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Chapter 3

f._.ightness, E)rightness, Contrast, and Constancy




Technically, we can divide color space into
one luminance (gray scale) dimension and
two chromatic dimensions. It is the
luminance dimension that is most basic to
perception. (p69)

Luminance can be regarded as but one of
three color dimensions, albeit the most
important one. (p69)

The lesson is that visualization is not good

for representing precise absolute numerical
values, but rather for displaying patterns of
differences or changes over time, to which

the eye and brain are extremely sensitive.

(p70)
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Neurons, Recel:)tive f:ielcls, And

Brightness lusions

* In the Hermann grid llusion, shown in

Figure 5.4, black spots appear at the
intersec- tions of the bright lines. The
explanation is that there is more
inhibition at the spaces between two
squares, 0 theg seem brighter than the

regions at the intersections.

In the Hermann grid illusion, shown in Figure 3.4, black spots appear at the intersec- tions of the bright lines. The explanation is that there is more inhibition at the spaces between two squares,
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! Figure 3.4 Hermann grid illusion. The black spots that are seen at the intersections of

! the lines are thought to result from the fact that there is less inhibition when a receptive

! field is at position (a) than at position (b).
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s The term simultaneous
brigh‘mess contrast is used
to explain the general effect
wherebg a gray Patch
Placecl on a dark
backgrouncl looks |ighter
than the same gray Patclﬁ on
a light backgrouncl. Figure
SESR lustrates this effect
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* Figure 3.6 demonstrates a
Mach band eHect. At the
Point where a uniform area
meets a luminance ramp, a
bright band is seen. In
general, Mach bands appear
where there is an abrupt
change in the first derivative
of a brightness Proﬁle.
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!chure 3.6 Mustration of Mach banding. (a, b) Dark and bright Mach bands are evident

t the boundaries between the internal triangles. (¢) The red curve shows the actual
tnghtness profile between the two arrows, The blue curve shows how the application
of a DoG filter models the bright bands that are seen.
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* AVOiCl usin g gra 9 SCBlC as a naps are reas using J('ﬁ':gi?:j: (:HJ:“MNTPH Frayses
method for rePresenting
more than a few (two to

four) numerical values.

Figure 3.9 Three different shading methods used in computer graphics. Flat shading on
the left is subject to the Chevreul illusion. Gouraud shading in the center results in Mach

banding. Phong shading, on the right, produces something that lcoks smooth even though
t is based on the same number of facets.
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3.11 Itis difficult to see if the X is inside or outside of the bounded region.

g a Comsweet contour makes it possible to see the solution much more rapidly.
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*» Consider using adjus‘cments n

luminance contrast as a highlig]ﬁting
method. It can be aPPlied bg reclucing
the contrast of uniml:)ortant items or ]33
loca”g adjust~ ing the backgrouncl to
increase the luminance contrast of

critical areas.

It is worth emphasizing that it is not the
amount of Iight that leads to visual
distinct- ness, but the amount of
luminance contrast that occurs with the
background. Black on white is as

distinctive as white on black.
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Figure 3.12 Seurat deliberately enhanced edge contrast to make his figures stand out.
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(a) (b)

}'igurc 3.13 Two methods for highlighting a node-link diagram. (a) The contrast is reduced ‘
for the less important parts of the network. (b) The background contrast is increased using | f
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|_uminance (PESO)

* | uminance is the easiest to &eﬁne; it refers to the

measured amount of light coming from some regjon
of space. It is measured in units such as candelas per
square meter. Of the three terms, onlg luminance
refers to something that can be Phgsica”g measured.
The other two terms refer to Psgchological variables.

We are about 100 times less sensitive to Iight at e

nanometers than we are to |ight at 510 nanometers

Use a minimum 3:] luminance contrast ratio between a
Pat‘cem and its background whenever information is
rePresented usingﬁne detail, such as texture

variation, small-scale patterns, or text.

the 1SO goes on to recommend that a 10:1 ratio is
optimal for text, and the same can be said of any

clisplag of detail.
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igure 3.14 The CIE W) function representing the relative sensitivity of the human eye

fto light of different wavelengths.
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Brightness and Ligh’mess (P8Z)

- Brightness genera”g refers to the Perceived
amount of light c:oming from a source. In the

Fo”owing discussion, it is used to refer onlg

to things that are Percei\/ecl as self-luminous.

Sometimes People talk about bright colors,

but vivid or saturated are better terms.

. Ligh’mess genera”g refers to the Perceivecl
reflectance of a surface. A white surface is

|ight. A black surface is dark. The shade of

Paint is another concePt of lightness.

* It cannot be emphasized enough that
luminance is comPIetelg unrelated to

Perceivecl Iightness or brightness.

e — e e g e < e
.

,‘ A o \'\{
~N A

| A Pl »

-~ .

! A A9

| e \0: !
' PN 1
I < "_. AQ ‘
| . 0 !
| S

IFigure 3.16 The eye/brain system is capable of functioning over a huge range of light
Jevels. The amount of light available on a bright day at the beach is 10,000 times greater |
;man the kight available in a dimly lit room. ‘

|
!
|

| |

e o S S — — L —

v




Perce[:)tion of Surface Lightness
(p87)

« Inthis case, the most
| mportant factor differen-
tiating black from white is the
ratio between the specular
and the nonspecular
reflected |ight. In the all-
black Worlcl, the ratio

betwcen specu!ar and

nonspecular is much |arger
than in the all-white world.
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Contrast Crispening (89)

o 1f subtle gray- evel

gradations within the
bounds of a small object
are important) create low-
uminance contrast

between the object and its

Dackgrouncl.

| |
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Figure 3.20 (a) All the gray strips are the same. Perceived differences between gray-scale
alue

!
]
]
|
!
]
‘\'a s are enhanced where the values are close 10 the background gray value, an effect known!
las cnispening. (b, ¢, d) The differences in the grays of the gray lattice are more evident (c) man‘
:

l

with either the white (b) or the black (d) backgrounds, another example of crispening.
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* |t is not much of an overstate- ment
to say that color vision is |arge|9
suPerﬂuous in modern life;
ne\/ertl’)eless, coloris extremelg

useful in data visualization.

* It is useful to think of color as an
attribute of an object rather than as
its Primarg characteristic. It is
excellent for labeling and
categorization, but poor for displag~
Ing shape, detail, or sPatial laﬂout.

lFigure 4.1 Finding the cherries is much easier with color vision.




Color Blindness (P

+ About 10% of the male Popula’tion and
about 1% of the Female Population have

some form of color vision deﬁciencg.

- CIE 1976 Chromaticity diagram
80 .

630 i Dell gamut
00 ¢%0 a0 i
) 880

» The most common deficiencies are
explained }39 lack of either the |ong~
wavelength~sensitive cones (Protanopia)
or the medium~wave|ength~sensitive cones

(deuteranopia) :

1931 2-degree observer

* Both Protanol:)ia and deuteranopia result

N an mab:lltg to dis- tmguxsh red and

Figure 4.8 CIE Lu'v' UCS diagram. The lines radiating from the lower part of the diagram
are called tritanopic confusion lines. Colors that differ along these lines can still be
distinguished by the great majority of color-blind individuals.

green, meaning that the cherries in Figure
41 are ditficult for People with these

deficiencies to see.
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o The darker the Colorsj the fewer we can see.

* Small Patches of light give ditterent results than

|arge Patches. In general, we are much more sensi-

tive to differences between large Patches of

color. When the Patches are sma”, the Perceivecl

diferences are sma

in the He”ovw—-blue @

ler, and this is eSPecia”H true

irection. Ultimatelg, with very

small samplesj small-field tritanol:)ia occurs; this is

the inabi itg to clistinguish colors that are ditferent

in the ye low—=blue direction
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» Inthe larger Patches, the
low- saturation colors are
easy to clistinguish. Theg
are not so easy to
clistinguish in the small
Patches.

» Use more saturated colors
when color coc]ing small
sgmbols, thin lines, or other
small areas. Use less
saturated colors for cocling

Iarge arcas.

|
i
|

:

Figure 4.9 (a) Large samples of saturated colors, (b) Large samples of the same colors

(g)

ess saturated, (c) Small samples of the same saturated colors., (d) Small samples of the
ess saturated colors,
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Cross-cultural naming of colors

(p. 109)

* In languages with onlg two basic color
words, these are alwags black and white;
if a third color is present, itis alwags red;

the fourth and fifth are either ge”ow and

then green, or green and then ge”ow;

the sixth is alwags blue; the seventh is
brown, followed !:)9 Pink, Purple, orange,

and gray N NO Particular order.

