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Abstract

This thesis has evaluated five choke models described in the literature by
comparing their predictions to measured flow rates for two different data sets.
The models are the Bernoulli Equation with two-phase multiplier, Asheim’s
model, the Sachdeva et al. model, Al-Safran and Kelkar’s model and the
Hydro Model.

For single-phase flow, the prediction of mass flow rate across a choke for
a given pressure drop is a rather straight-forward process. But for two-phase
flow, it is more difficult. Many authors have developed models for two-phase
mass flow rate predictions, but they are not as accurate as for single-phase
flow.

Most emphasis has been given to the Hydro Model. Earlier work shown
that there is room for improvement. Therefore, it was divided into parts and
each part was evaluated separately. Some improvements were found, but all
in all the resulting revised Hydro Model presented here is very similar to the
original model. The largest difference is the removal of pressure recovery,
which greatly simplifies the model and reduces run time drastically.

It was the Hydro Model that was best for one of the data sets, but worst for
the other. The Bernoulli Equation with Simpson et al.’s two-phase multiplier
was seen to be one of the best models for both data sets, in spite of its relative
simplicity and the fact that it does not separate between critical and sub-
critical flow.

It was found that the most important feature seems to be the inclusion of
slip between the gaseous and liquid phases. Pressure recovery after the choke
seems to be negligible in most cases. For calculation of density for a two-phase
liquid, the mometum density appears to be the most suited for use in choke
models.
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Sammendrag
Denne oppgaven har vurdert fem modeller for strømning gjennom en strupeventil som er
beskrevet i litteraturen ved å sammenligne modellenes forutsigelse med målt strømning-
shastighet for to ulike datasett. Modellene er Bernoullis ligning med to-fase multiplikator,
Asheim modell, Sachdeva et al.s modell, Al-Safran og Kelkars modell og Hydromodellen.

For enfasestrømning er prediksjon av masserate over en strupeventil for et gitt trykkfall
en ganske enkel prosess. Men for tofasestrømning, er det en god del vanskeligere. Mange
forfattere har utviklet modeller for å forutsi strømningshastiget, men de er ikke like nøyak-
tig som for enfasestrømning.

Hydromodellen har fått mest oppmerksomhet her. Tidligere arbeider med denne har
vist at det er rom for forbedring. Derfor ble modellen delt inn i forskjellige deler og hver
del ble evaluert separat. Noen forbedringer ble funnet, men alt i alt er den reviderte
Hydromodellen som presenteres her svært lik den opprinnelige modellen. Den største
forskjellen er fjerning av trykketgjennvinning, noe som forenkler modellen og reduserer
kjøretiden drastisk.

Det var Hydromodellen som var best for et av datasettene, men verst for det andre.
Bernoullis ligning med Simpson et al. s tofasemultiplikator ble sett på som en av de beste
modellene for begge datasett, til tross for sin relative enkelhet og det faktum at den ikke
skiller mellom kritisk og subkritisk fstrømning.

Det ble observert at den viktigste enkeltdelen i en modell ser ut til å være inkludering
av slip mellom gassfase og væskefase. Trykkgjennvinning etter strupeventilen synes å
være ubetydelig i de fleste tilfeller. For beregning av tetthet av en tofasevæske, synes
momenttetthet å være den mest egnet for bruk i denne type modeller.
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1 Introduction
A choke is a restriction to fluid flow, which causes a pressure drop. It is widely used
in the petroleum industry to control and optimize production rates. Another task is to
provide back-pressure for the reservoir in order to avoid formation damage, large pres-
sure fluctuations and back-flow. Pressure drop across the choke depends on flow rate.
Therefore, flow rate may be measured indirectly by measuring the pressure drop across a
choke. For single-phase flow, this is a standard method and can be done accurately, but
for multiphase flow it is more difficult.

There are many models in the literature that describe multiphase flow through a
choke. One of the challenges they meet, is that the flow entering the choke is difficult to
model because it is not homogeneous but can have different flow patterns (stratified flow,
annular flow, bubble flow, etc), and the geometry of the choke itself is very complex. Also,
predicting the sub-critical-critical flow transition is important for the result. Therefore,
a small change in the conditions upstream of the choke can give larger deviations in
predicted mass flow than expected.

The objective of this thesis is to evaluate several models that use measured pressure
drop across a choke to predict the mass flow for a multiphase fluid, given inlet parameters
such as mass fractions and upstream pressure. The main focus will be on the Hydro
Model, which will be thoroughly investigated. Considering work that has been done with
it previously suggests that there are areas that can be improved. Therefore, a revised
version of the Hydro Model will also be presented.

Two sets of data will be used in the evaluation; one from a test facility in Porsgrunn
consisting of 508 measured flow rates, and one from a field from the Ekofisk area, consisting
of 87 data points.
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2 General Theory

2.1 Flow and Pressure Drop
A choke is a local reduction of flow area in a pipe, which causes the fluid flow to accelerate,
thus inducing a pressure drop [13] according to the Bernoulli’s law. In this situation,
gravity effects can be neglected. Looking at steady state flow, and combining Newton’s
second law with the conservation of mass, Equation 1 is obtained, which is the Bernoulli
Equation for a compressible fluid, and is valid along a streamline. [12]

dP + ρudu = 0 (1)

The mass must be conserved, d
dz
ṁ = 0, and this implies the following relation between

flow area, A and volumetric flow rate, Q:

Aiuiρi = Qiρi (2)

where u is the velocity, A is the flow are,ρ is the density and i denotes any flowing fluid,
for instance oil, water or gas. [12] For multiphase flow to be considered as one fluid, the
value for density ρ and velocity u are interpreted as average values. Water and oil are
similar in density, especially when compared to gas, and are therefore often treated as
one liquid phase. The total mass flow rate is then by most models expressed as follows:

ṁ = ṁG + ṁL (3)

where ṁi = xiṁ, and the mass fractions, x, of gas and liquid sum to unity.

Figure 1: Sketch of a choke

A simplistic sketch of a choke is shown in Figure 1. The numbers (1) to (3) represent
important positions in any choke model. Position (1) is the upstream condition, where the
inlet parameters, such as mass fractions and upstream pressure are measured. The choke
conditions are represented by position (2), the choke exit. Because the pressure at this
position is difficult to measure, the downstream pressure is normally measured at position
(3) instead. This downstream position is then chosen to be exactly at the point where the
fluid flow reaches the pipe wall again and makes use of the entire area in the pipe. Thus,
there is no direct contact between the flowing fluid and wall until after position (3), and
wall friction between position (2) and (3) can be neglected. The distances between the
positions do not matter. [16]

2.2 Density Averages
There are several ways of of calculating the density of a multiphase fluid. The most
common ones are based on flow average (ρH), volume average (ρTP ) and momentum (ρe).
According to Chisholm [6], ρTP is most suitable to use in calculations where the pressure
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change is related to elevation change, while ρe is better when the pressure drop is caused
by acceleration of the fluid.

2.2.1 Two-Phase Density

To find an expression for the volume averaged two-phase density, we start with the ex-
pression [6]:

ρTP = αρG + (1 − α) ρL (4)

where α is the in-situ volume fraction of gas. To make this expression easier to use with
the choke models, it is better to have the density expressed in terms of mass fractions,
rather than volume fractions. In order to do that, Equation (2) can be written in terms
of α:

ṁG = xGṁ = αAuGρG (a)
ṁL = xLṁ = (1 − α)AuLρL (b) (5)

where the phase velocity is ui = Qi/Ai. Combining these expressions and solving for α,
thus eliminating ṁ and A, the following expression is obtained:

α = xGρL
xGρL + kxLρG

(6)

where k is the velocity ratio, or phase slippage: uG/uL, which will be further explained
in Section 2.3. By inserting Equation (6) into Equation (4), we get an expression for a
density including slippage between the gas and liquid phases:

1
ρTP

=
xG
ρG

+ k xL
ρL

xG + kxL
(7)

For the case of gas-only flow, the slip ratio, k disappears from the equation because
xL = 0. In order to avoid the slip for single-phase liquid flow as well, we depend on an
expression for k which is equal to unity for xL = 1.

2.2.2 Homogeneous Density

The homogeneous density, ρm is calculated as a flow averaged density where the gas and
liquid phases are assumed to move with the same velocity, which is the same as setting
k = 1 in Equation 7 above. This results in:

1
ρm

= xG
ρG

+ xL
ρL

(8)

2.2.3 Momentum Density

By a different approach, looking at the momentum flux, the rate of transfer of momentum,
ṁu, for a unit area, there is another expression for the density [6]. Assuming separated
flow, and beginning with

momentumflux = ṁu

A
=
(
ṁ

A

)2 1
ρ

(9)

where u is written as ṁ/(Aρ) from Equation (2). Expanding this expression to two-phase
(gas and liquid) flow gives:

4



momentumflux = ṁ

A
(xGuG + xLuL) (10)

where ṁ = ṁG + ṁL. Substituting Equation (5) for velocities, then using Equation (6)
to eliminate α from the expression and rewriting, the following result is found:

momentumflux =
(
ṁ

A

)2 (xG
ρG

+ k
xL
ρL

)(
xG + xL

k

)
(11)

Comparing Equation (9) and (11), it can be seen that the first term is the same.
Therefore, also the second parts should be comparable, and we can define the momentum
density as:

1
ρe

=
(
xG
ρG

+ k
xL
ρL

)(
xG + xL

k

)
(12)

The subscript e is added to separate this definition of the density derived from momentum
flux, from the one given in Equation (7). Similarly, there is a ue so that ṁ = Aueρe. It
should also be noted that if k = 1, the momentum density reduces to the homogeneous
density, just like the two-phase density does. As is the case for the two-phase density, slip
automatically drops out the equation when xG but to avoid slip for xL = 1 as well, the
slip model should produce k = 1 for single-phase liquid flow.

Figure 2 show the graph of how the two-phase density in Equation (7), momentum
density in Equation (12) and homogeneous density in Equation (8) vary with change in
pressure and gas mass fraction. The two-phase density is always the highest, with the
homogeneous density always being the lowest.

2.3 The Slip Ratio, k
Slippage is a phenomenon that occurs in any non-homogeneous multiphase flow where
the phases flow with different velocities. The velocity ratio, or slip ratio, is defined as [6]:

k = uG
uL

(13)

where uG and uL are the average velocities of the gas and liquid phases, respectively. Oil
and water are again assumed to constitute one phase because of their similar properties,
and thus flow with the same velocity. Normally, gas flows faster than liquid, leading to
slip ratio larger than unity. In homogeneous flow, the assumption is that gas and liquid
flow with the same velocity, and k = 1, that is, no slippage occurs.

Finding a value for this ratio directly is difficult, therefore several models have been
developed. Chisholm [5, 6] formulated an expression based on frictional pressure drop
and flow theory for separated flow that is applicable in many settings, among others for
contraction of flow area like in a choke. The expression is given in Equation (14) below.

kCh =


(
ρL
ρH

)1/2
=
√

1 + xG
(
ρL
ρG

− 1
)

χ > 1 (a)(
ρL
ρG

)1/4
χ ≤ 1 (b)

(14)

where χ is the Lockhart-Martinelli parameter. With Blasius’ exponents, it is:
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(a) Density equations vs P

(b) Density equations vs xG

Figure 2: Different density equations with Chisholm’s slip model

χ = xL
xG

√
ρG
ρL

(15)

This means that for flows with little liquid content, the slip ratio is independent of xG.
As an example, a fluid with ρG = 100 kg/m3 and ρL = 800 kg/m3, the slip ratio depends
on xG as long as xG < 0.26. For χ = 1, Equation (14a) and (14b) give the same value of
k. [6] In the case of liquid-only flow, kCh = 1 , that is, there is a no-slip prediction, which
is in good agreement with the definitions of density in Section 2.2.

Simpson et al. are among others that have developed an expression for the slip ratio
similar to Equation (14b). This model, however, does not include the gas mass fraction,
but only the phase densities: [7, 3]

kSi =
(
ρL
ρG

)a
(16)

where a = 1/6 or can be adjusted to the situation. Here, the slip is a function of gas
density, which is to say, pressure, but does not depend on how much gas there is compared
to the amount of liquid. The disadvantage here is that the slip ratio will not approach
unity for single-phase liquid flow.
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2.4 Critical Flow
Related mainly to the pressure difference across the choke, one can divide the flow into
two regimes; sub-critical and critical (choked) flow. Due to their different behavior, it is
important to distinguish between them when predicting the flow rate.

The criterion for critical flow is for the velocity of the flowing fluid to reach its sonic
velocity. Pressure waves, caused by the change in pressure, propagate through the flow
with the speed of sound. But if the fluid flows faster than the waves can travel, the waves
are unable to move upstream, or have any effect on the flow. Once this border is reached,
the flow is independent of downstream pressure, and we have critical flow. Any further
reduction in the downstream pressure will not increase the flow rate. [13]

For an absolutely incompressible fluid, the speed of sound is infinite, and critical flow
cannot occur in practice. Many liquids are almost incompressible, or are treated as that in
modeling, and therefore critical flow in liquid-only flow is rare. However, if the downstream
pressure is reduced below the flashing point, the liquid will start to vaporize and critical
flow is possible. [12] If the fluid is compressible, it will expand as the downstream pressure
is lowered. This also means that the density is lowered, which will again cause a further
pressure reduction. If allowed to, this may start a self-reinforcing process until critical
flow is reached. [4]

Very roughly, the transition from sub-critical to critical flow happens when the pressure
ratio of downstream to upstream pressure, y = P2/P1, is around 0.6, as long as the flow
does not approach liquid-only flow. Unless xG is very low, the critical pressure ratio varies
very little with it, when all other properties are equal. [4, 9]

In multiphase flow, the liquid contributes with high density and the gas with high
compressibility, which will result in elastic pressure waves that propagates slowly. There-
fore, sound of speed in multiphase flow is often found to be lower than for single phase
flow for any of the fluids. [4] The sonic velocity depends mostly on the pressure upstream
of the choke and fluid’s density, which again is a function of the mass fractions, (gas and
liquid). For a higher upstream pressure and higher liquid mass fractions, the overall den-
sity of the fluid is higher and the sonic velocity is higher, thus giving a larger mass flow
rate and pressure difference to reach critical conditions. On the other hand, increasing
the temperature will decrease the density of the gas and then reduce the sonic velocity of
the fluid. [13]

2.5 The Discharge Coefficient
When flowing through a sudden contraction where the entrance is not a smooth curve,
which is the case for most choke geometries, the fluid is unable to turn around the sharp
corner and make use of the entire choke area, as has been sketched in Figure 1. Therefore,
the flow area is smaller than the choke area. This location with the minimum flow area is
called vena contracta, and is also the point with the highest fluid velocity. [12] To account
for this in calculations, a contraction coefficient CC is often introduced.

CC = Avc
A2

(17)

where vc is vena contracta. The value of CC depends on several things, among others the
roundness of the choke entrance, the contraction compared to the upstream pipe diameter
and the fluid’s Reynold’s number. A typical value for a 90 degree, sharp corner is 0.61
[12]. The rounder and larger the opening into the choke is, the closer to unity CC is. Of
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course, it can never be larger than one as the flow area can never be larger the geometric
area in the choke.

Using Chisholm’s [6] definition, there are two main categories of chokes: long and
short. In a long choke, the length of the contraction is more than half its diameter.
Otherwise, it is called short. The vena contracta will always occur within a long choke
and the flow area may have time to expand to the choke walls before exiting. But in the
case of a short choke, vena contracta may be located after the choke itself [16].

As will be seen in Section 3, it is quite common to expand the meaning of the con-
traction coefficient to a discharge coefficient to account for both the minimal flow area
in vena contracta and losses due to energy dissipation around the entrance region, thus
turning it into a loss coefficient as well. As for the contraction coefficient, the discharge
coefficient is expected to be smallest for a small choke opening area and then increase in
value as the opening increases in size. Because a discharge coefficient depends on all the
same things as a contraction coefficient, it should be adjusted to the situation, and every
choke geometry and opening may have a different CD. This is also something thing that
will be shown in the following sections.
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3 Existing Choke Models
In this section, five models to predict the mass flow rate across a choke are presented.
These models are the Bernoulli Equation with two-phase multiplier, Asheim’s model, the
Sachdeva et al. model, Al-Safran and Kelkar’s model and the Hydro Model. All but
the Bernoulli Equation with two-phase multiplier differentiate between sub-critical and
critical flow, and the two latter, Al-Safran and Kelkar’s model and the Hydro Model
include slip.

All models assume the mass fractions to be constant over the choke. Therefore, the
subscript of position has been omitted to simplify notation, and mass fractions are ex-
pressed as xi and refer to the upstream value of the variable.

3.1 The Bernoulli Equation With Two-Phase Multiplier
Starting with Equation (1), the expression can be easily integrated by assuming constant
density. Then substituting u = ṁ/ρA, the following expression is found:

ṁ = A2

√√√√√2ρ (P1 − P2)
1 −

(
A2
A1

)2 (18)

This is the Bernoulli Equation for incompressible flow, which is well known and much
used because of its simplicity. As it was developed for single-phase flow, adjustments have
to be made to make it applicable for multiphase flow as well. For multiphase flow the
pressure drop is larger than single-phase flow. There are several models for two-phase
multiplier for pressure drop in the literature, in the form of ∆PTP = ΦTP∆P1P . Including
this multiplier, the Bernoulli Equation is shown in Equation (19): [12, 9]

ṁ = CDA2

√√√√√ 2ρ(P1−P2)
ΦTP

1 −
(
CDA2
A1

)2 (19)

where ΦTP is the two-phase multiplier, ρ a suitable density and CD is a discharge coeffi-
cient.

