 

surf1.at(i+Sx).at(j+Sy); 

    int zero_aperture_index = 0; 

 

    if ( apert <= 0.0 ) { 

     apert = 0.0; 

     zero_aperture_index = 1; 

     countzero += 1; 

    } 

    average_aperture += apert; 

    if ( apert > max_aperture ) max_aperture = apert; 

    if ( apert < min_aperture ) min_aperture = apert; 

    surfaces << i << " " << j << " " << 

static_cast<double>(i) * dx << " " << static_cast<double>(j) * dy << " " << 

apert << " " << zero_aperture_index << std::endl; 

    rotsurf << M-j << " " << i << " " << 

static_cast<double>(M-j) * dx << " " << static_cast<double>(i) * dy << " " << 

apert << " " << zero_aperture_index << std::endl; 

   } 

  } 
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  average_aperture /= static_cast<double>( (M + 1) * (M + 1) ); 

  for (int i = 0; i <= M; ++i) { 

   for (int j = 0; j <= M; ++j) { 

    double apert = mid_distance + surf1.at(i).at(j) - 

surf1.at(i+Sx).at(j+Sy); 

    rms += ( apert - average_aperture ) * ( apert - 

average_aperture ); 

   } 

  } 

  rms /= static_cast<double>( (M + 1) * (M + 1) - 1 ); 

  rms = sqrt(rms); 

 

 

 

  std::cout << "Mesh file mesh.dat has been written." << std::endl; 

 

  std::cout  << std::endl << "Average aperture = " << 

average_aperture << std::endl; 

  std::cout  << "Min aperture = " << min_aperture << std::endl; 

  std::cout  << "Max aperture = " << max_aperture << std::endl; 

  std::cout  << "Nodes of closed aperture = " << countzero << 

std::endl; 

  std::cout  << std::endl; 

  std::cout  << "rms = " << rms << std::endl; 

  std::cout  << "rms / dx = " << rms / dx << std::endl; 

  std::cout  << "rms / dx should normally be between 0.02 and 0.2 for 

the liubrication theory approximation to hold." << std::endl; 

  std::cout  << "rms / dy = " << rms / dy << std::endl; 

  std::cout  << "rms / dy should normally be between 0.02 and 0.2 for 

the liubrication theory approximation to hold." << std::endl; 

 

  inputs << "=============================" << std::endl; 

  inputs << '\t' << "OUTPUT" << std::endl; 

  inputs << "=============================" << std::endl; 

  inputs << std::endl; 

  inputs << "Avg aperture = " << '\t' << average_aperture << 

std::endl; 

  inputs << "Min aperture = " << '\t' << min_aperture << std::endl; 

  inputs << "Max aperture = " << '\t' << max_aperture  << std::endl; 

  inputs << "RMS = " << '\t' << rms << std::endl; 

  inputs << "RMS / dx = " << '\t' << rms / dx << std::endl; 

  inputs << "RMS / dy = " << '\t' << rms / dy << std::endl; 

  inputs << std::endl; 

 

   if ( ( rms / dx >= 0.02 ) && ( rms / dx <= 0.2 )) { 

    inputs << "Lubrication theory valid!" << std::endl; 

   } 

   else { 

    inputs << "Lubrication theory not valid. Consider 

altering input values" << std::endl; 

   } 

  } 

 else { 

  

    int N = static_cast<int>(pow(2.0, max_l) ); 

  for (int i = 0; i <= randomizer; ++i) rand(); 

 

  std::vector<std::vector<double>> surf1, surf2, aperture; 

  for (int i = 0; i <= N; ++i) { 

   std::vector<double> row; 

   for (int j = 0; j <= N; ++j) { 

    row.push_back(0.0); 

   } 
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   surf1.push_back(row); 

   surf2.push_back(row); 

   aperture.push_back(row); 

  } 

 

  // surf1 

 

  fractal (surf1, max_l, N, 0.0, 0.0, 0.0, 0.0, c, H, scaling); 

  fractal (surf2, max_l, N, 0.0, 0.0, 0.0, 0.0, c, H, scaling); 

 

 

  double average_aperture = 0.0; 

  double min_aperture = mid_distance + surf1.at(0).at(0) - 

surf2.at(0).at(0); 

  double max_aperture = mid_distance + surf1.at(0).at(0) - 

surf2.at(0).at(0); 

  double rms = 0.0; 

  for (int i = 0; i <= N; ++i) { 

   for (int j = 0; j <= N; ++j) { 

    // double apert = mid_distance + surf1.at(i).at(j) - 

surf2.at(i).at(j); 

    double apert = mid_distance + surf1.at(i).at(j) - 

surf2.at(i).at(j); 

    int zero_aperture_index = 0; 

    if ( apert <= 0.0 ) { 

     apert = 0.0; 

     zero_aperture_index = 1; 

    } 

    average_aperture += apert; 

    if ( apert > max_aperture ) max_aperture = apert; 

    if ( apert < min_aperture ) min_aperture = apert; 

    surfaces << i << " " << j << " " << 

static_cast<double>(i) * dx << " " << static_cast<double>(j) * dy << " " << 

apert << " " << zero_aperture_index << std::endl; 

   } 

  } 

  average_aperture /= static_cast<double>( (N + 1) * (N + 1) ); 

  for (int i = 0; i <= N; ++i) { 

   for (int j = 0; j <= N; ++j) { 

    double apert = mid_distance + surf1.at(i).at(j) - 

surf2.at(i).at(j); 

    rms += ( apert - average_aperture ) * ( apert - 

average_aperture ); 

   } 

  } 

  rms /= static_cast<double>( (N + 1) * (N + 1) - 1 ); 

  rms = sqrt(rms); 

 

 

  std::cout << "Mesh file mesh.dat has been written." << std::endl; 

 

  std::cout  << std::endl << "Average aperture = " << 

average_aperture << std::endl; 

  std::cout  << "Min aperture = " << min_aperture << std::endl; 

  std::cout  << "Max aperture = " << max_aperture << std::endl; 

  std::cout  << "rms = " << rms << std::endl; 

  std::cout  << "rms / dx = " << rms / dx << std::endl; 

  std::cout  << "rms / dx should normally be between 0.02 and 0.2 for 

the liubrication theory approximation to hold." << std::endl; 

  std::cout  << "rms / dy = " << rms / dy << std::endl; 

  std::cout  << "rms / dy should normally be between 0.02 and 0.2 for 

the liubrication theory approximation to hold." << std::endl; 

