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Abstract

Western Bulk is a shipping company that is interested in generating realistic re-
alisations of five different price series; two freight rates, one interest rate and two
oil rates. The realisations should keep the internal correlation-structure. There
should also be possible to introduce a crisis-regime where all the prices are corre-
lated with a downward trend similar to what was observed in 2008.
The prices series modelling is approached through a state-space method. The
volatility is modelled by a multivariate stochastic volatility model on the com-
pounded returns. The multivariate model decomposes the five dimensional corre-
lation matrix into fifteen univariate models; five for the volatilities and ten for the
correlation between each of the series. Only the two freight rates and the two oil
rates are correlated, but the correlation-structure is not strong enough to create
series in line with what is historically observed. A stochastic trend is therefore
also introduced. The stochastic trend is a local linear trend model, where the
underlying state-space variable follows an AR(1) model.
To get good simulations on a long time span both simulating directly from the
model of the underlying state-space time series as well as bootstrapping them are
compared. For the stochastic volatility models with a trend there is little difference
between bootstrapping and simulating, except for the interest rate which tends to
diverge when simulated. For the stochastic trend bootstrapping gives more stable
results, most notably on realisations without crisis-regimes.
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1 Introduction
Western Bulk is a leading dry bulk shipping company with offices in key spots all
over the world. As a company they are risk aware and take a responsive approach
to changes in the market. Western Bulk has Value-at-Risk (VaR) as its most
important risk measure, but also apply stress tests and Cash-flow-at-Risk (CfaR)
measures. Western Bulk has good models to calculate VaR, but wants to improve
its methodology for long term CfaR. To do this it needs a model able to simulate
correlated marked rates. More specifically it needs a model to simulate correlated
freight rates, oil rates and interest rates.
The prediction of future values of price series based on past observed prices is
not possible by basic market hypothesis (see for example Wilmott, Howison and
Dewynne (1995)). However, it should not be impossible to generate realisations
of such price series, that share some of the same characteristics as past observed
prices. Given a portfolio of several asset prices there are several ways to find if
and how price movements in one asset correlates with the others, see for example
McAleer, Asai and Yu (2004) for a review of some of the most popular models.
Western Bulk wants a model that keep the internal correlation-structure of the his-
torical prices, as well as having the possibility to introduce a crisis-regime, where
all prices plummet.
One of the simplest ways to describe the data is to fit them to some sort of
multivariate time series (e.g. a vector auto-regressive (VAR) model). A more
complicated but flexible way to view time series than the ordinary Box-Jenkins
approach, is the state-space approach (see Durbin and Koopman (2001) for a thor-
ough review of the subject). The main idea of the state-space method is dividing
the series in different parts; a trend term and a variance (or volatility) term and
choose the model most suited for the problem at hand to examine the different
parts.
A popular approach to describe time-varying volatility is the GARCH models (or
M-GARCH in the multivariate case), but several papers indicate that stochastic
volatility models outperforms GARCH models (see for example Kim, Shephard
and Chib (1998)), so we will focus on the multivariate stochastic volatility model
as suggested by Plataniotis and Dellaportas (2010). A stochastic volatility model
is a state-space model, where we cannot observe the volatility directly. Since we
cannot observe it directly, we need to draw inference about it through its prob-
ability distribution. We will also be working in a Bayesian setting where the
parameters have their own probability distributions, and this will influence the
probability distribution of the volatility states. If we call all the parameters for ρ,
the unobservable volatility states X and our observations for Y , the probability
distribution we draw inference about is P (ρ,X|Y ). This is called the posterior
distribution, and can be very complicated to draw inference from directly. We
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will therefore use a procedure called Markov Chain Monte Carlo to simulate it.
Markov Chain Monte Carlo is procedure where you design a Markov Chain with
the wanted distribution as its limiting distribution and iterate through the chain
until you reach (arbitrarily close to) it.
We model the trend with a slightly changed local linear trend model as described
in Durbin and Koopman (2001). This is also a state-space model, so we need to use
Markov Chain Monte Carlo in a similar way as with the stochastic volatility. But
since Western Bulk wants the model to be able to replicate the effects the financial
crisis in the late 2000s had on the different price series, we have extended the mod-
els to encompass different regimes. The volatility model will have an increase in
volatility during a crisis-regime, and the trend model will have a downwards slope
during a crisis-regime. As Western Bulk is interested in series over 2-3 years, but
simulating directly from a model over such a long time can lead to high variance,
we also want to compare simulating from the model directly with bootstrapping
from the state-spaces.
The thesis is outlined as follows: section 2 will introduce the data sets, and discuss
some of the properties of the series. Section 3 will quickly introduce the autore-
gressive models, and try to fit the data to a VAR model. Section 4, 5 and 6 will
introduce the theory needed for defining and simulating from our volatility and
trend model; namely Bayesian statistics, Markov Chain Monte Carlo and Boot-
strap. Section 7 and 8 introduce the multivariate stochastic volatility model and
the trend model. And finally in section 9 and 10 we fit our data to the models and
simulate from them, comparing bootstrap with simulating from the model directly
on large time scales (3 years ≈ 700 trading days). We finish with some concluding
remarks and suggestions for further work in section 11.
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2 The data set
The data sets we use in this thesis are five different daily observed price series.
Two freight rates, TC Average BSI and TC Average BPI, where BSI denotes the
supramax index price and BPI the panamax index price. The supramax bulk
carriers are the largest ships in the handysize class with cargo capacity of 50 000
to 60 000 metric tonnes, often with self-loading capabilities. The panamax class
ships are the largest ships that fulfil the size requirements to be able to pass
through the Panama canal. The third observed price series we have is the three
months USD LIBOR rates. LIBOR is an acronym for London InterBank Offered
Rate, and denotes the interest rates at which banks borrow unsecured funds from
other banks in the London market. The two last price series are oil prices. One
denotes the bunker fuel the ships runs on (Singapore 380), and the other is just
the price of crude oil (ICE Brent).
The data are given from the 4th January 2005 until the 25th January 2011 for all
series except the crude oil which is given from the 28th April 2006, and there is
one missing observation for the bunker fuel data on the 1st of August 2005. The
series can be seen plotted against the series in the same segment (freight rates and
oil rates together) in Figure 2.1. It clearly is a close connection between the two
freight prices, but there is also one between the oil prices. In Figure 2.2 we have
scaled down both oil prices to the same level and plotted them against each other.
An observation worth noting is while the prices across the different segments might
seem independent, they still share one characteristic; due to the financial crisis in
the late 2000s all series had a steep fall in their prices.
With financial time series it can often be rewarding to look at the compounded
return series. The compounded return is defined as rt = ln

(
St
St−1

)
, where St is

the observed price at time t. Where time series of prices often have a trend, the
return series do not, and they often capture how the volatility of the series behave.
More information on this can be found in the Stochastic Volatility section. The
return series for our observed time series can be seen in Figure 2.3. Just as we can
observe from the price series directly the BPI is more volatile than the BSI, and
the oil prices have about the same magnitude on their volatility. The LIBOR rates
are a bit different from the others; they are hardly volatile at all except at certain
times when a lot happens to the interest rates. One of the most simple models to
describe the volatility of a financial asset is to assume that the returns are normally
distributed. We can easily see that the observed returns are not from a stationary
distribution; the volatility is larger at the end of 2008 for all of the series, and
the LIBOR rates have periods of low and periods of high volatility throughout the
series. It can be interesting to find the kurtosis and the skewness for the different
series to test if the volatility still can come from a normal distribution in some
form, for example through autoregressive time series. One test to see if the data
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Figure 2.1: The observed price series.

is identically normal distributed, which uses the skewness (an indication of the
symmetry of the underlying distribution) and the excess kurtosis (an indication of
the heaviness of the tails of the underlying distribution), is the Jarque-Bera test
introduced in Jarque and Bera (1987). The test statistic is JB = n

6

(
S2 + 1

4K
2
)
,

where S is the sample skewness defined as µ̂3
µ̂3

2
and K is the sample excess kurtosis

defined as µ̂4
µ̂2

2
− 3. Here µ̂i = 1

n

∑n
j=1(xj − x̄)i, when x = (x1, . . . , xn) is the vector

of observations. Under the hypothesis of normality both the skewness and excess
kurtosis should be zero, and the test statistic JB χ2-distributed with 2 degrees
of freedom. It should be a less than 0.5% probability that the test statistics are
greater than 10.597 under the hypothesis of normality, and we should discard it if
we get a value close to this magnitude or larger. In Table 1 we can see the test
statistics and both skewness and kurtosis for all of the five series, and it leaves us
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Figure 2.2: Scaled bunker fuel and crude oil prices compared against each other.

JB S K
BSI 23947 .658 19.4
BPI 2335 -.469 6.0
LIBOR 66905 1.85 32.4
CRUDE 2211 .369 6.7
BUNKER 5875 .754 9.5

Table 1: JB-test statistic with skewness and kurtosis for the whole return series.

with little doubt that the data are not normally distributed. It was not surprising
that the LIBOR returns were the ones with the largest deviation from the normal-
hypothesis, considering they are fairly stationary until there is an interest rate
correction due to external effects, which gives a large change in the returns. The
other series are clearly not homoscedastic with major spikes in volatility during
the financial crisis. If we run the JB test on the data up to where the crisis really
kicks in (the 4th of September 2008), we get better results as we can see in Table
2 (if we ignore the LIBOR rates). It should be noted that even though the data
itself is not normally distributed, we cannot say they do not come from a series
with normally distributed innovations. After a couple of simulated AR(1) models
of 1000 observation with φ = 0.99 and N(0, 1) distributed innovations, one of
them returned a JB = 228 with S = −0.799 and K = 1.7. We will not assume
the returns to be iid normal, but for simplicity we will still be working on models
that in some way incorporate the normal distribution, like the autoregressive (AR)
model.
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Figure 2.3: The observed return series.

JB S K
BSI 1417 .504 6.0
BPI 52 .133 1.1
LIBOR 282142 -6.58 84.8
CRUDE 17 .160 0.8
BUNKER 285 .307 2.7

Table 2: JB-test statistic with skewness and kurtosis for the return series up to
the 4th of September 2008.
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3 Autoregressive models
Autoregressive (AR) models are popular models to capture the dynamics of several
different types of time series. The idea behind these models is that the value at
a given time is dependent on past values and an innovation-term which gives the
models their stochastic behaviour.

3.1 Univariate AR models
In the univariate case we only consider the time series of a single asset xt, where
t ∈ [1, T ]. The p-order autoregressive model, AR(p), gives the k-th value of xt
as a weighted sum of its p earlier values and a random innovation term. More
mathematically the model can be described as

ẋk = ẋk−1φ1 + · · ·+ ẋk−pφp + εk =
p∑
i=1

φiẋk−i + εk; k > p,

where εk is the random innovation term (often from a zero mean normal distribu-
tion), φi the weights and ẋk = xk − ν. Here we use ν to denote the mean value
of the stationary process. When we use the term stationary process, we mean
a second order weakly stationary process, also called covariance stationary. The
criteria for such processes are that the mean value is stationary, the variance is
stationary and the covariance between two values in time is dependent on the time
difference alone. This can be written as

E[xt] = νt = ν

V ar[xt] = σ2
t = σ2

Cov[xt1 , xt2 ] = γ(t1, t2) = γ(t1 + k, t2 + k) = γt2−t1 .

Two realisations of a stationary AR(1) model with different values for their au-
toregressive coefficients φ can be seen in Figure 3.1. As we can see, when the value
of φ is large low values tend to follow low values, and high values tend to follow
high ones. This effect is called clustering and will be used later in this thesis.
For a deeper explanation of stationary time series and more on the theory from
this section the reader is referred to Wei (2006).

3.2 Vector Autoregressive models
The vector autoregressive (VAR) models describe the dynamics of the time series
of several assets. In the univariate case the value of an asset at a given time is
only dependent on the earlier values of the same asset, but in the n dimensional
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Figure 3.1: Two realisations of AR(1) models with different φ, but with the same
standard deviation of 0.2.

VAR models a vector at a given time is dependent on the earlier vectors. In other
words, the value of one asset in this vector at a given time is not necessarily only
dependent of the earlier values of the same asset, but also the earlier values of the
other assets in the vector. The p order VAR models can be written as

ẋt =
p∑
i=1

Φiẋt + εt; t > p,

where ẋt now is vector of assets, εt a vector of innovations from an n-dimensional
multivariate distribution and Φi is an n× n matrix of weights. Again we consider
process that are stationary in the same sense as in the univariate case. So the
mean vector is stationary and the covariance matrix between two vectors in time
is only dependent on the time difference.

3.3 Fitting our data to a VAR model
In R there is a package that can be installed called dse, written by Gilbert (2011),
which can fit data to a VAR model and simulated realisations from that model.
We use the data from the 28th of April 2006 and onwards to get a complete data
set, and we let the algorithm decide the autoregressive order. This might lead
to over-fitting, but it will give us a good idea on the strengths and weaknesses
of this model. We plot the realisations we get in the same way we plotted the
original data in Figure 2.1, and a typical realisation can be seen in Figure 3.2.
Some of the problems we get if we simulate from this model are captured well in
this figure. Prices often tend to get negative, and even though the freight rates
followed each other in a way similar to what can be observed, the oil prices did
not. There seems to be no connection between the bunker price and the crude oil
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Figure 3.2: One realisation from the fitted VAR model.

price, and the bunker price often tends to be significantly lower than the crude
price over long periods, which is not realistic considering that the bunker is just
refined crude oil.
One way to overcome those two problems is to model the return series in the
VAR framework, and from a given start value S0 create the series by setting
St = St−1 exp(rt). Now the series cannot become negative (given that S0 ≥ 0),
and since the oil prices have similar sized return series, the VAR model might be
able to capture the relation between bunker rates and crude rates better. It turns
out that those two problems are indeed solved when we model the returns rather
than the prices directly. But this model is not without its flaws either. An extreme
version of these flaws can be seen in Figure 3.3. The prices can tend to become
unrealistically large. Since we model on a log scale, high values drawn in sequence
will cause the model to return too high prices. The largest observed price for the
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Figure 3.3: One realisation from the fitted VAR model where we first modelled
the returns, and worked backwards to find the price series.