Many of the authors who have developed slip models have also developed expressions
for a two-phase multiplier. Two of these are Chisholm [6] and Simpson et al. [7]. The
multipliers are given in Equation (20) and Equation (22), respectively.

Φ2P,Ch = 1 +
(
ρL
ρG

− 1
)(

BxGxL + x2
G

)
(20)

where

B =

(
1
kCh

) (
ρL
ρG

)
+ kCh − 2

ρL
ρG

− 1 (21)

and kCh as given in Equation (14) on page 5. Simpson et al.’s two-phase multiplier is:

Φ2P,Si = (1 + xG (kSi − 1))
(
1 + xG

(
k5
Si − 1

))
(22)

In developing their multiplier, Simpson et al. used data from pipe diameters up to
12 cm and with a considerable amount of gas present. [7]
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As a two-phase multiplier relates the single-phase pressure drop of a liquid to a mul-
tiphase pressure drop, the density that should be used in Equation (19) is the liquid
density. [6] In the Bernoulli Equation without such a multiplier, it will most likely be
advantageous to use a two-phase density such as Equation (8) or (7) or (12) with a slip
model.

That the flow is assumed to be incompressible is expected to be a severe limitation
when applied to gas. The Bernoulli Equation may give too high mass flow rates when
there is gas present; the density that is assumed constant will actually decrease. [9] One
way to accommodate this could be to use an average of the upstream and downstream
density or only downstream properties, but this will still remain a constant throughout
the calculation and can instead be accommodated for in a discharge coefficient. ρG1 is
therefore used at all times, also in the two-phase multipliers. Because the ΦTP s only relate
single-phase pressure drop to two-phase pressure drop, but do not involve any change in
density, the same issues are expected when including them in the Bernoulli Equation.

Another thing to be aware of is that the Bernoulli Equation does not separate between
sub-critical and critical flow; a larger pressure change will lead to larger predicted flow
rate until the downstream pressure is reduced to zero, beyond which there is no physical
meaning. [12, 9] The pressure at the choke throat, P2, is assumed to be equal to the
downstream pressure P3.

Summarized, the assumptions are:

• Stationary and frictionless flow in one dimension

• Incompressible fluids, i.e. constant density

• Sub-critical flow

• No pressure recovery after the choke

• (two-phase multipliers:) Constant gas quality

It is worth noting that using the momentum density of Equation (12) with Simpson et
al.’s slip model from Equation (16) (a = 1/6) is the same as using the liquid density
and Simpson et al.’s two-phase multiplier directly. In addition, by inserting kSi into
Φ2P,Ch (instead of using Chisholm’s own slip model) the same result is obtained. That is,
rearranging any of the right hand sides of Equations (23a)-(23c) will yield (23d).

ρe(kSi) = 1(
xG
ρG1

+ kSi
1−xG
ρL

) (
xG + (1 − xG) 1

kSi

) (a)

ρL
Φ2P,Si

= ρL
[1 + xG (kSi − 1)] [1 + xG (k5

Si − 1)] (b)
ρL

Φ2P,Ch(kSi)
= ρL

1 +
(
ρL
ρG1

− 1
) (

(1/kSi)(ρL/ρG1)+kSi−2
(ρL/ρG1)−1 (1 − xG)xG + x2

G

) (c)

= ρL
1 + x2

G (k6
Si − k5

Si − kSi + 1) + xG (k5
Si + kSi − 2) (d)

ρe(kSi) = ρL
Φ2P,Si

= ρL
Φ2P,Ch(kSi)

(e)

(23)

For any value of a Equation (23a) and (23c) will be the same, but they will only be equal
to (23b) for a = 1/6, which is the original value of a suggested by Simpson et al. [7]
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3.2 Asheim’s Model
Starting with Bernoulli’s expression for pressure drop due to acceleration dP + ρudu = 0,
and assuming homogeneous density of the multiphase flow, Asheim developed a formula
for the mass flow through a choke. [4, 9]

Using the gas law as a model for gas expansion:

ρG = PM

ZRT
(24)

and then integrating the following:

udu = −
(
xG
ρG

+ xL
ρL

)
dP (25)

gives:

u2 =

√√√√2
(
xG
ZRT

M
ln
P1

P2
+ xL
ρL

(P1 − P2)
)

(26)

The velocity before the choke is assumed to be much smaller than the velocity at the
choke and is therefore neglected. During the integration, the temperature T , along with
Z and the molar mass M are held to be constant. Especially for low pressures, this is
a reasonable assumption, as the value of Z is close to unity. That the molar mass is
assumed to be constant follows from the assumption that there is no mass transfer until
after the choke exit.

Multiplying by the flow area and density at the choke to get the mass flow rate, gives
Equation (27). There is not considered to be any pressure recovery from the choke exit
to measured downstream pressure, thus P2 = P3. [4]

ṁ = CDA2ρLP2

xGρLZRT/M + xLP2

√√√√2
(
xG
ZRT

M
ln
P1

P2
+ xL
ρL

(P1 − P2)
)

(27)

Figure 3: Mass flow rate vs P2

ṁ in Equation (27) follows the general path shown in Figure (3), where it reaches a
maximum point and then decreases again as the downstream pressure is further reduced.
This reduction, the dotted line, does not occur in reality, but the flow rate remains at the
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maximum value, represented by the straight line. This maximum point can be found by
differentiating Equation (27), and solving for P2 when the derivative is zero. Due to the
complicated expression, this has been done numerically here.

The mass flow rate reaches a maximum value at critical pressure. Therefore, if the
actual downstream pressure is lower than the critical pressure, it is the value of the critical
pressure that should be used for P2 in Equation (27). In this case, there is critical flow.
On the other hand, if the actual downstream pressure is higher than the critical pressure,
the actual pressure should be used in calculations. Asheim found that the critical pressure
ratio varies only little with P1 and xL except for very high xL, so that it is almost constant
at P2c/P1 = yc ≈ 0.6. [4, 9]

The assumptions for this model are summarized below:

• Stationary, homogeneous flow in one dimension

• Incompressible liquid phase

• The velocity of the gas and liquid phase are equal at the choke throat, (no slip)

• The free gas quality is constant, (frozen flow) across the choke

• Constant temperature over the choke

• No pressure recovery after the choke

Because no slippage is assumed, it is believed that the actual pressure drop will be some-
what higher and by that the flow rate somewhat lower than predicted. [4].

It should also be noted that, if assuming adiabatic gas expansion instead of using the
gas law, when integrating Equation (25), Asheim’s model turns into the same model as
that of Sachdeva et al., which is described below.

3.3 The Sachdeva et al. Model
In 1986, Sachdeva, Schmidt, Brill and Blais developed a model for two-phase flow through
chokes. If there is dissolved gas in the liquid, the dissolved gas is considered to be a part
of the liquid phase and should therefore be included in the liquid phase properties. It is
derived from conservation of mass, momentum and energy equations. [13, 9]

Beginning with the Momentum Equation, and assuming that the dominant pressure
term is caused by acceleration, Sachdeva et al. developed an expression for the highest
pressure ratio that will give critical flow, yc. The liquid and gas are assumed to flow with
the same velocity, so that uG = uL = ṁ/(Aρm). The homogeneous density in Equation
(8) can be differentiated by making an assumption that the gas expands polytropicly ac-
cording to Equation (28) and considering the liquid as incompressible. Because velocities
through chokes normally are high, it is assumed to be no time for mass transfer between
the liquid and gaseous phase at the choke throat. This means that also the mass fractions
are constant and equal to xG1 and xL1.

1
ρG

= 1
ρG1

(
P1

P

)1/n
(28)

where
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n = xGκCV,G + xLCL
xGCV,G + xLCL

(29)

For comparison, if the gas expansion was assumed to be isothermal, then n = 1, or
adiabatic; n = κ = CP,G/CV,G.

Sachdeva et al. start with the same equation as Asheim, Equation (25), but when
integrating, they assume adiabatic gas expansion. Hence, κ also appears in their final
expression [3]. In addition, u2 � u1 because d2 � d1, therefore u1 can be neglected in
expressions like u2

2 − u2
1, which simplifies the integration of (25). The result is:

xL
ρL

(1 − y) + κ

κ− 1xG
(

1
ρG1

− y
1
ρG2

)
= ṁ2

2ρm2
(30)

Special for for critical flow is it that:

dṁc

dP2c
= 0 (31)

because the mass flow rate will be independent of downstream pressure. P2c is the highest
downstream pressure that will give critical flow. The momentum equation then reduces
to

−A2
2 = ṁ2

c

d

dP2c

(
1
ρm

)
(32)

Using Equation (28) to differentiate 1/ρm and rearranging, the result is

ṁ2
c = nA2

2P2cρG2

xG
(33)

Inserting this expression into Equation (30) and solving for yc gives:

yc =

 κ
κ+1 + xL(1−yc)ρG1

xGρL

κ
κ−1 + n

2 + nxLρG2
xGρL

+ n
2

[
xLρG2
xGρL

]2


κ
κ−1

(34)

where yc = P2c/P1, which is the critical pressure ratio. An iterative procedure is necessary
to solve this equation.

If the actual pressure ratio is less than yc, there is critical flow and the critical pressure
ratio is used in further calculations because the mass flow rate cannot increase any more
above that given by yc. And if the pressure difference is less, i.e. the ratio is higher than
yc, the actual pressure ratio is used. [13] Like in Asheim’s model, there is assumed to be
negligible pressure recovery so that P2 = P3.

The mass flow rate is given by solving Equation (30) for ṁ:

ṁ = A2CD

√√√√2P1ρ2
m2

[
xL(1 − y)

ρL
+ κxG
κ− 1

(
1
ρG1

− y

ρG2

)]
(35)

where

1
ρG2

= 1
ρG1

y− 1
κ (36)
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and ρm2 can be calculated from Equation (8). CD is used as a tuning factor to account
for errors caused by the assumptions of the model, for instance the neglection of friction.
According to Sachdeva et al., best results were obtained when this is set to 0.85, and this
is the authors’ recommendation when the flow before the choke is not disturbed by any
elbow or similar. If such an elbow exists, CD = 0.75 would be a better value. A value
of CD > 1 would violate the laws of thermodynamics. [13] From this definition, it would
seem that Sachdeva et al. have a different view on the discharge coefficient than what
was described in Section 2.5, as they see it as a tuning constant only, without relating it
to vena contracta.

The assumptions for the Sachdeva et al. model are:

• Separated flow in one dimension

• Incompressible liquid phase

• Acceleration is the main pressure term

• The velocity of the gas and liquid phase are equal at the choke throat, (no slip)

• The free gas quality is constant, (frozen flow) across the choke

• Gas expansion is adiabatic

• No pressure recovery after the choke

The equation is originally developed for field units, but as long as the units used are
consistent, it can be used for SI units as well, without the need for any conversion factor.
[4, 9]

3.4 Al-Safran and Kelkar’s Model
Al-Safran and Kelkar developed in 2009 a model that builds on both Sachdeva et al.’s
model and the Hydro model which will be described in the next section. The mathematical
derivation of the model is also very similar, and so are the assumptions, but with a few
important exceptions: Al-Safran and Kelkar include a pressure recovery term and phase
slippage. [3, 9]

Because the downstream pressure is measured downstream of the choke, there is often
though to be some pressure recovery after the choke, as the flow widens out again. [3, 14]
Therefore, Al-Safran and Kelkar has included a term for pressure recovery. This means
that P2 < P3 and that the pressure drop across the choke is larger than if setting P2 = P3.
The pressure recovery equation is as follows:

P2 = P1 − P1 − P3

1 −
(
A2
A3

)0.925 (37)

where P3 is the measured pressure downstream of the choke.
In order to include phase slippage, Al-Safran and Kelkar utilize the momentum density

of Equation (12). From Equation (25) but with ρe instead of ρm, and assuming polytropic
gas expansion, the following expression is obtained [3]:

k
xL
ρL

(P1 − P2) + xG
n

n− 1

(
P1

ρG1
− P2

ρG2

)
= ṁ2

2

(
1

ρ2
e2A

2
2

− 1
ρ2
e1A

2
1

)
(38)
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where n is as in Equation (29), k is the slip between the liquid and gas, and with ρG2 from
Equation (28) on page 12. During the integration, slippage has been assumed constant
with regards to pressure. This is not strictly true, as the expression for slip includes gas
density, which again is a function of pressure.

By ignoring u1, like Sachdeva et al. did, the expression can be simplified. Further,
solving Equation (38) for ṁ, substituting y = P2/P1 and introducing a discharge coeffi-
cient give:

ṁ = CDA2

√√√√√P1
[
k xL
ρL

(1 − y) + xG
ρG1

n
n−1

(
1 − y

n−1
n

)]
(
xG
ρG1

y−1/n + k xL
ρL

) (
xG + xL

k

) (39)

The expression above is given slightly differently from what Al-Safran and Kelkar write
[3]. Here, it is also relatively easy to recognize the momentum density in the denominator.
The factor CD is more or less the same as Sachdeva et al.’s CD, and its appropriate value
was found by the authors to be 0.75 for best results. [3]

Differentiating Equation (39) and rearranging yields [3]:

y
1− 1

n
c =

k xL
ρL

(1 − yc) + xG
ρG1

n
n−1

xG
ρG1

[
n
n−1 + n

2

(
1 + k xL

ρL

ρG1
xG
y

1
n
c

)2
] (40)

An iterative process is needed to solve this equation for yc. As xG appears outside the
brackets in the denominator, it is not possible to solve this equation properly if xG = 0.
Luckily, that would not be necessary, because critical flow for the incompressible liquid is
impossible in practice. Otherwise, if the actual pressure ratio y = P2/P1 is higher than
the critical pressure ratio, the actual pressure ratio should be used in Equation (39), but
if it is lower, the critical pressure ratio should be used because there is critical flow.

For phase slippage, Al-Safran and Kelkar introduce two different models. They ob-
served that for sub-critical flow, kSi, Equation (16) gave best results, while in the cases
of critical flow, a version of Chisholm’s slip model modified by Schüller et al. [14] was
found to be more appropriate. The latter slip model, Equation (49) on page 18 will be
discussed in Section 3.5.

However, there is an inconsistency here because k is also part of the expression for yc.
And we do not know whether we have sub-critical or critical flow until we have compared
yc to the observed value for y. The question is then; which expression for k to use when
calculating yc? [9]

When Al-Safran and Kelkar tested their model and compared it to that of Sachdeva et
al., they found that Sachdeva et al.’s model gave too low results for the mass flow rate in
sub-critical flow and too high results for critical flow. This model was better for the data
sets tested by Al-Safran and Kelkar, which may not be surprising because their model
allows for slip between the phases. [3, 9]

The following assumptions are made in this choke model:

• One dimensional flow

• Incompressible liquid phase

• Acceleration is the main pressure term

• The free gas quality is constant, (frozen flow)
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• Gas expansion is polytropic

3.5 The Original Hydro Model
The Hydro Model, developed by Selmer-Olsen [16], and Schüller et al. [14, 15] consists of
two sub-models, one called the long model for chokes that have a long contraction area
relative to the opening, and one called the short model for chokes with shorter geometry.
Chisholm’s definition of long and short choke geometry in Section 2.5 on page 7 could be
used. [16]

It is thought that a distinction between these two categories of chokes is necessary
because of the differences in how the fluid flows through them. In a long contraction,
the fluid will have time to widen its flow area after vena contracta out to the pipe walls,
reaching A2, from which point onwards there will be losses due to friction along the wall.
There is considerable energy dissipation between the vena contracta and choke exit, and
after the areal expansion right downstream of the choke. In this model, the main task of
the discharge coefficient is to adjust for the flow area at vena contracta, but it also takes
into account losses due to energy dissipation and friction between the wall and fluid. At
the choke exit, the flow is assumed to have expanded to A2, and it is therefore this area
that is used when evaluating the transition from sub-critical to critical flow. In a short
choke, on the other hand, the area of flow is the vena contracta flow area, Avc. [16]

Figure 4: Sketch of choke for the Hydro Model, long version

Instead of starting with the momentum equation, the Hydro Model, long version, is
developed by using two control volumes: one from the vena contracta inside the choke to
the exit of the choke, see Figure 4 and one from the exit, position (2), to position (3).
The short model has only one control volume from the choke exit to position (3). This
is because vena contracta and choke exit is assumed to be in the same location. [16] By
integrating Equation (1) from position (1) to vena contracta, we obtain the mechanical
energy balance:

ṁ2
1−vc
2

(
1

A2
vcρ

2
e,vc

− 1
A2

1ρ
2
e1

)
+

Pvcˆ

P1

1
ρe
dP = 0 (41)

for an ideal situation with no irreversible losses. This differs from the previous models in
that the velocity before the choke is not, and will not be neglected and the evaluation of
how the density varies with pressure in the integral. The momentum density of Equation
(12) has been utilized because we are looking at momentum flow through a control surface.
[14]

Arriving at the first control volume for the long model, the momentum balance is
used from vena contracta to position (2). Although differentiating between these two as
positions, the fluid properties such as gas density, are assumed to be the same.
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P2 − Pvc = ṁ2
vc−2

(
1

CDA2ρe2
− 1
A2ρe2

)
(42)

This distinction between vena contracta and position (2) was thought useful because
the flow is assumed to be loss free up until vena contracta, but there are losses from
vena contracta to position (2) that cannot be ignored. As mass has to be conserved,
ṁ1−vc = ṁvc−2.

