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Abstract

We have studied a supply chain for delivering biomass to heating plants
where there are uncertainty in demand. Design of such supply chains consid-
ers finding the optimal terminal structure and an optimal inventory policy.
Such problems may become complex and difficult to solve manually. We have
therefore developed optimization models based on three approaches in order to
solve the problem; a deterministic optimization approach with preset required
safety stock levels, a robust model and a stochastic model.

We have used these models to solve one test case and two large industrial
cases. As fixed costs of opening terminal were unknown, the models were
runned with a preset number of opened terminals. In order to solve the two
industrial cases on a normal computer we needed to reduce the size of the
problem. This was done by use of supplier and assortment aggregation, arc-
removal, presolving and an LP-relaxation based heuristic. We have shown
that if the proper aggregation approach is used, the use of aggregation could
reduce the size of the problems considerably while only marginally reduce the
quality of the solutions. The LP-relaxation based heuristic speeded up the
solution times, but the solution quality may become poorer when the number
of opened terminals is low.

We have found that robustness could be achieved by increasing the capac-
ities in the supply chain, increasing inventories or by deciding on the optimal
terminal structure. The stochastic and robust optimization approach returned
higher objective values than the deterministic approach. The reason seemed
to be the increased safety stock levels used in the deterministic approach.

The stochastic and robust solutions were evaluated by use of the value
of stochastic solution (VSS), and value of robust solution (VRS). The two
approaches returned solutions which performed better in the future than the
deterministic model, and the models gave similar solutions. The stochastic
model used less memory and less solution time.
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1 Introduction

In times of the ongoing global climate change debate, renewable energy sources have

gained new popularity. Governments are now seeking opportunities to replace fossil

fuels with renewable energy sources, such as wind energy, solar energy and biomass.

One of the countries that have succeeded in this aim is Sweden. In the last three

decades Sweden has undergone a change from depending on oil and fossil fuels for

heating, to increasingly utilizing biomass and other renewable energy sources.

The motivation behind the aim of Sweden has been twofold. In the 80s, the goal

was to minimize the country’s oil dependency, but today, biomass is increasingly

used as a means for reducing the country’s emissions of climate gasses. District

heating accounts for about 40 % of the heating market, and now more than 62 % of

the utilized fuel in district heating is biomass1. Their use of biomass fuel is expected

to grow the coming years. Of similar reasons, use of biomass is expected to grow in

other countries as well, such as Austria, Denmark, Finland, Germany, Norway and

USA.

The most popular bio fuels are mainly wood fuels, ethanol, black liquors and tall

oil pitches. One of biomass’ main advantages is that it is a very versatile energy

source, generating not only electricity, but also heat and bio fuels that could be

utilized in the transportation sector. It is also one of the few renewable energy

sources that may be stored and generate energy on-demand.

The Swedish forest institute believe that harvest of primary forest fuel could be

doubled or more, but is limited by an efficient logistic planning. [Flisberg et al., 2010].

Due to new extraction methods and economies of scale due to larger harvested quan-

tities, production costs have decreased the last years. But prices have also remained

low, despite price increases of competing fossil fuels. The challenge for the biomass

fuel is therefore to improve the efficiency of the logistic processes in order to keep

costs lower in order to compete against other fuel types.

Logistical costs have a great influence on the production costs. Optimization

models have therefore been developed to increase the quality planning in the supply

chains. The Forestry Research Institute of Sweden, Skogforsk, has developed several

planning systems for use in forestry. This includes, FlowOpt, a decision support tool

transportation planning, FuelOpt, a decision support tool for planning forest fuel

logistics, and RuttOpt, a decision support tool for routing of logging trucks. These

systems could be used for improving the logistics at a operational and a tactical

level, and they could also be used for analyzing changes in the supply chain design.

1The Government Offices of Sweden, http://www.sweden.gov.se/sb/d/5745/a/19594, accessed
02.03.2010.
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[Frisk and Rönnqvist, 2005] [Flisberg et al., 2010] [Andersson et al., 2007]

Bredström & Rönnqvist developed a model for solving tactical decisions in a

biomass supply chain with one assortment. They did not consider the configuration

of the terminals. They developed a robust optimization model for this problem,

and they developed and tested an algorithm for solving LP-problems with uncertain

parameters on this problem. [Bredström and Rönnqvist, 2008]

In the author’s project thesis [Enoksen and Sværen, 2009], we developed a for-

mulated a supply chain design problem to find optimal terminal structures. We also

looked at the number of terminals and what level of safety stock that were needed

in order to make supply chains robust under uncertainty in demand

There has been limited amount of work on supply chain design of forestry supply

chains. Such supply chains often face uncertainty in demand. The challenge is to

take this uncertainty into consideration when designing supply chains in a way that

maximizes both robustness and cost efficiency. The design includes finding the

optimal terminal structure and their inventory policy. Even though the FuelOpt

model found in [Flisberg et al., 2010], mainly is designed for tactical decisions in a

supply chain, it could also be used to analyze changes in the supply chain design.

FuelOpt uses deterministic optimization, and uses preset required safety stock levels

to handle uncertainty. However, uncertainty is only assumed and not modeled. This

could results in a supply chain design and an inventory policy that perform well on

paper, but could result in excess costs and difficulties in fulfilling demand as demand

changes in the future.

An alternative is to use stochastic or robust optimization. These approaches take

uncertainty into consideration. We have studied the biomass supply chain design

problem, and developed optimization model based on all three approaches. These

have been used to solve two real cases. We have also developed methods in order to

solve the models on regular computers. The approaches and their potential use in

practical planning are evaluated in the end of this thesis. When considering terminal

inventory policy, we will limit the work to look at optimal inventory levels for the

different terminal structures.

We will in Section 2 and 3 present the problem and theory about biomass supply

chains. In Section 4 and 5 we formulate the optimization problem. Section 6 and 7

show how we have implemented our models and used different methods in order to

reduce and solve the models. Our results are shown in Sections 8, 9 and 10 and we

evaluate and discuss the models and results in Section 11.
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2 Problem description

2.1 Description of supply chain

The biomasses we will consider are solid wood fuels that are extracted from forests.

It is produced by planting trees that are later cut down. The logs are usually

transported away once they are cut, while tops and branches usually remain in the

forests. The logs or pulpwood could be utilized as timber, paper or biomass fuel,

or other purposes. The leftovers could be harvested and used to produce energy as

biomass. Up to a year later these leftover are therefore harvested, and processed to

either wood chippings or other biomass assortments.

The processing of harvested wood into biomass is shown in Figure 12. The

processing occurs either in the catchment areas or at terminals. Wood chippings

could be produced by chipping and drying the wood. The non-refined non-dried

wood chippings usually have humidity as high as 55 %, and could only be burned in

larger heating plants. As the non-dried wood chippings may rot due to humidity, it

needs to be dried at suitable areas. As the wood is dried, the humidity is reduced

to about 15 %, and could give a useful heat of 2000-2600 kWh/fm3 dependent on

wood type and humidity3 4. Wood chippings could also be extracted from residue

from industrial processes, but may require different processing to become useful for

heating plants.

Figure 1: Processing of solid biomass fuels extracted from the forest

A biomass supply chain consists of suppliers, terminals and customers. The

2Based on a figure from ENOVA. http://www.fornybar.no/file.axd?fileID=4, accessed
30.5.2010, 13:20

31 fm3 = 1 solid cubic meters
4Helmer Belbo: ”Harvesting and production of chippings”, slides from Bioenergy conference

in Molde, 28-29.4 2007. Extracted from http://www.google.no/url?sa=t\&source=web\
&ct=res\&cd=2\&ved=0CBkQFjAB&url=http%3A%2F%2Ffylkesmannen.no%2FSkog_og_landskap_
Hc7ok685739ap.pdf.file&rct=j\&q=Innh%C3%B8stingsmetoder+og+produksjon+av&ei=hV_
9S7KEFsX6-QbmhNHECw\&usg=AFQjCNF12NtAUDI_cj7vvhc7RadM-4NyQQ, accessed 27.5.2010, 23:50

3

http://www.fornybar.no/file.axd?fileID=4
http://www.google.no/url?sa=t&source=web&ct=res&cd=2&ved=0CBkQFjAB&url=http%3A%2F%2Ffylkesmannen.no%2FSkog_og_landskap_Hc7ok685739ap.pdf.file&rct=j&q=Innh%C3%B8stingsmetoder+og+produksjon+av&ei=hV_9S7KEFsX6-QbmhNHECw&usg=AFQjCNF12NtAUDI_cj7vvhc7RadM-4NyQQ
http://www.google.no/url?sa=t&source=web&ct=res&cd=2&ved=0CBkQFjAB&url=http%3A%2F%2Ffylkesmannen.no%2FSkog_og_landskap_Hc7ok685739ap.pdf.file&rct=j&q=Innh%C3%B8stingsmetoder+og+produksjon+av&ei=hV_9S7KEFsX6-QbmhNHECw&usg=AFQjCNF12NtAUDI_cj7vvhc7RadM-4NyQQ
http://www.google.no/url?sa=t&source=web&ct=res&cd=2&ved=0CBkQFjAB&url=http%3A%2F%2Ffylkesmannen.no%2FSkog_og_landskap_Hc7ok685739ap.pdf.file&rct=j&q=Innh%C3%B8stingsmetoder+og+produksjon+av&ei=hV_9S7KEFsX6-QbmhNHECw&usg=AFQjCNF12NtAUDI_cj7vvhc7RadM-4NyQQ
http://www.google.no/url?sa=t&source=web&ct=res&cd=2&ved=0CBkQFjAB&url=http%3A%2F%2Ffylkesmannen.no%2FSkog_og_landskap_Hc7ok685739ap.pdf.file&rct=j&q=Innh%C3%B8stingsmetoder+og+produksjon+av&ei=hV_9S7KEFsX6-QbmhNHECw&usg=AFQjCNF12NtAUDI_cj7vvhc7RadM-4NyQQ


(a) Processing machinery (b) Cutting machinery

Figure 2: Machinery used in the gathering and processing of wood, pictures provided
by Skogforsk

suppliers and the terminals are contracted to or owned by the respective company.

Processing of assortments and building inventory could be performed at all of the

parts of the supply chain, but inventory at the customers is usually not allowed.

The supply points could be of different sizes and supply. The processing is usually

done by dedicated machinery. At the forest sites, different sized forwarder-mounted

chippers, truck mounted chippers, bundlers and modified forwarders could be used

for the processing, while large wood crushers could be found at the terminals, as

shown in Figure 2. The harvested wood could also be sent directly to the demand

points without any processing based on customer demand.

The terminals receive assortments from the suppliers, and may choose to store

the assortment to fulfill later demand, or process assortments. Terminals are used

for processing, and in most cases the greatest part of the processing machinery

exists at the terminals. They are also used as transshipments points in order to

utilize economies in scale when transporting to customers. The capacity of existing

terminals could usually be expanded if needed.

Several types of systems may be used to transport the biomass to the heating

plants. If the wood is chipped out in the forests, large chip trucks may be used

to transport it directly to the customers. Container solutions, where a container is

filled up in the forest, while another one is transported away, could also be used.

If chipping is done at terminals or customers, logging trucks for clash bundles or

special forest residue trucks may be used. One kind of truck combines the chip-

ping and transportation of the chips by use of a mounted chipper. These systems

may also be combined with train transport, as described in [Flisberg et al., 2010].

Transportation and processing capacities are limited by available work hours for the

crews.
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The wood is brought to district heating plants, where heat is generated by use

of either surplus heat from industries or through combustion of biomass or other

fuels such, oil or garbage. The plants distribute heat to industries and residents.

Some systems may also produce electricity by cogeneration; combined generation

of electricity and heat. Demand is given in assortment groups. This means that

demand could often be fulfilled by more than one type of biomass assortment. One

example is that assortment groups, such as saw logs, pulpwood, and forest residues

could also be divided into subgroups based on qualities or dimensions, or that de-

mand for wood chippings could be covered by chippings both from grot and logs.

[Gunnarson, 2007]

2.2 Planning and decision process

Delivery of biomass fuel is based on the customers’ demand. Each month the cus-

tomers submit their orders. These orders are based on the demand for heat, which

varies from month to month as the seasons change. But demand for heat would

also vary due to temperature or weather changes, or for other reasons. The demand

for biomass could therefore be hard to predict, and the true demand would only be

known when the customers have submitted their orders.

At the start of the year, the supplying company and the customers agree on

preliminary monthly volumes for the different biomass fuels. The fixed volume for

the full year is fixed at this time. The customers are allowed to order quantities

which lay within a contracted percentage above or under agreed monthly volume,

but this deviation is to be cancelled out through the rest of the year in order to

not deviate from the contracted annual volumes. There is therefore uncertainty in

demand for the forest fuel supply chain, but this uncertainty is bounded and limited

to upper and lower bounds. Also, one month ahead, the customers must specify the

coming month’s demand.

Planning levels are often divided in three: strategic, tactical and operational.

[Chopra and Meindl, 2007]. Strategic decisions involve long-term decisions such as

supply chain design, while tactical decisions decide on how to exploit the exist-

ing supply chain most efficient and operational decisions involve the day- to-day-

planning, i.e. routing of trucks.

Tactical decisions, such as deciding on inventory and processing levels, are usually

made by use of rolling horizon planning. The planning horizon is then divided into

time periods, e.g. a year is divided into months, and information on coming demand

and supply is used to plan inventory and processing for the coming months. However,

as uncertainty may lead to changes in the used data for later months, the decisions

5



Figure 3: An overview of the biomass supply chain

regarding later months are not implemented. Only decisions regarding the time

period close to when the planning is done is implemented. At the end of the month,

information is updated and the planning is redone for the remaining months.

