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Abstract

In this thesis it has been analyzed how the maintenance will evolve
over time for different systems on oil and gas installations. Several sta-
tistical models have been proposed to analyze this, minimal repair mod-
els (NHPP), perfect repair models (HPP/RP) and imperfect repair models
(ARA∞/ARA1). The focus has been on the relationships between these
models, the state which the system is left in after maintenance and how
good each model fit the given data. The maximum likelihood method has
been used for all models when finding estimates for the parameters.

The result after fitting the models to the data are also used to simulate
how maintenance will evolve during a 30 year period for a specific plant.
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1 Introduction
The main purpose of this thesis is to study the effects of maintenance and how
maintenance evolves over time on different systems on ageing offshore oil and gas
installations. We are given data from two offshore platforms in the North Sea
where we have information about all maintenance actions done on the platforms
during a period of almost 8 years.

The offshore installations in the North Sea are getting older, and replacement
of components or systems is becoming evident as they may not give satisfactory
results with respect to safety, production or other criteria. The study of the
maintenance actions may increase the lifetime of the component/system or reduce
the number of insignificant maintenance actions.

One interesting aspect is whether or not the number of maintenance actions
increases as the installation gets older. In other words we are interested to estimate
how the maintenance evolves over time. By doing this we may get a better estimate
on how much maintenance is necessary for a given system when the age of the
installation gets older. It may be logical to think that more maintenance actions
is necessary in order for the system to give satisfactory result when it gets older.
If a system inhibits a trend it may be interesting to see if this trend is statistically
significant or not, and if the system has a decreasing or increasing trend. A system
with a decreasing trend requires less maintenance as the systems gets older while
a system with increasing trend requires more maintenance.

In this thesis we propose several different statistical models to analyze how the
maintenance evolves over time. We have taken into account perfect, minimal and
imperfect repair models. The first two models, (perfect and minimal), are the ones
who are usually used, but we have also proposed two imperfect repair models in
addition. We will come back to the discussion of these models in section 3 & 4. In
section 2 we will give a description of the systems we are considering and the data
we have been given access to. We will also use the results from the analysis of the
statistical models to simulate how maintenance will evolve on one of the platforms
over a 30 year span in section 5 before we give some concluding remarks on the
results we have found in this thesis in section 6.

The appendix contains some additional background on the statistical models
we have used along with some definitions of technical terms used in the thesis.
Throughout the work with this thesis we have used the statistical software R, [1],
to do most of the programming involving the statistical models, some of the codes
are given in section D in the appendix. The simulation is done with the simulation
software ExtendSim 8, [2].
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2 Description
In this thesis data from two platforms in the North Sea are considered. Throughout
this thesis they will be denoted as plant A and plant B.

We have been given access to a datadump from a CMMS (Computerized Main-
tenance Management System) report for these two platforms which gives us infor-
mation about all the maintenance work they have done on the different systems
on the platform. The dataset describes which system the maintenance belongs
to, the date the maintenance started, the date they have changed the system, the
plant it has been done on, wether it was preventive or corrective maintenance, the
priority of the maintenance, what kind of component it is and an ABC indicator.
The ABC indicator is a criticality classification, which implies a classification of
each component with regard to consequence of failure. This indicator is linked
together with the priority since a component with high criticality will need higher
priority in order for the system to still perform the intended function.

The data given is from a 8 year period where there has been registered 13844
events. It may be interesting to note that plant B was set into operation only 1 year
before they started recording data in comparison to plant A which has operated
10 years before they started to record data. This may lead to a early conclusion
that same system on different platforms may exhibit different trends due to ageing
because of the period they have operated so far. An interesting aspect is that
the total number of maintenance events done on each platform vary considerably.
Plant A has 10549 registered events while plant B only has 3295 registered events.
This gives also rise to an early conclusion that plant A may exhibit more ageing
trends than plant B.

There are in total 49 different systems on the platforms where there has been
registered events. The number of events varies considerably from system to system,
from only 1 registered event on system 14 up to 1229 registered events on system
53. This leads to a limitation on some systems, since it may be too few registered
events in order for us to get interesting results. Therefore the focus has been mostly
on systems where there are many registered events in this thesis, since this gives a
better foundation on how maintenance will evolve over time. Let us also note that
on some systems there are only registered events on one of the plants. This may
be because the design of the plant is different than the other and may not contain
that specific system, but it also may come from the fact that no maintenance has
been registered. This gives us no ability to compare between the plants, but it is
still interesting to see how maintenance evolves over time on the specific plant. In
this thesis the main focus will be on systems where there are registered events on
both plants.
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3 Statistical Models
The statistical models proposed in this section will all be used to analyze how
maintenance will evolve over time. Data from the analysis from these models will
be supplied to ExtendSim 8, [2], to do a simulation of how maintenance will evolve
during a 30 year span on one of the plants.

All the systems considered are repairable systems which undergoes repair/-
maintenance which can restore the system to a state where it can perform its
required function satisfactorily. Several statistical models have been proposed in
the literature to model systems in order to capture how maintenance will evolve
over time. In our analysis the focus has been on counting process models or
stochastic point process models.

Types of Repair

Perfect Repair
(as good as new)

Homogeneous
Poisson
Process

Renewal
Process

Imperfect Repair
(between AGAN and ABAO)

ARA∞ ARA1

Minimal Repair
(as bad as old)

Non-Homogeneous
Poisson Process

Figure 3.1: Overview of statistical models sorted in categories of repair

In figure 3.1 an overview of the different models used in the analysis of the data
are presented. The focus has been on three different categories of repair models;
perfect, imperfect and minimal repair. The difference between the categories arises
from which state they leave the system in after maintenance is done. A perfect
repair leaves the system in a state as good as new, AGAN. Minimal repair leaves the
system in a state as bad as old, ABAO, this means that the minimal repair didn’t
make the system any better than before. And imperfect repair, which is also often
denoted normal repair, leaves the system in a state between AGAN and ABAO.
One could also argue that an imperfect repair leaves the state of the system in a
state worse than old or better than new, but for simplicity and easier interpretation
we have made the decision to keep the imperfect repair between AGAN and ABAO.
More comments on this will be given in the section for imperfect repair models.
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Before continuing to describe these models a few remarks about some defini-
tions that are important for the description of the models. Figure 3.2 show two

t0 = 0 t1 t2 · · ·
· · ·

tn−1 tn

x1 x2 xn

Figure 3.2: Timeline for maintenance events

important definitions of time we need to take into account. ti describes the time
of registered maintenance events and xi = ti − ti−1 denotes the inter-occurrence
time or time between maintenance. Some assumptions of events happening in
the xi-intervals and the relationship between these intervals are similar for all the
different models.

• The xi intervals are disjoint and independent.

• Only one event per day is considered, thus if more than one event happens
per day they will be counted as one.

• Each event is equally important, this means that we can’t distinguish be-
tween criticality of events or how time consuming the events are.

• The repair time is negligible, the interest is only how many events that has
happened up to time t.

These assumptions are critical for the modeling of the counting process, having
set these in place we will now continue to describe the different models.

3.1 Perfect Repair Models
A perfect repair model leaves the system in a state as good as new, AGAN, after
maintenance has been done on the system. This means that after maintenance
the system is the same as if we had a new system. In many cases this may be
regarded as a optimistic/naive model as a system with many components should
not be regarded AGAN if we do maintenance on it, as maintenance is usually done
on only a small fraction of the system. Nevertheless, it is interesting to see how a
perfect repair model fits the given data to see if maybe this is a good model.

There has been used two different models for this case, homogeneous poisson
processes (HPP) and renewal processes (RP). The basic assumption on how these
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two models work is the difference of the probability distribution for an event occur-
ring in a specific interval. For the HPP model the probability of an event occurring
in specific xi interval follow a exponential distribution with scale parameter α.

FX(xi) = 1− exp [−xi/α] (3.1.1)

Because the xi intervals are disjoint and independent, the probability of n number
of events happening in the interval [0, t) follow a Poisson distribution with mean
E[N(t)] = t/α, see section B.3 in the appendix for more details.

Another way to describe the HPP model, see section B.3 in the appendix, is to
set the rate of occurrence of maintenance, ROCOM, function to v(t) = 1/α. This
will give the same model.

The RP model assumes a different probability distribution for an event oc-
curring in a xi interval. Generally a renewal process can follow any probability
distribution in the interval, but in our model we have chosen the Weibull distribu-
tion as our basis for the RP model with scale parameter α and shape parameter
β.

FX(xi) = 1− exp
[
−
(
xi
α

)β]
(3.1.2)

A closed form solution for the expected number of maintenance events happening
in the interval [0, t) is not attainable unless there are integer values of the shape
parameter β, thus the RP model relies on Monte Carlo simulation of the expected
number of events. A description of the Monte Carlo simulation will be given later.

Thus the only difference between the models are that the HPP follows an ex-
ponential distribution in the xi intervals while the RP model follow a Weibull
distribution. The main difference this leads to is the probability of an event hap-
pening in an interval. The exponential distribution has the memoryless property,
see equation 3.1.3.

P (S > s+ x|S > x) = P (S > s+ x)
P (x) = exp−(s+x)/α

exp−x/α

= exp−s/α = P (S > s) (3.1.3)

Thus no matter how long the system hasn’t experienced maintenance in an interval
the probability of an event happening is still the same for the HPP model. For the
RP model this is not the case. The scale parameter β in the Weibull distribution
makes this not possible for the RP model unless β = 1. When β = 1 the Weibull
distribution reduces to the exponential distribution and the RP and HPP model
may be regarded the same in this case. If β 6= 1 one may think of local trends in the
xi intervals. For β < 1 the probability of ”surviving” longer without maintenance
is greater than in comparison if β > 1. Thus one may say that it has a decreasing
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local trend if β < 1 as the failure rate of the Weibull distribution decreases as time
gets larger. While one may say that it has an increasing local trend if β > 1 since
the failure rate increases as time gets larger.

Another concept which is important to note is the effect of global trend. A
global trend occur if the expected number of maintenance events doesn’t increase
linearly with time. For the HPP model we saw that the expected number of
maintenance events in an interval [0, t) equals

E[N(t)] = t/α (3.1.4)

this increases linearly with time, thus the HPP model doesn’t have a global trend.
From the elementary renewal theorem, see equation B.4.4, the expected number

of maintenance events in an interval [0, t) is approximately

E[N(t)] = t/µ (3.1.5)

when t gets large and µ is the mean of the probability distribution for the xi
intervals. Thus E[N(t)] increases linearly also for a RP model. Hence neither the
RP nor the HPP model have a global trend.

Comments on how the likelihood function is constructed for the HPP and RP
model are seen in section B.7 in the appendix. Differences in the log-likelihood
function is readily seen as the log-likelihood for the HPP model is given by

lHPP (α|t) =− n logα− tn
α

(3.1.6)

while for the RP model the log-likelihood is.

lRP (α, β|t) =n(log β − β logα) + (β − 1)
n∑
i=1

log(ti − ti−1)−
n∑
i=1

(
ti − ti−1

α

)β
(3.1.7)

The difference between the log-likelihoods is seen to arise from the β parameter.
Letting β = 1 the log-likelihood for the RP model equals the log-likelihood for the
HPP model.

lHPP (α|t) =lRP (α, β = 1|t) (3.1.8)

this shows that a RP model with β = 1 indeed is the same model as the HPP
model.

The method of maximum likelihood has been used to find estimates for the
parameters in both the HPP and RP model. For the HPP a closed form solution
for the maximum likelihood estimator, MLE , of α is easily attainable

α̂ = tn
n

(3.1.9)
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For the RP model closed form solutions is not attainable, therefore a numerical
maximization procedure has been used to find the MLE’s for α and β. In our
implementation we have used a quasi-Newton method to solve the maximization
problem of the log-likelihood function. A full description of the implementation
will not be given here, further details can be seen in section D where the R-codes
are given, but a key issue will be highlighted. Both the α and β parameter have
a restriction that they have to be greater than zero. Thus before starting the
maximization procedure the parameters are transformed such that they may take
any value in the range (−∞,∞). The transformed parameters are

α′ = log(α)
β′ = log(β)

By doing this and utilizing the invariance property of the MLE’s, as described in
section B.6 in the appendix, it speeds up the procedure of finding the MLE’s.

3.2 Minimal Repair Model
A minimal repair model leaves the system in a state as bad as old, ABAO, after
maintenance has been done on the system. The implication of this is that after
maintenance the system is left in the same state as it was before maintenance.
For a system with many components a minimal repair model may be a good
approximation due to the fact that maintenance is usually done on only a small
fraction of the system, hence the overall state of the system should be unaffected.
By saying that maintenance doesn’t have an effect on the state of the system, a
minimal repair model may be regarded as a pessimistic model.

In the minimal repair model one model has been used to analyze the situation
namely a non-homogeneous Poisson process, NHPP, model. The idea behind how
this model is developed may arise from two different views. Let us introduce both
ideas behind the development of the NHPP model.

The first idea come straight from the definition of a non-homogeneous Poisson
process, see section B.5 in the appendix. The NHPP is determined by the time
dependent intensity or rate of occurrence of maintenance, ROCOM, function v(t).
If we let v(t) follow the power law process where

v(t) = β

α

(
t

α

)β−1
, α > 0, β > 0 (3.2.1)

and the cumulative rate of the process, V (t), equals

V (t) =
∫ t

0
v(s)ds =

(
t

α

)β
(3.2.2)
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Then the NHPP model follow a Poisson process with time dependent mean,
E[N(t)] = V (t). Since the expected number of maintenance events is time de-
pendent it increases if β > 1 and decreases if 0 < β < 1 as time t gets larger. The
probability of n number of maintenance events in the interval [0, t) is then given
by

P (N(t) = n) =

[
(t/α)β

]n
n! exp

[
− (t/α)β

]
(3.2.3)

A special property of the power law process is that the time up to first maintenance
is Weibull distributed. This can be shown by considering the probability of no
maintenance events in the interval up to first registered event, [0, t1).

P (N(t) = 0) = exp
[
− (t1/α)β

]
(3.2.4)

This is exactly the survivor function for a Weilbull distribution, hence the time to
first maintenance is Weibull distributed with scale parameter α and shape param-
eter β.

The second idea makes a different approach to define the NHPP model. It
has been taken into consideration mostly because it helps us in constructing the
likelihood function, but also to get a clearer picture of how the NHPP model works
and how it relates to the other models. Remember from last section where the
RP model was defined by a standard Weibull distribution in each xi interval. In
the NHPP model we will also follow a Weibull distribution in the xi interval, but
here this is a conditional Weibull distribution which is conditioned on the time
ti it has operated so far. In figure 3.3 the shaded area represents the conditional
probability of experiencing maintenance before ti given that time is greater than
ti−1. Mathematically this can be expressed as

P (T ≤ ti|T > ti−1) = F (ti)− F (ti−1)
1− F (ti−1)

= 1−R(ti)− 1 +R(ti−1)
R(ti−1)

= 1− R(ti)
R(ti−1) (3.2.5)

thus by imposing a Weibull distribution for the survivor function R(·) we get

P (T ≤ ti|T > ti−1) = 1− exp
[(
ti−1

α

)β
−
(
ti
α

)β]

= 1− exp
[(
ti−1

α

)β
−
(
ti−1 + xi

α

)β]
(3.2.6)
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ti−1

ti

P (T ≤ ti|T > ti−1)

Figure 3.3: The blue area represents the conditional probability of maintenance in
the interval (ti−1, ti] for a NHPP model.

Comparing this to the expression for the probability of maintenance in a xi interval
for the RP model, equation 3.1.2, we clearly see there is a difference in how the
probability for maintenance is evaluated for the xi intervals. The probability of
maintenance in the interval up to first maintenance is equal, but this is logical
since the condition is on the time t0 = 0. It is also consistent with the discussion
from the first idea, since the time up to first maintenance is Weibull distributed
for the power law process.

The reason for using the second idea was mainly for helping us constructing
the log-likelihood function for the NHPP model, see section B.7 in the appendix
for more details on constructing the likelihood. The log-likelihood for the NHPP
model is given by

lNHPP (α, β|t) = n(log β − β logα) + (β − 1)
n∑
i=1

log(ti)−
(
tn
α

)β
(3.2.7)

As was the case for HPP and RP models the maximum likelihood method has
been used to find estimates for the parameters in the NHPP model. For this
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model closed form solutions are available for the MLE’s of the parameters α and
β:

α̂ = tn

n1/β̂
(3.2.8)

β̂ = n

n log(tn)−∑n
i=1 log(ti)

(3.2.9)

A NHPP model only is different from the HPP model by having a time depen-
dent ROCOM function, for the HPP model the ROCOM is constant over time.
Thus for our NHPP model there exist an important relationship to the HPP model.
Letting β = 1 the ROCOM function for the NHPP model becomes v(t) = 1/α,
which is exactly the ROCOM function for the HPP model. Therefore by letting
β = 1 the NHPP model also becomes a HPP model as was also the case for the
RP model. This can also be seen by letting β = 1 in the log-likelihood function.

lHPP (α|t) =− n logα− tn/α = lNHPP (α, β = 1|t) (3.2.10)

Remember from last subsection that the HPP and RP model doesn’t have
any global trend for the expected number of maintenance events. This is not the
case for the NHPP model since the ROCOM function is dependent on time and
E[N(t)] = (t/α)β. If β = 1 E[N(t)] increases linearly with time, hence no global
trend. For β > 1 there will be an increasing global trend as time gets larger. While
for β < 1 there will be a decreasing global trend as time gets larger. Therefore it
is the value of β that indicates if a global trend occur or not.