Upstream of the choke, the gas and liquid phases are assumed to flow with the same
velocity, but in the choke, slippage is included in the model. Combining the pressure
difference from the above equations and solving for for the mass flow rate, an additional
term appears in the denominator:

ṁ2
1−2 =

2
´ P2
P1

1
ρe
dP

1
A2ρ2

e1
− 1

C2
DA

2
2ρ

2
e2

+ 2 1
A2

2ρ
2
e2

(
1
CD

− 1
) (long) (43)

In the short model, it is not necessary to divide the pressure integral into two parts,
and the mass flow rate is given adequately by:

ṁ2
1−2 =

2
´ P2
P1

1
ρe
dP

1
A2

1ρ
2
e1

− 1
C2
DA

2
2ρ

2
e2

(short) (44)

However, the Hydro Model does not consider P2 to be known. Therefore, a second
set of equations is needed in order to find both the mass flow rate and the pressure at
the choke. This is done by writing the momentum equation from position (2) to (3)
as well, making up the second control volume. [16] The results are Equations (45) and
(46) below. For a long choke, the flow has time and distance to widen again after vena
contracta, therefore A2 is used, while for a short contraction, CDA2 is used.

ṁ2
2−3 = A3 (P3 − P2)

1
A2ρe2

− 1
A3ρe3

(long) (45)

ṁ2
2−3 = A3 (P3 − P2)

1
CDA2ρe2

− 1
A3ρe3

(short) (46)

These equations are only valid for sub-critical flow because they have made use of the
assumption that the pressure on the first wall in the second control volume is equal to
P2, which is not the case for critical flow. [14] For critical flow, the mass flux can be
maximized in Equation (1) so that:

ṁ2
c = − C2

DA
2
2

δ
δP

(
1
ρe

) (short) (47)

The equivalent for a long choke is:

ṁ2
c = − A2

2
δ
δP

(
1
ρe

)
 1(

1
CD

− 1
)2

+ 1

 (long) (48)

The discharge coefficient in the short model is meant to correct for geometric effects,
while for the long model, it should also correct for losses. [14]
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In order to find the mass flow rate, two iteration procedures are necessary, making this
model the most complicated model among those described in this thesis. The mass flow
rate is constant through the choke, therefore ṁ1−2 must be equal to ṁ2−3 for sub-critical
flow or ṁc in the case of critical flow. By solving both these situations, a value for P2 is
found for critical flow and another for sub-critical flow, and mass flow rates for the two
cases can be calculated using the expression for ṁ1−2 or ṁc. As ṁc is the maximum flow
rate obtainable, the predicted mass flow rate is the smallest of the two.

Summarized, the assumptions for this model are:

• Steady state flow in one dimension

• Incompressible liquid phase

• The free gas quality is constant, (frozen flow) across the choke

• Adiabatic flow

• No losses up until vena contracta

As slip model included in ρe, Schüller et al. modified Chisholm’s expression from
Equation (14) to:

kmodCh =

√√√√1 + xG

(
ρL
ρG

− 1
)(

1 + ξe−βxG
)

(49)

where ξ = 0.6 and β = 5 are constants were tuned to experimental results. Equation (49)
is used for all mass fractions.

The integral of momentum density with respect to pressure was solved numerically,
using Gauss-Legendre integration, by Selmer-Olsen [17]. When it comes to gas expansion,
this is assumed to follow Equation (28) on page 12, the same as Sachdeva et al, with n
given in Equation (29).
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4 Data Sets for Model Testing
The models described in Section 3 below were tested against two different sets of data;
one from a multiphase test loop facility, and one set of field data.

4.1 Porsgrunn Data Set
This data set, from a test facility in Porsgrunn, [14, 15] consists of 508 data points, most
of which are from three-phase flow, where water, oil and gas all are present, but there are
also several points that are gas-only or liquid-only. For the latter case, the composition
varies from water-only through a mixture of oil and water to oil-only. The fluid is oil
and gas from the Njord field and the Kårstø terminal respectively, mixed with salt water.
Measured flow rates range between 0.05 kg/s (only gas) and 13 kg/s (only water), with gas
mass fractions of 0 − 0.3 or close to one. The fluid properties were observed at separator
conditions, therefore, mass fractions and gas density for upstream conditions had to be
calculated using specially adapted equations. [14]. When calculating the gas density, the
ideal gas law was utilized, (that is, Equation (24) with Z = 1.) The measured pressures
are denoted P1 for upstream and P3 for downstream pressure.

The test facility where the data were measured was set up horizontally so that the flow
is undisturbed a length of six meters upstream of the choke. The pressure drop over the
choke was recorded for given volumetric flow rates. It was mainly the upstream pressure
that varied, while the downstream pressure was held almost constant from one test to
another. [14]

Figure 5: Sketch of cage and orifice choke that were used in the Porsgrunn data set
Fig. 3, [14]

Two different choke geometries were used in the testing process; orifice and cage, with
three different openings each; 11mm, 14mm and 18mm. A sketch of their geometry can
be found in Figure 5. The pipe diameter before and after the choke is 77.9mm.

As was described in Section 3, the multiphase choke models included in this report
consider liquid as one phase only and does not separate between water and oil. The liquid
properties for this data set will therefore be weighted averages for oil and water properties,
following the equations below:

ρL = (1 −WC)ρo +WCρw (50)

CP,V = xoCP,V o + xwCP,V w
xo + xw

(51)
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The water cut WC, is the ratio of the volumetric flow rate of water to the volumetric
flow rate of liquid, which can be expressed as xwρo/ (xwρo + xoρw). The heat capacities,
CP,V , are weighted by mass fractions.

4.2 Field Data
The field data [4] consists of 87 data points from the Ekofisk area in the 1980s. Of
fluid properties, only oil and gas density, oil volumetric flow rate and GOR at standard
conditions are given. It was therefore necessary to convert these properties and values to
flow conditions for the upstream pressure given. Since the production well from which
the measurements come was classified as an oil well, [1] the Black Oil Model, described
in Standing [18] was thought to be adequate for this purpose. Because the composition
was unknown, the pseudo-critical pressure and temperature had to be estimated. This
was done using correlations suggested by Standing [2] The Z-factor was then estimated
using Yarborough and Hall’s equations [8, 19]. There was no information about water
production, therefore the water phase was ignored and the liquid phase consists of oil
only.

The values for heat capacities for this particular oil and gas are also unknown. But
because these properties normally do not vary a lot hydrocarbon gases and liquids, this
was not thought to be a large source of error, and the same values as for the Porsgrunn
data set have been used.

Because this is data from a field in production, many of data points are very similar,
in both pressure and mass fractions. The gas mass fractions lie between 0.3 and 0.95, thus
filling an empty area from the Porsgrunn data. However, these are very high amounts of
gas when considering the applicability of the Black Oil Model, and xG is an important
input parameter to the choke models.

The pressures are also generally higher than those from Porsgrunn. The measured
mass flow rates range between 3 kg/s and 35 kg/s, through three different choke openings:
13mm (32/64 inch), 22mm (56/64 inch), and 38mm (96/64 inch). As will be shown in
figures later, it is relatively easy to see which data points belong to which opening. Also the
upstream pressure do not vary very much for one opening. Because the gas mass fractions
are rather similar, there are sharp distinctions between the mass flow rate through the
choke opening areas: the cluster with the lowest mass flow rate are the data points for
the smallest choke opening and the largest flow rates from the largest choke opening.

The upstream and downstream pipe diameter was not known for this data set. This
is probably not a big issue, because the choke opening is so much smaller that it will
dominate a term like 1/A2

1 − 1/A2
2. Where the upstream or downstream area is needed for

calculations, such as in Al-Safran and Kelkar’s pressure recovery equation, the diameter
d2 = 10 cm has been used, because this is a standard size in the oil industry. [4]

The downstream pressure is measured at the separator location, which means that
there is probably a considerable distance from the choke to where P3 was measured. If so,
there may have been pressure loss due to wall friction after the choke. Given that this is
production data from a platform, it can be assumed that the distance between the choke
and separator is some tens of meters, not more. This means that the pressure loss is in
the order of magnitude of kilo pascal, which is little compared to the upstream pressure
and the pressure drop across the choke. It was attempted to create a function of the form
∆Pfriction = constant × ṁ/ρm to find a more correct downstream pressure. But when
applying this, with different values for the constant, and running the data set through
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the models, the results were absolutely not better than when using the given separator
pressure as P3. Therefore, it was decided to use the separator pressure.
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5 Results
The choke models for prediction of mass flow rate described in Section 3 were programmed
in MATLAB R©[11]. Among the built-in functions in MATLAB’s library that were used
were mean and std to calculate the statistical parameters described in the following sec-
tion. The function fzero, which finds the root of a continuous function, was a great help
in the iteration procedure to find the critical pressure.

Being primarily for two-phase flow, none of the models that differ between critical and
critical flow, are able to give a proper prediction for the critical pressure for liquid-only
flow. This may not be surprising, as theory dictates that for incompressible flow, the
critical velocity is practically infinite. To avoid this situation, the calculation of yc or P2c
was skipped for liquid-only data points and flow regime was set to sub-critical. xL = 0
was not a problem for any models.

5.1 Evaluation Criteria
Three statistical parameters were chosen for evaluation and comparison of the choke
models; mean relative error, E1 in Equation (52), mean of absolute relative error, E2 in
Equation (53) and the standard deviation, σ in Equation (54). [3]

mean relative error : E1 = 1
N

N∑
i=1

(
ṁcalc,i − ṁmeas,i

ṁmeas,i

)
× 100(%) (52)

mean of absolute relative error : E2 = 1
N

N∑
i=1

∣∣∣∣∣ṁcalc,i − ṁmeas,i

ṁmeas,i

∣∣∣∣∣× 100(%) (53)

standard deviation : σ =

√√√√ 1
N − 1

N∑
i=1

[(
ṁcalc,i − ṁmeas,i

ṁmeas,i

)
− E1

100

]2

× 100(%) (54)

ṁcalc is the value predicted by the respective choke model, while ṁmeas is the observed
mass flow rate.

The mean relative error describes the difference between predicted mass flow rate and
the measured mass flow rate, and can take on both positive and negative values. If pre-
dictions are far from the measured value, but evenly distributed between over-predictions
and under-predictions, this error will be close to zero, even though each prediction is
rather wrong. The standard deviation says something about the amount of spread among
the relative errors, but if all predictions are for example 20 − 25 % too high, the standard
deviation will be low. E2, the mean of absolute relative error, combines the attributes
of E1 and σ in that it will only be low if the error for each data point is small. For this
reason, the discharge coefficient was tuned in order to minimize E2. [10]

In figures, the error on the y-axis is the difference between the predicted and measured
mass flow rate divided by the measured mass flow rate.

5.2 The Bernoulli Equation With Two-Phase Multiplier
Applied to the Porsgrunn Data Set

Figure 6a shows a graph of the calculated values for the mass flow rate compared to
what was measured for the Bernoulli Equation with ρm and Chisholm’s and Simpson et
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 6: Error distribution for the Bernoulli Equations, Porsgrunn data set
(see also Appendix A on page 79)
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al.’s two-phase multipliers. The discharge coefficients are tuned to minimize the relative
absolute error and are summarized in Table 1 with the statistics given in Table 2.

Table 1: Discharge coefficients for the Bernoulli equations

(a) CD-values for cage choke, Porsgrunn data set

Choke opening: 11mm 14mm 18mm
Bernoulli (ρm) 0.66 0.86 0.69

Bernoulli w ΦTP,Ch 0.63 0.66 0.59
Bernoulli w ΦTP,Si 0.64 0.69 0.61

(b) CD-values for orifice choke, Porsgrunn data set

Choke opening: 11mm 14mm 18mm
Bernoulli (ρm) 0.68 0.82 0.74

Bernoulli w ΦTP,Ch 0.62 0.62 0.63
Bernoulli w ΦTP,Si 0.63 0.65 0.64

(c) CD-values for field data

Choke opening: 12mm 22mm 38mm
Bernoulli (ρm) 0.48 0.53 0.72

Bernoulli w ΦTP,Ch 0.46 0.56 0.66
Bernoulli w ΦTP,Si 0.47 0.54 0.67

First of all, all three versions of the Bernoulli Equation give surprisingly good results.
It seems that Simpson et al.’s ΦTP is slightly better than Chisholm’s, in spite of a much
simpler slip model. However, looking at Figure 6b, it is clear that all three versions
struggle when the gas mass fraction increases. Alone, without any slip model or two-
phase multiplier, the Bernoulli Equation has more scatter in the results than with a ΦTP .
Slip is included in the two-phase multipliers, but could also be inserted directly into the
Bernoulli Equation by the use of two-phase density ρTP or momentum density ρe. As was
shown in Section 3.1, combining the momentum density with Simpson et al.’s slip model is
the same as combining Chisholm’s two-phase multiplier with Simpson et al.’s slip model,
which again is the same as Simpson et al.’s original two-phase multiplier. The results of
other possible combinations are summarized in Table 3. The corresponding CD-values
can be found in Appendix B.

Best results are produced by Simpson et al.’s ΦTP , but also here the predictions dras-
tically worsens as the gas mass faction increases. It is therefore possible that this trend
is caused by the assumption of constant gas density.

Because none of the versions of the Bernoulli Equation differ between sub-critical and
critical flow, it was expected that for low values of y = P2/P1, they would predict too
high flow rates. From Figure A.3c, this is not as visible as might have been expected.

Applied to the Field Data

All three versions of the Bernoulli Equation give almost the same predictions for this data
set, as can be seen in Figure 7 and from Table 11.

From the Porsgrunn data set, it was seen that the quality of predictions was dependent
on gas mass fraction. This data set has in general much higher xG than the Porsgrunn
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 7: Error distribution for the Bernoulli Equations, field data
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data set, but they do not cover a wide range of values for each choke opening, therefore
it is difficult to see if there is a trend in the error distribution in Figure 7b. There are,
however, some very good predictions in the area 0.4 < xG < 0.6. In Figure 7c, it is
especially visible which data points belong to which choke opening. The lump of points
around yactual ≈ 0.2 belong to the 12mm choke opening, the ones around yactual ≈ 0.3
have choke opening of 22mm and the last group that spans a somewhat wider area are
from largest, 38mm, choke opening. From this, it can also be seen that the predictions
are best for the 22mm choke opening, while there is much more scatter for the smallest
opening. This is the case for all three versions of the Bernoulli Equation.

Table 2: The Bernoulli Equation Statistics (%)

Porsgrunn Data Field Data
E1 E2 σ E1 E2 σ

Bernoulli (ρm) −0.322 15.299 19.131 −6.407 9.508 13.614
Bernoulli w ΦTP,Ch −0.288 9.006 11.930 −6.834 9.707 13.706
Bernoulli w ΦTP,Si 1.352 7.871 11.091 −6.560 9.636 13.573

In spite of a slightly higher standard deviation, it is the Bernoulli Equation with
homogeneous mixture density that gives the best E1 and E2 in Table 2. Simpson et al.’s
two-phase multiplier is the one with the lowest standard deviation. Summarized in Table
3, none of the other combinations are better than ΦTP,Si for this data set.

Table 3: Different combinations for the Bernoulli Equations with ΦTP and k

Porsgrunn Data Field Data
Different combinations E1 E2 σ E1 E2 σ

Bernoulli w ρTP and kCh 1.742 10.239 13.715 -6.800 9.895 13.796
Bernoulli w ρTP and kSi 1.427 12.885 17.065 -6.779 9.769 13.818
Bernoulli w ρe and kCh -0.507 9.011 11.936 -6.834 9.707 13.706

Bernoulli w ΦTP,Si and kCh -17.905 26.333 30.866 -6.928 10.308 14.510

5.3 Asheim’s Model
Applied to the Porsgrunn Data Set

The results from Asheim’s model are not particularly good. E2 and standard deviation in
Table 5 show that it is not better than the Bernoulli Equation with ΦTP,Si, even though
the mean relative error is one of the best so far. The values for the discharge coefficients,
which can be found in Table 4 do not display the expected increase in value by decrease
in choke opening, but the middle sized opening is the one with with highest CD.

During calculation, Z is set to be one, which is an assumption that was made when
calculating upstream gas density, (see Section 4.1 on page 19).

Figure 8 shows that the error distribution follows a very steep curve for small gas mass
fractions, but this trend seems to flatten out as xG increases above 0.05. The difference
between predicted and measured mass flow rates varies from −40 % to 80 %, where the
highest errors occur for data points that are almost single-phase flow, either liquid or gas.

Asheim’s model is the model that predicts the most data points to be critical flow,
but from Figure 8c, there seems to be a trend, although weak, where the predicted mass
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 8: Error distribution for Asheim’s model, Porsgrunn data set
see also Appendix A on page 79
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flow is too high for high pressure ratios (that is, little difference between upstream and
downstream pressure) and too low for low pressure ratios.

Applied to the Field Data

The Z-factor that was calculated from the Yarborough and Hall method, when properties
were converted from standard conditions to production conditions was also used when
calculating mass flow rates with Asheim’s model. The molar mass was then found by
rearranging Equation (24). Results are shown in Figure 7 and Table 5. They are very
similar to what was predicted by the Bernoulli Equation with two-phase multiplier.

Again, the greatest dispersion is seen around the 12mm choke opening, in Figure
9c. It seems that Asheim’s model is not giving better results than the best of Bernoulli
Equation for this data set either, even though approximately two thirds of data points
are predicted to be critical flow, see Table 6. These data points belong to the smallest
and middle sized choke opening, with only critical flow data points for the largest choke
opening.

5.4 The Sachdeva et al. Model
Applied to the Porsgrunn Data Set

The results for the Sachdeva et al. model found in Figure 10 are not very different
from those of Asheim’s model. This should not be surprising, as the models are very
similar. However, this model does give better results for both E2 and standard deviation,
summarized in Table 5 on page 40. The CD-values can be found in Table 4. The same
curve in the error distribution for low gas mass fractions that was present in Asheim’s
model, is also visible here, in Figure 10b. All in all, the Sachdeva et al. model is slightly
better than Asheim’s model in almost every point, but the improvement is not very large.