BPI in the six year history is less than 100 000, but in the realisation in Figure
3.3 it is larger 1 500 000. Also due to the non-autoregressive characteristic of the
LIBOR return series with its sudden large spikes, the volatility is overestimated
and we end up with too large values much too often.
Even though some of these problems might be possible to overcome, we also would
like to be able to implement an external crisis which would cause all the prices to
plummet. We will therefore use a more complicated model than the simple VAR
in this thesis. To be able to use this more complicated model we need knowledge
about Bayesian statistics and Markov Chain Monte Carlo.
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4 Bayesian Inference
The Bayesian approach to statistics is philosophically different from the classical
(also called frequentist) one, and there used to be much controversy as to which
was right. Nowadays the strengths and weaknesses of both approaches are under-
stood, and practitioners can use the one most suited to their problem. The theory
and examples in this section come from Gamerman and Lopes (2006), and a more
extensive discussion can be found there.
Both cases were developed in the presence of observations x whose value is initially
uncertain, but is described by its probability density function p(x|ρ), where ρ are
all the parameters of the probability function of the observations (for example the
mean and the variance of a normal distribution). When the values of ρ are of in-
terest, the researcher often already has some information about what these values
are. Often it would make sense if the researcher could use this information in the
analysis of the problem, and this is where the Bayesian and frequentist approaches
differ. For the frequentist the values of ρ are fixed constants and information
about them can only be gained through observations. For a Bayesian however the
parameters ρ have their own probability distribution. What kind of distributions
the parameters have together with their parameters (the parameters of the param-
eters ρ are called the hyperparameters) are decided by the practitioner based on
the information he/she has prior to observing x. The probability distribution of
ρ, p(ρ), is therefore called the prior distribution.
To draw inference about the problem and the value of ρ, the practitioner is inter-
ested in the probability distribution of ρ given the observed quantities, x. This
distribution, p(ρ|x), is called the posterior distribution. This distribution is given
by the functions p(x|ρ) (called the likelihood by Bayesians) and p(ρ) through what
is called Bayes’ Theorem

p(ρ|x) = p(x|ρ)p(ρ)
p(x) ,

where p(x) =
∫
p(x|ρ)p(ρ)dρ. It should be noted that in p(ρ|x) x is just a constant

and p(x) is just the normalizing constant, as ρ is the variable.
An example to show the difference between the frequentist and the Bayesian ap-
proach is shown below.

Example Given a problem where the observations are (iid) normal distributed,
and we want to draw inference about the mean when the variance is known.
Or in other words x = (x1, . . . , xn) and f(xi|µ) ∼ N(µ, σ2) where σ2 is
known.

Frequentist We expect that the frequentist approach is well known to the
reader, so we will only sketch it out one of the possible ways to find
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a good statistic of µ. The body of literature and methods available to
the frequentist are massive and the interested reader can see Casella
and Berger (2002) for a thorough explanation. From experience we
want to check the distribution of the sample mean, x̄ = 1

n

∑n
i=1 xi

so we look at its moment generating function Mx̄(t) = [Mx(t/n)]n =[
exp

{
µ t
n

+ σ2(t/n)2

2

}]n
= exp

{
µt+ (σ2/n)t2

2

}
which is the moment gener-

ating function ofN(µ, σ2/n). So x̄ is a good estimator of µ (actually it is
the minimum-variance unbiased estimator), and usually found through
maximum likelihood rather than moment generating functions as we
did here.

Bayesian From the Bayesian perspective we need to put a prior on the pa-
rameter of interest, and lets assume we have some prior knowledge about
the problem which gives us p(µ) ∼ N(µ0, σ

2
0). To overemphasis what

is already said; the hyperparameters µ0 and σ0 are known constants
we can use because we have information about µ prior to observations
(µ0 is what we believe µ to be, and σ0 is how sure we are where low
values means more sure than high ones). The likelihood function (as a
function of µ) can be written as

f(x|µ) =
n∏
i=1

f(xi|µ) ∝ exp
{
−∑n

i=1(xi − µ)2

2σ2

}

= exp
{
−(nµ2 − 2µ∑n

i=1 +(∑n
i=1 xi)2)

2σ2

}

∝ exp
{
−(µ−∑n

i=1 xi/n)2

2σ2/n

}
.

We use a lot proportional to because we know that when the prior
and likelihood are proper distributions, the posterior will be a proper
distribution. And if we recognise the functional form of the posterior
as a known distribution, we know what its normalising constant is (for
a normal distribution with mean µ and variance σ2 the normalising
constant is 1√

2πσ2 ), so we do not need to concern ourself with constants
along the way. The posterior distribution is then

p(µ|x) ∝ p(x|µ)p(µ) ∝ exp
{
−(µ− x̄)2

2σ2/n

}
exp

{
−(µ− µ0)2

2σ2
0

}

∝ exp
{
−1

2
µ2σ2

0 − 2µx̄σ2
0 + µ2σ2/n− 2µµ0σ

2/n

σ2σ2
0/n

}

= exp
{
−1

2
σ2

0 + σ2/n

σ2σ2
0/n

(µ2 − 2µx̄σ
2
0 + µ0σ

2/n

σ2
0 + σ2/n

)
}
,



13

which we can recognise as the normal distribution and after observing
closely we can recognise the mean µ̂ and variance σ̂2. Here σ̂2 = ( 1

σ2/n
+

1
σ2

0
)−1 and µ̂ = ( x̄

σ2/n
+ µ0

σ2
0
)σ̂2. This looks more complicated than the

frequentist approach, and it is. But it is more robust against poorly
chosen or few observations if one is certain about the prior. If one is
very uncertain about the prior (that is σ2

0 tends to infinity) the posterior
distribution becomes N(x̄, σ2/n), that is the Bayesian will use the same
estimator as the frequentist with the same level of certainty. One should
still note the philosophical difference still exist; for the frequentist µ is
an unobservable constant and the expected value of x̄, whereas for the
Bayesian µ is a random quantity with x̄ as its expectation.

As the example above shows, which prior you choose is very important. The
reason the normal distribution was chosen as a prior for µ when the likelihood also
had a normal distribution was obviously not a coincidence when we see that the
posterior then also got a normal distribution. It is not given that for any prior and
likelihood distribution, the posterior will be easy to distinguish. It is not even given
that it will be a known distribution. But given some likelihood distributions an
experienced practitioner can choose the prior such that the posterior distribution
is in the same family of distributions as the prior. Those are called conjugate
distributions. There is obviously a dilemma here. Do you choose a conjugate prior
to make the computations simpler, or do you chose a different prior, one you think
will more clearly express the information you have on the problem. This balance
between tractability and realism is a choice the practitioner has to choose, and
will depend on the problem at hand.
Later we will use two types of conjugate priors. The normal prior for the expected
value in a normal distribution when the variance is known, which gives us a normal
posterior distribution. And a gamma distribution for the precision in a normal
distribution with known expectation will give a gamma posterior distribution (the
precision τ is defined as the inverse of the variance in a normal distribution; τ = 1

σ2 ,
and is called the precision because as opposed to the variance a high precision
implies that an observation from this distribution will be close to its theoretical
mean).
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5 Markov Chain Monte Carlo
The motivation for developing an MCMC scheme is the ability to draw random
values from an arbitrary probability distribution. This is achieved by using some
properties of Markov Chains together with cleverly chosen transition probabilities.
First we explain what a Markov chain is, and some of its properties important for
our work. We have not included proofs in this section, and interested readers can
look at Gamerman and Lopes (2006), the book the theory and examples in this
section is taken from. The second part uses the theory of Markov chains to draw
samples from general distributions through what is called Metropolis-Hastings
algorithms.

5.1 Markov Chains
A Markov Chain is a special kind of stochastic process {θ(k) : k ∈ K} with state
space S and index set K. Generally speaking a Markov Chain is a process where
given the present state, past and future states are independent. This can be
expressed more mathematically as

Pr(θ(k+1) = y|θ(k) = x, θ(k−1) = xk−1, ..., θ
(0) = x0) = Pr(θ(k+1) = y|θ(k) = x)

for all x0, ..., xk−1, x, y ∈ S in the discrete case and

Pr(θ(k+1) ∈ A|θ(k) = x, θ(k−1) ∈ Ak−1, ..., θ
(0) ∈ A0) = Pr(θ(k+1) ∈ A|θ(k) = x) (1)

for all A0, ..., Ak−1, A ⊆ S and x ∈ S in the continuous case. When this chain
is independent of k, it is called homogeneous. Then for all x ∈ S, the transition
kernel P (x, ·) is a probability distribution over S in the continuous case, or P (x, y)
a transition probability in the discrete case. Although we will mostly use the
notation for the discrete case from here on, one could exchange the state y with
the state set A and it would for the most hold true in the continuous case.
The probability of going from x to y in m steps is written as Pm(x, y), and Ty
(if it exist) is the number of transitions it takes before hitting y for the first time
after starting in y or said more precisely

Ty = {#n > 0 : θ(n) = y|θ(0) = y, θ(k) 6= y},∀k ∈ {1, ..., n− 1}.

A state y is said to be transient when Pm(y, y) < 1 for every m, recurrent if
Pm(y, y) = 1 for some m (possibly infinite), and positive recurrent if E(Ty) <∞.
A set R ⊆ S is said to be irreducible if for all x, y ∈ R, Pm(y, x) = 1 for some m.
A Markov Chain is said to be irreducible if S itself is irreducible.
A very important definition is that of a stationary distribution π. A distribution
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π is said to be a stationary distribution of a chain with transition probabilities
P (x, y) if ∑

x∈S π(x)P (x, y) = π(y), ∀y ∈ S. (2)

Once the chain reaches a stage where π is the distribution of the chain, it will
retain this distribution for all subsequent stages.
Some chains will, given enough time, enter π by themselves, but to find those
that do we need to introduce the concept of periodicity. The period of a state x,
denoted by dx, is the largest common divisor of the set

{n ≥ 1 : P n(x, x) > 0},

i.e. dx is the smallest number of steps you can, with a positive probability, return
to x with. It is obvious that if P (x, x) > 0 (that there is a positive probability to
stay in state x) dx = 1, and the chain is then called aperiodic. For an irreducible
chain, all states have the same period. It can then be shown that an irreducible,
positive recurrent, aperiodic chain with stationary distribution π has the property

lim
n→∞

P n(x, y) = π(y)

for all x, y ∈ S. Or said differently: given enough time, the chain is bound to reach
its stationary distribution.
Although it is said earlier that the continuous case is completely analogue to the
discrete, it should be noted that continuous chains need the slightly stronger notion
of Harris recurrent rather than positive recurrent and sums needs to be exchanged
with integrals like

∫
S π(dx)P (x, dy) = P (x, dy) in (2).

The last important feature we need to know about Markov Chains, is the concept
of reversible chains. A reversible chain is a chain satisfying

π(x)P (x, y) = π(y)P (y, x) (3)

for all x, y ∈ S. Reversible chains are useful because if there is a distribution
π satisfying equation (3) for an irreducible chain, then it is a positive recurrent
(or Harris-recurrent), reversible chain with π as its stationary distribution. This
feature is paramount to MCMC and the Metropolis-Hastings algorithm.

5.2 The Metropolis-Hastings algorithm and the Gibbs sam-
pler

The Metropolis-Hastings (MH) algorithm is a method of creating transition ker-
nels, P (x, y), for chains that have our wanted distribution as its stationary one. It
uses the properties of a reversible chain given by equation (3).
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The main idea behind MH is that the transition kernel P (x, y) can be divided into
two parts, one arbitrary transition kernel Q(x, y) called the proposal kernel, and
an acceptance probability α(x, y) such that

P (x, y) = Q(x, y)α(x, y), if x 6= y.

In other words, the kernel defines a density P (x, ·) for every possible value of the
parameter different from x. There is also a positive probability for the chain to
remain in state x given by

P (x, x) = 1−
∫
Q(x, y)α(x, y)dy.

This gives us a general expression for the transition from state x into a subset A
of the parameter space

P (x,A) =
∫
A
Q(x, y)α(x, y)dy + I(x ∈ A)

[
1−

∫
Q(x, y)α(x, y)dy

]
. (4)

Algorithms based on the transition kernel in (4) and with acceptance probability
given by

α(x, y) = min
{

1, π(y)Q(y, x)
π(x)Q(x, y)

}
(5)

are called MH-algorithms.
If we just insert Q(x, y)α(x, y) instead of P (x, y) in equation (3) we get

π(x)Q(x, y) min
{

1, π(y)Q(y, x)
π(x)Q(x, y)

}
= π(y)Q(y, x) min

{
1, π(x)Q(x, y)
π(y)Q(y, x)

}
,

which we can see is equal. We can then see that chains with this kernel have π as
limiting distributions by the properties of reversible chains.
We have not specified how to choose Q(x, y), but it turns out that any irreducible
aperiodic proposal kernel works as long as the acceptance probability is positive
for every choice of x and y. In this paper will will mostly use a random walk pro-
posal kernel, which is defined as Q(x, ·) ∼ N(x, σ2), that is, a normal distribution
with the present state as its mean. This is obviously a irreducible and aperiodic
proposal kernel on the real line.
That the wanted distribution appears in the acceptance probability does not be-
come a problem. In practice we can’t sample from π and we might not know its
normalising constant, but we only need the general form because it appears as a
fraction in (5). The MH-algorithm with a random walk proposal distribution can
be summarized in 3 steps

1. Draw θ(i+1) from Q(θ(i), ·).
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2. Move to state θ(i+1) with probability α(θ(i), θ(i+1)).

3. Change the counter i to i+ 1 and go to step 1.

For our random walk proposal kernel there is a parameter that has not been speci-
fied, σ2. The variance of Q does not have one correct value, but needs to be tuned
in each case. The rule of thumb is that we choose a σ2 to get an acceptance rate
of about 20%-50%. One more strength of the random walk proposal, other than
its easy implementation, is that it is symmetric. In other words Q(x, y) = Q(y, x),
so the kernel-part disappears from equation (5).
How many iterations are needed depends on the problem, but very simply we can
say we run the code until convergence. The values we have before convergence
is reached is called the burn-in and are discarded, and all the values after con-
vergence are supposed to be from the distribution of interest and can be used to
find the mean value of the parameters, their medians etcetera. How to check for
convergence is complicated field, but in our case we can usually check the values
of the parameters and assume convergence is reached when all parameters seem to
stabilise about a certain mean.

