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Abstract

The objective of this thesis has been to evaluate the utilization of a stochas-
tic programming model for short-term hydro power scheduling. The focus
has been on the real-life application of such a tool. By considering a pro-
totype of the stochastic model SHARM, which is based on the widely used
deterministic SHOP model, it has been possible to use the same degree of
detail as in the current operative scheduling. The work has been carried out
at Statkraft, using real plants and operational data.

The expected objective function value obtained from using stochastic and
deterministic day-ahead plans have been compared. A cascaded system has
been run for 24 days in the winter depletion season with price uncertainty,
and the results show a very slight increase in profit. Two systems have been
run for 6 days in the spring flooding season with inflow and price/inflow
uncertainty. These tests show no significant benefits, in terms of the objective
function, of considering uncertainty in the construction of day-ahead plans.

The reservoir handling of SHARM on a test system, consisting of one
large and one small reservoir above a plant, have been evaluated in the spring
flooding season with inflow uncertainty. The results show that a stochastic
model performs well in this situation, producing a robust plan that avoids
spillage for all inflow scenarios.

Finally, the thesis has examined the computational performance of the
SHARM prototype and the supplementary scenario tree construction and
reduction algorithms. It is shown that reducing the size of the input trees
reduce the solution time significantly, while still retaining much of the origi-
nal information. The reduction algorithm seems to have good stability prop-
erties when considering stochastic prices.



Preface

This thesis is the culmination of a scheme presented to me by Michael M.
Belsnes at Sintef Energy Reserach in the spring of 2011. After studying
applied physics and mathematics for four years, I had developed an interest in
numerical mathematics and optimization. So when the time came to choose
the topic for my project work and master’s thesis, I wanted to find something
within these areas. Since the department of mathematical sciences at NTNU
only offered a single course in optimization, and I wanted a project focused
on applications, it felt natural to approach other specialist environments.

At Sintef I got the opportunity to apply my skills to short-term hydro
power scheduling in several ways. In a summer intern project in 2011, I was
introduced to the field and worked on implementing a simulation functional-
ity in the scheduling tool SHOP. During the fall term, I did a specialization
project investigating the application of non-linear optimization methods to
a sub-problem considered by SHOP. Both of these tasks I really enjoyed.

When accepting these projects, I mainly focused on the tasks for the
summer and fall, and had no clear understanding of what I was going to
this spring. Stochastic optimization was not something I was familiar with,
so the first couple of months involved a lot of catching up and learning new
things.

Carrying out the work at Statkraft was quite interesting, both in terms
of experiencing a new working environment and by the fact that I felt as
though I was working on a real project. Interacting with the production
planners there, I got a new understanding of the tasks at hand and real-
ized the importance of communicating with the end-users when working on
research and development projects.

In hindsight, I would maybe have chosen a thesis problem which involved
a bit more hands-on mathematical programming. This project may have
been more suitable for a student with a background in power scheduling from
a practical or financial perspective, who did not have to spend so much time
on learning the basics. It has however been a really valuable experience for
me. I have learned a lot about a new topic, and I have gotten an impression
of how a real R&D project is carried out. This is knowledge that I know will
be useful for me in the future.
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Chapter 1

Introduction

1.1 Background and motivation

Hydro power is a valuable natural resource, and Norway’s mountains, glaciers
and fjords provide excellent conditions for its exploitation. It is the dominant
form of power production in this country, constituting around 99% of the to-
tal production in 2012 [28]. Many power plants are connected to a reservoir
were water can be stored. Along with low startup costs for the generat-
ing units, this means that hydro power has great flexibility for production
scheduling.

However, there are several obstacles to overcome. A major problem with
the northern climate is that in the winter, when the demand for electricity is
at its highest, the inflow to the water reservoirs is almost completely absent
due to the low temperature. Another problem is the unpredictable nature of
hydrological inflow. It is difficult to foresee how much water will run into the
reservoirs in the next week, and it becomes even harder as the time horizon is
extended. Finally, the electricity produced in Norway is traded on the open
Nordic power market. The question of what is most beneficial, trading and
producing now or saving the water for later, arises. This decision is based
on the uncertain future development in the electricity spot market.

These examples are only some of the topics that are assessed by hydro
power scheduling. Adequate planning and scheduling routines are of vital
importance when solving the problems mentioned above.

Following [4], the objective of hydro power scheduling is to “utilize the
available water resources to satisfy the demand for electricity while obtaining
the optimal result and satisfying all relevant constraints”. The term “optimal
result” in this statement refers to the earnings of the power producers who
carry out the scheduling. Its meaning has changed somewhat over the last
years, as will be discussed below.

The objective can also be stated as the maximization of social welfare,
where social welfare is defined as the sum of consumer and producer surplus.
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In the context of hydro power scheduling, the most important constraints
are the ones concerning the generation and transmission system, the envi-
ronmental constraints and demand characteristics. These constraint poses
limits to the amounts of electricity that can be produced in specific areas,
how much can be transferred between areas, when the plants can run and
many other factors.

A major shift in the Norwegian power system took place in 1991, when
the power market was deregulated through the Energy Act. Before this,
the price and size of production quotas was decided by the government to
ensure a steady supply of electricity. In this situation the producers used
hydro power scheduling to minimize their cost, as the income was predeter-
mined. However, it was realized that an excess capacity had been built up
in the system, both in the transmission grid and the production. By giving
the producers access to the transmission grid, the available power could be
utilized more effectively. This led to the introduction of an open Norwegian
power market. Soon the whole Nordic area was included, and the goal of
the producers shifted to focus on profit maximization. It is shown in [4]
that this goal is in compliance with the paramount target of maximizing the
social welfare.

A traditional distinction between long-term and short-term scheduling
is made, as the methods used to deal with these areas differ significantly.
The need for implementable operational plans for the next days means that
short-term planning must have a high degree of detail. Presently, the time
horizon for such scheduling operations is 1 to 2 weeks, and it is solved by a
deterministic optimization procedure.

Problems such as deciding the reservoir levels at the start of the winter
depletion season obviously require a longer time horizon. But when the
planning period is extended, the assumption that inflow and spot prices are
deterministic quantities is no longer valid. The use of stochastic optimization
techniques and the longer planning horizon means that the degree of detail in
the models must be drastically reduced to avoid unacceptable computation
times.

Power scheduling is an active field of research, and the interest in stochas-
tic modeling and programming has been a natural development in the past
decades. Many of the governing parameters in the operation of a hydro
power system are inherently stochastic, such as inflow, prices and demand.
Inflow is dependent on both area-specific and more general hydrological con-
ditions, and the size of these systems makes it difficult to foresee. With the
introduction of deregulated power markets, the prices have become increas-
ingly volatile and more coupled to demand. Another important factor is the
inclusion of wind power, which has a limited, uncertain availability and no
capacity for storage.

This uncertainty is present also in the short-term period, which in the
Nordic market currently is considered by deterministic scheduling tools. The
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thesis project will address this topic by evaluating a prototype of a stochastic
model for short-term hydro power generation scheduling.

1.2 Purpose of the work

The background for this thesis is the development of the stochastic short-
term scheduling tool SHARM. SHARM is an acronym for Short-term Hydro
Application with Risk Management, and the prototype has been developed
at Sintef Energy Research within the KMB-project “Optimal Short-term
Scheduling of Wind and Hydro Resources”. It is based on the model SHOP1,
which is in operational use by many producers in the Nordic market.

Stochastic models for short-term scheduling have been proposed before,
in articles such as [9], [14] and [18]. The focus of these publications is mainly
on the model development, and the effect of the proposed model is inves-
tigated on one or more test cases. Such tests are typically constructed to
highlight situations in which the positive effect of the new model is visible.
It should also be noted that the test cases often contains simplifications com-
pared to the real-life problem. These works conclude that there is a clear
potential for increasing revenues by applying stochastic scheduling models,
if high quality input data is available.

This thesis will not contribute a new model. The purpose of this work has
been to evaluate the effect of using a stochastic scheduling model, compared
to the current deterministic one, in a realistic setting. As opposed to the
efforts mentioned above, the focus will be more practical and turned towards
the real-life application of a model. Hopefully, this thesis can contribute to
a clearer understanding of the differences between using a stochastic and a
deterministic model in short-term hydro power scheduling problems. For a
producer, some relevant questions include:

• What is the expected profit of replacing the current scheduling tool by
a stochastic version?

• Is it necessary to consider uncertainty in the whole system, or does it
suffice to focus on specific reservoirs or system states?

• What will this mean in terms of additional work, e.g. generation of
stochastic input and CPU-time?

For the model developers, it is important to consider feedback and re-
quests from the users. As an example, does the current prototype provide
the desired output for operational use? These are some of the questions that
will be assessed in this work.

1Short-term Hydro Optimization Program, developed by SINTEF Energy Research.
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The advantages of taking uncertainty into account will depend on the
quality of the stochastic input, but a stochastic model will presumably be
more robust. As a side benefit it could also provide realistic results for longer
periods. It is thus natural to consider using a stochastic short-term model
for tasks beyond the scope of the currently used tools. Examples of such
tasks could include the providing of better and more robust water values, or
a more direct link to a long-term model. This thesis will not address these
questions directly, but some ideas for further application areas are mentioned
in Chapter 7.

1.3 Structure of the report

This section has presented the background and motivation for considering
the problem at hand. A brief overview of similar work on stochastic short-
term scheduling has been given, along with a description of the approach
taken in this thesis. In the following text, different aspects of the stochastic
approach to short-term scheduling will be considered, discussed and tested.

In Chapter 2, background information on hydro power scheduling will be
presented. A short general introduction will be given in Section 2.1, but the
emphasis will be on short-term scheduling. The scheduling tools developed
by Sintef Energy Research will be described, as well as the application of
such models.

Chapter 3 provides an introduction to stochastic programming, focusing
on applications to hydro power scheduling. A description of the SHARM
prototype is included, along with a theoretical foundation for the supple-
mentary scenario tree generation algorithms.

A concretization of the goals for the evaluations is given in Chapter 4.
Here the areas of investigation and methods of comparison will be discussed.
The chapter will motivate and present the and tests that have been carried
out in this work.

The results of the comparisons and evaluations are presented in Chapter
5, along with a discussion of the findings. Finally, a conclusion and sugges-
tions for further work will be given in Chapter 6 and Chapter 7, respectively.
Supplementary information, such as lists of parameters and detailed results,
is included in appendices.
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Chapter 2

Deterministic short-term hydro
power scheduling

This chapter will give a short introduction to hydro power scheduling in
general, and a more elaborate presentation of short-term scheduling. Section
2.1 describes hydro power scheduling in Norway, with mention of the most
widely used models. Short-term scheduling is discussed in Section 2.2, with
focus on application areas in the Nordic power market. Finally, a description
of the scheduling software SHOP is included in Section 2.3.

2.1 Hydro power scheduling

The traditional partitioning of the scheduling tasks is still applied by most
producers in the Nordic market. The planning horizon is decided by the
scheduling objectives, and typically spans from the next day up to around
5 years. Today, the uncertainty is taken into account through the long-term
and seasonal models. The division of this period into subtasks can be seen
in Figure 2.1.

Long-term scheduling represents the strategic management of the re-
sources belonging to the producer, in interaction with the whole power sys-
tem. In the models EMPS1 and EOPS2, which have been developed by Sintef
Energy Research, this task is solved by a two-step process. First, stochastic
dynamic programming is used to find expected marginal water values for an
aggregated model of the total hydro energy system, resulting in an optimal
strategy. When this is done, the hydro system operation is simulated for
different price and inflow scenarios using a more detailed hydro model [27].

The seasonal scheduling acts as a coupling stage between the long- and

1EFI’s Multi-area Power market Simulator, known as Samkjøringsmodellen in Norwe-
gian. EFI is an acronym for Energiforsyningens ForskningsInstitutt, a former name for
SINTEF Energy Research.

2EFI’s One-area Power market Simulator.
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Long-term scheduling (1 - 5 years)

• Stochastic models for optimization and simulation

• Output: Reservoir levels, marginal water values

Seasonal scheduling (3 - 18 months)

• Stochastic or multi-scenario deterministic optimization

• Output: Marginal water values, reservoir limits

Short-term scheduling (1 - 2 weeks)

• Deterministic optimization

• Output: Schedules

Figure 2.1: A coarse depiction of the current hydro power scheduling hier-
archy, as described in [4].

short-term models, and provides water values and reservoir limits as bound-
ary condition for the short-term optimization. The water value is a measure
of the expected marginal value of the energy stored in the reservoir, and is
used to quantify the revenue of storing water for later use. In the framework
for hydro power scheduling developed by Sintef Energy Research, this task
is solved by multistage deterministic optimization.

More information on the modeling and solution methods for long-term
and seasonal scheduling can be found in [27]. For a thorough introduction
to all topics within hydro power scheduling, see [4].

2.2 Short-term scheduling

As mentioned in the introduction, the main reason for decomposing the
scheduling problem is the contradictory requirements of detailed modeling
and a long time horizon. In the short term, hydro producers need operational
plans with a time resolution of hours or minutes, that demands a detailed de-
scription of all the system components. The different system elements, such
as reservoirs and plants, may be arranged in complex, cascaded and often
time dependent topologies. Reservoir storage capacities may differ signifi-
cantly, and long water travel times means that the decisions are coupled over
multiple time steps. Each plant can have several generation units that may
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or may not be running, and the relation between discharge and production
is nonlinear and often not convex. Combined, this amounts to a challenging
task in its own right. To be able to solve such problems, the assumption that
all input parameters are known is essential. This assumption can however
not be considered valid for more than a few days, limiting the time horizon
to a week or two.

So far, the incorporation of uncertainty has been considered too compu-
tationally costly in the short-term model [16], and the stochastic nature of
inflow and prices is taken care of through the long-term and seasonal mod-
els. As described in Section 2.1, these provide boundary conditions for the
short-term model, currently in the form of marginal water values for each
reservoir at the end of the short-term period.

While having a limited time horizon, short-term scheduling covers many
different tasks. A short description of the different tasks and the timeline
for short-term scheduling is included in this section. For a more detailed
description, see [30] and [4]. The main areas for which short-term scheduling
tools are applied, as stated by e.g. [9], are listed below.

• Day-ahead bidding in the Elspot market.

• Establishing a production plan in accordance with the day-ahead com-
mitments.

• Trading in the intraday Elbas marked.

• Real-time balancing.

The Elspot market is the main market for electricity in the Nordic region.
All participants in the market must submit a price-volume bid to Nord Pool
Spot, stating how much electricity they will buy or sell at specific prices
for every hour during the next day. The bids must be submitted before
12:00, and are valid for the next day from midnight to midnight. When all
bids are received, the market operator determines the price for the next day
as the intersection between aggregated demand and supply curves. Due to
constraints in the transmission grid, this price may differ between different
geographical areas. The plants and reservoirs controlled by a producer within
such a price area are typically scheduled together.