A strategic decision is the supply chain design. This could affect the supply

chain profits and how well it handles sudden changes in demand. The design ba-

sically concerns the terminal structure, i.e. how many terminals to be used and

where they are to be located. Inventory could be stored at the terminals in order

to exploit transportation and processing capacities more efficient in high-demand

periods. But inventory and terminals would incur costs, and terminals may also

face investment costs. An optimal terminal structure with an appropriate inventory

policy is therefore important in order to find the optimal balance between costs and

robustness.
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3 Designing biomass supply chains

The decision that is considered to have the most significance on a supply chain’s

performance, is its design. Supply chains are designed with a time horizon of sev-

eral years, and such decisions are therefore regarded as strategic. These decisions

involve the configuration of the chain, allocation of resources and location of pro-

cesses [Chopra and Meindl, 2007]. A major challenge in supply chain design is to

respond to changes in prices, demand and other uncertain conditions for the coming

years. If facility are given inefficient locations, it could result in excess costs being in-

curred throughout the lifetime of the facilities, even though decisions on production

plans, transportation options, inventory management, and information sharing are

optimized in response to changing supply chain design. [Daskin and Berger, 2005]

Biomass supply chains have some features that separates them from other types

of supply chains. They may have a high number of sources with small quantities of

supply, demand for biomass are often subject to seasonality, the quality and supply

of the raw materials may vary, and there may be a need for specialized transportation

and storage of the raw materials. Also, the sources may in some time be non-active

due to need to e.g. regrow forest. Design of biomass supply chains should make sure

that there is supply to meet customers’ demand the entire year, and that correct

levels of biomass raw materials are delivered. [Fiedler et al., 2007] The costs in a

biomass supply chain also differs from other supply chains, as the products often

are of low value, and the dominant part of the costs are connected to the logistics

of the biomass. Decreased logistic costs are therefore particular important in order

to decrease biomass production costs.

According to [Fiedler et al., 2007], location of terminals should depend on:

� The position of catchment areas

� The processing equipment at the production site

� The existing and planned traffic infrastructure

� The infrastructural conditions and connection to traffic networks

� The inventory capacities at the production and the terminal sites

� The seasonal availability of biomass

� The fluctuations in demand

� Planning and controlling expenses

7



Design of biomass supply chain could therefore become a difficult and challenging

task, as the number of factors to take into consideration is very large. Uncertainty

will further increase this difficulty. For more information on biomass supply chains,

the articles by Fiedler and Eksioglu discuss many of the challenges with biomass

logistics, and particularly the balance between long-term strategic decisions and

medium & short decisions on a tactical and operational level. [Fiedler et al., 2007]

[Eksioglu et al., 2009]

3.1 Creating robust supply chains

As there is uncertainty in demand, we must ensure that the supply chain is robust.

Robustness is defined as being capable to perform well against uncertain future

conditions. [Snyder, 2003] Robustness considers external variations such as changes

in demand or production costs, while reliability considers internal variations, such

as if a terminal breaks down because of fire or a supplier shuts down. Even though

planners are reluctant to consider robustness and reliability at design time,”large

improvements in reliability and robustness can often be attained with only small

increase in the cost of the supply chain network.” [Daskin and Berger, 2005]

Robustness is usually handled through facility or inventory decisions or invest-

ment in capacity. Capacity investment would increase the supply chain’s ability to

respond to changes, while increased inventory would be used to buffer against vari-

ations in demand. Facility decisions, such as locations and capacities for plants or

warehouses, could also serve to increase robustness. As such decisions often incurs

investment costs, and often involve a long time horizon, they are hard to change on

a short time horizon. [Enoksen and Sværen, 2009]

3.2 Terminal location structures

There are in principle two forms of terminal structures: a centralized with few

terminals, and a decentralized one with several terminals. For the first case, the

chipping would be centralized and cover a large area. In the second, chipping would

be spread out over several terminals, and serve regional customers and suppliers.

One advantage of using a structure with a low number of terminals would be

that costs associated with running the terminals are reduced. Safety stock levels

could also be reduced due to risk pooling. Such a structure is however only feasible

if transportation capacity is quite high.

One advantage of using a larger number of terminals, is that inventories may be

situated closer to customers. As transport capacity is often limited, this increases

robustness, as demand in peaking periods could be stored at the terminals, and
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the transportation capacity could therefore be more efficient utilized as distances

to customers decreases. This increases the robustness of the supply chain, but

increases costs. If processing capacity at the suppliers is restricted, it could also

save transportation costs of locating the terminals close to supply points, as the

wood demanded does not need to take unnecessary detours because of processing.

3.3 Inventory policy

Inventory is usually created in order to store finished product that are soon to be

delivered, or for balancing transportation and processing capacities in the supply

chain. The last point is true for the terminal inventory. It can be used used to store

assortments closer to the customer in order to be able to deliver to the costumer

in case of peaks in demand that the supply chain otherwise would not handle. We

would therefore expect increased inventory levels if transportation or processing

capacities are limiting. Inventory could also be used for gaining economies of scale

in production and transportation.

Required safety stock is used to balance expected demand with uncertainty. One

option is to have a fixed preset level of safety stock for all the time periods. This

can be very inefficient as such levels at given time periods could be considerably

higher than demand. In order to better handle demand variations, one option is to

have a safety stock that follows the expected demand. [Flisberg et al., 2010] use a

given level of the future expected demand. In communication with the authors we

learned that they used 40 % of the expected demand in the next period as a level

for the required safety stock.

One other option is to use a robust or stochastic optimization model to find

optimal required safety stock levels by extracting the lowest inventory built by the

models over the scenarios. The main trade-off in choosing safety stock levels is the

increased robustness of the supply chain versus the costs this inventory induces.

3.4 Optimization approaches

3.4.1 Deterministic optimization

Deterministic optimization is the most common optimization approach. It uses

the expected value of all the given data, and the solutions are therefore called the

expected value solutions. This approach gives smaller data models as uncertainty in

data is not included. In order to use a deterministic model in supply chain planning

under demand uncertainty, a deterministic level of safety stock can be introduced

in the model.
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3.4.2 Stochastic optimization

If the future is hard to predict, and data may be uncertain, deterministic optimiza-

tion could return solutions that would perform rather poorly in the future. If we

have some kind of knowledge on how the future may develop we can use stochastic

optimization. Stochastic optimization does a trade-off between different future sce-

narios of input data to find the best feasible solution. This solution would not be

optimal in all future realizations of data, but would be the best solution given the

uncertainty that surrounds the future.

Future realizations of data are usually modeled as scenarios, and those are as-

sumed connected to a probability distribution. Variables are divided in two cat-

egories: anticipative and non-anticipative. Anticipative variables are used for de-

cisions taken after data uncertainties have been revealed, while non-anticipative

solutions are taken as first stage decisions before this uncertainty is revealed.

Stochastic optimization solutions could be evaluated by the use of the expected

value of perfect information (EVPI), which is the difference between the wait & see-

problem and the stochastic solution. The wait & see-problem corresponds to solving

the stochastic optimization problem for all scenarios, but the non-anticipative vari-

ables are made anticipative, i.e. given a value for each scenario. This would evaluate

the solution on how well it performs against all future realizations of data.

One other form of measurement used in stochastic optimization is the value of

stochastic solution (VSS). VSS is calculated by first running the stochastic program,

and then running the deterministic model and import the terminal structure and

the required safety stock levels as input to the stochastic model. VSS is then found

as the difference between the stochastic solution and the inputted deterministic

solution. VSS gives information on when the stochastic models give better solutions

than the deterministic models.

A disadvantage with stochastic optimization is that information on the cor-

rect parameters and information on the stochastic distribution functions may be

difficult to provide. [Bredström and Rönnqvist, 2008] One approach for overcom-

ing this problem is to replace the stochastic distribution functions in the recourse

function with the sample mean,[Higle, 2005]. A prerequisite is that we have com-

plete recourse, i.e. the recourse subproblem is feasible for all outcomes of earlier

decisions.[Higle, 2005] This approach is dependent on the scenarios drawn, and is

therefore affected by error. The stochastic optimization models could also become

very large and difficult to solve.
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3.4.3 Robust optimization

The purpose of robust optimization is to find solutions that are feasible for any

possible future outcomes. Ben-Tal and Nemirovski use the term ”conservative-

ness” about robust optimization-models as an indicator of how much the objec-

tive function worsens in order to gain robustness. They confirm this by a study

showing that real world LP-problems can be severely affected by small perturba-

tions of the data, while the robust optimization-methodology is used with success.

[Ben-Tal and Nemirovski, 2002]

Robust optimization-problems can become very large and in some cases also NP-

hard. In these cases [Ben-Tal and Nemirovski, 2002] suggests using an approximate

robust model instead of the true one. As robust optimization-models do not find the

optimal solution, using an approximation which might give a slightly worse solution,

should not further deteriorate the solutions.

In this thesis, we will use the minimize worst regret method which maximizes

the worst profit and hence all future profits will be larger than the solution of the

robust optimization. Either discrete scenarios or continuous ranges could describe

uncertain parameters. [Snyder, 2006] We assume that these scenarios or ranges

contain the future worst case. And as long as this assumption holds in the future,

the robust model will give solution that could be used in the future, and the profit

will always be the same or better than the solution, as it is given for the worst case.

In order to evaluate how good the robust solutions are, we compare them to the

deterministic solutions, and we introduce the value of the robust solution (VRS).

In order to calculate the VRS we have used a methodology that is inspired by the

method of the value of stochastic solution (VSS). We use the solution of the terminal

structure given from the deterministic model as input in the robust model together

with the deterministic required safety stock levels. We find the worst case solution

for the deterministic terminal structure and compare that with the corresponding

solution with the same number of terminals from the robust model, which will show

how much better robust optimization is compared to the deterministic model in

finding robust terminal structures that will perform good in the future.

3.5 Summary

The supply chain for delivering forest fuels to district heating plants consists of

several steps. Roughly, it consists of several large catchment areas of different sizes,

terminals for storage and processing, and heating plants that burn the wood. Our

challenge is to design a supply chain for the biomass that is both robust and creates

the largest profits. Two of the most important decisions for accomplishing these
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goals are the terminal structure and the terminals’ inventory policy. As the supply

chains may be very large and cover a large amount of suppliers customers, and

potential terminal locations, optimization should in some cases be considered used

as decision support, as the design problem could become difficult and complicated.

As the stochastic and robust optimization approaches behave better in the future

we may expect them to provide more profits and more robust solutions than the

deterministic approach with safety stock, but such problems may become very large.

Solving these problems may take considerable more time and may in some cases

become too large to be solved on regular computers. We will therefore try to compare

these approaches and look at methods that could help solving such problems.
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4 Modeling

In the forest supply chain network, there are three different types of nodes; the

suppliers, terminals and demand points. Transportation of biomass assortments is

modeled as flows between the nodes. The flow is allowed to go either directly from

the suppliers to the demand points or via the terminals. Processing of the biomass

into the different assortments is allowed at the suppliers and the terminals.

As the objective is to decide on which terminals to open, the problem could be

classified as a facility location problem. Facility location problems choose which of

a proposed list of facilities to open in order to service specified customer demands at

minimum total costs.[Rardin, 2000] The problem could also be called a warehouse

location problem. It could also be argued that the problem is a network design

problem, but network design or fixed-charge network flow models decide which arcs

to open, while facility location models decide which nodes of a network to open.

4.1 Arc formulation

We have chosen to use an arc formulation for the network design problem. An

advantage by using this formulation is that we do not create variables for flow

between nodes that are not naturally connected in real life, e.g. due to very long

distances or obstacles such as rivers or mountains. However, this requires that all

possible roads are defined in advance. The alternative would be to create flow

variables between all nodes.

Figure 4: By using an arc formulation, all arcs are given its own name. In this case,
the flow alternatives are either to ship directly from the suppliers to the customer,
or via a terminal

We have defined each arc by its start and end point, and divided them in four

types based on the type of nodes they cover, as shown in Figure 4. We could also
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have included time periods and truck type used, but chose not to do this as this

could be handled by the use of sets. Arc flows are given by the energy supplied from

the wood, given by MWh.

4.2 Assortments and assortment groups

A demand for a certain assortment group can be covered by a supply of different

assortments. This allows more flexibility in the supply chain. In order to model this

we use the subset HG
g , as given in table 1, which is the assortments which could

fulfill the demand of assortment group g. An example is that all wood chipping

types belongs to an assortment group, consisting of the assortments of chip from

logs and chips from from small branches. In some cases we need the inverse set, i.e.

the set of groups the assortments could fulfill, GH
h .

4.3 Processing

The processing of wood take place at three different locations: at the catchment

areas, at the terminals and on chipping machines mounted on combo trucks. In

some cases processing may also take place at the demand points, but this is unusual

and we have therefore chosen not to include this in our models. The processing could

be modeled as a process where quantities of an assortment is sent in to a node, and

exits the node as one or several forms of assortments.

Sometimes we may experience that some of the wood get lost in the processing

or become by-products in the process that could be sold for profits. This is modeled

with the use of the constant f c
h′hn. Successful convertion from one assortment to one

other could then be modeled by setting f c
h′hn= 1, as this is the ratio of quantities

that is successfully converted from assortment h’ to assortment h.

4.4 Node balances

If we define a node for each combination of (i,h,t) where i is the node, h is an

assortment and t is a time period, we get the node balance shown in figure 5.