MH example In pharmacology studies it is common to specify concentration
levels of substances introduced in a system by non-linear equation on the form
f(ψ, x) = ψ1+ ψ2x

ψ3+x , where ψ = (ψ1, ψ2, ψ3) and x is the explanatory variable.
Let us assume that yi gives the velocity observation of a reaction when the
concentration is xi by the relation yi = f(ψ, xi) + εi, i = 1, . . . , n, where the
observation errors εi are iid normally distributed with zero mean and variance
σ2. Let us for simplicity also assume that (ψ1, ψ2, σ

2) = (50, 170, 126) i.e.
known and that ψ3 = θ is the parameter of interest. We put a N(0, 100)
prior on θ, and the posterior distribution becomes

p(θ| · · · ) ∝ p(θ)p(y|θ) = fN(θ|0, 100)
n∏
i=1

fN(yi|50 + 170xi/(θ + xi), 126).

We decide to use a random walk proposal kernel Q(θ, φ) with tuning param-
eter σ2 = 0.01, such that the next proposed step φ ∼ N(θ, 0.01). In each
step we accept φ with probability α = min

{
1, p(φ|··· )

p(θ|··· )

}
, and keep θ with prob-

ability 1− α. We would typically run this code for some iterations, look at
the acceptance rate, and decide if we want to keep the 0.01 tuning variance
in the kernel. If we are pleased we run the code until convergence. Let us
say we run the code for 10 000 iterations and convergence is reached after
2000. We could then estimate the correct value of θ by using the mean of
the last 8000 values the MH-algorithm gave us.
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There is also a different special case of a MH-algorithm we will use; the Gibbs-
sampler. The main motivation for using the Gibbs-sampler is that it has an ac-
ceptance probability of 1.
Earlier we have not burdened ourselves with deciding if the states x and y are
scalars or vectors, but in practice we often have vectors and our algorithms can in
each iteration stepwise update the state vector. This is an important point when
explaining the Gibbs sampler. There are some cases when it is possible to sample
from π(xi|x−i) even though it is impossible to sample from π(x) itself. Here xi
denote the i-th part of the state vector x, and x−i denote the state vector when
the i-th part is removed. The distribution π(xi|x−i) is called the full conditional
distribution for xi and the Gibbs-sampler uses this distribution as its transition
kernel. If we were to use the Gibbs-sampler to update a state vector x we could
at the j-th iteration sample the first element as xj1 ∼ π(x1|xj−1

−1 ) and the second
xj2 ∼ π(x2|xj1, x

j−1
−{1,2}) and so on till all the elements were updated.

The reason that the Gibbs-sampler has an acceptance probability of 1 is obvious
when we realise that Q(x, y) = π(yi|x−i) and π(y) = π(yi, x−i) = π(yi|x−i)π(x−i)
and insert this fact into equation (5). Remember that here we have that
y = (x1, . . . , xi−1, yi, xi+1, . . . , xn).

Gibbs example Consider a sample of observations y = (y1, . . . , yn) from a Pois-
son distribution. We know that at some point in time m, somewhere in
1, . . . , n, the mean of the Poisson distribution changes and remains un-
changed. So we have, given m and the parameters, yi|(λ,m) ∼ Pois(λ), i =
1, . . . ,m and yi|(φ,m) ∼ Pois(φ), i = m+1, . . . , n. From knowledge we have
of the problem we choose to put gamma distributions as priors on both λ and
φ, and a uniform prior on m, so λ ∼ Γ(α, β), φ ∼ Γ(γ, δ) and m ∼ U [1, n].
If we write out the posterior density we get

p(λ, φ,m|y) ∝ p(y|λ, φ,m)p(λ)p(φ)p(m)

=
 m∏
i=1

fP (yi|λ)
n∏

i=m+1
fp(yi|φ)

 fΓ(λ|α, β)fΓ(φ|γ, δ) 1
n

∝

 m∏
i=1

e−λλyi
n∏

i=m+1
e−φφyi

λα−1e−βλφγ−1e−δφ

∝ λα+(
∑m

i=1 yi)−1e−(β+m)λφγ+(
∑n

i=m+1 yi)−1e−(δ+n−m)φ.

From experience we can recognise the full conditional distributions for both λ
and φ; p(λ| · · · ) ∼ Γ(α+∑m

i=1 yi, β+m) and p(φ| · · · ) ∼ Γ(γ+∑n
i=m+1 yi, δ+

n − m). For m we get a distribution we do not recognise, so we have to
update that parameter with a MH-algorithm. So the procedure becomes as
follows: draw λ from its gamma distribution where we use the last value of
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m as the correct value, then draw φ from its gamma distribution where we
again use the last value we have of m as the correct, then we draw m from
its MH-algorithm with the newly drawn λ and φ as correct values. This is
repeated until all the parameters reach convergence.

A MCMC scheme can often consist of a state space where, given a state vector
x, a full conditional distribution can be found for some of its parts and we will
use a Gibbs-sampler to update those. We will use more general MH-algorithms
to create a sampler for the rest of the parts where a full conditionals can not be
directly drawn from, just as we did in the Gibbs-example.
Although we have said MCMC enables us to draw from general distributions, it
actually draws from distributions that only asymptotically equals π. The difference
between these distributions goes towards 0 as the number of iterations increases.
For a deeper discussion see Gamerman and Lopes (2006).
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6 Bootstrap

6.1 Introduction to bootstrapping
The name bootstrap comes from a story of Baron von Münchhausen. He was
supposed to have fallen to the bottom of a deep lake, but rescued himself by
pulling himself up by his own bootstraps. The analogy is that you can solve
a problem, seemingly magically, without any external help. The theory in this
section is taken from Efron and Tibshirani (1994). The bootstrap principle was
developed as a way to ascertain the standard error of an estimated parameter
θ̂, calculated from a vector of observations x = (x1, . . . , xn) from an unknown
probability distribution F . So θ̂ = s(x) is an estimate of the correct statistic
θ = t(F ) (if we consider the sample mean as an estimate of the expected value we
have s(x) = 1

n

∑
i xi and t(F ) =

∫
xdF ), but we might have no concept of how good

this estimate is. The non-parameteric bootstrap principle tries to solve this when
we have no more than the vector of observations. It uses the empirical distribution
F̂ , which puts a probability 1

n
on all the observations (x1, . . . , xn), and draws a

sample from that with replacement. E.g. say we have a sample x = (x1, x2, x3),
F̂ would then equal (1/3, 1/3, 1/3) and a random sample, denoted a bootstrap
sample, x∗ = (x∗1, x∗2, x∗3) could be (x1, x3, x1). Now you can create a bootstrap
replica of θ̂, θ̂∗ = s(x∗), by using the bootstrap sample x∗. To ascertain the error
of θ̂ by using bootstrap, we would create B bootstrap replicas of θ̂ and find the
standard error of this; if the error is large it is not a “good“ (or certain) estimate
of θ and vice versa. This can be summarised in three steps

1. Draw B independent bootstrap samples of length n, x∗1, . . . , x∗B, from x =
(x1, . . . , xn).

2. Find the bootstrap replicas of θ̂, θ̂∗(b) = s(x∗b) for b = 1, . . . , B.

3. Calculate the standard error of the replicas
{∑B

b=1[θ̂∗(b)− θ̄∗]2/(B − 1)
}1/2

,
where θ̄∗ = ∑B

b=1 θ̂
∗(b)/B.

6.2 Bootstrapping time series
Bootstrap have been used for financial time series (see Ruiz and Pascual (2002) for
a review of literature on some of the applications), but when we want to bootstrap
time series, there are things we need to consider which we did not consider in the
introduction above. Most importantly we need to capture the correlation-structure
the data exhibit over time. If we were to create bootstrap replicas without taking
the correlation-structure in consideration, the resulting series would only be noise.



6.2 Bootstrapping time series 21

There are several ways to bootstrap time series; parametric, semi-parametric and
non-parametric. A parametric approach would be to fit the data to a model,
for example an AR(p)-model, and make bootstrap replicas of the residuals of the
fitted model. This approach would generate time series that exhibit the same
attributes as the original, given that the chosen model was a good one. If you
are not sure about the underlying distribution of the time series, you should use
a more general approach. One of the most general approaches is what is called
block bootstrap. What you do is instead of resampling all of the observations,
you divide the data in m blocks, and resample those. The problem is now how to
choose the size of the blocks. You want large enough sizes to keep the properties
of the original dataset, but small enough to not simply resample the observed
history. There are also two different block bootstraps, one where the data do
not overlap, and one where they do. Let us assume the observed time series
x = (z1, . . . , zm), where z1 is the first block z2 the second and so on. Each block
have length l, i.e. z1 = (x1, . . . , xl), so the non-overlapping bootstrap would give us
z2 = (xl+1, . . . , x2l) and the overlapping would give us z2 = (x2, . . . , xl+1). Which
of the overlapping or non-overlapping is optimal to use is not clear, but Lahiri
(1999) shows that the overlapping bootstrap have the smallest variance and might
be more efficient, so we will use the overlapping bootstrap (also called moving block
bootstrap). One other thing to be conscious about when using block bootstrap is
trend in the data. If there is a trend in the data the resulting bootstrap resampling
would not capture this well, as Figure 6.1 shows. In the figure we have a linear
trend so it might be possible to translate each bootstrap sample such that every
endpoint are connected, but this will not work on general trend-structures and
we will therefore not use this on the observed trend of our data directly when
we try to model the trend later. A semi-parametric form which sometimes out-
preforms the moving block bootstraps is called the sieve bootstrap (a Ph.D. that
deals with some of these issues is Smeekes (2009)), but it is more complicated
so the comparison between the moving block and the sieve bootstrap is left for
further study.
Even though we will be working on models without trend we can still get problems
if we just connect the blocks directly after each other. In our case it turns out
that we work on series which sometimes have large volatilities, and if we are on a
volatility-top and the next one starts at a low value we can get jagged series where
the blocks are apparent. There are several ways to overcome this, and E. Carlstein
et al. (1998) does this by defining an algorithm specifying which blocks that comes
after one an other. The way we choose to fix this is to use an AR(1)-model as a
“glue” between blocks. Given φ and σ we can generate a short AR series that have
the last value of the previous block as its first value, and the first value of the new
block as its last. Since a AR(1) series can be seen as a draw from a multivariate
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Bootstrap with trend
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Figure 6.1: Bootstrap replicas of time series with and without trends (original
series in red).

normal distribution (see for example Rue and Held (2005)), we can use theory
from multivariate statistics to get the distribution of (x2, . . . , xn−1|x1, xn). The
following theory is taken from Rencher and Schaalje (2008).
When we have f(x1, . . . , xn) ∼ N(0,Σ) we can write

Σ =
(

Σ11 Σ21
Σ12 Σ22

)
,

where Σ11 is 2×2, Σ12 = ΣT
21 is (n−2)×2 and Σ22 is (n−2)×(n−2). If we denote

X1 = (x1, x2) and X2 = (x3, . . . , xn) we get that (X2|X1) is normally distributed
with E(X2|X1) = Σ12Σ−1

11 X1 and var(X2|X1) = Σ22 − Σ12Σ−1
11 Σ21. We will show

how we use this more clearly in an example where x = (x1, . . . , x5).
The joint distribution of these observations can be written as f(x1, . . . , x5) ∼
N(0,Σ), where

Σ = σ2

1− φ2


1 φ φ2 φ3 φ4

φ 1 φ φ2 φ3

φ2 φ 1 φ φ2

φ3 φ2 φ 1 φ
φ4 φ3 φ2 φ 1


We want to find f(x2, x3, x4|x1 = a, x5 = b), so we need the same kind of block-
structure described for Σ11, Σ22 and Σ12. We observe that f(x1, x5, x2, x3, x4) ∼
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N(0, Σ̃), where

Σ̃ = σ2

1− φ2


1 φ4 φ φ2 φ3

φ4 1 φ3 φ2 φ
φ φ3 1 φ φ2

φ2 φ2 φ 1 φ
φ3 φ φ2 φ 1



So Σ̃11 =
(

1 φ4

φ4 1

)
, Σ̃22 =

 1 φ φ2

φ 1 φ
φ2 φ 1

 and Σ̃12 =

 φ φ3

φ2 φ2

φ3 φ

. We now

have that f(x2, x3, x4|x1 = a, x5 = b) is normally distributed with expected value

E(x2, x3, x4|x1 = a, x2 = b) = Σ̃12Σ̃−1
11

(
a
b

)
and variance var(x2, x3, x4|x1 =

a, x2 = b) = Σ̃22− Σ̃12Σ̃−1
11 Σ̃T

12. We can use this procedure to generate AR(1) series
that are n long, which can act as “glue” between bootstrap blocks when we have
the values of σ and φ, by sampling from a multivariate normal distribution with
the parameters indicated above.
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7 Stochastic volatility model

7.1 Deriving the standard model
The univariate log-stochastic volatility model can be used to model time-varying
volatility, and was first proposed in Taylor (1982). It can be derived from an Itō-
process under certain assumptions. When an equity price is written as S(t), an
Itō-process can be written as

dS(t) = µ(S(t), t)S(t)dt+ σ(S(t), t)S(t)dW (t),

where W(t) is a Brownian motion. Since we are only concerned with the volatility-
structure of the model now, we discard the drift term µ(S(t), t). We can say a
stochastic volatility model is a product process between two different and indepen-
dent shocks (or innovations), σ(S(t), t) and W (t), where one models the volatility
process and the other models unpredictable information about the asset. To cap-
ture the volatility-clustering observed in practice we assume the volatility model
to follow an autoregressive process, and thus write the model in logarithmic prices
as

d lnS(t) = σ(t)dB1(t)
d ln σ2(t) = αβ + α ln σ2(t)dt+ σdB2(t).