Once the Elspot price is determined, it is compared with each partici-
pant’s bid to decide the traded volume in every hour for that participant.
The producers receive their load obligation around 13:00.

Short-term scheduling models, such as SHOP, are valuable tools in the
preparation of day-ahead bids for most producers. However, the prices used
in the bidding phase are not known and must be predicted by some model.
The models are not perfect, and there is of course a possibility that the day-
ahead commitments does not comply entirely with the planned production.
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It is thus necessary to adjust the operational plans after the clearing of
the Elspot market, and this is another important task for the short-term
scheduling models. Again, the systems within a price area are rescheduled
together.

Due to different factors, imbalances may occur for both a producer and
the system after the settlement of the Elspot market. Two different markets
are available to remedy this, and short-term scheduling models acts as de-
cision support in both cases. Below follows a short description of the Elbas
and regulating power market.

After the clearing of the Elspot market and the preparation of the pro-
duction plans, the producers can trade in the Elbas market. The time span
between the Elspot settlement and the actual delivery may be up to 36 hours,
during which the consumption and production situation may change. Thus
there may be a need for a market player to trade in this period, and this
can be done in the Elbas market. The products are one-hour long power
contracts, which can be traded continuously up to one hour before delivery.
The purpose of this market is to act as a balancing for the Elspot market,
creating an alternative to the real-time balancing market described below.

In each of the Nordic countries, a Transmission System Operator (TSO)
is responsible for maintaining the stability of the electricity. Technically, this
is achieved by holding the frequency in the transmission grid stable at 50 Hz.
If imbalances between consumption and production occur, the frequency will
deviate and there will be a need for balancing. The TSO must then buy or
sell regulating power from the participants in what is called the regulating
or balance power market. The market players can submit hourly bids for
up- or down regulation, and the bid may or may not be accepted depending
on the TSO’s needs.

In addition to the markets described above, short-term scheduling is ap-
plied to several reserve markets, such as LFC, RKOM, RK, and FNR/FDR.
Here the producers are paid not to utilize some of their capacity, so that it
can be used by the TSO if needed.

Summing up, it is evident that a short-term scheduling model is a valu-
able tool for a power producer. It is used continuously in the course of the
day, as decision support for many different planning tasks. A timeline for
the utilization of short-term scheduling models is shown in Figure 2.2.

2.3 SHOP

SHOP is the short-term tool in the hydro scheduling framework developed
by Sintef Energy Research. The underlying assumption is that inflows and
prices are known, so that the problem becomes deterministic. It is solved by
using a Successive Linear Programming (SLP) approach, and can incorporate
use of mixed integer programming. As input, the model takes time series
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t=0 t=6 t=12 t=24 t=48

Today Tomorrow

Preparing spot bid Scheduling tomorrow

Monitoring and real-time bidding

Figure 2.2: A typical timeline for the utilization of a short-term hydro power
scheduling program in the Nordic market. Based on a figure included in [14].

for inflows and prices, end point value criterias from the seasonal model,
a detailed description of all the system elements and connections, and any
schedules or constraints that may apply during the planning period.

This section contains a description of the different elements and equations
that constitute the SHOP model. Such a description is important in this
context as the stochastic model SHARM, that is the main focus of this thesis,
is heavily based on SHOP. The stochastic model will be further discussed in
Section 3.4, where a specification of which elements are shared by the two
models is included. A more in-depth description of the SHOP model is given
in [2], [1], [16] and [15].

The SHOP model has two main characteristics. The first is the reservoir
volume based on the reservoir balance equations (2.1), and the second is the
modeling of the hydro power plants. In addition to reservoirs and plants,
features such as junctions and spill-, flow- and bypass gates can also be
included. Elements such as generators and pumps are specified within the
plant description. The topology of the system is decided by specifying all the
elements and their interconnections in a model file. An example topology of
a cascaded hydro power system is shown in Figure 2.3.

Reservoir balance equations are the basic constraints in the model, in-
troducing coupling in time as well as in space. All gates and plants must be
associated with a reservoir, making the reservoirs the main connecting nodes
of the system. Additional descriptions of the reservoirs are given through
volume/head and flow descriptions, and minimum/maximum constraints on
variables such as water level and discharge. The reservoir balance equations
are based on the conservation of water in the system. The amount of water
present in the reservoir at a time t is given by the water present at the pre-
vious time step plus the inflow to the reservoir minus the flow out from the
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Figure 2.3: Example topology of a hydro power system. Based on a figure
included in [1].
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reservoir through gates or spill. Translated into equation form, this becomes

−Xi(t− 1) +Xi(t)−
nu∑
j=1

quj (t− τj) +
nd∑
j=1

qdj (t) = 0. (2.1)

Here, Xi(t) denotes the volume stored in reservoir i at the end of time
period t. The symbols nu and nd represents the number of upstream and
downstream elements, respectively. In a similar fashion, quj represents the
inflow from upstream elements and qdj the flow from the reservoir to down-
stream elements. τj is the time delay in the flow from upstream.

Each power plant consists of one or more generating units. A genera-
tion unit consists of a turbine that is propelled by the falling water, and a
generator that transforms the mechanical energy of the rotating turbine into
electric energy. Each unit can be modeled with a separate efficiency curve
along with minimum and maximum constraints on production and discharge.
For a given unit j, the relation between production gj and inflow qj is

gj(qj) = kρgqjh(qj)η(qj). (2.2)

Here, k is a conversion factor, ρ is the density of water and g is the
gravitational acceleration. h denotes the pressure head of the plant and η
is the efficiency. The head dependency of the production will be discussed
later in the report, especially in what is called Test 8.

The reason for choosing the plants as main elements instead of the in-
dividual units is that the hydraulic couplings within the plant must be ac-
counted for. Water is transported from the reservoir through tunnels and
penstocks to the generating units and further downstream. The flow through
the tunnels and penstocks affects the net head, and hence the production, of
the plant due to head losses, so the internal couplings are important factors.
The model also includes the possibility of using mixed integer programming
(MIP) to decide which units should be running at any given time. The term
MIP is used for optimization problems where some, or all, of the decision
variables are discrete. It typically refers to linear problems with the added
constraints that some of the variables can only take integer values.

The optimization procedure in SHOP is based on successive linear pro-
gramming. The solution is found through a series of main iterations, where
in each iteration one of two different modeling modes is used [2]. The first
mode is denoted full description or unit commitment (UC) mode, and the
second mode is called incremental description or Close-in mode. Common
for all iterations is the building and solving of a linear optimization model.
This solution represents the optimal decisions based on the current system
state approximation. Each of the iterations refines the model based on the
results from the previous iteration. The refinement is performed in terms
of new, linearized descriptions of reservoir levels, unit efficiency curves and
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gate discharges. The reason for using an iterative approach is that some of
the constraints and nonlinear elements in the model depend on production
and discharge decisions. In the first iteration these decisions are unknown,
and can not be taken into account.

The UC-mode aims at finding a commitment plan for the generating
units in the system. This can be achieved either by using an aggregated
plant description, or by applying MIP to model the unit startup costs. In
either of the two approaches, a simplified description of the tunnel losses
is used. If using discrete variables, the model is solved using a branch and
bound technique. Other nonlinear elements, such as head optimization or
reservoir level dependent spillage, can also be considered in this mode. An
iteration in UC-mode results in a fixed unit commitment plan, and linearized
descriptions of production levels and reservoir trajectories.

In Close-in mode it is known which units run at any given time, as the
commitment plan is fixed from the UC-mode iterations. This enables the
calculation of exact efficiency curves, resulting in a more accurate model.
When the exact losses in the waterways can be accounted for, the true rela-
tion between discharge and production for each plant can be found.

It is usually advised to perform 2 or 3 iterations in each mode [16], but
this can be decided by the user based on the task at hand. The full solution
procedure is described in the following algorithm:

Algorithm 2.1 SHOP solution procedure
Initial input: system description, initial values, boundary conditions;
UC-mode
Input: Initial reservoir levels;
repeat

Choose aggregated plant topology or MIP for startup cost modeling;
Build and solve a model that is linearized around the previous solution;
Update reservoir trajectories;

until Reservoir trajectories satisfactory
Close-in mode
Input: Fixed unit commitment plan, production levels and reservoir tra-
jectories;
repeat

Build and solve a model with linearization around the previous solution
and exact efficiency curves;
Update reservoir trajectories;

until Reservoir trajectories satisfactory
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Chapter 3

Stochastic short-term hydro
power scheduling

This purpose of this chapter is to introduce the concept of stochastic pro-
gramming, and its application to short-term hydro power scheduling. First,
a general description of stochastic programming is given in Section 3.1. Sec-
tion 3.2 includes an overview of the utilization of stochastic programming
models in the field of hydro power scheduling. A description of the scenario
tree concept and an overview of scenario tree generation algorithms will be
given in Section 3.3. Finally, the model used in the stochastic SHARM
prototype will be presented in Section 3.4, and Section 3.5 will discuss the
different models used to generate price and inflow scenarios.

3.1 Stochastic programming

The main difference between stochastic programming and its deterministic
counterpart is that it includes some kind of uncertainty. According to [5],
the term stochastic programming was introduced independently by several
authors in the 1950’s. It was observed that for many linear programs to
be solvable, the values of the presumably known coefficients were not avail-
able. This led to the stochastic view of assuming that these parameters
were random, and that their probability distribution was known and inde-
pendent of the decision variables. Since then, stochastic programming has
been applied in many different fields, such as finance, logistics, telecommu-
nications and energy production and transmission. During the years, several
types of standardized models have emerged. Among the best known are two-
or multi-stage stochastic programs with recourse, models with probabilistic
constraints, and integer stochastic programs.

The class of optimization models that will be considered in this thesis is
two- and multi-stage stochastic programs with recourse. In broad terms, a
first-stage decision is made and the expected utility of the consequences of
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that decision is maximized. The result for the rest of the stages is an optimal
strategy, dependent on the future realization of the stochastic variables. As
opposed to deterministic optimization, which returns one optimal decision
and one optimal value, the results from stochastic programs are generally
not directly implementable.

As an example, a two-stage program can be considered. The current
values, at time t0, of the stochastic variables are known, but their values
at a certain future point t1 are not. Solving such a problem will results in
a decision for t0, and a strategy consisting of several decisions for t1 that
depends on the realization of the stochastic variables at this point. Multi-
stage programs generalize this case to allow for realization of the stochastic
variables at several future stages.

In the models considered in this work, the uncertainty will enter the opti-
mization problem through stochastic variables in the objective function (spot
prices) and the constraints (inflows). The stochastic variables are assumed
to belong to some probability distribution, which in the context of this thesis
is approximated by a discrete distribution. This is the case for all real-life
applications, and only some trivial cases can be solved using a continuous
distribution [24].

A widely used technique for discrete modeling of uncertainty is the con-
struction of scenario trees. This is the form in which the probability in-
formation will be specified throughout the report. Scenario trees consist of
a set of nodes for each time step in the model, and a branching structure
connecting them. Each node contains a possible realization of the stochastic
variables. A scenario consists of the nodes lying on a unique path connecting
the start node with an end node. For a deterministic program the input is
given by only one such scenario, which implies the loss of possibly significant
information.

In hydro power scheduling, there are several problems that a determin-
istic model can not solve satisfactorily. To demonstrate that stochastic pro-
gramming can handle one such situation, an example is included.

Example: Consider a hydro power system consisting of 2 interconnected
reservoirs and a plant. The topmost reservoir is large, and its water is
discharged into the tiny second reservoir before passing through the plant.
What makes deterministic programming unsuitable in this case, is that it will
maintain the reservoir level in the small reservoir at the maximum. This is
done to achieve the highest possible effect from the generating units, as can
be seen from Equation (2.2). However, this will result in spillage if the real
inflow is even a tad higher than prognosticated. Currently such cases are
handled by operators manually specifying a lower maximum reservoir level
in the small reservoir. This is done to maintain a safety margin in the
reservoir, but is by no means optimal with respect to maximizing the profit

14



from the plant.
Assume that good inflow scenarios are available, covering the possible

outcomes for the following week. A stochastic model can then see the pos-
sibility of higher inflow, and will due to severe penalties on spillage keep a
safety margin to the maximum reservoir level while still maximizing the ex-
pected profit. This example will be considered more thoroughly later on in
the report, as it is identical to test system 2 described in Section 4.1. Several
computational test will be performed on the watercourse, e.g. a qualitative
analysis of the reservoir handling by the stochastic prototype.

It should be noted that, as the future is unknown, there is no guarantee that
a stochastic model will yield a higher utility than a deterministic one. The
single scenario may by chance be correct, providing perfect information for
the deterministic model. It is however expected that a stochastic model will
outperform a deterministic over time, assuming a high quality representation
of uncertainty.

3.2 Stochastic optimization in hydro power schedul-
ing

In Chapter 2, the programs for hydro power scheduling developed by Sintef
Energy Research were described. Modeling of uncertainty in these programs
is considered in the long-term and seasonal models, through stochastic dy-
namic and multi-scenario deterministic programming. While these models
are prevailing in the Nordic market, there exists a variety of other methods
and models for both long- and short-term scheduling. It is not the purpose
of this work to compile a comprehensive summary of stochastic optimiza-
tion models for power scheduling, but this section will present some ideas
and refer to more detailed reviews from the literature. The focus will be on
stochastic models for short-term scheduling.

In connection with the development of the SHARM prototype at Sintef
Energy Research, a brief literature review was conducted by Follestad [12].
In addition to pointing out the most important models, this internal report
includes references to more general reviews covering short-term, seasonal
and long-term scheduling, such as [33]. A more recent review referred is [25],
which focus on stochastic programming models for short-term scheduling.
These are the main sources used in this thesis.

For short-term applications, several approaches are proposed. The main
division is between stochastic scheduling models and models for determining
optimal bidding strategies and bidding curves. Both two- and multi-stage
models have been developed, as well as extensions to hydro-thermal systems
and the Elbas market. Many models include unit commitment and risk
management. Most of the models use a scenario tree and solve a deterministic
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equivalent. A range of different methods for scenario tree construction have
been developed, as will be discussed in Section 3.3.2.

An example of a multi-stage stochastic model for determining the day-
ahead production plan is the one proposed in [9]. This model considers
uncertainty in both spot prices and inflows, and is applied to an example
topology with 2 reservoirs. The same authors have also published a two-
stage stochastic model for determining optimal bidding curves under price
uncertainty [8]. An extension of these models to include trading in the Elbas
market is described in [7]. Some of these models have been investigated
further in a student project [26] and master’s thesis [31] at NTNU, which
were carried out partly at Statkraft.

3.3 Scenario tree generation and reduction

The uncertain parameters introduced in a stochastic program must be de-
scribed by distributions in the single-period case, or stochastic processes in
the multi-period case. In this text, the term distribution will be used in
both cases unless stated otherwise. As mentioned in the introduction to this
chapter, stochastic programs can not be solved with continuous distributions
except for in some trivial cases. When considering real-life applications, as is
the case here, it is necessary to apply approximate discrete distributions to
describe the stochastic parameters. The distributions must have finite sup-
port, i.e. a finite number of scenarios or outcomes. An especially common
arrangement of the stochastic input is the scenario tree [5], [24], which will
be described here. In addition to describing the concept of scenario trees,
this section will give a brief overview of the most common techniques for
scenario tree generation and present the algorithms that will be used later
in the thesis.