3.3 Imperfect Repair Models
In the last two sections the minimal and perfect repair models has been described.
These may be regarded as extreme cases where the repair is either AGAN or
ABAO. Before fitting these models to the data we actually take a decision of the
effect of the repair based on expert judgement or maybe a hunch. Systems under
normal repair will usually be in a state between AGAN and ABAO after repair,
hence models for estimating the repair effect is critical to make better judgement
of the effect of repair.

The concept of age of a system is critical for the understanding of these models.
Let us define the virtual age at time ti as Ai. In figure 3.2 the times ti may be
regarded as the real age of the system in consideration. So if there has been a
maintenance event at time 100 the real age of the system equals 100, but the
virtual age is different dependent on the model we choose. For the perfect repair
models which set the state of system back to AGAN the virtual age right after
the maintenance event equals 0. While for the minimal repair models which leaves
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the system in the same state, ABAO, the virtual age equals the real age, so the
virtual age is 100. As described earlier the state of the system under normal repair
is somewhere between AGAN and ABAO. So for an imperfect repair model the
virtual age of the system is somewhere between 0 and 100.

In the imperfect repair models its how you calculate the virtual age of the
system which is the issue of finding the effect of the repair. In this thesis two
different models for estimating this virtual age are proposed, namely the ARA∞
and the ARA1 model. The names are given analogous to the names given by
Doyen and Gaudoin in [10]. These are both arithmetic reduction of age models
where a positive function is chosen on how the virtual age is calculated.

Generally for a reduction of age model the virtual age at real age t is a positive
function depending on past maintenance events at time ti.

At = A(t;Nt, t1, . . . , tNt) (3.3.1)

Where Nt denotes the number of maintenance events registered up to time t and ti
the corresponding times. The principle of a reduction of age model is that repair
rejuvenates the system such that its failure intensity at real age t is equal to the
intensity at time At. Hence the failure intensity is a function of its virtual age

v(t) = v(At) (3.3.2)

Let us now go into detail on how the two models we propose calculate the virtual
age.

For the ARA1 model the maintenance effect at the i’th event only reduces
the supplement of age since last maintenance event. The supplement equals the
inter-occurrence time xi at time ti, hence the the virtual age for the ARA1 model
becomes:

Ai =Ai−1 + pxi, i = 1, 2, . . . (3.3.3)

where p is the maintenance effect parameter and A0 = 0. By considering the
inter-occurence times xi and using the fact that ∑i

j=1 xj = ti we get

A1 =0 + px1

A2 =A1 + px2 = p(x1 + x2)
...

Ai =p
i∑

j=1
xj = pti = ti − (1− p)ti (3.3.4)

In the ARA∞ model the maintenance effect for the i’th event reduces the
virtual age of the system based on the virtual age of the system just before the
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maintenance event. The virtual age of the system just before the event equals
the virtual age after last event plus the inter-occurence time xi since last event,
therefore the virtual age for ARA∞ is given by

Ai =p (Ai−1 + xi) , i = 1, 2, . . . (3.3.5)

where again p is the maintenance effect parameter and A0 = 0. By considering
the inter-occurence times xi = ti − ti−1 we have

A1 =p (0 + x1)
A2 =p (A1 + x2) = p(px1 + x2) = pt2 − p(1− p)t1
A3 =p (A2 + x3) = pt3 − p(1− p)t2 − p2(1− p)t1

...

Ai =pti − (1− p)
i−1∑
j=1

pjti−j = ti − (1− p)
i−1∑
j=0

pjti−j (3.3.6)

There are many similarities between the two models especially the effect pa-
rameter p. The effect parameter gives us an estimate on how good the maintenance
reduces the age of the system. In other words p gives us an indication on which
state the systems is left in after maintenance. As mentioned earlier in section 3.1
a perfect repair model leaves the system in a state AGAN where the virtual age of
the system equals 0. By letting p = 0 both ARA models give Ai = 0. Hence p = 0
indicates that the maintenance effect is perfect and we are left in an AGAN state.
While for p = 1 both ARA models give Ai = ti. For a minimal repair model the
system is left in state ABAO where we showed earlier that the virtual age equals
the real age. Thus p = 1 indicates that the maintenance effect is minimal and
leaves the system in an ABAO state. This indicates that if the effect p ∈ (0, 1)
the state of the system will be left in a state between AGAN and ABAO, which
indicates normal repair. One could argue that p will also take values that lies
outside the interval [0, 1]. Where p < 0 indicates better than new repair and p > 1
indicates worse than old repair, but for simplicity and to get a better understand-
ing of the relationship to the other models we have restricted ourselves to have
p ∈ [0, 1].

Another interesting property of the ARA models arises from how much main-
tenance history they take into account by estimating the effect parameter. Since
the ARA1 model only reduces the age of the system based only on time since last
event we say that the model has history of 1. On the other side the ARA∞ model
reduces the age based on the total virtual age up to right before the maintenance,
therefore the model take into account the entire maintenance history when esti-
mating the effect parameter. Therefore the name ∞ of the ARA∞ model. The
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ARA1 and ARA∞ models can therefore be looked upon as two extremes of the
class of reduction of age models when it comes to using history when calculating
the virtual age. One could also use a ARA model which only takes into account m
events in history, but in our analysis these has been restricted to the ARA1 and
ARA∞ models.

Constructing the log-likelihood function is an important part of the analysis
when finding the estimates of the parameters in the ARA models. The construction
is analogous to the second idea in the NHPP model in the last subsection, see
section B.7 in the appendix for further details. The idea on how to construct the
likelihood function comes from considering the probability of having an event in
the interval (Ai−1, Ai−1 + xi], instead of the the interval (ti−1, ti−1 + xi] as was the
case for the NHPP model. This is a conditional probability and the probability of
having an event in xi-interval becomes:

P (T ≤ Ai−1 + xi|T > Ai−1) = F (Ai−1 + xi)− F (Ai−1)
1− F (Ai−1)

= 1− R(Ai−1 + xi)
R(Ai−1) (3.3.7)

Assuming a Weibull distribution for the probability distributions and denoting
P (T ≤ Ai−1 + xi|T > Ai−1) as F (xi)

F (xi) = 1− exp
[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(3.3.8)

The probability density function is found by taking the derivative of F (xi) with
respect to xi.

f(xi) = ∂F (xi)
∂xi

= β

α

(
xi + Ai−1

α

)β−1
exp

[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(3.3.9)

One can now construct the log-likelihood function, but one need to remember a
crucial part that the probability in the interval up to first event doesn’t follow this
conditional probability, it follows a standard Weibull distribution beacuse A0 = 0.
Using this the likelihood function becomes:

lARA(α, β, p|t) = log f(x1) +
n∑
i=2

log f(xi)

=n(log β − β logα)−
(
x1

α

)β
+ (β − 1)

(
log(x1) +

n∑
i=2

log(xi + Ai−1)
)

+
n∑
i=2

[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(3.3.10)
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The log-likelihood for the ARA∞ and ARA1 models will then be given by inserting
the respective expressions for the virtual age.

Finding the MLE’s for the parameters α, β and p requires us to use numerical
maximization procedures in this case as no closed form solutions are available. A
quasi-Newton has also been used in this case to solve the numerical maximization
problem. Since there are restrictions on all three parameters, the parameters are
transformed in order for us to find the MLE’s. For the α and β parameters the
same transformation is used as in the RP model while for p another transformation
is used since p is restricted to the range [0, 1].

α′ = log(α)
β′ = log(β)

p′ = log
(

p

1− p

)

By doing this transformation all transformed parameters are in the range (−∞,∞).
This speeds up the procedure of finding the MLE’s and by utilizing the invariance
property of the MLE’s, as described in section B.6 in the appendix, the MLE’s for
our parameters will be found.

Some important relationships to the other models are evident for the ARA
model as well. As noted earlier in this section when p = 0 and p = 1 we have
respectively a RP model and a NHPP model. This can be shown by considering the
log-likelihood function. By letting p = 0 we saw that Ai = 0 hence the likelihood
function becomes

lARA(α, β, p = 0|t) =n(log β − β logα) + (β − 1)
n∑
i=1

log(ti − ti−1)−
n∑
i=1

(
ti − ti−1

α

)β
=lRP (α, β|t) (3.3.11)

In the case where p = 1 we have that Ai = ti and by using that xi = ti − ti−1
we get

lARA(α, β, p = 1|t) =n(log β − β logα)−
(
t1
α

)β
+ (β − 1)

(
log(t1) +

n∑
i=2

log(ti)
)

+
n∑
i=2

[(
ti−1

α

)β
−
(
ti
α

)β]

=n(log β − β logα) + (β − 1)
n∑
i=1

log(ti)−
(
tn
α

)β
=lNHPP (α, β|t) (3.3.12)
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This shows that at the two extremes p = 0 and p = 1 the ARA models indeed
becomes a RP model and NHPP model respectively. But, as was the case for the
RP model and the NHPP model, we have one more case, namely the case where
β = 1. By letting β = 1 we get:

lARA(α, β = 1, p|t) =− n logα− tn
α

= lHPP (α|t) (3.3.13)

Hence the ARA models also becomes a HPP model if β = 1. One may also
note that the dependence of the p parameter cease to exist if β = 1. This is
not surprising as the conditional probability in the ARA models, F (xi), doesn’t
depend on the Ai function if β = 1.

3.4 Characteristics and Relationships Between Models

Five different models has been constructed which all follow equation 3.3.7. Thus we
have a broad class of models which only differ in what probability distribution they
assign to R(·) and how they calculate the virtual age Ai−1. In table 1 a summary

Model Virtual Age, Ai Effect, p State after Maintenance R(·)
HPP 0 0 AGAN exponential(α)
RP 0 0 AGAN Weibull(α, β)

NHPP ti 1 ABAO Weibull(α, β)
ARA1 ti − (1− p)ti ∈ [0, 1] between AGAN and ABAO Weibull(α, β)
ARA∞ ti − (1− p)∑i−1

j=0 p
jti−j ∈ [0, 1] between AGAN and ABAO Weibull(α, β)

Table 1: Main characteristics of the statistical models.

of the main characteristics of the statistical models are given. We see that the
models offer us the ability to model all the different states after maintenance has
been done. By having these characteristics of the models it will be interesting to
see what fits the data best.

But before going into the analysis we will emphasize the relationships between
the models. In figure 3.4 a relationship diagram of how the models are related is
presented. We see that if β = 1 all models reduce to the HPP model. This is not
surprising as this means that a exponential distribution is fitted to the xi intervals.
For the ARA models they reduce to the RP model if p = 0 as this sets the virtual
age to zero. While for p = 1 the ARA models reduce to the NHPP model as the
virtual age becomes ti.
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HPP

RP

β = 1

NHPP

β = 1

ARA1p = 0

p = 1

β = 1

ARA∞

p = 0

p = 1

β = 1

Figure 3.4: Overview of the relationship between the statistical models. From the
left perfect repair models, imperfect repair models and last the minimal repair
model.

3.5 Expected number of maintenance events

In the last subsections we saw that the expected number of maintenance events at
time t are only given explicitly for the HPP and NHPP model. For these two it is
given as

EHPP [N(t)] = t/α (3.5.1)

ENHPP [N(t)] =
(
t

α

)β
(3.5.2)

Consequently it is easy to find the expected number of maintenance events for
these models. For the RP and ARA models this is not the case, if we don’t know
the times maintenance happened. Two methods to find the expected number of
maintenance events for these models will therefore be proposed. The first approach
take into account that we know the times maintenance occurred whereas in the
other we don’t have this information.

3.5.1 Integrating the Failure Rate Function

The first method arises from integrating the conditional failure rate function for
each xi-interval from t = 0 to t = tn. Given a probability density function f(xi)
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and survivor function R(xi) for the xi-interval, the failure rate function is

z(xi) = f(xi)
R(xi)

(3.5.3)

which gives us the probability of a failure occuring in the interval [x, x+∆x). In our
case we may think of this as the maintenance rate function since the probability of
maintenance occurring in the interval is considered. Integrating the maintenance
rate function from 0 to xi the cumulative maintenance rate function, Z(xi) is
found. This will represent the total number of maintenance actions in the interval
[0, xi). Thus by integrating z(xi) for a specific xi-interval the expected number of
maintenance events for this interval is found.

Utilizing that each xi-interval is disjoint and independent one can find the total
number of events in the interval t = 0 to t = tn by integrating each maintenance
rate function and summarizing.

Z(tn) =
∫ tn

0
z̃(s)ds

=
∫ x1

0
z1(x1)dx1 +

∫ x2

0
z2(x2)dx2 + · · ·+

∫ xn

0
zn(xn)dxn

= Z1(x1) + Z2(x2) + · · ·+ Zn(xn) =
n∑
i=1

Zi(xi) (3.5.4)

Where zi(xi) denotes the conditional maintenance rate function in the i’th xi-
interval. Thus Z(tn) = ∑n

i=1 Zi(xi) represents the expected the number of main-
tenance events for a given dataset with maintenance occuring at ti.

In general for all our models which follow a Weibull distribution the mainte-
nance rate function is on the form:

zi(xi) = f(xi)
R(xi)

= β

α

(
xi + Ai−1

α

)β−1
(3.5.5)

where the respective calculation of the Ai−1 function gives us the different models.
Hence Z(tn) for all the respective models are found on the general form:

Z(tn) =
∫ tn

0
z̃(s)ds =

n∑
i=1

∫ xi

0
zi(xi)dxi

=
n∑
i=1

∫ xi

0

β

α

(
xi + Ai−1

α

)β−1
dxi =

n∑
i=1

∫ xi+Ai−1

Ai−1

β

α

(
u

α

)β−1
du

=
n∑
i=1

[(
xi + Ai−1

α

)β
−
(
Ai−1

α

)β]
= E[N(tn)] (3.5.6)
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HPP RP NHPP ARA1/ARA∞
E[N(tn)] tn

α

∑n
i=1

(
xi

α

)β (
tn
α

)β ∑n
i=1

[(
xi+Ai−1

α

)β
−
(
Ai−1
α

)β]

Table 2: Expected number of maintenance events for the different models given
maintenance occurring at times ti

By inserting the respective expressions for Ai−1 we can now find the expected
number of maintenance events for each model given that we have a dataset where
we know where the maintenance times occurred.

In table 2 an overview over how the expected number of maintenance event for
the different models are given. Note that there are only the RP and ARA models
which need to know times of maintenance history in order to estimate E[N(t)].

3.5.2 Monte Carlo Simulation

A problem with the method in the last subsection is that the times where mainte-
nance occurred in order for us to calculate E[N(t)] for the RP and ARA models
need to be given. If we want to estimate the expected number of maintenance
events for systems where the times when maintenance occurred is not given we
therefore encounter problems. In this situation we have implemented a Monte
Carlo simulation procedure to find the expected number of maintenance. Let us
emphasize that this is only necessary for the RP and ARA models as explicit for-
mulas for E[N(t)] are available for NHPP and HPP. For a given model the idea
behind the simulation is as follows:

• There is a period of interest (0, tmax) where one want to find the expected
number of maintenance events. For the given model solve the cumulative
distribution function, F (xi), for xi in order to get a function for xi on the
form xi = g(F (xi), θ), where θ is the parameters in the model.

• Let m be a vector which stores the number of maintenance events generated

• Generate random numbers from the uniform distribution in the range (0, 1)
for F (xi) and calculate xi

• Add the random value for xi to the sum of the past xi’s and set m = m+ 1.

• if ∑xi > tmax stop generating numbers

• if ∑xi < tmax generate another random number until ∑xi > tmax
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• Repeat this procedure n times. Then the expected number of events is given
as m/n.

A flow chart for the simulation is given in figure 3.5.

Start

Select period of interest, (0, tmax)

Set number of iterations, n, and i = 0.

Set t = 0 and m = m

Generate random xi, set t = t+ xi and m = m+ 1

If t < tmax

Report m and set i = i+ 1

If i < n

End E[N(tmax)] = m/n

no

no

yes

yes

Figure 3.5: Flow chart for simulating expected number of maintenance events in
the RP and ARA models.

Finding xi = g(F (xi), θ) is the most important part of the simulation. For
both the RP and ARA models this is pretty straight forward, but it is important
to note that the time up to first maintenance for the ARA models follow a standard
cumulative Weibull distribution. In table 3, xi = g(F (xi), θ) is listed for the RP
and ARA models.

Having the Monte Carlo simulation and integrating the failure rate function meth-
ods, we know have the ability to find the expected number of maintenance events
for all the models in the cases where maintenance times are unknown or known.
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RP ARA
t ≤ t1 xi = α [− log (1− F (xi))]1/β xi = α [− log (1− F (xi))]1/β

t > t1 xi = α [− log (1− F (xi))]1/β xi = α
[(

Ai−1
α

)β
− log (1− F (xi))

]1/β
− Ai−1

Table 3: Inverse of the cumulative distribution function F (xi) for the RP and
ARA models

This is an important part of the analysis of the data as a plot with E[N(t)] against
time is very informative in order for us to see how good the models fit the dataset.

Let us note that in this thesis the integrating the failure rate function method
has been used for the cases where the maintenance times are available. This is
actually true for all the cases in our case. The reason for proposing the Monte
Carlo simulation method is mostly to emphasize the importance of on how the
RP and ARA models calculate E[N(t)], but also because of its importance for the
cases where we don’t have the maintenance times.
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4 Implementation and Analysis
In this section an analysis of how the statistical models fit to the data will be
given. The focus will be only on some of the systems, but nevertheless all the
models could be fitted to all systems. Before starting the analysis there are some
key elements we need to describe.