 

  inputs << "=============================" << std::endl; 

  inputs << '\t' << "OUTPUT" << std::endl; 
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  inputs << "=============================" << std::endl; 

  inputs << std::endl; 

  inputs << "Avg aperture = " << '\t' << average_aperture << 

std::endl; 

  inputs << "Min aperture = " << '\t' << min_aperture << std::endl; 

  inputs << "Max aperture = " << '\t' << max_aperture  << std::endl; 

  inputs << "RMS = " << '\t' << rms << std::endl; 

  inputs << "RMS / dx = " << '\t' << rms / dx << std::endl; 

  inputs << "RMS / dy = " << '\t' << rms / dy << std::endl; 

  inputs << std::endl; 

 

   if ( ( rms / dx >= 0.02 ) && ( rms / dx <= 0.2 )) { 

    inputs << "Lubrication theory valid!" << std::endl; 

   } 

   else { 

    inputs << "Lubrication theory not valid. Consider 

altering input values" << std::endl; 

   } 

 } 

  

  

 inputs.close(); 

 surfaces.close(); 

 rotsurf.close(); 

 

 

 return 0; 

 

} 
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A.3.2 CASECREATOR 

#include <cmath> 

#include <cstdlib> 

#include <ctime> 

#include <direct.h> 

#include <exception> 

#include <fstream> 

#include <iomanip> 

#include <iostream> 

#include <sstream> 

#include <stdexcept> 

#include <string> 

#include <vector> 

#include <windows.h> 

#include <list> 

 

using namespace std; 

 

void copymesh(int casenum, int meshnum) 

{ 

 

 //CREATE FOLDER STRINGS 

 std::ostringstream oss; 

 std::ostringstream dross; 

 oss << fixed << showpoint << setprecision(3) << "Mesh" << meshnum; 

// dross << fixed << showpoint << setprecision(3) << "Case_" << casenum; 

 dross << fixed << showpoint << "case_" << std::setw(2) << 

std::setfill('0') << casenum;  

 

 

 //COPY FROM 

 string input_dir = 

"c://Users/Alexander/Dropbox/School/MasterThesis/Mesh/"; 

 string input_folder = oss.str(); 

 

 //COPY TO 

 string output_folder = dross.str(); 

 string output_dir = 

"c://Users/Alexander/Dropbox/School/MasterThesis/Simulations/"; 

 

 //FILE NAME 

 string file_name = "/mesh.dat"; 

 

 //COPY MESH.DAT TO CASE FOLDERS 

 CopyFile( (input_dir+input_folder+file_name).c_str() , 

(output_dir+output_folder+file_name).c_str() ,false); 

} 

 

void shellcreator(int index) 

{ 

 ostringstream koss; 

// koss << fixed << showpoint << setprecision(3) << "case_" << index; 

 koss << fixed << showpoint << "case_" << std::setw(2) << 

std::setfill('0') << index; 

 string output_dir = 

"c://Users/Alexander/Dropbox/School/MasterThesis/Simulations/"; 

 string index_string = koss.str(); 

 string shell_name = "/PROPANICA.sh"; 

 

 std::ofstream shellf ( (output_dir+index_string+shell_name).c_str() ); 

 

 shellf << "#!/bin/bash" << std::endl; 
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 shellf << "#  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - -" << std::endl; 

 shellf << "#PBS -N " << fixed << showpoint << "case_" << std::setw(2) << 

std::setfill('0') << index << std::endl; 

 shellf << "#PBS -l nodes=1:ppn=12" << std::endl; 

 shellf << "#PBS -l walltime=03:00:00:00" << std::endl; 

 shellf << "#PBS -A acc-ipt" << std::endl; 

 shellf << "#PBS -q bigmem" << std::endl; 

 shellf << "#" << std::endl; 

 shellf << "#PBS -m abe" << std::endl; 

 shellf << "#PBS -M alexahan@stud.ntnu.no"  << std::endl; 

 shellf << "#" << std::endl; 

 shellf << "#" << std::endl; 

 shellf << "# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - -" << std::endl; 

 shellf << std::endl; 

 shellf << "cd $PBS_O_WORKDIR" << std::endl; 

 shellf << std::endl; 

 shellf << "module load gcc/4.7.0" << std::endl; 

 shellf << "/home/alexahan/PROPANICA/case_" << std::setw(2) << 

std::setfill('0') << index << "/PROPANICA.exe > /home/alexahan/PROPANICA/case_" 

<< std::setw(2) << std::setfill('0') << index << "/stdoutputfile" << std::endl; 

 shellf << std::endl; 

 shellf << "exit 0" << std::endl; 

} 

 

 

void casecreator(double yield, double visco, double pressure, double dx, double 

dy, int index) 

{ 

 // SPECIFY FOLDER NAME 

 ostringstream oss; 

// oss << fixed << showpoint << setprecision(3) << "case_" << index; 

 oss << fixed << showpoint << "case_" << std::setw(2) << std::setfill('0') 

<< index; 

 string output_dir = 

"c://Users/Alexander/Dropbox/School/MasterThesis/Simulations/"; 

 string index_string = oss.str(); 

 string file_name = "/case.dat"; 

  

 // CREATE FOLDER(S)  

 _mkdir( (output_dir+index_string).c_str() ); 

 

 std::ofstream casef ( (output_dir+index_string+file_name).c_str() ); 

  

 // OPENMP 

 casef << "begin  OpenMP" << std::endl; 

 casef << "" << std::endl; 

 casef << " nthreads = 12" << std::endl; 

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 

 casef << "" << std::endl; 

 

 // FLUID 

 casef << "begin fluid" << std::endl; 

 casef << "" << std::endl; 

 casef << "   rheology = Bingham" << std::endl; 

 casef << "   yield_stress = " << yield << std::endl; 

 casef << "   plastic_viscosity = " << visco << std::endl;  