Figure 5: Node balance for a node defined for (i,h,t)
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Table 1: Sets used in the models
Sets
G Set of assortment groups, g ∈ G
H Set of assortments, h ∈ H
I Set of suppliers, i ∈ I
J Set of demand points, j ∈ J
K Set of trucks, k ∈ K
M Set of terminals, m ∈M
N Set of machines, n ∈ N
T Set of time periods, t ∈ T
RA Set of arcs between suppliers and terminals, (i, m) ∈ RA

RB Set of arcs between suppliers and demand points, (i, j) ∈ RB

RC Set of arcs between terminals and demand points, (m, j) ∈ RC

RD Set of arcs between the terminals, (m, m′) ∈ RD

Supporting sets
GH

h Set of groups the assortments could fulfill, g ∈ GH
h

HG
g Set of assortments used to fulfill assortment group g, h ∈ HG

g

Hk Set of assortments which could be transported by truck type k, h ∈ HK
k

KH
h Set of trucks which could transport assortment h, k ∈ KH

h

KC Set of combotrucks, k ∈ KC

Nihh′
Set of machines associated with suppliers, that process wood
from h to h’, n ∈ Nihh′

Nmhh′
Set of machines associated with terminals, that process wood
from h to h’,n ∈ Nmhh′

NC
k Set of combo machines, n ∈ NC

k

At the suppliers, the inventory balance could be split in two parts; free inventory,

which is inventory that also could be used for other purposes than biomass fuel, and

bought inventory, which is inventory meant to be used for this purpose, as shown in

Constraints (4.1) and (4.2).

Siht + lI−F
ih(t−1) − lI−F

iht − bI
iht = 0, i ∈ I, h ∈ H, t ∈ T (4.1)

After the purchase of wood assortments, the wood is either processed, stored or

transported away.

bI
iht + lI−B

ih(t−1) −
∑
h′∈H

∑
n∈NI

ihh′

vIT
ihnt+

∑
h′∈H

∑
n∈NI

ih′h

f c
nh′hv

IT
ih′nt −

∑
k∈KH

h

∑
j:(i,j)∈RA

xI−J
ijkht−

∑
k∈KH

h

∑
m:(i,m)∈RB

xI−M
imkht − lI−B

iht = 0, i ∈ I, t ∈ T , h ∈ H

(4.2)

Often a maximum level on the inventory of bought volumes at the suppliers is
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Table 2: Variables used in the models- alternative
Variables
vIT

ihnt Processing of assortment h at supplier i with machine n at time period t
vMT

mhnt Processing of assortment h at terminal m with machine n at time period t

xI−J
ijkht

Flow from supplier i to demand point j with truck k of assortment h
at time period t

xI−M
imkht

Flow from supplier i to terminal m with truck k of assortment h
at time period t

xM−J
jmkht

Flow from terminal m to demand point j with truck k of assortment h
at time period t

xM−M
mm′kht

Flow from terminal m to terminal m’ with truck k of assortment h
at time period t

yjhgt
Fulfillment of demand of assortment group g at demand point j
and time period t

wjgt
Unfulfilled demand of assortment group g at demand point j
and time period t

lJjht Inventory of assortment h at demand point j and time period t
lMmht Inventory of assortment h at terminal m and time period t
lI−F
iht Free inventory of supply of assortment h at supplier i and time period t
lI−B
iht Bought inventory of assortment h at supplier i and time period t
bM
mht Bought assortments from terminal locations

bI
iht Bought supply of assortment h at supplier i and time period t

bJ
jht Bought supply of assortment h at demand point j and time period t

sC
n Extra processing capacity contracted of machine n

bC
kt Extra transportation capacity contracted of truck type k at time period t

vm Binary variable to indicate if terminal m is open or not

used. This can be modeled by Constraint (4.3).

lI−B
iht − uI

ih ≤ 0, i ∈ I, t ∈ T , h ∈ H (4.3)

For the terminals, the inventory balance consists of inventory, transport in,

transport out, transport between terminals, assortment processing and assortments

bought at terminal points.

lMmh(t−1) + bM
mht +

∑
k∈KH

h

∑
i:(i,m)∈RB

xI−M
imkht +

∑
k∈KH

h

∑
m′:(m′,m)∈RD

xM−M
m′mkht+

∑
h′∈H

∑
n∈NM

mh′h

f c
h′hnv

MT
mh′nt −

∑
h′∈H

∑
n∈NM

mhh′

vMT
mhnt −

∑
k∈KH

h

∑
m′:(m,m′)∈RD

xM−M
m′mkht−

∑
k∈KH

h

∑
j:(m,j)∈RC

xM−J
mjght − lMmht = 0, m ∈M, h ∈ H, t ∈ T

(4.4)
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For the demand points we can model the node balance by Constraint (4.5). We

have to convert assortments into assortment groups as demand is given in assortment

groups. If we are not able to supply enough to fulfill demand, the remaining demand

must be fulfilled by other sources of energy, e.g. oil or electricity.

∑
k∈KH

h

∑
i:(ij)∈RA

xI−J
ijkht +

∑
k∈KH

h

∑
m:(m,j)∈RC

xM−J
mjkht + lJjh(t−1)−

∑
g∈GH

h

yjhgt + bJ
jht − lJjht = 0, j ∈ J , h ∈ H, t ∈ T

(4.5)

4.5 Combo truck activities

Combo truck are trucks that processes assortments by use of a mounted chipper, and

then transport the chips to the demand points. The work performed each month

is dependent on how far they travel, their driving speed, and the amount that are

to be processed and delivered. This can be written as in Constraint (4.6), where

capacity is given by available work hours for each month.

∑
i:(i,j)∈RA

∑
h∈HK

k

uKW
k dD

ijx
I−J
ijkht

uCH
kt uCW

kt

+
∑
i∈I

∑
h∈H

∑
h′∈H

∑
n∈NC

k

f t
hh′nv

IT
ihnt − uK+

kt ≤ 0, t ∈ T , k ∈ KC

(4.6)

The combo truck has to work at a catchment area and transport all of the wood

chippings it produces. This is given by Constraint (4.7).

∑
j:(i,j)∈RA

xI−J
ijkht −

∑
n∈NC

k

∑
h′∈H

f c
h′hnv

IT
ih′nt = 0, t ∈ T , i ∈ I, k ∈ KC, h ∈ HK

k (4.7)

4.6 Deciding on terminal structure

To decide on which terminals to open, we introduce the binary variable vm for each

potential terminal location. If opening a terminal provides economic value, it has

to participate in the fulfillment of demand. We could therefore restrict the use of

a terminal by restricting the outflow of the terminal. If transportation between

terminals are to be allowed, we have modeled this by only allowing transport to go

to and from opened terminals.

∑
j:(m,j)∈RC

∑
h∈H

∑
k∈K

xM−J
mjkht − uM+

m vm ≤ 0, m ∈M, t ∈ (4.8)
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We can not have any required inventory levels on closed terminals. This is solved

by the Constraints (4.9), where safety stock levels are given as assortment groups,

due to demand being given by assortment groups.

∑
h∈HG

g

lMmht−uM1
mgt vm ≥ 0, m ∈M, t ∈ T , g ∈ G (4.9)

4.7 Objective function

The objective function consists of the maximization of revenues and subtraction of

costs. Costs include transportation, inventory, processing, the purchase of biomass

from suppliers and the terminal locations, and handle costs on the terminals.

max z =
∑
j∈J

∑
g∈G

∑
h∈HG

g

∑
t∈T

pjgtyjhgt −
∑

m∈M

Fmvm −
∑

i,j:(i,j)∈RA

∑
k∈K

∑
h∈HK

k

∑
t∈T

cI−J
ijh xI−J

ijkht−

∑
i,m:(i,m)∈RB

∑
k∈K

∑
h∈HK

k

∑
t∈T

cI−M
imh xI−M

imkht −
∑

m,j:(m,j)∈RC

∑
k∈K

∑
h∈HK

k

∑
t∈T

cM−J
mjh xM−J

mjkht−

∑
m,m′:(m,m′)∈RD

∑
k∈K

∑
h∈HK

k

∑
t∈T

cM−M
mm′h xM−M

mm′kht −
∑

m∈M

∑
h∈H

∑
t∈T

cIM
mh lMmht −

∑
i∈I

∑
h∈H

∑
t∈T

cB−I
iht bI

iht−

∑
i∈I

∑
h∈H

∑
t∈T

cI−I−B
iht lI−B

iht −
∑
i∈I

∑
h∈H

∑
h′∈H

∑
n∈NI

ihh′

∑
t∈T

f t
n,h,h′c

f
nv

IT
ihnt−

∑
m∈M

∑
h∈H

∑
h′∈H

∑
n∈NM

mhh′

∑
t∈T

f t
n,h,h′c

f
nv

MT
mhnt −

∑
j∈J

∑
h∈H

∑
t∈T

cIJ
jhtl

J
jht−

∑
n∈N

cN
n sC

n −
∑
k∈K

∑
t∈T

cCbC
kt −

∑
j∈J

∑
g∈G

∑
t∈T

cP
jgtw

P
jgt −

∑
i∈I

∑
h∈H

∑
t∈T

cIF lI−F
iht −∑

j∈J

∑
h∈H

∑
t∈T

cB
jhtb

J
jht −

∑
m∈J

∑
h∈H

∑
t∈T

cM
mhtb

M
mht −

∑
j:(m,j)∈RC

∑
k∈K

∑
t∈T

∑
h∈HK

k

cH
mhx

M−J
mjkht

(4.10)

4.8 Decision stages

To be able to model the stochastic and robust optimization problem, we need to know

the decision stages for the problem. The first-stage decisions would become non-

anticipative variables, while other decisions would be dependent on which scenario

it is a part of. For this problem we may model the decision stages as the following:

1. Decide on terminal structure and inventory policy, i.e. required safety stock

levels.
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2. Based on information on realizations of demand, decide on inventory levels,

production levels, transportation etc. for each month.

When considering terminal inventory policy we will limit ourselves to look at opti-

mimal inventory level that is needed for the different terminal structures

4.9 Compared to the model of Flisberg et.al.

Compared to the model in [Flisberg et al., 2010], the model we have presented looks

specific on the terminal structure, while the other model tries to formulate the

tactical supply chain planning problem. We have therefore formulated a model

where the terminal structure is not given in advance. We have also removed the

possibility of using train transport. As this decreases the flexibility in choosing the

transportation mode that is most preferable, the answers given by our model may

deviate. This have been done to simplify the model, and to focus more on the

terminal location problem than the transportation. [Enoksen and Sværen, 2009]

However, the flows are not meant to be implemented, and only serves to model the

impact the terminal structure have on the rest of the supply chain.

We have also chosen to write the arcs only given by the nodes which they travel

between, meaning that we have four sets of arcs. RA for arcs between supplier and

terminals, RB for arcs between supplier and demand points, RC for arcs between

terminal and demand points and RD for arcs between the terminals. To prevent

inventories of wood chippings occurring in the catchment areas, we also have to

introduce a constraint on the inventory capacities of the different assortments at the

suppliers. This is given by the Constraint (4.3).

In the model by [Flisberg et al., 2010] they use indices for both assortments and

assortment groups in all the transport and inventory variables. As assortments are

what is actually transported and stored, we have chosen to use only this index in

these variables. The use of assortment groups is limited to the demand points, as

demand is given for assortment groups. Safety stock is also modeled differently, as

we have a variable number of opened terminals.
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Table 3: Constants used in the models
Parameter data
pj,g,t Selling price for assortment group g at demand point j and time period t

cIJ
jgt

The inventory cost for assortment group g at demand point j and
time period t

uJ+
j The maximum inventory at demand point j

cP
jgt

Costs for unfulfilled demand at demand point j for assortment group g and
time period t

Djgt Demand for assortment group g for customer j in time period t

cB−I
iht

The price for buying assortment h at supplier i and
time period t

cI−I−B
iht

The inventory cost for bought inventory of assortment h at supplier i
and time period t

cIF The inventory cost for free/ non-bought inventory at suppliers
cIM
mht The inventory cost for assortment h at terminal m and time period t

uI
ih The maximum inventory at supplier i of bought inventory

Siht
Increase in available supply for each time period and supplier.
Unused supply is sent to free inventory

Fm Fixed cost for opening terminal m
uM1

mgt The minimum inventory for group g at terminal m and time period t
uM+

m The maximum inventory at terminal m
cM
mht Costs for assortments bought from terminal locations

SM
mh Available assortments that could be bought at terminal locations

SOM
mh Initial inventory at terminal m

cH
mh Terminal handle costs

cf
n The processing costs per hour for machine n

f t
nh′h The processing time for processing h’ to h at machine n

f c
nh′h The processing factor for processing h’ to h at machine n

uf+
n Processing capacity for machine n

cN
n Extra processing capacity costs for machine n

cf
n The processing costs per hour for machine

cI−J
ijh The cost for flow from supplier i to demand point j for assortment h

cI−M
imh The cost for flow from supplier i to terminal m for assortment h

cM−J
mjh The cost for flow from terminal m to demand point j for assortment h

cM−M
mm′h The cost for flow from terminal m to terminal m’ for assortment h

uKW
k Scaling factor for transportation work

dD
ij Distance between supplier i and customer j

dD
im Distance between supplier i and terminals m

dD
mj Distance between terminals i and customer j

cC Extra transportation capacity costs
uKC

kt The total transport capacity of trucks of type k
uK+

kt The total transport capacity of combo trucks of type k
uCH

kt The average speed of a combo truck
uCW

kt The average load of a combo truck
uK+

kt Total capacity for all combo trucks
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5 Models