As mentioned in the last section the method of maximum likelihood has been
used to find estimates of the parameters we wish to estimate. A short summary
of the method used to maximize the log-likelihood will be given here, see in the
appendix section B.6 and D, and in [6] for more details. For the HPP and NHPP
models closed form solutions of the MLE’s exist and therefore the estimates are
easily found along with their standard deviations. For the RP and ARA models
this was not the case and a quasi-Newton method has been used to find the MLE’s.
The quasi-Newton method depends on how you update the hessian and in our
implementation we have chosen the BFGS method to update the hessian. After
finding the MLE’s a finite difference method to find the hessian of the log-likelihood
has been used and the hessian is inverted to find the information matrix and
accordingly the standard deviations.

4.1 Test Statistics
4.1.1 Likelihood Ratio Test

An important part of the analysis relies on test statistics where we are interested
to see if one model is better than the other and thus is preferable. Usually we are
interested in fitting a model with as few parameters as possible. As this ”simple”
model is usually more easy to work with. In section 3.4 it is shown that there
exist many relationships between the models. Often one model is a special case of
the other as was the case for p = 0, p = 1 and β = 1. When analyzing this the
likelihood ratio test has been used as described in section B.6.4 in the appendix.
The likelihood ratio test takes into account the difference of the log-likelihood of
the ”smaller” and the ”full” model and relates this to a chi-square distribution.
Thus by doing this we can check if one model is statistically significant different
from the other.

If we consider figure 3.4 we are interested to see how the models on the bottom
is statistically significant different than the other models: Let us sum up the
relevant cases we have to test for the RP and ARA models first

• For the RP model we want to check if the model is significantly different
than the HPP model. Thus we check if β is significantly different from 1.

• For the ARA models we have three cases to consider, p = 0, p = 1 and β = 1
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– p = 0: We want to see if the ARA model is significantly different from
the RP model

– p = 1: We want to see if the ARA model is significantly different from
the NHPP model

– β = 1: Is the ARA model different from the HPP model. We therefore
check if β is significantly different from 1.

For the RP and ARA models we therefore use the likelihood ratio test to see
if these models are different than the other. For the NHPP model the case is
different, we use a different test statistic. Here we are interested to check if β has
to be included or not. To check this the test statistic often denoted the military
handbook test or the Vuong test as described in [3, 4] has been used. The test
statistic is given as:

W = 2
n∑
i=1

log(tn/ti) (4.1.1)

Asymptotically W has a χ2 distribution with 2n degrees of freedom under the null
hypothesis, where the null hypothesis is

H0 : No trend, β = 1 (4.1.2)

Against the alternative hypothesis

H1 : There is a trend, either increasing or decreasing, β 6= 1 (4.1.3)

We reject H0 for small or large values of W, where small values of W are indicative
of a increasing trend, β > 1, while large values of W correspond to a decreasing
trend, β < 1.

The reason why we use the military handbook test for the NHPP model is
because it can be shown that this is the optimal test in this case.

4.1.2 Kolmogorov-Smirnov Test

When fitting the models to the data we are not only interested in seeing if one
model could be reduced to the other one, but we are also interested to analyze
the goodness of fit for each model to the data. To analyze this the Kolmogorov-
Smirnov test has been used. The K-S test is a nonparametric test which can be
used to test equality between two samples or comparison between a sample and a
probability distribution. In our case it has been used as a test of equality between
two samples. Where our two samples are the given data and the statistical model
we fit. The reason we consider them as two samples is that the distribution of
P (N(t) = N) is not easily given for the RP and ARA models.
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The null hypothesis for the K-S test is:

H0 : The dataset is drawn from the statistical model (4.1.4)

versus the alternative hypothesis

H1 : The dataset is not drawn from the statistical model (4.1.5)

Thus the K-S test can be used as a method of checking if the model is a good fit
to the data. The test statistic for a two sample Kolmogorov-Smirnov test is given
as.

Dn = sup
t
|Fdata,n(t)− Fmodel,n(t)| (4.1.6)

Fdata,n(t) represents the empirical cumulative distribution function for the dataset
and Fmodel,n(t) represent the cumulative distribution function for the statistical
model. It can be shown that we reject the null hypothesis at level a if√

n/2Dn > Ka (4.1.7)

Where Ka can be determined by P (K ≤ Ka) = 1−a and K follow the Kolmogorov
distribution which has cumulative distribution on the form:

P (K ≤ s) =1− 2
∞∑
i=1

(−1)i−1 exp
(
−2i2s2

)

=
√

2π
s

∞∑
i=1

exp
[
−(2i− 1)2π2/(8s2)

]
(4.1.8)

Due to the complexity of the cumulative distribution of K we have used a built
in method in R, ks.test(), to find the appropriate test statistics and consequently
p-values for the Kolmogorov-Smirnov test. Therefore after finding these p-values
the null hypothesis will be rejected if the p-value is less than the given significance
level a. One will therefore conclude that the statistical model is a good fit if the
p-value is greater than a.

4.2 Results
Since the dataset consists of 49 different systems the focus will be on only some of
the systems. In table 4 the names of the systems in consideration are presented.
The names are given according to a NORSOK standard, see [11], which systems
on offshore oil and gas installations on the norwegian continental shelf follow.
Throughout the rest of this thesis the systems will only be referred through the
system number.
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System Name
21 Crude Handling
42 Chemical Injection
52 Ballast Water
58 Chemical Injection
73 Material Handling

Table 4: Name of the systems we are considering.

As said earlier in section 2 the dataset give us access to if the event was preven-
tive maintenance or corrective maintenance. When analyzing the data we will see
how the maintenance evolve when we consider both at the same time and when
distinguishing between these two types of maintenance. It will be interesting to
see which model fits the data best as preventive maintenance is usually conducted
at predetermined interval or at some prescribed criteria, hence we should maybe
expect a perfect repair model to be the best. While on the other hand the cor-
rective maintenance is conducted after a failure has occurred, which would maybe
imply that they follow a minimal or imperfect repair model.
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Figure 4.1: Plot of maintenance number against time for system 52

Let us look at system 52 first. Figure 4.1 presents a plot of the accumulated
preventive maintenance events against time for system 52. One thing that we can
easily see from this plot is that it seems like there is a change in maintenance
routines after approximately t = 1200. After this change the slope of the graph
increases, it almost looks like there is a change in how often they do preventive
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maintenance. This change is evident on several systems in our dataset and it
seems pretty consistent that this change happened in the time period from day
1000 to 1400. This change will corrupt our results when we try to fit our statistical
models as the models will not adequately manage to fit the data. Or they will give
a ”wrong” impression of how the number of maintenance events will evolve over
time.

After discussions with personell from Statoil ASA, who gave us access to the
dataset, we understood a bit more why this change is evident. The reason behind
this change is that there was a change in how they reported the maintenance they
did on the systems. Roughly speaking you can say that jobs they also did before
wasn’t reported, but due to the change in routines they now record these jobs as
well. Another factor that leads us to believe that this is the reason is that the
change in routines happened in the time period we mentioned earlier. This may
certainly be the reason behind this change in slope and after analyzing several
systems we came to the conclusion to consider the data after the change in this
slope.

Another interesting fact is that this change in slope is only evident on Plant
A. For plant B we couldn’t find any change in slope, so for plant B we consider
the entire maintenance history we have been given access to.

The time periods we are considering will now vary from system to system, but
for the systems we will analyze here the time periods are given in table 5.

Time Period
System Plant A Plant B

21 [0,→) [0,→)
42 [0,→) [0,→)
52 [1168,→) [0,→)
58 [985,→) [0,→)
73 [0,→) [0,→)

Table 5: Time periods for the systems we are considering

We see that not all systems we consider have this change in slope since we
consider them in the time interval t ∈ [0,→), but nevertheless we need to take into
account the change for those systems where it is apparent. Of course optimally we
are most interested in considering systems where we have the largest time interval
and consequently more data. But as we saw from system 52 not many events had
occurred prior to the change in slope, this is usually the case for all systems, thus
we consider the time period after the change where we have most events.

In table 6 an overview over the number of events for the different categories
of maintenance are given for plant A and plant B. We have chosen these systems
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Plant A Plant B
System Prev Corr Total Prev Corr Total

21 312 166 458 73 63 133
42 429 225 603 28 80 108
52 297 52 342 162 74 229
58 103 33 130 8 24 32
73 171 39 208 12 15 26

Table 6: Number of events for the systems we are considering.

mainly because there are many registered events on plant A. The reason for this
is that in the next section we are going to do a simulation on how maintenance
will evolve for a 30 year period on plant A. We see that preventive plus corrective
doesn’t always equal total events, this is due to the fact that we only consider
one event per day as mentioned earlier. If for instance a preventive and corrective
event happens on the same day we consider them as one event, therefore the total
numbers of events may differ from preventive plus corrective.

When presenting the results from fitting the models we have chosen only to
present the β parameter for the RP and NHPP models, the reasoning behind this
is that this parameter determines if we have a HPP or not. For the ARA models
we present both the p and β parameter as these parameters determine if we have a
RP, NHPP or HPP model. For the HPP model we present the α parameter which
is the only parameter in this model. Along with these parameters we also present
the results from the Kolmogorov-Smirnov test for each model which describes if
the dataset could be described as a sample from the respective model.

The results from the tests is described by the colored circles.

Reject the null hypothesis H0 on a 5% significance level

Reject the null hypothesis H0 on a 10% significance level

Accept the null hypothesis H0

The appropriate null hypothesis need to be taken into account in order to under-
stand the colors of the circles. For the β parameters the null hypothesis is:

H0 : HPP is the appropriate model, β = 1

Therefore a green or yellow circle would indicate that β is statistically significant
different from 1 and a Weibull distribution of the inter-occurrence times xi is better
than a exponential distribution. Hence we shouldn’t reduce the model to a HPP
model.
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For the K-S test the null hypothesis is:

H0 : The dataset is drawn from the statistical model

Thus a green or yellow circle would indicate that we reject the null hypothesis and
conclude that the model is a poor fit to the dataset.

The case for the p parameter is somewhat different as the circle is a colored
semicircle. The left half of the circle indicates the null hypothesis:

H0 : State after maintenance equals AGAN, p = 0

Thus a green or yellow color indicates that the state after maintenance doesn’t
equal AGAN. While for the right half of the circle we have the null hypothesis:

H0 : State after maintenance equals ABAO, p = 1

Hence a green or yellow color indicates that the state after maintenance doesn’t
equal ABAO.

Plant A: Preventive and Corrective Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 6.266 0.001 0.981 0.001 1.148 0.009
42 4.799 0.051 0.946 0.070 1.083 0.182
52 4.982 0.994 1.722 0.848 1.018 0.966
58 14.155 0.001 0.948 0.003 0.713 0.352
73 13.837 0.006 1.176 0.001 1.533 0.990

ARA∞ ARA1
System p β K − S p β K − S

21 0.838 0.410 0.061 0.249 1.160 0.009
42 0.518 0.616 0.364 0.001 0.836 0.023
52 0.000 1.722 0.848 0.000 1.722 0.848
58 1.000 0.713 0.352 0.229 0.655 0.534M
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73 1.000 1.533 0.990 0.055 1.918 0.970

Table 7: MLE’s and goodness of fit for the statistical models on plant A. Here we
have taken into account both preventive and corrective maintenance.

4.2.1 Plant A

In table 7, 8 and 9 the results for plant A is presented when we consider total
number of, only preventive and only corrective maintenance respectively. The
corresponding plots for the systems is given in section C in the appendix.
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Let us consider system 21 first. In figure C.1 a plot of the expected number of
maintenance events is given for system 21. From table 7 we see that it is only the
ARA∞ model which gives a slightly good enough fit to the dataset as K−S equals
0.061 when we consider the total number of maintenance actions. Therefore we
have reason to believe that it is not a sample on a 10% significance level. Hence all
the models is fairly poor fit in this case. If we consider the plot given in figure C.1
we see that the ARA∞ model is the closest to the dataset, but it overestimates the
expected number of failures throughout the entire time period we are considering.
Therefore we may say that none of the models are a good fit for the system 21
when we consider the total number of maintenance actions, but ARA∞ is the best
out of the models. The reason for this may be due to the shape of the dataset
curve since it has a sharp increase in maintenance in the middle.

When we only consider preventive maintenance, table 8, we again see that the
models have problems to be a good enough fit as none of the models give a good
fit. The shape of the dataset indicates here that the we had a sharp increase in
preventive jobs in the middle before it flattens out again. Therefore the models
will give a bad fit to the dataset. Nevertheless it is the ARA∞ model which give
the best fit, even though it is not significant.

For the corrective events in table 9 the case is different. Here we see that the
NHPP and ARA∞ models give a good enough fit. The ARA1 model also gives a
good enough fit, but the MLE of p is at the endpoint p = 1 hence it equals the
NHPP model. We also see that the ARA∞ model doesn’t have a p-value which is
significant different from 1. We will therefore conclude that the NHPP model is
the best fit in this case as we are interested in fitting a model which is as simple as
possible. It is interesting to note that the significant β value for the NHPP model
equals 0.766 which indicates that the expected number of corrective maintenance
events is decreasing.

When we consider system 42 the results in table 7 indicates that the ARA∞
and NHPP models is a good fit in this case when we consider total number of
maintenance actions. The plot for system 42 in figure C.2 also indicates this as
the lines for ARA∞ and NHPP are the closest to the dataset. Here the p-value
of 0.518 is also significant different from both AGAN and ABAO therefore we
conclude that the ARA∞ model is the best fit as it has significant parameters and
highest K − S value.

For the preventive maintenance in table 8 we see that the ARA∞ model is the
only model which gives us a good fit.

For the corrective maintenance, table 9, the case is different as all models give
a good fit. We also see that the p and β parameters in the RP, NHPP, ARA∞ and
ARA1 models is not significant or only slightly significant, we therefore conclude
that the HPP model is the best fit in this case as it is the simplest model and
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Plant A: Preventive Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 9.199 0.001 0.802 0.001 1.535 0.001
42 6.636 0.001 0.806 0.027 1.194 0.033
52 5.740 0.996 1.951 0.051 1.075 0.999
58 17.902 0.058 0.960 0.083 0.768 0.822
73 16.830 0.152 1.350 0.002 1.332 0.998

ARA∞ ARA1
System p β K − S p β K − S

21 0.738 0.327 0.019 0.001 0.670 0.001
42 0.316 0.543 0.184 0.001 0.668 0.005
52 0.000 1.951 0.051 0.000 1.951 0.051
58 1.000 0.768 0.822 0.345 0.742 0.822M
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73 0.000 1.350 0.002 0.000 1.350 0.002

Table 8: MLE’s and goodness of fit for the statistical models on plant A. Here we
have taken into account both preventive and corrective maintenance.

because the other models doesn’t give any significant additional information.
For system 52 in table 7 when we consider the total number of maintenance

actions we have a interesting case. Both the ARA models indicates a RP model
thus we have only three models which fits the data, HPP, RP and NHPP. We see
that all models give a good fit, figure C.3 also indicates this. Since the NHPP
model doesn’t have a significant β parameter we conclude that it is perfect repair
models, the HPP or the RP model which gives the best fit. Interesting to note
that the β parameter in the RP model is significant thus we conclude that the RP
model is the best fit event though the HPP model also could have been used.

For the preventive maintenance in table 8 we again see that the ARA models
indicates a RP model, but the RP model give only a slightly good fit. Both the
HPP and NHPP model give a good fit and since the β parameter in the NHPP
model is not significant we conclude that the HPP model is the best fit.

When we consider only corrective maintenance, table 9, all the models give a
good fit. Due to the fact that we are most interested in fitting a simple model
we conclude that the NHPP model is the best fit since the p parameter of the
ARA1 model is not significant different from p = 1 and because the K − S value
of the NHPP model is higher than the HPP and RP model. We also see that the
β = 0.813 parameter in the NHPP model indicates a decreasing trend.

When we look at system 58 considering the total number of maintenance ac-
tions, table 7, we see that both the perfect repair models doesn’t give a good fit.
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Plant A: Corrective Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 17.229 0.034 1.002 0.034 0.766 0.424
42 12.862 0.699 0.970 0.776 0.922 0.951
52 30.750 0.125 0.958 0.196 0.813 0.574
58 50.848 0.005 0.743 0.051 0.595 0.287
73 73.359 0.001 0.578 0.155 5.497 0.752

ARA∞ ARA1
System p β K − S p β K − S

21 0.872 0.574 0.507 1.000 0.766 0.424
42 0.522 0.820 0.906 0.006 0.841 0.979
52 1.000 0.813 0.574 0.117 0.728 0.574
58 0.374 0.476 0.453 0.070 0.460 0.654M
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73 1.000 5.497 0.752 1.000 5.497 0.752

Table 9: MLE’s and goodness of fit for the statistical models on plant A. Here we
have taken into account both preventive and corrective maintenance.

The ARA∞ model indicates a NHPP model and the ARA1 model is not signifi-
cant different from the NHPP model. Thus we conclude that the NHPP model is
the best fit and β = 0.713 indicates that we have a decreasing trend.

Considering only preventive maintenance gives the same result as the perfect
repair models doesn’t give a good fit and we choose the NHPP model as the best
fit. β = 0.768 indicates again that we have a decreasing trend.