3.3.1 Scenario trees

Scenario trees are based on the requirement that there is a one-to-one cor-
respondence between the previous stages (from 1 to t − 1) and one of the
nodes at stage t. A tree consists of a set of nodes for each time stage of the
model, with only one parent node at the first stage. This stage, representing
the present, is assumed known. Every node contains a possible realization of
the stochastic parameters at that time stage. Each node is connected to only
one parent node in the previous stage, but may have several descendants in
the next stage. A path or scenario is a possible realization for the whole
time period (t ∈ [1, T ]), consisting of one node for each time step from the
start node to an end node (node in stage T ). This means that a scenario
tree contains as many paths as there are end nodes. The connection between
two nodes in succeeding stages is called a branch, and these are also parts of
the scenario.
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A transition probability is associated with each branch, and the sum of all
transition probabilities from a node to connected nodes in the next stage is 1.
The probability of an entire scenario is found by multiplying the transition
probabilities of its branches. Naturally, the probabilities of all scenarios sum
to 1 as well, as they describe the sample space of the probability distribution.

A special case of a scenario tree is the scenario fan. The fan only has
branching at one stage, thus representing a two-stage stochastic program.
An example of a scenario tree and a scenario fan is given in Figure 3.1. In
many applications, real-life stochastic data comes as scenarios in the form
of time-series where the first stage is known and equal. This means that the
data is on scenario fan form already.

(a) Scenario tree. (b) Scenario fan.

Figure 3.1: A general five-stage scenario tree is shown on the left, and a
scenario fan on the right.

But why can not the scenario fan be used as input to the stochastic
program directly? There are several reasons for this, but it should be noted
that the fan is indeed a tree and can be used as input as it is. However,
this will lead to a two-stage model as the fan does not include branching
beyond the second stage. If a stage-wise decision process is considered, a tree
structure with branching at more than one stage is needed. Another problem
with the fan is the large number of nodes, which may lead to unnecessary
high computation times.

High CPU times is a general problem in stochastic programming. To
remedy this, reduction algorithms have been developed to decrease the num-
ber of nodes that are considered. Such algorithms apply to both trees and
fans. It has been shown, e.g. in [6], that even with a large reduction of
scenarios much of the information is intact. In a numerical example, a 50%
reduction of the tree leads to a loss of approximately 10 % in the relative
accuracy of the distribution representation. A similar investigation is per-
formed in [14], where the effect of reduced trees on the optimization results
is studied. It is found that close to optimal results can be obtained with a
significant reduction of nodes and computation time.
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3.3.2 Generation methods

The stochastic program under consideration is only an approximation to the
real problem, and the quality of this approximation depends heavily on the
quality of the scenario tree. Hence, much effort has been devoted to the de-
velopment of scenario tree generation methods. In [24], a distinction between
pure and related scenario generation methods is applied. The most impor-
tant pure methods are considered to be conditional sampling [29], matching
statistical moments [35] and path-based methods based on probability met-
rics [6], [19], [20]. Related methods cannot construct entire trees alone, but
can be used either as a part of a pure method, such as scenario reduction, or
as an incorporated part of a solution procedure, such as internal sampling.

According to [24], conditional sampling is the most common method for
generating scenarios. The stochastic process describing the uncertain pa-
rameters is assumed known, and several values from the process are sampled
at every node of the tree. This can be done by either sampling directly from
the distribution, or by evolving the process according to some explicit for-
mula. As traditional methods for sampling only works for univariate random
variables, a separate sampling for every marginal (univariate component)
must be performed to generate a random vector. The samples are usually
combined all-against-all, which means that the size of the tree will grow
exponentially. A more detailed discussion of this method is given in [29].

Moment matching is appropriate if the distribution functions of the
stochastic variables are not known. In this method, the marginals are instead
described by their moments, such as mean, variance, skewness and kurtosis.
The correlation matrix must also be specified, possibly together with other
properties such as percentiles or higher co-moments. A description of such
a method can be found in [35].

The third class of methods, and the one that will be utilized in this
project, is the path-based methods. Here the starting point is a set of sce-
narios with the same starting point, typically represented by a scenario fan.
These scenarios are produced by for example a fundamental model or a model
based on historical data. By clustering scenarios together at all stages except
for the last one, a tree structure can be built from the original fan. The next
subsection will provide a more thorough introduction to a certain variety of
such methods, using probability metrics to decide which scenarios to group
together.

3.3.3 Generation by scenario tree reduction

This section will present the method for scenario tree generation and reduc-
tion that is implemented as a supplement to the SHARM prototype. The
method is an example of a path-based method based on probability metrics,
as described in the previous section. It assumes that a set of scenarios in
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the form of a scenario fan is available, and clusters these at different stages
using probability metrics. The theoretical and practical foundation of the
method has been developed by the group of Werner Römisch at Humboldt-
University Berlin and their associates. A more complete description can be
found in the papers written by the group. The theoretical foundation is
given in [6], and a refinement of the algorithms is proposed in [19]. Appli-
cations to power scheduling and management are discussed in [20] and [18].
It can be noted that an implementation of this framework is available in the
commercial optimization software GAMS [17].

The sample space of the distribution is represented by a set of scenarios.
The generation of such scenarios will be discussed further in Section 3.5, but
in this section they are considered given.

A key element of the method is the concept of probability metrics. In
short, this is a measure of distance between two probability distributions.
The main idea is to delete a set of scenarios and add the corresponding
probabilities to the closest remaining ones, to create a reduced distribution.
This should be done in such a way that the distance between the original and
the reduced distribution is as small as possible with respect to the chosen
metric. This approach can be used either to reduce the size of an existing
tree, or recursively to transform a fan into a tree with branching at several
stages. To clarify this concept, it is convenient to introduce the notation
used by Römisch et al. in e.g. [18]. Table 3.1 presents the new variables
needed to discuss the scenario reduction method.

Symbol Description
ξ, {ξt}Tt=1, ξ̃, {ξ̃t}Tt=1 s-dimensional stochastic processes with parameter set {1, . . . , T}.
ξi, ξ̃i Scenarios (sample paths of ξ and ξ̃).
pi, qj Scenario probabilities. pi, qj ≥ 0,

∑
i pi =

∑
j qj = 1.

P,Q Probability distribution of the processes ξ and ξ̃ respectively.
N Number of scenarios in the initial scenario set.
J Index set of deleted scenarios.
#J Cardinality of the J , i.e. the number of deleted scenarios.
n = N −#J Number of preserved scenarios.
ε Tolerance for the reduction.
ct(ξi, ξj) Distance between the scenarios {ξi}tτ=1 and {ξj}tτ=1.

Table 3.1: Symbols and description of the variables used to discuss scenario
reduction.

In [6] and [19] the authors argue that the Kantorovich distance DK is
the most suitable measure for use in power management problems. It is
shown that multi-stage stochastic programs with recourse are stable with
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respect to small perturbations in terms of a Fortet-Mourier metric, which
can be estimated from above by the Kantorovich functional or distance.
For discrete distributions with finite support, DK is the solution of a linear
transportation problem known as a Monge-Kantorovich mass transportation
problem. This is given by

DK(P,Q) = inf

{
N∑
i=1

Ñ∑
j=1

ηijct(ξ, ξ̃) :

ηij ≥ 0,
N∑
i=1

ηij = qj ,
Ñ∑
j=1

ηij = pi,∀i, j

}
. (3.1)

The function ct should satisfy a selection of properties listed in [6], and
is typically chosen as

ct,r(ξ, ξ̃) = max(1, ||ξ − ξ0||, ||ξ̃ − ξ0||)r−1||ξ − ξ̃||. (3.2)

Here, || · || is any norm in the euclidead space Rs and ξ0 is some fixed
element in the same space. In the scenario tree construction algorithms
presented below r = 1, so that the function ct coincides with the metric
induced by the norm on Rs. In this work, s corresponds to the combined
number of spot price and inflow scenarios.

By the assumption made earlier, the probability distribution P of the
stochastic input data to our problem is approximated by finitely many sce-
narios. The goal is to reduce the number of scenarios while preserving as
much of the original information as possible. A natural problem to consider
at this point is to find the closest distribution Q to P , when the number
of scenarios to be deleted, #J , is known. For this problem, the minimal
distance between the two distributions in terms of DK , as well as an opti-
mal redistribution rule for the probabilities, can be found explicitly. This
is proved in [6]. The minimal distance DK,J and the probabilities qj of the
preserved scenarios ξj , j /∈ J , of Q is given by

DK,J(P,Q) =
∑
i∈J

pi min
j /∈J

ct(ξi, ξj), (3.3)

qj = pj +
∑
i∈J(j)

pi, (3.4)

J(j) = {i ∈ J : j = j(i)}, j(i) ∈ arg min
j /∈J

ct(ξi, ξj),∀i ∈ J.

The set J(j) defined above is the set of all deleted scenarios to which
the preserved scenario j is the closest preserved scenario. Now the optimal
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choice of index set J , with #J fixed, is given by the solution of the optimal
reduction problem

min

{∑
i∈J

DK,J : J ⊂ {1, . . . , N},#J = N − n

}
. (3.5)

The problem (3.5) can be shown to be NP-hard. It is however not always
the case that #J is given. A more realistic situation may be to find a
distribution Q such that J has maximal cardinality. That is, delete as many
scenarios as possible while keeping the distance DK,J(P,Q) ≤ ε, with ε
being some predetermined accuracy. This is the maximal reduction strategy
formulated in [18].

In their papers, the group of Römisch suggests two fast heuristic algo-
rithms to solve this problem, exploiting the structure of the objective. In the
special cases of #J = 1 (deleting one scenario) and #J = N − 1 (keeping
one scenario), the optimal reduction problem becomes more easily solvable.
These cases form the basis for the two algorithms Simultaneous backward
reduction and Fast forward selection.

The backward reduction strategy suggests repeating the optimal deletion
of a single scenario recursively until the prescribed number of scenarios is
removed. If a strong reduction is the goal, it may be advisable to repeat the
optimal selection of a single scenario until the desired number of scenarios is
reached. This is the basic concept of the forward selection strategy.

In [19], explicit expressions for the computational complexity of both
algorithms are derived. To reduce a set of N ∈ N scenarios to a subset
consisting of n ∈ {1, . . . , N} scenarios requires bN (n) and fN (n) operations,
when using simultaneous backward reduction and fast forward selection re-
spectively.

bN (n) = n3 − n2(
3
2
N +

1
2

)− n3
2

(N + 1)

+
N3

2
+O(N2 logN) + 2N2 +

3
2
N, (3.6a)

fN (n) =
2
3
n3 − n2(2N + 1) + n(2N2 + 2N +

1
3

). (3.6b)

It is evident that forward selection will be faster for smaller n, while
backwards selection performs better for higher n. It can be be shown that
the number n∗ such that bN (n∗) = fN (n∗) is approximately given by n∗ ≈ N

4 .
As they have been described above, the algorithms delete or select an

entire scenario from the original tree or fan. Another important task is the
generation of a tree structure from a set of separate scenarios, typically in
the form of a fan. The tree construction strategies proposed in [20] makes
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use of the two algorithms recursively to bundle scenarios at each stage of the
time horizon.

As a supplement to the SHARM prototype, versions of the two algorithms
have been implemented by Sintef Energy Research. For tree construction the
Backwards construction algorithm (Algorithm 3 in [20]) is used. In the case of
scenario reduction, the Fast forward selection algorithm (Algorithm 2 in [18])
is implemented. The two algorithms are presented as Algorithm B.2 and B.1
in Appendix B, respectively. More information on the implementation can
be found in [13], but some central moments will be described here.

SHARM is on a prototype stage and the available algorithmic options
in the supplementary tools are limited. As already stated, only one algo-
rithm is available for each task. Only one probability metric is specified, the
Wasserstein metric, defined as

ct(ξ, ξ̃) = ||ξ − ξ̃||r. (3.7)

Currently one can choose between the manhattan, euclidean or max
norms. It is recommended that r = 1 if only one variable (inflow or price) is
stochastic, while r = 2 should be used if both are uncertain. In the construc-
tion process, the algorithm removes scenarios and bundle them together so
that new scenarios may be created by joining 2 original scenarios at a given
stage. This process can destroy some of the time correlation in the original
scenarios, and is therefore not optimal for multi-stage process as pointed out
in [21], [22]. It is however deemed good enough for this purpose [14]. When
reducing the size of a given tree, one is guaranteed that the reduced tree
consists of a sub set of the scenarios that make up the original tree.

The form of the generated or reduced tree can be specified through dif-
ferent parameters. One option is to fix the number S − #J of remaining
scenarios. It is also possible to set the number of nodes at each time stage.
Another option is to specify a degree of reduction εrel, which is defined by

εrel =
εred
ε1

. (3.8)

Here εred is the absolute probability distance between the full and reduced
tree. ε1 is the distance between the full tree and the optimal single scenario
tree decided by forward selection, and does hence represent the maximum
probability distance for the scenario reductions. The degree of reduction
varies between 0 and 1, with a higher value giving a higher reduction. εrel = 0
means no reduction and εrel = 1 means full reduction, i.e. only one scenario
remains.

3.3.4 Evaluation of scenario tree quality

The quality of the scenario generation method is an important question in
stochastic programming. According to [24] it is imperative to also consider
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the link to the model used, as no scenario generation method is optimal for
all possible models. The article by Kaut and Wallace presents a practical
approach to scenario tree evaluation, stating two properties that successful
methods should satisfy. The authors argue that the most important criteria
is the quality of the solution obtained with the scenario tree, not how well
the distribution is approximated. The two requirements that scenario tree
generation methods should satisfy are:

• Stability. Solving the optimization problem using several trees gen-
erated from the same input should result in very similar objective
function values. Both in-sample and out-of-sample stability should
be considered [24], [14].

• Bias. The scenario tree should not introduce any bias compared to the
true solution.

By in-sample stability it is understood that the objective value obtained
by using two different trees should be similar. Testing for in-sample stability
is straightforward. Out-of-sample stability means that the solution obtained
by two different trees, evaluated at the original objective function, should
be similar. If considering a reduction algorithm, the decisions resulting from
using the reduced tree should be applied to the full tree. For the reduc-
tion algorithm to have out-of-sample stability, the resulting objective value
should be similar to the objective value obtained by solving with the full
tree. Testing for out-of-sample stability is more complicated, but methods
do exist.

To not introduce bias into the solution, a solution of the scenario-based
problem should also be an approximately optimal solution to the original,
continuous problem. Testing of this property is however practically difficult,
as it involves solving the problem with the true continuous process. This is
usually not possible, and if it was, scenario trees would not be necessary any
more. For further descriptions of these issues, see [24].