5.1 Deterministic model

max z =
∑
j∈J

∑
g∈G

∑
h∈HG

g

∑
t∈T

pjgtyjhgt −
∑

m∈M

Fmvm −
∑

i,j:(i,j)∈RA

∑
k∈K

∑
h∈HK

k

∑
t∈T

cI−J
ijh xI−J

ijkht−

∑
i,m:(i,m)∈RB

∑
k∈K

∑
h∈HK

k

∑
t∈T

cI−M
imh xI−M

imkht −
∑

m,j:(m,j)∈RC

∑
k∈K

∑
h∈HK

k

∑
t∈T

cM−J
mjh xM−J

mjkht−

∑
m,m′:(m,m′)∈RD

∑
k∈K

∑
h∈HK

k

∑
t∈T

cM−M
mm′h xM−M

mm′kht −
∑

m∈M

∑
h∈H

∑
t∈T

cIM
mh lMmht −

∑
i∈I

∑
h∈H

∑
t∈T

cB−I
iht bI

iht−

∑
i∈I

∑
h∈H

∑
t∈T

cI−I−B
iht lI−B

iht −
∑
i∈I

∑
h∈H

∑
h′∈H

∑
n∈NI

ihh′

∑
t∈T

f t
n,h,h′c

f
nv

IT
ihnt−

∑
m∈M

∑
h∈H

∑
h′∈H

∑
n∈NM

mhh′

∑
t∈T

f t
n,h,h′c

f
nv

MT
mhnt −

∑
j∈J

∑
h∈H

∑
t∈T

cIJ
jhtl

J
jht−

∑
n∈N

cN
n sC

n −
∑
k∈K

∑
t∈T

cCbC
kt −

∑
j∈J

∑
g∈G

∑
t∈T

cP
jgtw

P
jgt −

∑
i∈I

∑
h∈H

∑
t∈T

cIF lI−F
iht −∑

j∈J

∑
h∈H

∑
t∈T

cB
jhtb

J
jht −

∑
m∈J

∑
h∈H

∑
t∈T

cM
mhtb

M
mht −

∑
j:(m,j)∈RC

∑
k∈K

∑
t∈T

∑
h∈HK

k

cH
mhx

M−J
mjkht

(5.1)

s.t.

lI−F
ih0 = 0, i ∈ I, h ∈ H (5.2)

lI−B
ih0 = 0, i ∈ I, h ∈ H (5.3)

lJjg0 = 0, j ∈ J , g ∈ G (5.4)

lMmh0 − SOM
mh = 0, m ∈M, h ∈ H (5.5)

Siht + lI−F
ih(t−1) − lI−F

iht − bI
iht = 0, i ∈ I, h ∈ H, t ∈ T (5.6)
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bI
iht + lI−B

ih(t−1) −
∑
h′∈H

∑
n∈NI

ihh′

vIT
ihnt+

∑
h′∈H

∑
n∈NI

ih′h

f c
nh′hv

IT
ih′nt −

∑
k∈KH

h

∑
j:(i,j)∈RA

xI−J
ijkht−

∑
k∈KH

h

∑
m:(i,m)∈RB

xI−M
imkht − lI−B

iht = 0, i ∈ I, t ∈ T , h ∈ H

(5.7)

lMmh(t−1) + bM
mht +

∑
k∈KH

h

∑
i:(i,m)∈RB

xI−M
imkht +

∑
k∈KH

h

∑
m′:(m′,m)∈RD

xM−M
m′mkht+

∑
h′∈H

∑
n∈NM

mh′h

f c
h′hnv

MT
mh′nt −

∑
h′∈H

∑
n∈NM

mhh′

vMT
mhnt −

∑
k∈KH

h

∑
m′:(m,m′)∈RD

xM−M
m′mkht−

∑
k∈KH

h

∑
j:(m,j)∈RC

xM−J
mjght − lMmht = 0, m ∈M, h ∈ H, t ∈ T

(5.8)

∑
t∈T

bM
mht ≤ SM

mh, m ∈M, h ∈ H (5.9)

∑
k∈KH

h

∑
i:(ij)∈RA

xI−J
ijkht +

∑
k∈KH

h

∑
m:(m,j)∈RC

xM−J
mjkht + lJjh(t−1)−

∑
g∈GH

h

yjhgt + bJ
jht − lJjht = 0, j ∈ J , h ∈ H, t ∈ T

(5.10)

∑
i,m:(i,m)∈RB

∑
h∈HK

k

uKW
k dD

imxI−M
imkht +

∑
m,j:(m,j)∈RC

∑
h∈HK

k

uKW
k dD

mjx
M−J
mjkht+

∑
i,j:(i,j)∈RA

∑
h∈HK

k

uKW
k dD

ijx
I−J
ijkht +

∑
m,m′:(m,m′)∈RD

∑
h∈HK

k

uKW
k dD

mm′xM−M
mm′kht−

uKC
k − bC

kt ≤ 0, k ∈ K, t ∈ T

(5.11)

∑
i∈I

∑
h∈H

f t
hh′nv

IT
ihnt +

∑
m∈M

∑
h∈H

f t
hh′nv

MT
mhnt − uf+

n − sC
n ≤ 0, n ∈ N , t ∈ T (5.12)

∑
(i,j)∈RA

∑
h∈HK

k

uKW
k dD

ijx
I−J
ijkht

uCH
kt uCW

kt

+
∑
i∈I

∑
h∈H

∑
h′∈H

∑
n∈NC

k

f t
hh′nv

IT
ihnt − uK+

kt ≤ 0, t ∈ T , k ∈ KC

(5.13)
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∑
j:(i,j)∈RA

xI−J
ijkht −

∑
n∈NC

k

∑
h′∈H

f c
h′hnv

IT
ih′nt = 0, t ∈ T , i ∈ I, k ∈ KC , h ∈ HK

k (5.14)

∑
h∈HG

g

yjhgt + wjgt −Djgt = 0, j ∈ J , g ∈ G, t ∈ T
(5.15)

∑
h∈H

lJjht − uJ+
j ≤ 0, j ∈ J , t ∈ T (5.16)

∑
j:(m,j)∈RC

∑
k∈K

∑
h∈HK

k

xM−J
mjkht − uM+

m vm ≤ 0, m ∈M, t ∈ T (5.17)

∑
m′:(m,m′)∈RD

∑
k∈K

∑
h∈HK

k

xM−M
mm′kht − uM+

m vm ≤ 0, m ∈M, t ∈ T

∑
m′:(m′,m)∈RD

∑
k∈K

∑
h∈HK

k

xM−M
m′mkht − uM+

m vm ≤ 0, m ∈M, t ∈ T
(5.18)

∑
h∈HG

g

lMmht−uM1
mgt vm ≥ 0, m ∈M, t ∈ T , g ∈∈ G (5.19)

lI−B
iht − uI

ih ≤ 0, i ∈ I, t ∈ T , h ∈ H (5.20)

vm ∈ {0, 1}, m ∈M (5.21)

All variables ≥ 0 (5.22)

Initial inventory for the different nodes are given by (5.2), (5.3), (5.4) and (5.5).

The inventory balances at given by (5.7), (5.6), (5.8) and (5.10). The transport

capacity is given (5.11), and processing capacity is given by (5.12). The combo

truck is constrained by (5.13) and (5.14). Demand fulfillment is given by (5.15).

The terminals has a limited capacity which is given by (5.17)and a required level of

minimum inventory given by (5.19). The costumer and the suppliers may also have

a maximum capacity on inventory given by (5.20) and (5.16). Transport between

terminals only available between opened terminals in Constraint (5.18).

Customer inventory, extra transportation capacities, unfulfilled demand and fuels

bought from other sources were not wanted, and the costs of utilizing such options

were replaced by penalty costs. Penalty costs are used to indicate that the solution
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is not robust, i.e. it is not possible to fulfill demand.

5.2 Stochastic model

The two-stage decision structure in the biomass supply chain makes us able to model

our problem as a two-stage recourse problem. We may in some cases lack knowl-

edge on what kind of stochastic distribution that is connected to the realizations

of demand. As all outcomes of the recourse problem are feasible, the sample mean

could be used as replacement for the stochastic distribution. The difference from

the deterministic model is that all variables, except the first stage variables, is given

for each scenario and the objective function is given by 5.23. h(v, s) is the recourse

function, s is the index for scenario (s ∈ S), and v is the vector of the terminal

variables.

max z = E[h(v, s)]−
∑

m∈M

Fmvm (5.23)

s.t.

vm ∈ {0, 1}, m ∈M (5.24)

5.3 Robust model

To model a robust optimization model, we first need to clarify which decisions that

are the fist-stage decisions. In this case, it is the terminal structure. All variables,

except the first stage variables, is given for each scenario and the objective function

is given by 5.25, where h(v, s) is the objective function for each scenario and v is

the vector of variables for the terminals. θ is the least profit for the given scenarios.

max z = θ −
∑

m∈M

Fmvm

θ < h(v, s), s ∈ S
(5.25)

s.t.

vm ∈ {0, 1}, m ∈M (5.26)
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6 Implementation

6.1 Generating demand scenarios

To model uncertainty in demand, demand scenarios were generated. A scenario rep-

resented a possible future demand realization for all customers and assortments in

each time period except the first, as demand for the first month after new demand

information has been submitted, could be regarded as rather certain. We generated

scenarios where demand variations for each customer and assortments were corre-

lated and uncorrelated. Correlated demand variations could be due to e.g. weather

changes and demand for heat would then increase in every region.

Figure 6: The scenario tree

Uncorrelated demand were generated by letting all demand for each customer

in each time period except the last time period, vary within ± maximum allowed

variance. The last period were set as the difference between the contract specified

annual demand, and the sum of demand for all other periods. If the last period

varied with more than the maximum variance, the process was repeated until a

solution was found.

Correlated demand scenarios were generated by first generating demand base

levels for all time periods for each scenario, where the base level was generated

randomly and forced to be within the allowed demand variations and to be cancelled

out throughout the year. Demand for each customer and assortment were then

generated randomly by use of an even distribution with the demand base level as the

middle-point and within the allowed demand deviations5. If the demand variations

exceeded the annual contract, the whole process of finding demand base levels and

variation for each month were repeated until a solution were found. This method

was based on the approach used in [Bredström et al., 2010].

5If demand base level is db, the expected demand is ED and the maximum variance allowed
is mvar, the demand for each customer and assortment can be found like this: if db ≥ 0, then
a := mvar ∗ ED and b := ED ∗ (2 ∗ db−mvar). If db ≤ 0, then a := ED ∗ (2 ∗ db + mvar) and b :=
−mvar ∗ ED. Demand := ED + a − (a − b) ∗ random. The demand base level db is generated
randomly earlier.
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Figure 7: Transportation cost for different truck types

6.2 Creating transportation costs

Transportation costs were found a priori the running of the models, and were given

as input data. Normally, these transportation costs are not linear as shown in Figure

76, as the marginal costs would be higher for shorter distances due to transferring

trucks to starting points. We could use special ordered sets of type two to interpolate

to find the costs. SOS2 is a set of variables where at most two of the variables can

be non-zero, and these two variables need to be adjacent in the ordering given to the

set. [Williams, 2007] For distances larger than the given values for interpolation, a

new point were created by extrapolating the last two known values.

6.3 Terminal fixed costs

The fixed costs of opening a new terminal are usually not known before the prelim-

inary work on the construction process of the terminal in started. These costs are

dependent on several factors, such as the size of the terminal and existing infrastruc-

ture. It is therefore difficult to make decisions on how many terminals to open. One

way to overcome this challenge, is to demand that the sum of opened terminals are

equal to a given number, and then running the model where this number is given as

input for all possible sum of terminals to open. This will result in a profit function

of the sum of opened terminals. One can then decide on which terminals that are

profitable to open. We introduce a constraint in order to enforce terminals to be

open, as shown in Constraint 6.1. If one later finds that one of the terminals would

be too expensive, one could demand that this terminal is to be closed in the model.

∑
m∈M

vm = NoTerminals (6.1)

6The truck types and costs are from the Sveaskog case with aggregated assortments.
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6.4 Required safety stock levels

Required safety stock levels are used for building inventory on open terminals in

order to avoid stock-outs due to variations in demand. As in described in Section

?? we chose to set the sum of safety stock to 40 % of the demand for the coming

period, except for the last period, when no inventory was needed. This gave a new

constraint as seen in Constraint 6.2, which will replace Constraint 5.19. This is a

nonlinear constraint, and needs to be linearized to be able to implement it in Xpress

IVE. However, the sum of terminals used may be set a priori each running of the

model, and the sum of terminals opened may then be replaced by a constant.

∑
h∈HG

g

lMmht − 0.4

∑
j

Djgt+1vm∑
m′∈M

vm′

≥ 0, m ∈M, g ∈ G, t ∈ {1..11} (6.2)

For the stochastic and robust models, we ran the models and used the lowest

inventory values over the scenarios for each of the time periods and assortments as

required safety stock levels.

6.5 Data structures in Xpress

The models were implemented in Xpress-IVE. In order to create general models we

made new data structures using the records feature in Xpress. From the example

below we see that each arc is given by a unique number in the arcset, and each arc

has unique values for its attributes.

ARC S DC: array (ARCSET S DC: range ) o f record

Supp l i e r : s t r i n g ! Source o f arc

DC: s t r i n g ! Sink o f arc

Distance : r e a l ! The d i s t anc e o f the arc

Cost : array (TRUCKS) o f r e a l

! The corre spond ing c o s t s for each

! truck type

end−r ecord

6.6 Presolving

Some variables may not be needed and we would like to remover these variables

in order to make the model smaller and reduce the solution time. This is called

presolving or preprocessing, and could be done inside optimization solvers and at

the modeling stage. [Ashford, 2007]
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At the modeling stage, presolving can be done by utilizing the knowledge of the

problem and the case in order to only create the variables that are needed. One

example is that some trucks only could transport a given type of assortment. We

therefore do not need to create variables for combinations of this truck types and

other assortments, as these combinations cannot be used. In Xpress this is done by

creating variables by use of dynamic arrays and only create the variables specified.