(6)

Here B1 and B2 are two uncorrelated Brownian motions, and σ is the volatility of
the log-volatility-structure not to be mistaken with volatility-structure σ(t) itself.
For simulation and computational purposes it needs to be discretised, and we use
the Euler discretisation. If we first denote the continuously compounded returns
as ln(S(t+1)

S(t) ) = rt and ln(σ2
t ) = ht our model can be written as

rt = exp{ht2 }εt
ht = ν + φ(ht−1 − ν) + σηt,

(7)

where εt and ηt are i.i.d. N(0, 1) variables for t = 1, ..., T , ν = β and φ = 1 + α.
So in other words rt given all other processes is normal distributed with 0 mean,
and variance exp{ht/2}, and ht given the state at all other times, h−t, and all its
parameters is normal distributed with mean ν + φ(ht−1 − ν) and variance σ2.
We will, however, work on a 5-dimensional time series, so we need a multivari-
ate stochastic volatility model. There are several ways to specify a multivariate
stochastic volatility model (see McAleer et al. (2004)), but our way to move from
the univariate to multivariate setting follows the work of Plataniotis and Della-
portas (2010). In the multivariate case we do not have a time-varying variance,
but rather a time-varying covariance matrix. In other words we do not model the
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σt in N(0, σ2
t ), but the Σt in rt ∼ N5(0,Σt) when rt is a 5-dimensional vector of

observations. We will estimate the model parameters using a MCMC-scheme. It
should be noted that a MCMC-scheme is not feasible when the number of dimen-
sions grows sufficiently large, say above 10, as we would need to estimate O(N2)
latent paths for an N -dimensional problem. For larger dimensions we would rather
use the INLA approach introduced by Rue, Martino and Chopin (2009).
So we need to estimate the T number of covariance matrices Σt. A major challenge
is that a covariance matrix has to be positive-definite, so we need a state-space
model that keeps the constraint of positive-definiteness and gives us volatility clus-
tering. To ensure positive-definiteness we will look at the spectral decomposition
of the covariance matrices, Σt = UtΛtU

T
t . If we focus on these time dependent

matrices, rather than Σt directly, and keep all the eigenvalues positive and the
eigenvector matrices orthonormal, the covariance matrix will be positive definite.
An N -dimensional covariance matrix consist of N(N+1)

2 unique parameters due to
symmetry, and the spectral decomposition puts N of them in the diagonal matrix
and N(N−1)

2 in the orthonormal matrices.
Because orthonormal matrices can be seen as a series of rotations and/or reflec-
tions, an orthonormal matrix can be written as a product of N(N−1)

2 rotation ma-
trices (here called Givens matrices) Ut = ∏N(N−1)/2

i=1 Gi(θi,t). The idea is that any
multidimensional rotation can be seen as several pairwise rotations in a plane, as
shown by Hoffman, Raffenetti and Ruedenberg (1972), and the number of ways to
divide N values as pairs of two are N(N−1)

2 . We can then let the different θi,t vary
without worrying about keeping the orthonormality constraints we would need if
we work on Ut directly, as every Givens matrix is orthonormal by design.
So for each point in time, t, we have a 5-dimensional eigenvalue matrix Λt and
10 5-dimensional Givens-matrices Gi(θi,t) each with only one variable; θi,t for
i = 1, ..., 10. This gives us the possibility to decompose the covariance matrix to
15 variables, λ1,t, ..., λ5,t and θ1,t, ..., θ10,t. This shows that the complexity increases
drastically with increased dimensionality, from 1 variable in the 1-dimensional case
to 15 in the 5-dimensional case.
In our multivariate model where rt = (r1,t, . . . , r5,t)T , we now have a model that
gives us the volatility of each asset (when we in this thesis use the term the volatil-
ity of ri,t we will most often mean λi,t) and the correlation between them (when
we use the term correlation we mean θt, and the correlation between r1,t and r2,t
is given through θ1,t and r1,t and r3,t through θ2,t, etcetera). When we write this
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out completely we get

Λt =


λ1,t

. . .
λ5,t

 , and

G1,t =


cos(θ1,t) − sin(θ1,t)
sin(θ1,t) cos(θ1,t)

1
1

1



G2,t =


cos(θ2,t) − sin(θ2,t)

1
sin(θ2,t) cos(θ2,t)

1
1


...

G10,t =


1

1
1

cos(θ10,t) − sin(θ10,t)
sin(θ10,t) cos(θ10,t)

 .

In the univariate case we worked on ln(σt) to ensure a positive variance. Analogous
with this we need positive eigenvalues in the multivariate case for the covariance
matrix to be positive-definite, and to ensure that the Givens matrices are unique
we also need the angles to be between −π

2 and π
2 . So instead of using λi,t and θj,t

directly we use hi,t = ln(λi,t) and δj,t = ln
(
π
2 +θj,t
π
2−θj,t

)
. We can use about any time

dependent model we want on hi,t and δj,t and the resulting covariance matrix Σt

we would get when we transformed it back would be positive-definite. For parsi-
monious reasons we would like to use a simple model that can capture volatility
clustering, and like before we will use an AR(1) model to achieve this. The result-
ing model seen below looks much like the univariate one although its derivation
was more complicated;

hi,t = νhi + φhi(hi,t−1 − νhi) + σhiηhi,t

δj,t = νδj + φδj(δj,t−1 − νδj) + σδjηδj ,t,
(8)

for i = 1, . . . , 5 and j = 1, . . . , 10.
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7.2 Simulating from the standard model
Because we are in a Bayesian setting we need to find the posterior distribution
for the parameters and the state-space variables (ht and δt). When we look at (8)
we see that every state variable are dependent on their former value, except of
course the first value; hi,1 and δj,1. And at the same time, every value will have
a dependency in their next value, except the last value; hi,T and δj,T . This will
obviously affect the full conditional distribution for these values. We see that the
full conditional distribution for ht = (h1,t, . . . , h5,t), t ∈ [2, T − 1] is

p(ht| · · · ) = p(rt|ht, · · · )p(ht|ρh1 , . . . , ρh5 , ht±1)

∝ exp{−1
2[

5∑
i=1

hi,t + rTt Σ−1
t rt]}

exp{−
5∑
i=1

τhi
2 [(hi,t+1 − νhi − φhi(hi,t − νhi))2 + (hi,t − νhi − φhi(hi,t−1 − νhi))2]},

(9)

here we use τ = σ−2 called the precision rather than the variance directly. The
reason for this is because of the full conditional for that parameter then has a
well known distribution as we will see later. The full conditional for hT is not so
different from the one above. You simply drop the ht+1-part and end up with

p(hT | · · · ) ∝ exp{−1
2[

5∑
i=1

hi,T + rTTΣ−1
T rT ]}

exp{−
5∑
i=1

τhi
2 [(hi,T − νhi − φhi(hi,T−1 − νhi))2]}

as the full conditional. For h1 it is slightly different. We want a dependency
through the former value, but there are no former value for t = 1, so we use the
limiting distribution of ht instead. The limiting distribution is the distribution the
process tends towards given an infinite amount of time. The limiting distribution
can be found from (8) by substitution, by using that φ ∈ (−1, 1) and the fact that
the variance of ht is homoscedastic i.e. do not change over time;

E(ht) = ν + φ(E(ht−1)− ν) = ν + φ((ν + φ(E(ht−2)− ν))− ν)
= · · · = ν + φn(E(ht−n)− ν) ≈ ν

Var(ht) = φ2Var(ht−1) + σ2 = φ2Var(ht) + σ2

⇒ Var(ht) = σ2

1− φ2 = 1
τ(1− φ2) .
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So we end up with a full conditional that looks like this:

p(h1| · · · ) ∝ exp{−1
2[

5∑
i=1

hi,1 + rT1 Σ−1
1 r1]}

exp{−
5∑
i=1

τhi
2 [(hi,2 − νhi − φhi(hi,1 − νhi))2 + (1− φ2)(hi,1 − ν)2]}.

The full conditional for δt = (δ1,t, . . . , δ10,t), t ∈ [2, T − 1] is

p(δt| · · · ) = p(rt|δt, · · · )p(δt|ρδ1 , . . . , ρδ10 , δt±1)

∝ exp{−1
2[rTt Σ−1

t rt]}

exp{−
10∑
j=1

τδj
2 [(δj,t+1 − νδj − φδj(δj,t − νδj))2 + (δj,t − νδj − φδj(δj,t−1 − νδj))2]}.

(10)

And the full conditionals for δ1 and δT are completely analogous to that of h1 and
hT .
Here ρ· is the parameters for the variable given by its index (e.g. ρh1 is τh1 , νh1

and φh1 , and so on) and rt denote the 5-dimensional observation vector at time t.
The likelihood term in the full conditional is

rTt Σ−1
t rt = rTt (UtΛtU

T
t )−1rt = rTt UtΛ−1

t UT
t rt,

which our computer calculates through matrix multiplication.
To find the full conditional distribution of the parameters, we need to put priors
on ν, φ and σ2. We do not need to specify which of the state-space variables the
parameter belongs to, because they all have the same distribution. We want to
make sure that φ is between -1 and 1 and that σ2 is always positive (although we
will be working on the precision τ = σ−2). To simplify the algorithms we choose
conjugate priors on ν and τ , and we end up with the following priors

ν ∼ N(µν , σ2
ν)

φ+ 1
2 ∼ β(ω, γ)

τ ∼ Γ(α, β).

Here N , β and Γ denote respectively the normal, beta and gamma distributions.
The parametrisations of the different probability distributions can be seen in Ap-
pendix A. The parameters of these priors are simply hyperparameters whose values
reflect what we know about the processes beforehand.
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It should be noted that even though we here find the full conditionals of the pa-
rameters for some hi,t (for simplicity denoted ht), we can get the full conditionals
for the parameters of δj,t by exchanging ht with δj,t.
We chose conditional priors for both ν and τ , and we therefore know that the full
conditionals for those have the same distributions, but with different parameters.
Looking at the full conditional of τ we see that

p(τ | · · · ) ∝ p(τ |α, β)
T∏
t=1

p(ht|ν, τ, φ, h−t)

∝ τα−1 exp{−βτ} × τT/2 exp{−τ2 [(1− φ2)(h1 − ν)2 +
T∑
t=2

(ht − ν − φ(ht−1 − ν))2]}

= τT/2+α−1 exp{−τ(β + 1
2[(1− φ2)(h1 − ν)2 +

T∑
t=2

(ht − ν − φ(ht−1 − ν))2])},

where h−t denote all hi, i = 1, ..., T except ht. We see that this is the Gamma
distribution with parameters α̃ and β̃, where

α̃ = T

2 + α

β̃ = β + 1
2[(1− φ2)(h1 − ν)2 +

T∑
t=2

(ht − ν − φ(ht−1 − ν))2].

To find the parameters of the full conditional distribution of ν we can in the same
way write out the full expression, reorder the parameters so that we recognise
the form of the normal distribution, and find our new expectation and variance
from that. There is, however, very easy to make mistakes when reordering the
parameters and we might therefore consider a different approach (just look at the
Bayesian part of the example in the Bayesian Inference-section). Since we know
that the full conditional is a normal distribution and we only want to know the
expectation and variance, we can derive these algebraically. This procedure will
work on all normal distributions, and we will only need to consider the quadratic
equation in the exponent. If we denote the mean-value we wish to find as µ̃ and
the variance as σ̃2 this can easily be rewritten as f(ν) = −(ν−µ̃)2

2σ̃2 = 1
2Cν

2−Bν+A,
for some A, B and C. If we evaluate f in three different points, say ν = −1, ν = 0
and ν = 1 and call those values f(−1) = p, f(0) = q and f(1) = r respectively,
we could use those to find which values A, B and C must have. Simple algebra
shows us that C = p+ r − 2q, B = 1

2(p− r) and A = q. From the definition of A,
B and C it is can be seen that σ̃2 = −1

C
and µ̃ = B

C
. To find the new parameters

we simply have to write out the full conditional of ν, evaluate it in three points
namely −1, 0 and 1, and use these values to calculate the new parameters. The
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full conditional of ν is

p(ν| · · · ) ∝ p(ν|µν , σ2
ν)

T∏
t=1

p(ht|ν, τ, φ, h−t)

∝ exp{−τ2 [(1− φ2)(h1 − ν)2 +
T∑
t=2

(ht − ν − φ(ht−1 − ν))2]− τν
2 (ν − µν)2},

where τν , according to former notation, is defined to be τν = 1
σ2
ν
. So the new

parameters are

µ̃ = p− r
2(p+ r − 2q)

σ̃2 = −1
p+ r − 2q ,

where p,q and r is as defined above.

The full conditional for φ is

p(φ| · · · ) ∝p(φ|ω, γ)
T∏
t=1

p(ht|ν, τ, φ, h−t)

∝
√

1− φ2 exp{−τ2 [(1− φ2)(h1 − ν)2 +
T∑
t=2

(ht − ν − φ(ht−1 − ν))2]}

(φ+ 1
2 )ω−1(1− φ+ 1

2 )γ−1.