For the corrective maintenance the ARA models give the best fit as the K −S
values is highest here. We also see that the p parameter is significant for both
the ARA models, thus we conclude that one of the ARA models give the best fit.
Looking at figure C.4 also indicates this as the ARA and NHPP models are a fairly
good fit while the HPP and RP models clearly gives a poor fit.

The last system we are considering is system 73. Considering the total number
of maintenance actions, table 7, we see that the NHPP and the ARA models
give the best fit. Since the p parameter is significant we conclude that the ARA1
model is the best fit. Also interesting to to note that β = 1.533 in the NHPP
model which indicates a clear increasing trend. Looking at figure C.5 we see that
both the ARA1 and NHPP model give a good fit, but the perfect repair models
clearly give a poor fit.

For preventive maintenance, table 8, we see that both the ARA models indicate
a RP model, but this gives a poor fit. The HPP and NHPP model indicates a good
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fit, but since the K − S value of the NHPP is much higher and since β = 1.332 is
significant we conclude that the NHPP model is the best fit. We also see that the
β parameter in the NHPP model indicates a increasing trend.

When we consider only corrective maintenance it is first interesting to look
at figure C.5. We see that there are very few corrective jobs before day 1700
approximately. Both the ARA models indicate a NHPP model and since the RP
model has a small K − S value in comparison to the NHPP model we conclude
that the NHPP is the best fit. This is also easily seen from the figure. A very high
β-value, 5.497, indicates a clear increasing trend.

Plant A: Summary
System Total Preventive Corrective

21 -/(ARA∞) - ARA∞/ARA1/ NHPP
42 ARA∞ ARA∞ ARA∞/ARA1/ HPP
52 ARA∞/ARA1/HPP/RP HPP ARA∞/ARA1/ NHPP
58 ARA∞/NHPP ARA∞/NHPP ARA∞/ARA1
73 ARA∞/ARA1/NHPP NHPP ARA∞/ARA1/ NHPP

Table 10: Summary of best models plant A

In table 10 a summary of which model is the best fit for the different cases
and systems are given. It is interesting to note that the ARA models fits the
data better in most of the cases as the RP/NHPP model is a special case of the
ARA models. This is especially true for the ARA∞ model. Therefore it seems by
adding the p-parameter we get a better fit to the dataset in most of the cases.

If we look at the different models for the cases where we only considered pre-
ventive or corrective maintenance. We can see that there is a difference in how the
trend in maintenance increase or decrease as time goes by. By considering the β
parameter in the NHPP model for corrective maintenance we see that this param-
eter is less than 1 for all systems except system 73. Thus we may say that for these
systems the expected number of maintenance events has a decreasing trend. While
for system 73 it has a strong increasing trend. Comparing this values of β for the
preventive case we can see that we have a slight increasing trend for system 21,
42, and 73, no trend for system 52 and a decreasing trend for system 58. Hence in
general we may say that while the preventive has a slight increasing trend we have
decreasing trend for corrective on system 21 and 42. For system 52 the preven-
tive doesn’t have a trend while still the corrective has a decreasing trend. System
58 has decreasing trends on both preventive and corrective where the decrease in
corrective is greater than for preventive. On the other hand we have for system
73 that both preventive and corrective has a increasing trend where the corrective
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has a much higher increasing trend. The implication of this is that the trends on
the plant vary considerably from system to system. One would maybe expect that
the preventive maintenance shouldn’t have any trend as it is usually carried out at
predetermined intervals, but maybe due to change in how often corrective events
happen it seems like there has been a change in routines on how often they do
preventive maintenance at the same time.

One interesting aspect is what state the system is left in after maintenance
has been done. Let us recall that a NHPP leaves the system in an ABAO state,
RP/HPP in an AGAN state and ARA somewhere in between. By considering the
model which give the best fit from table 10 we see that for corrective maintenance
all systems except system 42 the system is left in a ABAO state or somewhere
between ABAO and AGAN. Thus an imperfect repair model or minimal model
seems to be the best model. This may be consistent with how corrective jobs are
usually carried out as they often are minimal/imperfect repair jobs due to the fact
that the system has many components and maintenance are carried out only on a
small part of the system.

For preventive maintenance it is also interesting to note that NHPP and ARA
models are the best models for most of the systems except for system 52. Thus
it seems in general that a NHPP or ARA model is the adequate model to use on
plant A. This has some interesting implications which will become more evident
after we have analyzed the results from plant B.

4.2.2 Plant B

Let us now look at the same systems on plant B. In table 11, 12 and 13 the results
for plant B is given when we consider the total number of maintenance actions,
only preventive and only corrective maintenance respectively. In section C in the
appendix the respective plots are given.

When considering the total number maintenance actions for the different sys-
tems on plant B it is easier to interpret the results than in comparison to plant
A. In table 11 we see that all the different models give a good fit to the data for
all systems. For system 21, 42 and 58 we see that all the circled dots are in fact
red for all the models. This will indicate that a HPP model would adequately
fit the given datasets. Hence the most simple model we have is good enough to
fit the data. For system 73 the HPP model is a good fit, but we have a slight
tendency that the RP model is a better fit since the β-parameter is significantly
different from 1 on a 10% significance level. One could therefore argue that the
RP model fits the dataset better. System 52 also has the same trend as the other
as all models is a good fit, but here we could argue that a NHPP better as the β
parameter is again significant on a 10% significance level. Hence we should maybe
fit the data using a NHPP model. Summarizing we could say that a HPP model
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Plant B: Preventive and Corrective Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 20.932 0.921 1.028 0.846 1.057 0.753
42 26.435 0.996 0.920 0.999 1.060 0.977
52 12.493 0.162 1.004 0.162 1.098 0.347
58 89.219 0.964 0.909 0.968 0.964 0.838
73 107.192 0.918 0.763 0.996 0.895 0.926

ARA∞ ARA1
System p β K − S p β K − S

21 1.000 1.057 0.753 1.000 1.057 0.753
42 0.114 0.864 0.999 0.000 0.920 0.999
52 1.000 1.098 0.347 0.041 1.163 0.410
58 0.001 0.907 0.968 0.001 0.889 0.968M
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73 0.002 0.750 0.996 0.001 0.750 0.996

Table 11: MLE’s and goodness of fit for the statistical models on plant B. Here
we have taken into account both preventive and corrective maintenance.

fit all the data, but in the case for system 52 and 73 we may instead have used a
NHPP and RP model respectively.

For the preventive maintenance it as again easy to verify that the HPP model
fits very good for all systems except system 52. For system 52 we see that the
ARA1 model has the highest K − S value and both the p and β parameter are
significant. Thus we may conclude that ARA1 model is the best fit. But from
figure C.8 it is hard to distinguish between the NHPP and ARA1 model thus we
may say that the both models give a good fit. For the other systems we see that
the HPP is a good fit in all cases, while we may argue that a RP model is better
for system 42. But due to the small amount of registered events we can conclude
that the HPP model is a good fit.

When we only consider the corrective maintenance the results are very easy to
interpret. Here we can see in table 13 that all the circles are red. Thus no p or β
parameters are significant and all the models give a good fit. Hence we conclude
that the HPP model is the appropriate model to use. This is a very interesting fact
as this also says that expected number of corrective maintenance events doesn’t
have a trend as time goes by.

In table 14 we have given a summary on which model give the best fit to
the data from plant B. Following the discussion of which model is the best fit
in the last paragraphs we see that the HPP is the best fit in most of the cases.
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Plant B: Preventive Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 38.137 0.966 0.971 0.996 1.050 0.999
42 101.964 0.541 0.565 0.944 1.444 0.763
52 17.630 0.076 1.017 0.076 1.196 0.334
58 356.875 1.000 23.079 0.980 1.262 1.000
73 232.25 0.996 1.165 0.998 1.607 0.998

ARA∞ ARA1
System p β K − S p β K − S

21 1.000 1.050 0.999 0.046 1.193 0.999
42 0.007 0.504 0.944 0.001 0.492 0.944
52 0.560 0.683 0.270 0.019 1.626 0.581
58 0.000 23.079 0.980 0.000 23.079 0.980M
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73 1.000 1.607 0.998 1.000 1.607 0.998

Table 12: MLE’s and goodness of fit for the statistical models on plant B. Here
we have taken into account both preventive and corrective maintenance.

This is interesting as this implies that expected number of maintenance events
doesn’t have a trend. Therefore we can conclude that on plant B an exponential
distribution on the inter-occurrence times between maintenance events may be a
good approximation. But we need to take into account that we had fewer registered
events on plant B than in comparison to plant A.

Recall from the discussion of plant A we saw that a NHPP or ARA model is
usually the model which gave the fit. This gave an implication on the state the
system is left in after maintenance has been done. One interesting aspect on plant
B is that most systems is left in a AGAN state as a HPP model is the best model
in almost all cases. This also has some implications on the difference in trends for
preventive and corrective maintenance events. We see here that for plant B there
seems to be no trend for neither corrective nor preventive.

The difference between plant A and plant B is readily seen as the best model is
usually different, but why is this the case? It seems like the effect on how old the
plants are play a role. From table 6 we saw that the number of maintenance events
vary considerably from plant A to plant B. Plant A has a several more registered
events, while plant B has fewer. The reason for this may arise from different
factors. For preventive maintenance it may arise from difference in maintenance
routines or technical components which are newer on plant B and therefore require
less frequent maintenance. For corrective maintenance it may also arise from the
same argument as newer equipment have better design or better material which
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Plant B: Corrective Maintenance
HPP RP NHPP

System α K − S β K − S β K − S
21 38.794 0.836 1.075 0.836 1.116 0.940
42 34.600 0.819 0.943 0.822 1.001 0.819
52 38.662 0.780 0.909 0.898 0.917 0.898
58 100.042 0.441 0.802 0.686 1.058 0.449
73 152.600 0.660 0.969 0.678 0.797 0.999

ARA∞ ARA1
System p β K − S p β K − S

21 0.958 1.184 0.990 0.056 1.196 0.940
42 0.795 1.303 0.562 0.001 0.935 0.922
52 0.001 0.907 0.898 0.004 0.836 0.970
58 0.001 0.801 0.686 0.001 0.775 0.686M
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73 1.000 0.797 0.999 0.428 0.758 0.999

Table 13: MLE’s and goodness of fit for the statistical models on plant B. Here
we have taken into account both preventive and corrective maintenance.

doesn’t give that many failures. Several other aspects and reasons may also be
evident, but it seems in general that the age of the plant plays a role in what
kind of model fits the best and consequently what state the system is left in after
maintenance.

To summarize we may say that the age of the plant plays an important role
when it comes to considering what kind of model we should use when we fit
it to the given data. There also seems to be evident that plant A has more
ageing characteristics as a minimal or imperfect repair model is usually the best
in comparison to plant B where a perfect repair model seems to be the best. An
interesting aspect is that the ARA∞ model seems to be a consistent better fit to

Plant B: Summary
System Total Preventive Corrective

21 HPP HPP HPP
42 HPP HPP/RP HPP
52 NHPP/HPP NHPP/ARA1 HPP
58 HPP HPP HPP
73 RP/HPP HPP HPP

Table 14: Summary of best models plant B
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the data than the other models. Therefore by using an ARA model we are more
flexible when we need to fit the model and it is easier for the ”user” when fitting
the model to use an ARA model as it doesn’t require any decision on which state
the system is left in after maintenance. On the other hand there seem to be some
cases where the ARA model give a good fit, but at the same time another models
give better fit. Thus it is crucial to check all the special cases of the ARA models
at the same time when fitting an ARA model. It also seems consistent that the
ARA∞ model is better than the ARA1 model, which is interesting as the ARA∞
model take into account more data history.
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5 Simulation of Maintenance on plant A
In the last section we analyzed some of the systems after fitting the models to
the given data. In this section the results from plant A will be utilized to do
a simulation on how often maintenance occur for a given system over a 30 year
period for this plant. To do this simulation we have used the simulation software
ExtendSim, 8 see [2].

The reason why we are interested in doing this simulation is to see how main-
tenance will evolve over a 30 year period on the plant and to use it as a input
when conducting an analysis of lifetime extension on the plant. Analysis on how
the maintenance will evolve over a time period may be done from several points
of view. One may for instance do it as a qualitative analysis which rely on expert
judgements on how maintenance usually evolve on similar systems on other plants.
The purpose of this simulation is to use a more quantitative approach when an-
alyzing how maintenance will evolve over time taking history into account. This
can then be used together with the qualitative analysis to find a better picture on
how maintenance will evolve.

Figure 5.1: Outline of each system block in the Extend simulation

Before going more into the analysis of the simulation let us give a description on
how we have done the simulation. As said earlier the simulation is done with the
simulation software ExtendSim. The idea behind the simulation is that we take
into account both preventive and corrective maintenance events, as seen from the
results in table 7, and simulate how the maintenance will evolve for each system.
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In figure 5.1 a picture on how we have built up each system block is given. The
main block is the MaintRate block. This block needs the respective values of
α, β and p in order for us to calculate the time to next maintenance event. A
special part of the block is that it calls a value of the β parameter based on a
random number from a normal distribution with mean β̂ and standard deviation
se(β̂). This random number is given from the ShapeDist block which is only
drawn in the start of each simulation. Having this we will now get a signal out
from the MaintRate block which indicates if maintenance has occurred or not.
This signal is then used to record total number of maintenance events per year in
StateFuncSys and to add a cost to each event in CostFunc. The cost added in
the CostFunc block is based on a random number from a lognormal distribution
with values set for the mean and standard deviation based on the system we are
considering. We also adjust the cost based on the inflation rate set in Inflation.
This cost is then sent to CostNPV which records the present value of the cost per
year based on a discount rate.

Let us also note that the ARA models wasn’t supported in the originalMaintRate
block, we have therefore added these features in the block in order for us to use
the ARA models. This was done by recoding some of the source code in the block.

Figure 5.2: Outline of the plant in the Extend simulation
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In figure 5.2 we have a description on how we have simulated the entire plant.
Each system is represented by the system block on the left hand side. The signal we
get from each system is sent to a Max block to check if maintenance has occurred
or not. The signal from this Max block is then sent to the StateFuncTotal block
which record maintenance per year for the entire plant. Having set these notions
on how the simulation works we now just need to run the simulation in order for
us to get the results. Since we are working with days in our dataset we do the
simulation for 30 · 365 = 10950 days and we do the simulation 500 times in order
for us to get more accurate results.

The only thing that is left now is to find out which systems to include on
the plant. As described earlier in the description of the dataset the number of
registered maintenance events vary considerably from system to system. We have
therefore focused on systems where we have more than 100 registered events. This
gives us a total of 18 systems which we do the simulation on. The reason for this
is that we have better estimates of α, β and p for these systems. We can see that
these systems are represented on the left hand side of figure 5.2. We only see the
top 6 here, but the rest of the systems are further down on the simulation screen.
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Figure 5.3: Results from the simulation for system 21
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5.1 Results From the Simulation
The simulation is done for each of the models; HPP, RP, NHPP, ARA∞ and
ARA1. When presenting the results the same systems considered in section 4 will
be used.

Before presenting the results there are two important concepts we need to
describe. The first is that when we run the simulation for each model we do that
only for the given model. Thus for a HPP simulation all the systems follow the
HPP model, and similarly for the RP, NHPP, ARA∞ and ARA1 model. The
second concept arises from how we add the cost for each maintenance event in the
CostFunc block. This is based on a random number from a lognormal distribution
with given mean and standard deviation. In the implementation the focus hasn’t
been on how to analyze the cost for each system it is only set to draw the number
based on a lognormal distribution with mean 1000 and standard deviation 500.
The inflation rate is set to 5% and the discount rate in the NPV block is set to
10% for each system. This gives a very weak estimate of the associated cost to each
system, but the analysis has focused mostly on how the number of maintenance
events evolve over time.
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Figure 5.4: Results from the simulation for system 42

If we first consider system 21, the results are given in figure 5.3. We see that
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there are great differences between the models as the ARA∞model has the highest
number of maintenance events per year, while the HPP and RP has the lowest.
For the NHPP an ARA1 models they seem to have a increasing trend up to the
line for the ARA∞ model. The cost plot also indicates this as the cost for ARA∞
lies higher than the others.
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Figure 5.5: Results from the simulation for system 52

In figure 5.4 the results from the simulation on system 42 is given. We clearly
see here that the NHPP model has the highest number of maintenance events per
year while the ARA1 model has the lowest. The HPP, RP and ARA∞ model is
fairly similar as they give almost the same results. A look at the NPV cost also
indicates this as the NHPP model lies higher than the other models.

For system 52 in figure 5.5 the situation is somewhat the same. The NHPP
model has the highest number of maintenance events per year, while the other
models has less events. The corresponding cost plot also indicates this as the
NHPP lies higher than the others.

The results for system 58 in figure 5.6 is different as the NHPP, ARA∞ and
ARA1 models clearly has a decreasing tendency as time goes by. The RP and
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Figure 5.6: Results from the simulation for system 58

HPP give the somewhat same result which is higher than the estimate from the
other models. Again the cost function indicates the same as the RP and HPP
curve lies higher than the others.

System 73 in figure 5.7 gives some very different results than the others. The
ARA1 model clearly has an increasing tendency as the slope of the line of main-
tenance events per year clearly increases. While for the ARA∞ and NHPP model
they have a smaller increase, but still much higher than the RP and HPP models.
The cost plot again indicates the same as the plot for maintenance events.