A further discussion focusing on the scenario generation and reduction
methods used in connection with the SHARM prototype is found in [14].
There, in-sample and out-of-sample stability is tested using a simplified hy-
dro power scheduling model with stochastic inflow. The paper proposes a
method for evaluating out-of-sample stability of scenario trees in multi-stage
models, based on evaluating successive first stage decisions.

The idea is to simulate the decisions that will be taken for all outcomes,
when these decisions are based on a reduced scenario tree. To do this, a sub-
tree is found at each node of the original tree, using that node as root node.
The tree reduction method is then applied to the subtree, and a first-stage
decision is found by running the stochastic model on the reduced sub-tree.
After all the scenarios of the original tree have been traversed, the objective
function is found from the first-stage decisions and the node probabilities.
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This objective can be compared to the solution of the original tree, if it is
available. The methods guarantees that the objective using the reduced tree
will be less then or equal to the objective of the full tree.

The results suggests that the scenario reduction method has good in-
sample and out-of-sample stability properties. An adaptation of this method
will be used later in this report, in the run-time tests described in Section
4.4.1.

An alternative evaluation method that is suitable for multi-stage models,
is the rolling horizon approach proposed in [10]. It is similar to the method
described above, but the length of the optimization period is kept fixed and
hence rolled forward as each stage is evaluated. The rolling horizon approach
have not been used in this work.

3.4 The SHARM prototype

This section aims at introducing the major concepts of the SHARM proto-
type. A final version of the model may differ from the current implementa-
tion, but in the remainder of this section the prototype will be referred to
as SHARM.

SHARM is built on the SHOP framework. The main characteristics, i.e.
the reservoir balance equations and the modeling of the power plants, are
the same in the two models. The model description, e. g. specification of
the system topology, modeling of internal couplings in the plants and vol-
ume/head relations in the reservoirs, is identical. Boundary values are taken
from the seasonal model as in SHOP. Other constraints, such as maximum
limits on reservoir volume and generator production, are also specified in the
same way. The solution procedure in SHARM is the same as described for
SHOP in Section 2.3. The point where the models differ, is in the defini-
tion of the parameters inflow and price. In SHARM, these can be given as
stochastic in the form of a scenario tree.

Stochastic data is typically available as scenarios on a time series for-
mat. To construct scenario trees from this material, SHARM comes with
several supporting tools. First, there is a program that combines the inflow
and price scenarios to a fan on XML-format. This fan forms the input to
an implementation of the methods described in Section 3.3.3, called SCEN-
TREEGEN. This program enables the user to construct and reduce scenario
trees by specifying parameters such as the degree of reduction εrel or the
number of scenarios at each stage.

As SHARM at the moment is on a prototype stage, there are several
features of SHOP that are not available. Examples of such features include
ramping constraints and delta meter flows. Ramping constraints poses limits
to how fast changes in e.g. discharge can happen. Delta meter flows are
connections between reservoirs. An example of a delta meter flow is the
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waterway between reservoirs R1 and R2 in Figure 2.3. Some of the missing
features are quite common in the Norway, so this limits the amount of hydro
power systems that can be considered in this thesis.

The SHOP model, and thereby the SHARM model, is quite extensive,
so a complete description is not included here. A more detailed description
of the common features can be found in the SHOP literature. What will be
presented is an example of a stochastic scheduling model, which can be seen
as a simplification of SHARM. This is done to give the reader an overview
of the objective and the most important constraints. The example is taken
from [14], and is also described in [34].

The example consists of a simple topology with a single reservoir and a
plant with only one generator below. Inflow is the only stochastic variable,
and the model is solved as a deterministic linear problem. The objective
function π(g) is the expected future profit from the water in the system, and
is maximized with respect to the generation g. In addition to the objective,
the constraints imposed on the system are also included. The notation is
similar to the one used in Equation (2.1), and the new symbols will be
explained when they are used. A full description of the symbols is included
in tables A.1 - A.4 in Appendix A.

The objective function is given as

π =
∑
i∈I

pigiyi +
∑
i∈Iend

piwi, (3.9)

where pi, gi and yi is the probability, generation and spot price for node
i, respectively. wi represents the end-value of the remaining water stored in
the reservoir at node i. The first constraint specifies the water balance in
the reservoir, with water filling at the end of a period. It is similar to the
reservoir balance equation (2.1), and is defined as

Xi =

{
Xj:j∈Ipar

i
+ qi − gi − si, i > 1

Xini + qi − gi − si, i = 1
, ∀i ∈ I. (3.10)

In this equation, Xi is the reservoir content for node i, while qi and si
denotes the inflow and spillage, respectively. Both the reservoir and the
generator have a limited capacity, as described by the inequalities

Xi ≤ Xmax, ∀i ∈ I, (3.11)
gi ≤ gmax, ∀i ∈ I. (3.12)

To describe the value of storing water for later use, an end-value function
is defined. It is discretized into limited steps dij , and the sum of these is again
limited by the available water at the end period. The end-value function wi
is defined by
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wi =
∑
j∈E

cjdij , ∀i ∈ I, (3.13a)

dij ≤ dmaxj , ∀i ∈ I, j ∈ E, (3.13b)∑
j∈E

dij ≤ xi, i ∈ Iend. (3.13c)

The final constraints in this simplified model are the non-negativity of
the following variables

gi, Xi, si, dij , qi ≥ 0, ∀i ∈ I, ∀j ∈ E. (3.14)

The SHARM model obviously is far more elaborate than this, but the
main principles are the same. If e.g. price uncertainty is included, this
enters into the objective function. More constraints can be added, and the
modeling of more complex topologies must be considered.

3.5 Price and inflow modeling

The modeling of input parameters is important to the outcome of stochastic
programs. Much research has been carried out to develop models for pre-
dicting both spot prices and inflows. This section will give a brief mention
to the most important methods, but it should be pointed out that this is not
a main focus of this thesis.

The tests conducted in this work are based on real systems and real
data used in the daily scheduling at Statkraft. As the predictions of spot
prices and inflows are used operationally, Statkraft does not wish to make
the models public. Thus the stochastic input is taken as given throughout
the tests.

In the literature review on short-term hydro power scheduling [11], a
short description of price and inflow models is included. Important classes
of statistical models used for modelling of spot prices include auto-regressive
moving average (ARMA) models and auto-regressive integrated moving av-
erage (ARIMA) models. Another approach use generalized auto-regressive
conditional heteroskedastic (GARCH) models. A recent master’s thesis con-
ducted at NTNU has also done some work on price modeling in cooperation
with Sintef [32]. The model proposed in that thesis is based on a determin-
istic model, and a literature review is also included.

Stochastic inflow processes can also be modeled using time series fitted
to historic data, e.g. using ARIMA models. A widely used alternative is
to generate ensemble forecasts from hydrological model, relating inflow to
parameters such as precipitation and temperature. An example of such an
approach is the popular HBV-model [3].
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Chapter 4

Goals and strategy for the
evaluation process

The principal objective of this thesis is to evaluate the prototype of the
stochastic short-term hydro power scheduling model SHARM. This state-
ment will however need some major refinements and concretizations to act
as a proper starting point for an investigation. The terms on which the
model shall be evaluated must be decided. One approach is to consider it
as a direct replacement of the current deterministic model. Another can be
to consider alternate areas of utilization. As stated in the introduction, this
work will focus on the first approach.

Such an investigation calls for an optimized plan from the stochastic
model, which could be directly compared to a corresponding run of the de-
terministic model. Comparisons could be made in terms of expected profit,
reservoir handling and starting and stopping of units. The expected profit
of replacing the deterministic SHOP model by the stochastic SHARM model
is important, as the users will not be interested if the new model does not
perform better in terms of income than the current one. It is also interesting
to know how much different factors will affect the impact of a stochastic
model. Such factors may be the uncertain parameters, or the form of the
stochastic input. This comparison against SHOP will be one main objective
of the evaluation.

Another key aspect concerning the evaluation of the new model is the
computation time. The stochastic model can not compete with the deter-
ministic in this area, but to be useful as a scheduling tool in an operative
setting the running times should not be excessively high. A way of reducing
the CPU-time is to use stochastic input only in a few reservoirs, while the
rest of the system is modeled as before. This would typically be smaller
reservoirs, for which the limits may be reached within the optimization pe-
riod. Another measure would be to reduce the size of the stochastic input by
applying algorithms for scenario tree reduction. The CPU-time is anyhow
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one of the major drawbacks of stochastic programming. An important area
to consider is therefore the size and form of the stochastic input, and how it
will affect the objective and the reservoir handling. This will be the second
objective of the evaluation.

Unfortunately, the access to stochastic input for historical cases has been
limited. As a consequence, all the tests have been run with data acquired
during the months of March, April and May in 2012. The availability of
stochastic inflow scenarios has also limited the number of hydro power sys-
tems that has been considered.

This section will discuss the topics mentioned above in more detail, and
present the tests that will be conducted in the evaluation process. The
test systems that have been considered will be described in Section 4.1.
An overview of the computational tests that will be performed is given in
Section 4.2. The reasons for choosing these tests will be discussed and a more
detailed description is presented in the remaining sections: Comparisons
against SHOP will be the focus of Section 4.3, while the issues concerning
computation time will be considered in Section 4.4.

4.1 Test watercourses

The choice of watercourses to consider in the evaluations was limited by
several factors. First, the test systems could not contain any of the features
not included in the SHARM prototype, as described in Section 3.4. Second,
stochastic scenarios for price and/or inflow had to be available on a daily
basis. A third demand was that the watercourses should exhibit some feature
that the current deterministic model did not handle satisfactory. Finally, the
systems should be relatively small, to enable testing with large scenario trees
within reasonable CPU-times.

To satisfy all these requirements proved to be more difficult than antic-
ipated. Especially the need for stochastic inflow data was difficult to meet.
Finally, 2 different watercourses were chosen. Both are real, and in opera-
tion by Statkraft. According to the wishes of the operator, the plants are
anonymized, and will be referred to as test system 1 and 2. The topologies
of the watercourses are shown in Figure 4.1. Both are examples of High
Pressure Plant (HPP) systems, as opposed to run-of-river systems that have
less capacity for regulation.

Test system 1 is a cascaded reservoir system. The watercourse consists
of 2 reservoirs, R1 and R2, and 2 plants, P1 and P2. At the top, R1 is
a large, regulated reservoir which actually represents several reservoirs. R1
has a maximum capacity of 2363 Mm3. The water from R1 goes to the
plant P1, which consists of 3 identical generation units. P1 has a maximum
total production of 159 MW. The discharge from P1 ends up in the small
reservoir R2, which have a capacity of 24 Mm3. The last plant P2 has 6
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R1

P1

R2

P2

(a) Topology for test system 1.

R1

R2

P1

(b) Topology for test system 2.

Figure 4.1: Schematic description of the 2 watercourses that have been con-
sidered in the evaluations.

generating units, of which 4 are identical and the 2 remaining units have a
slightly higher capacity. The maximum total production of P2 is 259 MW.

This system is chosen because of the handling of reservoir R2. The
reservoir is quite small compared to the capacity of the plant below, and
may experience high inflow in certain periods. Combined, this gives the
reservoir a potential for spillage if the scheduling does not anticipate a high
inflow.

Test system 2 consists of 2 reservoirs, R1 and R2, and a plant P1. R1
has a maximum capacity of 256 Mm3, and the maximum volume of R2
below is 4 Mm3. The plant P1 has 5 identical generation units, with a total
capacity of 315 MW. The reason for investigating this system is the handling
of R2. Currently, the discharge from R1 to R2 is decided manually by the
plant operators. A deterministic optimization by SHOP will maintain the
reservoir level of R2 at maximum to achieve the highest plant head possible.
This will however give a high risk of spillage in the case of unforeseen inflow,
which is the reason for not using this result. It is assumed that a stochastic

29



scheduling tool such as SHARM will handle this situation in a more robust
manner.

The systems belong to different price areas, so the stochastic input needed
to perform tests are 2 sets of price scenarios and inflow scenarios for R2 in
both systems. For both test systems, 21 price scenarios with hourly reso-
lution and a time horizon of 7 days were available. 52 scenarios for each
system were available for inflow. Initially, the plan was to use historical in-
put data to investigate the effect of stochastic scheduling in different periods
of the year. Unfortunately, this turned out to be impossible, so all input
data had to be collected in the period between March and May 2012. Both
price and inflow scenarios were available for test system 1 at the start of the
project. It took more time to get inflow series for system 2, so the tests on
this watercourse could not start until May.

4.2 Computational tests performed in the evalua-
tion

This section will present the tests that were conducted during the course of
this project. The reason for choosing these tests is a combination of two main
factors. One is the availability of software and input data. The other is the
priorities made by the author, in cooperation with personel from Statkraft
and Sintef Energy Research. First an overview of the tests is given in Table
4.1. The duration of each test shown in the table is the actual number of
tests conducted, not the planned duration of the tests. In the rest of this
section, the purpose of each test will be discussed.

Test System Stochastic Input Structure Purpose Duration
1 1 Price Fan Comparison 24 days
2 1/2 Price/Inflow Tree CPU/Reduction 1 day
3 1 Inflow Tree Comparison 7 days
4 1 Price /Inflow Tree Comparison 6 days
5 2 Inflow Tree Comparison 7 days
6 2 Price/Inflow Tree Comparison 6 days
7 1 Price Fan CPU/Reduction 1 day
8 2 Inflow Tree Sensitivity/Quality 1 day

Table 4.1: The table presents an overview of the computational tests con-
ducted in the evaluation of SHARM.

Test 1: The main purpose of this test is to investigate the effect of con-
sidering price uncertainty in a cascaded system. Hence, comparisons with
a deterministic plan will be made. Testing will be performed in March and
April, when the uncertainty in inflow is low. The results can thus say some-
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thing of the possible impact of stochastic scheduling in the winter depletion
season.

This will be the first test to be conducted, and will thus be used to adjust
the testing and evaluation procedures. It is expected that this part of the
test may require both time and effort, but it is necessary to establish a solid
framework before conducting the remaining tasks.

Test 2: An in-sample stability test of the reduction algorithm is conducted,
using scenario trees for the cases of stochastic inflow and combined stochastic
inflow and price. The concept and testing of in-sample stability is described
in Section 3.3.4. The goal is to decide which degree of reduction should
be applied to the scenario trees, weighting CPU-time against deviations in
the objective function values. Another aspect that will be considered here
is the computational behavior of SHARM with regard to different input.
It is expected that a reduction in the size of the scenario tree will lead to
significant reductions in the solution time.

The test is performed on both test system 1 and 2. The results from this
test will be applied in tests 3 - 6.

Test 3 - 6: Using the reduction strategies decided in Test 2, these tests will
examine the effect of considering stochastic inflow and combined stochastic
inflow and price. Both test systems 1 and 2 will be considered. Apart form
the different scenario tree structure, these tests are similar to Test 1. Corre-
sponding deterministic plans will be found and compared to the stochastic
ones. Testing will be carried out in May during the snowmelt period, in
which the uncertainty in inflow is high. The results will be compared to
those from Test 1, to see if the impact of considering uncertainty is greater
in this period, and if it is more important to include stochastic inflow.