This is not a distribution we know or can draw directly from.
In our simulation we sample the different ν and τ with a Gibbs sampler, and the
φ, hi,t and δj,t using a Metropolis-Hastings algorithm with a random walk proposal
distribution.
It should be noted that in our model we need to assume that δt has little variation
about its mean to be able to draw inference (a small σδj or a high τδj). Later we
will see that this indeed holds true for real data.
To check for convergence we will look at the parameter evolution, that is look at
the values of the parameters in each iteration of the code and see how they diverge
or converge about a certain value. To draw inference about the underlying model
it can also be useful to look at what is called the filtered series. The filtered series
is the mean value of each hi,t and δj,t over all the iterations after convergence is
reached. If we denote the filtered series by a hat, this becomes ĥi,t = ∑K

k=a h
(k)
i,t ,

for hi,t when h(k)
i,t is its value in the kth iteration, a is when convergence is reached

and K is the total number of iterations. δ̂j,t is found in the same way.
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7.3 Extending the model to encompass high volatility regimes

When we observe the return series in Figure 2.3 and couple it with our knowledge of
the financial situation at the time, it seems as though the volatility of the returns,
and perhaps even the correlation between them, increases during the financial
crisis and the following recession. We would therefore like our model to be able
to change parameters during such a crisis, and return to its original form after
the crisis has passed. In other words, we want a model where the parameters
have different values depending on an underlying regime. We will use the same
approach as Hamilton (1988) did for US Treasure bills and as Hamilton (1989) did
for US GNP to measure economic recessions. Those papers are mostly concerned
with finding and filtering out such regimes in long data series, but in our case we
only have one regime and we can assume knowledge of when it starts and stops.
So we will focus mostly on the way those papers models how the time series change
during different regimes. In our case we will assume there exist two different regime
states; one ordinary regime and one crisis regime. At a certain time t we can say
the series are in regime state st where st = 0 if we are in the ordinary regime at
time t and st = 1 if we are in the crisis. Hamilton (1988) lets both the mean value
ν and the variance σ2 of the time series to be functions of the states. Since we do
not have that much data in both regimes and because we would like to keep the
model as simple as possible, we choose to only let the most important parameter
to be a function of st, namely ν(st). ν(st) is defined as follows ν(st) = ν0 + ν1st,
so in the ordinary state the mean is ν0, but during a crisis it will increase with ν1.
We will expect ν1 to be positive, especially for the different hi,t, but we will allow
for negative values as well. To simplify the notation we will simply call ν(st) for
νt, so the mean value of h2,t would be νh2,t. It should be clear when we use ν1 to
denote ν(s1) and when we use it to denote ν1 in ν(st) = ν0 + ν1st by our usage.
When we implement this regime νt in our code, there are not much we need to
change. The full conditional distributions for hi,t, δj,t and the parameters τ and φ
need to exchange the values of ν with νt where they appear. For example the full
conditional of τ becomes τ ∼ Γ(α̃, β̃) where α̃ = T

2 +α and β̃ = β+ 1
2 [(1−φ2)(h1−

ν1)2 + ∑T
t=2(ht − νt − φ(ht−1 − νt−1))2]. What obviously changes slightly more is

the full conditional distribution of νt. Since we now have two parameters ν0 and
ν1 we get a full conditional for each of them. We first need to decide the prior
distribution. For the same reasons as in the standard model, we choose conjugate
priors; i.e. the normal distribution for both of the parameters. We then get

ν0 ∼ N(µν0 , τν0)
ν1 ∼ N(µν1 , τν1).
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The full conditional distribution of ν0 is then

p(ν0| · · · ) ∝ p(ν0|µν0 , τν0)
T∏
t=1

p(ht|ν0, ν1, st,t−1, τ, φ, h−t)

∝ exp{−τ2 [(1− φ2)(h1 − (ν0 + ν1s1))2+
T∑
t=2

(ht − (ν0 + ν1st)− φ(ht−1 − (ν0 + ν1st−1)))2]− τν0

2 (ν0 − µν0)2},

and the full conditional of ν1 is

p(ν1| · · · ) ∝ p(ν1|µν1 , τν1)I(s1)
T∏
t=1

p(ht|ν0, ν1, st,t−1, τ, φ, h−t)I(st||st−1)

∝ exp{−τ2 [(1− φ2)(h1 − (ν0 + ν1s1))2I(s1)+
T∑
t=2

(ht − (ν0 + ν1st)− φ(ht−1 − (ν0 + ν1st−1)))2]I(st||st−1)

− τν1

2 (ν1 − µν1)2},

where I(s1) is an indicator variable which equals one if s1 = 1 and I(st||st−1) is
an indicator variable which equals one if either st = 1 or st−1 = 1. We need these
indicator variables because ν1 only influences the data series during crisis (and
on the border of the crisis) not outside of it. Since we used conjugate priors, we
know the full conditional for both ν0 and ν1 have the normal distribution, and the
parameters can be found by using algebra just as we did in the standard model.
When we start our algorithm we want the state-space variables to mix properly,
and therefore we will do what was done in Kim et al. (1998) and only use the
expected values given by the hyperparameters for the first 3000 iterations as the
correct value of the parameters. I.e. we only draw the state-space variables for
the 3000 first iterations, and we will draw them with parameter values given by
their hyperparameters (ν = µν , φ = 2 ω

γ+ω − 1 and so on), and then we will draw
both the state-space variables and the parameters for the subsequent iterations.
A pseudo-code of how our MCMC algorithm turns out can be seen below in Al-
gorithm 1.
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Algorithm 1: MCMC algorithm for the stochastic volatility model
Data: 5 dimensional vector of observations rt, t = [1, . . . , T ] and the

number of runs
Result: The filtered series of ht and δt, and the parameter evolutions
begin

Set the values of the hyperparameters;
Define variables to hold the values of the parameters, ht, δt and rΣ0r

T ,
and add intial values to them;
Set the regime-indicating variable st and the tuning variables σφ, σh and
σδ;
for i in 2 to number of runs do

foreach h1,t, . . . , h5,t and δ1,t, . . . , δ10,t do
if i<3000 then

τ = α
β
;

ν0 = µν0 ;
ν1 = µν1 ;
φ = 2 ω

γ+ω − 1
else

Draw their τ ∼ Γ(α̃, β̃);
Draw their ν0 ∼ N(µ̃0, σ̃0

2);
Draw their ν1 ∼ N(µ̃1, σ̃1

2);
Draw their φ̂ ∼ N(φ, σφ) and set φ = φ̂ with probability
α = min{p(φ̂|··· )

p(φ|··· ) , 1}

foreach ht where t = [1, . . . , T ] do
Draw ĥt ∼ N(ht, σh) and set ht = ĥt with probability
α = min{p(ĥt|··· )

p(ht|··· ) , 1}
foreach δt where t = [1, . . . , T ] do

Draw δ̂t ∼ N(δt, σδ) and set δt = δ̂t with probability
α = min{p(δ̂t|··· )

p(δt|··· ) , 1}

Calculate and return the mean value of hit and δit for every i after
convergence is reached, and return the parameter evolutions

end



34 7 STOCHASTIC VOLATILITY MODEL

7.4 Testing the model on generated data
To see how this model works it can be interesting to see how it is able to replicate
the parameters and the state-space variables of series generated by us, and compare
the estimated values against their theoretical counterparts. The parameters we
choose can be seen in Table 3. For simplicity we choose the same parameters on
almost all the ht-series (with an exception of a lower mean of the volatility and
a decrease in volatility during crisis on h3,t just to see if it effects the algorithm),
and on all the δt-series. We choose a smaller variance for δ because these should

σ2 ν0 ν1 φ
h−3 0.09 -8 2 0.9
h3 0.09 -9 -1 0.9
δ 0.0025 0 0.5 0.95

Table 3: True parameter values of the generated series.

in realistic cases be quite small, and we choose a higher autoregressive coefficient
φ for δ because those series in general change values slower than h do. In our
MCMC- scheme we decide to put quite general priors i.e. choose hyperparameters
that give relatively large variances, except for ν1 which we force to be quite small.
We also use the same hyperparameters on both h and δ for φ, but different for the
rest of the parameters to capture what we know beforehand (i.e. lower variance
for the δ-series and different expected values for ht and δt).

h µν0 = −5 σ2
ν0 = 102 µν1 = 2 σ2

ν1 = 0.5 ω = 30 γ = 1 αh = 100 βh = 10
δ µν0 = 0 σ2

ν0 = 5 µν1 = 0.8 σ2
ν1 = 0.32 ω = 30 γ = 1 αδ = 400 βδ = 1

We let our code run for some (>5000) iterations with several values of the tuning-
parameter in our MH-algorithms (when we draw φ, ht and δt), and decide to choose
0.1, 0.5 and 0.03 respectively. We now let the code run for 25 000 iterations and
look at the parameter evolutions and the filtered series. The output shows that
our code is much better at drawing inference about the volatility processes, i.e.
hi,t, than the angles. In Table 4 we can see the average parameter values after
discarding the first 15 000 iterations with their standard deviations in parenthesis.
The parameters of ht are close to their correct values, except ν1 which is too low
(in absolute value) for all the cases. The parameters of δt are also quite good. The
problems being that the estimates of ν1 are not significantly larger than zero and
φ is much too low for both δt,1 and δt,3. It seems like the code has a difficulty
with finding what is the cause of the increase in volatility; the regime or just the
high values of φ. One way to check the validity of the code, is by running it on
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σ2 ν0 ν1 φ
h1 0.1(0.0081) −7.81(0.112) 0.869(0.251) 0.915(0.0183)
h2 0.106(0.00945) −7.87(0.0972) 0.815(0.218) 0.898(0.0192)
h3 0.0954(0.01) −9.15(0.0956) −0.364(0.201) 0.903(0.0186)
h4 0.103(0.0101) −7.93(0.0965) 0.942(0.258) 0.896(0.0253)
h5 0.107(0.00969) −7.8(0.134) 0.691(0.265) 0.929(0.0158)
δ1 0.00249(0.00012) −0.0296(0.0228) 0.031(0.0281) 0.741(0.057)
δ2 0.00252(0.000126) 0.0361(0.0383) 0.0479(0.0478) 0.96(0.00945)
δ3 0.00248(0.000123) 0.0294(0.0127) −0.034(0.0243) 0.789(0.0634)
δ4 0.00254(0.000133) −0.00585(0.0211) 0.0367(0.0402) 0.93(0.0154)
δ5 0.00253(0.000133) 0.0519(0.0288) 0.0309(0.0452) 0.95(0.0111)
δ6 0.0025(0.000128) 0.00878(0.027) 0.0573(0.0454) 0.943(0.0124)
δ7 0.00252(0.000121) 0.0835(0.0478) 0.0385(0.05) 0.969(0.00785)
δ8 0.00251(0.000115) 0.0633(0.0356) 0.0458(0.048) 0.958(0.0111)
δ9 0.00248(0.000128) 0.0352(0.0788) 0.0278(0.0482) 0.977(0.00732)
δ10 0.00251(0.00014) 0.0831(0.0326) 0.0489(0.0436) 0.923(0.0145)

Table 4: Mean parameter values of generated state-space series with their standard
deviations in parenthesis.

a data generated with negative φ-values. When we do this, we get much better
estimates for ν1. Incidentally, when we get better estimates for ν1 we also get
better estimates for ν0. This indicate that the estimate of ν0 over-compensate for
the too low estimate of ν1, but relatively little compared to its actual error. So
a practitioner should look at the filtered series and couple that with what he/she
knows about the external regimes, and reflect this in the prior. If there seems to
be an increase during the crisis-regime we can try to see how much, and choose
a prior with a high mean and low variance to force the algorithm to give higher
estimates of ν1. It is therefore interesting to see if the resulting filtered series reflect
the “true” series well. The best and worst cases of ht and δt can be seen in Figure
7.1. It is very easy to see that our algorithm is much better at finding out how the
volatility behaves rather than the correlation. Which of the series our algorithm
have problems distinguishing can actually easily be seen in Table 4; the δt with
the low φ is basically only white noise.
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Figure 7.1: Filtered series of ht,1, ht,3, δt,1 and δt,9 with the correct series in red.
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We have large correlation-structures between all the series, so the algorithm
might have problems distinguishing between the correlation between series 1 and
3 directly, and that which comes from 1 and 2 and then 2 and 3. In practise the
data will not be as correlated as it was here, but it is interesting to see how the
algorithm cope with a complicated situation. It can anyway seem as though our
algorithm underestimate the size of the correlation. All the filtered series can be
seen in Appendix B.1.
When we perform this procedure on the real data later, we are concerned if the
normality assumption holds between the volatility series and the observed prices.
Remember that we assume rt ∼ N(0,Σt) and we have that Σt = UtΛtU

T
t . Then,

by the property of the multivariate normal distribution, we should have that
Λ−1/2
t UT

t rt ∼ N(0, I), i.e. the scaled returns are standard normally distributed.
Since we have the filtered series of both ht and δt, which gives us Λ and U , we can
use the Jarque-Bera test to check for normality. Since we now have filtered series
we know come from the normal distribution, we can hope the test give reasonable
results. We can see the values for the filtered series (ĥt and δ̂t) compared to the
generated series (ht and δt) in Table 5. As we can clearly see all the generated

Generated series Filtered series
JB S K JB S K

Series 1 2.79 -0.0627 -0.17 21.4 -0.0823 -0.562
Series 2 0.702 -0.0498 0.0362 10.8 -0.0197 -0.413
Series 3 0.525 0.00173 -0.0916 9.27 0.0328 -0.379
Series 4 2.03 0.0119 -0.179 17.8 -0.0195 -0.533
Series 5 2.12 -0.0606 0.139 10.8 -0.098 -0.367

Table 5: JB test statistic with skewness S and kurtosis K for the scaled returns.

series all pass the test (not surprisingly since the observations are distributed by
the generated series directly), but almost none of the filtered does. If we exchange
the δ̂1,t and δ̂3,t with their generated counterparts, we would still reject three of
the series (remember that JB should be less than 10.597). Even if we use all the
generated δt with the filtered ĥt, we would still reject Series 1 under the normal
hypothesis. This might be because the filtered series are smoothed versions of the
series they estimate, since they are averaged over more than 10 000 simulations.
It is worth noting that in the cases with real data we test the normal distribution
against distributions with heavier tails, and the filtered series all gave lighter tails.
Should we in the real case get heavy tails, e.g. K > 0.6, it would give us reasons
to doubt the normality assumptions.



38 8 STOCHASTIC TREND MODEL

8 Stochastic trend model

8.1 Deriving the standard model
In our state-space time series approach we decide to use a model called the local
linear trend model, to capture the trend-structure. The model is found in Durbin
and Koopman (2001). In the basic form this model can be written for a time series
of observations rt

rt = µt + σεεt

µt+1 = µt + χt + σξξt+1

χt+1 = χt + σζζt+1,

where εt, ξt+1 and ζt+1 all are N(0, 1) distributed error-terms. We will not use this
simple model. First of all, our volatility-structure is much more complicated than
a simple normal distributed error, and we use the stochastic volatility model to
capture that. Secondly, it turns out that the underlying χt model does not follow
the simple random walk the model above implies.
When we implemented the above model we got parameter estimations as well as
filtered series just as in the stochastic volatility model. The filtered series captures
what the underlying state-series should look like to give the observed series, and is
not very sensitive to which type of model that links the observations to those states.
So when we get a filtered series that is situated about zero, and spikes (or volatility)
is clustered, we assume that the series have a autoregressive representation rather
than a simple random walk. So we choose to let χt follow an AR(1) model with a
zero mean value (ν = 0 to use the notation from the stochastic volatility model),
and if we for simplicity discard the stochastic volatility and assume the observed
series is simply the trend series, we get

µt+1 = µt + χt + σξξt+1

χt+1 = φχt + σζζt+1.