From the discussion of these plots we clearly see that there are big differences
in how the number of maintenance events per year evolve from system to system.
If recall from the last section where we discussed the model which had the best fit,
see table 10. We saw that the ARA∞ model gave the best fit for all the different
systems in most of the cases. Therefore it is interesting to note that the blue line
should be the best based on the dataset we were given. Hence it shows that the
ARA∞ model maybe should be the model to use since it gives the best results.
Especially is this interesting to note for system 42 as the ARA∞ gave a clearly



5.1 Results From the Simulation 45

1

1

System 73

0 5 10 15 20 25 30

0
50

10
0

15
0

# Maintenance Events

Year

E
ve
nt
s

0 5 10 15 20 25 30

0
10
00
0

20
00
0

30
00
0

40
00
0

NPV Cost

Year

C
os
t

HPP RP NHPP ARA∞ ARA1

Figure 5.7: Results from the simulation for system 73

much better fit than the other models.
In figure 5.8 we have plotted the total number of maintenance events for the

entire plant based on the results from the different models. Note that there is
a big difference between the NHPP and ARA1 model to the ARA∞, RP and
HPP models. We clearly see that the ARA∞ model gives an estimate which lies
between the other models. It also seems like that the ARA∞ model maybe gives
us the best out of both the minimal and perfect repair models. Hence by imposing
a ARA∞ model we maybe get a better model which can describe more situations.

An interesting part of this analysis is also that the cost function follow the
same tendency as the maintenance function. It is not surprising, but this gives us
a better understanding that if we have good models to analyze how maintenance
will evolve over time it will give us a better picture on the corresponding costs. Of
course you should give a more thorough and comprehensive report of how the cost
will evolve based on different scenarios, but this cost function will on the bottom
line be highly influenced by how the maintenance will evolve over time.

A problem when simulating the number of events over a 30 year period in
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this case is that we have used a limited amount of data to calculate how the
maintenance will evolve based on our dataset. Therefore these estimates of how
maintenance will evolve come with a rather high degree of uncertainty, but by
using these results along with experts judgements we will get a better picture on
how the maintenance will evolve.

Of course there are some serious limitations of this simulation as well. If for
instance we know that 10 year ahead we need to replace an entire system there
will of course be a lot more registered events at this time. This simulation would
not be able to take into account this ”peak”, therefore we will emphasize that this
analysis should be used as a decision support together with a qualitative analysis
in order for us to get the total picture.
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Figure 5.8: Total number of maintenance events from the simulation.
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6 Conclusion
The analysis of how good different models fit to the given data are of crucial
importance as the result of how the maintenance will evolve highly rely on what
kind of model one use. In this thesis a general class of statistical models has
been used which all follow the following expression for the probability of an event
occuring in a xi interval.

F (xi) = 1− R(Ai−1 + xi)
R(Ai−1) (6.0.1)

The differences between the models arises from what probability distribution one
assign to R(·) and how the virtual age Ai defined/calculated. We have focused
on exponential and Weibull distribution of the probability distributions which has
some well known properties and corresponding statistical models if we consider
perfect and minimal repair (HPP,RP and NHPP). And we have also analyzed
some more interesting cases where more sophisticated techniques to describe the
virtual age has been used, namely ARA∞ and ARA1. The results in section 4
and 5 has shown that especially the ARA∞ has proven itself to be a good model
to use in most of the cases as it has given a good fit for the given dataset.

We would like to emphasize that the ARA∞ model gives the ”user” the ability
to not take any decision about what state the system is left in after maintenance
before the analysis and therefore becomes a more flexible model than the minimal
and perfect repair models. From the results of the ARA∞ model one would also
get a better picture on what state the system is left in after maintenance and
consequently what kind of model should be used for the data. In other words one
can say with more certainty that the ARA∞ model will give the correct result of
how the maintenance will evolve.

Of course the results from this analysis must also be taken with a degree of
uncertainty as we are not be able to model how the maintenance on the systems
will evolve perfectly. All the results are based on data which again come with some
uncertainty as there are people who do the maintenance that are responsible for
giving correct input of when they did the maintenance. Also some maintenance
jobs are of much greater importance than others and this hasn’t been taken into
account as we have only focused on the number of maintenance events. This can
be a serious limitation of how good the model fit the reality.

But from this analysis we can conclude that there seem to exist great differences
with respect to ageing and how good the maintenance is between plant A and B.
In general it seems like the maintenance on plant B follow a perfect repair model,
while on plant A an imperfect or minimal repair model seems to be more accurate.

The results from the simulation of how the maintenance evolve over a 30 year



48 6 CONCLUSION

period has also given us a better fundament when describing how the maintenance
will evolve. We would like to emphasize that this quantitative analysis together
with a qualitative analysis will give us a better foundation when describing how
the maintenance will evolve.

The relationship between how the maintenance evolve and the corresponding
cost gives us a better understanding that good models for how the maintenance
evolve is crucial in order to get better estimates for the cost. As noted earlier this
thesis hasn’t focused on the cost, but the results from this thesis can be used as a
fundament when implementing better and more accurate results for the cost. This
can for instance be interesting to use when we want to analyze a lifetime extension
of a plant.

At last we would like to highlight that in this analysis we have focused on the
exponential and Weibull distribution, but there is no restriction to use any other
probability distribution. Therefore equation 6.0.1 together with simulation of the
expected number of events, section 3.5, gives a very general class of models which
can be utilized in many sitiutations.
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A Definitions
Maintenance: The combinations of all technical and corresponding adminis-
trative actions, including supervision actions, intended to retain an entity in, or
restore it to, a state in which it can perform its required function [IEC 50]

Preventive maintenance: The maintenance carried out at predetermined inter-
vals or corresponding to prescribed cirteria and intended to reduce the probability
of failure or the performance degradation of an item [BS 4778]

Corrective maintenance: The maintenance carried out after a failure has oc-
curred and intended to restore an item to a state which it can perform its required
function [BS 4778]

Failure: The termination of its ability to perform a required function [BS 4778]

System: Set of elements which interact according to a design, where an element of
a system can be another system, called a subsystem, which may be a controlling
system or a controlled system and may include hardware, software and human
interaction [IEC 61508, Part 4]

B Theory
In this section some of the theory used in the report are described in more detail.
If otherwise not stated the theory in this section is based on [3, 4, 5, 7, 8, 9].

B.1 Exponential Distribution
The exponential distribution is a continuous probability distribution with proba-
bility density function,

f(x) = 1
α

exp [−x/α] , x > 0 (B.1.1)

survival function
R(x) = 1− F (x) = exp [−x/α] , x > 0 (B.1.2)

and failure rate function
z(x) = 1

α
(B.1.3)

Where α > 0 is a scale parameter. The mean of the exponential distribution is
E(x) = α and the variance equals Var(x) = α2.
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B.2 Weibull distribution
The Weibull distribution is a continuous probability distribution with probability
density function,

f(x) = β

α

(
x

α

)β−1
exp

[
−(x/α)β

]
, x > 0 (B.2.1)

survival function

R(x) = 1− F (x) = exp
[
−(x/α)β

]
, x > 0 (B.2.2)

and failure rate function
z(x) = β

α

(
x

α

)β−1
(B.2.3)

Where β > 0 is the shape parameter and α > 0 is the scale parameter of the
distribution. The mean of the Weibull distribution is E(x) = αΓ(1 + 1/β) and the
variance equals Var(x) = α2Γ(1 + 1/β) − E2(x). Where Γ(y) depicts the gamma
function which is given as, Γ(y) =

∫∞
0 ty−1 exp−t dt

Some interesting properties of the Weibull distribution follows by considering
diferent values of the shape parameter. If β = 1 the failure rate is not dependent on
time and the probability distribution is the same as the exponential distribution.
If β < 1 the failure rate decreases over time and if β > 1 the failure rate increases
over time.

B.3 Homogeneous Poisson Process
A counting process (N(t), t ≥ 0) is homogeneous Poisson process, HPP, with
rate 1/α, for α ≥ 0, if N(0) = 0, and the inter-occurrence times x1, x2, · · · are
independent and exponentially distributed with scale parameter α.

Because of the subsequent definition of a HPP some properties follows:

1. The rate of occurrence of maintenance, ROCOM, of the HPP is constant
and independent of time,

v(t) = 1/α, for all t ≥ 0

2. The number of maintenance actions in the interval (t, t + x] is Poisson dis-
tributed with mean x/α,

P (N(t+ x)−N(t) = n) = (x/α)n

n! exp [−x/α] , for all t ≥ 0, x ≥ 0

3. The expected number of maintenance actions and variance at time t equals
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E[N(t)] = Var[N(t)] = t/α

4. The inter-occurrence times x1, x2, · · · are independent and identically dis-
tributed exponential random variables having mean α

B.4 Renewal Process

A renewal process, RP, is closely linked to the HPP. In the HPP model the inter-
occurrence times x1, x2, · · · are exponentially distributed with scale parameter α.
While for the RP the inter-occurrence times are independent and identically dis-
tributed with distribution function

FX(x) = P (Xi ≤ x) for x ≥ 0, i = 1, 2, · · · (B.4.1)

Thus a renewal process may be thought of as a generalization of the HPP where
the underlying distribution of the inter-occurrence times may take any probability
distribution other than exponential.

Expected number of maintenance actions in a time interval [0, t] is given by
the fundamental renewal equation

E[N(t)] = V (t) = FX(t) +
∫ t

0
V (t− s)dFX(s) (B.4.2)

The corresponding renewal density, v(t), is found by taking the derivative of the
renewal equation on both sides with respect to t

v(t) = fX(t) +
∫ t

0
v(t− s)fX(s)ds (B.4.3)

Finding closed form solutions of the renewal density may be hard or even im-
possible to find for most probability distributions. Thus estimation of the expected
number of maintenance actions for a given time t rely on simulation of the process.

Due to the problem of finding the exact expression for E[N(t)] some approxi-
mations formulas come in to play. The elementary renewal theorem states

lim
t→∞

E[N(t)]
t

= 1
µ

(B.4.4)

where µ equals the average length of each renewal interval or simply the expecta-
tion of FX(t) in the renewal intervals.
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B.5 Non-Homogeneous Poisson Process
A counting process (N(t), t ≥ 0) is a non-homogeneous Poisson process, NHPP,
with time dependent intensity v(t) for t ≥ 0 if

1. N(0) = 0

2. Non-overlapping increments are independent

3. P (N(t+ ∆t)−N(t) = 1) = v(t)∆t+ o(t)

4. P (N(t+ ∆t)−N(t) ≥ 2) = o(t)

for all t and where o(t)
∆t → 0 as ∆t → 0. The main parameter in a NHPP model

is the rate parameter v(t) which is in our case denoted as the rate of occurence of
maintenance, ROCOM. The cumulative rate of the process is

V (t) =
∫ t

0
v(s)ds (B.5.1)

And thus the number of failures in an interval (0, t] is Poisson distributed

P (N(t) = n) = [V (t)]n
n! exp [−V (t)] (B.5.2)

with mean and variance

E [N(t)] = V ar [N(t)] = V (t) (B.5.3)

The NHPP can be used to model if a system has increasing or decreasing inter-
occurrence times, where the rate v(t) will respectively be increasing or decreasing.
Because of the assumption of independent increments, the number of events in the
interval (t1, t2], will be independent of the number of events and inter-occurrence
times before t1. Hence the ROCOM given the history up to time t, Ht, will be
unaffected of the history and only depend on the time interval we are considering.

v(t|Ht) = v(t) (B.5.4)

Because of this assumption a NHPP has often been termed a minimal repair model
since the ROCOM doesn’t depend on the history. In our case where we are con-
sidering a system with many components, the maintenance events described is
usually done on only a small fraction of the components in the system and thus
the system will almost be in the same state as before the event. Minimal repair is
therefore usually a realistic approximation for systems with many components.
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B.6 Maximum likelihood
Given data at times t1, t2, · · · , tn and one want to fit a probability distribution
f(t|θ) to the data. The method of maximum likelihood is one of the most pop-
ular methods for deriving estimators for the unknown parameters in probability
distribution when fitting it to known data. The basic idea behind the maximum
likelihood method is that one are interested in finding estimators of the unknown
parameters θ that maximize the likelihood function. This can be thought of a
way of finding the estimators of the parameters that have the highest probability
to fit the data. Its widespread use is because it has some desirable asymptotic
properties which in most cases lead to good estimators of the unknown parame-
ters. These estimators are referred to as maximum likelihood estimators, MLE’s.
Some of these asymptotic properties will be described here and then later go on
to construct the likelihood functions for the statistical models used in this thesis
in the next section.

The likelihood function for a probability distribution f(t|θ) where θ is the
parameters one want to estimate is given as

L(θ|t) =
n∏
i=1

f(ti|θ) (B.6.1)

Using the corresponding log-likelihood may be as it is easier to work with in many
situations. The log-likelihood is given as

l(θ|t) =
n∑
i=1

log f(ti|θ) (B.6.2)

The MLE’s is found by maximizing the likelihood or log-likelihood with respect to
the parameters θ.

Finding the MLE’s may in many cases be a tedious task, as closed form solution
of the MLE’s may not be possible to find. Working with the log-likelihood, possible
candidates for the MLE of θ1, θ2, · · · , θk are the ones who solve

∂

∂θi
l(θ|t) = 0, i = 1, 2, · · · , k (B.6.3)

If this leads to a closed form solution for the MLE’s possible candidates are found.
Often a closed form solution is not attainable and thus the maximum likelihood
method relies highly on numerical maximization procedures in those cases. In our
work we have implemented a quasi-Newton method, as described in [6], which
maximizes the likelihood in those cases where a closed form solution is not at-
tainable. Other numerical maximization procedures may also be used, but due to
desirable convergence properties of the quasi-Newton method this is often chosen
to solve the problem.
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An important property of maximum likelihood estimates is the invariance prop-
erty

If θ̂ is the MLE of θ, then for any function g(θ) the MLE of g(θ) is
g(θ̂)

A proof of the invariance property can be found in [5]. This property if often very
useful when finding the MLE’s in the situations where a numerical maximization
procedure is needed to solve the problem.

B.6.1 Conditions

Some conditions come in to play when finding the maximum of the log-likelihood
function which need to be fulfilled in order to make sure that the MLE’s give a
local maximum.

• The first order partial derivatives are zero, equation B.6.3.

• At least one second order partial derivative is negative

• The determinant of the second order partial derivatives are positive

If all these assumptions are satisfied a local maximum has been found, but in order
to make sure that this is the global maximum the endpoints of the parameters we
wish to estimate also has to be checked.

B.6.2 Asymptotic Properties

As mentioned earlier the maximum likelihood method has some desirable proper-
ties. Denoting the MLE’s as θ̂ and the true value of the parameters as θ0 for the
given dataset with n observed times, it can be shown that as n goes to infinity the
MLE’s converges in probability to its true value

as n→∞ then θ̂
p−→ θ0 (B.6.4)

This consistency property is very desirable when a large enough dataset is available
as the MLE’s will give a very good approximation of the true value.

Another desirable property which is very useful when it comes to analyzing the
MLE’s is that is asymptotically has a normal distribution when n goes to infinity

√
n(θ̂ − θ0) d−→ N(0, I−1) (B.6.5)

Where I−1 is the inverse of the information matrix and is often denoted the
Cramér-Rao lower bound for an unbiased estimator. Thus for the MLE’s the
variance will attain the Cramér-Rao lower bound if n is large enough. Hence the
Cramér-Rao lower bound can be used as an estimate for the variance of the MLE’s.
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B.6.3 Information Matrix and Variances

The information matrix plays an important role when analyzing the MLE’s as it
can be used to find the variance and hence the standard deviation of the MLE’s.
In the case where k parameters needs to be estimated the information matrix
becomes

I(θ) = −



∂2l(θ|t)
∂θ2

1

∂2l(θ|t)
∂θ1∂θ2

· · · ∂2l(θ|t)
∂θ1∂θk

∂2l(θ|t)
∂θ2∂θ1

. . . ...
... . . . ...

∂2l(θ|t)
∂θk∂θ1

· · · · · · ∂2l(θ|t)
∂θ2

k

 (B.6.6)

As described earlier the Cramér-Rao lower bound is given as the inverse of the
information matrix. Thus by inverting the information matrix the variance and
the standard deviation is found where the standard deviation is given as

se(θ̂) =
√
diag(I−1) (B.6.7)

Where the square root is taken on the diagonal elements in the inverted information
matrix.

B.6.4 Likelihood Ratio Test

An important test when analyzing nested models is the likelihood ratio test. As-
sume two nested models Y and Z with k and r parameters to estimate respectively,
has been fitted and where r > k. Then the likelihood ratio test is given as

V = −2 [log(LY (θ|t)− log(LZ(θ|t))]
= −2 [lY (θ|t)− lZ(θ|t)] (B.6.8)

It can be shown that this approximately has a chi-square distribution with r −
k degrees of freedom. Thus given a significance level a the model with fewest
parameters, Y , will be rejected if V > χ2

a,r−k

B.7 Construction of the Likelihood Function for the Sta-
tistical Models

For all the different statistical models used in this thesis the maximum likeli-
hood method has been used to estimate the unknown parameters θ in the models.
One crucial part of the analysis is the construction of the likelihood function.
Given data with events registered at times t1, t2, · · · , tn and corresponding inter-
occurence times xi = ti − ti−1 one has a timeline as illustrated below.
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t0 = 0 t1 t2 · · ·
· · ·

tn−1 tn

x1 x2 xn

Let us derive the likelihood function for the different models one at a time.

B.7.1 Homogeneous Poisson Process

In the HPP model an exponential distribution, exponential(α), is assumed for the
inter-occurrence times. Thus the log-likelihood is constructed as follows

l(α|x) =
n∑
i=1

log f(xi) = −n logα−
n∑
i=1

xi
α

=− n logα− tn
α

(B.7.1)

Where ∑n
i=1 xi = tn has been used. Because of the simplicity of the log-likelihood

function the MLE of α, α̂, can be easily derived.