In the modeling stage we can also remove constraints that are redundant, but this

can also be done by the optimization solver. [Baricelli et al., 1998] [Ashford, 2007].

Inside the optimization solver there are several methods which is included in the

presolving, and contribute in reducing the size of the model:

� Fixing of variables

� Tightening bounds

� Utilizing specialized constructs

� Adding cuts

� Removing unneeded variables

� Removing redundant constraints

These are in most cases very complex algorithms that utilize the input data and

the structure of the model in order to reduce the problem size. One example is that

when all terminals are forced to be open, the presolver should remove all terminal

variables and replace them by integers.

6.7 Implementation process

Figure 8: Flow chart of the implementation of our models

The implementation of the cases consisted of first preparing the case data, and

adapting it to the format used by the model. Transport costs and demand scenarios

were then generated based on these data. We then tried to run the model, and
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tested how many scenarios it could run before either a memory error occurred or

the solution times became too high. Based on this information we had to try to

reduce the size of the problem through presolving or use of solution methods. We

then tried to run the model again, and continued this process of adjusting the

model until it could handle a decent number of scenarios. An initialization script

was written in Xpress IVE to make sure the models could be run automatically for

different parameters. We have tried to summarize the implementation in Figure 8.

Results were printed to data files. All of the cases were run on a computer with MS

Windows XP SP3, Intel Core 2 Duo E6700 (2x2,6GHz) and 4GB DDR2 RAM.
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7 Preprocessing, aggregation and LP-relaxtion based

heuristics

For some cases, the problem may become too large to be solved on regular computers.

In those cases, methods needs to be applied in order to be able to solve the problem.

They can also be applied in order to decrease solution times or increase the number

of scenarios the models can handle. We have looked for methods that seeks to

reduce the size of the problems without deteriorating the solution quality. We will

here present the ones we have employed.

The quality of the methods have been analyzed by comparing the solutions with

solutions where no solutions methods are applied. We have tested the methods

by using the terminal structure we get from testing the models by employing the

methods, and inserting this into the original problem, and compare the objective

values. In that way we will see the influence the methods have on terminal structures

and supply chain profits. For the assortment aggregation and the removal of the

longest arcs, a stochastic model for Case Sveaskog with 5 scenarios and 75 suppliers

were used.

7.1 Aggregation of suppliers

The largest contribution to size of the problem came from the number of flow vari-

ables. Biomass supply chains usually contain a large amount of suppliers, which

increases the number of arcs. As the uncertainty is on demand, we could exploit

this by aggregating suppliers. We will compare two approaches for doing this. One

approach is to use the name of the location of the supplier, and another is to utilize

the distances between the suppliers. In both approaches, aggregated supply was

placed on one of the existing suppliers.

7.1.1 Aggregation by name of location

In our cases, the name of each supplier was given as a number code; where the two

first numbers were counties and the two next represented the municipality. By help

of these numbers it was therefore possible to aggregate suppliers in each municipality

or county.

This procedure does not take into consideration the distances between the differ-

ent suppliers. Supply may therefore be modeled as moved further away from where

it actually is located. Another drawback is that aggregated supply could be placed

on suppliers that initially contained very little supply. Some supply points may also
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(a) Aggregation within counties (b) Aggregation within municipalities

Figure 9: Deviation from the standard model when using a random supplier

lay closer to supply points in other municipalities than suppliers in its own. We can

therefore risk that the solution quality may be reduced.

Aggregated supply could be placed on one of the existing supply points, and

choosing this supplier could be done randomly. This approach is easy to implement

manually. In our case, we used MS Excel 2007 Professional for this task. The

solutions were evaluated by inserting the solved terminal structures in a deterministic

problem without aggregation. For this aggregation method, the worst solutions only

contributed to 51 % and 97 % of the optimal profits, as shown in Figure 9. The case

contains 392 suppliers.

To improve this form for aggregation, we could have placed the supply at the

largest supplier, or by placing it on the supplier located in the middle compared to

the other suppliers. However, this requires that we know data for distance between

the suppliers. Another possibility is to exploit the distances between the suppliers

and the customers, as customers are the only nodes that we know will be used

by the model. We can therefore place the supply at the supplier with the closest

average distance to the customers. This method, however, neglects the fact that

many suppliers rarely supply more than a single customer or a single terminal.

From Figure 10, we see that the worst solutions when aggregating over counties

increased its performance from 51 % to 96 %. For the case with 158 suppliers, the

performance is about equal to the previous approach, where supply is placed on

a random terminal. A possible explanation is that increasing the new number of

aggregated suppliers, decreases the flexibility in which existing suppliers is left after

the aggregation, and the chosen suppliers could therefore end up being rather equal.
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(a) Aggregation inside county (b) Aggregation inside municipality

Figure 10: Deviation from the exact solution when using the suppliers with the least
average distance to the demand points

7.1.2 Aggregation by distance

If distance data between the suppliers is available, it can be used for aggregating the

suppliers which are located geographical close to each other. In that way we may

prevent much of the supply changing location. We therefore also considered the size

of the supply of the suppliers, and excluded suppliers from aggregation if the supply

was larger than a preset parameter.

Suppliers were aggregated by gradually increasing the radius of chosen suppliers

from zero up to given distance limit. We used a supply limit, which was the supply

allowed on the supplier before it was excluded from the aggregation, and a distance

limit. We used an algorithm with the following pseudo-code:

f o r a l l ( i i in s upp l i e r s )

i f ( supply ( i i ) > supp ly l im i t )

i i w i l l not connect to o the r s

else

s t a r t with i i

while ( connectedsupply ( i i ) < supp ly l im i t )

f i nd c l o s e s t s upp l i e r j j

i f ( with in d i s t an c e l imt and

t o t a l supply with in

supp ly l im i t )

add supp l i e r j j

end

The algorithm could be improved by choosing the order suppliers are selected as

starting points for the aggregation more intelligently, by e.g. choosing the largest
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(a) 60 suppliers (b) 75 Suppliers

Figure 11: Deviation from the exact solution with the aggregation algorithm

supplier. This algorithm gave us the ability to create an infinite number of aggre-

gations by changing supply and distance limit parameters. We therefore got the

ability to adapt aggregations to better fit the data cases. The algorithm was easily

implemented in Xpress. It was combined with an algorithm that wrote out new data

to new files, by picking data from existing data files into new ones.

An overview of different aggregations with the different distance and supply

limits can be seen in Table 4. Exact solution means that the terminal configurations

found by the deterministic model is equal to the solution where no aggregation is

applied.

Table 4: An overview of the different aggregations

Aggregation level NoSuppliers Distance limit Supply limit Exact solution
0 392 0 0 -
1 75 50 10000 No
2 60 100 10000 No
3 108 50 5000 Yes
4 317 200 200 Yes
5 199 20 2500 Yes

7.1.3 Comparing the supplier aggregations

Aggregation by distances between the suppliers performed considerably better than

the two other approaches, and gave relatively good solutions for all of the aggregation

made by using the algorithm, as shown in Table 4. There are only a few differences

in which terminals the models open. This is most likely due to supply being moved

away from where it actually is located. However, the change in objective value when

evaluating the terminal structures in the full model were below 1 %.
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7.2 Aggregating assortments

Almost all of the variables contains an index of type of assortment. By reducing

the number of assortments, we could reduce the number of variables in the models

considerably. However, an aggregation of assortments could lead to increase in

capacities, as capacities for e.g. transportation and processing are given specific for

each assortment. As terminals could be used to overcome capacity challenges, it

could affect the solution quality.

To aggregate assortments, we manually added together the different capacities

for the transport and processing. We had to create new costs and data for the

assortments, and calculate new arc data due to changes in truck costs. This form of

aggregation is therefore not as fast to implement as the aggregation by the distances

between suppliers. We tested the Sveaskog case, and the difference in terminal

structure contributed to less than 2.5 % change in profits. When we aggregate the

assortments we may increase some of the capacities as they are no longer assortment

specific, and this may lead to finding non-robust solutions.

7.3 Removing the longest arcs

We may assume suppliers in one part of the country would not deliver to customers

in the opposite part of the country, and that terminals only want to serve suppliers

and customers that are not located too far away. We may therefore remove the

arcs with the longest distances between the nodes. This will reduce the number of

variables.

We have implemented this by searching for the longest arcs for all the four arc

sets, and then removing all arcs with distance above a given percentage of the largest

arc distance in each category. We tested it on Case Sveaskog where the assortments

were aggregated. Removing all arcs above 50 % and 80 % of the longest arc for

all arc sets gave no changes in the terminal structure. The method resulted in a

reduction of the average solution times on 56 % and 37 % respectively, as shown

in Figure 12. When all arcs longer than 30 % were removed, the change in supply

chain profits were below 2 %.

The arc removing should be dependent on the geography in the case. It would

therefore be necessary to look into the distances for the problem before deciding on

removal of arcs. For Case Stora Enso we could remove all arcs longer than 20 % of

the longest arcs with no changes in the terminal structure.
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Figure 12: Solution time reduction when removing the longest arcs

7.4 LP-relaxation based heuristic

The model includes binary variables for every potential terminal location, and solv-

ing the problem by branch and bound could result in long solution times and memory

problems as the branched LP problems for each terminal structure may take con-

siderable time to solve, and several branches may be needed to find the optimal

solution.

An advantage of having to run the models with a given number of terminals

opened given a priori, is that we may replace the binary variables with continuous

variables and demand that the terminal open variables be in the interval [0,1], and

choose the terminals with highest variable values. This would considerably decrease

solution times.

This heuristics was implemented by replacing the terminal binary variable vm

with continuous variables, and introducing the constraint
∑

m∈M
vm = n. We can then

choose to open the n terminals with the highest variable value. These variables are

then rounded up to 1, while all others are set to 0. We find the objective function

value of the solution, by inputting the terminal structure to the problem. A flowchart

for this heuristic is shown in Figure 13.

Figure 13: A flowchart for the LP-relaxation based heuristic

The heuristics was tested by running it on Case Sveaskog, and comparing the

results with results from the deterministic model, where no solution methods are
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(a) Deviation in objective value (b) Deviation in solution time

Figure 14: Deviation for the LP-relaxation based heuristics from exact solution

used. The deviation is shown in Figure 14. As shown by Figure 14 the solution times

were dramatically decreased for solutions where the number of opened terminals

was low. When the problem becomes more relaxed with a higher number of allowed

terminals, the solution times becomes higher than for the exact model. The reason

is that the heuristics run the problem twice; one for finding the terminal structure

and one for finding the objective function value.

For a low number of terminals, the heuristics provides solutions which are rather

poor compared to the exact solution (85-95 %). When the number of terminals

increases, the LP relaxation heuristic returns solutions which lay close to the exact

solution (≥ 95 %), as shown in Figure 14.
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8 Test case

A test case was constructed to test the model. It consisted of a supply chain with ten

suppliers, four customers, four potential terminal locations and two assortments. For

the stochastic model we used 100 correlated demand scenarios. But due to higher

solution time with the robust model, it was reduced to 50 with the robust model.

Figure 15: Solution times for our models for the Test case

The stochastic and robust solution times were 100 times higher than the deter-

ministic model. All models build inventory to meet peaks in demand in later periods.

The deterministic model does however build more inventory than the stochastic and

the robust model. The stochastic and robust model show that required safety stock

is required for period 3. These results are show in Figures 16, 17 and 18, where (a)

shows how profits improves with the number of opened terminals, and (b) shows the

total inventory cost of the opened terminals, and (c) compares the average inventory

on each terminal with demand and its required safety stock levels when the number

of terminals opened is two.
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(a) The objective function (b) The inventory cost (c) Inventory compared to de-
mand

Figure 16: Solutions of the test case for the deterministic model

(a) The objective function (b) The inventory cost (c) Inventory compared to de-
mand

Figure 17: Solutions of the test case for the stochastic model

(a) The objective function (b) The inventory cost (c) Inventory compared to de-
mand

Figure 18: Solutions of the test case for the robust model

40



9 Case Sveaskog

9.1 Case description

Sveaskog is Swedens largest forest owner and its leading supplier of timber and bio-

fuel. In 2009 it had a turnover of 6 billion SEK, and had on average 928 employees7.

Case Sveaskog considered an area in Sweden located in a square restricted by Stock-

holm and the Norwegian border, and Linköping and Gävle, as shown in Figure 19.

It uses data from 2006 and 2007, and has a total demand of 620 MWh. It consists

of 20 terminals, 21 demand points and 392 suppliers, and was originally used for

testing the model developed by [Flisberg et al., 2010].

Figure 19: Map for Case Sveaskog

We received data for two data sets for this case; one where the assortments were

aggregated from eight to two assortments, and one without any aggregation. For

the non-aggregated version, the processing capacity at the terminals became specific

to each terminal, which is opposite of the aggregated case. This implies that in this

data set, the total processing capacity at the terminals increases with the number of

terminals opened. Terminal-to-terminal transport were not included in the Sveaskog

case.

7Numbers from: http://www.sveaskog.se/Om-Sveaskog/Var-verksamhet/
Foretagsfakta-2008/
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(a) Solution time (b) Objective values

Figure 20: Solutions for the deterministic model with aggregation on assortments

9.2 Solving the case

We looked at which terminals which were opened if the sum of terminals opened were

set a priori. The problem was run with no terminals opened and then increased by

two opened terminals until all were opened. Scenarios were generated as correlated

demand scenarios. The Sveaskog Case is a large case, and the solution times may

therefore become high, and memory errors may occur because the problem either

contains too much data, or because of memory difficulties in solving the problem,

e.g. with the branch & bound tree. Hence, we needed to reduce the problem in

order to be able to solve the problem with scenarios. We therefore aggregated the

number of suppliers from 400 to 75 for the stochastic and robust model by use of

the algorithm developed in Section 7.1.