Applied to the Field Data

Also for this data set, the Sachdeva et al. model gives similar predictions as Asheim’s, as
can be seen in Figure 11. For the Porsgrunn data set, it was little but noticeable better,
but in this case the situation is almost turned around. At least, the advantage it had
over Asheim’s model is much less visible, both when comparing graphs and from the error
analysis in Table 5. The values for the discharge coefficients are given in Table 4. The
tuned CD-values for Sachdeva et al.’s model are lower than those tuned for Asheim’s model,
both for this set of data and the Porsgrunn test facility data set, although the resulting
predictions for Sachdeva et al.’s model are not always lower than those from Asheim’s
model. This is especially illustrated for the largest choke opening, by comparing Figure
9c and Figure 11c, or Figure A.6c in Appendix A on page 79.

5.5 Al-Safran and Kelkar’s Model
While the other models were quite straight forward to program, Al-Safran and Kelkar’s
model presented a challenge because there are two different expressions for k; one to be
used with sub-critical flow and another for critical flow. It is difficult to know which
expression to use when calculating the critical pressure ratio yc. Therefore, two values of
yc was calculated; one using kSi and another value with kmodCh. If the observed y was
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 9: Error distribution for Asheim’s model, field data
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 10: Error distribution for the Sachdeva et al. model, Porsgrunn data set
(see also Appendix A on page 79)
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 11: Error distribution for the Sachdeva et al. model, field data
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either lower or higher than both yc-values, the case is clear for which kind of flow regime
there is. Then one can go back and use the appropriate expressions for either sub-critical
or critical flow and calculate the mass flow rate accordingly. [9]

However, because kmodCh is expected to be larger than kSi, yc(kmodCh) will be lower
than yc(kSi), as can be seen in Figure 16 on page 40. The solid red line is the yc-value
calculated with kSi, whereas the dotted red line represents yc when using kmodCh. In some
cases encountered, the observed y fell in-between these two. Comparing the observed y
to the yc assuming critical flow will cause the model to predict sub-critical flow, while
compared to the yc assuming sub-critical flow the result should be critical flow. In these
cases, the average of the two flow rates is used as prediction. For the Porsgrunn data set,
this occurs 20 (out of 508) times, but for the field data it was not an issue.

Applied to the Porsgrunn Data Set

This is the first model presented here that takes both phase slippage and pressure recovery
into account. Therefore, it is expected to be the best so far. The results shown in Figure
12 show that it gives better results than Asheim and Sachdeva et al.’s model, in spite of
some inconsistent data points. Nevertheless, the model still does not give better results
than the Bernoulli Equation with Simpson et al.’s ΦTP . In Figure 12b, there can still
be discerned a curve in the error distribution with respect to xG, although it is not so
distinct as for Asheim and Sachdeva et al.’s models. In many ways, it is more similar to
the error distribution of the Bernoulli Equation with Simpson et al.’s ΦTP .

The values for discharge coefficients are found in Table 4 and the statistics are sum-
marized in Table 5.

In three out of six cases, the CD-values are larger than unity. Except for the largest
choke opening, there is also less difference between the values for cage choke and orifice
choke with the same opening for this model than for the other models. In fact, Asheim’s
model and the Sachdeva et al. model both have a difference of 0.9 between the CD for
cage and orifice choke for the 11mm and 14mm openings, while only 0.2 − 0.3 for the
largest opening. For Al-Safran and Kelkar’s model it is opposite: the largest difference
is found for the largest openings; 0.9, while for the two others, the difference is no more
than 0.6.

The pressure recovery lies around P2 being 80 − 99 % of the measured downstream
pressure.

Applied to the Field Data

The results are shown in Figure 13 and Table 5. This was the statistically best model for
the Porsgrunn data set, but does not stand out in the same positive way when looking at
this set of data. But again, there is little difference between the results from this model
and the previous models.

As the model includes A3, in Equation (37), not knowing A3 could be a source of
error, especially for the largest choke opening. By adjusting A3 and trying different values
between 8 cm and 15 cm, then retuning CD, it was seen that for the two smallest choke
openings, the CD-values were unchanged, while for 38mm opening, there was a difference.
However, the mean of absolute relative error was in fact lowest for d3 = 10 cm, with the
corresponding CD = 1.20, as given in Table 4. This would suggest that d3 = 10 cm is a
reasonable assumption, and not a large source of error.

33



(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 12: Error distribution for Al-Safran and Kelkar’s model, Porsgrunn data set
(see also Appendix A on page 79)
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 13: Error distribution for Al-Safran and Kelkar’s model, field data
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In spite of having high CD-values, all of them above unity, most of the predictions are
lower. This is especially true for the largest choke opening, where the model for pressure
recovery will have highest impact on the prediction. For the two largest choke openings,
the pressure recovery is between 10 and 20 %, while for the smallest choke opening, it lies
relatively stable at 8 − 9 % of the measured downstream pressure.

5.6 The Original Hydro Model
Applied to the Porsgrunn Data

Figure 14 shows the results for the Hydro Model. Especially Figure 14b is an improvement
from the previous models, and any trend is difficult to see. From Table 5, it is better
than Al-Safran and Kelkar’s model and even the Bernoulli Equation with Simpson et al.’s
two-phase multiplier.

When it comes to the error distribution with respect to y, however, there seems to be
a trend for the model to predict too high mass flow rates for small pressure drops and too
low flow rates for high pressure drops.

The CD-value, given in Table 4 decreases as the choke opening increases, both for cage
and orifice chokes. This is the only model for which the discharge coefficients are in a
descending order, quite the opposite of theory.

When it comes to pressure recovery, the Hydro Model predicts this to be less than
Al-Safran and Kelkar’s model, with an average of 3 %. The absolute highest pressure
recovery of 18 % is predicted for the data point with the highest pressure drop across the
choke.

This set of data was used by Schüller et al. [14, 15] when modifying Chisholm’s slip
model, by tuning ξ and β. For the Hydro Model with Chisholm’s original expression, see
Section 6.4 on page 47.

Applied to the Field Data

The field data all come from one choke geometry, which is thought to be suitable for the
long model of the Hydro Model, but the data set was also run through the short model,
for comparison. As can be seen in Figure 15, the two versions, with different CD-values,
gave very similar results. Statistically, the long model seems to give marginally better
results than the short. However, the Hydro Model is actually the model to produce the
worst statistics, see Table 5 for this data set. The difference between this and the other
models is not very large, though.

Although the pressure recovery predicted by the Hydro Model is less than what Al-
Safran and Kelkar’s model predicts, the difference is smaller for this data set than it was
for the Porsgrunn data set. On average, P2 is 90 % of the measured downstream pressure.

5.7 Summary
One of the most interesting things to observe is that the Bernoulli Equation with ΦTP,Si

gives very good results for both data sets. Even the simpler Bernoulli Equation with ρm
is better than the more complicated models of Asheim and Sachdeva et al..

The Hydro Model is the one to give best results for the Porsgrunn data. It has the
advantage that the slip model is tuned especially towards this data set. But also Al-
Safran and Kelkar embrace this modified version of Chisholm’s slip model and keep the
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 14: Error distribution for the Hydro Model, Porsgrunn data
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 15: Error distribution for the Hydro Model, field data
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same constants when they develop their model for critical flow. [3] This suggests that the
modification is an improvement more generally, not just for the Porsgrunn data set.

When applied to the field data, however, neither Al-Safran and Kelkar’s model or
the Hydro Model perform very well, and the situation is turned around: apart from the
Bernoulli Equation with ΦTP,Si, the models that give best results for the Porsgrunn data
set are the worst for the field data, and vice versa. There are many critical points for the
field data, therefore kmodCh with its two constants the two constants ξ and β probably
influence the results also for Al-Safran and Kelkar’s model. Thus, the models that use
kmodCh, are the two worst. It would therefore be interesting to see if changing the slip
model can improve these results, which will be further discussed in Section 6.4 on page 47.

For the Porsgrunn data set, it is possible to see a development in error distribution, if
there is any, for both gas mass fraction and pressure ratio, as the data points are spread
over a wider range of properties. The field data are clumped into three groups, for each
choke opening, and it is therefore more difficult to discover any trends. But they are
actual production data, and it is useful to see how the models handle, for example, the
higher pressure and less controlled circumstances they represent.

When it comes to the field data, there seems to be little doubt about whether there is
critical or sub-critical flow. For the Porsgrunn data set, however, the models range from
predicting 114 out of 508 critical flow data points in Asheim’s, to only 40 in the Hydro
Model.
Table 4: Discharge coefficients for Asheim’s, Sachdeva et al.’s and Al-Safran & Kelkar’s
and Hydro models

(a) CD-values for cage choke, Porsgrunn data set

Choke opening: 11mm 14mm 18mm
Asheim 0.94 1.00 0.81

Sachdeva et al. 0.90 0.98 0.81
Al-Safran & Kelkar 1.03 1.09 0.91
The Hydro Model 0.49 0.48 0.42

(b) CD-values for orifice choke, Porsgrunn data set

Choke opening: 11mm 14mm 18mm
Asheim 0.85 0.91 0.79

Sachdeva et al. 0.81 0.89 0.78
Al-Safran & Kelkar 0.98 1.03 1.00
The Hydro Model 0.66 0.66 0.64

(c) CD-values for field data

12mm 22mm 38mm
Asheim 0.92 1.04 0.99

Sachdeva et al. 0.82 0.93 0.91
Al-Safran and Kelkar 1.11 1.23 1.20
Hydro Model, long 0.56 0.64 0.56
Hydro Model, short 0.78 0.87 0.78

Figure 16 shows hos the critical pressure ratio, yc = P2c/P1, varies with gas mass
fractions, all other properties unchanged for the different models. In accordance with
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Table 5: Statistics (%) for Asheim’s, Sachdeva et al.’s, Al-Safran & Kelkar’s and Hydro’s
models

Porsgrunn Data Field Data
E1 E2 σ E1 E2 σ

Asheim -0.740 22.377 26.574 -6.827 9.636 13.764
Sachdeva et al. 1.366 19.973 24.139 -6.867 9.593 13.818

Al-Safran & Kelkar -0.664 11.268 13.536 -7.281 9.702 13.849
Hydro Model, long 0.067 6.993 8.859 -7.423 9.982 14.056
Hydro Model, short -7.626 9.973 14.081

Table 6: Critical points, predicted by Asheim, Sachdeva et al., Al-Safran and Kelkar, the
Hydro Model

Porsgrunn Data Set Field Data
Asheim 114 59

Sachdeva et al. 105 59
Al-Safran and Kelkar 83* 59
The Hydro Model 40 59**

* +20 in-between critical and sub-critical
** both long and short

theory, the critical pressure ratio drops toward zero as the gas mass fraction approaches
zero. As the Hydro Model gives the lowest yc, it is not surprising that it is the model to
predict fewest critical points.

Figure 16: How yc = P2c/P1 varies with xG
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6 Modifying The Hydro Model
In this section, several features of the Hydro Model will be looked at separately, in order
to discover their importance and effect on the final results. As was seen from Figure 14c,
the model as a tendency to predict too high mass flow rates for high pressure ratios and
too low mass flow rates for low pressure ratios. Figure 17a shows some of the same issue,
but in a different way, where the predictions for most sub-critical data points are too
high, and the closer to critical the data point is, the lower is the predicted value. The
aim of this section is to find a way to remove this trend without worsening the results,
and simplify or verify parts of the model.

A possible solution to the problem could be to decrease the curvature of the ṁcalc vs. P2
curve as shown in Figure 3 on page 11 in a way that the maximum point is moved upwards
and to a lower pressure, but without changing the the sub-critical prediction too much.
If the diagonal trend in Figure 17a is evened out, the predictions can be tuned down with
the discharge coefficient.

The features that will looked at in the following sections are pressure recovery, the
numerical integration of 1/ρe, density calculation of a two-phase fluid, slip model and gas
expansion.

6.1 Pressure Recovery
The only reason why two iteration procedures are necessary in the Hydro Model is the
inclusion of pressure recovery. This makes it a lot more time consuming than any of
the other models presented here. Therefore, it would be interesting to see how much
improvement this additional time and actually gives.

Figure 18 shows a graph of how substantial the pressure recovery is for the Porsgrunn
data set. P2 is never less than 80 % of P3, most of the time more than 90 %. Dropping
the pressure recovery in the model could result in a considerable difference in the mass
flow rate predictions, but it is hoped that the discharge coefficient could absorb some of
it. The main conscern is therefore the border between sub-critical and critical flow.

Running the Hydro Model for the Porsgrunn data set without pressure recovery, where
P2 = P3, and not using Equation (45) or (46), yielded the results given in Table 7 and
Figure 19, after retuning CD.

Table 7: The Hydro Model without pressure recovery: statistics

The number in parenthesis is change from the original value in Table 5
Porsgrunn data Field data

E1 E2 σ E1 E2 σ

Hydro, long -0.122
(+0.055)

6.820
(-0.173)

8.651
(-0.208)

-8.162
(+0.739)

9.979
(-0.003)

14.027
(-0.029)

Hydro, short -7.985
(+0.359)

10.002
(+0.029)

13.920
(-0.161)

The results are absolutely not worse than with pressure recovery, at least not for the
Porsgrunn data set. Although the average relative error has increased somewhat in mag-
nitude, the standard deviation and average absolute relative error have both decreased,
which means that there is now less spread among the errors. From Figure 19c, not includ-
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(a) Error vs. ṁcalc/ṁc(calc)

(b) Error vs. ρe1

Figure 17: The original Hydro Model error distribution

ing the pressure recovery seems to help a bit in evening out the targeted trend explained
above.

The CD-values are almost unchanged, which is another sign that pressure recovery
does not have a great impact on the flow rate predictions. That the little change there is,
is an increase rather than a decrease is also sensible, because without pressure recovery
the pressure difference across the choke is smaller, and predicted the mass flow rate with
the same CD will also be smaller.

For the field data, it does not seem so obvious that pressure recovery is unnecessary.
Also for this data set the standard deviation decreases, although very little. Graphs similar
to Figure 19 for the field data can be found in Appendix A. Especially E1 increases in
magnitude, but with less than half a percentage point for the short model. The CD-values
for the different choke openings both increase and decrease for both long and short model,
which is unexpected.

MATLAB R©’s built-in function tic toc makes it easy to measure the time the Hydro
Model needs to calculate mass flow rates for all 508 data points in the Porsgrunn data set.
Taking the average over 100 runs, when including pressure recovery, it took 6.01 seconds
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Figure 18: The Hydro Model: Pressure Recovery, Porsgrunn data set

Table 8: The Hydro Model without pressure recovery: CD
The number in parenthesis is change from the original value in Table 4

(a) CD-values for the Porsgrunn data set

11mm 14mm 18mm
Cage (Hydro, long) 0.49 (-) 0.48 (-) 0.43 (+0.01)

Orifice (Hydro, short) 0.67 (+0.01) 0.66 (-) 0.65 (+0.01)

(b) CD-values for the field data

12mm 22mm 38mm
Hydro, long 0.55 (-0.01) 0.63 (-0.01) 0.57 (+0.01)
Hydro, short 0.78 (-) 0.86 (-0.01) 0.80 (+0.02)

to go through the data set. Without pressure recovery, the average run time was reduced
to 3.58 seconds.

All in all, skipping the pressure recovery from the Hydro Model seems to be an ac-
ceptable option. It greatly simplifies the model, both when it comes to computational
time and complexity. Continuing without it, also makes it easier to change other features
within the model.

The one iteration that is left, finding the critical pressure, can be done in two ways.
Either, Equation (44) can be differentiated and set equal to zero to find the P2c cor-
responding to the maximum mass flow rate, or one can continue to use the iteration
ṁ21−2 − ṁ2

c = 0.

6.2 Merging the Long and Short Submodels
Removing the pressure recovery term in the Hydro Model simplifies the model more than
just removing one iteration: The only difference between the long and short model lies
in calculation of ṁ2−3, where the long model uses A2 as the flow area in the choke, while
the short model uses Avc = CDA2. This causes the sub-critical mass flow rates for the
long and short versions to be slightly different, and depending on which model is used,
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 19: Error distribution for the Hydro Model without pressure recovery, Porsgrunn
data
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the prediction for sub-critical or critical flow could be different. However, when Equation
(45) and (46) are no longer in use, the long and short models are identical. This can be
shown better by rearranging Equation (43) into:

ṁ2
1−2 =

2
´ P2
P1

1
ρe
dp

1
A2ρ2

e1
− 1

A2
2ρ

2
e2

[(
1
CD

− 1
)2

+ 1
] (long) (55)

and then comparing the expressions for CD, by writing:

C2
D,short = 1(

1
CD,long

− 1
)2

+ 1
(56)

That this actually is the case, can be seen from the CD-values for the field data in Table
8, where the same data set has been run through both models. Putting the discharge
coefficients for the long model into Equation (56), the CD for the short model, within
rounding margin, is obtained. The reason for the difference in the error measurements in
Table ?? are thought to be due to the fact that CDs are tuned to two decimal points, which
is not as exact as Equation (56). Calculating CD for the short model from the discharge
coefficients for the long model and rerunning the short model, produces identical results
for long and short versions of the Hydro Model.

As it has been suggested to neglect pressure recovery, there is only need for one model
henceforth. This simplifies the Hydro Model even further, making the difference between
including pressure recovery or not larger. Neglecting pressure recovery not only reduces
the number of iterations from two to one, but also makes it unnecessary to have one model
for long contractions and another for short. Discharge coefficients should continue to be
tuned separately for orifice and cage chokes, though, because of their different geometry.