  

 casef << "   density = 1000.0" << std::endl; 

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 
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 casef << "" << std::endl; 

 

 // FLUID BOUNDARY CONDITIONS 

 casef << "begin fluid_bc" << std::endl; 

 casef << "" << std::endl; 

 casef << "   source_pressure = " << fixed << setprecision(1) << pressure 

<< std::endl;    

 casef << "   sink_pressure =  0.0" << std::endl; 

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 

 

 // MESH 

 casef << "begin mesh" << std::endl; 

 casef << "" << std::endl; 

 casef << "   type = Cartesian" << std::endl; 

 casef << "   dx = " << setprecision(3) << dx << std::endl;  

 casef << "   dy = " << setprecision(3) << dy << std::endl;  

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 

 casef << "" << std::endl; 

 

 

 // FLOW 

 casef << "begin flow" << std::endl; 

 casef << "" << std::endl; 

 casef << "   import_velocities = false" << std::endl; 

 casef << "   tol_bisection = 1.0e-8" << std::endl; 

 casef << "   exit_tolerance_pressure = 1.0e-7" << std::endl; 

 casef << "   exit_tolerance_qx = 1.0e-3" << std::endl; 

 casef << "   type_of_aperture_average = arithmetic" << std::endl; 

 casef << "   velocity_interpolation = linear" << std::endl; 

 casef << "   type_of_pressure_initialization = linear" << std::endl; 

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 

 

 // HISTORY 

 casef << "begin history" << std::endl; 

 casef << "" << std::endl; 

 casef << "   name = hist1" << std::endl; 

 casef << "   interpolation = hold" << std::endl; 

 casef << "   0.0   1.0" << std::endl;      

   // Maybe add option (?) 

 casef << "" << std::endl; 

 casef << "end" << std::endl; 

 casef << "" << std::endl; 

 casef << "" << std::endl; 

 

 // PROPPANT 

 casef << "begin proppant" << std::endl; 

 casef << "" << std::endl; 

 casef << "   assign hist1 node 3 32" << std::endl;   

  

 casef << "" << std::endl; 

 casef << "   Coupling = DeCoUpLeD" << std::endl; 

 casef << "   target_time_automatic = true" << std::endl; 

 casef << "   target_time_multiplier = 2.0" << std::endl; 

 casef << "   Courant = 0.5" << std::endl; 

 casef << "" << std::endl; 

 casef << "   backtrack = iterative" << std::endl; 

 casef << "   number_of_iteraions = 1" << std::endl; 

 casef << "" << std::endl; 
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 casef << "   concentration_interpolation = cubic_lagrange_sequential_xy" 

<< std::endl; 

 casef << "" << std::endl; 

 casef << "   kill_negative_concentrations = false" << std::endl; 

 casef << "" << std::endl; 

 casef << "   number_of_concentration_dumps = 30" << std::endl; 

 casef << "   number_of_monitor_dumps = 100" << std::endl; 

 casef << "" << std::endl;       

           

 casef << "   monitor_write_period = 0.010" << std::endl; 

 casef << "   breakthrough_line_i = 3" << std::endl;  

 casef << "   breakthrough_line_i = 10" << std::endl; 

 casef << "   breakthrough_line_i = 20" << std::endl; 

 casef << "   breakthrough_line_i = 30" << std::endl; 

 casef << "   breakthrough_line_i = 40" << std::endl;; 

 casef << "   breakthrough_line_i = 50" << std::endl; 

 casef << "   breakthrough_line_i = 60" << std::endl; 

 casef << ""<< std::endl; 

 casef << "end" << std::endl; 

 

 //CLOSE FILE 

 casef.close(); 

} 

 

 

 

int main() 

{ 

 

 std::vector<double> yield, visco, pressure, hurst; 

 std::vector<int> mesh; 

 

 // Yield point values: 

 

 yield.push_back(0.0); 

 yield.push_back(25.0); 

 yield.push_back(50.0); 

 

 

// double s; 

// std::cout << "Enter Yield Point value: " << std::endl; 

// std::cin >> s; 

// yield.push_back(s); 

 

 // Plastic viscosity values: 

 

 visco.push_back(0.001); 

 visco.push_back(0.01); 

 visco.push_back(0.03); 

 

 // LHS Pressure values: 

 

 pressure.push_back(500000.0); 

 pressure.push_back(350000.0); 

 pressure.push_back(200000.0); 

 

 // Hurst exponent 

 

 hurst.push_back(0.75); 

 

 // Mesh files 

 

 mesh.push_back(4); 

 

 // Constants 
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 double dx=0.01; 

 double dy=0.01; 

 

 // DECLARATION OF VALUES 

 

 int numberofcases = mesh.size() * pressure.size() * yield.size() * 

visco.size(); 

 int index = 82; 

 

 cout << std::endl; 

 cout << "A total number of " << numberofcases << " cases will be created" 

<< std::endl; 

 cout << "Number of variables:" << std::endl; 

 cout << std::endl; 

 cout << "Mesh files:" << '\t' << mesh.size() << std::endl; 

 cout << "Yield point:" << '\t' << yield.size() << std::endl; 

 cout << "Plastic visco:" << '\t' << visco.size() << std::endl; 

 cout << "Pressures:" << '\t' << pressure.size() << std::endl; 

 cout << std::endl; 

 

 // CREATE DIRECTORY  

 _mkdir("c://Users/Alexander/Dropbox/School/MasterThesis/Simulations/"); 

 

 std::ofstream casefile; 

 casefile.open 

("c://Users/Alexander/Dropbox/School/MasterThesis/Simulations/testmatrix.txt"); 

 