8.2 Simulating from the standard model
When we want to simulate from this model we first need to estimate the parame-
ters. We will use the same procedures as with the stochastic volatility model: put
priors on the parameters and draw from the posterior (or actually full conditional)
distributions. The model is not very different from the stochastic volatility so the
full conditional distributions for the parameters will also be similar to those we
found earlier. Both µt and χt given its parameters and earlier values are normally
distributed. τξ and τζ with gamma priors have gamma posteriors due to the prop-
erty of conditional distributions, and to ensure that φ is between (−1, 1) we put
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a β(γ, ω) prior on φ+1
2 . Since we again use the precision rather than the variance,

we get

p(τξ| · · · ) ∝ p(τξ|αxi, βxi)p(µ2|τξ, µ1, χ1) · · · p(µT |τξ, µT−1, χT−1)

∝ τ
αξ−1
ξ exp(−βξτξ)× τ

(T−1)
2

ξ exp(−τξ2

T∑
t=2

(µt − (µt−1 + χt−1))2),

so p(τξ| · · · ) ∼ Γ(α̃ξ, β̃ξ) where α̃ξ = αξ + T−1
2 and β̃ξ = βξ + 1

2
∑T
t=2(µt − (µt−1 +

χt−1))2. For simplicity we assume that we have observed µ1 without error to over-
come the border problem where t = 1.
Due to the similarity of χt to that of hi,t and δj,t the full conditional distribu-
tions of the parameters will be very similar to what was found for the stochas-
tic volatility model. Without any need to go into further detail, we have that
p(τζ | · · · ) ∼ Γ(α̃ζ , β̃ζ), where α̃ζ = αζ + T

2 and β̃ζ = βζ + 1
2 [(1− φ2)χ2

1 +∑T
t=2(χt−

φχt−1)2]. We also have that p(φ| · · · ) ∝
√

1− φ2 exp{− τζ
2 [(1− φ2)χ2

1 +∑T
t=2(χt −

φχt−1)2]}(φ+1
2 )ω−1(1− φ+1

2 )γ−1.
It should not be too difficult to see that the full conditional of χt is given by

p(χt| · · · ) = p(χt|χt−1, φ, τζ)p(χt+1|χt, φ, τζ)p(µt+1|µt, χt, τξ)

∝ exp
{
−τζ2

[
(χt − φχt−1)2 + (χt+1 − φχt)2

]
− τξ

2 (µt+1 − (µt + χt))2
}
.

With a bit of experience we can see that this is normally distributed, and we
could reorder the parameters to find out what the new expectation and variance
is. However, since we in the stochastic volatility model described an algorithm
which uses algebra to find these parameters, we can use that directly here as well.
We have, with an exception of φ, full conditionals we can draw directly from. We
therefore use a Gibbs-sampler that stepwise updates each parameter and state
space in order, except for φ which is updated with the same type of MH-algorithm
with a random walk proposal distribution as the φ parameter in the stochastic
volatility model.

8.3 Extending the model to encompass regimes with drop
in prices

When we observe how the prices behaved in the aftermath of the financial crisis,
there were obviously a steep drop in all the price series. We would like to implement
a way to force the prices to fall when we enter a certain regime, and normalise
when we exit that regime. There might be several ways to implement this, but
the way we choose is to enforce a negative expected value on χt during the crisis
regime. The way the local linear trend model works is that the trend at a certain



40 8 STOCHASTIC TREND MODEL

point in time is the sum of the last value, a random noise term and a hidden state
space term χt. When this state space term is positive the trend is likely to increase,
and when it is negative it is likely to decrease. So if we during a crisis regime force
χt to be negative, the trend is likely to decrease throughout this regime. We can
use the same notation as we did in the stochastic volatility section and introduce
a time dependent parameter χ0(st), where again we have χ0(s1) = 0 during the
normal regime and χ0(st) = χ0 during the crisis regime. Our new model for χt+1
then becomes

χt+1 = φχt − χ0 · st+1 + σζζt+1,

where st = 0 in the normal regime and st = 1 in the crisis regime. The full
conditional distributions for φ, τζ and χt needs to be updated by exchanging every
appearance of φχt−1 with (φχt−1 − χ0(st)). If we choose a normal prior for χ0,
N(µχ0 , σ

2
χ0), the full conditional distribution of χ0 becomes

p(χ0| · · · ) = p(χ0)p(χ1|χ0(s1), φ, τζ)
T∏
t=2

p(χt|χt−1, χ0(st), φ, τζ)

∝ exp{ − τχ0

2 (χ0 − µχ0)2 − τζ
2 [(1− φ2)(χ1 − χ0s1)2I(s1)

+
T∑
t=2

(χt − (φχt−1 − χ0st))2I(st)]},

where again I(st) is an indicator variable that equals 1 if st = 1 and 0 otherwise.
Again, this is a normal distribution and the parameters of this distribution can be
found in the same way all the other parameters of normal distributions are found
in this thesis.
A pseudo-code of how our MCMC algorithm to find χt and its parameters can be
seen in Algorithm 2 below.
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Algorithm 2: MCMC algorithm for the stochastic trend model
Data: 5 dimentional vector of observations µt, t = [1, . . . , T ] and the

number of runs
Result: The filtered series of χt and the parameter evolutions
begin

Set the values of the hyperparameters;
Define variables to hold the values of the parameters and χt, and add
intial values to them;
Set the regime-indicating variable st and the tuning variable σφ;
for i in 2 to number of runs do

Draw τζ ∼ Γ(α̃ζ , β̃ζ) ;
Draw τξ ∼ Γ(α̃ξ, β̃ξ) ;
Draw χ0 ∼ N(µ̃0, σ̃0

2);
Draw φ̂ ∼ N(φ, σφ) and set φ = φ̂ with probability
α = min{p(φ̂|··· )

p(φ|··· ) , 1} foreach χt where t = [1, . . . , T ] do
Draw χt ∼ N(µχt , σχt)

Calculate and return the mean value of χit for every i after convergence
is reached and return the parameter evolutions;

end

8.4 Testing the model on generated data
To see what kind of trends this model produces and how well our algorithm repli-
cates the state space and parameters, it can be interesting to test our model on
generated data where we know the correct values. The chosen parameter values
can be seen below, and the generated trend can be seen in Figure 8.1.

σξ σζ φ χ0
26 200 0.9 150

With a much lower variance for µt than χt our generated µt-series is much
smoother, and looks more like a real trend. This is why we choose a σξ lower
than σζ . The prior parameters we choose are αξ = 0.001, βξ = 0.1, αζ = 0.0001,
βζ = 0.1, ω = 30, γ = 1, µχ = 200 and σχ = 100. We let our code run for some
iterations to decide the tuning parameter for the MH-algorithm for φ, and end up
with σφ = 0.1. We can run the code for as little as 5000 iterations, and still get
reasonable convergence. The estimated parameter estimations can be seen in the
table below with their standard deviations in parenthesis.

σ̂ξ σ̂ζ φ̂ χ̂0
17.7(18.3) 202(40) 0.892(0.0109) 155(19.3)
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Figure 8.1: Generated trend series with a crisis regime from t = 1000 to t = 1100.

The variance of the estimated σ-parameters have large variances, and the estimated
value of σξ was a bit low, as also can be seen in Figure 8.3 which shows the
parameter evolutions. As the figure shows there is a link between the variance of
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00
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00 Generated

Estimated

Figure 8.2: Filtered series of χ compared to the generated.

µ and χ, when one goes up the other one goes down. The filtered series of χt is
really good, and it is impossible to see any differences as Figure 8.2 shows.
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Figure 8.3: The parameter evolutions (with the first 100 values discarded). The
red line shows the correct value.



44 9 IMPLEMENTATING THE METHOD ON OUR DATA

9 Implementating the method on our data
First we implement our stochastic volatility model on the compounded return
series of our data, then we implement the trend model on the observation series.
In both cases we show the estimated parameters in tables, and the relevant filtered
series in figures.

9.1 Implementing the stochastic volatility model on our
data

To be able to use our stochastic volatility model, we need a fully specified data set
without any NA-values. We could change our code such that when there are an
NA-part in the data at time t, we would discard the likelihood contribution from
the data. I.e. rTt Σtrt = 0 if one of the ri,t = NA for i = 1, . . . , 5. But since we are
missing all crude data up to the 28th of April 2006 and the set is fully specified
from there on out, we only use that part of the data.
From some test runs and prior knowledge of stochastic volatility modelling of
financial time series, we choose the following priors for our algorithm

h µν0 = −8 σ2
ν0 = 102 µν1 = 2 σ2

ν1 = 0.5 ω = 1 γ = 0.1 α = 100 β = 10
δ1 µν0 = 0.5 σ2

ν0 = 52 µν1 = 0 σ2
ν1 = 1 ω = 1 γ = 0.1 α = 100 β = 0.1

δ10 µν0 = 0.8 σ2
ν0 = 52 µν1 = 0 σ2

ν1 = 1 ω = 1 γ = 0.1 α = 100 β = 0.1
δ2:9 µν0 = 0 σ2

ν0 = 52 µν1 = 0 σ2
ν1 = 1 ω = 1 γ = 0.1 α = 100 β = 0.1

The reason we choose a larger µν0 for δ1,t and δ10,t is because test-runs and ob-
serving the series have shown us that the freight rates and oil rates are generally
correlated. We have also chosen γ and ω differently from the test case. The reason
for this is because when series are uncorrelated, the φ-values of δ tends to be low
and we use the same priors for the φ of the h-series as well as the δ-series. When
γ and ω are so low, the resulting prior-variance is low, i.e. it is a more uncertain
prior. But it has the same expected value as when γ = 1 and ω = 10, so when
we mix the series in the beginning of the algorithm, there is no difference. We
hope this will lead us to capture the series that are correlated, and those that are
not. As with the generated data we run the algorithm some times to decide the
tuning parameters, and we end up with σφ = 0.1, σh = 0.5 and σδ = 0.02. We
then let our code run for 25 000 iterations, and use the parameter evolutions to
try to ascertain when we have reached convergence. We have reached convergence
on most of the parameters after 15 000 iterations, and those parameters that do
not converge are connected to the δ-series that are basically noise. The estimated
values of the parameters after the 15 000 iterations can be seen in Table 6. From
the value of φ it seems as though only the correlation series δ1 and δ10 can be
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σ2 ν0 ν1 φ
h1 0.135(0.0155) −9.74(0.289) 0.73(0.301) 0.959(0.0111)
h2 0.11(0.0115) −7.8(0.219) 0.784(0.291) 0.948(0.0142)
h3 0.312(0.0347) −12.4(2.97) 0.974(0.38) 0.99(0.00536)
h4 0.0995(0.00903) −8.68(0.15) 0.629(0.256) 0.929(0.0161)
h5 0.108(0.0109) −7.57(0.0932) 1.15(0.191) 0.872(0.0297)
δ1 0.00126(0.00019) 0.413(0.798) 0.00177(0.0339) 0.986(0.00715)
δ2 0.000944(9.28e− 05) −0.0016(0.00617) −0.0272(0.0159) 0.535(0.163)
δ3 0.000993(9.64e− 05) 0.00561(0.00804) −0.0347(0.011) 0.556(0.214)
δ4 0.001(0.000101) −0.00664(0.0125) 0.0155(0.0138) 0.292(0.23)
δ5 0.00086(7.36e− 05) −0.00115(0.00374) −0.00606(0.0152) 0.299(0.155)
δ6 0.00102(9.38e− 05) −0.0152(0.0114) −0.0108(0.0266) 0.571(0.191)
δ7 0.00101(9.5e− 05) −0.0187(0.00794) −0.000353(0.0202) 0.732(0.133)
δ8 0.000804(6.43e− 05) 0.00166(0.00354) 0.0159(0.0155) 0.0686(0.209)
δ9 0.000779(6.67e− 05) 0.00206(0.00352) −0.0198(0.0133) 0.0159(0.117)
δ10 0.00103(0.000118) 0.818(0.0225) −0.019(0.0221) 0.876(0.0244)

Table 6: Mean parameter values of the state-space variables for the observed series
with their standard deviations in parenthesis.

assumed significantly different from zero. If we observe the plotted filtered series,
that strengthens this assumption. In Figure 9.1 and 9.2 we see respectively the
filtered volatilities and the filtered non-zero correlation series. In Appendix B.2
all the correlation-series can be seen. Those non-zero correlation series are respec-
tively the correlation between BSI and BPI, and between crude oil and bunker oil.
The volatility series ht all have an increase during the financial crisis and we are
not surprised when we observe which series that are the most volatile within their
segment, when considering the observed prices and returns. The correlation series
are somewhat more interesting. It seems the correlation between BSI and BPI
is the most time-varying, and it is strictly positive. I.e those series have positive
correlation all the time. The correlation between crude and bunker oil is the one
that changes the least over time and we could say it is almost constant. It is also
the series that have the largest ν0, so we would say the oil rates are constantly and
highly correlated. If we look at this from the outside the correlation-structure does
make sense. It is logical that the freight rates are correlated, and it is also easy
to see that in the price history. It is also logical that the crude oil and its refined
version, the bunker oil, are almost constantly correlated. What these plot don’t
capture is that sometimes when we run our algorithm there appears a slight corre-
lation between the BSI freight-rate and the different oil-prices. That the oil-prices
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could affect the freight-rates is not unthinkable considering that bunker-prices is
one of the largest expenses in shipping, but they don’t seem to affect the short
term price-structure of each other in any way worth mentioning.
It can also be interesting to see if the Jarque-Bera test indicates that the observed
prices can come from a normal distribution after we try to remove the time de-
pendency in the returns, as we did in the generated data case. As before we take
the test on the scaled returns, Λ−1/2

t UT
t rt, which under the stochastic volatility

assumption should be identically normal distributed. The results can be seen in
Table 7. The LIBOR rate are not surprisingly the one that deviated the most

JB S K
BSI 10.4 -0.0385 -0.454
BPI 44.5 -0.0575 -0.943
LIBOR 256000 3.4 71.8
Crude 4.55 -0.0475 -0.289
Bunker 3.04 0.0458 -0.231

Table 7: JB test statistic with skewness S and kurtosis K for the scaled returns.

from the normality assumption, due to its heavy tails and unsymmetrical distri-
bution. Neither the BSI or BPI can be said to come from a normal distribution,
but the tails are too light rather than too heavy. If we plot the series they look
more like autoregressive time series, and if we fit the transformed series of BSI to
an AR(1)-model with the built-in R-function, it returns a model with φ = 0.764
and σ = 0.617 and for BPI it returns a model with a even larger φ and lower σ.
We should not be too surprised by this after looking at the returns of BSI and
BPI. They do not change value “fast enough” to come from a normal distribution.
There seems to be some memory, whereas the oil-rates have more the jagged re-
turns that could hint of the normal distribution, and the JB-test confirms that
the normal assumption holds for those rates.
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Figure 9.1: Filtered series of ht.
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Figure 9.2: Filtered series of the non-zero δt.
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9.2 Implementing the stochastic trend model on our data
As mentioned earlier in the thesis, the behaviour of the BSI and BPI are clearly
linked, as are the behaviour of crude and bunker oil. One way to view this,
and the way we choose in this thesis, is to assume that BSI and BPI have the
same underlying trend and just their different volatility-structure give rise to the
observed differences. Similarly we assume that crude and bunker oil have the same
underlying trend, although on different scales. We assume no interaction between
the trends of oil, freight and interest rates, except during an external crisis. In our
model we assume that we observe the trend series directly, so this leaves us with
the problem of which of the series BSI or BPI to choose as the correct trend. We
simply choose the sample mean of the series (BPI+BSI)/2. We could do the same
for the oil rates. Scale the series, find the mean of the scaled series and use that.
Again we face the problem that one series is larger than the other, and since we
have more data for the bunker oil series, we choose this as the correct trend. Since
the LIBOR rate is assumed to be independent of the other series, the observed
series is used as the observed trend directly.
Since there obviously are different scales between the different trends, we choose
different priors for each as can be seen in the table below.