» The cross-cultural evidence s’cronglg
supports the idea that certain colors—
speciﬁca”g, red, green, 9e”ow, and blue
—are far more valuable in coding data
than others

S ————————————————————y
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Green " Yelow
; ] N ; ) Pink l
White - ( g Purple
! 4 , - , |
| Black l | Red ' ) l Blue ] l Brown II Orange r !
‘ - - e — ] / - - - - Gray ;
! Yellow I Green

{
:Figuro 4.11 This is the order of appearance of color names in languages around the world, |
laccording to the research of Berlin and Kay (1969). The order is fixed, with the exception
lihat sometimes yellow is present before green and sometimes the reverse is the case.
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Unique hues (PIO9)

o If subjects are given control over a device that changes the 5Pectra| hue of
a Patch of light and are told to acljust it until the result is a pure 9e”ow,
neither reddish nor greenish, theg do so with remarkable accuracy. In fac‘c,

theg are tgpica”g accurate within 2 nm (Hurvich) 1981)

* lnterestinglg, there is goocl evidence for two unique greens. Most People
set a pure green at about ol fm, but about a third of the Popula’cion Sees
pure green at about 525 nm (Richards, 1967)

s Itisalso signiﬁcant that unique hues do not change a great deal when the
overall luminance level is changecl (Hurvich, 1981). This suppor’cs the idea
that chromatic per- cePtion and luminance Percel:)tion rea”g are

independent




Categorical colors

If a color is close to an ideal red or an ideal green, itis
easier to remember. Colors that are not basic, such as

orange or lime green, are not as casy to remember.

The fact that onlg eight colors Plus white were consistentlg

named, even under these highlg standardized conditions) Yollow  Orange

stronglg suggests that onlg avery small number of colors : s L/;;
Aqua © e\
White Pink

can be used egectivelg as categor9 labels.

The pure monitor recl was actua”g namecl orange most OF
Purple
the time. A true color red required the addition of a small ’

amount from the blue monitor Primarg.

Figure 4.12 The results of an experiment in which subjects were asked to name 210 colors
o X ) 3 produced on a computer monitor. Outlined regions show the colors that were given the
The sPechC regjons of color space occupxecl bg Par’cxcular same name with better than 75% probability
colors should not be given much weight. The data was
obtained with a black background. Because of contrast
effects, different results are to be expected with white and

COIOY’Cd backgrounds.
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Prol:)erties of color Channels

* The most signhqcant differences are between the two chromatic

channels and the luminance channel, although the two color

channe]s also Cliﬁ:er 1Crom each other.

To &isplag data on the luminance channel alone is easy; itis
stimulated bg Patterns that vary onlg from black to white through
shades of gray.

Patterns can bc constructcd ’cha’c vary onlg 1Cor the rc&~green QIR
the 3e”ow—~b|ue channel. A kcg qualitg of sucha Pattem is that its
coml:)onent colors must not differ in luminance. This is called an

isolu- minant or cquiluminous Pattern

o Accorcling toa stuclg bg Mullen (1985), the recl——green and 5e||ow——

blue chromatic channels are each capable of carrying on19 about
one-third the amount of detail car- ried bg the black—white
channel. Because of this, Purelg chromatic differences are not

suitable for displaging any kind of fine detail. Figure T Ch

* When small sgmbols, text, or other detailed graphical

representations of information are c]isplagccl using colorona
digerentlg colored backgrouncl, alwags ensure luminance contrast

with the background This guidcline is a variation of Che e

e ————————————— ettt

Figure 4.13 Brown text on a blue gradient. Notice how difficult it is to read the text where

.ﬁ
|
i

(AMPe 1S especally d cU

because the chromatic difference is in the yellow i
o th

he luminance is equal, despite a large chromatic difference. Brown is a dark yellow so
hese colors differ on the blue-yellow channel
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Spatial sensitivity, stereoscopic

ciepth, motion sensitivity, form

» - B, Al gt lingny

* [G4.2] When small sgmbols, text, or other detailed grapiiical
rePresentations of information are dispiagec] using colorona
diicicerentlg colored backgrouno, alwags ensure luminance
contrast with the backgrounci. This guicieiine is a variation of
(S

* [G4.3] Ensure aciequate luminance contrast in order to

define features imPortant for Perceiving stereoscopic &epth.

* Motion Perception appears to be Primariig based on

information from the luminance channel.

* [G4.4] Ensure adequate luminance contrast in order to

define features important for Percei\/ing moving targets.

- Percel:)tion of shape and form appears to be Processed

main|9 tlﬂrough the luminance channel (Gregorg) 1977).

* [G4.5] When appiging sha&ing to define the shape of a

curved sumcacej use aciec]uate luminance (as oPPosed to

clﬁromatic) variation. This is a supplement to G2.1.

. m—
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* [G4.6] if large areas are defined using nearlg

equiluminous colors) consider using thin border
lines with large luminance differences (from the

colors of the areas) to help define the shal:)es.

To summarize this set of Properties, the red—
green and ge“ow—-blue channels are infe- rior to

the luminance channcl n almost every respec‘c.

The implications for data clisplag are clear.
Purelg chromatic differences should never be
used for &isl:)laging o?ec’c shape, objec’c

motion, or detailed information such as text.

From this perspec- tive, color would seem
almost irrelevant and certainlg a secondarg
method for infor- mation displag; nevertheless,
when it comes to cocling information, using color
to clisplag data categories is usua”g the best

choice

Figure 4.14 Even large shapes are seen more clearly if a luminance contrast boundary
is provided
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Color appearance

» Color (as oPPosecl to luminance) Processing, it would appear, does not

help us to understand the shape and Iagout of objects inthe
environment. Color does not help the hunter aim an arrow accuratelg.
Color does not help us see shal:)e from shading and therebg shape a
lump of clag or bread dough. Color does not help us use stereo- scopic

clepth to guicle our hancls when We reach out to grasp something.
* Color creates a kind of visual attribute of objects

» This suggests a most imPor‘cant role for color in visualization—mamelg,
the cocling of information. Visual o}:ﬁ'ects can represent complex data

entities, and colors can natura”9 code attributes of those objects
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Color Contrast

+ Chromatic contrast occurs in a way that is
similar to the ligh’mess contrast effects

discussed and illustrated in Cl’xaPter 3.

Figure 415 shows a color contrast illusion.

=iy coml:)aring an image on a computer
screen with that same image Printed.
Individual colors will undoubt- ec“g be
very clhcicerent, but the overall impression
and the information conveged will be

mostlg Preservecl.

» This is because relative color is much

more imPortant than absolute color.
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Fuqurc 4.15 A color contrast illusion. The ellipses are all the same color but seem pnku|

lon the right and bluer on the left,
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Saturation

* A high~saturation coloris vivid, and a low-saturation color is close

to black, white, or gray.

* Interms of the color opponcnt channcls, high-satura’cion colors are
those that give a strong signal on one or both of the red-green and

gC”OW-—-blUC channels.

Y Thcse contours (ﬁgurc 4 16a) 2 derived 1Crom studies OF human
Perception, show that it is Possible to obtain much more highlg
saturated red, green, and blue colors on a monitor than 36”0\»\1,

cgan, Q)f PUFP]C valucs.

e F‘igure 416 (b) shows cc]ual~ saturations contours (not derived from
Perception) in the Popular hue, saturation, and value (HSV)

transformation commonlg used in computer graplﬂics (Smith, 1978).

2in Particular, pure recl, green, and blue on a monitor will be more

Perceptua”g saturated than pure cyan, magenta, or 3e”ow

* [G4+7f using color saturation to encode numerical quantitgj use
greater saturation to represent greater numerical qua ntities. Avoid

using a saturation sequence to encode more than three values.

(b)

Figure 4.16 (a) The triangle represents the gamut of colors obtained using a computer

monitor plotted in CIE chromaticity coordinates. The contours show perceptually
determined equal-saturation contours. (b) Equal-saturation contours created using the
HSV color space, also plotted in chromaticity coordinates.
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Brown

+ Brown is one of the most mgsterious colors. Brown is dark

9€”OW

o Unlike recl) blue, and green, brown recluires that there be a
reference white somewhere in the Vicinitg foritto be Perceivecl.

Brown appears qualitativelg ditferent from orange 9@”0\»\/

o If color sets are being devised for the purposes of color
cocﬂing——ﬂcor example, a set of bluesJ a set of recls, a set of
greens, and a set of ge”ows—m in the case of HC”OWS, brown

m39 not bC recognizecl as a set member.
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APPIication 1. Color
Speciﬁcation Interfaces

and Color SPaces

Color spaces

Figure 4.17 shows how hue and saturation can
be laid out in two dimensions, with hue on one
axis and saturation on the other, based on the

HSV transtormation of monitor Primaries.

s T R e W g g 5 T e S, A Wy B AT W e Ty

Figure 4.17 This plot shows hue and saturation, based on Smith's (1978) transformation :
pf the monitor primanes.
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* [G4.8] Inan interface for sPecitging colorsJ consider laying out the
recl—-green and He”ow—-blue channel information on a Plane. Use a

seParate control for sPecitging the dark~ligt1t dimension.

Figure 4.18 (a) shows a color circle with red, green, 9e”ow, and blue
cleﬁning oPPosing axes. Many such color circles have been devised
over the past century. Ttieg differ mainlg in the sPacing of colors
around the PeriPnerg.