∂l(α|t)
∂α

=0

⇒ α̂ =tn
n

(B.7.2)

the variance and standard deviation of the MLE is in this case easily found by
using the Cramér-Rao lower bound.

Var(α̂) =1/∂
2l(α|t)
∂α2 = t2n

n3

⇒ se(α̂) = tn
n3/2 (B.7.3)

B.7.2 Renewal Process

For the RP model a Weibull distribution, Weibull(α, β), is assumed for the inter-
occurence times. Thus the log-likelihood becomes.

l(α, β|x) =
n∑
i=1

log f(xi)

= n(log β − β logα) + (β − 1)
n∑
i=1

log(xi)−
n∑
i=1

(
xi
α

)β
(B.7.4)

A closed form solution is not available thus finding estimates of the MLE’s of α
and β relies on numerical maximization procedures.
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B.7.3 Non-Homogeneous Poisson Process

In the NHPP model a different approach to address the problem of finding the
likelihood function has been used. Let us consider the interval (ti−1, ti] and look
at the conditional probability of an event occuring in this interval. In figure B.1
the shaded area represents the conditional probability we are interested in.

ti−1

ti

P (T ≤ ti|T > ti−1)

Figure B.1: The blue area represents the conditional probability of maintenance
in the interval (ti−1, ti]

P (T ≤ ti|T > ti−1) = F (ti)− F (ti−1)
1− F (ti−1)

= 1−R(ti)− 1 +R(ti−1)
R(ti−1)

= 1− R(ti)
R(ti−1) (B.7.5)

Let F (·) and R(·) denote the probability of maintenance and ”survival” of main-
tenance at the respective times. By assuming a Weibull distribution of the R(·)
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and denoting P (T ≤ ti|T > ti−1) as F (ti) we get

F (ti) = 1− exp
[(
ti−1

α

)β
−
(
ti
α

)β]
(B.7.6)

By taking the the derivative of the conditional distribution function with respect
to ti the corresponding conditional Weibull density function is found.

f(ti) = ∂F (ti)
∂ti

= β

α

(
ti
α

)β−1
exp

[(
ti−1

α

)β
−
(
ti
α

)β]
(B.7.7)

Before continuing to derive the likelihood function it is important to note that
the time up to first maintenance action doesn’t obey the previous conditionality.
The probability density function for the time up to the first maintenance action is
determined by the regular density function for a Weibull distribution, see equation
B.2.1. This can also be seen by setting t0 = 0. Taking into account this difference
the likelihood function becomes.

L(α, β|t) =
n∏
i=1

f(ti) = f(t1)
n∏
i=2

f(ti)

=
(
β

αβ

)n
tβ−1
1 exp

[
−
(
t1
α

)β] n∏
i=2

tβ−1
i exp

[(
ti−1

α

)β
−
(
ti
α

)β]
(B.7.8)

⇓

l(α, β|t) = n(log β − β logα) + (β − 1)
n∑
i=1

log(ti)−
(
tn
α

)β
(B.7.9)

Where the last expression follows after taking into account that sums cancel each
other out. A closed form solution for the MLE’s is attainable in this case and is
given by

α̂ = tn

n1/β̂
(B.7.10)

β̂ = n

n log(tn)−∑n
i=1 log(ti)

= n∑n
i=1 log(tn/ti)

(B.7.11)

The variance and standard deviation can also be found by considering the inverted
information matrix. This will give us estimates of the variance of the MLE’s. For
a 2× 2 matrix the inverse of the matrix is given by

[
a b
c d

]−1

= 1
ad− bc

[
d −b
−c a

]
(B.7.12)
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Thus for the NHPP model the covariance matrix becomes

V ar(α̂, β̂) = 1
−∂2l(α,β|t)

∂α2
−∂2l(α,β|t)

∂β2 −
(
−∂2l(α,β|t)

∂α∂β

)2

 −∂2l(α,β|t)
∂β2 −−∂

2l(α,β|t
∂α∂β

−−∂
2l(α,β|t
∂α∂β

−∂2l(α,β|t)
∂α2



=
 ( α̂β̂)2

(1 + (log n)2) ·
· β̂2

n

 (B.7.13)

Usually its the variance of the parameter β which are of most interest. Hence
the variance of β is

V ar(β̂) = β̂2

n
(B.7.14)

and consequently the standard deviation is

se(β̂) = β̂√
n

(B.7.15)

B.7.4 Arithmetic Reduction of Age, (ARA)

For the ARA models the concept of virtual age, Ai has been implemented. In the
ARA1 model the virtual age is calculated as

Ai =Ai−1 + pxi = pti (B.7.16)

and for the ARA∞ model the virtual age is given as

Ai =p (Ai−1 + xi) = ti − (1− p)
i−1∑
j=0

pjti−j (B.7.17)

These follow a different conditional distribution than was the case in the NHPP
model. Immediately after a the (i − 1)th maintenance action has happened the
system has the virtual age Ai−1. By considering the time until the next ith main-
tenance action, xi, the probability that maintenance occurs in this interval is given
from the conditional probability

P (T ≤ Ai−1 + xi|T > Ai−1) = F (Ai−1 + xi)− F (Ai−1)
1− F (Ai−1)

= 1−R(Ai−1 + xi)− 1 +R(Ai−1)
R(Ai−1)

= 1− R(Ai−1 + xi)
R(Ai−1) (B.7.18)
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Assuming a Weibull distribution of R(·) and denoting P (Ai−1 + xi|Ai−1) as F (xi)
we have

F (xi) = 1− exp
[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(B.7.19)

Taking the derivative of the conditional probability with respect to xi the corre-
sponding conditional Weibull density function will become

f(xi) = ∂F (xi)
∂xi

= β

α

(
xi + Ai−1

α

)β−1
exp

[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(B.7.20)

As was the case for the NHPP model the time up to the first interval do not
follow this conditional distribution. It is determined by the regular Weibull density
function, equation B.2.1. This can also be seen by setting A0 = 0. Taking this
into account the following expression for the likelihood function is derived

L(α, β, p|x) =
n∏
i=1

f(xi) = f(x1)
n∏
i=2

f(xi)

=
(
β

αβ

)n
xβ−1

1 exp
[
−
(
x1

α

)β] n∏
i=2

(xi + Ai−1)β−1 exp
[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(B.7.21)

⇓

l(α, β, p|x) =n(log β − β logα)−
(
x1

α

)β
+ (β − 1)

(
log(x1) +

n∑
i=2

log(xi + Ai−1)
)

+
n∑
i=2

[(
Ai−1

α

)β
−
(
xi + Ai−1

α

)β]
(B.7.22)

Where the log-likelihood function for the respective ARA∞ and ARA1 model
is given by considering the appropriate virtual age function Ai. No closed form
solutions of the MLE’s of α, β and p are attainable for the ARA models in this
case. Thus the estimation of the MLE’s highly rely on numerical maximization
procedures.
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C Plots of Expected Number of Maintenance
Events

In this section the plots for the different systems considered in section 4 are given.
The dotted lines represent the models and the black line indicates the dataset.
Also note that in the cases where the ARA models gives a endpoint p = 0 or p = 1
for the p parameter the respective RP or NHPP lines is only plotted not the ARA
line.
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Figure C.1: Plot of expected number of maintenance events for system 21, plant
A
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Figure C.2: Plot of expected number of maintenance events for system 42, plant
A
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Figure C.3: Plot of expected number of maintenance events for system 52, plant
A
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Figure C.4: Plot of expected number of maintenance events for system 58, plant
A
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Figure C.5: Plot of expected number of maintenance events for system 73, plant
A
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Figure C.6: Plot of expected number of maintenance events for system 21, plant
B
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Figure C.7: Plot of expected number of maintenance events for system 42, plant
B
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Figure C.8: Plot of expected number of maintenance events for system 52, plant
B
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Figure C.9: Plot of expected number of maintenance events for system 58, plant
B
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Figure C.10: Plot of expected number of maintenance events for system 73, plant
B
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D R-code

# Funct ion f o r f i n d i n g t h e MLE e s t i m a t e s o f t h e models
###################
## INPUT ##
# d a t a : t h e d a t a s e t we want t o f i t
# system : t h e s y s t e m s we want t o f i t i t on
# r o c o f : The models we t r y t o f i t t o t h e d a t a
# The p o s s i b l e models are :
# HPP, RP, PL , Ara1 , AraInf
# t i n t : t ime i n t e r v a l we want t o c o n s i d e r , ( t i n t ,−>)
## OUTPUT ##
# mle ’ s : maximum l i k e l i h o o d e s t i m a t e s o f t h e p a r a m e t e r s i n t h e model
# s e . mle ’ s : s t a n d a r d e r r o r s o f t h e mle ’ s b a s e d on i n v e r t i n g t h e h e s s i a n
# l o g L : l o g− l i k e l i h o o d
# p . v a l u e : p−v a l u e c o r r e s p o n d i n g t o t h e t e s t s t a t i s t i c
# t e s t . s t a t i s t i c : Test s t a t i s t i c f o r t h e g i v e n method
# n : number o f r e g i s t e r e d e v e n t s
###################
fitMLE = function ( data , system , r o c o f , t i n t , dup=FALSE){

# F i r s t we c h e c k i f we want t o c o n s i d e r a s p e c i f i c sys tem or t h e p l a n t s as a whole
i f ( i s . na( system ) ){sys = data}
e l s e i f ( system==1220){sys = subset ( data , data$ Plant==system , drop=T)}
e l s e i f ( system==1221){sys = subset ( data , data$ Plant==system , drop=T)}
e l s e {sys = subset ( data , data$System==system , drop=T)}

#I f we have t o o few r e g i s t e r e d e v e n t s we d i s p l a y t h e r e s u l t as NA
i f ( length ( sys$Bas . . start . date )<=2){

r e s = l i s t ( n=length ( sys$Bas . . start . date ) , logL=NA, alpha=NA, p=NA, beta=NA, se . alpha
=NA, se . beta=NA, se . p=NA, VP1=NA, pvalueP1=NA, VB1=NA, pvalueB1=NA, VP0=NA,
pvalueP0=NA, message=NA, method=NA, conv=NA, p . value=NA, pvalue=NA, KS=NA, par=NA
)

}
e l s e {
# S o r t a f t e r t h e column Bas . . s t a r t . d a t e
sys = sys [ order ( sys$Bas . . start . date ) , ]
#We c a l l t h e f u n c t i o n IntOc t o f i n d t h e i n t e r o c c u r e n c e t i m e s
sys = IntOc ( sys , t i n t )
# E d i t t ime column i f t i n t i s p r e s e n t
sys$Bas . . start . date = sys$Bas . . start . date − t i n t
# I f dup i s TRUE we o n l y c o n s i d e r t h e rows where t h e v a l u e s o f s y s $Bas . . s t a r t . d a t e i s

not t h e same
i f ( dup==TRUE){ sys = sys [ ! i s . na( sys$IntDup ) , ]}

# We a l s o c h e c k i f t h e r o c o f f u n c t i o n g i v e n i s s u p p o r t e d
i f ( a l l ( r o c o f != c ( ”PL” , ” Ara1 ” , ” AraInf ” , ”RP” , ”HPP” ) ) ){stop ( ”ROCOF f u n c t i o n isn ’ t

supported ” )}
# A f t e r removing dup e n t r i e s we a g a i n has c h e c k i f we have t o few o b s e r v a t i o n s
i f ( length ( sys$Bas . . start . date )<=2){ r e s = l i s t ( n=length ( sys$Bas . . start . date ) , logL=NA,

alpha=NA, p=NA, beta=NA, se . alpha=NA, se . beta=NA, se . p=NA, VP1=NA, pvalueP1=NA, VB1=NA,
pvalueB1=NA, VP0=NA, pvalueP0=NA, message=NA, method=NA, conv=NA, p . value=NA, pvalue=NA,
KS=NA, par=NA)}

e l s e {
t = sys$Bas . . start . date
###
i f ( r o c o f==”HPP” ){ #RESULTS FOR THE HPP MODEL

n = length ( t )
maxt=max( t )
alpha = maxt/n
s = maxt/ ( n ˆ(3 / 2) )
logL = −n∗ log ( alpha )−maxt/ alpha
#Kolmogorov−Smirnov t e s t
KS = KStest ( time=t , param=alpha , r o c o f=r o c o f )
r e s = l i s t ( n=n , logL=logL , alpha=alpha , se . alpha=s , KS=KS$KS$p . value ,NT=KS$

NT)
}

###
e l s e i f ( r o c o f==”PL” ){ #RESULTS FOR THE NHPP MODEL

n = length ( t )
par = c ( )
par [ 2 ] = n/sum( log ( t [ n ] /t ) ) #b e t a
par [ 1 ] = t [ n ] / ( n ˆ(1 /par [ 2 ] ) ) #a l p h a
#F i r s t we f i n d t h e t e s t s t a t i s t i c b e f o r e we d i s p l a y t h e r e s u l t s
n = length ( t )
V = 2∗sum( log ( t [ n ] )−log ( t ) )
i f ( par [2 ] >1){p = pchisq (V, 2 ∗ ( n−1) )}
e l s e{p = pchisq (V, 2 ∗ ( n−1) , lower . t a i l=FALSE)}
i f (V<0){p = NA}

#Kolmogorov−Smirnov t e s t
KS = KStest ( time=t , param=par , r o c o f=r o c o f )
#s t a n d a r d d e v i a t i o n
s = sqrt ( c ( ( 1 /n ) ∗ ( ( par [ 1 ] /par [ 2 ] ) ˆ2) ∗(1+( log ( n ) ) ˆ2) , ( par [ 2 ] ˆ 2 ) /n ) )
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r e s = l i s t ( n=n , logL=logL ( par , time=t , Rocof=r o c o f ) , alpha=par [ 1 ] , se . alpha=
s [ 1 ] , beta=par [ 2 ] , se . beta=s [ 2 ] , t e s t . s t a t i s t i c=V, p . value=p , df=2∗ ( n
−1) ,KS=KS$KS$p . value ,NT=KS$NT, par=par )

}
###
e l s e i f ( r o c o f==”RP” ){ #RESULTS FOR THE RP MODEL

logLRPtrans = function ( param , time ){
n = length ( time )
x i = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
a = param [ 1 ]
b = param [ 2 ]
r e s = n∗ ( b−a∗exp ( b ) ) +(exp ( b )−1)∗sum( log ( x i ) )−sum( ( x i /exp ( a ) ) ˆ

exp ( b ) )
return ( r e s )
}

opRP = optim ( par=c ( 0 , 0 ) , fn=logLRPtrans , gr=NULL, time=t , method=”BFGS” ,
control=l i s t ( maxit =10000 , f n s c a l e =−1) , h e s s i a n=FALSE)

parRP = c ( exp (opRP$par ) )
n = length ( t )
lb 1 = n∗ ( log ( n )−1−log (max( t ) ) )
VRP = −2∗ ( lb1−opRP$ value )
i f (VRP<0){pvalue=NA}
e l s e ( pvalue=pchisq (VRP, 1 , lower . t a i l=FALSE) )
i f ( i s . na( pvalue ) ){ s i g = ”No”}
e l s e i f ( pvalue >0.05){ s i g = ”No”}
e l s e { s i g = ” Yes ”}
h e s s i a n = h e s s i a n ( logL , x=parRP , time=t , Rocof=r o c o f )
s = sqrt(−diag ( solve ( h e s s i a n ) ) )
#Kolmogorov−Smirnov t e s t
KS = KStest ( time=t , param=parRP , r o c o f=r o c o f )
r e s = l i s t ( n=n , logL=opRP$value , alpha=parRP [ 1 ] , se . alpha=s [ 1 ] , beta=parRP

[ 2 ] , se . beta=s [ 2 ] , par=parRP , t e s t . s t a t i s t i c=VRP, pvalue=pvalue , s i g=
s i g , KS=KS$KS$p . value ,NT=KS$NT)

}
###
e l s e i f ( r o c o f==” Ara1 ” ){ #RESULTS FOR THE ARA1 MODEL

t r = transAra1 ( time=t , start=c ( 0 , 0 , 0 ) )
#F i r s t we f i n d t h e t e s t s t a t i s t i c s
TS = t e s t S t a t ( time=t r $time , param=t r $par , l o g L i k=t r $op$value , logLP0=t r $

logLP0 , logLP1=t r $ logLP1 )
i f ( t r $par [3]==0){

par =t r $par [−3]
h e s s i a n = h e s s i a n ( logL , x=par , time=t r $time , Rocof=”RP” )
s = sqrt(−diag ( solve ( h e s s i a n ) ) )
s [3 ]=NA
}

e l s e i f ( t r $par [3]==1){
par = t r $par [−3]
n = length ( t r $time )
s = sqrt ( c ( ( 1 /n ) ∗ ( ( par [ 1 ] /par [ 2 ] ) ˆ2) ∗(1+( log ( n ) ) ˆ2) , ( par [ 2 ] ˆ 2 ) /

n ) )
s [3 ]=NA
}

e l s e {
h e s s i a n = try ( h e s s i a n ( logL , x=t r $par , time=t r $time , Rocof=r o c o f ) ,

s i l e n t=TRUE)
s o l = try ( solve ( h e s s i a n ) , s i l e n t=TRUE)
i f ( c l a s s ( s o l )==” try−e r r o r ” ){

s = c (NA,NA,NA)
}

e l s e{
s = sqrt(−diag ( s o l ) )
}

}
#Kolmogorov−Smirnov t e s t
KS = KStest ( time=t , param=t r $par , r o c o f=r o c o f )
r e s = l i s t ( n=length ( t r $time ) , logL=t r $op$value , alpha=t r $par [ 1 ] , se . alpha=

s [ 1 ] , beta=t r $par [ 2 ] , se . beta=s [ 2 ] , p=t r $par [ 3 ] , se . p=s [ 3 ] , message=t r $
op$message , conv=t r $op$ convergence , method=t r $method , VP1=TS$VP1,
pvalueP1=TS$pvalueP1 , VB1=TS$VB1, pvalueB1=TS$pvalueB1 , VP0=TS$VP0,
pvalueP0=TS$pvalueP0 , KS=KS$KS$p . value ,NT=KS$NT, par=t r $par )