αξ βξ αζ βζ µχ σ2
χ

Freight 0.001 0.1 0.0000001 0.001 200 100
LIBOR 1000000000 100000 1000 10 0.1 1
Bunker 1000 100 0.1 0.1 10 100
Crude 10000 100 0.1 0.1 10 100

The reason we also need to find the underlying χt process for the crude data, is
simply to know how much to scale down the later simulations from the bunker
model.
We run our code on the data to get the parameter estimations. The mean value
of the parameters after convergence is reached is given in the table below with the
parenthesis indicating their standard deviations.

σ̂ξ σ̂ζ φ̂ χ̂0
Freight 2.38(3.13) 278(53.1) 0.851(0.0133) 179(9.32)
LIBOR 0.01(5.62e− 05) 0.078(0.012) 0.575(0.0586) 0.00519(0.00693)
Bunker 0.316(0.0563) 8.5(1.63) 0.0674(0.0253) 2.82(0.748)
Crude 0.1(0.01) 1.86(0.379) −0.0316(0.0283) 0.0348(0.163)

The filtered series for χt with the corresponding trend can be seen in Figure 9.3,
9.4 and 9.5 for the freight, LIBOR and bunker series respectively.
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Figure 9.3: Filtered series of χ compared to the trend for the freight series.
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Figure 9.4: Filtered series of χ compared to the trend for the LIBOR series.
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Figure 9.5: Filtered series of χ compared to the trend for the bunker series.
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10 Bootstrapping the series and simulating from
the models

10.1 How to bootstrap and simulate the volatility
When simulating the volatility from the stochastic volatility model, we first have to
generate time series for the state-space variables ht and δt by using the parameters
estimated earlier. If the filtered series and estimated parameters indicate that some
of the δt-series are just noise, we will assume they are constantly 0. In other words
we will only estimate δ1,t and δ10,t. When we have simulated a realisation of the
state-space variables, we will use those to generate Ut and Λt and consequently
Σt. We can now draw a return series, rt, from the normal distribution rt ∼
N(0,Σt). When bootstrapping the series, we basically use the standard moving
block bootstrap. The exceptions being that we do not sample from the data we
assume to be in the crisis-regime when we are outside of that regime, and that
we “glue” the blocks in the different series together with an AR(1)-model where
we use the same parameters as when we simulate the series. In the trend-model
we introduce methods in the bootstrap samples to get more diversity, but we will
not use those here. Since we bootstrap the variance of a multivariate normally
distributed variable, the differences we introduce in the trend bootstrapping would
not influence the variables here to a significant degree. However, what we will do
here is to draw the same block numbers for all of the series. Say we divide our series
in 1000 blocks and our bootstrap sample are the blocks (4, 252, 675, 353, 1, 994),
we would first use the 4th block of h1,t, the 4th block of h2,t and so on. The
reason we do not sample the blocks of the different series independently of each
other is to exploit possible correlations between the series which are not reflected
in our model. Our model is defined under the assumption that there are no excess
correlation between the series, i.e. the error-term in h1,t is uncorrelated with h2,t
and all the other series. Bootstrap, however, is used in cases where we do not
know the underlying model that well, so we will incorporate the possibility of such
correlations in our moving block bootstrap.

10.2 Comparing with the stochastic volatility model
To simulate from the stochastic volatility model we chose overlapping block-bootstrap
with block-size 90. The choice of block-size comes from simulating 1000 realisa-
tions of the different series ht and δt, with block-size 10, 20, . . . , 100, calculating rt
and choosing the size that gave the smallest mean standard deviation in each time
step. I.e. smallest 1

1000
∑1000
i=1 [∑K

k=1 |rij,k|], when j=1, . . . , 5. We chose this because
we want a model with as small variance as possible. As mentioned above, we will
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only bootstrap sample from the crisis-regime when we are in such a regime, and
we will then simulate from the start of that regime and onwards. This will give
us volatility series in crisis regimes equal to what we have found by our filter, but
since this is only the variance of our returns, we will not get simulated series equal
to what we have observed. A greater limitation is that we have a limit on how
long our regime can last. This will be the same for the trend-model later, and how
severe these limitations are for application purposes must be for the practitioner to
decide. Series found by an rt drawn from a bootstrap sample and simulated from
our model can be seen in Figure 10.1 both with and without a crisis-regime. It
can be difficult to ascertain the differences between these two procedures by only
looking at one realisation, so the average of 1000 draws without a regime-change,
but with the maximum and minimum of each of the series can be seen in Figure
10.2 As the figure clearly shows, the LIBOR rate diverges when we simulate from
the model. Even though it might seem as though the LIBOR model is highly
unstable, this is a little unfair. Should we view the 95% largest values at each
time-step from the 1000 realisations the largest would only be 1.857, and for the
98% largest values the largest one is 10.45. Since the φ-value of h3,t (i.e of the
LIBOR volatility) is so high (0.99), given enough realisations it is bound to reach
extreme values, both large and small. One of the properties of the mean-statistic
is that it is sensitive to outliers, and since we model on the log-scale our model is
bounded below, so it is not surprising that the mean value of the LIBOR series
get so high considering that the maximum value is almost 5 000 000. If we plot
the median, a much more stable statistic, of the simulated LIBOR rather than the
mean, the result get similar to what we observe for the freight series (see Figure
10.3). The solid lines are quite similar, but the envelopes for the simulated series
increase more than the bootstrapped, indicating that those series have larger vari-
ance. So except for the few times where the simulated LIBOR-rate diverges, the
values of the LIBOR realisation stay almost constant. Even the 75% largest values
in each bootstrapped sample does not increase above 0.05 of its initial value. This
is because of the low initial value (0.30438); a single (and non-extreme) realisation
when the LIBOR initial value was 4 for example, had a maximum value of 6.5 and
a minimum of 3.5 over 722 days.
We can also compare the series when the volatilities have been simulated from
model against the bootstrapped ones when we also have a regime-change. In Fig-
ure 10.4 we see the average of 1000 realisations over 722 days, when we have a
regime-change at 400 and 500 (i.e a crisis-regime that lasts from 400 until 500).
Again the LIBOR series where the volatilities are simulated from a model diverges.
Should we again use the median of those series, rather than the mean, we would
reach the same conclusion as we did above. The resulting model would then be
similar to what we observe for the freight series (that is, similar to the freight se-
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ries with the crisis-regime, not the ones without). As we can see the bootstrapped
values have a larger increase in variance during the regime. This only confirms
what we observed on the generated data in the stochastic volatility section. Our
algorithm underestimate the value of ν1, so a practitioner should view the filtered
series and choose a ν1 that would better fit the increase in volatilities we observe
there. It is also clear that since the volatility just increases during a crisis-regime,
the prices might just as well rise as fall. This is not a result we would like to get
when we simulate a crisis similar to the one we had in 2008.
The properties we wanted from our model was prices that are highly correlated
within each segment and possibly across segments, and a possibility to enforce a
regime-change that gave a drop in prices across all segments. We have not found
any definite correlation across segments, and as Figure 10.5 shows, the correlation-
structure is not strong enough to give realisations similar to the historical obser-
vations. This, in addition to the price-drop property, lead us to use the defined
stochastic trend-structure.
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Figure 10.1: A single realisation, where black is simulated from the model and red
is the bootstrap equivalent.



10.2 Comparing with the stochastic volatility model 57

0 200 400 600

12
00

0
20

00
0

max= 57045.3 and min= 4200
max= 43741.1 and min= 5500

0 200 400 600

10
00

0
20

00
0

max= 180943 and min= 4200
max= 71956.4 and min= 5500

0 200 400 600

0
20

00
50

00

max= 4905670 and min= 2.1e−24
max= 0.86811 and min= 0.11

0 200 400 600

80
14

0
20

0

max= 530.659 and min= 19
max= 380.179 and min= 20

0 200 400 600

40
0

80
0 max= 6093.7 and min= 54

max= 5030.15 and min= 76

Figure 10.2: The average series over 1000 runs, where the volatility of the black is
simulated from the model and red is the bootstrap equivalent, with 75% envelopes
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Figure 10.5: A realisation showing the correlated freight rates and the correlated
(and scaled) oil rates compared against each other.
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10.3 How to bootstrap and simulate the trend

When simulating the trend of financial time series there are some pitfalls one needs
to be careful about, and the biggest of those is keeping the trend positive. Since
the price series will not be negative (or at least so rarely that we can assume it
never happens) and the prices are simulated about the trend, we need to keep it
positive. There are several ways to do this, and it is difficult to say which is best.
One simple way would be to simulate the whole series, discard the simulation if we
get a negative value, and keep going until we get a trend with only positive values.
The problem with such an algorithm is that we might weight series that have
an upwards trend too much, and on average get too many series that takes large
values. An other way would be to simulate in smaller blocks, check in each block if
we have a negative value and discard the ones that do. Again we might get a bias
for larger series, but not in the same extent as the first. The problem here is with
the bootstrap case. There might be a bootstrap block that ends with a value such
that no other bootstrap block can give a positive value, and the aforementioned
algorithm would iterate through the possible values indefinitely without finding
an acceptable block. The way we chose to overcome the problem in this thesis is
by noting that a time series ẋt = xt − ν for t = 1, . . . , T and −ẋt have the same
properties when ẋt is stationary or at least without a trend. So we simulate χt
in blocks χit, if µ(χit) < 0 in a block we choose either χit or −χit depending on
max(min(µ(χit), µ(−χit))). This will ensure that we do not have trends that tends
upwards like the first case, and we will not have the problem with an infinite loop
as in the second case. The trend can however get negative, although it is not
negative for a “long time“. But since the trend should not be negative we fixate a
lower limit µl, say 0.1, and return max(µl, µt). This might lead to parts where the
trend is linear on µl for short times, but since we will simulate the volatility about
the trend later, the final series will not be a line. This might not be a perfect
solution, but it solves the problems without adding too much upward bias to the
trends, and it will also allow us to increase the downward slope in the crisis-regime,
should we want to, without worrying about the price going really negative. They
will simply reach the lower limit, and stay there until the regime changes again.
There is an additional change we introduce to the bootstrap sampling. We do
not want to simply replicate history, so we want to add additional variability to
our samples. As mentioned above, in our case there are little noticeable difference
between χ1:T and −χ1:T , the flipped series. There are actually also not much
difference between χ1:T and the reversed series χT :1, and by extension neither
between χ1:T and −χT :1. This can be observed in Figure 10.6, where we have
plotted a block from the freight series with its flipped, reversed and flipped and
reversed series. Had we not known which was the correct one, guessing would have
been difficult, even after looking at Figure 9.3. And all the versions have the same
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Figure 10.6: A freight χt-block with its ordinary, flipped, reversed and flipped and
reversed (respectively i, ii, iii and iv) versions.

characteristics, when thinking of clustering effect and mean (had the mean value
of the series been different from 0, we would have had to subtract it from the block
before transforming, and added it back afterwards). To add additional variability
we therefore use one of these four transformations when we bootstrap χ. Now
we have the possibility to draw steep increases in the LIBOR rate, something we
couldn’t when we only simulated from the historical data directly since its history
only have gentle upwards trend, but a steep downwards (outside of the crisis-
regime). Because we do not want to draw blocks from the crisis-regime when we
are not in the regime, we draw from the blocks up to the regime starts, and from
the regime ends.
So to simulate from the model we first simulate an n long χt-block χi (for example
n = 30) and calculate µ(χi) and µ(−χi). If µ(χi) < 0 choose the µ with the largest
minimum-value, and repeat the procedure with a new block until the the simulated
series is long enough, then return max(µl, µt). It is a little more complicated with
the bootstrap sample, but the algorithm is sketched in Algorithm 3 (when we in
the algorithm use the ceiling delimiter, dxe, it denotes the integer value equal or
greater than x, so d3.6e = 4).



10.4 Comparing with the trend model 63

Algorithm 3: Bootstrap algorithm for the stochastic trend model
Data: The filtered series of χt with estimated parameters, the length of the

output series K and regime indicator st
Result: Estimated µt for t = 1, . . . , K
begin

Divide the series (excluded the crisis-regime) in blocks of length l;
Draw dK/le numbers J from 1 to #blocks with replacement for j in J
do

while st == 0 do
Either flip, reverse, both or do nothing with the block χj with
probability 0.25;
Generate the “glue” between the transformed series and the last
block, add it to the transformed series and call the result χ̂j;
Calculate both µ(χ̂j)) and µ(−χ̂j) if µ(χ̂i) < 0 then

Add max(min(µ(χ̂j), µ(−χ̂j))) to µt
else

Add µ(χ̂i) to µt
while st == 1 do

Choose χ from the beginning of the crisis-regime and onwards;
Calculate µ(χ) and add it to µt

Return max(µl, µt);
end

When we generate the AR-model to glue the different blocks together, we use the
same parameters, φ and σ, as we use when we simulate the series to get as smooth
a transition as possible.