 // WRITE HEADER IN TEST MATRIX 

 casefile << "Simulation input overview" << std::endl; 

 casefile << std::endl; 

 casefile << "  NUMERICAL MODELLING OF BINGHAM FLUID FLOW AND" << 

std::endl; 

 casefile << "  PARTICLE TRANSPORT IN A ROUGH-WALLED FRACTURE" << 

std::endl; 

 casefile << std::endl; 

 casefile << "Master Thesis - Drilling Technology " << std::endl; 

 casefile << "Alexander Rikstad Hanssen Stud.techn. NTNU" << std::endl; 

 casefile << std::endl; 

 casefile << "Case" << '\t' << "Mesh" << '\t' << "dP" << '\t' << "YP" << 

'\t' << "PV" << '\t' << "Hurst" << std::endl; 

 casefile << "Num" << '\t' << "Num" << '\t' << "(Pa)" << '\t' << "(Pa)" << 

'\t' << "(Pas)" << '\t' << "(-)" << std::endl; 

 casefile << "=============================================" << std::endl; 

 

 // LOOP TO CREATE CASE.DAT FILES 

// for (auto it = fox.begin(); it != fox.end(); ++it ) { 

 

 for (std::size_t i=0; i < mesh.size() ;++i) { 

  for (std::size_t j=0; j < pressure.size() ;++j) { 

   for (std::size_t k=0; k < yield.size() ;++k) { 

    for (std::size_t l=0; l < visco.size() ;++l) { 

    

 casecreator(yield[k],visco[l],pressure[j],dx,dy,index); 

     shellcreator(index); 

     copymesh(index, mesh[i]); 

     casefile << index << '\t' << mesh[i] << '\t' << 

pressure[j] << '\t' << yield[k] << '\t' << visco[l] << '\t' << hurst[i] << 

std::endl; 

     index = index + 1; 

    } 

   } 

  } 

 } 

 cout << "Case folders created in directory:" << std::endl; 
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 cout << "(c://Users/Alexander/Dropbox/School/MasterThesis/Simulations)" 

<< std::endl; 

 cout << std::endl; 

 return 0; 

} 
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A.3.3 VELOCOLLECTOR 

 

 

#include <cmath> 

#include <cstdlib> 

#include <ctime> 

#include <direct.h> 

#include <exception> 

#include <fstream> 

#include <iomanip> 

#include <iostream> 

#include <sstream> 

#include <stdexcept> 

#include <string> 

#include <vector> 

#include <windows.h> 

#include <list> 

 

using namespace std; 

 

void main () 

{ 

 std::ofstream velodata;  

 velodata.open 

("C://Users/Alexander/Dropbox/School/MasterThesis/Modeling/EXCEL/velodata.txt")

;   // Opens results file 

 velodata << "Vxavg;Vxmax;Vyavg;Vymax" << std::endl; 

 

 int casenum = 94; 

 

 for (int i=94; i <= 95  ;++i) { 

  std::ostringstream oss; 

  string input_dir = 

"C://Users/Alexander/Dropbox/School/MasterThesis/Simulations/Batch4/"; 

 // Specifies directory 

  oss << fixed << showpoint << "case_" << std::setw(2) << 

std::setfill('0') << casenum;   // Specifies Case folder 

  string input_folder = oss.str(); 

  string file_name = "/Results/velodata.txt";    

          // Specifies 

filename  

 

  string STRING; 

  ifstream infile; 

  infile.open ((input_dir+input_folder+file_name).c_str()); 

 

  getline(infile,STRING);       // 

Saves the line in STRING. 

  velodata << STRING << std::endl;    // Prints 

our STRING. 

  infile.close(); 

  casenum += 1; 

 } 

 velodata.close(); 

} 
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A.3.4 BREAKTHROUGH CURVES 

 

#include <fstream> 

#include <cmath> 

#include <cstdlib> 

#include <ctime> 

#include <direct.h> 

#include <exception> 

#include <fstream> 

#include <iomanip> 

#include <iostream> 

#include <sstream> 

#include <stdexcept> 

#include <string> 

#include <vector> 

#include <windows.h> 

#include <list> 

 

using namespace std; 

 

int main() 

{ 

 // Declaration 

 int casenumber; 

 int batch; 

 double time; 

 double concentration; 

 int points = 100;  // Number_of_monitor_dumps found in case.dat 

 

 // Opens output-file 

 std::ofstream output; 

 output.open 

("C://Users/Alexander/Dropbox/School/MasterThesis/breakthrough/output3.txt"); 

 

 // Declares breakthrough matrixes 

 std::vector<double> breakthrough, timesteps; 

 

 // Specifies breakthrough node lines (also found in case.dat) 

 std::vector<int> nodes; 

 nodes.push_back(3); 

 nodes.push_back(10); 

 nodes.push_back(20); 

 nodes.push_back(30); 

 nodes.push_back(40); 

 nodes.push_back(50); 

 nodes.push_back(60); 

 

 // User specifies casenumber. Batch folder automatically chosen. 

 

 std::cout << "Enter a casenumber between 1 and 108 (an integer): "; 

 std::cin >> casenumber; 

 

 if ( (casenumber >= 0) && (casenumber <= 27) ) { 

  batch = 1; 

 } 

 else if ( (casenumber >= 28) && (casenumber <= 54) ) { 

  batch = 2; 

 } 

 else if ( (casenumber >= 55) && (casenumber <= 81) ) { 

  batch = 3; 

 } 

 else if ( (casenumber >= 82) && (casenumber <= 108) ) { 
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  batch = 4; 

 } 

 else { 

  std::cout << "Please enter case number between 1 and 108" << 

std::endl; 

  return 1; 

 } 

 

 // Loops through BreakthroughLineAtNodeColumn*.dat files 

 // and copies data to breakthrough vector 

 

 for (int i=0;i<=6;++i) { 

  std::ostringstream casenum, nodenum, batchstring; 

  batchstring << fixed << showpoint << 

"C://Users/Alexander/Dropbox/School/MasterThesis/Simulations/Batch" << 

std::setw(1) << batch << "/"; 

  casenum << fixed << showpoint << "case_" << std::setw(2) << 

std::setfill('0') << casenumber; 

  nodenum << fixed << showpoint << "/BreakthroughLineAtNodeColumn" << 

nodes.at(i) << std::setw(2) << ".dat"; 

  string output_dir = batchstring.str(); 

  string index_string = casenum.str(); 

  string file_name = nodenum.str(); 

  std::ifstream fin( (output_dir+index_string+file_name).c_str() ); 

 

  if (!fin) 

  { 

   // Exit if file cannot be opened 

   cout << "could not open file" << endl; 

   return 1; 