The new CDs for cage geometry chokes and statistical parameters are summarized in
Table 9-11 on page 60 and onwards.

6.3 The Density Integral
The integral of momentum density

P2ˆ

P1

1
ρe
dP =

P2ˆ

P1

(
xG
ρG

+ kmodCh
xL
ρL

)(
xG + xL

kmodCh

)
dP (57)

is a complicated expression as kmodCh (or kCh or kSi if those should be used) also includes
ρG. Selmer-Olsen developed a numerical integration formula to integrate it, using the
Gauss-Legendre method. It calculates the momentum density separately, so another slip
model could be substituted for kmodCh. Also, another expression for the density could be
used with the formula.

6.3.1 Verification in MATLAB R©

MATLAB has a large library of built-in functions that simplifies programming. Among
others, the some of them can integrate user-defined functions by numerical integration,
where the user can choose between several different numerical integration algorithms. A
few of these were chosen to compare to the formula used in the Hydro Model, both in
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order to get an impression of its accuracy and see if another version would improve, or
worsen, the predictions.

From Figure 2 on page 6, it is seen that the momentum density, therefore also 1/ρe
should be similarly smooth. Then MATLAB’s quadl seems appropriate, as it is suit-
able for smooth functions and gives higher accuracy than adaptive Simpson quadrature
(quad). quadl uses adaptive Lobatto quadrature. quad and quadgk (using adaptive
Gauss-Kronrod, it is suitable for high accuracies and also infinite intervals, although the
latter will not be an issue here) [11] were also included, for comparison.

Figure 20: The Hydro Model: Density integral, the original vs MATLAB methods
quad, quadl and quadgk are so similar that their lines are on top of each other

P1 = 2.91MPa and xG = 0.28

The values of the density integral for some numerical integration formulaes are shown
in Figure 20. Around atmospheric pressure, the difference between the original integral
and quadl is 0.0001 %, and as P2 increases, the difference becomes even less. Only for
so low downstream choke pressures that they are only theoretically interesting, is there a
maximum difference of 5 % between the numerical method used in the Hydro Model and
what MATLAB functions calculate. When running the Hydro Model with quad, quadl
or quadgk, the differences in mass flow rates or P2c are not observable.

From these observations, it seems that because the momentum density follows a
smooth, monotonously increasing curve, the results are not particularly sensitive for which
numerical integration method is being used.

6.3.2 Trapezoidal Method Approximation

When it was discovered that all three MATLAB functions and the original integration
formula gave as good as identical results, it was thought that it may be possible to simplify
the integral even further, by utilizing the very simple trapezoidal method. Figure 23
suggests that the inaccuracy of approximating 1/ρe by a straight line, as the trapezoidal
method does, may give adequate results. It is feared, however, that especially for large
pressure drops, the inaccuracy may be too high a price to pay for the simplicity.

Introducing a trapezoidal approximation into Equation (44) and retuning CDs give the
results for the Porsgrunn data set shown in Figure 22 and Table 10. This was noticeably
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Figure 21: The Hydro Model, sketch of trapezoidal approximation for density integral

worse, especially for y, where the trend in over-predicting the mass flow for low pressure
drops and under-predicting the ones for high pressure drops is aggravated.

As can be seen from Figure 23, the trapezoidal approximation lifts the original ṁcalc-
curve, before retuning the CD. This is in accordance with Figure 20 where it can be seen
that the trapezoidal method overestimates the actual integral, making the absolute value
in the nominator larger than for the original integration formula. Retuning CD, the curve
is lowered closer the original again, and it should be noted that the shape of the curve
has not changed much between P1 and the maximum point.

For the Porsgrunn data set, the trapezoidal approximation the the density integral
noticeably worsened the results compared to the original integration formula, especially
when looking at the standard deviation. Neither the results from the field data shows any
positive change. As a result, the original numerical integration formula should be kept.

6.4 Density Average and Slip Model
The momentum density ρe was chosen because its derivation is based on momentum flux,
which makes it suitable for use in the momentum equation. But as was seen in Figure
2, there is clearly a difference between the different densities. When changing expression
for density and slip, MATLAB’s quadl was used to calculate

´
(1/ρ) dP to be sure that

the integral calculation was not influenced by the original ρe and kmodCh. Also, whenever
substituting another slip model or density equation, a new expression for d

dP
(1/ρ) has to

be calculated.

6.4.1 Homogeneous Density

Results from Section 5 suggests that slippage between the gaseous and liquid phases is an
important part of any model. To better see the significance of slip in the Hydro Model, it
was run once without any slip. The homogeneous density that was used for this is given
in Equation (8) on page 4. When assuming gas and liquid to flow with the same velocity
in modeling, the gas must take up a larger portion of the flow area in order to produce the
same gas flow rate as when the gas is allowed to flow faster than the liquid phase. This
causes the homogeneous density to be lower than both two-phase density and momentum
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 22: Error distribution for the Hydro Model with trapezoidal approximation in
integral, Porsgrunn data
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(a) From the Porsgrunn data set, xG = 0.01 and P1 = 0.86MPa

(b) From the field data, xG = 0.59 and P1 = 8.02MPa

Figure 23: The Hydro Model: ṁcalc vs P2 for trapezoidal approximation to density integral

density, and reduces the amount of mass that can flow through an area per time unit.
The results for the Porsgrunn data set are shown in Figure 24. It can be seen that

the curve, or sudden drop in the error distribution with respect to gas mass fraction,
in Figure 24b, is comparable to the error distribution for Asheim and Sachdeva et al.’s
models, which do not include slippage either. There is a lot more spread in the results
without slip, although there seems to be approximately as many over-predictions as under-
predictions (low E1). There are also more data points that are predicted to be critical
now than when including a slip model. The CD-values in Table 10 are considerably higher
than when including slip.

In Figure 24c, there seems to be two layers of data points in the horizontal direction,
where the upper layer consists of data points that are over-predicted, and the bottom layer
of mostly under-predicted data points. From Figure 2, it is seen that the homogeneous
density is much lower than the original momentum density. Therefore, when using, and
integrating ρm, a lower value will result, leading the retuned CD to be higher than the
original in order to bring the prediction up again. However, for data points within the
same choke opening and geometry category, the same CD has to be used for single-phase
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(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure 24: Error distribution for the Hydro Model without slip
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and multiphase flow. As a consequence, the upper layer in Figure 24c is made up almost
solely single-phase flow data points, either gas-only or liquid-only, because the new CD is
too high. But the CD-value is still too low for the multiphase data points, leading them to
make up the bottom layer. The general trend of a diagonal line from low pressure ratios
up to high pressure ratios, is still present, though.

From this, it seems that slippage is a very important part of the Hydro Model.

6.4.2 The Slip Models

(a) Slip vs pressure

(b) Slip vs xG

Figure 25: Three slip models

There are three different slip models that have been presented here: Chisholm in
Equation (14), Simpson et al. in Equation (16), and modified Chisholm in Equation (49).
The two latter includes at least one factor that can be tuned; in kSi there is a and modified
Chisholm has ξ and β, which have been tuned to the Porsgrunn data set and are purely
experimental. Simpson et al.’s a = 1/6 has a more physical meaning, as that is the only
value of the constant for which Equation (23) on page 10 is true for Φ2P,Si(kSi) as well.
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How the slip models change with pressure and gas mass fraction, are shown in Figure
25. For a given xG, the modified Chisholm slip model always give the highest slip, while
Chisholm and Simpson et al. are very close to each other as the pressure increases. This is
also the case for other pressures: kCh lies a little above kSi, but where they meet depends
on xG. The less gas there is, the steeper is the beginning of the curve. Also, the lines
of kCh and kSi, will eventually cross so that kCh < kSi for high pressure. As can be seen
in Figure 25a, the slip decreases as the pressure increases. This is because under higher
pressure, the fluid will become more and more homogeneous, and there is expected to be
less slip [14].

Figure 25b shows clearly where where the Lockhart-Martinelli parameter becomes
less than one, and from there on and higher gas mass fractions, the slip is constant for
both Chisholm’s and Simpson et al.’s slip models. The modified Chisholm model, however,
continues to increase until it reaches a maximum value at xG = 1. This absolute maximum
will fall out of the equation for two-phase density, though, but the high slip for when very
little liquid is present, will effect the calculations.

6.4.3 Two-Phase Density

The two-phase density in Equation (4) on page 4 is repeated here:

1
ρTP

=
xG
ρG

+ k xL
ρL

xG + kxL

From Figure 2, it was seen that the two-phase density is in general always the highest
density expression, when looking at change with both pressure and xG. As the pressure
increases the difference between two-phase density and momentum density also increases,
but not so fast as for lower pressures. In ρTP , slip has to be included, both times multiplied
by xL so that if xL = 0, it does not matter which slip model is used.

In Figure 27, the predicted mass flow rates with varying choke pressure are drawn
for different densities and slip models. The discharge coefficient is not tuned, to better
see the effect of the slip models on the predicted mass flow rate. As expected, because
the mixture density is highest, it also gives some of the highest predicted ṁ for a given
downstream pressure, and ρTP (kmodCh) being the highest of all. The higher the maximum
point on the predicted mass flow rate curve is, the further it is shifted towards a lower
P2c as well. The incontinuity in the curves with kCh is where the Lockhart-Martinelli
parameter causes a change in the expression for slippage. The figure also shows that the
highest slip gives the highest mass flow prediction, which is logical.

Predictions for the Porsgrunn data set are shown in Figure 26, and the statistics in
Table 9 suggest that the two-phase density may not be as good as using the momentum
density with modified Chisholm as slip model. This comes as no surprise, given that
the expression for the momentum density should be the ideal to use in the momentum
equation, from which the Hydro Model and the other models presented here, are deduced.
However, the improvement from not including slip at all, to include slip by using the ρTP
is large; both standard deviation and average absolute relative error is halved for any of
the three slip models.

Shifting the critical pressure to a lower value and lifting the whole ṁcalc-curve was
thought to even out the trend of over-predictions for high pressure ratios and under-
predictions for low pressure ratios, but it does not seem that using two-phase density
instead of momentum density is the way to do it.
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(a) Error vs ρT P

(b) Error vs slip

Figure 26: Error distribution for the Hydro Model with ρTP and different slip models,
Porsgrunn data set

See also Appendix A

The best of the slip models with mixture density is kCh, with E2 = 9.362 % for the
Porsgrunn data set. A reason why the performance for kmodCh, compared to the other
slip models is not so good, could be that it contains two factors that have been tuned.
Albeit, they have been tuned to fit the Porsgrunn data set, but within the original Hydro
Model which uses the momentum density, not two-phase density. From Figure 26b, it
can be seen that as the slip from kmodCh increases past that of Chisholm’s model, the
over-prediction also increases sharply, suggesting that it would have been better to set a
maximum slip, like Chisholm has done. The very high slip values, where kmodCh > 10, are
for cases with xG u 1, and therefore the slip has little or nothing to say for the predicted
mass flow.

6.4.4 Momentum Density

Equation (12) is repeated:
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Figure 27: ṁcalc vs P2 for different densities and slip models

1
ρe

=
(
xG
ρG

+ k
xL
ρL

)(
xG + xL

k

)

Again, any slip model could be used with the momentum density. In the Hydro Model,
there is originally made use of the momentum density and a modified version of Chisholm’s
slip model. The main difference between momentum density and two-phase density is the
way in which slip is incorporated. ρe is divided by another factor, where ρTP is multiplied
by one, and in this factor in ρe, xL is divided by the slip, while in the factor in ρTP , xL
is multiplied by the slip.

Because ξ and β have been tuned to the Porsgrunn data set, it would be expected that
using ρe with kmodCh will give better results than ρe with kCh, which it also did, as can
be seen in Table 9, where ρe with kmodCh is almost at the top of the table (“wo. pressure
recovery”). Results are shown in in Figure 28 and 29. and Appendix A.

Also for momentum density, Simpson et al.’s slip model has slightly higher errors than
the others, even though Chisholm’s k does not always depend on xG either. The trend
for kmodCh > 4 that was very clear when using two-phase density is not present here. The
error distributions for kCh and kSi are more or less the same for momentum density as
they were for two-phase density.

Even though there is not a great difference in the errors calculated, Figures 26a and 28a
suggest that the momentum density is more appropriate than two-phase density because
the errors are more evenly distributed for momentum density and the steep line for low
mixture densities is not seen.

6.5 Gas Expansion

Another thing to look at, that may help correct the trend in Figure 17a, is the model
for how the gas expands. Originally in the Hydro Model, gas is expected to expand
polytropicly, using an exponent that is a weighted average of liquid and gas heat capacities.
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(a) Error vs ρe1

(b) Error vs slip

Figure 28: Error distribution for the Hydro Model with ρe and different slip models,
Porsgrunn data set

6.5.1 Constant Gas Density

To see the effect of gas expansion, the Hydro Model was first run and tuned for the case
of constant gas density. This can be done in several ways: the ones looked into here is
using ρG1 all the way through, and using an average of ρG1 and ρG3, setting

ρG = const = ρG1 + ρG3

2 (58)

where ρG3 is calculated by Equation (28) on page 12. Using P2 should be avoided because
the density is an input parameter, while P2 is considered unknown in the beginning. That
the density is constant does not mean that there is no slip, but as the slip is a function
of mass fractions and gas density, it will remain constant in all positions over the choke.
With density and slip independent on pressure, the relationship between ṁcalc and P will
be linear, and a higher pressure drop will give higher mass flow.

The results for the Porsgrunn data set are shown in Figure 30. As can be seen from
Table 12, there are no data points that are predicted to be critical, and this is in accordance
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(a) Error vs ρe1

(b) Error vs slip

Figure 29: Error distribution for the Hydro Model with ρe and different slip models, field
data

with theory; critical flow can only occur in a compressible fluid, and now the gas is
considered to be incompressible as well as the liquid.

The results for both the data sets are surprisingly good for the fluid density to be kept
constant. There is more spread than when including gas expansion, especially when using
ρG1, but for the average gas density, the results are better than for substituting kCh for
kmodCh in the Porsgrunn data.

When it comes to the field data, the difference is little, both between the two methods
of calculating constant gas density and other alternatives that have been tested out. What
has changed most, is the CD-values in Table 10, they have all dropped quite a lot. This
may be be related the pressure drop. For each choke opening, and by that, for each CD-
value, almost all the points have the same upstream pressure and the same pressure drop,
and therefore the CD can better be tuned to the situation. When using ρG1 all the way,
the gas density is higher than it should at the choke, and as compensation CD is lowered.
This fits well with the observations, especially because the smallest choke opening has the
largest pressure drop, y ≈ 0.2, and also the lowest CD, while the largest choke opening
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(a) Error vs. ρG1

’
(b) Error vs. ρe1

Figure 30: Error distribution for the Hydro Model with constant gas density, Porsgrunn
data set

See also Appendix A

has the smallest pressure drop and the highest CD. This is also the case for the averaged
density, but as expected, all CDs are now closer to their original value, most likely because
the gas density is closer to what it should be at the choke.

6.5.2 n vs. κ

Originally in the Hydro Model, it has been assumed that when the gas expands, it is kept
from cooling by receiving heat from the liquid so that the gas and liquid will always be
at the same temperature. And because the liquid has higher heat capacity than gas, this
temperature is assumed to be constant. Assuming adiabatic gas expansion, the model then
predicts the gas to expand more than it would if it did not receive heat from the liquid.
But the time for heat transfer between the phases is short, and it may be that it would
be better to model the gas as cooling during the expansion, by using κ = (CP/CV )gas
instead of n in Equation (28) so that
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ρG = ρG1

(
P

P1

)1/κ
(59)

Because n ≤ κ, using κ will lead to less gas expansion. The results in the previous section,
where it was shown that even with constant fluid densities, the predictions were not much
worse, supports the idea of decreasing the modeled gas expansion. In addition, decreasing
gas expansion is hoped to lessen the curvature in the ṁcalc vs. P graph. Figure 31 shows
that κ does exactly that; moves the critical pressure to a lower value, and the critical
mass flow rate to a higher value. A retuning of CD brought the curve down a little again.
The best thing with this change may be that the beginning of the curve, as seen from P1,
is unchanged.

Figure 31: The Hydro Model: ṁcalc vs. P2 for gas expansion using n and κ

The results for the Porsgrunn data set are shown in Figure 32. There is definitely
some improvement in all but E1. Originally (without pressure recovery), there were 12
data points, of 508, outside the range of error 20 %, but with κ, this number is reduced
to seven; of which two are pure gas and the other five have xG < 0.03. Even though the
CD-values are lower, most of the predictions are higher, except where there is single-phase
flow. For cases with xG ≈ 1, n ≈ κ, which means that the only change is a lower value
of CD, and the predictions are lowered. Figure 32a shows that the error trend for y is
somewhat diminished. The ṁcalc/ṁc(calc) plot in Figure 32b shows a bit of the same thing,
in that the trend of predicting too high flow rates for sub-critical points is leveled out.
From Table 12, it can be seen that the number of critical points is almost halved from the
original (still without pressure recovery) 25 to 13, which also indicates that the critical
pressure has been lowered.