}
###
e l s e i f ( r o c o f==” AraInf ” ){ #RESULTS FOR THE ARAINF MODEL

t r = t r a n s A r a I n f ( time=t )
#F i s t we f i n d t h e t e s t s t a t i s t i c s
TS = t e s t S t a t ( time=t r $time , param=t r $par , l o g L i k=t r $op$value , logLP0=t r $

logLP0 , logLP1=t r $ logLP1 )
i f ( t r $par [3]==0){

par = t r $par [−3]
h e s s i a n = h e s s i a n ( logL , x=par , time=t r $time , Rocof=”RP” )
s = sqrt(−diag ( solve ( h e s s i a n ) ) )
s [3 ]=NA
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}
e l s e i f ( t r $par [3]==1){

par = t r $par [−3]
n = length ( t r $time )
s = sqrt ( c ( ( 1 /n ) ∗ ( ( par [ 1 ] /par [ 2 ] ) ˆ2) ∗(1+( log ( n ) ) ˆ2) , ( par [ 2 ] ˆ 2 ) /

n ) )
s [3 ]=NA
}

e l s e {
h e s s i a n = try ( h e s s i a n ( logL , t r $par , time=t r $time , Rocof=r o c o f ) ,

s i l e n t=TRUE)
s o l = try ( solve ( h e s s i a n ) , s i l e n t=TRUE)
i f ( c l a s s ( s o l )==” try−e r r o r ” ){

s = c (NA,NA,NA)
}

e l s e{
s = sqrt(−diag ( s o l ) )
}

}
#Kolmogorov−Smirnov t e s t
KS = KStest ( time=t , param=t r $par , r o c o f=r o c o f )
r e s = l i s t ( n=length ( t r $time ) , logL=t r $op$value , alpha=t r $par [ 1 ] , se . alpha=

s [ 1 ] , beta=t r $par [ 2 ] , se . beta=s [ 2 ] , p=t r $par [ 3 ] , se . p=s [ 3 ] , message=t r $
op$message , conv=t r $op$ convergence , method=t r $method , VP1=TS$VP1,
pvalueP1=TS$pvalueP1 , VB1=TS$VB1, pvalueB1=TS$pvalueB1 , VP0=TS$VP0,
pvalueP0=TS$pvalueP0 , KS=KS$KS$p . value ,NT=KS$NT, par=t r $par )

}
###
}
}

return ( r e s )
}

################################################

################################################
# Funct ion f o r f i n d i n g t h e i n t e r−o c c u r e n c e t i m e s .
IntOc = function ( system , t i n t =0){

i f ( length ( system$Bas . . start . date )<=1){
r e s = system
}

e l s e {
system = system [ order ( system$Bas . . start . date ) , ]
temp = d i f f ( system$Bas . . start . date−t i n t , 1 )
system$IntOc = append( temp , system$Bas . . start . date [1]− t i n t , a f t e r =0)
system$IntDup = system$IntOc
system$IntDup [ system$IntDup==0]=NA
rm( temp )

system = system [ order ( system$Bas . . start . date ) , ]
r e s = system
}

return ( r e s )
}

################################################

################################################
#Funct ion f o r f i n d i n g t h e MLE’ s f o r t h e ARAinf model
t r a n s A r a I n f = function ( time ){

sumAI = function ( p , time ){
n = length ( time )
t1 = time [ 1 ]

Xi = append( d i f f ( time , 1 ) , t1 , a f t e r =0)
r e s =c ( p∗Xi [ 1 ] )
i t e r = 2
while ( i t e r <=n−1){

r e s [ i t e r ]=p∗ ( r e s [ i t e r −1]+Xi [ i t e r ] )
i t e r = i t e r + 1
}

return ( r e s )
}

FN3 = function ( param , time ){
n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
p = param [ 3 ]
t1 = time [ 1 ]

pmark = exp ( p ) /(1+exp ( p ) ) # p between 0 ,1
sumai = sumAI ( pmark , time )
Xi = d i f f ( time , 1 )
Ai = Xi + sumai
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Aiminus = sumai

r e s = n∗ ( b−a∗exp ( b ) )−(t1 /exp ( a ) ) ˆexp ( b ) +(exp ( b )−1)∗ log ( t1 ) +(exp ( b )−1)∗sum( log (
Ai ) )+sum( ( Aiminus/exp ( a ) ) ˆexp ( b ) )−sum( ( Ai/exp ( a ) ) ˆexp ( b ) )

return ( r e s )
}

t = time
n = length ( t )
start = expand . grid ( a=0,b=0,p=c (0 ,1 ,2 ,3 ,−1 ,−2 ,−3) )
opOld = l i s t ( value =−10000)
parOld = 0
methodOld = ” F a i l u r e ”
i = 1
while ( i<=length ( start $a ) ){

op = try ( optim ( par=start [ i , ] , fn=FN3 , gr=NULL, time=t , method=”BFGS” , control=l i s t (
maxit =20000 , f n s c a l e =−1) , h e s s i a n=TRUE) , s i l e n t=TRUE)

i f ( c l a s s ( op )==” try−e r r o r ” ){
op2 = try ( spg ( par=start [ i , ] , fn=FN3 , gr=NULL, method=3, control=l i s t ( maxit

=20000 , maxfeval =100000 , maximize=TRUE, g t o l =1E−4, trace=FALSE) , time=t
) , s i l e n t=TRUE)

i f ( c l a s s ( op2 )==” try−e r r o r ” ){
op = l i s t ( value =−10000)
par = c ( 1 , 1 , 1 )
method = ” f a i l u r e ”
}

e l s e {
op = op2
par = c ( exp ( op2$par [ 1 ] ) , exp ( op2$par [ 2 ] ) , exp ( op2$par [ 3 ] ) /(1+exp (

op2$par [ 3 ] ) ) )
method = ” spg ”
}

}
e l s e {

op = op
par = c ( exp ( op$par [ 1 ] ) , exp ( op$par [ 2 ] ) , exp ( op$par [ 3 ] ) /(1+exp ( op$par [ 3 ] ) )

)
method = ” optim ”
}

i f ( op$value>opOld$ value ){
opOld = op
parOld = par
methodOld = method
}

e l s e {
opOld = opOld
parOld = parOld
methodOld = methodOld
}

i = i +1
}

#Then t h e r e s u l t i s g i v e n as
op = opOld
par = parOld
method = methodOld

### Check t h e e n d p o i n t s ( p=0 or p=1) t o s e e i f t h e y have g r e a t e r l o g L i k

# F i r s t we f i n d t h e l o g l i k f o r p=1 and p=0
# c h e c k i n g p = 1
bPL = n/sum( log ( t [ n ] /t ) ) #b e t a
aPL = t [ n ] / ( n ˆ(1 /bPL) ) #a l p h a
logLP1 = logL ( c (aPL , bPL) , time=t , Rocof=”PL” )
parP1 = c (aPL , bPL , 1 )
opP1 = l i s t ( value=logLP1 , convergence =0, message=”NULL” )

#c h e c k i n g p = 0
logLRP = function ( param , time ){

n = length ( time )
x i = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
a = param [ 1 ]
b = param [ 2 ]
r e s = n∗ ( b−a∗exp ( b ) ) +(exp ( b )−1)∗sum( log ( x i ) )−sum( ( x i /exp ( a ) ) ˆexp ( b ) )
return ( r e s )
}

opP0 = optim ( par=c ( 0 , 0 ) , fn=logLRP , gr=NULL, time=t , method=”BFGS” , control=l i s t ( maxit
=10000 , f n s c a l e =−1) , h e s s i a n=TRUE)

logLP0 = opP0$ value
parP0 = c ( exp ( opP0$par ) , 0 )

## Compare t h e l o g l i k
i f ( ( op$value−logLP1 ) > 1E−5 && ( op$value−opP0$ value ) > 1E−5){

#Here t h e ARA1 model i s t h e c o r r e c t
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r e s = l i s t ( op=op , par=par , method=method , time=t , logLP0=opP0$value , logLP1=logLP1 )
}

e l s e {
i f ( ( logLP1−opP0$ value )>1E−5){

# Here t h e NHPP model i s t h e c o r r e c t
r e s = l i s t ( op=opP1 , par=parP1 , method=” Endpoint , p=1” , time=t , logLP0=opP0$

value , logLP1=logLP1 )
}

e l s e {
# Here t h e RP model i s t h e c o r r e c t
r e s = l i s t ( op=opP0 , par=parP0 , method=” Endpoint , p=0” , time=t , logLP0=opP0$

value , logLP1=logLP1 )
}

}

return ( r e s )
}

################################################

transAra1 = function ( time , start ){
# h e r e we t r y Ara1
# F i r s t we f i n d t h e l o g− l i k e l i h o o d f o r t h e t r a n s f o r m e d ARA1 model .
FN2 = function ( param , time ){

n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
p = param [ 3 ]
tminus = time[−n ]
t1 = time [ 1 ]

pmark = exp ( p ) /(1+exp ( p ) ) # p between 0 ,1
Xi = d i f f ( time , 1 )
Ai = Xi+pmark∗ tminus
Aiminus = pmark∗ tminus

r e s = n∗ ( b−a∗exp ( b ) )−(t1 /exp ( a ) ) ˆexp ( b ) +(exp ( b )−1)∗ log ( t1 ) +(exp ( b )−1)∗sum( log (
Ai ) )+sum( ( Aiminus/exp ( a ) ) ˆexp ( b ) )−sum( ( Ai/exp ( a ) ) ˆexp ( b ) )

return ( r e s )
}

t = time
n = length ( t )
start = expand . grid ( a=0,b=0,p=c (0 ,1 ,2 ,3 ,−1 ,−2 ,−3) )
opOld = l i s t ( value =−10000)
parOld = 0
methodOld = ” F a i l u r e ”
i = 1
while ( i<=length ( start $a ) ){

op = try ( optim ( par=start [ i , ] , fn=FN2 , gr=NULL, time=t , method=”BFGS” , control=l i s t (
maxit =20000 , f n s c a l e =−1) , h e s s i a n=TRUE) , s i l e n t=FALSE)

i f ( c l a s s ( op )==” try−e r r o r ” ){
op2 = try ( spg ( par=start [ i , ] , fn=FN2 , gr=NULL, method=3, control=l i s t ( maxit

=10000 , maxfeval =100000 , maximize=TRUE, g t o l =1E−4, trace=FALSE) , time=t
) , s i l e n t=TRUE)

i f ( c l a s s ( op2 )==” try−e r r o r ” ){
op = l i s t ( value =−10000)
par = c ( 1 , 1 , 1 )
method = ” f a i l u r e ”
}

e l s e {
op = op2
par = c ( exp ( op2$par [ 1 ] ) , exp ( op2$par [ 2 ] ) , exp ( op2$par [ 3 ] ) /(1+exp (

op2$par [ 3 ] ) ) )
method = ” spg ”
}

}
e l s e {

op = op
par = c ( exp ( op$par [ 1 ] ) , exp ( op$par [ 2 ] ) , exp ( op$par [ 3 ] ) /(1+exp ( op$par [ 3 ] ) )

)
method = ” optim ”
}

i f ( op$value>opOld$ value ){
opOld = op
parOld = par
methodOld = method
}

e l s e {
opOld = opOld
parOld = parOld
methodOld = methodOld
}

i = i +1
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}
#Then t h e r e s u l t i s g i v e n as
op = opOld
par = parOld
method = methodOld

### Check t h e e n d p o i n t s ( p=0 or p=1) t o s e e i f t h e y have g r e a t e r l o g L i k

# F i r s t we f i n d t h e l o g l i k f o r p=1 and p=0
# c h e c k i n g p = 1 t h i s e q u a l s t h e NHPP model .
bPL = n/sum( log ( t [ n ] /t ) ) #b e t a
aPL = t [ n ] / ( n ˆ(1 /bPL) ) #a l p h a
logLP1 = logL ( c (aPL , bPL) , time=t , Rocof=”PL” )
parP1 = c (aPL , bPL , 1 )
opP1 = l i s t ( value=logLP1 , convergence =0, message=”NULL” )

#c h e c k i n g p = 0 t h i s e q u a l s t h e RP model
logLRP = function ( param , time ){

n = length ( time )
x i = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
a = param [ 1 ]
b = param [ 2 ]
r e s = n∗ ( b−a∗exp ( b ) ) +(exp ( b )−1)∗sum( log ( x i ) )−sum( ( x i /exp ( a ) ) ˆexp ( b ) )
return ( r e s )
}

opP0 = optim ( par=c ( 0 , 0 ) , fn=logLRP , gr=NULL, time=t , method=”BFGS” , control=l i s t ( maxit
=10000 , f n s c a l e =−1) , h e s s i a n=TRUE)

parP0 = c ( exp ( opP0$par ) , 0 )

## Compare t h e l o g l i k
i f ( ( op$value−logLP1 ) > 1E−5 && ( op$value−opP0$ value ) > 1E−5){

#Here t h e ARA1 model i s t h e c o r r e c t
r e s = l i s t ( op=op , par=par , method=method , time=t , logLP0=opP0$value , logLP1=logLP1 )
}

e l s e {
i f ( ( logLP1−opP0$ value )>1E−5){

# Here t h e NHPP model i s t h e c o r r e c t
r e s = l i s t ( op=opP1 , par=parP1 , method=” Endpoint , p=1” , time=t , logLP0=opP0$

value , logLP1=logLP1 )
}

e l s e {
# Here t h e RP model i s t h e c o r r e c t
r e s = l i s t ( op=opP0 , par=parP0 , method=” Endpoint , p=0” , time=t , logLP0=opP0$

value , logLP1=logLP1 )
}

}

return ( r e s )
}

################################################
## Funct ion f o r f i n d i n g t h e l o g− l i k e l i h o o d
logL = function ( param , time , Rocof ){

i f ( Rocof==”PL” ){
n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
r e s = n∗ ( log ( b )−b∗ log ( a ) ) +(b−1)∗sum( log ( time ) )−(max( time ) /a ) ˆb
return ( r e s )
}

e l s e i f ( Rocof == ” Ara1 ” ){
n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
p = param [ 3 ]
tminus=time[−n ]
t1 = time [ 1 ]
Xi = d i f f ( time , 1 )
Ai = Xi+p∗ tminus
Aiminus = p∗ tminus
r e s = ( n∗ ( log ( b )−b∗ log ( a ) ) +(b−1)∗ log ( t1 )−(t1 /a ) ˆb+(b−1)∗sum( log ( Ai ) )+sum( (

Aiminus/a ) ˆb )−sum( ( Ai/a ) ˆb ) )
return ( r e s )
}

e l s e i f ( Rocof==” AraInf ” ){
n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
p = param [ 3 ]
t1 = time [ 1 ]
sumAI = function ( p , time ){

n = length ( time )
t1 = time [ 1 ]
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Xi = append( d i f f ( time , 1 ) , t1 , a f t e r =0)
r e s =c ( p∗Xi [ 1 ] )
i t e r = 2
while ( i t e r <=n−1){

r e s [ i t e r ]=p∗ ( r e s [ i t e r −1]+Xi [ i t e r ] )
i t e r = i t e r + 1
}

return ( r e s )
}

sumai = sumAI ( p , time )
Xi = d i f f ( time , 1 )
Ai = Xi + sumai
Aiminus = sumai
r e s = ( n∗ ( log ( b )−b∗ log ( a ) ) +(b−1)∗ log ( t1 )−(t1 /a ) ˆb+(b−1)∗sum( log ( Ai ) )+sum( (

Aiminus/a ) ˆb )−sum( ( Ai/a ) ˆb ) )
return ( r e s )
}

e l s e i f ( Rocof==”RP” ){
n = length ( time )
a = param [ 1 ]
b = param [ 2 ]
Xi = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
r e s = n∗ ( log ( b )−b∗ log ( a ) ) +(b−1)∗sum( log ( Xi ) )−sum( ( Xi/a ) ˆb )
return ( r e s )
}

}
################################################

################################################
#f u n c t i o n f o r e s t i m a t i n g t h e t e s t s t a t i s t i c s f o r Ara1 and AraInf
t e s t S t a t = function ( time , param , logLik , logLP0 , logLP1 ){

n = length ( time )
## t e s t f o r t e s t i n g i f p not e q u a l 1 ##
#L i k e l i h o o d r a t i o t e s t
VP1 = −2∗ ( logLP1−l o g L i k )
i f (VP1<0){pvalueP1 = NA}
e l s e {pvalueP1 = pchisq (VP1, 1 , lower . t a i l=FALSE)}