Figure 4.18 (b) shows a color triangle with the monitor Primaries, red,
green, and blue, at the corners. This color lagout is convenient
because it has the property that mixtures of two colors will lie on a line
between them (assuming proper calibration); however, because of
linear interPo!ation, onlg avery weak 3e”ow occurs between the red
and green corners (50% red, 50% green). The strongest ge”ow ona
monitor comes from naving both red and 3e”ow at full strengtn

I:igure 4.18(c) shows a color square with the oPPonent color Primaries,

red~green and gellow~blue, at oPPosite corners (Ware & Cowan,

1990).

Figure 4,18 A sampling of four different geometric color layouts, each of them embodying
l:igure 418 (d) s]_lows a co!or hexagon Wittl the colors red) 5e”ow, the idea of a chromatic plane. (a) Circle. (b) Triangle. (c) Square. (d) Hexagon. '
green, cyan, blue, and magenta at the corners. This rePresents a Plane ,
ttirougti the single~t|e><cone color model (Smith, 1978). The tiexagon ‘l i
rePresentation has the advantage that it gjves both the monitor
Primaries (red, green, and blue) and the Print Primaries (cyan, i

magenta, and 9e”ow) Prominent Positions around the circumference. :

[G4.9] In an interface for designing visualization color schemes,

consider Providing a method for s]ﬁowing colors against different

backgrouncls.
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Color Naming Sgstems

* The Natural Color System (NCS), a standardized color

naming system, has been developecl based on Hering’s
oPPonent color theory (1920). NCS was developed in
Sweden and is widelg used in Englancl and other European

countries.

* As shown in Figure 4.19, red, green, yellow, and blue lie at the

ends of two orthogonal axes.

Colors are also given independent values on a black—white

axis bg a”ocatinga blackness value between 0 and 100.

* A third color attribute, intensitg (roughlg corresponAing to

saturation), describes the distance from the gragscale axis.
INGES for example, the color spring ngmph becomes 0030~
G80Y20, which expands to blackness 00, intensity 0, green
80, and He”ow 20 (Jackson et al., 1994)

In North America, other systems are more Popular than NCS.
The Pantone® system IS widelg used in the Printing industrg,
and the Munsell system IS an imPor’cant reference for surface

colors.

:
!

¥ &

\ ©
B P
.JO

Figure 4.19 The Natural Color System (NCS) circle, defined midway between black and
Iwhite. Two example color names are shown in addition to the “pure” opponent color

primaries. One is an orange yellow and the other is purple.
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+ Chromatic co&ing can often be

APPIication 2: Color for Labeling (Nominal Codes)

(P. 122)

» Colorcanbe extremelg effective
when we wish to make it easy for
someone to classi{g visual sgmbols
into separate categories; giving the
objec’cs distinctive colors is often the

best solution.

emplogecl N a way that onlg
minima”g interferes with data

Prcsentecl on the luminance channel.
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Distinctness,

[G4.11] Consider using, red, green, ge”ow,

ancl b[UC to COIOF COC!C sma” S\ljl’ﬂbOlS.

A method for reducing contrast effects is to
Place a thin white or black border around
the color~cocled objec‘c.

In addition, we should never displag codes
using Purelg chromatic differ- ences with
the background. There should be a
signiﬁcant luminance difference in addition

to the color difference.

[G4.12] For small color-coded sgmbols,
ensure luminance contrast with the back-

ground as well as |arge chromatic difference

Unique hues

|
’ (a) (b)
! . . ;
] |
5
! B * - . "
; (c) (d) {
} e o0 ... A . ...

o ® e » ® ® ® &
'. o’ ...'.'. o ...'.°. I
|

Figure 4.20 The convex hull of a set of colors is defined as the area within a rubber band
that is stretched around the colors when they are defined in CIE tristimulus space.
Although illustrated in two dimensions here, the concept can easily be extended to three
dimensions., (a) Gray is within the convex hull of red, green, yellow, and blue, (b) Red

lies outside the convex hull of green, blue, yellow, and gray. (c) The gray dot is difficult
ito find in a set of red, green, yellow, and blue dots. (d) The red dot is easy to find in a set of
jgreen, blue, yellow, and gray dots.
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Contrast with backgrouncl, Color blindness, Number

[G4.15] i colored sgmbols may be near|9 isoluminant
against parts of the backgroun&, add a border havinga
highlg contrasting luminance value to the color, for example,
black around a 5e”ow sgmbol or white around a dark blue

ngbOl.

Color-blind PCOPIC cannot distinguish colors that differin a

recl—green direction.

Almost everyone can distinguislﬁ colors that vary ina
9c”ow~b|ue direction, as shown in Figure 4.8.
UnFortunatelg, this drastica”y reduces the design choices

that are available.

[G4.14] To create a set of sgmbol colors that can be
distinguishe& bﬂ most color- blind individuals, ensure

variation in the genow-blue direction.

[G4.15] Do not use more than ten colors for coding sgmbols
if reliable identification is requirecl, especia”9 if the sgmbols

are to be used against a varietg o1c backgrouncls.

; @ o o o o '8 W
] © L]
; @ @ L]
; ® o « @ o @
} o 0 o
. @0 ©0 ©0
:

|

!

!

hgure 4.21 (a) Note that at least one member of the set of six symbols lacks distinctness
gainst each background. (b) Adding a luminance contrast border ensures distinctness

against all backgrounds. (¢) Showing color-coded lines can be especially problematic.
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Field size f’

* [G4.16] Use low-saturation colors to color code Iarge

areas. Gcnera”g, |ight colors will be best because
there is more room in color space in the high-lightness

rcgion than in the |ow~ligh’mcss rcgion.

[G4.171 When color coding large backgrouncl areas
overlaid with small colored sgmbols) consider using all
|ow~saturatior1, higl%value (Pastel) colors for the
background, together with high~saturation sgmbols

on the Foregrouncl.

[G4.18] When l‘niglﬁlighting text bg c]ﬁanging the color
of the Font, itis imPortant to maintain luminance
contrast with the background. With a white
backgrouncl, l‘nigl*1~saturation dark colors must be
used to cl*xange the font color. Alternativelg, when
cl‘nanging the backgrouncl color, low-saturation Iight
colors should be used if the text is black on white.

s T ety e W g T e My 4
-

P

vy T T g

Figure 4.22 On the left is a map using low-saturation light colors for the area coding and I
high-saturation dark colors for the town and city symbols and linear features. On the :
right, a much worse solution shows high-saturation coding for areas and low-saturation
isymbols and linear features. Maps were generated using ColorBrewer2 (http://

colorbrewer2.org) .
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Conventions

. Color-cocling conventions must sometimes be taken into
account. Some common conventions are red = ho‘c, red =

danger, blue = colcl, green = lhce, and green = go

elfy China, for example, red means life and gooc] Fortune, and

green sometimes means death.

* The Fo“owing is a list of 12 colors recommended for use in
coding: red, green, ge”ow) blue, black, white, Pink) cyan,
gray, orange, brown, Purple. Theg are llustrated in Figure
24,

* The first four colors, toge’cher with black and white, are
clﬁosen bccause theg are the unique colors t]ﬁa‘c mark the

ends oF the oPPoncnt color axes.

< The entire set corresponcls to the 1 color names Founcl to be
the most common in the cross~cu|tural study carried out bg

Berlin and Kay (1969), with the addition of cyan.

* The colors in the first set of six would norma”g be used

bCFOI”C ClﬁOOSiﬂg an9 FI”OITI tl"lC SCCOY’ICI set OIC SIX.

® O 06
|’ -.| . .

IFigure 4.24 A set of 12 colors for use in labeling. The same colors are shown on a white
and a black background

T TR T e ho v S — g

. m— - - e




IRV

e o i -

Cn D e i, o iy

* Sometimes it is useful to group color codes into families.

This can be done bg using hue as a Primarg attribute
Aenoting {:amilg membership, with seconclarg values
maPPed to a combination of saturation and Iightness.

Figure i) illustrates some examples.

Genera”g, we cannot exPect to get away with more than
two different color steps in each Familg. The canonical
recl, green, and blue hues make goocl categories for

cleﬁning families.

Yellow is not so good because dark 9e”ow s Perceivecl as
belonging to a different Familg and ge”ow has few

discriminable saturation steps

Interior designers often consider a Familg of warm colors
(nearer to red in color sPace) to be distinct from a Familg
of cool colors (nearer to blue and green in color sPace) .

although the Psgchological va!iditg of this is questionable

Interior dcsigncrs often consider a {:amilg of warm colors
(nearer to red in color sPacc) to be distinct from a Familg
of cool colors (nearer to blue and green in color space),

altlﬂough the Psgchological valiclitg of this is questionable

000000

{b) Pairs related by hue; family members differ in saturation and lightness. (c) A family
of cool hues and a family of warm hues,

Figure 4.25 Families of colors. (a) Pairs related by hue; family members differ in saturation.
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Application 3.
Color Sequences

for Data Maps

The most common coding scheme used in data
visualization is a color sequence that aPProximates
the Phgsical spectrum, like that shown in Figure
426 (]3) ) Although this sequence IS ﬁequentlg used

n Phgsics and other clisciplines and has some

useful prop- erties, it 1s not a Perceptual sequence.