Test 7: This test focus on the performance of the reduction algorithm.
The fan structure of the scenario tree is taken advantage of to perform tests
of both in-sample and out-of-sample stability for the reduction algorithm.
Both these concepts are discussed in Section 3.3.4. Similar tests from [14]
indicate that the algorithms have good stability properties when considering
inflow uncertainty. This test will consider stochastic prices in the form of a
scenario fan on test system 1.

Test 8: Two aspects are considered in this test. First, the sensitivity of
the scheduling with regards to the input is investigated by adjusting the
amplitude of the scenarios. Second, a qualitative analysis of the handling of
R2 in test system 2 is conducted. The hypothesis presented in the example
of Section 3.1, that a stochastic model will be more careful in the handling
of this reservoir, will be tested with inflow uncertainty.
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4.3 Comparison against SHOP

This section describes the framework that will be used for comparing the
results from SHARM with corresponding results from SHOP in tests 1 and
3 - 6.

As described in Section 2.2, short-term scheduling is a continuous process.
The ideal strategy for comparing the two models would be to run them in
parallel for an extended period of time. By performing with SHARM all the
tasks that SHOP does now, a realistic measure for the differences in income
and reservoir handling could be obtained. This task is considered beyond the
scope of this thesis, as it would require either day-around operation together
with SHOP, or the construction of an extensive simulation framework.

A different approach must therefore be taken. Scheduling of the day
ahead is used as decision support in the preparation of bids for the Elspot
market. This is arguably one of the most important tasks of a short-term
scheduling program, and it is natural to consider such a task in an evalua-
tion. It is also quite easily quantifiable in terms of objective function value.
Hence, the tests described in this section will focus on the preparation of spot
market bids for the day ahead. The construction of optimized stochastic and
deterministic plans for the day ahead is discussed below.

4.3.1 Deterministic scheduling for the day-ahead market

The scheduling performed in the preparation of bids for the day-ahead mar-
ket is run as follows. In the morning, SHOP is run with an optimization
period of 162 hours. T = 0 is taken to be 6:00am the present day, and the
day ahead is thus between T = 18 and T = 42. The remaining 5 days is
included for coupling with the mid-term scheduling model, and to consider
the future development of price and inflow. The price and production is
known and equal for all scenarios for the first 18 hours, as the decisions for
this period were taken by yesterdays scheduling.

The price forecasting department at Statkraft provides 22 price scenarios
for this period, with hourly resolution, and updates them several times during
the day. Inflow data is obtained in much the same fashion, but using a
different model. The hydrology department use the fundamental HBV model
[3] to produce the different scenarios. The quality and number of inflow
scenarios vary between the reservoirs, as the need for good forecasts depends
on the size and importance of each of them. Based on the available scenarios,
one for price and one for inflow is chosen as the main prognosis and used as
deterministic input to SHOP.

A corresponding deterministic plan must be specified for comparisons
with the plan generated by SHARM. A deterministic plan in this context is
understood to be the result from SHARM when specifying only one inflow
and price scenario. In all comparisons, unless stated otherwise, the deter-
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ministic scenarios will correspond to the main prognosis for price and inflow.
The reason for using this approach, instead of comparing directly with SHOP,
is that the prototype does not support all the features of the full operative
deterministic program. It is imperative in the evaluation process that the
models are competing on equal terms. A more detailed comparison with
SHOP can be performed when a full implementation of the stochastic model
is available.

The result of running SHARM with the main prognosis for price and
inflow is one plan for the 162 hour period. The plan is optimal with respect
to the chosen input.

4.3.2 Stochastic scheduling for the day-ahead market

As explained in Section 3.4, the result from SHARM will not be one optimal
plan for the whole scheduling period. It will be an optimal first-stage deci-
sion, and an optimal strategy for each path of the scenario tree in the rest of
the period. Thus, if several scenarios are to be considered at a given stage,
the program will not return a single plan for this stage. This is a problem
that must be resolved to produce a single, optimal plan for the day ahead.

First, a case where only price is stochastic is considered, corresponding
to Test 1 of Table 4.1. The available stochastic input is 22 price scenarios
that coincide in the 18 first hours. All scenarios are considered to be equally
probable. As there are relatively few scenarios, a fan structure is used to
maintain the structure of the scenarios. This means that the problem be-
comes a two-stage stochastic program with recourse.

One solution is to take advantage of some of the characteristics of the
problem at hand. The goal is to produce a plan for the day ahead, i.e. T ∈
[19, 42], which should take into account the stochastic input from T = 19 to
the end of the period. A possible formulation of such a problem is to optimize
using a fan with branching from T = 19, but with the additional constraint
that production should be equal for all paths in the period T ∈ [19, 42].
As uncertain parameters are only present in the objective function through
hourly prices, an equivalent formulation can be derived. The deterministic
period is extended to 42 hours, with the first 18 hours as before. For the
period T ∈ [19, 42], the weighted average, or expected value E(yt), of the
price scenarios is used instead of the main prognosis. In this case, running
with stochastic price and one common decision is equivalent to running with
expected price in the first 42 hours, as will be shown below.

Consider the objective function π given in equation (3.9), with production
gt,i = gt. For the day ahead it becomes
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π =
N∑
i=1

42∑
t=18

gt,ipt,iyt,i

=
42∑
t=18

gt

N∑
i=1

pt,iyt,i

=
42∑
t=18

gtE(yt). (4.1)

Using a fan as described above will thus be equal to imposing the addi-
tional constraint of a common production for the next day. This will enable
the calculation of an optimal plan for the day ahead, that takes price un-
certainty into account from T = 19 to T = 162. The 2 equivalent scenario
fans are shown in Figure 4.2. This approach was used in the first tests con-
ducted, namely Test 1 and 7. However, this strategy is no longer valid when
considering stochastic inflow, which enters the problem through the reservoir
balance equations (3.10) that is part of the constraints.

t=0 18 42 162 t=0 18 42 162

E(yt)

Figure 4.2: Showing 2 equivalent scenario fans where price is the only
stochastic parameter. By applying the one on the right, a single plan can
be calculated by SHARM while still taking uncertainty into account in the
period t ∈ [19, 42].

Several alternative evaluation approaches were considered, before settling on
the one described above. These also considered a scenario fan, but used
the main prognosis for price in the 42 hour deterministic period. Evalua-
tion of the plans was conducted with an optimization period of 42 and 162
hours. The procedures were abandoned because of the lack of theoretical
foundation concerning which plan would perform best. The work did how-
ever reveal some severe errors in the test framework, which were corrected
before conducting further tests.

The question of how to produce a single plan with SHARM has been
discussed with researchers at Sintef Energy Research during the course of
work. It was suggested to include in SHARM the constraint that production
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and gate discharge should be equal for all paths in a specified period in the
start of the optimization. The developers at Sintef were able to implement
a new version of the prototype so that this feature could be applied in this
thesis. The new version enables the production of a single, optimal plan for
the day ahead with stochastic representation of both inflow and combined
inflow/price. This was used in Tests 2 - 6 and 8.

4.3.3 Evaluation of day-ahead plans

Following the approaches described in the previous section, stochastic plans
for the day-ahead can be produced and compared to the deterministic plan.
However, the question of what to compare is still not answered. A natural
option would be a quantitative comparison, considering the value of the
objective function. A qualitative approach investigating reservoir handling
and unit commitment could also be interesting. An important point is that
the objective function values can not be compared directly, as they are not
based on the same input.

To overcome this problem, the approach for comparisons taken in this
thesis is based on the assumption that the stochastic input is a good repre-
sentation of reality. That is, the performance of the deterministic day-ahead
plan in the situation described by the input scenario tree is evaluated. This
strategy is similar to the one used for stability tests in [14], but here only
the first first-stage decision is evaluated.

It would maybe seem natural to evaluate the 2 models in hindsight,
based on the realized prices and inflow. There are several reasons not to do
this. First, it is not the goal of this work to evaluate the price and inflow
forecasts. It is also important to note that the realized price will depend on
the real operational scheduling, which is performed deterministically by all
producers. Finally, to perform such an evaluation fairly would require the
scheduling of several watercourses together.

To explain the strategy in more detail, consider Test 1 described in the
previous section. First SHARM is run to obtain an optimal schedule with
the scenario fan shown on the right in Figure 4.2. Then SHARM is run with
the main prognosis to obtain a deterministic plan for the first 42 hours. The
deterministic model is now evaluated by a two-stage process. At the first
stage, the result of using the deterministic plan when the price actually is
E(yt) for t ∈ [19, 42] is found. At the second stage, starting at T = 42,
new information is revealed. The model now receives the price development
for every scenario, and because of the fan structure it can make a deter-
ministic schedule for the rest of the period for each of them. Finally, the
probability weighted sum of the objective function value for each branch is
calculated. This sum could then be compared to the objective value from
the first SHARM run.

Practically, the comparison is done as follows. In SHARM, production
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can be fixed by specifying generator schedules. To evaluate the performance
of the deterministic day-ahead plan, it is imposed as a generator schedule
on a SHARM run with the original scenario tree. The objective function
from this run is compared to the first SHARM run. In this way, the original
SHARM run will always produce a greater, or equal, objective function value.
The only difference is an additional constraint on the production level in the
hours T = 19, . . . , 42.

The same approach is taken when the new version of SHARM is applied
to produce day-ahead plans for more general scenario trees. As the fan
structure is not enforced anymore, new information will be revealed at several
stages. The comparison will therefore not consider the use of a deterministic
model for all subtrees, but the effect of fixing the day-ahead plan can still
be investigated.

As mentioned in the introduction to Section 4.3, the ideal method of
evaluation would be to compare the performance of the 2 models over a
longer period, performing tasks such as Elspot bidding, rescheduling and
bidding in the secondary markets. The alternative considered in this thesis
is to compare the day-ahead plans as described above, for as many days as
possible. The average objective function values will be compared, as well as
a more qualitative evaluation of the reservoir handling.

4.3.4 Analysis of sensitivity to input

Test 8 investigates how SHARM behaves when the amplitude of the input
scenarios is changed. That is, the average value for each time step is found,
and the deviation from this average for each scenario is multiplied by a
factor α. If a value becomes negative, it is changed to zero. The test is
performed for test system 2 with a stochastic representation of inflow. After
the scenarios have been altered, a tree reduction is performed in the same
way as for Test 5.

However, the main objective of this test is to find out how a stochastic
model will handle the reservoir R2 of system 2. To examine this, SHARM is
run with a common production and discharge plan for all the 162 hours of
the optimization period. This is done to capture the uncertainty in the end
of the period from an earlier stage, testing SHARM’s ability to plan ahead.
The differences in reservoir handling are then reviewed for different values
of α. Comparisons to the deterministic handling will also be considered. As
described in the example of Section 3.1, the deterministic schedule for this
system is not implemented operationally, where instead tighter boundaries
are specified manually.

It should be expected that SHARM will keep a safety margin by not
filling R2 to its maximum level, and that the reservoir level will be lowered
in advance if high income is forecasted later in the period.
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4.4 Evaluation of computation time in the new model

SHOP is used extensively throughout the day by the power production com-
panies. As described in Section 2.2, it is used for scheduling, spot bid prepa-
ration and rescheduling, as well as preparing bids for the balancing market.
A significant factor contributing to the success of SHOP is the relatively low
computation times, and for a stochastic model to prevail it should be able
to compete also in this area.

An interesting aspects to consider in this context is whether the results
of SHARM will justify a longer computation time. As described in Section
3.3, the size of the input scenario tree is important both to the quality of the
solution and to the solution time. What is the best balance between these
two goals, and is it affected by e.g. the topology of the system or the inflow
characteristics?

The focus is split between two main areas when evaluating the compu-
tational performance of the stochastic model. First, the tree construction
and reduction algorithms that have been chosen to accompany the SHARM
prototype shall be evaluated in terms of stability and CPU-time. Secondly,
the performance of the prototype itself. The question of how the CPU-time
is affected by different inputs, i.e. scenario trees and system topologies, shall
be investigated. Tests 2 and 7 described in Section 4.2 are conducted to
assess this topic.

4.4.1 Performance of the scenario tree generation algorithm

When considering scheduling problems of realistic size, some form of scenario
tree reduction must be performed. It is thus important for the user to have
confidence in the performance of the reduction algorithm. This problem was
discussed in Section 3.3.4.

The generation and reduction algorithms that accompany SHARM were
described in Section 3.3.3, and their stability have been examined and found
to be satisfactory in [14]. That paper considers a case with inflow uncer-
tainty, and use the simplified stochastic model presented as an example in
Section 3.4. Here, an in-sample and out-of-sample stability analysis will be
performed with price uncertainty, using SHARM. Testing for out-of-sample
stability is generally difficult, but can be simplified by using input in the
form of a scenario fan. This is done in Test 7.

The starting point for the tests is an initial fan similar to the one on the
right in Figure 4.2. The scenario reduction algorithm is applied to reduce
the number of scenarios from 22 to 1, producing a total of 8 different fans.
SHARM is run with each fan to produce objective function values for the
in-sample analysis. The first-stage decision for each fan is then imposed as a
generator schedule on the original fan, in the same way as the deterministic
day-ahead plan in Test 1. The results from these runs are compared in the
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out-of-sample analysis.
Testing for in-sample stability is easier, as the objective function values

obtained with different trees are compared directly. This is thus carried out
for more general scenario trees in Test 2. It is the in-sample stability results
that are considered when recommending an appropriate degree of reduction
for different inputs and test systems.

The CPU-time of the reduction algorithm itself could also be consid-
ered, and analytic expressions for the CPU-time are presented in Section
3.3. However, this has not been a main focus in this work. Experience has
shown that the time used to generate and reduce trees is very short compared
to the solution time in SHARM. This may be due to the limited number of
scenarios considered.

Currently, constructing the initial scenario fan also takes significantly
longer time than the CPU-time of the reduction algorithm. To generate fans
on XML-format, an Excel spreadsheet written by Sintef Energy Research
have been used. This tool limits the number of total scenarios to around
230, when using an hourly time resolution and an optimization period of one
week.

4.4.2 Computational performance of SHARM

Test 2 investigates the time spent by SHARM to solve scheduling problems
with different input for different watercourses. The goal of the tests is to get
an idea of how the objective function value and the CPU-time change with
the size of the scenario tree. Both test systems 1 and 2 have been considered,
and uncertain inflow and combined price/inflow uncertainty is used.

As in Test 7, the starting point in Test 2 is an initial fan. In the case
of inflow uncertainty the fan contains 52 scenarios. To introduce a tree
structure, the tree generation algorithm is applied, with εrel = 0.1. The
resulting tree is then reduced with various degrees of reduction, ranging
from εrel = 0.1 to 1.0. SHARM is run with the different trees, and the
objective function values are compared. The case of combined price and
inflow uncertainty is treated in the same fashion. Here the starting point is
a fan of 225 scenarios, combining 15 price and 15 inflow scenarios. This size
is chosen due to limitations in the tree construction framework as described
in Section 4.4.1.