  } 

 

 

  // Read and load data into vectors 

  while (fin >> time >> concentration) { 

   breakthrough.push_back(concentration); 

   timesteps.push_back(time); 

  } 

 } 

 

 // Writes output file in .sdv format 

 output << ";N3;N10;N20;N30;N40;N50;N60" << std::endl; 

 for (int i=0;i<=99;++i) { 

  output << timesteps.at(i) << ";" << 

breakthrough.at(i)/breakthrough.at((points*1)-1) << ";" << 

breakthrough.at(i+points*1)/breakthrough.at((points*2)-1) << ";"  

   << breakthrough.at(i+points*2)/breakthrough.at((points*3)-1) 

<< ";" << breakthrough.at(i+points*3)/breakthrough.at((points*4)-1) << ";"  

   << breakthrough.at(i+points*4)/breakthrough.at((points*5)-1) 

<< ";" << breakthrough.at(i+points*5)/breakthrough.at((points*6)-1) << ";"  

   << breakthrough.at(i+points*6)/breakthrough.at((points*7)-1) 

<< std::endl; 

 } 

 

 output.close(); 

    return 0; 

} 
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A.4 Python scripts 

 

A total number of 10 post-processing scripts were developed and used in this thesis to create 

images and plots of velocity fields, pressure distribution, aperture fields, 3D fracture images, 

particle transport plots, collecting velocity data and finding the minimum average aperture 

path perpendicular to the flow direction. Additional scripts were created in order to visualize 

data where flow was performed perpendicular to original flow direction.  

 

A.4.1 PLOT_VELOCITY.PY 

 

 
import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

 

mode = 0  

 

lines = file('velocities.dat').readlines() 

X     = [] 

Y     = [] 

U     = [] 

V     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[2]) ) 

    Y.append( float(s[3]) ) 

    U.append( float(s[4]) ) 

    V.append( float(s[5]) ) 

    mode = mode + 1 

mode = int(mode**0.5) + 2 

 

rowX = zeros(mode-2) 

rowY = zeros(mode) 

rowU = zeros(mode) 

rowV = zeros(mode) 

 

Xprepared = zeros((mode-2)*mode) 

Yprepared = zeros((mode-2)*mode) 

Uprepared = zeros((mode-2)*mode) 

Vprepared = zeros((mode-2)*mode) 

 

for i in range(0, (mode-2)*mode, 1): 

    Xprepared[i] = X[i] 

    Yprepared[i] = Y[i] 

    Uprepared[i] = U[i] 

    Vprepared[i] = V[i] 

 

Xprepared.shape = (mode-2,mode) 

Yprepared.shape = (mode-2,mode) 

Uprepared.shape = (mode-2,mode) 

Vprepared.shape = (mode-2,mode) 

 

quiver(Xprepared, Yprepared, Uprepared, Vprepared) 

# colorbar() 

# clim(0,0.2) 

#fig = plt.figure() 
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#ax = fig.add_subplot(111, projection='3d') 

#ax.plot_wireframe(Xprepared, Yprepared, Zprepared, rstride=1, cstride=1) 

plt.axes().set_aspect('equal') 

 

B = 2*X[(mode-2)*mode -1] - X[(mode-2)*mode-2] 

 

plt.title('Velocities') 

ylim( (0,B)) 

xlim( (0,B)) 

 

savefig('Results/velocities.png',bbox_inches='tight') 

 

plt.close() 

 

A.4.2 PLOT_PRESSURE.PY 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

 

mode = 0  

 

lines = file('pressures.dat').readlines() 

X     = [] 

Y     = [] 

Z     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[2]) ) 

    Y.append( float(s[3]) ) 

    Z.append( float(s[4]) ) 

    mode = mode + 1 

mode = int(mode**0.5) 

 

 

rowX = zeros(mode) 

rowY = zeros(mode) 

rowZ = zeros(mode) 

 

Xprepared = zeros(mode*mode) 

Yprepared = zeros(mode*mode) 

Zprepared = zeros(mode*mode) 

 

for i in range(0, mode*mode, 1): 

    Xprepared[i] = X[i] 

    Yprepared[i] = Y[i] 

    Zprepared[i] = Z[i] 

 

Xprepared.shape = (mode,mode) 

Yprepared.shape = (mode,mode) 

Zprepared.shape = (mode,mode) 

 

pcolor(Xprepared, Yprepared, Zprepared) 

colorbar() 

A = Z[0] 

B = 2*X[(mode*mode) -1] - X[(mode*mode)-2] 

 

 

plt.title('Pressure') 

ylim( (0,B)) 

xlim( (0,B)) 
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clim(0,A) 

#fig = plt.figure() 

#ax = fig.add_subplot(111, projection='3d') 

#ax.plot_wireframe(Xprepared, Yprepared, Zprepared, rstride=1, cstride=1) 

 

savefig('Results/Pressure.png',bbox_inches='tight') 

 

#show() 

plt.close() 

 

A.4.3 PLOT_FRACTALS.PY 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

 

mode = 0 

 

lines = file('mesh.dat').readlines() 

X     = [] 

Y     = [] 

Z     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[0]) ) 

    Y.append( float(s[1]) ) 

    Z.append( float(s[4]) ) 

    mode = mode + 1 

mode = int(mode**0.5) 

 

rowX = zeros(mode) 

rowY = zeros(mode) 

rowZ = zeros(mode) 

 

Xprepared = zeros(mode*mode) 

Yprepared = zeros(mode*mode) 

Zprepared = zeros(mode*mode) 

 

for i in range(0, mode*mode, 1): 

    Xprepared[i] = X[i] 

    Yprepared[i] = Y[i] 

    Zprepared[i] = Z[i] 

 

Xprepared.shape = (mode,mode) 

Yprepared.shape = (mode,mode) 

Zprepared.shape = (mode,mode) 

 

 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.plot_wireframe(Xprepared, Yprepared, Zprepared, rstride=1, cstride=1) 

plt.title('Mesh') 

 

show()  
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A.4.4 PLOT_APERTURE_XY.PY 

 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

 

mode = 0 

 

lines = file('mesh.dat').readlines() 