Figure 4.26 The same data showing ozone concentrations

represented using (a) grayscale and (b) spectrum approxim

Iimages cowtesy of Penny Rheingans (Rheingans, 1999).)

in the southem hemisphere is |
ation pseudocolor sequences, |
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* Pigure 4.27 shows seven different
color sequences, but which is best

and whg?

+ The whole sPectrum is not
Pcrceptua”g orclered, although
short sections of it are. For example,
sections from red to 3e”ow, 9e”ow 55
green, and green to blue all vary
monotonica”y (theg continuously
increase or decrease) on both the
red— green and ge”ow~b|ue

channels.
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Figure 4,27 Seven different color sequences: (a) Grayscale. (b) Spectrum approximation, [
c) Red-green. (d) Saturation. (e, f) Two sequences that will be perceived by people ¢
suffering from the most common forms of color blindness. (g) Sequence of colors in i
which each color is lighter than the previous one. :
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Form and Quantitg

|

* Because the luminance channel helps us see forms, a
gragscalc sequence should allow us to see forms
much better than pure color sequences (no luminance
variation) . See Figure 4.26(a). The higlﬂs are white,
the lows are black, and complex swirling patterns can
be seen in the ozone concentrations. Look at Figure

4.26(b). Here red, green, and blue areas clearlg stand

A

(b) (c)

out, but this visual segmentation is mean- ingless; itis
not clear which areas are high and low) and much less

detail is seen overall.

B e — PSR —

* [G4.19] Use a sPectrum aPProximation PSCUC!OCOIOF IFigure 4.28 Sequences on a chromaticity diagram. (a) Spectrum approximation.
; > Y : (b) Blue-red sequence. (c) Saturation sequence.
SCC]UCHCC 1COF aPPllcatlonS Where its use 1s CICCPIE
embedded in the culture of users. This kind of color

sequence can also be usecl where the most important

sequence is used, the spacing of the colors should be

|
:
!
rec]uirement S reacling map values usinga keg. it this i
careFu”y chosen to Provicle discriminable stePs. g
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* [G4.20] fitis important to see highs, lows, and

other Pattems ata glance, use a Pseuclocolor
sequence that monotonica”g INncreases or
decreases in luminance. If reacling values from a
keg is also imPortant, cgcle through a Varietg of
hues while trencﬂing upwarcl or downward in

luminance.

A better choice may be to clesign a sequence
that cgcles through a varietg of colors, each
one Iighter than the Previous. Sometimes this is
called a spiral color sequence, because it can be

thought of as spiraling quarcl in color space.

The clesigner of such a sequence can take
advantage of the fact that monitor blue has
much lower luminance than monitor red, which in
turn has lower luminance than moni- tor green.
Ye”ow, being the sum of red and green, has a
very high luminance, almost cqual to white. This
is the basis for the sequence clesign shown on
the right in Figure 4.29.

3

I
&
|
|
‘Figure 4.29 The same data represented with saturation, spectrum, and spiral color

!sequences. The spiral sequence makes it possible to easily see both the highs and lows,
'Ps well as read values accurately from a key
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Interval Pseudocolor Sequences,
Ratio Pseudocolors

* TJo support unskilled map readers,

contours can be useFu”3 combined
with Pseuclocoloring, as shown in
Figure 4.30(a). Even better may be a
stepped Pseudocolor sequence as
shown in Figure 430 b).

No known visualization technique IS
cal:)able of accuratelg conveying
ratios with any Precision; however, a
sequence can be clesigned that
egectivelg EXPresses a zero Point

ancl numbers above and bClOW ZCIO.

.
o ——

s T e e W g 5. T e Mg, A Wy B AT W e Ty 5 -

Ifigure 4.30 (a) Contours can show equal intervals in the data although numerical labels
must be added for most applications. (b) A sequence of colors in discrete steps may be l
imore reliably read using a key than a smoothly blended sequence
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* The example n l:igure 5 shows a map
of the stock market Providecl 139
Smartl\/\oneg .com. Market
Capitalization IS rePresentecl bg area,
luminance encodes the magnitucle of
value change inthe Past year, and

green-recl CﬂCOClCS gains ancl lOSSCS.

2 SPence and Efendov 2001 found that
a recl~green sequence was most
effective, conﬁrming the greater
informa- tion-carrying caPacitg of this
channel comparecl to the 9e”ow-blue

channel.

.
!
!
i
|
|
Figure 4.31 A color sequence with black representing zero, Increasing positive values |
are shown by increasing amounts of red. Increasing negative values are shown by
Increasing amounts of green, The map itself is a form of treemap (Johnson & Shneiderman |
' - % !
[1991). (Courtesy of SmartMoney.com.) !
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Bivariate Color equences (P.B‘H

Sen general, it is better to map data dimensions to Perccptual color

dimensions. For example:

* Variable one = hue

* Variable two = saturation
or

* Variable one = hue

* Variable two — lightness

I:igure G o 2 gives an example of a bivariate color sequence from
Brewer (1996a) that maps one variable to 9e”ow—-b|ue variation and
the other to a combination of light—-dark variation and saturation. It
suffers from the usual Problem that the low-saturation colors are

difficult to clistinguish.

* As a word of caution, it should be noted that bivariate color maps

are notoriouslg dif- ficult to read.

We do not seem to be able to read different color dimensions in a way

that is higHg seParaHe.

i Pseudocoloring is not the only way to displag a two-dimensional

scalar field. Genera”g, when the goal is to displag two variables on
the same map, it may be better to use visual textlire; height
difference, or another channel for one variable and color for the
other, in this way maPPing data dimensions to more Perceptua”g

seParaHe dimensions

-los

-
AL i PRV SR A

Y g

—_— .

e & i o

= Percent Change, 1990 to 2000
. VC:'(~ Pl and

’i:;: ) Popul 1
) 1 opulation Density, 1990

T s T Rty e W g 5 T Mg AWy @S

T P

- —

Percent (hange
in populaton

Figure 4.32 A bivariate coloring scheme using saturation and lightness for one varniable
Lnd yellow-green-blue hue variation for the other. (Courtesy of Cindy Brewer.)
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Application 4
Color

Rel:)rocluction

The visual sgstem is built to Perceive relationships
be‘cween colors rather than absolute values. For this
reason, the solution to the color reproduction problem
lies in Preserving the color relationships as much as
Possible, not the absolute values. It is also imPortant to
preserve the white Point In some way, because of the

role of white as a reference injuclging other colors.
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o The set of all colors that can be Produced ]39 a device is called the gamut of
that device. The gamut of a monitor is larger than that of a color Printer

(roughlg the gamut of surface colors shown in Figure LT

* Stone et al. described the Fo”owing set of heuristic Princil:)les to create goocl

maPPing from one device to another-: |

* The gray axis of the image should be Preservecl. What is Perceived as white

on a monitor should become whatever color is Perceived as white on paper.
» Maximum luminance contrast (black to white) is desirable.
» Few colors should lie outside the destination gamut.
» Hue and saturation shifts should be minimized.

* Anoverall increase of color saturation is Prcncerable to a decrease.
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. f:igure + 55 i”ustrates, in two

dimensions, what is in fact a three- Morior gamu Prinking ink gamut

example. the process is a
RIS o

transformation from a monitor image to N
a paper hard copy, but the same b ockue
Principles and methods applg to

transformations between other devices.

» Calibration.
* Range scaling. g g
+ Rotation

Figure 4.33 lllustration of the basic geometric operations in gamut mapping between two
devices, as defined by Stone et al. (1988).

dimensional set of geometric

transformations designed to accomplish

the Principles of gamut maPPing. In this
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* Saturation scaling.
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Chapter 5

Visual Salience and Fin&ing Information
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1 SteP 1. Avisual query is formulated in the mind of the person, relating to
the Problem to be solved.

. Stel:) 2. Avisual search of the clisl:)lag is carried out to find Pattems that

resolve the query.

» The most common kinds of things used in data visualization— namelg, are

grapl']ical sgmbols and glg[:)hs.
* A gral:)hical sgmbol IS a graphical object that rel:)resents an entitg.

* A glgpl'x IS a graphical objec’c clesignecl to rel:)resent some entitg and

convey one or numerical attributes of that entitg.

* Awell- clesignecl glgl:)h Is one that, in addition to being easilg found,
suPPorts rapicl and accurate resolution of visual queries regarcling

the ordinal, iﬂter\/alj or ratio quantities that are expressecl.
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F_:ge Movements

> There are tnree imPortant tgPes oF eye movements:

* . Saccadic movements.

* Asa general Principle, visual search will be considerably more efficient for more compact disPlags because eye movements will be shorter

and Fas’cer.

[G5.1] To minimize the cost of visual searchesJ make visualization displags as comPact as Possible, compatible with visual claritg, For

eFﬁciencg, information nodes should be arrangecl so that the average saccade is 5 c]egrees or less

S Smootn~Pursuit movements.

b

When an object is moving smootlﬁly in the visual field, the eye has the abilitg to lock onto it and track it.

AU Convergent movements (also ca”ed vergence movements).

* Whenan object moves toward us, our eyes converge. When it moves away, tneg diverge. Convergent movements can be either saccadic or

smooth.
* Saccadic suPPression:
* Duringa saccadic eye movement, we are less sensitive to visual inPut.