38



Chapter 5

Results and discussion

The tests described in Chapter 4 have been carried out during the months
of March, April and May 2012. Due to the limited availability of software
and input data, only Test 1 and 7 could be carried out in the first phase.
Arriving in the start of May, inflow scenarios for test system 2 and a new
version of SHARM enabled the completion of tests 2 - 6 and 8. The time
span of Tests 3 - 6 was originally planned to be similar to Test 1, but had to
be cut short due to time limitations.

This chapter will present the results of the computational tests. One
section for each test is included, apart from Tests 3 - 6 which are considered
together. A discussion of the results will be given in the same section. The
results will be considered in light of the expectations concerning the given
test, and comments will be made on the general impact of the results with
regards to short-term hydro power scheduling.

The tests were carried out on the 32 bit Statkraft test server. The solution
times will vary with the computer used, but the important point here is the
difference between the CPU-times when using different input.

5.1 Test 1: Comparison with stochastic price

As expressed in Section 4.2, the goal of this test was twofold. One side was
to compare a deterministic and a stochastic day-ahead plan in the winter
depletion season with stochastic prices. The other was to develop and refine
the test procedure and the tools used for result processing and presentation.
As expected, the latter part proved to be an extensive task, but will not be
described in detail here.

When the test procedure and processing tools were settled upon, the
comparisons commenced in the middle of March. Collecting data files and
input scenarios from the operative scheduling with SHOP, 24 days of testing
were completed.

Focusing on the immediate future, the operative settings use MIP to
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model startup costs only in the first three days. This means that the opti-
mization solver does not consider these costs in the remainder of the period,
only adding them to the objective at the end. For a fair comparison, this rep-
resents a problem. Possible solutions include considering MIP in the whole
period, or not at all. Due to computational considerations it was decided to
not use MIP, and to exclude the startup costs from the objective functions
used in the comparisons. Generally, there are few starts and stops in the
cases considered in the test, so it is not expected that this will affect the
results to much extent.

The results from the tests are given in Figure 5.1, showing the differ-
ence between the objective function values obtained with and without the
deterministic day-ahead plan. Additional results are given in Table C.3.

Figure 5.1: The differences in objective function value between SHARM and
the run with a deterministic day-ahead plan is shown for test system 1. A
positive value means that SHARM gives a greater income. Each test case
on the x-axis represents a specific day.

These results indicate that there is not much to gain from using stochas-
tic scheduling in these conditions. On average, SHARM increased the value
of the objective function by e88 compared to the deterministic model. This
corresponds to an income increase of 0.0005%. There are even some cases
in which the deterministic plan performs better, something that should not
be possible. An explanation of this may be found in the convergence of the
SHARM iterations. Following the practice from the operational scheduling,
the number of iterations in UC and Close-in mode is determined in advance.
Thus the difference in objective value between iterations determines the ac-
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curacy of the solution. In the tests conducted in this work, it is found to be
in the range of e50 - e100.

As can be seen in Figure 5.1, there are only 4 cases in which the increased
income exceeds this limit. These are cases 1, 8, 9 and 19. Some of them do
in fact contribute a more substantial amount, with the maximum difference
being e827 for test case 8.

It is necessary to see if the cause behind the increased income in these
4 cases can be found. If it can be related to some common feature of the
input scenarios or the initial conditions, a recommendation can be made for
the use of stochastic scheduling in similar cases.

One hypothesis is that the larger deviations can be explained by the vari-
ance of the input scenarios, i.e. larger input variance gives larger deviations.
Other proposals of decisive factors include the initial reservoir level, average
price and end-point description. It can also be informative to see where the
deviations stems from. When not including MIP, the objective is given as
the sum of buy and sale costs, end reservoir value and penalty costs. These
hypotheses are investigated in the following.

The average variance of the input scenarios say something about how
much the scenarios differ. It is possible that the effect of considering uncer-
tainty is greater if the scenarios span a larger sample space. The average
variance was calculated for each case as

V ar(y) =
1
22

22∑
i=1

1
162

162∑
t=1

(yi,t − ȳt)2, (5.1)

where yi,t is the spot price in time stage t of scenario i. The correlation
coefficient of this and the difference in income ∆π was found to be

r =

∑24
j=1(V ar(y)j − V ar(y))(∆πj −∆π)√∑24

j=1(V ar(y)j − V ar(y))2
√∑24

j=1(∆πj −∆π)2
≈ 0.18. (5.2)

The coefficient of determination was r2 ≈ 0.03, suggesting that about
3% of the increased incomes can be explained by the variance of the input.
A test of the null-hypothesis that the correlation coefficient was zero could
not be rejected with a significance level of 0.15. This means that there is
little evidence that there is a linear relation between V ar(y) and ∆π. To
check whether there is another connection between the 2 parameters, they
are plotted against each other in Figure 5.2. All these findings indicate that
the increase in income can not be explained by the variance of the input
scenarios alone.
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Figure 5.2: The difference in objective function value obtained with and
without a deterministic day-ahead plan is plotted against the average vari-
ance in the input price scenarios. No obvious pattern is observed, suggesting
that there is no significant correlation between the parameters in these cases.

The initial reservoir levels, average prices and end point descriptions in
the various cases have been examined. No relevant differences have been
found in these values between the 4 cases and the rest, as the overall condi-
tions were quite similar in the test period.

Investigation of the distribution of the deviations between the different
parts of the objective is somewhat more promising. First, there is no differ-
ence in the penalty costs between the stochastic and deterministic plans. It
seems however that the greater part of the increased income comes from in-
creased buy and sale costs. That is, the stochastic plan has a higher income
from traded power in the optimization period. This may be due to a slightly
higher production in the day ahead.

This is true for 3 of the 4 cases that gives an increased income above the
accuracy of the iterations. In 2 of these cases, there is one scenario with a
significantly higher price within the day-ahead. SHARM suggests a higher
production in this period than the deterministic plan, and will thus benefit
more from this slight peak in the price.
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5.2 Test 2: Run-time test, stochastic inflow and
inflow/price

In-sample stability analyses were performed for test systems 1 and 2 with
stochastic inflow and stochastic price/inflow, as described in Section 4.4.
The test will also be referred to as a run-time test in the following.

Besides assessing the stability of the scenario tree construction and re-
duction algorithms, the purpose of these tests was to investigate the relation
between CPU-time and reduction, and to determine an appropriate degree
of reduction for each case. These εrel were to be applied in Tests 3 - 6 to
save time and consider the performance of SHARM with such reduced trees.

The starting point of the reductions was an initial fan. For inflow, 52
scenarios was used, while for price/inflow the fan consisted of 225 scenarios.
To allow for more general tree structures, the tree construction algorithm
was applied to the initial fans with a εrel = 0.10. The argument for this
was to keep a high number of paths while reducing the number of nodes,
and hence altering the tree structure. The resulting tree was then used to
represent the full sample space of the uncertain variables.

Different degrees of reduction were applied, and SHARM was run with
the resulting trees. Tables and figures presenting the results are included
below.

Stochastic inflow Stochastic price/inflow
System 1 System 2 System 1 System 2

εrel # Scen T [s] # Scen T [s] # Scen T [s] # Scen T [s]
0.0 51 2553 52 1175 206 2008 222 -
0.1 32 825 37 875 25 423 142 2736
0.3 14 298 17 237 10 176 58 710
0.5 6 98 6 83 6 95 18 245
0.7 3 51 3 45 4 78 7 93
0.9 2 40 2 38 2 45 3 57
1.0 1 27 1 26 1 36 1 27

Table 5.1: The number of scenarios and corresponding CPU-times T are
shown for different degrees of reduction εrel and test cases.

From Table 5.1, it is clear that the CPU-times of the full trees are unac-
ceptable for operational use. It should be noted that these cases are small
compared to e.g. scheduling against a given load for an entire price area.
The case of test system 2 with a full tree and price/inflow uncertainty actu-
ally did not go through, as the solver ran out of memory. So there is indeed
a need for reduction.

The results from the in-sample stability tests on system 1 and 2 are shown
in Figures 5.3 and 5.4 respectively.
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Figure 5.3: Results from the run-time test with stochastic inflow on test
system 1. The blue line shows the absolute deviation from the objective
function value of the full tree, which in this case was e13 873 471,12. The
red line relates the CPU-time to the degree of reduction.

Figure 5.4: Results from the run-time test with stochastic inflow on test
system 2. The blue line shows the absolute deviation from the objective
function value of the full tree, which in this case was e3 133 254,38. The
red line relates the CPU-time to the degree of reduction.
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Clearly the deviations increase with the reduction, but not strictly. A
similar behavior is observed in both figures for the objective deviations, al-
though in the latter case they are much higher. It is obvious from these
results that there is much to gain in terms of CPU-time from reducing the
size of the input tree. It should be noted that the deviations, even for the
deterministic plan, is very small compared to the objective of the full tree.

In both these cases, the CPU-time drops dramatically from the full tree
to the reduced tree with εrel = 0.50. Higher reductions will lead to a further
decrease in the solution time, but these cases are all run within a solution
time of 100 seconds. As will be discussed in Section 5.4, the relation between
CPU-time and the number of scenarios, or paths, in the trees seems to be
almost linear for CPU-times below approximately 200 seconds. This can also
be seen in these tests, e.g. from Table 5.1, although a plot is not included
here.

Figures 5.5 and 5.6 show the results of the tests run with both price and
inflow uncertainty. When running SHARM with the full tree for test system
2, the solver ran out of memory. Thus, no result was obtained for this case.
The deviations reported in Figure 5.6 are relative to the tree with εrel = 0.10.

Figure 5.5: Results from the run-time test with stochastic price and inflow on
test system 1. The blue line shows the absolute deviation from the objective
function value of the full tree, which in this case was e13 831 700,09. The
red line relates the CPU-time to the degree of reduction.
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Figure 5.6: Results from the run-time test with stochastic price and inflow on
test system 2. The blue line shows the absolute deviation from the objective
function value of the full tree, which in this case was e3 133 305,05. The
red line relates the CPU-time to the degree of reduction.

The same reduction procedure was used for both systems, and the number
of initial scenarios was equal. Nevertheless, the size of the full tree, obtained
by construction with εrel = 0.10 from the initial fan, differed significantly.
For test system the number of nodes was 8728, while the full tree for test
system 2 contained 21236 nodes. From Figure 5.7 it is evident that the
majority of the branching for test system 1 happens at a later stage than for
system 2, which explains the size difference. This may in turn be due to the
fact that the inflow scenarios for system 2 have a much higher variability,
especially in the start of the optimization period. The average variance for
this case was almost twice as high for test system 2.

In terms of deviations in the objective, the pattern is the same as for
stochastic inflow. Increasing the reduction leads to a decrease in solution
time, and generally to higher deviations. The relation between the degree of
reduction and CPU-time is also similar, especially for test system 1. As the
size of the full tree is much larger for test system 2, the CPU-times are also
higher, but the pattern is the same.

Based on the results shown above, together with an examination of the
reduced trees and the remaining scenarios, a reduction strategy have been
chosen. The strategy is to first construct a tree from the initial fan using the
backwards construction strategy described in Algorithm B.2 with εrel = 0.10.
The tree is then reduced by the fast forward selection strategy displayed
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(a) Test system 1. (b) Test system 2.

Figure 5.7: The full trees with price/inflow uncertainty used in Test 2. Both
are generated from an initial fan of 225 scenarios by specifying εrel = 0.10.

in Algorithm B.1, using εrel = 0.50. This strategy is applied to all the 4
considered cases.

The reasoning behind this decision is that εrel = 0.50 is the lowest degree
of reduction that keeps the CPU-time within reasonable limits. At the same
time, it is found that enough scenarios remain at this point to represent the
original sample space in a satisfactory manner. It also seems that the jumps
between scenarios no longer are that prominent at this level of reduction.

As an example, the original and reduced scenarios for inflow and price
for test system 2 is shown in Figure 5.8. The example considers case 5 from
Test 6, showing that the reduction strategy translates well to other input
data.
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(a) Initial inflow scenarios. (b) Inflow scenarios, reduced tree.

(c) Initial price scenarios. (d) Price scenarios, reduced tree.

Figure 5.8: The original input scenarios are shown on the left, and the sce-
narios remaining after applying the suggested reduction strategy are shown
on the right. Inflow scenarios are shown at the top, the units on the axis
being hours and m3/s. Price scenarios are found below, with units of hours
and e/MWh.

5.3 Test 3 - 6: Comparison, stochastic inflow and
inflow/price

Similar to Test 1, the purpose of these tests was to quantify the expected
profit of considering uncertainty in inflow and price/inflow for the 2 test
systems in the spring flooding season. Comparisons with the deterministic
model in terms of day-ahead plans were performed.

These tests were performed in the beginning of May, but due to time
limitations the number of cases considered was less than originally planned.
Despite this fact the tests may provide some interesting information as they
were conducted during a period with quite high inflow uncertainty. As a rule
of thumb, the melting of snow starts around week 17 each spring. However,
it is difficult to predict exactly when it will happen, and together with the
chance of heavy rain this means great variability in the inflow scenarios in
the period around this week.

The results from Tests 3 and 4 are shown in Figures 5.9 and 5.10. Addi-
tional results for Tests 3 - 6 are given in the tables of Appendix C.
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Figure 5.9: The plot displays the difference in objective function value be-
tween SHARM and the run with a deterministic day-ahead plan for test
system 1 with stochastic inflow. Positive values means that the stochastic
plan gives in higher income. Each test case on the x-axis represents a specific
day. Numerical values are found in Table C.1.

Figure 5.10: The plot displays the difference in objective function value
between SHARM and the run with a deterministic day-ahead plan for test
system 1 with stochastic inflow and price. Positive values means that the
stochastic plan gives in higher income. Numerical values are found in Table
C.2.
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The differences in objective for test system 1 are not very significant. Con-
sidering the estimate of the iteration accuracy from Section 5.1, there is only
one case in both Test 3 and 4 in which the stochastic plan outperforms the
deterministic one. In Test 3, a negative value of more than e100 can be
observed, indicating that the accuracy of the iterations may be even lower.

The results of Tests 5 and 6, performed on test system 2, are not included,
because the differences in the objective with and without a deterministic day-
ahead plan were negligible in both these tests. Numerical results from these
tests can be found in Tables C.4 and C.5. A possible explanation may be
found in the topology and state of the system. As there is enough water in
R1 and the spring thaw is imminent, the availability of water is not the main
issue. As will be discussed more closely in Section 5.5, the handling of R2 to
avoid spillage is more important. There are restrictions on the discharge gate
between R1 and R2, which means that R2 is just filled when the day-ahead
period is over. As both models increase the R2 level in the beginning of
the period to achieve better effect on the plant, the day-ahead plans become
almost identical.