For the field data, an improvement of results was not obtained. While E1 and E2 are
somewhat better, the standard deviation has increased. The number of critical flow data
points remains unchanged at 57, suggesting that there is little doubt about whether a
points is critical or not. Only two points differ in the highest and lowest prediction of
number of critical points, when not looking at the incompressible gas cases.
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(a) Error vs. y = P2/P1

(b) Error vs. ṁcalc/ṁc(calc)

Figure 32: Error distribution for the Hydro Model with κ, Porsgrunn data set
See also Appendix A

6.6 The Significance of the Term 1/A2
1ρ

2
e1

In the Bernoulli Equation with ΦTP , Asheim, Sachdeva et al., and Al-Safran and Kelkar’s
models, the term containing u1 have been ignored on the assumption that A2 � A1 and
therefore u1 � u2 so that u1 could be neglected. The Hydro Model has chosen to keep u1
in the term 1/A2

1ρ
2
e1 in Equation (44) (and (43) when that is in use). But the upstream

momentum density will always be higher than the downstream density, thus diminishing
the importance of 1/A2

1ρ
2
e1 compared to 1/C2

DA
2
2ρ

2
e2 even further.

The field data have the highest choke opening compared to the assumed pipe diameter
before. Setting d1 = 10 cm, a 38mm choke opening is 14.4 % of the upstream area. The
pressure drop is in the range of 50 − 65 %, which is the lowest pressure difference for this
data set as well. These data points seem therefore to be where 1/A2

1ρ
2
e1 is most important.

An overview of how large this term is related to 1/C2
DA

2
2ρ

2
e2 is given in Table B.3. The

highest number is for the very last data point, where 1/A2
1ρ

2
e1 is 1.23 % of 1/C2

DA
2
2ρ

2
e2,

something that translates to 0.6 % difference in predicted mass flow rate, and that is not
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much.
Removing this term and retuning, there is no difference in CDs for either of the data

sets, as can be seen in Table 10 and 11. For both data sets, the average relative error
has increased a bit, while the other error parameters are almost the same or even slightly
better than the original without pressure recovery. From this, it seems that the term
1/A2

1ρ
2
e1 has very little significance in the model.

6.6.1 Slip Upstream Choke

The Hydro Model has assumed no slip at position (1) in Figure 4 on page 16 and therefore
ρe1 = ρm in Equations (43) and (44). But it has been shown above that slip is very
important, therefore it is worth looking into whether including slip in position (1) and (3)
will have any effect in the result, especially as it gives very little additional calculations.
The change is not expected to be large, though, because the term 1/A2

1ρ
2
e1, does not

influence the results a lot. Besides, adding slip in position (1) will also increase the
momentum density at this point, thus maybe decrease the importance of the term even
more.

Including slip in the momentum density upstream and downstream of the choke does
not alter the results very much, as can be seen in Table 9. Again there is no change in
the CD-values for the Porsgrunn data set. For the field data, a small change was found
for the middle-sized opening, where CD increased with 0.1, but this did nothing to alter
the result. E1 and E2 have become a little bit better, while the standard deviation was
worsened, although not by much.

Even though slip is important, the significance of 1/A2
1ρ

2
e1 with or without slip, for the

choke openings studied in this theses is negligible.

Table 9: The Hydro Model: different alternatives*: Statistics (%)

Porsgrunn data Field data
E1 E2 σ E1 E2 σ

Original model 0.067 6.993 8.859 -7.626 9.973 14.081
Wo. pressure recovery -0.231 6.817 8.636 -7.985 10.002 13.920

Trapezoidal approx. integral -0.376 11.279 14.324 -7.671 10.100 14.047
No slip 0.267 22.161 26.387 -6.171 9.540 13.756

ρTP with kSi -0.463 10.459 12.824 -6.379 9.759 13.846
ρTP with kCh -0.464 9.310 11.354 -7.086 9.822 13.953

ρTP with kmodCh 2.555 10.278 13.907 -7.399 9.737 13.576
ρe with kSi 0.024 11.081 13.531 -7.024 9.779 13.956
ρe with kCh 1.025 8.815 11.222 -7.522 9.839 13.926
Constant ρG1 1.046 8.959 12.181 -6.353 9.698 13.755

Constant (ρG1 + ρG3) /2 0.525 7.563 10.147 -7.588 9.880 13.840
κ instead of n -0.351 6.384 8.249 -7.639 10.004 14.149

Without 1/A2
1ρ

2
e1 -0.307 6.810 8.622 -8.191 10.022 13.865

Include k in ρe1 and ρe3 -0.282 6.810 8.624 -7.663 9.942 14.093
The Hydro Model, revised -0.430 6.327 8.225 -7.082 10.000 14.058

(*pressure recovery only in the original)
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Table 10: The Hydro Model: CD for different alternatives, Porsgrunn data set

(a) Cage; Discharge Coefficients

11mm 14mm 18mm
Original model (long and short) 0.49 0.48 0.42

Without pressure recovery 0.69 0.68 0.60
Trapezoidal approx. integral 0.61 0.55 0.51

No slip 0.93 0.95 0.81
ρTP with kSi 0.75 0.76 0.65
ρTP with kCh 0.73 0.71 0.62

ρTP with kmodCh 0.66 0.65 0.63
ρe with kSi 0.77 0.78 0.66
ρe with kCh 0.76 0.74 0.64
Constant ρG1 0.62 0.62 0.56

Constant (ρG1 + ρG3) /2 0.63 0.64 0.58
κ instead of n 0.66 0.66 0.60

Without 1/A2
1ρ

2
e1 0.69 0.68 0.60

Include k in ρe1 and ρe3 0.69 0.68 0.60
The Hydro Model, revised 0.66 0.66 0.60

(b) Orifice; Discharge Coefficients

11mm 14mm 18mm
Original model (long and short) 0.66 0.66 0.64

Without pressure recovery 0.67 0.66 0.65
Trapezoidal approx. integral 0.57 0.52 0.57

No slip 0.85 0.91 0.79
ρTP with kSi 0.70 0.73 0.72
ρTP with kCh 0.70 0.69 0.70

ρTP with kmodCh 0.63 0.63 0.64
ρe with kSi 0.70 0.73 0.72
ρe with kCh 0.73 0.72 0.71
Constant ρG1 0.58 0.59 0.60

Constant (ρG1 + ρG3) /2 0.60 0.61 0.61
κ instead of n 0.64 0.64 0.64

Without 1/A2
1ρ

2
e1 0.67 0.66 0.65

Include k in ρe1 and ρe3 0.67 0.66 0.65
The Hydro Model, revised 0.64 0.64 0.64
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Table 11: Discharge Coefficients, field data

12mm 22mm 38mm
Original model (short) 0.78 0.87 0.78

Without pressure recovery 0.78 0.86 0.80
Trapezoidal approx. integral 0.72 0.78 0.73

No slip 0.88 0.99 0.95
ρTP with kSi 0.82 0.91 0.84
ρTP with kCh 0.79 0.88 0.78

ρTP with kmodCh 0.74 0.79 0.68
ρe with kSi 0.82 0.92 0.86
ρe with kCh 0.80 0.89 0.83
Constant ρG1 0.46 0.53 0.64

Constant (ρG1 + ρG3) /2 0.53 0.60 0.68
κ instead of n 0.74 0.82 0.77

Without 1/A2
1ρ

2
e1 0.78 0.86 0.80

Include k in ρe1 and ρe3 0.78 0.87 0.80
The Hydro Model, revised 0.75 0.82 0.78

6.7 The Revised Hydro Model
The first, and largest change, that can be made to the Hydro Model is removing the
pressure recovery, thus almost halving the computational time. It has been seen that
pressure recovery has very little importance and because CDs are tuned for each choke
opening and geometry, they are adequate to account for the decrease in pressure drop as
removing pressure recovery will lead to.

Also, it was found that κ was a better exponent than n to use for gas expansion,
which may be due to little time for heat transfer across the choke. The term 1/A2

1ρ
2
e could

be be removed, without any cost to the accuracy of the predictions. When it comes to
density, on the other, the momentum density seems to be the best density equation, at
least among those tested in this thesis. As slip model, kmodCh should be kept as it is.

Summarized, the equations used in the Revised Hydro Model are:

ṁ2
1−2 = 2C2

DA
2
2ρ

2
e2

P1ˆ

P2

1
ρe
dP (60)

where the gas expands according to Equation (59) and the critical flow boundary
calculated as ṁ1−2 − ṁc = 0 where ṁc is as in Equation (47).

The result from applying Revised Hydro Model the Porsgrunn data set and field data
are shown in Figures 33-34 and 35 respectively. It has been succeeded to even out the
trend of too high predictions for high pressure drops and too low predictions for low
pressure drops, but statisticly, the model has not been improved very much, especially
not for the field data.

62



(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs. y = P2/P1

Figure 33: Error distribution for the Revised Hydro Model, Porsgrunn data set
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Table 12: The Hydro Model: Number of critical points for different alternatives

Porsgrunn data
total: 508

Field data
total: 87

Original model (long and short) 40 59
Without pressure recovery 25 57
Trapezoidal approx. integral 35 57

No slip 117 59
ρTP with kSi 138 59
ρTP with kCh 131 59

ρTP with kmodCh 116 59
ρe with kSi 53 58
ρe with kCh 38 58
Constant ρG1 0 0

Constant (ρG1 + ρG3) /2 0 0
κ instead of n 13 57

Without 1/A2
1ρ

2
e1 25 57

Include k in ρe1 and ρe3 25 57
The Hydro Model, revised 13 57

Figure 34: The Revised Hydro Model: error distribution vs. ṁcalc/ṁc(calc), Porsgrunn
data set
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs. y = P2/P1

Figure 35: Error distribution for the Revised Hydro Model, field data

65



66



7 Discussion

7.1 Pressure Recovery
Two of five choke models presented above include pressure recovery from position (2) to
(3) in Figure 1 on page 3; Al-Safran and Kelkar’s model and the Hydro Model. This is
means that the pressure drop is modeled as larger than for the models without pressure
recovery, as P2 < P3, which would give a higher flow rate. This can be adjusted downwards
again by tuning the discharge coefficient, though, so one of the main differences is related
to the transition between sub-critical and critical flow. For the Hydro Model, the number
of critical points for the Porsgrunn data set are reduced from 40 to 25 when removing
pressure recovery. Looking closer at these particular points, there is no general trend
of whether they have been improved or worsened by the removal of pressure recovery,
only that the points that were under-predicted have become better while those that were
over-predicted have become slightly more worse. But as has been discussed previously,
there was originally a trend in the Hydro Model in predicting too low mass flow rates
for high pressure drops and too low flow rates for low pressure drops, and by modeling
fewer points as critical, some of these points are lifted upwards, both by being modeled
as sub-critical and a higher discharge coefficient. This is probably the most visible reason
for why the standard deviation for the data set as a whole has decreased a little when
removing the pressure recovery.

Doing a quick run of Al-Safran and Kelkar’s model without pressure recovery, summa-
rized in Table B.4, shows the same thing, there are 19 fewer critical points. In addition,
fewer data points fall in the region between critical and sub-critical flow, which should be
considered as a good thing.

A question that might arise is whether the data points that became modeled as sub-
critical when removing pressure recovery actually are critical or not. Looking at the
predictions for the Bernoulli Equation with Φ2P,Si(kSi), the results are surprisingly good.
In the upper left of Figure A.3c, there are some data points that are thought to be critical
because they are found at relatively high pressure drops and are predicted to be much
higher that the the measured mass flow rate. That there are approximately of them, with
an error of > 25 %, also supports the predictions for the Hydro Model without pressure
recovery that says there are 25 critical points, compared to the 40 critical points when
including pressure recovery.

Al-Safran and Kelkar’s model and the Hydro Model predict very similar pressure
recovery for the Porsgrunn data set. For the field data, the difference is larger, but
the two models are still within 2.5 % of each other, the Hydro Model being the one to
give least pressure recovery both times. This may be because Al-Safran and Kelkar’s
pressure recovery model is based almost entirely on downstream pipe area, which is an
assumed value for the field data, and by that rather uncertain. However, given that the
same assumption is made in both models, it may also be because the field data have in
general higher choke openings relative to the (assumed) downstream area, and Al-Safran
and Kelkar’s pressure recovery equation is proportional to d3. In the Hydro Model, the
expression is more complex and depends for instance on CD when using the short model,
but not for the long. Although, as in logical, the Hydro Model also predicts higher pressure
recovery for larger choke opening.

Looking at the mean relative error for each choke opening in Table 13, it can be seen
that there is no particular trend for the error for high choke openings to be worse without
pressure recovery. This supports the argument that a retuning of CD is adequate to
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adjust for the removal of the pressure recovery from the Hydro Model. Tables 10 and 11
also point in that direction. It can be seen that when removing pressure recovery, the
discharge coefficient increases the most for the highest choke opening to account for the
lessening in pressure drop. That this happens without increasing the standard deviation
shows that pressure recovery seems to be unnecessary.

Table 13: Average relative error, E1, (%) for each choke opening with and without pressure
recovery

Porsgrunn data set Field data
Choke opening: 11mm 14mm 18mm 12mm 22mm 38mm

Hydro Model, original 0.894 1.028 -1.213 -18.209 -0.712 -5.096
Hydro Model, wo pressure rec. 0.979 -0.208 -1.040 -18.121 -1.854 -4.994
Al-Safran & Kelkar, original -1.591 0.486 -0.509 -17.309 -0.821 -4.717

Al-Safran & Kelkar, wo pres rec. -1.227 0.387 0.528 -17.309 -0.821 -4.393

7.2 Gas Expansion
The Bernoulli Equation does not involve any form of gas expansion, yet it has a lower
standard deviation and E2 than Asheim, Sachdeva et al. and Al-Safran and Kelkar’s
model, when using Simpson et al.’s two-phase multiplier and slip model for the Porsgrunn
data set. However, there seems to be an upwards trend in the error distribution for
increasing gas mass fractions, see Figure 6b. When setting the gas density constant in
the Hydro Model, in Figure A.13b, the same trend is observable. This suggest that it is
the constant gas density that is the most influencing factor in causing this trend.

On the other hand, as seen in Table 9, the lack of gas expansion did not cause the
statistical errors to increase as much as might have been expected. Using ρG1, which was
seen to be slightly worse than the average of upstream and downstream gas density, E1,
E2 and σ are still better than several of the density and slip combinations.

In the Sachdeva et al., Al-Safran and Kelkar and Hydro Model, the gas is assumed to
expand polytropicly, with n as the polytropic exponent. Asheim, on the other hand, uses
the gas law, and this is the only difference between Asheim’s model and that of Sachdeva
et al., as none of them include phase slippage. Given that the Sachdeva et al. model is
slightly better than Asheim’s model for as good as every point in the Porsgrunn data set,
it seems that it is better to assume polytropic expansion rather than using the gas law.
However, because it has been assumed that Z = 1 when finding the input gas density,
this assumption has to be passed on to Asheim’s model as using ρG1 in Equation (24)
will again give the Z-factor equal to unity. It is of course possible that a more accurate
Z-factor could diminish the gap between Asheim’s model and Sachdeva et al.’s model. For
the field data, where Z has been calculated for upstream conditions based on the Black
Oil Model, the gap between Sachdeva et al.’s model and Asheim’s model is less, even with
Asheim’s model having the lowest standard deviation. It should be kept in mind, though,
that there is very little difference between the predictions for any model for the field data.

In the Hydro Model, when changing from n to κ, both E2 and σ decreased noticeably
for the Porsgrunn data set, and the trend of predicting too high mass flow rates for low
pressure drops and too low for high pressure drops is evened out. The lifting and left-shift
of the ṁcalc-curve in Figure 31 that is obtained by introducing κ is also what was wanted,
and expected, to even out the trend. This seems to mean that the gas does not expand as
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much as first assumed, and there can be several reasons for that. First of all, n assumes
that there is heat transfer between the gas and liquid phase, which might not be case.
The velocity across the choke, by Equation (2), is typically higher than 15m/s for the
Porsgrunn data set, through a choke that is a few centimeters across, leaving very little
time for heat transfer. In addition, there is limited space inside the choke, something that
could also contribute to less expansion of the gas. Therefore, it seems reasonable that κ
is a better parameter to control gas expansion than n.

7.3 Density and Slip
How gas expansion is assumed to happed is not the only aspect thought to influence the
error distribution with respect to xG. Also the slip model used has something to say.
This is because phase slippage affects how the flow area is distributed between the gas
and liquid phase so that the flow area of gas, α can be less and the same amount of gas
can still be produced compared to a no-slip condition.

Removing slip from the Hydro Model, and by that using the same homogeneous density
as Sachdeva et al. and Asheim, the curve in error distribution for xG for the two latter
models appears in the Hydro Model as well. In fact, without pressure recovery and slip,
the Hydro Model is very similar to Sachdeva et al.’s model and the largest difference is
the how the critical pressure is calculated. Sachdeva et al.’s model gives a higher critical
pressure ratio and thus more critical data points, which causes the error distribution to
be somewhat different. For the field data, where the two models predict the same number
of critical data points, the statistical results are much more similar, but then most of the
field data results are like this. Now, Al-Safran and Kelkar include slip in their model,
and the curve in the error distribution for low xG is still present there, although not quite
so distinct. This could be caused by the model’s inconsistent treatment of slip. First
of all, as has been observed earlier, which slip model to be used depends on whether
there is critical or sub-critical flow while the slip is also included in the expression that
decides flow regime. Second, the slip is considered to be constant when integrating the
momentum equation, even though the gas is assumed to expand polytropicly, and slippage
is a function of gas density. For the field data, this may not be a large source of error
for sub-critical flow as there is little variation in kSi at choke conditions, see Figure 29b,
but depending on the input data, it can have a more severe effect. For critical flow,
when kmodCh is used, the variation is larger, and the error in keeping the slip constant is
expected to be worse.

Given that the Hydro Model is the only one that does not have a curve in the error
distribution for low xG, it seems that this curve is caused by slip and how it is incorporated.
The curve is most distinct for Asheim’s and Sachdeva et al.’s model which do not include
slip at all, somewhat lessened in Al-Safran and Kelkar’s model which includes slip in
calculation of ṁ but not integration of 1/ρe, and has disappeared in the Hydro Model
which includes slip also in the integration.