* Accommodation

* When the eye moves toanewtargetata different distance from the observer, it must reFocus, or accommodate, so that the target s clearlg
imaged on the retina. An accommodation response tHPicany takes about 200 msec.

* As we age, however, the abilitg to accommodate declines and remcocusing the eyes must be accomplisned bg cnanging egeglasses, 139 moving the

hea& or usc Iaser surgerg to ma|<e oRnc CHC haVC a near ]COCUS and t]ﬁC other a Far FOCUS
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* Three things determine what is easilg
findable:

2 e, B Priori salience. Some
Pattems excite more neural
activitg in the feature maps than

others.

* 7 TOP~clown salience

modification.

. e SCCRE gist.

. m—




s There are three basic lﬁigh~
level channels that match
the areas shown in Figure
§.Z—~name|9, color, Form,

and motion.

* [G5.2] Use ditferent visual

channels to clisP ay asl:)ects

01(: data so tlnat ’meg are

visua”g distinct.

Visual area 1 (primary visual cortex)

Hubel (1988).)

Figure 5.2 Architecture of the primary visual cortex. (Redrawn from Livingston & |
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Visual Distinctness

- hetre 5.5 shows the letters of the alphabet on
top of a random visual noise pattern that has
arange of spatial Frequencies from low to high
(Solomon & Pe”i, 1994). As can be seen, the
letters are difficult to Perceivc where the
backgrouncl has s[:)atial fre- quency
components similar to the letters. This is an
example of visual interference between sPatial

FFCC]UCHCﬂ subchannels.

o | G e, make sgmbols easy to ﬁncl, make
them distinct from their backgrouncl and from
other sgmbols; for example, the Primarg
spatial Frequencg of a sgmbol should be
different from the s[:)atial Frec]uencg of the
backgrouncl texture and from other sgmbols.

Figure 5.5 The letters are harder to see where they lie on top of visual noise that has
]spahal frequency components similar to the letters. (From Solomon & Pellf (1994),
IReproduced with permission.)

! .
§ |

e —— — . e .

e o S S — — L —

v




i S Sy

iy -

-t

P S gD i it

s o ity s L it s

N e

Feature l\/\aps, Channels, and

| essons tor Visual Search

Ege movements are directed to feature map
regions that best match the target
Properties. Figure 5.7 illustrates the idea. On
the leftis a set of sgmbols. On the right IS
how this image appears in a few of the feature

maps.

A search 1Cor red objects 3ields three can~
didate targets, and a search for black objects
9ielcls three different targets.

A search for a left-slanted slﬁape gielcls two
strong and two weak targets. The oblique
eclges of the triangular sgmbols Procluce the
weak signals, and these will somewhat distract

in a search for the left-oriented bars.

|
&
:

|
:
{Figure 5.7 The symbols shown on the left are processed via a set of feature maps and
the result directs eye movements.
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o The squares and circles are not very

distinct because the differences are
encoded in higlﬁ sPatial grequencies
(see Figure 2.25 in C]ﬁapter 2 which
shows how spatial sensitivity
declines with high sloatial

frequencies) . If the sgmbols were

made larger theg would be more
distinct.

The other examples in the center
and the right have much more
distinctive sPatial subchannel
components. Some use both color
and form to increase separation in

Feature sPace.

s T e e W g 5. T e Mg, A Wy B AT W e T

’ * Male x Male x Malw
' ¢ Female * Female * Female i
‘ LY X x t
‘ £ £ E ?
[~d [+ &>
| $ 2 !
| {
Height Height Height
Shearwal Shea Shearwater
Gulls Guls )
' - Temns L e ~ Terns P T
‘ B &, g N 5 ]
‘ 2 Nt : . 3
- - . .: - - v ’
] 3 H ¢ 3 '
l @ [ @ 5
IL Beak length Beak length Beak length
igure 5.8 Feature channels can be used to make symbols more distinct from one another.
"rhe graphs on the right use redundant color coding in addition to more distinctive shapes
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Preattentive Process ng,

still, although the term is misleacling, we shall
continue to use it because of its widespread

adopﬁon.

Earlg researchers thought that it must occur Prior to
conscious attention, although a more modern view is

that attention is integral

In essence, Preattentive Processing determines what
visual objects are offered up to our attention and
easy to find in the next fixation (l:inc”ag & Gilchrist,

2005), s0 Prior attention is part of the Phenomenon.

As a rule of thumb, angthing that is Processed ata
rate faster than 10 msec per item is considered to be
Preattentive. Ty Pical Processing rates for
nonpreattentive targets are 40 msec per item and

more (Treisman & Gormican, 1988).

—

459290780597 720987759726556651 10049836645
27107462144654207079014738109743897010971
4390709734926684 78587 15819048630901889074
25747072354 745666142018774072849875310665

(a)

459290780597 720087 759726556651 10049836645
27107462144654207079014738109743897010971
43907097349266847858715819048630901889074
25747072354 7456661420187 74072849875310665

(b)

{
|
i
l
i
|
|
i
:
|
l
s

igure 5.9 Preattentive processing. (a) To count the 3s in this table of digits, it is

ecessary to scan the numbers sequentially. (b) To count the 3s in this table, it is only

ecessary to scan the red 3s because they pop out from their surroundings.
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5.11 Most of the preattentive examples given here can be accounted for by

processing charactenstics
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The Features that are Prcattentivelg Processcol can be

organizecl into a number of categories based on form,

color, motion, and spatial Position:

* |ine orientation
* Line leng’th

» Line width

. Size

* Curvature

. Spatial grouping
* Blur

» Added marks

* Numerosit9 (one, two, or three

objects}

* Color
* Hue
* Intensity
* Motion
» Flicker
* Direction of motion
- SPatial Position
* Two-dimensional Position
. Stereoscopic clel:)th

> Convex/concave shape From shacling
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* Thereis a risk of misinterpreting the ﬁndings of
Psgchophgsical studies and Proposinga new kind of
detector for every distinct shape.

* Itis also important to note that not all Prcattentive

egccts are equa”g strong. There are clegrees o1C
Popout

*ln general the strongest effects are based on color)
orientation, size, contrast, and motion or blinking,

correspon&ing to the ﬁn&ings of neuropsgchologg.

» Also, there are degrees of difference. Large color
differences have more popout than small ones. Some
popout effects occur with no instruction and are
difficult to miss, such as the red 35 1N I:igure 5.9 and
blinking Points

S e the term Prea’ctentive shoulcl not be taken too
litera”g because Prior attention must be given to
Prime the relevant Properties using the tuning

mechanisms we have alreadg discussed.

* [G5.6] Use s’crong Preattentive cues before weak

ones where ease of search is critical

- ———




Attention an Expectations

*A Problem with most research into attention, according toa 1

ISP

g b et

T e

book 139 Arien Mack and Irvin Rock (1998), is that almost all
Pcrcel:)tion exPeriments (except their own) demand attention

in the very clesign.

Usua”g we pay very little attention to What goes on arounci

us.

Humans do not Perceive much unless we have a need to find
sometlﬁing and a vague idea of what that something looks

like. In most systems, brief, unexpecte& events will be missed.

Studies have shown that two factors are imPortan’c in
determining whether something stands out Prcattentivelg: the
clegree of difference of the target from the nontargets and
the degree of difference of the nontargets from each other

[G5.7] For maximum popout, a sgmbol should be the onlg
object ina clisplag that is distinctive on a Particular feature
channel; for examl:)le, it might be the onlg item that is colored
na displag where evergthing else is black and white.

e e ——— T — e e el el A e
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Figure 5,12 On the left, the right-slanted bar pops out; on the right, it does not. Yet, most |

!of the distractors on the right have an orientation that is more different from the target
brientation than the distracters on the left.
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Highlighting and Asgmmetries

. AAding marks to high— light a sgmbol s gcncra”g better than

taking them away (Treisman & Gormican, 1988).

if all of the sgmbols in aset exccpt fora target object have an
added mark, the target will be less distinctive.

* Another assgme’crg is the ﬁnding that a big target Is easler to see

surrounded 139 small targets than a small target surrounded bg

big targets. Several examples are givcn in Figure ol

Kosara et al. (2002) suggested blurring evergthing else in the
clisplay to make certain information stand out. They call the
tec}mique semantic cleptl‘u of field

[G5.10] When color and shape channels are alreadg Fu”g utilized,
consider using motion or blink highlighting. Make the motion or

Hinking as subtle as Possible, consistent with raPicl visual search.

* As Figure 5.15 illustrates, blur works well, although again there is

an obvious Potential drawback to the ’cechnique. 155 blurring, the
designer runs the risk of making imPor- tant information i”cgiblc)
asitis usua”g not Possible to reliablg Predict the interests of the

viewer.

Figure 5.13 A number of highlighting methods that use positive asymmetric preattentive
cues: sharpness, added surrounding feature, added shape.
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Cocling with Redundant Properties

o [G5.11] To make sgmbols in a set maxima”9 distinctive,
use redundant cocling wherever Possible; for example,

make sgmbols differ in both shape and color.