A conclusion based on these results would be that there are no significant
benefits of using stochastic scheduling in these situations, at least not in
terms of increased objective function value. The results are so similar that
the method of comparison may be challenged. A possible way of assessing
the differences is to take a more qualitative approach. This is done for Test
8 in Section 5.5.

5.4 Test 7: Stability tests, stochastic price

Test 7 investigated the stability of the reduction algorithm presented in Sec-
tion 3.3.3 and Algorithm B.1. The procedure followed in this test is described
in Section 4.4.1. This section will present the results of the tests and, based
on them, give a brief discussion of the stability of the reduction algorithm.
Some of the results from the in-sample stability test can be seen in Figure
5.11.

First, the in-sample stability was investigated by comparing the objec-
tive function values for different scenario fans. The full tree in this case
is the same scenario fan as in Test 1, depicted on the right in Figure 4.2.
From this case, the fan is reduced by 3 scenarios until only 1 remains. As
expected, the CPU-time decrease with the number of scenarios included. An
approximately linear relation between these parameters can be observed.

The CPU-time results from this case can be viewed together with those
from Test 2 in 5.2. Apart from the largest trees, the tests, and indeed the
results, are similar. Test 2 also suggests a linear-like relation between the
number of scenarios in the trees and the CPU-time for the lower solution
times.
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Figure 5.11: Results from the run-time test with stochastic price on test
system 1. The blue line shows the absolute deviation from the objective
function value of the full tree, which in this case was e17 539 095,30. The
red line relates the CPU-time to the number of scenarios included in the fan.

As can be seen in Figure 5.11, the absolute deviation from the objective
of the full fan is generally increasing with the decrease in CPU-time. This
also follows the trend from Test 2. The difference is not strictly increasing
with the reduction, but is clearly growing. However, these differences are
relatively small compared to the total value of the objective function. A
maximum deviation of 0.06% is observed for the case of a single scenario.

The observation of small differences continue in the out-of-sample anal-
ysis. Day-ahead plans resulting from each fan are imposed as generator
schedules on the full fan, and the corresponding objective function values
are compared. For this test case, the day-ahead plans were almost identical,
resulting in negligible deviations. That is, the plan from the single scenario
fan gave a decrease in the objective of e3,74 when applied to the full fan.

Summing up, the results of this test support the findings of [14], that the
reduction algorithm have good stability properties. It should be noted that
the considered test case, in combination with the fan structure necessary
to perform the out-of-sample analysis, provides limited information as the
differences are so small.

The results shows, as expected, that the CPU-time can be reduced by
reducing the number of scenarios in the scenario tree. For small trees an
approximately linear relation is observed. For this case, scheduling for test
system 1 with hourly resolution and a horizon of 7 days, reducing the tree
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by 1 scenario leads to around 12 seconds reduction of the solution time.

5.5 Test 8: Sensitivity to input and qualitative anal-
ysis

The situation considered here was first mentioned in the example in Section
3.1. Test system 2 was used in the example to showcase a problem with the
current deterministic model, and it was predicted that a stochastic model
would be able to handle this case better. This hypothesis is put to the test,
and the results will be evaluated in a more qualitative manner than the
previous tests.

Tests 5 and 6 showed that there was very little to gain for this test system
by using SHARM to generate a day-ahead plan for production. Bearing this
in mind, and focusing more on reservoir handling than on production, this
test will take an alternative approach. Instead of generating a day-ahead
plan, a common production and discharge plan is specified for the entire
optimization period.

When investigating the results, perhaps the most interesting is the reser-
voir trajectory of R2. But since there are several inflow scenarios, the reser-
voir level will be different for each of these, even though the production and
discharge between R1 and R2 are the same. An appropriate result to con-
sider may be the expected reservoir level, based on the probability for each
scenario.

The inflow scenarios for each case will be presented as in Figure 5.12,
while the reservoir trajectories, including the expected reservoir level, will
be shown as in Figure 5.13.

The reservoir trajectory from SHOP is similar to the topmost blue line
in Figure 5.13, filling the reservoir as fast as possible and stabilizing on
the maximum reservoir level. The reason R2 is not filled instantly is the
presence of a maximum constraint on the gate connecting R1 and R2. A
slightly rounded shape is observed for the head in the first days, which is
due to the volume/head relation of the reservoir.

Another point considered in this test is the sensitivity of the solutions
with regards to the form of the input scenarios. The inflow scenarios have
been manipulated by multiplying the deviation from the average with a factor
α. Then the 52 manipulated scenarios have been used to generate a tree with
εrel = 0.10. This tree have been reduced using εrel = 0.50, as in Tests 3 - 6,
to achieve the tree used as input. The average variances for the manipulated
inflow scenarios were 4.3, 16.8 and 78.4 for α = 1, 2 and 5, respectively.

Figures 5.12 - 5.17 shows how the amplitude of the inflow scenarios affect
the scheduling, for α = 1, 2, 5.

52



Figure 5.12: The inflow scenarios used in Test 8, with α = 1. The expected
value of the inflow from this tree is shown in red.

Figure 5.13: The figure shows the reservoir trajectories of R2 in test system
2 for the inflow scenarios shown in Figure 5.12, using α = 1. The red line
shows the expected reservoir trajectory, and the light blue bars represent the
production discharge through P1.

The inflow scenarios in Figure 5.12 do not really branch out until the fourth
day of the optimization period. This is reflected in the reservoir trajectory,
which is kept quite high in the first 4 days before being lowered towards the
end. By lowering the reservoir level in the final 3 days, spillage is indeed
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avoided for all scenarios. It should be noted that the expected trajectory
never touches the maximum level.

Figure 5.14: The inflow scenarios used in Test 8, with α = 2. The expected
value of the inflow from this tree is shown in red.

Figure 5.15: The figure shows the reservoir trajectories of R2 in test system
2 for the inflow scenarios shown in Figure 5.14, using α = 2. The red line
shows the expected reservoir trajectory, and the light blue bars represent the
production discharge through P1.

In Figure 5.14, the deviations from the average in the inflow scenarios have
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been multiplied by α = 2. The expected reservoir trajectory seen in Figure
5.15 is similar to the previous case, but the level is drawn down about 1
meter further. In this case, the most extreme scenario leads to spillage from
R2 in the final hours of the period.

Figure 5.16: The inflow scenarios used in Test 8, with α = 5. The expected
value of the inflow from this tree is shown in red.

Figure 5.17: The figure shows the reservoir trajectories of R2 in test system
2 for the inflow scenarios shown in Figure 5.16, using α = 5. The red line
shows the expected reservoir trajectory, and the light blue bars represent the
production discharge through P1.
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When using α = 5 the shape of the trajectory changes, exhibiting a more
wavy form. The reservoir level is not taken as high as in the 2 previous cases.
Spillage from R2 is observed for the 2 scenarios with highest inflow. Here,
the behavior for low inflow can also be studied, as several scenarios have zero
inflow in much of the period. The most drastic consequence of this is seen
when the spill gate of R1 is used to obtain the common production for a low
inflow scenario in hour 19.

From Figures 5.13, 5.15 and 5.17 it is observed that increasing the ampli-
tude of the inflow leads to a small reduction in the production. Taking the
reservoir level below the lowest regulated level (LRL) should be avoided, and
is therefore associated with a severe penalty cost in both SHARM and SHOP.
When α is increased, more scenarios with almost no inflow appear. As the
production is common to all scenarios, it is reduced so that the reservoir
should not be emptied in these cases.

From the results shown above, it is clear that the reservoir handling by
SHARM display more robustness than that of SHOP. Using the original
inflow scenarios, spillage was avoided for all cases with the given production
and discharge schedule. The test supports the hypothesis put forward in
the example in Section 3.1, that a stochastic model is suited to perform
scheduling on this kind of topology.

Experienced production planners at Statkraft have verified that the ex-
pected reservoir trajectory from SHARM is satisfactory. It will also achieve a
higher head, and hence give better effect, than the somewhat too risk averse
manual plans used today.

With regards to the changes in input, SHARM reacts as expected. The
schedules respond to the new input when it is possible, keeping the reservoir
level lower when the amplitude is increased. It can be noted that the solution
time increased with α. For α = 1, 2 and 5, the solution times were 210,
273 and 424 seconds, respectively. This may be explained in part by the
spillage that occurred in the latter 2 cases, and the corresponding penalty
cost calculations.

5.6 Similar investigations

To contextualize the results, especially those of Tests 1 and 3 - 6, it can
be noted that earlier investigations of stochastic short-term scheduling, such
as [26] and [31], also have found a slight increase in income when using a
stochastic model compared to a deterministic. The former applies a simpli-
fied model based on the one described in [9] to a cascaded system with 3
plants, using stochastic price and inflow. Less than 1% increase in the ob-
jective value is achieved when scheduling the day ahead. The latter develops
a model based on the one presented in [8], but with increased time horizon
to overcome problems in the coupling to the long-term model. A simulation

56



framework is used to compare the performance of the stochastic and deter-
ministic models under price and inflow uncertainty for a period of 20 weeks.
For a system similar to test system 1, an increased income of around e40 000
is found for this period, corresponding to around 0.1% of the total revenue.
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Chapter 6

Conclusion

The objective of this thesis has been to evaluate the utilization of a stochastic
programming model for short-term hydro power scheduling. As opposed to
some of the earlier work on this topic, the focus has been on the real-life
application of such a tool. By considering a prototype of the stochastic
model SHARM, which is based on the widely used SHOP model, it has
been possible to use the same degree of detail as in the current operative
scheduling.

The first chapters have presented a brief introduction to hydro power
scheduling, and described stochastic programming and its applications to
this field.

A range of different tests have been conducted to evaluate the stochastic
model. The evaluation process has considered two main objectives. First,
the results from the SHARM prototype have been compared to those from
SHOP with price and inflow uncertainty. Both objective function values
and reservoir handling have been considered. The second objective has been
to examine the computational performance of the new model. Both these
approaches have aimed at revealing the potential of using a stochastic model
in operational hydro power scheduling, from a financial and practical point of
view. The conclusions based on the work of this thesis are presented below.

6.1 Comparison against SHOP

The comparison between the 2 models have mainly focused on the con-
struction of day-ahead plans. Using a week-long optimization period, the
deterministic plans have been imposed as schedules on SHARM runs with
stochastic scenario trees. The resulting objective function values have been
compared to corresponding runs without a deterministic day-ahead plan, as
described in Section 4.3.3.

The stochastic parameters considered in this work are inflows and prices.
Scenarios have been provided by the hydrology and price forecasting depart-
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ments at Statkraft, and corresponds to the ones used operationally. Evalua-
tion of day-ahead plans have been carried out for the 2 real-life HPP hydro
power systems described in Section 4.1.

Applying stochastic prices only, test system 1 was run for 24 days in
the winter depletion season, using input from the operational scheduling.
Deterministic day-ahead plans were produced and compared to the stochas-
tic scheduling. An average gain of e88 was achieved by using stochastic
scheduling. However, only 4 of the 24 cases contributed increased profit
above the iteration accuracy. No definite explanation has been found, but it
is suggested that these earnings appear as the result of peaks in some of the
price scenarios for the day ahead. This seems logical, as SHARM in these
cases sees information that the deterministic model does not. The majority
of the increased income stems from an increase in the traded power during
the optimization period.

Similar analyses were conducted for a week in the start of May, during
the spring thaw. These tests considered stochastic inflows and a combination
of stochastic inflows and prices for both test system 1 and 2. Even smaller
differences were observed between deterministic and stochastic day-ahead
plans. The results for test system 2 were practically identical, while there
was one case for test system 1 that produced an increased income above the
iteration accuracy. As the time span of these tests were just one fourth of
the one considering price uncertainty, it is difficult to conclude on which of
the uncertain parameters affect the scheduling the most.

Taking a more qualitative approach, the reservoir handling for the smaller
reservoir in test system 2 was considered for different inputs. This topology
is not handled satisfactorily by SHOP, so it is currently operated manually.
A common plan for production and discharge for all scenarios in the whole
optimization period was specified in SHARM. The resulting expected reser-
voir trajectory was found to meet the expectations of the system operators,
and spillage was avoided for all the operational input scenarios. In such sit-
uations, the stochastic alternative outperforms the deterministic scheduling
model. Using SHARM to create robust, week-long plans may be an approach
that should be considered for other situations as well.

If such plans from SHARM can be trusted, this approach could be of
great benefit for the producers. In addition to producing a more optimal
plan based on the given input, the need for manual adjustments will be
reduced. This will in turn mean that more time can be spent on other tasks,
and the risk of human error is avoided. Manual specification of new reservoir
limits, such as in test system 2, are based on experience, and can hence not
be guaranteed to be optimal.

To summarize, the use of stochastic scheduling to produce day-ahead
plans seems to have little effect on the expected income of the producer
compared to the current deterministic model. In this work, 2 different water-
courses have been considered, with price uncertainty in the winter depletion
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season and price and price/inflow uncertainty in the spring flooding season.
The largest differences are found when considering price uncertainty, usually
if some of the scenarios deviate significantly from the rest in the day-ahead
period.

It should be noted that this is based on the method of evaluation de-
scribed in Section 4.3.3, which use the given input scenarios to represent all
possible outcomes. This means that the form and distribution of the input
scenarios will have a strong effect on the results. The range of systems con-
sidered has been limited by several factors, and may not represent situations
were the effect of a stochastic model is expected to be most pronounced.
Reviewing the results of the tests for increased income, it is evident that the
slight difference does not justify replacing SHOP by SHARM in all cases,
especially when considering the increased CPU-time.

The small differences may be explained in many ways. One factor is
that the situations considered in Tests 1 and 3 - 6 did not include high risks
of flooding or emptying reservoirs. It is also possible that comparing the
reservoir handling and bidding by SHARM and SHOP over a longer period
will give a different picture of the expected profit.

Using SHARM to generate a single production and discharge schedule
for the week ahead results in a sensible expected reservoir trajectory for test
system 2. A robust reservoir handling is observed, avoiding spillage for all
scenarios while still maintaining a reasonably high head. Applying SHARM
to this situation illustrates the effect of considering uncertainty more clearly
than comparing the objective function values. In such cases, where manual
scheduling is applied today, SHARM may be more beneficial.

6.2 Computational performance of SHARM

Supplementing the SHARM prototype is an implementation of algorithms
for construction and reduction of scenario trees. The in-sample and out-of-
sample stability of the reduction algorithm described in Section 3.3.3 and
Appendix B have been investigated for a scenario fan with price uncertainty,
and found to be very satisfactory. In-sample analyses for scenario trees with
inflow and price/inflow uncertainty have also been conducted. The results
are in accordance with those presented in [14] and suggests that the reduction
algorithm has good stability properties.