From Table 9, it seems like phase slippage is the single most important aspect in the
Hydro Model. Removing slip completely gave a lot worse results than any other density
average and slip model combination. Not surprisingly, perhaps, is the momentum density
considerably better than two-phase density with kCh or kmodCh. What is worth noticing
is that ρTP (kmodCh) produces considerable worse results than when using the two-phase
density with Chisholm’s original slip model. This might be related to the two constants ξ
and β that are tuned for use in the momentum density and the Porsgrunn data set, and

69



suggests that the constants are sensitive to the position of slip in the density equation as
well. An issue is how much they vary for different situations and input data. For instance,
it would be valuable to know if kmodCh with ξ = 0.6 and β = 5 will give better results
than using kCh for any input data, or whether it would be better to use kCh, or possibly
just Equation (14a) independent on the Lockhart-Martinelli parameter, if a tuning of ξ
and β is not possible. It is difficult to answer this question by looking at the results from
the field data, because there is so little variation in the results in general and the slip is
almost constant for each choke opening, as will discussed further in the following section.
However, Al-Safran and Kelkar embraces kmodCh for critical flow in their model as well,
suggesting that it might be better than kCh.

Al-Safran and Kelkar’s model and Chisholm’s slip model have illustrated two impor-
tant things when it comes to changing parameters midway. Differentiation based on flow
regime is difficult when the parameter itself is part of the expression that decided if there
is critical flow or not. As good as all parameters are in some ways included in the criterion
for critical flow, so this means that changing any parameter on the basis of flow regime
should be avoided. Differentiating based on another criterion, on the other hand, seems
possible. Which expression to use in Chisholm’s slip model depends indirectly only on
pressure as all models consider xG, n or κ to be constants, and was possible to carry out
in practice in the same manner as gas expansion is included in the models.

7.4 The Field Data
The results for the field data is almost the same for all models, no matter what changes
are made. Even the removal of slip from the Hydro Model, which greatly impacts the
results for the Porsgrunn data set, does not really change the error estimators for the
field data considerably. If anything, the results are improved. For all models, there is
a considerable difference in the predictions for the Porsgrunn data set, but for the field
data, there is little variation, the standard deviation is always around 13 − 14 %, with
9 % < E2 < 10 % and E1 sees the largest difference between 6 − 8 %. This means that
basically every model and version gives the same spread among the data points, and the
magnitude of the predicted flow rate is tuned up and down with the discharge coefficient.
That this varies a lot can be seen in Table 4 and 11.

The field data consists of many data points that are very similar to each other, espe-
cially within one choke opening and by that within each CD. For example, all data points
for the two smallest choke opening are predicted to be critical by all models, while all but
one or two in the largest choke opening are sub-critical. In addition, the pressure drop
and P1 are little different for the data points within one choke opening. As can be seen
from Figure 29b, also the slip is relatively constant for each choke opening. For each slip
model, there can be seen three columns that happen to coincide with the choke openings.
The only exception here is kmodCh, where the data points for the largest choke opening
form an arch, around kmodCh ≈ 3, more than a column, but the difference is still not very
large.

Looking at any ṁcalc vs. ṁmeas-plot for this data set, the different choke openings are
also easily discernible, where the smallest choke opening gives the smallest mass flow rate
and the largest choke opening the largest mass flow rate.

Because the data points are so similar in pressure drop and gas density, the discharge
coefficient is effectively tuned for each special case, leading the differences between the
models to almost disappear. That, for instance, the Sachdeva et al. model and Asheim’s
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model do not include slip, can be accommodated for with a higher CD than the Hydro
Model, as can be seen in Table 4 and is also illustrated when removing the slip from
the Hydro Model in Table 11. As long as the properties within each choke geometry
and opening are relatively similar, the discharge coefficient seems to be a powerful tuning
instrument that will give almost the same results independent on which model is used.
Which model or version that is best seems therefore almost random, and might as well
depend more on how well tuned CD is, and whether adding a third decimal point would
give other results.

Because of this, the field data used in this thesis are not ideal for evaluating a choke
flow model, and more emphasis has been put on the Porsgrunn data set to see trends in
error distribution and similar.

7.5 General
The Bernoulli Equation with ΦTP,Si started out by giving good predictions with a rela-
tively simple model. The two-phase multiplier that includes phase slippage is probably
an important reason for that, as it was later seen in Al-Safran and Kelkar’s model and
the Hydro Model how important slip is. Change in gas density is not included, not even
when calculating the slip, but this does not seem to be an issue until xG approaches 0.25,
where the Bernoulli Equation greatly over-predicts the flow rate. This area is also the
area where there critical velocity is at its lowest, and it is possible that part of the reason
for so high over-predictions in these data points are that they are in fact critical flow.

It is also interesting to see that for the different versions of the Bernoulli Equation
in Table 1, the discharge coefficients are in the expected order from smallest to largest
for the field data only, not for the Porsgrunn data set. For the more advanced models,
the discharge coefficients do not follow any particular pattern. For the field data, the
middle choke opening always has the highest CD, and it is also the opening area with
least spread in the data points. The altogether nine different CDs for every model or
version of a model, three for the field data, and 2 × 3 for the Porsgrunn data set, are in
most cases rather different from each other, especially the field data and Porsgrunn data
set. This shows that it is difficult to recommend one general value. However, when using
κ with the Hydro Model without pressure recovery, the CD-values are the same for all
orifice geometry chokes in the Porsgrunn data set, and two of the three cage geometry
chokes. But for the field data, the discharge coefficients are different again. This may
have something to do with the discharge coefficients of the field data being tuned a lot
more to a particular pressure drop and slip, as discussed above, which affects the value
more than changing n to κ. The reason for the discharge coefficients to be in an almost
random order, and not higher for higher choke openings may have to do with the model
not portraying actuality in exactly the right way.

Some of the discharge coefficients, especially for Al-Safran and Kelkar’s model, are
larger than unity. When thinking of CD as the ratio of flow area to choke area, this seems
very illogical, but also other factors play a part in the tuning process, for instance losses
such as friction. But this is thought to lower the value, not increase it. Therefore it might
be related to other parts of the model, for instance gas expansion, or slip model. For
example, more gas expansion will give less mass per volume, thus leading to a lower mass
flow rate than what actually flows through. The same is valid for a too low slip model.

That xG is assumed to be constant is not considered to be a large drawback for any
model. All but the original Hydro Model does not consider what happens after position
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(2) in Figure 1, and it has previously been discussed how short a time the fluid spends
passing through the choke. This means that there is also little time for mass transfer, and
most flashing of gas could then be said to occur after the choke exit, in a location that is
not included in the models.

Table 14: Summary: the best choke models’ statistics

Porsgrunn data set Field data
E1 E2 σ E1 E2 σ

The Bernoulli Equation w ΦTP 1.352 7.871 11.091 -6.560 9.636 13.573
Asheim -0.740 22.377 26.574 -6.827 9.636 13.764

Sachdeva et al. 1.366 19.973 24.139 -6.867 9.593 13.818
Al-Safran and Kelkar -0.664 11.268 13.536 -7.281 9.982 13.849

The Hydro Model original 0.067 6.993 8.859 -7.626 9.973 14.081
The Hydro Model revised -0.430 6.327 8.225 -7.082 10.000 14.058

7.6 Further Work
Although some conclusions have come of this thesis, there is still several things that should
be further investigated, especially related to the modified version of Chisholm’s slip model
and generally more testing of the revised Hydro Model.

The constants ξ = 0.6 and β = 5 have been tuned, if not particularly to fit with,
but with the help of the Porsgrunn data set that is used in this thesis. It was hoped
that the field data could help in determining how much these can vary, if they are as
different for different input data as the discharge coefficients are, or if they are relatively
constant. However, that was not achieved, and a data set with more varying pressure
drop, upstream pressure and gas mass fractions within each CD, would be useful to find
that out.

Another possibility that should be tested out is using only one part of Chisholm’s
original slip model, Equation (14a), for all gas mass fractions.
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8 Conclusion
This thesis has evaluated five models for prediction of mass flow across a choke for two-
phase flow. Of these five models, perhaps the best model is the Bernoulli Equation with
Simpson et al.’s two-phase multiplier and slip model, because it gives good predictions for
both data sets tested. This was a bit surprising because of the simplicity of the model
and the lack of differentiating between critical and sub-critical flow.

When looking at different combinations of two-phase multipliers, density and slip
models, it was discovered that ρe(kSi) = ρL/ΦTP,Ch(kSi) = ρL/ΦTP,Si, and it was also
this combination that gave the best results for the Bernoulli Equation with two-phase
multiplier. Simpson et al. and Chisholm are also names that are repeated among other
authors, like Al-Safran and Kelkar and Selmer-Olsen et al.

Asheim’s model and Sachdeva et al.’s model are also very similar, the only difference
being that Asheim assumes gas expansion according to the gas law, while Sachdeva et al.
models the gas expansion as adiabatic. It may seems adiabatic gas expansion is a little
better, at least for one of the two data sets that were used for model evaluation in this
thesis.

The Hydro Model gave the best predictions for the Porsgrunn data set, but was the
worst for the field data. This shows how difficult it is to develop a general model. When
it comes to the revision, there is not much difference between the original version and the
revised version presented here. The largest change is the removal of pressure recovery,
which approximately halves the run time without losing accuracy. This, however, did not
improve the results for the field data very much, and the Revised Hydro Model is still the
worst for this data set. The trend in error distribution that was originally seen, has been
dimished by exchanging n for κ as gas expansion exponent.

In general, it seems that the models that account for slippage outperforms the models
that do not. Because of this, slippage appears to be the single most important feature any
multiphase flow choke model. Among the densities presented in this thesis, the momentum
density ρe seems to be the one best suited for use with multiphase flow through a choke.
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Nomenclature
Symbols

A area, m2

CC contraction coefficient, Avc/A2

CD discharge coefficient

CL heat capacity for liquid, J/kg

CP heat capacity at constant pressure for gas, J/kg

CV heat capacity at constant volume for gas, J/kg

CV control volume

d diameter, m

E1 mean relative error

E2 mean of absolute relative error

N number of data points

k slip ratio, uG/uL

M molar mass, kg/mol

ṁ mass flow rate, kg/s

n polytropic exponent

P pressure, Pa

Q volumetric flow rate, m3/s

R universal gas constant, 8.3145 J/molK

T temperature, K

u velocity, m/s

WC water cut

x mass fraction, ṁi/ṁtotal

y pressure ratio, P2/P1

Z Z-factor for gas

α void fraction, AG/A

κ heat capacity ratio, CP/CV

ΦTP two-phase pressure drop multiplier
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ρ density, kg/m3

σ standard deviation

χ Lockhart-Martinelli Parameter

Subscripts

1 upstream of the choke

2 at the choke throat

3 downstream of the choke

1P single-phase

TP two-phase

c critical

G gas

L liquid

act actual (observed)

calc calculated

meas measured

e momentum

m homogeneous

o oil

vc vena contracta

w water

Ch Chisholm (slip model)

modCh modified Chisholm (slip model)

Si Simpson (slip model)
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A Additional Figures

Figure A.1: Error vs. xG for the whole range of xG, Bernoulli Equations, Porsgrunn data
set

as a supplement to Figure 6b

Figure A.2: The Hydro Model: Pressure recovery, field data
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG for the whole range of xG, the Bernoulli Equation
with best results

(c) Error vs y = P2/P1

Figure A.3: Error distribution for the Bernoulli Equation with best results, Porsgrunn
data set
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(a) Error vs. xG for the whole range of xG, Asheim’s model, as a
supplement to Figure 8b

(b) Error vs. xG for the whole range of xG, the Sachdeva et al. model,
as a supplement to Figure 10b

(c) Error vs. xG for the whole range of xG, Al-Safran and Kelkar’s
model, as a supplement to Figure 12b

Figure A.4: Error vs. xG for Asheim’s, Sachdeva et al. and Al-Safran & Kelkar’s models,
Porsgrunn data set

81



(a) Calculated vs. measured mass flow rate

(b) Error vs. xG for the whole range of xG

(c) Error vs y = P2/P1

Figure A.5: Error distribution for Asheim, Sachdeva, Al-Safran & Kelkar’s models, Pors-
grunn data set
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs y = P2/P1

Figure A.6: Error distribution for Asheim, Sachdeva, Al-Safran & Kelkar’s models, field
data
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(a) The original model, as a supplement to Figure 14b

(b) Without pressure recovery, as a supplement to Figure 19

(c) Without pressure recovery, trapezoidal approximation for density
integral, as a supplement to Figure 22b

Figure A.7: Error vs. xG for the whole range of xG, the Hydro Model, Porsgrunn data
set
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(a) Without pressure recovery, and no slip (ρhom) as a supplement to
Figure 24b

(b) Without pressure recovery, with ρT P and different slip models, as
a supplement to Figure A.10b

(c) Without pressure recovery, with ρe and different slip models, as a
supplement to Figure A.11b

Figure A.8: Error vs xG for the whole range of xG, the Hydro Model, Porsgrunn data set

85



(a) Calculated vs. measured mass flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure A.10: Error distribution for the Hydro Model with ρTP and different slip models,
Porsgrunn data set
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs y = P2/P1

Figure A.9: Error distribution for the Hydro model without pressure recovery, field data
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(a) Calculated vs measured flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure A.11: Error distribution for the Hydro Model with ρe and different slip models,
Porsgrunn data set
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(a) Calculated vs measured flow rate

(b) Error vs xG

(c) Error vs y = P2/P1

Figure A.12: Error distribution for the Hydro Model with ρe and different slip models,
field data
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs. y = P2/P1

Figure A.13: Error distribution for the Hydro Model with constant gas density, Porsgrunn
data set
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs. ρG1

Figure A.14: Error distribution for the Hydro Model with κ, Porsgrunn data set
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(a) Calculated vs. measured mass flow rate

(b) Error vs. xG

(c) Error vs. y = P2/P1

Figure A.15: Error distribution for the Hydro Model with κ, field data
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B Additional Tables

Table B.1: Discharge coefficients for different combinations for the Bernoulli Equation,
Porsgrunn data set

(a) Choke geometry: Cage

Choke opening: 11mm 14mm 18mm
Bernoulli w/ρTP and kCh 0.61 0.61 0.54
Bernoulli w/ρTP and kSi 0.48 0.61 0.52
Bernoulli w/ρe and kCh 0.63 0.65 0.59

Bernoulli w/Φ2P,Si and kCh 0.61 0.66 0.58

(b) Choke geometry: Orifice

Choke opening: 11mm 14mm 18mm
Bernoulli w/ρTP and kCh 0.58 0.59 0.59
Bernoulli w/ρTP and kSi 0.51 0.58 0.54
Bernoulli w/ρe and kCh 0.62 0.62 0.63

Bernoulli w/Φ2P,Si and kCh 0.58 0.62 0.61

Table B.2: Discharge coefficients for different combinations for the Bernoulli Equation,
field data

Choke opening: 12mm 22mm 38mm
Bernoulli w/ρmix and kCh 0.44 0.50 0.61
Bernoulli w/ρmix and kSi 0.45 0.52 0.65
Bernoulli w/ρe and kCh 0.46 0.53 0.66
Bernoulli w/ρe and kSi 0.47 0.54 0.67

Bernoulli w/Φ2P,Ch and kSi 0.47 0.54 0.67
Bernoulli w/Φ2P,Si and kCh 0.59 0.74 1.12
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Table B.3: The importance of u1 for the largest choke opening, field data

i 1/(A2
1ρ

2
e1) 1/(C2

DA
2
2ρ

2
e2) (1)/(2) %

58 0.3814 39.7241 0.9601
59 0.9914 85.4631 1.1600
60 1.2764 117.2906 1.0882
61 1.2356 109.8116 1.1252
62 1.1914 102.9782 1.1569
63 1.2204 106.1319 1.1499
64 1.2527 109.2608 1.1465
65 1.2750 111.6489 1.1420
66 1.2978 113.4279 1.1442
67 1.3066 113.4294 1.1519
68 1.3223 115.0672 1.1491
69 1.3529 117.7446 1.1490
70 1.3473 116.2834 1.1587
71 1.3518 118.4128 1.1416
72 1.3690 118.1051 1.1592
73 0.4986 49.1776 1.0139
74 0.8693 70.9831 1.2246
75 0.9282 76.2498 1.2173
76 0.9787 80.3343 1.2182
77 1.0034 82.1781 1.2210
78 1.0309 84.1288 1.2254
79 1.0532 86.3835 1.2193
80 1.0732 87.3062 1.2292
81 1.1032 90.3405 1.2212
82 1.1178 90.4964 1.2352
83 1.1109 91.0666 1.2198
84 1.1213 92.3645 1.2140
85 1.1430 93.3871 1.2239
86 1.1513 94.1193 1.2233
87 1.1738 95.1685 1.2334
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Table B.4: Al-Safran and Kelkar’s model without pressure recovery

(a) Statistics (%)

E1 E2 σ

Porsgrunn data set -0.134 11.205 13.809
Field data -7.170 9.627 13.824

Number of critical points
Porsgrunn data set 64 (+17 in-between)

Field data 57 (+1 in-between)

(b) Discharge Coefficients, Porsgrunn data
set

11mm 14mm 18mm
Cage 1.04 1.11 0.94
Orifice 1.00 1.05 1.04

(c) Discharge coefficients, field
data

12mm 22mm 38mm
1.11 1.23 1.23
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C MATLAB Code