X     = [] 

Y     = [] 

Z     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[0]) ) 

    Y.append( float(s[1]) ) 

    Z.append( float(s[4]) ) 

    mode = mode + 1 

mode = int(mode**0.5) 

 

rowX = zeros(mode) 

rowY = zeros(mode) 

rowZ = zeros(mode) 

 

Xprepared = zeros(mode*mode) 

Yprepared = zeros(mode*mode) 

Zprepared = zeros(mode*mode) 

 

for i in range(0, mode*mode, 1): 

    Xprepared[i] = X[i] 

    Yprepared[i] = Y[i] 

    Zprepared[i] = Z[i] 

 

Xprepared.shape = (mode,mode) 

Yprepared.shape = (mode,mode) 

Zprepared.shape = (mode,mode) 

 

B = 2*X[(mode*mode) -1] - X[(mode*mode)-2] 

ylim( (0,B)) 

xlim( (0,B)) 

pcolor(Xprepared, Yprepared, Zprepared) 

plt.colorbar() 

plt.clim(0,0.0015) 

ylabel('y-dir') 

xlabel('x-dir') 

plt.axes().set_aspect('equal') 

 

 

#fig = plt.figure() 

#ax = fig.add_subplot(111, projection='3d') 

#ax.plot_wireframe(Xprepared, Yprepared, Zprepared, rstride=1, cstride=1) 

#plt.xlabel('x') 

#plt.ylabel('y') 

#plt.title('') 

 

 

show()  
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A.4.5 VELODATA.PY 

 

 

import matplotlib.pyplot as plt 

 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

 

mode = 0  

 

lines = file('velocities.dat').readlines() 

X     = [] 

Y     = [] 

U     = [] 

V     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[2]) ) 

    Y.append( float(s[3]) ) 

    U.append( float(s[4]) ) 

    V.append( float(s[5]) ) 

    mode = mode + 1 

mode = int(mode**0.5) + 2 

U_max = U[0] 

V_max = V[0] 

 

U_av = 0 

V_av = 0 

 

for i in range(0, (mode-2)*mode, 1): 

    U_av = abs(U_av) + abs(U[i]) 

    V_av = abs(V_av) + abs(V[i]) 

    if V[i]**2 > V_max**2: 

        V_max = V[i] 

    if U[i]**2 > U_max**2: 

        U_max = U[i] 

 

 

U_av = U_av / i     

V_av = V_av / i     

 

f = open('Results/velodata.txt','w') 

f.write('{};{};{};{}\n'.format( U_av, U_max , V_av , V_max )) 

f.close 
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A.4.6 FIND_MINAPERTURE.PY 

 

 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from numpy import * 

from string import split 

from pylab import * 

import sys 

print sys.argv 

 

mode = 0 

 

lines = file('mesh.dat').readlines() 

X     = [] 

Z     = [] 

L     = [] 

for line in lines: 

    s = line.split() 

    X.append( float(s[0]) ) 

    Z.append( float(s[4]) ) 

    L.append( float(s[3]) ) 

    mode = mode + 1 

mode = int(mode**0.5) 

 

# Finds the 2^levels coeff. 

 

W = zeros(mode) 

W_avg = 0 

count = 0 

 

for i in range (0,mode,1): 

    for j in range (0,mode*mode,1):         

        if ( X[j] == i ): 

            W[i] = W[i] + Z[j] 

 

W_min = W[0]/(mode) 

         

 

 

for l in range (0,mode*mode,1): 

    W_avg = W_avg + ( Z[l] / (mode*mode) ) 

     

f = file('NodeLinesAperture.dat','w') 

 

node = 0 

 

for k in range(0,mode,1): 

    W[k] = W[k] / mode 

    f.write('{} {}\n'.format(k,W[k])) 

    if ( W[k] < W_min ) : 

        W_min = W[k] 

        node = k 

 

f.close() 

 

 

c = int(W_min * 10**6) 

d = int(W_avg * 10**6) 

 

print  

print (' W_min = {} [10^-6 m]  @  Node Line {}').format( c,node ) 
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print (' W_avg = {} [10^-6 m]').format( d ) 

print         

 

#YP  = int(raw_input('Enter a yield point value: ')) 

 

 

YP = 5 

Lx = L[mode*mode - 1] 

 

print '  YP \t dP' 

print '  (Pa) \t (Pa)' 

print ' --------------' 

for i in range(1,15,1): 

    a = int(YP*i) 

    b = int(2*a*Lx/W_min) 

    print ('  {}  \t {}').format(a,b) 

 

 

 

#dP = (2*YP*Lx/W_min) 

 

print  

 

raw_input("Press Enter to continue...") 

 

  



 

- A30 - 

 

A.4.7 MASTER.PY 

 

import os 

import sys 

import os.path 

 

foldername = "Results" 

 

if not os.path.exists(foldername): 

    os.makedirs(foldername) 

 

sys.path.append("C:\Users\Alexander\Dropbox\School\MasterThesis\PythonScripts") 

 

##################################################### 

#                                                   # 

#   RESULTS ARE SAVED IN THE SUBFOLDER /RESULTS/    # 

#   FOR EACH CASE FILE. CHANGE DIRECTORY BY         # 

#   EDITING RUN_POSTPROCESSING.BAT                  # 

#                                                   # 

##################################################### 

 

# // CREATE PLOT PARTICLE SOLUTE PLOTS (.PNG-IMAGES) 

import plot_concentration 

 

# // CREATE BREAKTHROUGH LINES PLOT (.PNG-IMAGE) 

import plot_breakthrough 

 

# // CREATE PRESSURE DISTRIBUTION (.PNG-IMAGE) 

import plot_pressure 

 

# // CREATE VELOCITY DISTRIBUTION (.PNG-IMAGE) 

import plot_velocities 

 

# // COLLECT VELOCITY DATA FOR CASE_OVERVIEW.XLS IN SDV FORMAT 

import velodata 
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A.5 Windows Batch and Linux Shell Scripts 

 

A.5.1 POSTPROCESSING.BAT 

 

prompt $ 

cls 

 

@echo off 

 