## t e s t f o r t e s t i n g i f b not e q u a l 1 ##
aB1 = time [ n ] /n
logLB1 = (−n∗ log ( aB1 )−time [ n ] /aB1 )
#L i k e l i h o o d r a t i o t e s t
VB1 = −2∗ ( logLB1−l o g L i k )
i f (VB1<0){pvalueB1=NA}
e l s e {pvalueB1 = pchisq (VB1, 1 , lower . t a i l=FALSE)}

## t e s t f o r t e s t i n g i f p not e q u a l 0 ##
#L i k e l i h o o d r a t i o t e s t
VP0 = −2∗ ( logLP0−l o g L i k )
i f (VP0<0){pvalueP0 = NA}
e l s e {pvalueP0 = pchisq (VP0, 1 , lower . t a i l=FALSE)}
#r e t u r n t h e r e s u l t s
r e s = l i s t ( l o g L i k=logLik , logLP1=logLP1 , VP1=VP1, pvalueP1=pvalueP1 , logLB1=logLB1 , VB1=VB1,

pvalueB1=pvalueB1 , logLP0=logLP0 , VP0=VP0 , pvalueP0=pvalueP0 )
return ( r e s )
}

################################################
#Funct ion f o r t h e Kolmogorov−Smirnov t e s t
KStest = function ( time , param , r o c o f ){

i f ( r o c o f==” Ara1 ” ){
NT = cumsum(ZARA1( time , param ) )
}

e l s e i f ( r o c o f==” AraInf ” ){
NT = cumsum(ZARAINF( time , param ) )
}

e l s e i f ( r o c o f==”RP” ){
NT = cumsum(ZRP( time , param ) )
}

e l s e i f ( r o c o f==”HPP” ){
a = param [ 1 ]
NT = time/a
}

e l s e i f ( r o c o f==”PL” ){
a = param [ 1 ]
b = param [ 2 ]
NT = ( time/a ) ˆb
}

N = length ( time )
f r e q = cumsum( rep ( 1 ,N) /N)

ks = ks . t e s t ( f r e q ,NT/N)
r e s = l i s t (KS=ks ,NT=NT)
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return ( r e s )
}

################################################

################################################
# Funct ion f o r f i n d i n g t h e e x p e c t e d number o f e v e n t s i n each i n t e r v a l
ZRP = function ( time , param ){

a = param [ 1 ]
b = param [ 2 ]
Xi = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
r e s = ( Xi/a ) ˆb
return ( r e s )
}

ZARA1 = function ( time , param ){
a = param [ [ 1 ] ]
b = param [ [ 2 ] ]
p = param [ [ 3 ] ]
i f ( p==0){

par = param [−3]
r e s = ZRP( time , par )
}

e l s e i f ( p==1){
par = param [−3]
r e s = ZPL( time , par )
}

e l s e {
Xi = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
n = length ( time )
Aiminus = 0
r e s = c ( ( ( Xi [1 ]+ Aiminus ) /a ) ˆb )
i t e r = 2
while ( i t e r <n+1){

Aiminus = Aiminus + p∗Xi [ i t e r −1]
r e s [ i t e r ] = ( ( Xi [ i t e r ]+ Aiminus ) /a ) ˆb−(( Aiminus/a ) ˆb )
i t e r = i t e r + 1
}

}
return ( r e s )
}

ZARAINF = function ( time , param ){
a = param [ [ 1 ] ]
b = param [ [ 2 ] ]
p = param [ [ 3 ] ]
i f ( p==0){

par = param [−3]
r e s = ZRP( time , par )
}

e l s e i f ( p==1){
par = param [−3]
r e s = ZPL( time , par )
}

e l s e {
Xi = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
n = length ( time )
Aiminus = 0
r e s = c ( ( ( Xi [1 ]+ Aiminus ) /a ) ˆb )
i t e r = 2
while ( i t e r <n+1){

Aiminus = p∗ ( Aiminus + Xi [ i t e r −1])
r e s [ i t e r ] = ( ( Xi [ i t e r ]+ Aiminus ) /a ) ˆb−(( Aiminus/a ) ˆb )
i t e r = i t e r + 1
}

}
return ( r e s )
}

ZHPP = function ( time , param ){
a = param [ 1 ]
Xi = append( d i f f ( time , 1 ) , time [ 1 ] , a f t e r =0)
r e s = Xi/a
}

ZPL = function ( time , param ){
a = param [ 1 ]
b = param [ 2 ]
n = length ( time )
tminus = c ( 0 , time[−n ] )
r e s = ( time/a ) ˆb−(tminus/a ) ˆb
return ( r e s )
}

################################################

################################################
#Funct ion f o r p l o t t i n g t h e a c c u m u l a t e d number o f maintenance e v e n t s a g a i n s t t ime f o r t h e

d a t a s e t



83

ecdfH = function ( data , system , dup=FALSE, t i n t =0, yrange=NULL){
i f ( i s . na( system ) ){sys = data}
e l s e i f ( system==1220){sys = subset ( data , data$ Plant==system , drop=T)}
e l s e i f ( system==1221){sys = subset ( data , data$ Plant==system , drop=T)}
e l s e i f ( a l l ( system != l e v e l s ( data$System ) ) ){stop ( ” System doesn ’ t e x i s t ” )}
e l s e {sys = subset ( data , data$System == system , drop = T)}

i f ( length ( sys$Bas . . start . date ) >1){
sys = sys [ order ( sys$Bas . . start . date ) , ] #S o r t a f t e r coulumn Bas . . s t a r t . d a t e
sys = IntOc ( sys , t i n t )
# I f dup i s TRUE we o n l y c o n s i d e r 1 e v e n t per day
i f ( dup==TRUE){sys = sys [ ! i s . na( sys$IntDup ) , ]}
}

# Here I c h e c k i f t h e sys tem has enough r e c o r d e d e v e n t s
i f ( length ( sys$Bas . . start . date )<=2){

plot ( 0 , 0 , main = ”Too few r e c o r d e d events , <=2” )
obs=0
N=0
}

#Then I c a l c u l a t e t h e c u m u l a t i v e r e g i s t e r e d e v e n t s and p l o t
e l s e {

t i d = sys$Bas . . start . date
N = length ( t i d )
obs = cumsum( c ( 0 , rep ( 1 ,N) ) )
i f ( t i n t ==0){XLIM=c ( 0 ,max( t i d ) )}
e l s e {XLIM=c ( t i n t ,max( t i d ) )}
par ( mar=c ( 4 , 4 , 1 , 1 ) +0.1)
plot ( c ( t i n t , t i d ) , obs , type=” l ” , xlim=XLIM, ylim=yrange , xlab=”Days” , ylab=”

Maintenance Events ” , main=NULL)
}

return ( l i s t ( sys=sys , obs=obs ,N=N) )
}

################################################

# Funct ion f o r p l o t t i n g t h e f i t t e d NHPP models t o g e t h e r w i t h t h e maintenance a g a i n s t t ime
f i t P l o t = function ( data , system , dup=FALSE, t i n t =0, yrange=NULL, legend=TRUE, Type=”Max” ){

l ab e ls = c ( )
l ab e ls [1 ]= ” Maintenance vs time ”
l ab e ls [2 ]= ”HPP”
l ab e ls [3 ]= ”NHPP”
l ab e ls [4 ]= ”RP”

colorPL = ” magenta ”
colorRP = ” green ”
colorARA1 = ” cyan ”
colorARAINF = ” blue ”
colorHPP = ” red ”
colors = c ( ” black ” , colorHPP , colorPL , colorRP )

LTYM = 2
LTY = c ( 1 ,LTYM,LTYM,LTYM)

i f ( t i n t ==0){
# Here we p l o t i f t i n t i s not p r e s e n t
e = ecdfH ( data , system , dup=dup , t i n t=t i n t , yrange=yrange )
time = e$sys$Bas . . start . date
i f ( length ( e$sys$Bas . . start . date )<=2){ r e s=e}

e l s e {
h = fitMLE ( data , system , ”HPP” , t i n t , dup )
NTHPP = c ( 0 , h$NT)
l i n e s ( c ( 0 , time ) ,NTHPP, type=” l ” , col=colorHPP , l t y=LTYM, pch=25) #HPP
f = fitMLE ( data , system , ”PL” , t i n t , dup )
NTPL = c ( 0 , f $NT)
l i n e s ( c ( 0 , time ) ,NTPL, type=” l ” , col=colorPL , l t y=LTYM, pch=21) #NHPP
r = fitMLE ( data , system , ”RP” , t i n t , dup )
NTRP = c ( 0 , r $NT)
l i n e s ( c ( 0 , time ) ,NTRP, type=” l ” , col=colorRP , l t y=LTYM, pch=22) #RP
a = fitMLE ( data , system , ” Ara1 ” , t i n t , dup )
NTARA1 = c ( 0 , a$NT)
a i n f = fitMLE ( data , system , ” AraInf ” , t i n t , dup )
NTARAINF = c ( 0 , a i n f $NT)

#f i n d o u t i f we need t o p l o t ARA1 or ARAinf
i f ( a i n f $p !=0 && a i n f $p !=1){

l i n e s ( c ( 0 , time ) ,NTARAINF, type=” l ” , col=colorARAINF , l t y=LTYM, pch
=24)

l ab e ls = c ( labels , expression ( ”ARA”∗ i n f i n i t y ) )
colors = c ( colors , colorARAINF )
LTY = c (LTY,LTYM)
}

i f ( a$p !=0 && a$p !=1){
l i n e s ( c ( 0 , time ) ,NTARA1, type=” l ” , col=colorARA1 , l t y=LTYM, pch=23)
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l ab e ls = c ( labels , ”ARA1” )
colors = c ( colors , colorARA1 )
LTY = c (LTY,LTYM)
}

i f ( legend==TRUE){
legend ( ” t o p l e f t ” , bty = ”n” , legend=labels , col=colors , l t y=LTY)
}

KS = l i s t (ksHPP=h$KS, kRP=r $KS, kPL=f $KS, ksAinf=a i n f $KS, ksA1=a$KS)
r e s = l i s t ( f i t P L = f , f itRP = r , f i t A r a 1 = a , f i t A r a I n f = a i n f , fitHPP

= h , sys = e$sys , KS=KS)
}

return ( r e s )
}
#### Here we p l o t f o r t < t i n t and t >= t i n t

e l s e {
# I f i r s t f i n d t h e s u b s e t o f t h e sys tem I ’m i n t e r e s t e d i n
i f ( i s . na( system ) ){data = data}
e l s e i f ( system==1220){data = subset ( data , data$ Plant==system , drop=T)}
e l s e i f ( system==1221){data = subset ( data , data$ Plant==system , drop=T)}
e l s e i f ( a l l ( system != l e v e l s ( data$System ) ) ){stop ( ” System doesn ’ t e x i s t ” )}
e l s e {data = subset ( data , data$System == system , drop = T)}

datamin = subset ( data , data$Bas . . start . date<t i n t , drop=T)
datamax = subset ( data , data$Bas . . start . date>=t i n t , drop=T)

i f ( Type==”Min” ){
#P l o t f o r datamin
emin = ecdfH ( datamin , system , dup=dup , t i n t =0, yrange=yrange )
time = emin$sys$Bas . . start . date
i f ( length ( emin$sys$Bas . . start . date )<=2){

fmin=0
rmin=0
amin = 0
ainfmin = 0
hmin = 0
emin = emin
KSmin=0
}

e l s e {
hmin = fitMLE ( datamin , system , ”HPP” , t i n t =0,dup )
NTHPP = c ( 0 , hmin$NT)
l i n e s ( c ( 0 , time ) ,NTHPP, type=” l ” , col=colorHPP , l t y=LTYM, pch=25)
fmin = fitMLE ( datamin , system , ”PL” , t i n t =0,dup )
NTPL = c ( 0 , f $NT)
l i n e s ( c ( 0 , time ) ,NTPL, type=” l ” , col=colorPL , l t y=LTYM, pch=21)
rmin = fitMLE ( datamin , system , ”RP” , t i n t =0,dup )
NTRP = c ( 0 , rmin$NT)
l i n e s ( c ( 0 , time ) ,NTRP, type=” l ” , col=colorRP , l t y=LTYM, pch=22)
amin = fitMLE ( datamin , system , ” Ara1 ” , t i n t =0,dup )
NTARA1 = c ( 0 , amin$NT)
ainfmin = fitMLE ( datamin , system , ” AraInf ” , t i n t =0,dup )
NTARAINF = c ( 0 , a infmin $NT)

#f i n d o u t i f we need t o p l o t ARA1 or ARAinf
i f ( a infmin $p !=0 && ainfmin $p !=1){

l i n e s ( c ( 0 , time ) ,NTARAINF, type=” l ” , col=colorARAINF , l t y=LTYM, pch=24)
l ab e ls = c ( labels , expression ( ”ARA”∗ i n f i n i t y ) )
colors = c ( colors , colorARAINF )
LTY = c (LTY,LTYM)
}

i f ( amin$p !=0 && amin$p !=1){
l i n e s ( c ( 0 , time ) ,NTARA1, type=” l ” , col=colorARA1 , l t y=LTYM, pch=23)
l ab e ls = c ( labels , ”ARA1” )
colors = c ( colors , colorARA1 )
LTY = c (LTY,LTYM)
}

i f ( legend==TRUE){
legend ( ” t o p l e f t ” , bty = ”n” , legend=labels , col=colors , l t y=LTY)
}

}
}
e l s e i f ( Type==”Max” ){
#P l o t f o r datamax
emax = ecdfH ( datamax , system , dup=dup , t i n t=t i n t , yrange=yrange )
time = emax$sys$Bas . . start . date
i f ( length ( emax$sys$Bas . . start . date )<=2){

fmax=0
rmax=0
amax = 0
ainfmax = 0
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hmax = 0
emax = emax
}

e l s e {
t = ( time−t i n t )
hmax = fitMLE ( datamax , system , ”HPP” , t i n t , dup )
NTHPP = c ( 0 , hmax$NT)
l i n e s ( c ( t i n t , time ) ,NTHPP, type=” l ” , col=colorHPP , l t y=LTYM, pch=25)
fmax = fitMLE ( datamax , system , ”PL” , t i n t , dup )
NTPL = c ( 0 , fmax$NT)
l i n e s ( c ( t i n t , time ) ,NTPL, type=” l ” , col=colorPL , l t y=LTYM, pch=21)
rmax = fitMLE ( datamax , system , ”RP” , t i n t , dup )
NTRP = c ( 0 , rmax$NT)
l i n e s ( c ( t i n t , time ) ,NTRP, type=” l ” , col=colorRP , l t y=LTYM, pch=22)
amax = fitMLE ( datamax , system , ” Ara1 ” , t i n t , dup )
NTARA1 = c ( 0 , amax$NT)
ainfmax = fitMLE ( datamax , system , ” AraInf ” , t i n t , dup )
NTARAINF = c ( 0 , ainfmax$NT)

#f i n d o u t i f we need t o p l o t ARA1 or ARAinf
i f ( ainfmax$p !=0 && ainfmax$p !=1){

l i n e s ( c ( 0 , time ) ,NTARAINF, type=” l ” , col=colorARAINF , l t y=LTYM, pch=24)
l ab e ls = c ( labels , expression ( ”ARA”∗ i n f i n i t y ) )
colors = c ( colors , colorARAINF )
LTY = c (LTY,LTYM)
}

i f (amax$p !=0 && amax$p !=1){
l i n e s ( c ( 0 , time ) ,NTARA1, type=” l ” , col=colorARA1 , l t y=LTYM, pch=23)
l ab e ls = c ( labels , ”ARA1” )
colors = c ( colors , colorARA1 )
LTY = c (LTY,LTYM)
}

i f ( legend==TRUE){
legend ( ” t o p l e f t ” , bty = ”n” , legend=labels , col=colors , l t y=LTY)
}

}
}
i f ( Type==”MinMax” ){

KSmin = l i s t (ksHPP=hmin$KS, kRP=rmin$KS, kPL=fmin$KS, ksAinf=ainfmin $KS,
ksA1=amin$KS)

KSmax = l i s t (ksHPP=hmax$KS, kRP=rmax$KS, kPL=fmax$KS, ksAinf=ainfmax$KS,
ksA1=amax$KS)

r e s = l i s t ( fitminPL=fmin , fitmaxPL=fmax , fitminRP=rmin , fitmaxRP=rmax ,
f i tminAra1=amin , fitmaxAra1=amax , f i t m i n A r a I n f=ainfmin , f i t m a x A r a I n f=
ainfmax , fitminHPP=hmin , fitmaxHPP=hmax , sysmin=emin$sys , sysmax=emax$
sys , KSmin=KSmin , KSmax=KSmax)

return ( r e s )
}

e l s e i f ( Type==”Min” ){
KSmin = l i s t (ksHPP=hmin$KS, kRP=rmin$KS, kPL=fmin$KS, ksAinf=ainfmin $KS,

ksA1=amin$KS)
r e s = l i s t ( fitminPL=fmin , fitminRP=rmin , f i tminAra1=amin , f i t m i n A r a I n f=

ainfmin , fitminHPP=hmin , sysmin=emin$sys , KSmin=KSmin)
return ( r e s )
}

e l s e i f ( Type==”Max” ){
KSmax = l i s t (ksHPP=hmax$KS, kRP=rmax$KS, kPL=fmax$KS, ksAinf=ainfmax$KS,

ksA1=amax$KS)
r e s = l i s t ( fitmaxPL=fmax , fitmaxRP=rmax , fitmaxAra1=amax , f i t m a x A r a I n f=

ainfmax , fitmaxHPP=hmax , sysmax=emax$sys , KSmax=KSmax)
return ( r e s )
}

}
}