* We can choose to make somc—:thing distinct on a single

feature dimension, such as color, or we can choose to
make it distinct on several dimensions, such as color,

size, and orientation. This is called redundant cocﬂing.




* F‘igure SR illustrates a conjunction search
task in which the targets are three red
squares. It turns out that this kind of search
is slow if the surrounding objects are

squares (but not red ones) and other red

; ' OO0 HOCOOONR OO
shapes. We are forced to do a serial search | HoooOomOOGOOGOE®
of either the red shapes or the square : : : : : : : : : :

> T . . oo R EROOGOOONENDN
objects. This is ca”eclaconjunctlon search, EoEEOENONEGO®O®
HoRNROEEREREREROOEDNR

because it involves searching for the speciﬁc

conjunction of redness and shape

Figure 5.14 Searching for the red squares is slow because they are identified by a

y 2 ’ t {f shape and color.
attributes (Treisman & Gelade, 1980). ek el e
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Representi ng, Qua ntitg

* [G5.16] When designinga set ogglgphs to
represent quantitg, maPPing to any of the
followi ng, glgpl’u attributes will be effective:
size, lightness (on a dark background),
darkness (on a |ight background),
vividness (higher saturation) of color, or

vertical Position in the clisplag.

* [G5.17] ldea”g, use glgph length or ]'leight,

or vertical Position, to represent quanti‘cg.
If the range of values is large, consider
using glgph area as an alternative. Never
use the volume of a three-dimensional

glgph to represent quantitg.

- S e — . <t i
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USA federal agnicultural subssdies for meat versus vegetables

:
{
| Meat !
!
] Vegetables
! Vegetables
Vegetables |
’
, U ; |

!
IFigure 5.24 The same information is shown using length, area, and volume. Research |
shows that the quantities shown in the volume display on the right will be mostly judged
Iaccordirg to the relative area of the images, not according to volume, resulting in large |

|
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!
|
|

erors.
!
!

e ——— et et ———— e —

B I — — —— —

T




ISP

g b et

R e

Representi ng, Absolute Quantities

Visualization is mostlg about seeing Patterns In ciata,
and this means that seeing ifa Particular variable is
relative|9 Iarger or smaller than another is what is

critical, rather than reaciing an absolute quantity.

Gcnera”g, onlg three to five distinct values can be
reliat>|9 read using simple grapt‘iical variables such as

color, size, or Iightncss.

Ttiere A number ot solutions to the Problem ot
rePresenting quantities. One is simplg to add numbers

toa glgptﬁ, or a numerical scale; see F‘igure gf e b).

A second solution is to create a glgph that ]33 its
shape conveys numerical values. The best known

example of this is the wind barb, which is shown in
Figure 5.25 ().

. 0
(a) (b) (c) i

l
Figure 5.25 Three different ways that more exact numerical values can be read from a|
:
diagram.
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Multidimensional Discrete Data:

* Table B lists the most useful low-level grapnical attri- butes

that can be applied to glgpn design, with a few summary

comments about the number of dimensions available.

Mang of these dislola9 dimensions are not inclependent of
one another. To Aisplag texture, we must use at least one

color dimension (luminance) to make the texture visible.

Overall, we will Probablg be fortunate to clisplag eignt types
of dimensional data clearlg, using color, shape, sPatial
Position, and motion to create the most differentiated set

Possible.

ThCI’C is also t]"IC Issue O‘F I'IOW mang resolvable StCPS arc

available in each dimension.

When we recluire rapid Preattentive Processing, on19 a

l"laﬂCl‘FUI OF COIOI"S arc available.

The number of orientation steps that we can easilg dis-

tinguish 15 Probablg about four.

Uniform Representation versus Multiple Channels

_.,._ ._.7’

t’Tablc 5.1 Graphical attributes that may be useful in glyph design.

%Visual Variable

Dimensionality

Comment

T e e gt e 5 I Tt S ATy T

&-\-p.:ti.ll position

Color
Fhap«-

Surface texture

rviotion coding

|
:

!B]ink coding
!

Three dimensions: X, Y, Z

Three dimensions: defined by
color opponent theory

Size and orientation are basic
but there may be more usable
dimensions

I'hree dimensions: orientation,

size, and contrast

Approximately two to three
dimensions; more research is
needed, but phase is critical

One dimension

Luminance contrast is needed
to specify all other graphical
attributes.

The dimensions of shape that
can be rapidly processed are
unknown; however, the
number is certainly small.

Surface texture is not
independent of shape or
orientation; uses one color
dimension.

Motion and blink coding are
highly interdependent.

:
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Stars and Whiskers

In the whisker l:)lot) each data value is rePresented bg a
line segment radiating out from a central Point, as shown
in l:igure 5.26(a). The Ieng‘ch of the line segment
denotes the value of the corresponding data attribute.

A variant of the whisker Plot is the star Plo‘c (Chambers
et al., 198%). This is the same as the whisker Plot but with
the ends of the lines connected, as in Figure 5.26 b).

Itis Possiblc to show a large number of variables with
whisker or star Plots, but this does not mean that the
results will be inte”igible.

In order to minimize interference between similarlg
oriented con- tours, a much smaller number of whiskers

is recommended—fouris Probablg the max~ imum.

It may also be useful to change the amount of “encrgg”
in glgph segments bg altering the line width as well as the
length of the line; see I:igure 5.26(0).

*- =K

(a) (b) (c)

e e ——— — e el el G T . g

{Figure 5.26 (a) Whisker plot. (b) Star plot. {c) Whisker plot with only four variables and
jvarying width,
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; Tunnel Vision, Stress, and
Cognitive | oad

I < Theg found a dramatic clroP in detection rate for

objects in the Peripherg of the visual field (down from

P ocorrectto 36% correct) as the task load increased.

» [G5.19] When designing user intcrrupts, Pcriphcral
alerting cues must be made stronger it the cognitive

load is expected to be l’)iglﬁ.
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The Role of Motion in Attracting

Attention

We have a low abiiitg to detect small targets in the
Peripherg of the visual field.

Peril:)i*ieral vision is color blind, which rules out color

signais

The set of requirements suggests two Possible
solutions. One is to use auclitorg cues. In certain
cases, these are a gooci solution, but tneg are
outside the scope of this book. Another solution is

to use Hinking or moving Icons.

Anecdotal evidence, however, indicates that a

e —————————

Response time (sec)

0

4 8 12 16
Angle from fixation point (deq)

20

- e — e — . —

D B R

,L‘lgure 5.27 Results of a study by Peterson and Dugas (1972). The task was to detect
!srnall symbols representing aircraft in a simulation display. The circles show the rosponso’
itimes from the appearances of static targets. The crosses show response times from

ithe appearances of moving targets. Note the two different scales.

Possibie ciisacivantage of ﬂasning lignts or blinking

cursors is that users find them irritating.

Thus, the most effective reminder migi'nt be an

o ject that moves into view, ciisaPPears, and then

reappears CVCI’H SO OFtCﬂ.

P P g AT I g,

S Lo




Conclusion

2o a great extent what we need to see as we” as Wl’la’c we exPec’c to see wi” have a large imquence

on wha’c we ac’cua”g see.

s For glgphs to be seen raPidlg) theg must stand out clearlg from all other objects in their near

vicinitg on at least one coc:ling dimension.

* The lessons from this chapter have to do with fundamental tradeoffs in clesign choices about

whether to use color, 5hape) texture, or motion to displag a Particular set of variables.

» The basic rule is that, in terms of low-level Prol:)erties, “Jike” interferes with “like.” i we have a
set of small sgmbols on a textured backgrouncl, a texture with a grain size similar to that of the

sgmbols will make them difficult to see.

* There is more separabilitg between channels. If we wish to be able to read data values from
different data dimensions, each of these values should be maPPecl to a different clisplag

channel.
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Chapter 6

Static and moving Pattems
(P. 179~237)
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* Atthe car|9 stages of feature abstraction, the

visual image s analgzccl in terms of Primitivc

elements of Form, motion, color, and stereoscopic

dep’th.

At the middle 2D pattern- Perception stage, active
processes driven bg top~clown visual queries
cause contours to be formed, distinct regjons to

be segmented, and connections to be made.

At the toP level, objccts and scenes are
discovered, using information about the
connections between comPonent Parts, shapc——

From-shading information, and so on.

Fina”g, objec‘cs and signiﬁcant Patterns are Pu”ecl
out ]:)9 attentional processes to meet the needs of
the task at hand.

TR TV o Ty g P
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Pattern perception
Features ™ Contours,
. texture,
regrons, Visual
maotion
f

Figure 6.1 Pattern perception occurs in a middle ground where bottom-up feature
rocessing meets the requirements of top-down active attention. |
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Gestalt Laws

+ The word Gestalt simplg means “Pattem” in German.

* The Gestalt laws easilg translate into a set of clesign

Principles for information clisplags.

* E‘ight Gestalt laws are discussed here: Proximitg,
similaritg) connectedness., continuity, symmetry,
closure, relative size, and common fate (thc |last
concerns motion Percel:)tion and appears later in the

clﬁapter) .