 

echo STARTING POST-PROCESSING 

echo[ 

 

FOR /l %%x IN (1,1,27) DO ( 

    copy [DIRECTORY]\PythonScripts\master.py  

 [DIRECTORY]\Simulations\Batch4\case_%%x /Y > nul 

    cd [DIRECTORY]\Simulations\Batch1\case_%%x 

    python master.py 

    echo     CASE NUM %%x 

) 

 

 

echo[ 

echo COMPLETE 

echo[ 

 

PAUSE 

 

 

A.5.2 RUNSIM.BAT 

 

for name in $(seq -w 79 81) 

 

do 

    cd 

    cd "PROPANICA/case_"$name 

    qsub PROPANICA.sh 

done 
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A.6 SIMULATIONS DATA 

A.6.1 CASE 1-27 

 

  

# Scenario dP YP PV w_av P Avg. Vx Avg. Vy (Vx/Vy)avg B

(Pa) (Pa) (Pas) (m) (-) (m/s) (m/s) (-) (-)

1 1 500000 0 0,001 0,0004802 0,000 9,683 31,011 1,169 0,000

2 1 500000 0 0,010 0,0004802 0,000 0,968 3,101 1,169 0,000

3 1 500000 0 0,030 0,0004802 0,000 0,323 1,034 1,169 0,000

4 1 500000 25 0,001 0,0004802 0,133 7,325 23,952 1,222 0,819

5 1 500000 25 0,010 0,0004802 0,133 0,733 2,395 1,222 0,819

6 1 500000 25 0,030 0,0004802 0,133 0,244 0,798 1,222 0,819

7 1 500000 50 0,001 0,0004802 0,267 5,204 18,358 1,338 2,307

8 1 500000 50 0,010 0,0004802 0,267 0,520 1,836 1,338 2,307

9 1 500000 50 0,030 0,0004802 0,267 0,173 0,612 1,338 2,307

10 1 350000 0 0,001 0,0004802 0,000 6,778 21,708 1,169 0,000

11 1 350000 0 0,010 0,0004802 0,000 0,678 2,171 1,169 0,000

12 1 350000 0 0,030 0,0004802 0,000 0,226 0,724 1,169 0,000

13 1 350000 25 0,001 0,0004802 0,190 4,468 14,930 1,264 1,344

14 1 350000 25 0,010 0,0004802 0,190 0,447 1,493 1,264 1,344

15 1 350000 25 0,030 0,0004802 0,190 0,149 0,498 1,264 1,344

16 1 350000 50 0,001 0,0004802 0,381 2,540 9,973 1,386 4,727

17 1 350000 50 0,010 0,0004802 0,381 0,254 0,997 1,386 4,727

18 1 350000 50 0,030 0,0004802 0,381 0,085 0,332 1,386 4,727

19 1 200000 0 0,001 0,0004802 0,000 3,873 12,404 1,169 0,000

20 1 200000 0 0,010 0,0004802 0,000 0,387 1,240 1,169 0,000

21 1 200000 0 0,030 0,0004802 0,000 0,129 0,413 1,169 0,000

22 1 200000 25 0,001 0,0004802 0,333 1,702 6,375 1,363 3,527

23 1 200000 25 0,010 0,0004802 0,333 0,170 0,638 1,363 3,527

24 1 200000 25 0,030 0,0004802 0,333 0,057 0,213 1,363 3,527

25 1 250000 50 0,001 0,0004802 0,533 0,975 4,527 1,488 12,312

26 1 250000 50 0,010 0,0004802 0,533 0,098 0,453 1,488 12,312

27 1 250000 50 0,030 0,0004802 0,533 0,033 0,151 1,488 12,312
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A.6.2 CASE 28-54 

 

 

  

# Scenario dP YP PV w_av P Avg. v||p Avg. v

 

p v||p / v

 

p B

(Pa) (Pa) (Pas) (m) (-) (m/s) (m/s) (-) (-)

28 2 500000 0 0,001 0,0004827 0,000 13,205 47,291 1,863 0,000

29 2 500000 0 0,010 0,0004827 0,000 1,320 4,729 1,863 0,000

30 2 500000 0 0,030 0,0004827 0,000 0,440 1,576 1,863 0,000

31 2 500000 25 0,001 0,0004827 0,133 10,237 39,868 2,044 0,589

32 2 500000 25 0,010 0,0004827 0,133 1,024 3,987 2,044 0,589

33 2 500000 25 0,030 0,0004827 0,133 0,341 1,329 2,044 0,589

34 2 500000 50 0,001 0,0004827 0,265 7,487 32,334 2,243 1,612

35 2 500000 50 0,010 0,0004827 0,265 0,749 3,233 2,243 1,612

36 2 500000 50 0,030 0,0004827 0,265 0,250 1,078 2,243 1,612

37 2 350000 0 0,001 0,0004827 0,000 9,243 33,104 1,863 0,000

38 2 350000 0 0,010 0,0004827 0,000 0,924 3,310 1,863 0,000

39 2 350000 0 0,030 0,0004827 0,000 0,308 1,103 1,863 0,000

40 2 350000 25 0,001 0,0004827 0,189 6,317 25,655 2,139 0,955

41 2 350000 25 0,010 0,0004827 0,189 0,632 2,566 2,139 0,955

42 2 350000 25 0,030 0,0004827 0,189 0,211 0,855 2,139 0,955

43 2 350000 50 0,001 0,0004827 0,379 3,779 18,478 2,325 3,193

44 2 350000 50 0,010 0,0004827 0,379 0,378 1,848 2,325 3,193

45 2 350000 50 0,030 0,0004827 0,379 0,126 0,616 2,325 3,193

46 2 200000 0 0,001 0,0004827 0,000 5,282 18,916 1,863 0,000

47 2 200000 0 0,010 0,0004827 0,000 0,528 1,892 1,863 0,000

48 2 200000 0 0,030 0,0004827 0,000 0,176 0,631 1,863 0,000

49 2 200000 25 0,001 0,0004827 0,331 2,494 11,517 2,286 2,420

50 2 200000 25 0,010 0,0004827 0,331 0,249 1,152 2,286 2,420

51 2 200000 25 0,030 0,0004827 0,331 0,083 0,384 2,286 2,420

52 2 250000 50 0,001 0,0004827 0,530 1,554 9,426 2,442 7,765

53 2 250000 50 0,010 0,0004827 0,530 0,155 0,943 2,442 7,765

54 2 250000 50 0,030 0,0004827 0,530 0,052 0,314 2,442 7,765
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A.6.3 CASE 55-81 