9.3 Deterministic solution

9.3.1 Aggregated assortments

The problem was solved with no memory errors, but the solution time became as

high as 19500 seconds. The solution times became very high for low number of

terminals opened. A possible explanation is that the problem becomes more relaxed

when the number of terminals exceeds 10. As shown in Figure 20, the objective

value only changes marginally when the sum of opened terminals opened is above

eight, as there are no costs connected to open terminals and the safety stock is

divided on the opened terminals. It seems that the supply chain achieves flexibility

in exploiting the supply chain as cost efficient as possible at this point. The solution

incurred a penalty cost when no terminals were opened. The reason was that the

processing capacity became too low as most of the processing capacity is located at

terminals.
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9.3.2 Non-aggregated assortments

Figure 21: The difference between the solutions from the models with and without
aggregation of assortments. Only solutions without penalties are included

As shown in Figure 21, the difference in the objective function is small for the

solutions with and without aggregation of assortments when there is no penalty.

There are differences, but the difference is less than 2.5 %. The non-aggregated

problem incurred penalties with a higher number of opened terminals than the ag-

gregated. The reason is that the assortment aggregation ignores that some capacities

are dependent on type of assortment. Total capacities in the supply chain therefore

increase by use of the assortment aggregation.

9.4 Stochastic solution

The purpose of using a stochastic model is to take into consideration the uncertainty

in demand. We were therefore interested in using as many scenarios as possible. For

the assortment-aggregated case the maximum number of scenarios it could use before

memory errors incurred, was two.

(a) The objective function (b) The total inventory costs

Figure 22: Solution of the stochastic model with 5 scenarios
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Figure 23: Average inventory for the stochastic solution with six terminals

As shown in Figure 22, the stochastic solution curve reaches the point where

there are only marginal increases in the profits with six terminals opened. This is

earlier than for the deterministic solution, but is due to the aggregation.

9.4.1 Inventory policy

The inventory policy for the terminals could be found by the stochastic model.

Required safety stock values could be extracted from the stochastic model as the

minimum inventory level over all scenarios.

The stochastic model builds inventory when the number of terminals are low.

When the number of terminals exceeds 10, inventory is no longer needed, as shown

in Figure 22. As shown in Figure 23, the stochastic model chooses to build inventory

to meet higher demand in the next period for all scenarios. This is not permanent,

as demand continues to increase, and it seems that it chooses to build inventory

in order to reduce costs in earlier time periods when the demand is low and the

possibility to efficiently exploit the transportation and processing resources is more

likely.

9.4.2 A stochastic solution - a more detailed analysis

One of the solutions with the highest profits with the aggregated case, is the solution

with twelve terminals opened. This solution is a feasible solution, as it does not need

to breach any penalties for fulfilling demand.

9.4.2.1 Terminal structure The terminal structure could be drawn on a map

as shown in Figure 24. Several of the opened terminals are located close to suppliers.

The reason is probably that the transportation capacity is high enough to avoid being

limiting on the case. The terminals receive 24.5 % of the volumes intended for the

demand points, while the rest is transported directly from the suppliers.
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Figure 24: Map of the solution: Round green points are supply points, while square
blue points are demand points and red triangles are existing terminals

9.4.2.2 Revenues and costs The highest costs are transport at 30% of total

costs, processing 19% and purchased volumes from supply points at 51 %. Gross

margin is 19.9 %. The processing costs are evenly distributed for terminals and

supply points, while direct transport from suppliers to customers accounts for 66 %

of the transportation costs.

9.4.2.3 Transportation, processing and inventory levels The terminals are

used exclusively for processing. There are no chipped volumes transported in to any

of the terminals, and only chipped volumes are transported out. For this solution, no

inventory is found at the terminals. 80 % of the processing capacity at the suppliers,

including the combo trucks, is used. The flow directly to the customers, is concurrent

with the demand for unprocessed assortments plus the processing capacity at the

suppliers. This indicates that terminals are only opened in order to exploit the

processing capacities at terminals, and also that the supplier processing capacity is

exploited at maximum.

The combo truck is used to supply customers where the distance from the supplier

to the customer is small, and as extra chipping capacity where the distance between

demand point and supplier is relatively small. The reason is that use of the combo

truck is more expensive in transport and processing.

9.4.2.4 Suppliers 5 of the 75 suppliers are not used at all. Total supply is 10

% higher than the demand. One reason some suppliers are not used, could be that

they are placed too far away from opened terminals and customers.

9.4.2.5 Flow of assortments By sending the terminal structure into the case

where the assortments were not aggregated, we found that all demanded wood parts
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and pulpwood were sent directly from the suppliers to the customers. The demanded

volumes of firewood and grot were sent directly from the supply points to customers,

but larger volumes were sent to the terminals to be processed to chips. The suppliers

process tree parts and grot into chippings and bunts of grot.

9.4.3 Solution with non-aggregated assortments

Solving the stochastic model when there was no aggregation of assortments was

harder. As we wanted to compare the results with the results for when the assort-

ments were aggregated, we aggregated the suppliers down to 75. In order to run

the model without memory errors we used 3 scenarios and the LP-relaxation based

heuristics, as discussed in Section 7.4.

Figure 25: Solution of the stochastic model with non-aggregated assortments

The objective value increased for all numbers of terminals opened. This did

not happen when the assortments were aggregated. However, in the data provided

for us, the processing capacity at the terminals was given for each terminal, i.e.

the terminal capacity increased for each terminal opened. We therefore increased

flexibility in the supply chain for each opened terminal.

The penalties are higher in this case compared to when the assortments were

aggregated. With an increased number of assortments, and the transportation and

processing capacities more restricting as they are given per assortment, we believe

that it would become harder to exploit the resources in the model. This explains

the higher penalty costs when there are no terminals opened.

It returned different terminal structures, and this is most likely due to a more de-

tailed supply of the different assortments, and that some of the processing is required

to be performed at terminals. The model does not return any clear recommendation

on which terminal structure that would increase profits the most. This is however

as expected, as there are no fixed costs connected to opening new terminals.
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9.5 Robust solution

We wanted to run the robust optimization with as many demand scenarios as possi-

ble in order to take uncertainty into consideration. We discovered however that we

could only use one scenario before the robust model incurred a memory error.

(a) The objective function (b) The total terminal inventory cost

Figure 26: Solution of the robust model with 5 scenarios

The robust model returns an infeasible solution when no terminals are opened,

as the model is forced to invest in extra processing capacity at the suppliers. The

best solution is found with 14 terminals opened. The robust solution curve reaches

the point where there are only marginal increases in the profits with six terminals

opened. This is earlier than for the deterministic solution. It might be explained by

the aggregation. This curve might be used for finding maximum allowed marginal

annual costs of opening terminals.

9.5.1 Inventory policy

The inventory policy for the terminals could be found by the robust model. The

robust model builds inventory when the number of terminals are low. When the

number exceeds 12, inventory is no longer needed, as shown in Figure 26. Required

safety stock values could be extracted from the robust model as the minimum in-

ventory level over all scenarios. The model rarely built inventory, and when it built

inventory, it was only in some of the scenarios. We could therefore not find any

values for the required safety stock above zero.

9.5.2 A robust solution - a more detailed analysis

We printed the solutions to data files, and these could be used to analyze the solu-

tions. One of these solutions is a solution with fourteen terminals opened. This is

one of the solutions with the largest profits. This solution is a feasible solution, as

it does not need to breach any penalties for meeting demand.
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Figure 27: Map of the solution: Round green points are supply points, while square
blue points are demand points and red triangles are existing terminals

9.5.2.1 Terminal structure The terminal structure could be drawn on a map

as shown in Figure 27. Several of the opened terminals are located close to suppliers.

This is a less robust, but a more cost efficient solution. The reason is probably that

the transportation capacity is high enough to avoid being limiting on the case.

The terminals receive 25 % of the volumes sent to the customers, while the rest is

transported directly from the suppliers.

9.5.2.2 Revenues and costs The highest costs are the transportation costs at

30 % of total costs, bought volumes from the suppliers at 50 % and processing of the

wood at 18%. Processing costs are evenly split between suppliers and customers,

while transportation directly to demand points contributes to two thirds of the

transportation costs. Gross margin is 19.8%.

9.5.2.3 Transportation, processing and inventory levels The total direct

transport from suppliers to demand points is concurrent with the total demand of

unprocessed assortments plus the processing capacity at the suppliers. This indicates

that terminals are primarily used for exploiting the chipping capacity located at the

terminals. Hence, everything that is possible to transport directly from a supplier

to a customer is transported directly. The combo truck is used to supply customers

where the distance from the supplier to the customer is small, and as extra chipping

capacity where the distance between demand point and supplier is relatively small.

This is because it is more expensive in transportation and processing.

9.5.2.4 Suppliers 5 of the 75 suppliers in the stochastic model are not used at

all. Total supply is 10% higher than the demand. One reason some suppliers are
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not used, could be that they are placed too far away from opened terminals and

customers.

9.5.2.5 Flow of assortments By sending the terminal structure into a problem

where the assortments are not aggregated, we see that all demanded wood parts

and pulpwood are sent directly from the suppliers to the customers. The demanded

volumes of firewood and grot are sent directly from the supply points to customers,

but larger volumes are sent to the terminals to be processed to chips. The suppliers

process tree parts and grot into chippings and bunts of grot.

9.5.3 No aggregation of assortments

We wanted to run the model with no aggregation of assortments. We aggregated

the number of suppliers down to 75 suppliers, used three demand scenarios, and by

using the LP-relaxation based heuristics, as discussed in Section 7.4, and turning

the presolver in Xpress8 off to reduce memory usage, we managed to run the model.

Figure 28: Solution of the robust model with non-aggregated assortments

The penalties were larger, and this could be explained by the increased number

of assortments, which makes the processing and transportation capacities more re-

stricting due to assortment-specific capacities. We see that we need over 6 terminals

in order to have gain robustness in the supply chain by use of the robust solutions.

The higher profits than the ones with aggregated assortments are due to different

costs and prices.

9.6 Resource analysis

We were interested in looking at how the optimal terminal structure would change

if some of the resources in the supply chain were changed. As for the aggregated

assortment case, we have seen that the transportation capacity is not particular

limiting. We therefore decided to look on the chipping capacities. We therefore

8The presolver is discussed in Section 6.6
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tested the deterministic model with and without the combo truck, and for cases

where the supplier or terminal processing capacities was lowered by ten percent

individually and together. We found that if the combo truck is removed, it seems

that it is optimal to open an extra terminal. The existence of a combo truck is also

the factor which contributes the most on the supply chains profits. An explanation is

the lower transportation costs for the combo truck, than for the grot truck, as well as

the extra processing that originate from the combo truck. The processing capacity at

the suppliers influences the profits, but this is not the case for the terminal processing

capacity. This is due to the processing capacity in the assortment aggregated case

is very high at the terminals.

The dual variables tell how much the objective function will change if the ca-

pacities belonging to each category of resources are increased. In the case where

14 terminals are opened by the deterministic model, we inputted the solved MIP

solution into the deterministic LP model without safety stock levels, to study the

dual variables. They showed that the two most valuable resources were the machine

capacity of processing wood to wood chippings at the suppliers and the available

work hours each month for each combo truck. In both cases, this would have de-

creased the need for transporting grot, which is the most expensive transportation

form, and could avoid possible detours via terminals for delivering fuel to customers.

In order to expand the capacity and the profit of the supply chain, one should there-

fore invest in processing capacity at the suppliers or more work hours for the combo

trucks.

9.7 Discussion

The Sveaskog case proved to be a difficult case to solve due to memory errors when

introducing scenarios and we needed to use some of the approaches discussed in

Section 7 in order to get solutions from our models.

It is difficult to conclude on which terminal structure the Sveaskog case should

use. This would be a trade off between fixed annual fixed of opening the terminals

and the marginal profit associated with the terminals opened. The graphs we had

presented could easily return these marginal profits.

The deterministic safety stock policy costs the Sveaskog supply chain SEK 99 000

each year, when the assortments are aggregated. The inventory returned from the

robust model, as shown in figure 26, and the stochastic models, as shown in figure

22, indicates that changing the inventory policy could save some of these costs. The

transportation and processing capacities are so high that there is no need to build

as much inventory as the deterministic safety stock policy requires.
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The terminal structure found by the stochastic solution deviated from the de-

terministic solution where no aggregation were used, and looked to a large degree

similar to the terminal solutions found by the deterministic model with the same

aggregation. However, the supplier aggregation could lead to deviations up 1 % in

profits. This could for some solutions exceed what could be saved by changing the

inventory policy.

We could therefore ask how much the terminal structure influences the supply

chain profits. We compared the optimal terminal structures’ profits with profits

from opening closed terminals and closing the open ones for each solution. The

differences between the solutions are shown in Figure 29. The difference is higher

when the number of terminals opened is low, as the opened terminals have a greater

influence on the profits. Profits could however be gained by using a close-to-optimum

terminal structure for the Sveaskog supply chain.

Figure 29: The influence on profits by terminal structure with aggregated assort-
ments
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10 Case Stora Enso

10.1 Case description

Stora Enso is a Finnish-Swedish company, and one of the world’s largest pulp and

paper manufacturer. The Group has 27 000 employees and 88 production facilities

in more than 35 countries worldwide9. The case consists of data from 2008, and

has a total demand of 3055 MWh divided over four assortments. The supply chain

consists of 81 terminals, 70 demand points and 1200 suppliers.

Figure 30: Map for Case Stora Enso

The Stora Enso case contained some differences compared to the Sveaskog case.