The run-time of SHARM with scenario trees constructed using different
degrees of reduction have been examined for different systems and inputs.
For test systems 1 and 2, with both inflow and price/inflow uncertainty, a
reduction strategy is proposed. The strategy is to first construct a tree from
the original fan using a degree of reduction εrel = 0.10 and then reducing
this tree with εrel = 0.50. It is found that the solution time for these cases
using the resulting tree usually is below 100 seconds. Solving corresponding
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deterministic cases in SHARM takes approximately 25 seconds, and using
SHOP on the operational servers further reduce the CPU-time of these cases
to a couple of seconds. At the same time, little of the information is lost.
The most extreme scenarios remain and the deviations in objective value are
generally well below 1%.

It is difficult to conclude on the computational performance of the stochas-
tic model. In an operational setting it is necessary to optimize all the plants
and reservoirs within a price area, which can consist of 10 watercourses or
more. Due to the limited features of the prototype, it has not been possible
to test SHARM on systems of this size in the course of this work. On sin-
gle systems, it is shown that relatively low solution times can be achieved
while still reflecting much of the original stochastic information, but it is not
known how the CPU-time will scale with the system size.

6.3 Final conclusions

Testing for increased profit: Based on the results produced in this the-
sis, it seems there is little effect of using stochastic scheduling on the objective
function. Two different watercourses have been tested on, and uncertainty
in inflows, prices and both have been applied. The observed increase in in-
come is mainly due to increased trading profit, usually in the presence of
some extreme price scenario early in the optimization period. It should be
noted that only a couple of situations and system states have been considered
here, so there may very well be other cases where the effect of considering
uncertainty is more significant.

Testing of reservoir handling: Using SHARM to handle the small intake
reservoir R2 in test system 2 is more successful, resulting in a robust plan that
avoids spillage. The results presented here suggests that running SHARM
with stochastic parameters gives a better reservoir handling than SHOP.
The changes in production are less pronounced, especially when considering
day-ahead plans.

Testing the tree reduction: The scenario tree construction and reduc-
tion algorithms supplementing SHARM performs well in terms of stability.
By reducing the size of the input, the solution times have been cut short
significantly without too large deviations in the objective. This is promis-
ing, and necessary if SHARM should be used in the day-to-day operational
scheduling.

Final recommendations: As mentioned in Section 5.6, the expected in-
crease in profit from considering uncertainty is found to be limited also in
other studies. One conclusion from this work is that there seems to be little
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reason to replace SHOP with SHARM in all situations, since the expected
increase in profit is low and the CPU-times are much higher. The results
from Test 8 does however suggest that SHARM performs well in cases where
the uncertainty is more significant, so focusing the SHARM effort on such
situations may be advisable.
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Chapter 7

Suggestions for further
development

The development of SHARM has been a part of the KMB project “Optimal
Short-term Scheduling of Wind and Hydro Resources”. Statkraft and the
other participating production companies must decide, based on the perfor-
mance of the prototype, whether they will finance a full implementation of
SHARM or not. This means that the further work on this topic has different
time horizons. First, some further testing should be done to find out if the
expected profit of using stochastic scheduling is worth the investment. If it
is decided to go ahead with SHARM, it is necessary to expand the current
implementation in several areas. This section will present some of the most
pressing tasks, both in the short and longer term.

In the immediate future, it is natural to focus on two main areas. The
method of evaluation, and the application of SHARM to other functions.

Concerning the method of evaluation, alternatives to the one presented
here should aim at investigating the long-term effects of using stochastic
scheduling in more detail. From e.g. Test 8, it is evident that a more
robust reservoir handling is one of the most desirable features of a stochastic
model. This feature is not captured by the day-ahead approach taken here,
and a scheduling framework that handles a reservoir over an extended period
should be applied. The most practical way to do this will probably be to
construct a simulation environment, and run SHOP and SHARM in parallel
to see how they will manage a given system. Only in this way can a proper
estimate of the expected profit of considering uncertainty be produced.

An extension of the method used here will be used in the future work [23]
to evaluate the performance of SHARM in a lack-of-water situation and a
situation with potentially high inflow late in the scheduling period. This
method is similar to the one used in [14], but considers stochastic prices as
well.

The qualitative approach taken for Test 8 in Section 5.5 may also be ap-
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plied to other topologies. In situations where manual scheduling is performed
because the SHOP plans are not optimal, there can be much to gain from
applying stochastic scheduling. If these plans can be trusted, one gets the
benefit of not needing any manual scheduling in addition to a more optimal
plan.

Another aspect may be to assess the input scenarios. The scenarios used
in this work have generally had a relatively low variability, especially in the
first few days. Even though the forecasts may be quite reliable, it might
be advisable to include some more extreme scenarios with low probability
to account for unforeseen events. The effect of adding such scenarios could
be considered, as it has not been tested specifically in this work. There
is also the question of correlation between inflow and price, that could be
investigated. Finally, run-time tests should be performed on larger systems.
This may require either a further development of the SHARM prototype, or
a simplification of some of the power system models.

Other applications of SHARM have not been discussed in detail in this
work. Such possibilities should however be considered when deciding to
go forward with the project or not. This will be left for the production
companies to investigate for themselves, but areas such as trading in the
balancing markets, calculation of water values and transition to seasonal or
long-term models can be mentioned. If SHARM should be used for balance
power trading, the price in this market has to be modeled as a stochastic
variable.

If it is decided to go forward with the project, and implement a full ver-
sion of SHARM, other challenges must be considered. Obviously, all the
features of SHOP must be implemented in SHARM. Using a stochastic pro-
gramming model will necessarily lead to longer solution times, so measures to
limit this downside should be taken. One alternative could be to investigate
the possibility of using parallel processing in the solution.

The current framework for constructing and reducing scenario trees should
be reconsidered. Especially the current tool for creating scenario fans on
XML-format has limitations, both in terms of CPU-time and the possible
size of the fans. This should probably be carried out by each producer sep-
arately, to allow for coupling to the scenario generation method used. To
succeed, it is important that the research and industry work together to find
a solution that also respect the operational requirements.
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Appendix A

List of symbols

Symbol Description
I Set of nodes, i ∈ I = {1, . . . , N}.
Ipari ⊂ I Set of parent nodes for every i ∈ I. Only one parent per node.
Iend ⊂ I Set of end nodes in I, i.e. the nodes in the final period.
E Set of steps in the discretized end-value function for stored water.

Table A.1: List of the sets used in the model example of Section 3.4.

Symbol Unit Description
Xini MWh Initial reservoir content.
Xmax MWh Reservoir capacity.
pi 1 Probability for node i.
yi e/ MWh Spot price in node i.
cj e/ MWh Marginal value of stored water, step j ∈ E.
dmaxj MWh Capacity for step j in end-value function.
gmax MWh Generator capacity.
N 1 Number of nodes.
wi e End-value of stored water.

Table A.2: List of the parameters used in the model example of Section 3.4.

Symbol Unit Description
qi Mwh Inflow to the reservoir.

Table A.3: The stochastic variable used in the model example of Section 3.4.

Symbol Unit Description
gi MWh Generation.
si MWh Spillage.
Xi MWh Reservoir contents at the end of the period.
dij MWh Use of step j in the discretized end-value function for node i.
π e Objective function. Expected future profit.

Table A.4: List of other variables used in the model example of Section 3.4.
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Appendix B

Algorithms

This appendix presents the two algorithms mentioned in Section 3.3.3, and
the nomenclature is the same as in that section. Along with a technical
description of each algorithm, a short conceptual explanation is included.

B.1 Fast forward selection

Algorithm B.1 is used for scenario reduction. The starting point is a set of
N scenarios, and the objective is to remove N − n of these to end up with
the reduced tree that is closest to the original one in terms of a probability
metric. This is achieved by selecting one scenario in each of n stages. At
every stage the distances between the remaining scenarios in terms of cT is
found, and the probability weighted distance from one scenario to all the
others is calculated. The scenario closest to the other remaining ones is
chosen, and its index removed from the set J of deleted scenarios.

Algorithm B.1 Fast forward selection

c
[1]
ku ← cT (ξk, ξu), k, u = 1, . . . , N ;
z
[1]
u ←

∑N
k=1
k 6=u

pkc
[1]
ku, u = 1, . . . , N ;

u1 ∈ arg minu∈{1,...,N} z
[1]
u ;

J [1] ← {1, . . . , N} \ {u1};
for i = 2 . . . n do
c
[i]
ku ← min{c[i−1]

ku , c
[i−1]
kui−1

}, k, u ∈ J [i−1];

z
[i]
u ←

∑
k∈J [i−1]\{ui} pkc

[i]
ku, u ∈ J

[i−1];

ui ∈ arg minu∈J [i−1] z
[i]
u ;

J [i] ← J [i−1] \ {ui};
end for
Redistribute probabilities by (3.4);
The index set J [n] contains N − n deleted scenarios.
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B.2 Backwards construction

Algorithm B.2 is used for scenario tree construction. The starting point is
a distribution P approximated by a set of N scenarios ξi = (ξi1, . . . , ξ

i
T ) in

the form of a scenario fan. This implies that all scenarios have the same
starting point ξ∗1 at t = 1 and branching only at the first stage. P and the
tolerance ε > 0 is assumed given. The objective is to find a distribution Pε
whose scenarios form a tree with root node ξ∗1 , has fewer nodes than P , and
satisfies

DK,J(P, Pε) ≤ ε. (B.1)

Now a recursive scenario reduction is performed on the horizon {1, . . . , t},
where t is reduced recursively from t = T to t = 2. For a given time horizon
{1, . . . , t}, the following relative costs are considered:

ct(ξ, x̃i) :=
t∑

τ=1

||ξτ − ξ̃τ ||. (B.2)

Equation (B.2) corresponds to Equation (3.2) for r = 1. It can be shown
that Equation (B.1) holds for any scenario tree Pε constructed by the fol-
lowing algorithm:

Algorithm B.2 Backwards construction

Set εt > 0, t = 2, . . . , T , so that
∑T

t=2 εt ≤ ε;
IT+1 ← {1, . . . , N}, piT+1 ← pi, ∀i ∈ [1, N ];
for m = 1 . . . T − 1 do
t← T + 1−m;
Determine It ⊂ It+1 by scenario reduction such that∑

i∈It+1\It(p
i
t+1 minj∈It ct(ξi, ξj)) ≤ εt;

Update the probabilities p by pjt = pjt+1 +
∑

i∈Jtj
pit+1, with

Jtj = {i ∈ It+1 \ It : j = jt(i)} and
jt(i) = arg minj∈It ct(ξi, ξj), i ∈ It+1 \ It.;

end for
Construct Pε: Determine recursively mappings αt : IT → It for t =
T, . . . , 2, where αT ← id|IT and such that

αt(i) =

{
jt(αt+1(i)) if αt+1(i) ∈ It+1 \ It,
αt+1(i) else,

for t = T − 1, . . . , 2;

Determine scenarios ξ̃j for j ∈ IT with ξ̃j1 = ξ∗1 , and ξ̃jt = ξ
αt(j)
1 for

t = 2, . . . , T ;
p̃j ← pjT and Pε ←

∑
j∈IT δξ̃j ;

The tolerances are chosen recursively, as described in [20], to be
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εT = ε(1− q), q ∈ (0, 1), (B.3)
εt = qεt+1, t = T − 1, . . . , 2. (B.4)

Choosing q closer to 1 leads to more branching points and a higher num-
ber of remaining scenarios, while a q closer to 0 has the opposite effect. In
the scenario tree reductions and constructions performed in this work, q is
chosen to be 0.95.
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Appendix C

Additional results

The results presented here are the same as in Chapter 5, given in numbers
in stead of graphs. The total objective function value is calculated as the
sum of buy/sale income and end-reservoir value, minus penalty costs.

Difference [e]
Test case Buy/Sale End-reservoir Penalties Total
1 1,23 0,30 0 1,53
2 5,30 -0,70 0 4,60
3 217,33 -227,60 0 -10,27
4 14,17 -97,36 0 -83,19
5 458,71 -587,63 0 -128,92
6 157,93 -5,21 0 152,72
7 -14,56 5,92 0 -8,64
Average 120,02 -130,33 0 -10,31

Table C.1: The table shows detailed results from Test 3. The same results
are presented in Figure 5.9. The deterministic objectives were in the range
of e7 - 12 million.

Difference [e]
Test case Buy/Sale End-reservoir Penalties Total
1 1,93 -0,34 0 1,59
2 122,60 -123,48 0 -0,88
3 -256,10 358,26 0 93,16
4 524,61 -613,33 0 -88,72
5 219,25 -34,66 0 184,59
6 1,11 0,56 0 1,67
Average 100,73 -68,83 0 31,90

Table C.2: The table shows detailed results from Test 4. The same results
are presented in Figure 5.10. The deterministic objectives were in the range
of e2 - 3 million.
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Difference [e]
Test case Buy/Sale End-reservoir Penalties Total
1 303,88 203,09 0 506,97
2 -66,58 61,31 0 -5,27
3 -29,28 35,50 0 -6,22
4 104,77 -27,34 0 77,43
5 -15,86 22,85 0 6,99
6 3,57 0,87 0 4,44
7 58,53 -8,25 0 50,28
8 827,29 1,45 0 828,74
9 345,58 35,26 0 380,84
10 6,72 1,82 0 8,54
11 -1,69 -0,19 0 -1,88
12 -71,73 53,61 0 -18,12
13 -4,83 48,02 0 43,19
14 105,20 -109,41 0 -4,21
15 4,68 -0,60 0 4,08
16 19,11 2,55 0 21,66
17 -2,37 0,43 0 -1,94
18 0,79 0,38 0 1,17
19 0,03 198,18 0 198,21
20 -0,82 0,88 0 0,06
21 -0,55 0,19 0 -0,36
22 -3,91 1,37 0 -2,54
23 18,14 -1,92 0 16,22
24 -5,93 8,86 0 2,93
Average 66,45 22,04 0 87,97

Table C.3: The table shows detailed results from Test 1. The same results
are presented in Figure 5.1. The deterministic objectives were in the range
of e16 - 18 million.
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Difference [e]
Test case Buy/Sale End-reservoir Penalties Total
1 33,53 -17,77 0 15,76
2 29,64 -15,94 0,01 13,70
3 28,83 -20,38 0 8,45
4 24,24 -18,95 0 5,29
5 25,71 -18,94 0 6,77
6 29,86 -18,95 0 10,91
7 28,64 -18,94 0 9,70
Average 28,64 .18,55 0,00 10,08

Table C.4: The table shows detailed results from Test 5. These results are
not presented anywhere else in the report. The deterministic objectives were
in the range of e8 - 13 million.

Difference [e]
Test case Buy/Sale End-reservoir Penalties Total
1 32,27 -17,30 0 14,97
2 29,79 -20,48 0,03 9,31
3 23,62 -18,95 0 4,67
4 273,72 -267,94 0 5,78
5 30,14 -18,96 0 11,18
6 30,42 -18,94 0 11,48
Average 69,99 -60,43 0,01 9,57

Table C.5: The table shows detailed results from Test 6. These results are
not presented anywhere else in the report. The deterministic objectives were
in the range of e3 - 4 million.
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