 

 

  

# Scenario dP YP PV w_av P Avg. v||p Avg. v? p v||p / v? p B

(Pa) (Pa) (Pas) (m) (-) (m/s) (m/s) (-) (-)

55 3 500000 0 0,001 0,0004802 0,000 12,972 52,021 2,472 0,000

56 3 500000 0 0,010 0,0004802 0,000 1,297 5,202 2,472 0,000

57 3 500000 0 0,030 0,0004802 0,000 0,432 1,734 2,472 0,000

58 3 500000 25 0,001 0,0004802 0,133 10,088 40,456 2,355 0,595

59 3 500000 25 0,010 0,0004802 0,133 1,009 4,046 2,355 0,595

60 3 500000 25 0,030 0,0004802 0,133 0,336 1,349 2,355 0,595

61 3 500000 50 0,001 0,0004802 0,267 7,426 30,354 2,229 1,617

62 3 500000 50 0,010 0,0004802 0,267 0,743 3,035 2,229 1,617

63 3 500000 50 0,030 0,0004802 0,267 0,248 1,012 2,229 1,617

64 3 350000 0 0,001 0,0004802 0,000 9,080 36,414 2,472 0,000

65 3 350000 0 0,010 0,0004802 0,000 0,908 3,641 2,472 0,000

66 3 350000 0 0,030 0,0004802 0,000 0,303 1,214 2,472 0,000

67 3 350000 25 0,001 0,0004802 0,190 6,238 24,992 2,286 0,962

68 3 350000 25 0,010 0,0004802 0,190 0,624 2,499 2,286 0,962

69 3 350000 25 0,030 0,0004802 0,190 0,208 0,833 2,286 0,962

70 3 350000 50 0,001 0,0004802 0,381 3,794 16,851 2,235 3,165

71 3 350000 50 0,010 0,0004802 0,381 0,379 1,685 2,235 3,165

72 3 350000 50 0,030 0,0004802 0,381 0,126 0,562 2,235 3,165

73 3 200000 0 0,001 0,0004802 0,000 5,189 20,808 2,472 0,000

74 3 200000 0 0,010 0,0004802 0,000 0,519 2,081 2,472 0,000

75 3 200000 0 0,030 0,0004802 0,000 0,173 0,694 2,472 0,000

76 3 200000 25 0,001 0,0004802 0,333 2,488 10,501 2,200 2,413

77 3 200000 25 0,010 0,0004802 0,333 0,249 1,050 2,200 2,413

78 3 200000 25 0,030 0,0004802 0,333 0,083 0,350 2,200 2,413

79 3 270000 50 0,001 0,0004802 0,494 2,019 10,293 2,337 5,946

80 3 270000 50 0,010 0,0004802 0,494 0,202 1,029 2,337 5,946

81 3 270000 50 0,030 0,0004802 0,494 0,067 0,343 2,337 5,946
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A.6.4 CASE 81-108 

 

 

 

# Scenario dP YP PV w_av P Avg. v||p Avg. v

 

p v||p / v

 

p B

(Pa) (Pa) (Pas) (m) (-) (m/s) (m/s) (-) (-)

82 4 500000 0 0,001 0,0004827 0,000 10,493 41,685 1,793 0,000

83 4 500000 0 0,010 0,0004827 0,000 1,049 4,169 1,793 0,000

84 4 500000 0 0,030 0,0004827 0,000 0,350 1,390 1,793 0,000

85 4 500000 25 0,001 0,0004827 0,133 7,968 32,552 1,885 0,757

86 4 500000 25 0,010 0,0004827 0,133 0,797 3,255 1,885 0,757

87 4 500000 25 0,030 0,0004827 0,133 0,266 1,085 1,885 0,757

88 4 500000 50 0,001 0,0004827 0,265 5,661 24,190 1,953 2,131

89 4 500000 50 0,010 0,0004827 0,265 0,566 2,419 1,953 2,131

90 4 500000 50 0,030 0,0004827 0,265 0,189 0,806 1,953 2,131

91 4 350000 0 0,001 0,0004827 0,000 7,345 29,180 1,793 0,000

92 4 350000 0 0,010 0,0004827 0,000 0,735 2,918 1,793 0,000

93 4 350000 0 0,030 0,0004827 0,000 0,245 0,973 1,793 0,000

94 4 350000 25 0,001 0,0004827 0,189 4,862 20,189 1,915 1,241

95 4 350000 25 0,010 0,0004827 0,189 0,486 2,019 1,915 1,241

96 4 350000 25 0,030 0,0004827 0,189 0,162 0,673 1,915 1,241

97 4 350000 50 0,001 0,0004827 0,379 2,758 12,348 1,971 4,376

98 4 350000 50 0,010 0,0004827 0,379 0,276 1,235 1,971 4,376

99 4 350000 50 0,030 0,0004827 0,379 0,092 0,412 1,971 4,376

100 4 200000 0 0,001 0,0004827 0,000 4,197 16,674 1,793 0,000

101 4 200000 0 0,010 0,0004827 0,000 0,420 1,667 1,793 0,000

102 4 200000 0 0,030 0,0004827 0,000 0,140 0,556 1,793 0,000

103 4 200000 25 0,001 0,0004827 0,331 1,850 8,113 1,979 3,262

104 4 200000 25 0,010 0,0004827 0,331 0,185 0,811 1,979 3,262

105 4 200000 25 0,030 0,0004827 0,331 0,062 0,270 1,979 3,262

106 4 250000 50 0,001 0,0004827 0,530 1,050 5,117 1,878 11,495

107 4 250000 50 0,010 0,0004827 0,530 0,105 0,512 1,878 11,495

108 4 250000 50 0,030 0,0004827 0,530 0,035 0,171 1,878 11,495