It included inventory at existing terminal locations that could be bought and uti-

lized. It also included terminal handling costs for the flow out of the terminals. One

of the assortments could only be processed at the terminals. This required a dif-

ferent modeling of the problem. We now accepted flows going out and in of closed

terminals, but prevented processing and inventory at the closed terminals. Con-

straint 5.17 were therefore replaced with Constraints 10.1 and 10.2, and we removed

9Stora Enso, http://www.storaenso.com/about-us/stora-enso-in-brief/Pages/
stora-enso-in-brief.aspx, accessed 31.5.2010 09:40
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Constraint 5.18. ∑
h∈H

f t
hh′nv

MT
ihnt ≤ uf+

n vm, m ∈M, n ∈ NM , t ∈ T (10.1)

lMmht ≤ uM0+
mht vm, m ∈M, h ∈ HR, t ∈ T (10.2)

Where NM is a set of processing machines at the terminals, and HR is a set of

assortments that could deteriorate due to humidity if left in the catchment areas

too long, such as e.g. wood chippings. The initial inventory at the terminals could

be bought and used in the rest of the supply chain. We needed to limit the use of

this inventory, as shown in Equations 10.3 and 10.4. We did not allow supply at

closed terminals to be transported to a supplier for processing.

∑
t∈T

bM
mht ≤ InitInvM

mh, m ∈M, h ∈ H \ HR
(10.3)

bM
mh1 ≤ InitInvM

mh, m ∈M, h ∈ HR (10.4)

10.2 Solving the case

This case proved to be a challenge to solve. Due to the very large size of the problem,

we had to reduce the problem considerably. We did this by first aggregating the

number of assortments from 4 to 3, and then aggregating the number of suppliers

from 1200 to 53. All arcs with distances larger than 40 % of the distance of its

largest arcs were also removed. This made us able to run the stochastic and robust

model with 3 scenarios. Due to the large number of binary variables, we had to use

the LP relaxation heuristics to shorten the solution times.

Redundant variables were also removed. Customer inventory and unfulfilled

demand were removed, as these options are to be penalized. Flows between the

nodes were only created for flows where there existed supply or demand for the given

assortment. We also removed the constraint for the level of customer inventory, and

turned the Xpress presolver off.

10.3 Deterministic solution

The deterministic solution used about 14 hours to be solved for all number of ter-

minals from 0 to 81 with an increment of 3. The solutions incurred penalty costs

when the number of terminals was three or fewer. As shown in Figure 31 the profits

gradually stops increasing when the number of terminals reaches 30, and decreases
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(a) The objective function (b) The total terminal inventory cost

Figure 31: Solutions for the deterministic model of the Stora Enso case.

when it reaches 54. This is due to increased transportation costs for the transport

of safety stock to terminals that may be located further away. The inventory costs

are high for a low number of terminals, but quickly fall down to the levels for the

required safety stock.

10.4 Stochastic solution

We used approximately 35 hours to solve the stochastic model with an interval of

three terminals by use of the LP relaxation heuristics. For no opened terminals

and three opened terminals the supply chain is not able to deliver volumes to fulfill

demand.

(a) The objective function (b) The total terminal inventory cost

Figure 32: Solutions for the stochastic model of the Stora Enso case.

A large part of the difference between the stochastic and the deterministic so-

lution is due to reduced inventories due to the lack of preset safety stock levels,

and reduced transportation costs. When the number of opened terminals increases,

transportation costs decreases.

55



10.4.1 Inventory

The inventory levels are considerably lower than for the deterministic solutions.

They only decreases slightly as the number of terminals increases. The costs include

storage costs of assortments bought from closed terminals, which does not need to

be brought to facilities for storage, but could be stored in the forests, e.g. grot.

Increased use of such inventories is an explanation for why the inventory levels do

not decrease more.

10.4.2 A stochastic solution - a more detailed analysis

One of the most profitable solutions is a terminal configuration with 27 opened

terminals.

Figure 33: Safety stock levels for the stochastic solution with 27 opened terminals

10.4.2.1 Inventory policy According to the model, required safety stock is

found for the first period. But this level also include initial inventory transported

from closed terminals. On average, the model also builds inventory in order to

handle demand peaks. However, this inventory differs dependent on the scenario.

This shows that there exists a large degree of flexibility in how inventory is to be

built for later periods.

10.4.2.2 Revenues and costs Among the highest costs is transportation at

18.5 %, processing at 28.0 % and purchasing of wood from suppliers at 46.8 %. Most

of the activity in the supply chain is located at the suppliers, which contributes to

88.8 % of the processing costs and transports 90 % of the supply directly to the

customers. Gross margin is 22.6 %.

10.4.2.3 Transportation, processing and inventory levels Of the demanded

volumes, 68.3 % is processed at the suppliers, 15.5 % is processed at terminals and
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the last 15.7 % are sent directly from suppliers or terminal points without any pro-

cessing. The combo trucks participate in this processing at the supply points. The

combo truck delivers to customers that lay fairly close. The combo trucks processes

26.4 % of the processed volumes at the supply points. The usage of the combo truck

is however more expensive, and the capacity of the combo truck is therefore only

exploited fully in high-demand scenarios. It seems therefore that the combo truck

could be used to increase robustness. All types of assortments are transported di-

rectly from suppliers to customers, and from terminals to customers, while chippings

is not transported in to terminals. Even though all types of assortments are bought

at terminal locations, only firewood is transported to other terminals. This is due

to lower transportation costs for firewood compared to other assortments.

10.4.2.4 Suppliers There is 12.8 % higher supply than total demand, but 13.2

% of these volumes are located at potential terminal locations. 13.5 % of the volumes

at the suppliers are not used.

10.4.2.5 Resources Processing capacities are exploited at maximum in high-

demand periods. It is therefore profitable to invest in processing capacities for grot

into chippings at suppliers, firewood into chippings at terminals and combo truck

capacity. Capacities for trucks for chippings could also be increased. However, the

extra capacity is only profitable in high-demand periods.

10.5 Robust solution

The robust model used three scenarios, and used approximately 30 hours by use

of the LP relaxation heuristics. It incurs a penalty when the number of opened

terminals is below six, as the supply chain would not be able to fulfill demand. The

profits reach its peak at about thirty terminals, and remains at this point even with

an increase in the number of opened terminals.

With an increased number of terminals, transportation costs decreases, more vol-

umes are bought from terminal locations, and a larger part of the processing is done

at the terminals. Compared to the deterministic solutions, there are considerably

less inventory costs, lower transportation costs, and a larger part of the assortments

are routed via terminals.

10.5.1 Inventory

The inventory levels decreases with an increase in the number of terminals. The

deterministic model incurred a cost of 11.5 million for its inventory, and explains
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(a) The objective function (b) The total terminal inventory cost

Figure 34: Solutions for the robust model of the Stora Enso case.

Figure 35: Safety stock levels for the stochastic solution with 27 opened terminals

why the robust solution increases the supply chains profits by 10 million, compared

to the deterministic solutions. The increase in inventory at a higher number of

opened terminals is due to increased use of buying volumes at terminal.

10.5.2 A robust solution - a more detailed analysis

One of the most profitable solutions is a terminal configuration with 27 opened

terminals.

10.5.2.1 Inventory policy According to the model, required safety stock on the

terminals is required in the first period. However, the value is found by also including

transport in of initial inventories from closed terminals. On average, inventory is

built in later periods to meet peaks in demand. Required safety stock is not required

in these periods, and it seems that there is much flexibility in how this inventory

could be built.

10.5.2.2 Revenues and costs Among the highest costs is transportation at

18.4 %, processing at 28.2 % and purchasing of wood from suppliers at 45.5 %.
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Most of the supply is located at the suppliers, which contributes to 87.8 % of the

processing costs and transports 90 % of the supply directly to customers. Gross

margin is 22.4 %.

10.5.2.3 Transportation and processing Of the demanded volumes, 67.2 %

is processed at the suppliers, 15.6 % is processed at the terminals and the last 17.2

% are sent directly from suppliers or terminal points without any processing. The

combo trucks participate in this processing with the other machines at the supply

points. The combo truck delivers to customers that lay fairly close. The combo

trucks processes 22.9 % of the processed volumes at the supply points. The usage

of the combo truck is however more expensive, and the capacity of the combo truck

is therefore only exploited at maximum in high-demand periods. All assortments

are transported from suppliers to customers, and from terminals to customers, but

only grot and firewood are transported from suppliers to terminals. All types of

assortments are bought at terminal locations, but only firewood is transported into

open terminals from closed terminals. This is due to cheaper transport costs.

10.5.2.4 Suppliers There are 12.8 % higher supply than total demand, but 13.2

% of these volumes are located at potential terminal locations. 13 % of the volumes

at the suppliers are not used.

10.5.2.5 Resources Some resources are used at maximum in high-demand pe-

riods. These are the truck capacities for chippings, chipping capacities at suppliers

and capacities for processing firewood into chippings at terminals. According to the

dual variables, it would be profitable to invest in all of these capacities.

10.6 Discussion

The number of terminals influences how well the supply chain performs. If less

than six terminals are used, there will be too few terminals to be able to fulfill

demand. The profit increases fade out as the supply chain reaches its desired flex-

ibility to exploit the terminal structure as efficient as possible. This happens for

the deterministic model at around 30 opened terminals, for the robust at 45 and

for the stochastic at 51. This is due to the deterministic model preset safety stock

levels, and the need to use terminals to achieve flexibility in the supply chain when

uncertainty is introduced. The stochastic and robust solutions show that the deter-

ministic safety stock levels are set too high, and considerable costs could be saved

by changing the inventory policy.
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Several approaches were used to reduce the problem to be able to run it on a

regular computer. It is difficult to state how much the solution quality has been

affected, and the terminal structure are probably not at the exact optimum. As only

three scenarios were used, the robustness of the solutions could also be questioned.

However, from a supply chain planner’s view, the solutions may actually prove to

be rather good, as they probably increases the profits compared to doing supply

chain design manually. This is especially true if a planner chooses a manual found

solution with a low number of terminals.
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11 Discussion & applicability

11.1 Implementation and initialization of the models

The modeling and implementation of the supply chain design problem were time

consuming and challenging, as the problem is complex and relatively large. An

advantage of these problems and use of stochastic optimization, is that much work

has already been done in this field. It was therefore not difficult to find relevant

literature sources on these subjects. However, on robust optimization, there was

less to be found. It was therefore more challenging to work with the robust model.

A challenge with supply chain design is that supply chains may be different, and

require different modeling. For example would the Stora Enso case contain initial

inventory at existing terminals which needs to be transported to other terminals if

the terminal is to be closed. This means that we cannot develop models which would

fit to all cases, but need to adapt the model and the implementation approach to

each case.

The number of suppliers, customers, terminals and assortments may become

quite high. This means that the problems may become very large. This leads to

two challenges. One is that the memory on the computers may become too limiting.

This means that much work and time is required for presolving and implementation

of solution methods to reduce the size of the problems. It also means that the

number of scenarios that could be used is limited. This could lead to less robust

solutions. Secondly, errors in the implementation or data may occur. But as it

could be hard to imagine how a solution would look, it is harder to discover these

errors. A reference point or close cooperation with the company could have helped

overcoming this problem, but in our case we did not have this. As the solution time

also increases, time used for searching for errors would increase.

11.2 Analyzing solutions

The amount of information possible to extract from solving these cases could be

very high and it could be easy to lose track of what information that is of interest.

As the solution time could be very high for some cases, it is important to clarify this

in advance. We printed the information we felt of interest to data files, which were

written so they could be analyzed directly or by use of Microsoft Excel. The models

could be used for analyzing the supply chains. Different terminal configurations

could be inserted in the model, and data for the optimal exploitation of this solution

could be printed for the analysis. The problem is then changed to a LP problem,

and values for the dual variables and reduced costs could be extracted.
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11.3 Modeling uncertainty

The uncertainty has been modeled with use of three or five demand scenarios, with

correlated demand variations. In order to evaluate at how good this modeling of

uncertainty was, additional correlated and uncorrelated demand scenarios were cre-

ated, for 5 and 10 scenarios. We used computers from a cluster with considerably

more memory than a normal computer in order to solve the models with additional

scenarios 10. It was tested on the assortment-aggregated Sveaskog case aggregated

down to 75 suppliers by use of a stochastic model.

The terminal structure changed with how the uncertainty was modeled. For five

scenarios, the stochastic model gave different terminal structures than the deter-

ministic. For correlated demand scenarios, 37 terminals were shifted, while 39 were

shifted for the uncorrelated case. 32 terminals were different when correlated sce-

narios were used compared to uncorrelated. The robust model made fewer changes.

When the number of scenarios was increased to 10, all the models replaced over

thirty terminals compared to the case of 5 scenarios. The change was largest for

uncorrelated scenarios.

An increase in the number of scenarios would force the stochastic and robust

model to adapt more to other changes in demand realizations, and would lead to

more robust solutions. It seems therefore that an increase in the number of scenarios

would have provided other and more robust solutions than the ones presented.

We have found that the type of correlation affects the terminal structure returned

from the models. The correlation of the demand should depend on how the demand

uncertainty actually is. This requires a proper analysis of the variations in demand.

We have in the cases assumed a large degree of correlation as we assume that demand

for heat to a large degree is correlated with temperature and weather.

11.4 Preprocessing, aggregation and the LP based heuristic

The two industrial cases were initially too large to be solved on regular computers,

and a reduction of the problem size were needed. The variables which contributed

the most to the size were the flow variables.