10.4 Comparing with the trend model
To bootstrap from the trend series, we use overlapping block-bootstrap with blocks
of 80 from χt for freight and LIBOR and 90 for bunker. The choice of block-
size comes from simulating 1000 realisations with block-size 10, 20, . . . , 100, and
choosing the one with smallest drift. To achieve this we choose the one that have
the lowest absolute mean deviance from the start value 1

1000
∑1000
i=1 [∑K

k=1 |µik − µ0|],
when µi is the ith trend realisation and µ0 its start value. We choose this because
we want our model to be as close to the initial value as possible on average (i.e.
not diverge away from the initial value).
As mentioned above we sample from the series outside of the crisis, and during
a crisis regime we only sample from the observed crisis. This will make every
simulated crisis-regime identical to what was observed in 2008, and there will also



6410 BOOTSTRAPPING THE SERIES AND SIMULATING FROM THE MODELS

be a limitation on the length of the crisis-regime. It cannot be significantly longer
than what have been observed. A bootstrap draw and a simulation, both with
and without a crisis-regime, can be seen in Figure 10.7. It can be difficult to
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Figure 10.7: A single realisation, where black is simulated from the model and red
is the bootstrap equivalent. The models with regime-changes have a crisis-regime
from t = 400 to t = 500.

ascertain what the big differences between these two models are by only looking
at one realisation, so in Figure 10.8 we can see the average of 1000 draws with
the minimum and maximum value of the series (that is the smallest minimum and
largest maximum of the 1000 series, not of the average series). Here we have also
added the 75% largest generated value at each point in time and the 25% lowest, to
see how the range including 50% of all the observations looks like for the different
procedures. The main difference here is obviously that the bootstrap variant have
a smaller variance, and therefore does not rise as fast as the simulation model
does over the time-span. And, except from the LIBOR series, the range is quite
similar for the two other series. The average value in the model should actually
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Figure 10.8: The average trend series over 1000 runs, where black is simulated
from the model and red is the bootstrap equivalent, with 75% envelopes (dotted
lines).

neither rise nor fall much since χt is situated around zero. However, since the
series is bounded below by zero and not bounded above, it will on average rise.
The larger the variance, the more often it will take large values, and the steeper
the average rise will be (i.e. the trend of the trend). It should also be noted that
the initial value will influence this. A small value (relative to the series) will cause
the model to start closer to its “floor“, and therefore give the trend an upwards
sloping trend whereas a large initial value will not do so in the same extent. This is
observed in the bunker series, where the large initial value keeps the average trend
about its initial value. In fact, should we start with a relative low initial bunker
value, say 100, the resulting average series would have a slightly upwards trend
and look very much like what we observe for the freight series. We can also see
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that the maximum values of the simulated series are larger than the bootstrap ones
in every series, whereas the minimum is about the same (i.e. both methods reach
the “floor“). In the case with the crisis-regime, the main difference is the shape
of the regime as we can see in Figure 10.9. It is now obvious that the bootstrap
variant returns the same shape of the crisis, and the simulation variant does not.
Here the differences in the variances do not influence the model in the same way
it did in the case without the regime change because the regime itself influences
so much. We can also see that the value of χ0 for the LIBOR rates are too low.
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Figure 10.9: The average trend series over 1000 runs, where black is simulated from
the model and red is the bootstrap equivalent, with a crisis-regime from t = 400
until t = 500 and 75% envelopes (dotted lines).

We should choose a value that’s higher, to get results that better fit the observed
fall in rates during the financial crisis in 2008. We might also increase the value
of χ0 for the oil rates.
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10.5 Combining the models
We can now combine what we have found above to simulate realisations with both
stochastic trend and stochastic volatility. First we simulate the trend as described
in the section above. We choose the same trend for BSI and BPI, and we use a
scaled version of the bunker trend as the crude trend. We scale the bunker χt by
the max(χcrude)

max(χbunker) -ratio from the filtered series, and then use this to create µt for the
crude series. We now find the compounded returns of the trend in the usual way
(this one of the reasons we need the trend to be positive, since the logarithm of a
negative number doesn’t exist). When we denote the compounded return of the
trend series at time t as mt we can find a realisation of rt by drawing it from a
normal distribution with mt as its expected value; rt ∼ N(mt,Σt), when Σt is the
simulated correlation matrix found in the way described in a section above. As
before we can either do this by simulating from the model, or by bootstrapping
from filtered state-spaces. A single realisation of this can be seen in Figure 10.10 for
the case without a crisis-regime. As we have seen in the previous section, it is the
trend-model that affect the realisations the most, since they are the part with the
largest variance. It can therefore be interesting to see how the different volatility
sampling behaves when we have given a common trend. It turns out that there is
basically no difference between bootstrapping the volatilities and simulating from
the model when we have given a trend (with the exception of the LIBOR rate
which still can give extreme values on occasions when the volatility is simulated).
An example of this is given in Figure 10.11, where we have given the mean of 1000
realisations of the BPI rates with a common trend and volatilities both simulated
and bootstrapped together with the 75% largest and 25% smallest value at each
time-step for both series. The figure shows quite clearly why stochastic volatility
model with a trend can outperform models without trend. Since the volatility is
modelled on a log-scale, large values will give large variance on the simulated prices.
When a simulated trend tends downward, it will force the drawn returns to lie close
to the trend. Therefore when a trend tends upwards it can lead to large differences
between the prices within the same segment, but when or if it tend downwards
the prices will come together again. This actually reflects what we see for the
freight rates in the historical data (in Figure 2.1), although not so much for the
scaled oil prices. In Figure 10.12 we have plotted one realisation of bootstrapped
volatility without trend, with an upwards trend and with a downwards trend.
Since this figure have the same volatility-structure about different trends, it shows
the differences very clearly. It can also be noted that since the initial value was
quite low, the range of the model without a trend is much smaller than those with
a trend.
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Figure 10.10: A single realisation of the full model with both stochastic trend and
volatility.
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Figure 10.11: The mean of 1000 realisations of BSI with simulated (black) and
bootstrapped (red) volatilities around a common trend, with 75% envelopes.
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Figure 10.12: One realisation of a fixed volatility-structure without a trend, with
an upwards trend and with a downwards trend. As usual the black series is the
BSI and the red is the BPI
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11 Reviewing the model and the results
First we will review our model and the difference between bootstrapping and sim-
ulating the underlying state-space, then we will recommend improvements and
further work.

11.1 About the model
The main problem in this thesis was to describe and implement a model to gener-
ate reasonable realisations of five given price series. The realisations should exhibit
the same internal correlation-structure as the historical prices, and it should be
possible to enforce an outside crisis-regime where all the prices would plummet.
To achieve this we have used the state-space approach to time series, and divided
the model in two parts; a stochastic trend and a stochastic volatility part. When
implementing the model we have also considered two different ways of doing this;
by simulating directly from the model we have chosen for the underlying state-
space, and by bootstrapping those state-space time series.
Our main hope was that the stochastic volatility model was enough to describe the
prices’ behaviour, but it was sadly not the case. The filtered correlation-structure
was not strong enough to mirror what we see in the historical case, so we needed
a common trend-structure to achieve this. It then became most natural to use the
trend-structure to model the fall in prices during a crisis-regime, even though it
would have been possible to do so without modelling an explicit stochastic trend
(for example by defining rt ∼ N(St,Σt), where St = 0 outside of the crisis-regime
and St = a for some a < 0 inside). That our stochastic volatility model did not
return a strong enough correlation-structure might be because the data do not
exhibit it, but it might also be because our model underestimate it. When we
view how our model were able to filter out the correlations for the series of the
generated data it did not perform as well as it did for the volatilities, and this could
lead us to wonder if especially δ1,t have been underestimated by our algorithm. It
should also be noted that both oil rates were well within the normal distribution
assumption on their returns.
By implementing the stochastic trend model we are able to get realisations more in
line with historical observations. A problem with the trend model is how to ensure
that it stays strictly positive, but by using a stochastic trend-model we also get
some extra benefits. One problem with the stochastic volatility model was that
when the prices started at sufficiently small values, it had problems with drawing
larger numbers. We can consider the LIBOR rates which has its last observed price
at about 0.3. To be able to get a value of, for example, 1 it needs an increase of
1.20 on the log scale (r = log( 1

0.3) = 1.2). Of course it doesn’t need to jump from
0.3 to 1 in one time step, but it still need the accumulated increase of 1.20 (i.e.
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∑T
t=1 rt = 1.2). This can be difficult for a model that is basically a series of nor-

mally distributed variables with an average variance of exp(−12.4) = 4.12 · 10−6.
And since the model is on a log scale, it is more difficult to go from 0.3 to 1 than
from 1 to 1.7 (log(1.7

1 = 0.53)), even though the increase in the rate is the same
(0.7). The stochastic trend model, however, does not draw log-scaled variables
from the normal distribution, and will not suffer from this.
When it comes to the difference between bootstrapping and simulating from the
underlying state-space, there are hardly any differences on average for the stochas-
tic volatility model. As the Figure 10.2 shows the average and the envelopes are
almost the same for both models. The only difference being that the maximum
value are somewhat larger for the simulation case. In other words, the models
perform similar on the average case, but since the simulated versions are not con-
strained by the filtered series it can sometimes give more extreme values. The
exception being the LIBOR rate which has extreme values so large they distort
the averages.
The trend model has larger differences between its simulated and bootstrapped
versions. The bootstrapped versions give more stable realisations, and since the
volatility model will affect the series as well, it might be better to use this when
simulating without any crisis-regime. When adding a crisis-regime all series are
drawn downwards, and this will lessen the upwards trend the simulated trend ex-
hibit over a long time-span. The bootstrap version will also have a trend-structure
that is identical during the crisis-regime, no matter the value of the series when
the crisis start. In the case where we simulate the trend, it is possible to increase
χ0 if one thinks that the value of a series at the beginning of a crisis in a given
realisation will be larger than it was in 2008, or just if one thinks the estimated
values of χ0 are too conservative (as it indeed seems it is for the LIBOR and oil
rates when we watch Figure 10.9).

11.2 Improvements and further work
For parsimonious reasons we would ideally like to keep the model as simple as
possible, and therefore add as few stochastic variables as we can. It could therefore
be fruitful to try different multivariate volatility models to see if they might get
better results for the correlation, especially for the freight rates. It could also be
smart to try to add a mean-reverting property to the LIBOR rate. Most interest-
rate models have this, and it would stop the rate from getting “stuck” at small
values and from getting the extremely large values simulation sometimes leads to.
Instead of focusing on modelling the stochastic volatility, we could just as well focus
on the stochastic trend model, and use a simple normal or student-t distribution for
the volatilities. We would then of course use a multivariate model for all the series,
which might better capture the correlation between the freight series and between
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the oil series. The problem would still be to find a smart way to keep the trends
from going negative. In this thesis we have also assumed that the trend between
freight and oil is uncorrelated. When talking to the risk group at Western Bulk
it seems there have historically been a slow moving negative correlation between
those series, but that this might have changed lately. Underlying macro-trends
that affect both the freight rates (of dry bulk) and the oil rates might force both
prices up in periods of industrial expansion, but this might not be observable on
daily or even weekly prices and will also be influenced by the fleet utilisation. So
oil and freight will presumably be more correlated in a market where the oil rates
are high and few ships are available, but have little or no correlation when the
market is different from this. It can be helpful to implement these factors within
the model.
When looking at the freight return series we observed that there might be some
memory property present. So we used a built-in function in R to fit both series
to an AR(1) model, and used the fitted residuals rather than the return-series
directly in the stochastic volatility model. We then simulated the residuals of the
freight series with the returns of the LIBOR and oil rates. We could now simulate
realisations of the residuals, and together with the fitted φ value for the return
series, we could create the realisations for the returns for the freight rates. The time
did not permit us to do extensive research, but it would seem that the residuals
had somewhat less internal correlation as well as being less volatile than the return
series directly. However, combined with the trend model we would then get series
that seemed more correlated, since the volatility about the trend decreased, even
though there seemed to be less correlation between the two series of residuals. The
simulated values also looked more like the historical observations, since they now
had the same smooth characteristic. When now applying the Jarque-Bera test on
the observed rt, the freight residuals still did not come from a normal distribution;
they were now more asymmetric and the BSI-series had quite heavy tails. It could
be interesting to try different models for the freight returns (e.g AR(k) for k > 1
or even a moving average model), and see how they are correlated and what kind
of returns simulating their residuals would give.
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A Probability Distributions
There are different parametrisations for some of the probability distributions, so
here is a list of the definitions for the densities of the distributions we have used.

Distribution 1 (The normal). A continuous random variable, X, has a normal
distribution, denoted X ∼ N(µ, σ2), if its density follows

f(x) = 1√
2πσ

exp
{
−(x− µ)2

2σ2

}
, −∞ < x <∞,

when E(X) = µ and Var(X) = σ2.

Distribution 2 (The beta). A continuous random variable, X, has a beta distri-
bution, denoted X ∼ β(ω, γ), if its density follows

f(x) = Γ(ω + γ)
Γ(ω)Γ(γ)x

ω−1(1− x)γ−1, 0 ≥ x ≥ 1,

when E(X) = ω
ω+γ , Var(X) = ωγ

(ω+γ)2(ω+γ+1) and Γ(·) is the gamma function (not
to be confused with the gamma distribution).

Distribution 3 (The gamma). A continuous random variable, X, has a gamma
distribution, denoted by X ∼ Γ(α, β), if its density follows

f(x) = βαxα−1 exp(−βx)
Γ(α) , x ≥ 0,

when E(X) = α
β
, Var(X) = α

β2 and Γ(·) is the gamma function.
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B Stochastic volatility plots

B.1 Generated data

h_1

0 500 1000 1500

−
10

−
8

−
6

h_2

0 500 1000 1500

−
10

−
8

−
6

h_3

0 500 1000 1500

−
11

−
9

−
7

h_4

0 500 1000 1500

−
10

−
8

−
6

h_5

0 500 1000 1500

−
9

−
7

−
5

Figure B.1: The filtered series for ht with the correct series in red.
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Figure B.2: The filtered series for δt,1:5 with the correct series in red.
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Figure B.3: The filtered series for δt,6:10 with the correct series in red.
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B.2 Real data
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Figure B.4: The filtered series for δt,1:5.
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Figure B.5: The filtered series for δt,6:10.
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