Sy

- -

-

R T e

Proxi mitg

* [G6.1] Place sgmbols and glgphs

rePresenting related information

close togetlﬁer.

l:igure 6.2 shows two arrays cnc clots

that illustrate the Proximitg Principle.

Onlg a small change n spacing
causes us to change what is
Perceivecl from a set of rows, in
Figure 6.2(a), to a set of columns, in
Figure 6.2(b). In Figure 6.2(c), the
existence of two groups IS

Perceptua”g iﬂCSCHPablC.

B |
| |
{ :
5 !
I ................. l
‘ ............... e
.‘ ................. .
! ... ..., o '
s E Tt e s e e s e s o ;
L e e e e e e e e e e e ® \
Y. ¢ ?
e ® e ,
- o ‘
; (a) (b) (c) { ,
Figure 6.2 Spatial proximity is a powerful cue for perceptual organization. A matrix of dots H
is perceived as rows on the left (a) and columns on the right (b). In (c) we perceive two | '
igroups of dots because of proximity relationships. ’ i
L ]
. o
.
o o L C3
El
L ¢ k) L] * o L J e
L B J .
- e
X g * * o
(@) (b) b
Figure 6.3 The principle of spatial concentration. The dot labeled x is perceived as pan of
cluster a rather than cluster b, !
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Similaritg

* In I:igure 6.4(a, b) the similaritg of the elements causes us

to see rows more Clcarlg.

In I:igure 6.4(a, b) the similaritg of the elements causes us
to see rows more clearlg. In terms of Perccption theorg,
the concept of similari’cg has been |arge|9 suPerseded.
The channel theor9 and the concepts of in’cegral and
seParable dimensions Provicle much more detailed

analgsis and better su[:)l:)ort for clesign decisions.

In l:igure 6.4(a, b) the similaritg of the elements causes us
to see rows more clearlg. In terms of Perce[:)tion theorg,
the concePt of similaritg has been largelg suPerseded.
The channel theorg and the conccpts of integral and
seParable dimensions Proviclc much more detailed

analgsis and better suPPort for design decisions.

[G6.2] When dcsigninga gricﬂ !agout of a data set,
consider cocling rows and/or columns using low-level

visual channel Properties, such

X X X X X X X
! e 0o 0 00 00 '‘EEEEEREEK
: X X X X X X %
| ® ® o o o 0 0 ® ® & o o 0 0
: X X X X X X %
5 e o0 00 00 e 00 00 00
{ X X X X X X x
; (a) (b)
|
:
|
!
!
|
l (c) (d)

|
!ﬁgure 6.4 (a, b) According to the Gestalt psychologists, similarity between the elements
iin altenate rows causes the row percept to dominate. (c) Integral dimensions are used

ito delineate rows and columns. (d) When separable dimensions (color and texture) are
jused, it is easier to attend separately to either the rows or the columns.
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Connectedness

» The demonstrations in Figure 6.5
show that connectedness can be a
more Powemcul grouping Principle
than Proximitg, color, size, or

shape.

+ [G6.3] To show relationshi[:)s
between entities, consider linking
graphical repre- sentations of data
objects using lines or ribbons of

COIOF.

Figure 6.5 Connectedness is a powerful grouping principle that is stronger than
ka) proximity, (b) color, (c) size, or (d) shape.
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Figure 6.6 The pattern on the left (a) is perceived as a smoothly curved kne overiapping a

gle (b) rather than as the more angular components shown in (c).

Figure 6.7 In (a), smooth continuous contours are used to connect nodes in the diagram;
in (b), lines with abrupt changes in direction are used. It is much easier to perceive
connections with the smooth contours.
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The sgmmetrica”g arranged Pairs of lines in F‘igurc 6.8 are
Perceived more 5trong|9 as Forminga visual whole than the

Pair of Para”cl lines.

A Possible aPPIication of symmetry is in tasks in which
data analysts are looking for similarities between two
different sets of time-series data. It may be easier to
Perceive similarities if these time series are arranged using
vertical sym- metry, as shown in Figure 6.9, rather than

using the more conventional Para”el Plots.

To take advantage o1C sgmmetrg the iml:)or’cant Patterns

must be sma”.

We are most sensitive to sgmmetrical Patterns that are
small, less than clegree in width and 2 degrees in hexght)
and centered around the fovea. Dakin and Herbert (1998)

The displag onthe right in Figure 6.9 s far too large to be

oPtimal from this Point of view.

g8

|

e — . et e .

';Figure 6.8 The pattern on the left consists of two identical parallel contours. In each of |

ithe other two patterns, one of the contours has been reflected about a vertical axis,

iproducing bilateral symmetry. The result is a much stronger sense of a holistic figure.

)
:

)
Figure 6.9 An application designed to allow users to recognize similar pattemns in different

]tnme-senes plots. The data represents a sequence of measurements made on deep
jocean drilling cores. Two subsets of the extended sequences are shown on the right.
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* We more readilg Perceive sgmmetries about

vertical and horizontal axes, as shown in
Figure 6.10(a, b); however, this bias can be
altered with a frame of reference Proviclecl

]39 a |arger~sca|e Pattem, as shown in Figure
6.10(c) and (d). See Beck et al. 2005).

[G6.4] Consider using symmetry to make
pattern comparisons easier, but be sure
that the Pattems to be coml:)ared are small
in terms of visual angle (<1 clegree
horizonta”g and <2 clegrces Verticang).
59mmetrica| relations should be arranged
on horizontal or vertical axes unless some

Framing Pattern is used.

o Q
o Q
o Q
{ o Q
: o Q
i s! Q
| 4 > 0 Q
| s! Q
| (@) (b) (€) (d)

tigure 6.10 Because symmetries about vertical and horizontal axes are more readily

|
|
1

erceived, (a) is seen as a square and (b) is seen as diamond. (c, d) A larger pattemn can|
Provide a frame of reference that defines the axes of symmetry; (c) is seen as a line of |

_dlamonds and (d) as a line of squares.
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Closure and Common Region |

* Thereisa Perceptual tenclencg to close contours
that have gaps in them. This can help explain whg
we see f:igure 6.11(a) as a complete circle and a
rec’cangle rather than as a circle with a gap initas

in Figure s11(b).

* Closed contours are widclg used to visualize set

concepts in Venn—Euler cliagrams.

* AVenn cliagram is a more restricted form of Euler

diagram containing all Possible regions of overlap.

* The two most important Percep’cual factors in this
kind of diagram are closure and continuitg. A
Fairlg complex structure of overlapping sets is

llustrated in Figure 6.12, using an Euler diagram.

-
|
|
|

" § i
| (a) (b)

t

Figure 6.11 The Gestalt principle of closure holds that neural mechanisms operate to find :
perceptual solutions involving closed contours. In (a), we see a circle behind a rectangle, i
not a broken ring as in (b).

_.. e —e e
e T ety W g 5 T e Mg 4 Wy B

Figure 6.12 An Euler diagram. This diagram tells us (among other things) that entities can
simultaneously be members of sets A and C but not of A, B, and C. Also, anything that [
is a member of both B and C is also a member of D. These rather difficult concepts are '
clearly expressed and understood by means of closed contours.
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gure 6.13 When the shape of the region is complex, a simple contour (shown in the
pper left) is inadequate. (a) It is not easy to see if the x is inside or outside of the enclosed
gio lemnWUnemboMmdhombymdﬂam

(a)
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>4 Figure 6.15 shows an example from Collins et al.

(2009) where both transl:)arent color and
contour are used to define extremelg
convoluted boundaries for three overlapping

sets.

[G6.5] Consider Putting related information
inside a closed contour. A line is ade- quate for
regions having a simple shape. Color or texture
can be used to define regions that have more

complex shapes.

[G6.6] To define multiple overlaPPing regjons,
consider using a combination of line contour,

color) texture, and Cornsweet contours.
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:
Figure 6.15 Both contour- and color-defined regions have been added 10 make clear
the distribution of hotels (orange), subway stations (brown), and medical clinics (purple).
(From Coliins et al. (2009). Reproduced with permission.) -
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Figure and Ground

* The Position of every object within the frame tends to bejudged

relative to the cnclosing frame (see Figure 6.16)

* A ﬁgure is something objectlike thatis Perceived as being in the
Forcgrouncl‘ The ground is whatever lies behind the ﬁgurc.

Ay general, smaller comPonents ofa Pattem tend to be

PCI"CCiVCC] as ObjCCtS.

* InFigure 6.17(a), a black Propc”cr is seen on a white
background, as oPPosed to the white areas being Perceivecl as
objects.

* Closed contour, symmetry, and the surrounding white area all
contribute to the perception of the two shapes in Figure 6.17(b)

as ﬁgures, as oPPosed to cut-out holes.

STt bg changing the surroundings, as shown in Figure AL
the irregular slﬂaPe that was Percei\/ed as a gap in Figure 6.17(b)

can be madc to bccome the ﬁgurc.

* [G6.7] Use a combination of closure, common regjon, and

lagout to ensure that data entities are rcPresentccl bg graphical

Pattcrns that will be Pcrceivcd as ﬁgurcs, not ground‘

Eiguro 6.16 Closed rectangular contours strongly segment the visual field. They also

xtent, interpreted with respect to the surrounding frame.