We aggregated both the assortments and the number of suppliers. The aggrega-

tion of assortments was effective as most of the variables in the problem were given

for each assortment or assortment group. The aggregation of supply points reduced

the number of arcs, variables and constraints for the assortments. The use of aggre-

gation could however return solutions which are different from the non-aggregated

10The Solstorm cluster at Department of Industrial Economics and Technology Management,
NTNU. See https://solstorm.iot.ntnu.no/wordpress/
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case, as shown in Section 7.1 and 7.2. For assortment aggregation the deviation from

its non-aggregated case was below 2.5 percent, and for the supplier aggregation the

deviation from its non-aggregated case was below one percent. This show that use

of aggregation could be an effective way of solving similar problems. However, sup-

plier aggregation by use of the algorithm we have developed give better solutions

than the assortment aggregation, and is also easier to implement and adapt to the

given cases. Assortment aggregation could also increase the capacities in the supply

chain, and could therefore return solutions that are not actually robust.

The LP-relaxation based heuristics reduced the solution times considerably. But

as shown in Section 7.4, the terminal structures found by this heuristics could behave

rather poorly, especially when the number of terminals is low. The use of the heuris-

tics could also be improved. We could have reduced solution times by solving the

terminal structure when all or none terminals were opened, but instead only evalu-

ated the terminal structure. Variables and constraints for closed terminals could be

removed for closed terminals in the model that evaluated terminal structures.

We also removed the arcs which had the longest distances. We discovered that

this could reduce the solution times considerably. We removed other redundant and

unnecessary variables, and chose to only create the variables which were explicitly

needed. In Case Stora Enso, we did not create variables for e.g. flow of assortments

to demand points which were not demanded, or flow variables for assortments which

did not fit to the truck, and we removed the customer inventory capacity constraint

and the variables for customer inventory and unfulfilled demand, as these variables

had penalty costs attached to them, and other variables served to indicate if the

supply chain design is robust or not.

We had to use all of these solution methods to solve the problems. It is not

easy to evaluate how much the solution methods have influenced the solutions, and

how far the solutions are from the global optimum. However, the alternative is to

design the supply chain manually. As described in Section 3, there are many factors

to consider, and uncertainty may increase the difficulty in finding good solutions.

The result of such manual planning could therefore become rather bad. But use

of decision support systems, such as the models we have developed, could help the

planner in finding better solutions.

The constraints that restricted in- and outflows on closed terminals were in

our original problem formulation written in a way that increased the size of the

problems. But by writing the constraint different, by splitting the sum of flows into

time periods and assortments, we managed to reduce the problem, and speed up

solution times and decrease memory usage. uM+
m could be replaced by a smaller

value, however the Xpress presolver should normally do this.
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Old formulation:∑
j:(m,j)∈RC

∑
k∈K

∑
h∈HK

k

xM−J
mjkht − uM+

m vm ≤ 0, m ∈M, t ∈ T
(11.1)

New formulation:∑
j:(m,j)∈RC

xM−J
mjkht − uM+

m vm ≤ 0, m ∈M, k ∈ K, h ∈ HK
k , t ∈ T (11.2)

11.5 Comparing the optimization approaches

The models could be evaluated on solution times and how well the solutions perform.

The expected value of perfect information (EVPI) is the difference between the wait-

and- see problem solution and the stochastic solution, and is used to determine how

much the solution deviates from a solution if all information were known. The value

of stochastic solution (VSS) and value of robust solution (VRS) is used to evaluate

how well the models behave when taking uncertainty into consideration. To evaluate

how well the robust and the stochastic solutions perform under uncertainty, we have

inserted the terminal structure and required safety stock found by the robust model

into the stochastic model to find its stochastic counterpart, and vice versa. We

have in this analysis, chosen to include the analysis of the Stora Enso case and the

non-assortment aggregated Sveaskog case, as these two cases had limited capacities

and showed the largest effects.

11.5.1 Implementation & running

Compared to the deterministic model, the robust and the stochastic model was more

likely to incur memory errors, and required more work to implement them in a way

that made it possible to run them. The robust model required the most computer

capacity and incurred memory errors more often.

11.5.2 Inventory levels

Inventory is built in the models, and we have seen that inventory decreases with the

number of opened terminals, e.g. Figure 16. The deterministic model builds more

inventory than the stochastic and the robust model, and this is due to the preset

required safety stock levels in the deterministic models. The stochastic and robust

solutions show that a preset safety stock of 40 % of the next month’s demand is too

high, and should be reduced.

The stochastic and robust models builds inventory, but required safety stock
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levels above zero is not always found. It seems to mainly occur for earlier time

periods, even though average inventory may be higher in all periods. It seems

therefore that there exists flexibility in how to choose inventory levels for each time

periods in order to build inventory to meet peaks in demand. In the models, this

is dependent on the scenario drawn. Required safety stock levels could however

also be needed for other purposes than balancing capacities, such as increasing the

reliability in the supply chain. 11

11.5.3 Terminal structures

When the number of opened terminals increases, transportation costs usually de-

creases. However, the robust solutions seem different than the stochastic ones. The

robust model have higher costs for transportation from suppliers to terminals and

higher processing costs at terminals. This indicates that the robust model exploits

terminals more than the stochastic model. This trend was observed in both cases.

The stochastic model returned the highest profits, and is mainly due to lower trans-

portation costs. The deterministic model had higher inventories due to its preset

inventory levels, and also increased transportation due to the inventory.

From Figure 36 we see that the deterministic model chooses terminals that lay

closer to customers and suppliers than the two other models. The stochastic model

and robust model often choose terminals that lay further away.

Figure 36: Average least distance between opened terminals and suppliers / cus-
tomers with 12, 27 and 60 opened terminals

The number of times the terminals were opened was used to determine which

factors that contributed to the opening of the given terminals for each model. For

11See Section 3.1.
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the deterministic and robust model, demand factors had larger influence than sup-

ply factors, even though the cheaper initial inventory at the given terminal had a

significant impact. The least distance to the closest customer had larger impact

than the least distance to a supplier for the deterministic and robust models, and is

due to terminals being located closer to customers than suppliers, and this is also a

more robust configuration.

Figure 37: Correlation with opened terminals

The deterministic model correlated considerably more than the other models.

It seems that the deterministic model chooses solutions where the terminals are lo-

cated close to customers and suppliers, and chooses a cost-efficient solution. When

uncertainty is introduced, the factors become less significant. A possible explana-

tion is that the robust and stochastic solution chooses to open terminals that lay

further away. This is due to the limited transportation capacity and in cases where

customers far away from suppliers demands higher volumes in high-demand periods,

the transportation capacity could become too limiting. The stochastic and robust

models would therefore try to locate terminals in order to avoid this.

11.5.4 EVPI

EVPI is the difference between the wait and see problem and the solution of the

stochastic problem, and explains how well the solutions perform in the future. An

EVPI-value close to zero means that the inventory policy and terminal structure

found is optimal also in the future. The wait- and see-problems is solved by use of

the LP-relaxation based heuristics. The values could therefore be affected by error.
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(a) Sveaskog. Penalty up to 4 terminals (b) Stora Enso. Penalty up to 6 terminals

Figure 38: EVPI

The EVPI-values, as shown in Figure 38, show that if the number of terminals

increases, the supply chain would perform closer to optimum in the future. For

the Sveaskog case, there are penalties up to 4 opened terminals, and if the optimal

future solution is chosen, there could be a maximum of 3 % increase in profits. The

EVPI values should be positive, but as seen for the Stora Enso case, the values are

mostly negative. The reason is most probably the LP relaxation based heuristics, as

it provides poorer solutions when the number of terminals is low. It seems therefore

that use of the LP relaxation should be avoided when calculating EVPI values.

However, as the EVPI values are not higher, we may expect that the solutions for

the Stora Enso case will perform close to a future optimum.

11.5.5 Value of stochastic solution

(a) Sveaskog. Penalty up to 6 terminals (b) Stora Enso. Penalty up to 3 terminals

Figure 39: VSS

The value of stochastic solution is the difference between the stochastic solution

and the deterministic solution, and tells how well the deterministic solution performs

when subject to uncertainty. The stochastic solution would in theory perform better
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in the future than the deterministic. For both cases, costs could be saved by use of

stochastic optimization. The savings is approximately 10 %, and are therefore con-

siderable. This is mainly due to reduced inventories as the deterministic inventory

policy is replaced by the stochastic safety stock values.

For the Sveaskog case, the VSS values start to increase once the deterministic

terminal structure becomes robust in the stochastic model. The reason is that the

deterministic model could utilize its inventory to fulfill demand. But as the number

of terminals increases, the need for this inventory decreases, and the VSS increases.

For the Stora Enso case, the VSS values start to decrease once the deterministic

terminal structure is robust in the stochastic model. This could be explained by

the decreased marginal influence on supply chain profits as the number of terminals

increases, and as the deterministic model would open terminals that lay further away

only when the number of terminals increases. This incurs increased transportation

costs to deliver their required safety stock.

11.5.6 Value of robust solution

(a) Sveaskog. Penalty up to 6 terminals (b) Stora Enso. Penalty up to 3 terminals

Figure 40: VRS

The value of robust solution is used to evaluate how well the solutions perform

compared to the deterministic solution if a worst- case scenario should occur. In

both cases the VRS is positive and contributes to savings of approximately 10 % by

using the robust model compared to the deterministic model. This is mainly due to

reduced inventory costs.

For the Sveaskog case, as shown in Figure 40, the VRS-values are almost constant

once the deterministic solution becomes robust in the robust model. This is mainly

due to the required safety stock of the deterministic model. For the Stora Enso case,

the deterministic solutions perform badly for a low number of terminals opened, but

gradually stabilize its performance. The VRS values increase as the need for the
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deterministic safety stock decreases.

11.5.7 Solution times

(a) Compared for different number of terminals
opened

(b) Shown as parts of the total solution time

Figure 41: The solutions time of our models for Case Sveaskog with aggregated
suppliers and assortments

The solution times for the stochastic and the robust model were considerable

larger than the deterministic model. To speed up the solution times, the LP-

relaxation based heuristics was used. This reduced solution times considerably,

as shown in Section 7.4, and the difference in the stochastic and robust solution

times were reduced. The stochastic model used less memory than the robust model.

Case Sveaskog with aggregated assortments were the only problem we were able

to solve without the LP-relaxation based heuristics. The solution times were lowest

for the deterministic model as shown in Figure 41. The deterministic model is

however considerably smaller than the robust and stochastic model. The stochastic

model seems to solve in almost one fifth of the time the robust model uses. We see

the same trends in solution time for all cases. The largest solution times is found

when the numbers of terminals opened are low. An explanation is that the problems

become more sensible to which terminals it opens with a small number of terminals

opened.

11.5.8 Comparing the stochastic and the robust optimization approach

We have implemented the stochastic solution into the robust model and vice versa

to evaluate how good the solutions perform under uncertainty. We would expect

that the robust solutions would behave best in the robust model, and the stochastic

model would behave best in the stochastic model. However, we have used a LP-

relaxation based heuristics that could affect the quality of the solutions, i.e. what
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terminal structure that is found. As can be seen for the Sveaskog case, the robust

solutions would actually perform better in the stochastic model, than the stochastic

solutions for a low number of opened terminals. However, for the Stora Enso case,

the trend is completely opposite, as shown in Figures 42 and 43. The stochastic

solutions actually perform better than the robust solutions.

We expected the models to behave similar as we have a low number of scenarios,

and as shown, the difference in behavior is below three percent. An explanation is

that while the robust solution evaluates the terminal structures based on worst case

scenarios and chooses the cheapest robust solution, the stochastic solution evaluates

terminal structures based on all scenarios, and chooses the robust and expected

cheapest solution. This explains the incremental increase in profits that we found

for the stochastic model. As the solution times and memory usage is lower for the

stochastic model, it also seems more attractive.

(a) Sveaskog. Penalty up to 4 terminals (b) Stora Enso. Penalty up to 6 terminals

Figure 42: VSS for the robust solution inputted to the stochastic model

(a) Sveaskog. Penalty up to 4 terminals (b) Stora Enso. Penalty up to 3 terminals

Figure 43: VRS for the stochastic solutions inputted to the robust model
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12 Conclusion

We have implemented three optimization models to solve a supply chain design

problem for finding optimal terminal structures and inventory policy for forestry

biomass supply chains. A deterministic, a stochastic and a robust model have been

implemented and used to solve a constructed test case and two large industrial cases.

In order to run the models for the large problems, we have developed methods

to decrease solution times and memory usage. This is done by the use of data

preprocessing, an LP-relaxation based heuristic, arc removal and aggregations of

suppliers and assortments. We have especially studied supplier aggregation, and

developed an algorithm that efficiently could create aggregations with only minor

deviations in solution quality. The methods developed in this thesis is easy to

implement and manipulate for further use on similar cases or models. The LP-

relaxation based heuristic is effective to reduce solution times, but gives poorer

solutions for a low number of opened terminals.

Costs could be saved by choosing an optimal terminal structure and inventory

policy. These saving decline with the number of opened terminals. The value of

stochastic solution and the value of robust solution show that taking uncertainty

into consideration would save costs. The main contribution in savings is explained

by changes in inventory policy, as the levels of safety stock used in the deterministic

model are set too high. Robustness could be achieved by either increasing the

number of terminals, inventory levels, processing and transportation capacity in the

supply chain. Increasing the processing capacities at the suppliers seems to be an

attractive investment.

The stochastic and robust models return solutions that corresponds to equal sup-

ply chain profits. Both models could both increase profits. However, the stochastic

model solves in one fifth of the robust model and uses less memory. Use of the

LP-relaxation based heuristics reduces the differences in solution times between the

stochastic and robust model decreases substantially.
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Appendices

Xpress code

Xpress code used to solve the Stora Enso case is included on a CD attached with

the printout. This includes; the stochastic and robust models, the LP-relaxation

based heuristics, the supplier aggregation algorithm, generation of transportation

costs, the removal of longest arcs, the scenario generator and an initializator used

to initialize the models for different parameters.
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