(b)

Figure 6.17 (a) The black areas are smaller and therefore more likely to be perceived as
an object. It is also easier to perceive patterns that are oriented horizontally and vertically
as objects. (b) The green areas are seen as figures because of several Gestalt factors,
including size and closed form. The area between the green shapes in (€) is generally
{not seen as a figure,

(a) (€)

rovide reference frames. The positions and sizes of the enclosed shapes are, to somel
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Figure and Ground

* The vase Percelot IS suPPorted
mostlg bg symmetry and beinga

closed region.

* Converselg, the faces Percept IS
mostlg driven 199 Prior knowledge,

not gestalt Factors.

* |tis onlg because of the great
imPortance of faces that theg are
SO readilg seen. The result is a
coml:)etition between I’]igl%level and

micL ICVCI PFOCCSSCS.

—
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hgure 6.18 Rubin's Vase. The cues for figure and ground are roughly equally balanced,
‘esuhmg in a bistable percept of either two faces or a vase.
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More on Contours

* Contours are continuous, elongatccl

boundaries between regions of a visual
image, and the brainis cxc]uisite|9 sensitive

to their presence.

A contour can be defined bg a line, bﬂ a

boundarg between regions of differ- ent
color, bﬂ stereoscopic CICPJC}L }39 motion
Pat’ccrns, or bg the cclge of a rcgion of a

Particular texture.

Contours can even be Perceived where there
are none. Figure 6.19 llustrates an i”usorg
contour; a ghost|9 bounclarg of a blobbg
shape is seen even where none is Phgsica”g

Prcsent

B

|
:

¢S
m\

e . .

!
!

* i
Figure 6.19 Most people see a faint llusory contour surrounding a blobby shape at the|

,L:ontcr of this figure.
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. Subjects had to detect the
presence of a continuous
Path in a field of 256 ranclomlg
oriented Gabor Patches

* More interesting, even quitc
wigglg Paths were reacli|9 seen

it the Gabor elements were

a!ignecl as shown in

More on Contours

(b)

igure 6.20 An illustration of the experiments conducted by Field et al. (1993). If the

pffect is explained by mutual excitation of neurons (c).

lements are aligned as shown in (a) so that a smooth curve can be drawn through some|
of them, a curve is seen. If the elemen’= are at right angles, no curve is seen (b). This |
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Representing Vector Fields:

Perceiving Orientation and Direction

o The basic Problem of representinga

vector can be broken down into

three components (l:igur 6.21)

* There are direct aPPIications of the
Field et al. (1993) theorg of contour
Percel:)tion in clisplaging vector field
data.

* A common teclmique s to create a
regular grid of oriented elements,

such as the one shown in Figure
6.22(a).

!

l
! Magnitude Orientation Direction |
- & X

T —————

Figure 6.21 The components of a vector.
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i (a) (b) (c) (d)

Figure 6.22 The results of Field et al. (1993) suggest that vector fields should be easier
to perceive if smooth contours can be drawn through elements representing the flow.

(a) A gridded pattermn will weakly stimulate neurons with onented receptive fields but also
cause the perception of false contours from the rows and columns. (b) Line segments in
a jittered grid will not create false contours. (c) If contour segments are aligned, mutual
reinforcement will occur. (d) The strongest response will occur with continuous contours,
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Rel:)resenting Vector Fields:

Perceiving Orientation and Direction

* |nstead of the common|9 used grid of sma”
arrows, one obvious and effective way of
rePresenting vector fields is tlﬁrouglﬁ the

-
|
!
!
!
;
E i e g
use O COﬂtlﬂUOUS COﬂtOUf'S; 3 numper o t

effec- tive algorithms exist for this

purpose. f:igure 6.2% shows an examplc.

|
|
| )
* This emcmcectivelg illustrates the orientation | f
|
|
|

L el chhoghits ZJ)\)\.@ &é

ambiguous in the sense that for a gjven L\

))V/

.

'Figure 6.23 Streamlines can be an effective way to represent vector field or flow data,

Contour thCrC can ]:)C tWO Cllf’CCthﬂS OF |But here the direction is ambiguous and the magnitude is not shown. (From Turk & Banks,
11996; with permission.)
lqOW.

i
!
* |n addition, Figure 6.2% does not show ‘
magnitucle. ‘
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Visualization
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Comparing 2D Flow
Technic]ues (P.l9§ -

TN TR TV MR e W g 'Y

* | aidlaw et al. 2001) carried out an experimental comParison YT
of the six different flow visualization methods, illustrated in
Figure 6.24

* (3) arrows on a regular grid

* (b) arrows on ajittered grid to reduce Perceptual aliasing
effects

L kﬂ) T )
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LY A (TSNS -
WM EEANW

% i) triangle icons, with icon size Proportional to field strength b INDAAL

~ \}
\
W
) - A
N
N IREESATTY |

and dcnsi’c9 inverselg related to icon size (Kirbg etal., 1999 a2
Bk y‘l'/',"r/‘, 4’{1‘1 wi ; ,",{:'..
Ui i )

N

* () line integral convolution (Cabral & Leedom, 199%)

* (&) largc~heacl arrows alonga streamline usinga regular gric]

(Turk & Banks, 1996)
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. (F) IargeJ‘nead arrows along streamlines usinga constant

spacing algoritlﬂm (Turk & Banks, 1996).
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* The streamline methods of Turk and Banks, shown in Figure

! \
ALY

AN

624D, Provecl best for showing advection.

- N\

Figure 6.24 Six different flow visuakzation techniques evaluated by Laidlaw et al. (2001).
(From Laidlaw et &/, (2001) Reproduced with permission.) — _
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Showing Direction

» [G6.8] For vector field visualizations,
use contours tangentia! to streamlines

to reveal the orientation comPonent.

111

|
/11

*» [G6.9] To represent flow directionin a

vector field visualization, use

streamlets with heads that are more
distinct than tails, based on luminance

contrast. A streamlet is a glgph that is

elongatecl alonga streamline ancl

Figure 6.27 Vector direction can be unambiguously given by means of lightness change
along the particle trace, relative to the background. This gives the greatest asymmetry

Wl"]iC]"] iﬂCl uces g Strong FCSPOHSC iﬂ between the different ends of each trace.
neurons sensitive to orientations

tangential to the flow.
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Showing Direction

* Figure 6.28 gives an example that
follows both guiclelines G6.8 and
G6.9, and in addition uses Ionger and
wider graphical elements to show
regions of stronger flow (Mitche” et
al., 2009).

» [G6.10] For vector field visualizations,
use more distinct graphical elements
to show greater field strength or
SPCCCJ. Theg can be wider, |onger,

more contrasting, or faster moving.

t

— e —————. S —

———— e —— —— T e ———— ———————

!Figure 6.28 The surface currents in the Gulf of Mexico from the AMSEAS model. Head-
to-tall elements are used, with each element having a more distinct head than tail,
lSpee'd is given by width, length, and background color. I
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* Like color, we can use texture as a nominal code, clisplaging different

categories of information, or as a method for rcPrcsenting c]uantitg

over a sPatial map, using texture to Provide ordinal or interval cocling.

Texture segmenta’cion is the name given to the process wherebg the

brain divides the visual world into regions based on texture.

The rules of texture segmentation are very similar to the rules for
individual target salience. Indeed, the boundary between having many
glgphs and havinga texture is Poorlg deﬁned, and texture can be
thought ofasa denselg Populated field of small g]yphs.

The Malik and Perona (1990) type of segmentation model is illustrated
in Figure 6.29

This model Prec[icts that we will divide visual space into regjons
according to the Predomi— nant sPatial Frcquencg and orientation
information. A regjon with large orientation and size differences will be
the most differentiated. Also, regjons can be differentiated based on
texture contrast. A low-contrast texture will be differentiated from a

high— contrast texture with the same orientation and size comPonents.

Figure 630 illustrates the Gabor segmentation theorg aPPliecl to the
classic Perceptual conundrum. Whg are the Ts and Ls difficult to
clistinguish? And whg are they easy to clistinguish when the Ts are

rotated? Thc Gabor moclcl accuratelg Prcclicts what we see.

Texture: Theorg and Data Mappin

Vertical fat Gabor
filters respond most Resulting
strong'y segmentation

Horizontal skinny
Gabor filters respond
most strongly

| |
\ ‘
{

IFigure 6.29 A texture segmentation model. Two-dimensional feature maps of Gabor
|detectors filter every part of the image for all possible orientations and sizes. Extended |
tareas that excite similar classes of detectors form perceived regions of the image.
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'iFigure 6.30 (a) The Ts and Ls in the left and middle are difficult to visually separate, but the'
region of rotated Ts on the right is easier to spol. (b) The cutput of a feature map conmstmg'
of vertical Gabors. (c) The output of a feature map consisting of oblique Gabors, (From l
Turner (1986). Reproduced with permission.) '
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s [T Design cognitive
sgstems to maximize

cognitive Procluctivitg.

* Cognitive Procluctivitg IS
the amount cnc Valuable

cognitive work done per

unit of time.
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