C.1 Bernoulli, Asheim, Sachdeva et al. and Al-Safran and Kelkar

clear a l l
% Dec lar ing cons tan t s and g l o b a l v a r i a b l e s :
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

global A A2 xg x l rhog1 rho l P1 P3 n nug1 kappa Z T M eksc1
eksc2 eks s

data = 87 ; % number o f data po in t s
eksc1 = 1/2 ; % Exponent f o r kCh LM > 1
eksc2 = 1/4 ; % Exponent f o r kCh LM < 1
eks s = 1/6 ; % Exponent f o r kSi
% % Recommended Values :
% CdB = 1 ; % Bernou l l i d i s charge c o e f f i c i e n t
% CdBC = 1 ; % Bernou l l i , Chisholm ; d i s charge c o e f f i c i e n t
% CdBS = 1 ; % Bernou l l i , Simpson ; d i s charge c o e f f i c i e n t
% CdAs = 1 ; % Asheim ; d i s charge c o e f f i c i e n t
% CdS = 0.85 ; % Sachdeva ; d i s charge c o e f f i c i e n t
% CdA = 0.75 ; % Al−Safran ; d i s charge c o e f f i c i e n t

% I n i t i a l i z i n g v a r i a b l e s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

mcalcBer = zeros ( data , 1 ) ;
mcalcBerSimp = zeros ( data , 1 ) ;
mcalcBerChis = zeros ( data , 1 ) ;
mcalcAsh = zeros ( data , 1 ) ;
mcalcSac = zeros ( data , 1 ) ;
mcalcAlS = zeros ( data , 1 ) ;

vx l = zeros ( data , 1 ) ;
v rho l = zeros ( data , 1 ) ;
Cl = zeros ( data , 1 ) ;
vnug1 = zeros ( data , 1 ) ;
vnul = zeros ( data , 1 ) ;
vkappa = zeros ( data , 1 ) ;
vn = zeros ( data , 1 ) ;

vyact = zeros ( data , 1 ) ;
v ract = zeros ( data , 1 ) ;
yccalcAsh = zeros ( data , 1 ) ;
ycca l cSac = zeros ( data , 1 ) ;
r c ca l cA lS = zeros ( data , 1 ) ;
c r i t f l owAsh = zeros ( data , 1 ) ;
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c r i t f l owSa c = zeros ( data , 1 ) ;
c r i t f l owA lS = zeros ( data , 1 ) ;

vrhoBB = zeros ( data , 1 ) ;
v s l i pCh i = zeros ( data , 1 ) ;
vs l ipS im = zeros ( data , 1 ) ;
vtwopC = zeros ( data , 1 ) ;
vtwopS = zeros ( data , 1 ) ;

vP2 = zeros ( data , 1 ) ;
betwr = zeros (30 ,8 ) ;
temp3 = zeros (10001 ,1) ;
ind = 0 ;

% Reading Input 1984 f i l e
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D1 = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’B2 ’ ) ;
vA2 = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’C2 : C88 ’ ) ;
vP1 = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’E2 : E88 ’ ) ;
vP3 = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’F2 : F88 ’ ) ;
vxg = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’G2 :G88 ’ ) ;
vxo = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’H2 : H88 ’ ) ;
vxw = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’ I2 : I88 ’ ) ;
vrhog1 = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’ J2 : J88 ’ ) ;
vrhoo = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’K2 :K88 ’ ) ;
vrhow = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’L2 : L88 ’ ) ;
Cpg = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’M2 ’ ) ;
Cvg = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’N2 : N88 ’ ) ;
Cpo = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’O2 ’ ) ;
Cvo = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’P2 ’ ) ;
Cpw = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’Q2 ’ ) ;
Cvw = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’R2 ’ ) ;
mmeas = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’T2 : T88 ’ ) ;
vT = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’U2 : U88 ’ ) ;
vZ = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’V2 : V88 ’ ) ;
vM = x l s r ead ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’W2:W88 ’ ) ;
vinch = x l s r e ad ( ’ Input ␣ 1984 . x l sx ’ , ’ Input ’ , ’X2 : X88 ’ ) ;
disp ( ’ Ferdig ␣med␣å␣ l e s e ␣ f r a ␣ f i l ’ ) ;
A = (pi /4)∗D1^2 ;

% Pre−Ca l cu l a t i on s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i = 1 : data
sumx = vxg ( i ) + vxo ( i ) + vxw( i ) ;

98



vxg ( i ) = vxg ( i ) / sumx ;
vxo ( i ) = vxo ( i ) / sumx ;
vxw( i ) = vxw( i ) / sumx ;
vxl ( i ) = vxo ( i ) + vxw( i ) ;

i f ( vxw( i ) == 0 )
WC = 0 ;

else
WC = vxw( i )∗vrhoo ( i ) / (vxw( i )∗vrhoo ( i )+vxo ( i )∗vrhow ( i ) )

;
end
vrho l ( i ) = vrhoo ( i )∗(1−WC) + vrhow ( i )∗WC ;

Cl ( i ) = vxo ( i )∗Cpo + vxw( i )∗Cpw ;
vnug1 ( i ) = 1/vrhog1 ( i ) ;
vnul ( i ) = 1/ vrho l ( i ) ;

vkappa ( i ) = Cpg/Cvg( i ) ;
vn ( i ) = 1 + ( vxg ( i ) ∗(Cpg−Cvg( i ) ) ) /( vxg ( i )∗Cvg( i ) + vxl ( i )

∗Cl ( i ) ) ;
% vP2( i ) = vP1( i ) − ( vP1( i )−vP3( i ) ) /(1−(vA2( i ) /A) ^0.925) ;

vP2( i ) = vP3( i ) ;
vyact ( i ) = vP3( i ) /vP1( i ) ;
v ract ( i ) = vP2( i ) /vP1( i ) ;

end

% error1min1 = 1000 ;
% error1min2 = 1000 ;
% error1min3 = 1000 ;
% d i f f 1 = zeros (27 ,1) ;
% d i f f 2 = zeros (30 ,1) ;
% d i f f 3 = zeros (30 ,1) ;
% minerror = 1000 ;
% fo r Cd = 0.92 : 0.01 : 1.25
% CdA = Cd ;

for i = 1 : data
A2 = vA2( i ) ;
xg = vxg ( i ) ;
x l = vxl ( i ) ;
rho l = vrho l ( i ) ;
rhog1 = vrhog1 ( i ) ;
P1 = vP1( i ) ;
P3 = vP3( i ) ;
n = vn ( i ) ;
nug1 = vnug1 ( i ) ;
kappa = vkappa ( i ) ;
T = vT( i ) ;
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Z = vZ( i ) ;
M = vM( i ) ;
i f ( vinch ( i ) == 32 )

CdB = 0.46 ;
CdBC = 0.45 ;
CdBS = 0.59 ;
CdAs = 0.92 ;
CdS = 0.82 ;
CdA = 1.11 ;

e l s e i f ( vinch ( i ) == 56 )
CdB = 0.53 ;
CdBC = 0.52 ;
CdBS = 0.74 ;
CdAs = 1.04 ;
CdS = 0.93 ;
CdA = 1.23 ;

e l s e i f ( vinch ( i ) == 96 )
CdB = 0.66 ;
CdBC = 0.65 ;
CdBS = 1.12 ;
CdAs = 0.99 ;
CdS = 0.91 ;
CdA = 1.23 ;

end
% %
% %
% % Bernou l l i
% %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% [ mfl rhoB ] = mf lowBernou l l i (CdB,1 , 2 ) ;
% vrhoBB( i ) = rhoB ;
% mcalcBer ( i ) = mfl ;
% [ mfl rhoB s l tp ] = mf lowBernou l l i (CdBC,2 ,2 ) ;
% mcalcBerChis ( i ) = mfl ;
% v s l i pCh i ( i ) = s l ;
% vtwopC ( i ) = tp ;
% [ mfl rhoB s l tp ] = mf lowBernou l l i (CdBS,3 , 3 ) ;
% mcalcBerSimp ( i ) = mfl ;
% vs l i pS im ( i ) = s l ;
% vtwopS ( i ) = tp ;
% %
% %
% % Asheim
% %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% i f ( xg <= 1e−3 )
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% yc = 0 ;
% e l s e
% yc = f i nd t op (CdAs) ;
% end
% yccalcAsh ( i ) = yc ;
% i f ( vyac t ( i ) <= yc )
% y = yc ;
% cr i t f l owAsh ( i ) = 1 ;
% e l s e
% y = vyac t ( i ) ;
% end
% mcalcAsh ( i ) = mflowAsheim (CdAs , y ) ;
% %
% %
% % Sachdeva e t a l
% %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% i f ( xg <= 1e−3 )
% yc = 0 ;
% e l s e
% kk = kappa /( kappa−1) ;
% sachdexpr = @(y ) y − ( ( kk + x l ∗ vnu l ( i )∗(1−y ) /( xg∗

nug1 ) ) / ( kk + n/2 +n∗ x l ∗ vnu l ( i ) /( xg∗nug1∗y^(−1/kappa ) ) + (
n/2) ∗( x l ∗ vnu l ( i ) /( xg∗nug1∗y^(−1/kappa ) ) ) ) )^kk ;

% yc = f z e r o ( sachdexpr , [0 1 ] ) ;
% end
% ycca lcSac ( i ) = yc ;
% i f ( vyac t ( i ) <= yc )
% y = yc ;
% c r i t f l owSa c ( i ) = 1 ;
% e l s e
% y = vyac t ( i ) ;
% end
% rhomix = 1/ ( xg∗nug1∗y^(−1/kappa ) + x l ∗ vnu l ( i ) ) ;
% temp = x l ∗(1−y )/ rho l + ( xg∗ kk ) ∗( nug1−y∗nug1∗y^(−1/kappa ) )

;
% mcalcSac ( i ) = A2∗CdS∗ s q r t (2∗P1∗ rhomix^2∗ temp ) ;
%
%
% Al−Safran e t a l
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kc = sqrt ( 1 + xg ∗( rho l / rhog1 − 1) ) ∗( 1 + 0.6∗exp(−0.5∗xg )
) ;

ksub = ( rho l / rhog1 )^ eks s ;
i f ( xg <= 1e−3 )
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c r i t r c = 0 ;
subrc = 0 ;

else
c r i t r c = f i n d r c ( kc ) ;
subrc = f i n d r c ( ksub ) ;

end
i f ( ( vract ( i ) <= c r i t r c ) && ( vract ( i ) <= subrc ) ) % No

doubt : C r i t i c a l f l ow
r c ca l cA lS ( i ) = c r i t r c ;
c r i t f l owA lS ( i ) = 1 ;
mcalcAlS ( i )= mflowAlSafran (CdA, kc , c r i t r c ) ;

e l s e i f ( ( vract ( i ) > c r i t r c ) && ( vract ( i ) > subrc ) ) % No
doubt : S u b c r i t i c a l f l ow
r c ca l cA lS ( i ) = subrc ;
r = vract ( i ) ;
mcalcAlS ( i )= mflowAlSafran (CdA, ksub , r ) ;

else
ind = ind + 1 ;
betwr ( ind , 1 ) = i ;
betwr ( ind , 2 ) = vract ( i ) ;
betwr ( ind , 3 ) = c r i t r c ;
betwr ( ind , 4 ) = subrc ;
% Cr i t i c a l f l ow equa t i ons
i f ( vract ( i ) <= c r i t r c )

betwr ( ind , 5 ) = mflowAlSafran (CdA, kc , c r i t r c ) ;
betwr ( ind , 6 ) = 1 ;

else
r = vract ( i ) ;
betwr ( ind , 5 ) = mflowAlSafran (CdA, ksub , r ) ;

end
% Su b c r i t i c a l f l ow equa t ions
i f ( vract ( i ) <= subrc )

betwr ( ind , 7 ) = mflowAlSafran (CdA, kc , subrc ) ;
betwr ( ind , 8 ) = 1 ;

else
r = vract ( i ) ;
betwr ( ind , 7 ) = mflowAlSafran (CdA, ksub , r ) ;

end
mcalcAlS ( i )= ( betwr ( ind , 5 ) + betwr ( ind , 7 ) ) /2 ;

end

end % End fo r i
%
%
% S t a t i s t i c s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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d i f fB e r = zeros ( data , 1 ) ;
d i f fBe rCh i s = zeros ( data , 1 ) ;
d i f fBerSimp = zeros ( data , 1 ) ;
d i f fAsh = zeros ( data , 1 ) ;
d i f f S a c = zeros ( data , 1 ) ;
d i f fA l S = zeros ( data , 1 ) ;
for i = 1 : data

d i f fB e r ( i ) = 100∗( mcalcBer ( i )−mmeas( i ) ) /mmeas( i ) ;
d i f fBe rCh i s ( i ) = 100∗( mcalcBerChis ( i )−mmeas( i ) ) /mmeas( i ) ;
d i f fBerSimp ( i ) = 100∗( mcalcBerSimp ( i )−mmeas( i ) ) /mmeas( i ) ;
d i f fAsh ( i ) = 100∗( mcalcAsh ( i )−mmeas( i ) ) /mmeas( i ) ;
d i f f S a c ( i ) = 100∗( mcalcSac ( i )−mmeas( i ) ) /mmeas( i ) ;
d i f fA l S ( i ) = 100∗( mcalcAlS ( i )−mmeas( i ) ) /mmeas( i ) ;

end
e r ro rBer = [ mean( d i f fB e r ) ; mean(abs ( d i f fB e r ) ) ; std ( d i f fB e r ) ]

;
e r rorBerChis = [ mean( d i f fBe rCh i s ) ; mean(abs ( d i f fBe rCh i s ) ) ; std (

d i f fBe rCh i s ) ] ;
errorBerSimp = [ mean( d i f fBerSimp ) ; mean(abs ( d i f fBerSimp ) ) ; std (

d i f fBerSimp ) ] ;
errorAsh = [ mean( d i f fAsh ) ; mean(abs ( d i f fAsh ) ) ; std ( d i f fAsh ) ] ;
e r ro rSac = [ mean( d i f f S a c ) ; mean(abs ( d i f f S a c ) ) ; std ( d i f f S a c ) ]

;
e r rorAlS = [ mean( d i f fA l S ) ; mean(abs ( d i f fA l S ) ) ; std ( d i f fA l S ) ] ;
summasummarium = [ er ro rBer er rorBerChis errorBerSimp errorAsh

e r ro rSac er rorAlS ] ;

% mcalc = mcalcAlS ; % REMEMBER TO CHANGE THIS PR MODEL
% a1 = 0 ;
% a2 = 0 ;
% a3 = 0 ;
% fo r i = 1 : data
% i f ( v inch ( i ) == 32 )
% a1 = a1 + 1 ;
% d i f f 1 ( a1 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( v inch ( i ) == 56 )
% a2 = a2 + 1 ;
% d i f f 2 ( a2 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( v inch ( i ) == 96 )
% a3 = a3 + 1 ;
% d i f f 3 ( a3 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% end
% end
% error11 = mean( abs ( d i f f 1 ) ) ;
% error12 = mean( abs ( d i f f 2 ) ) ;
% error13 = mean( abs ( d i f f 3 ) ) ;
% i f ( error11 < error1min1 )
% error1min1 = error11 ;
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% Cdopt1 = Cd ;
% end
% i f ( error12 < error1min2 )
% error1min2 = error12 ;
% Cdopt2 = Cd ;
% end
% i f ( error13 < error1min3 )
% error1min3 = error13 ;
% Cdopt3 = Cd ;
% end
%
% end % End fo r Cd
%
% f p r i n t f ( ’32 inch :\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt1 , error1min1 ) ;
% f p r i n t f ( ’56 inch :\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt2 , error1min2 ) ;
% f p r i n t f ( ’96 inch :\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt3 , error1min3 ) ;

%
%
% Writing to Output f i l e
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

disp ( ’ Begynner␣å␣ s k r i v e ␣ t i l ␣ f i l . . . ’ ) ;
t ext1 = { ’mmeas ’ , ’ Be rnou l l i ’ , ’ B e rnou l l i ␣w/C ’ , ’ Be rnou l l i ␣w/S ’ ,

’Asheim ’ , ’ Sachdeva ’ , ’ AlSafran ’ , ’ xg ’ } ;
t ext2 = { ’ Rel . e r r o r ’ ; ’Abs . r e l ␣ e r r o r ’ ; ’ St . d ev i a t i on ’ } ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text1 , ’mflow ’ , ’B1 : I1 ’ )
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mmeas , ’mflow ’ , ’B2 : B88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcBer , ’mflow ’ , ’C2 : C88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcBerChis , ’mflow ’ , ’D2 :D88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcBerSimp , ’mflow ’ , ’E2 : E88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcAsh , ’mflow ’ , ’F2 : F88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcSac , ’mflow ’ , ’G2 :G88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , mcalcAlS , ’mflow ’ , ’H2 : H88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text2 , ’mflow ’ , ’B90 : B92 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , summasummarium , ’mflow ’ , ’C90 : H92 ’

) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vxg , ’mflow ’ , ’ I2 : I88 ’ ) ;

t ext1 = { ’ yact ’ , ’ yAsheim ’ , ’ c r i t ? ’ , ’ ySachdeva ’ , ’ c r i t ? ’ } ;
t ext2 = { ’ ra c t ’ , ’ rAlSaf ran ’ , ’ c r i t ? ’ , ’ P2calc ’ , ’P3 ’ } ;

104



x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text1 , ’ y␣and␣ r ’ , ’B1 : F1 ’ )
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vyact , ’ y␣and␣ r ’ , ’B2 : B88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , yccalcAsh , ’ y␣and␣ r ’ , ’C2 : C88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , c r i t f l owAsh , ’ y␣and␣ r ’ , ’D2 :D88 ’ )

;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , ycca lcSac , ’ y␣and␣ r ’ , ’E2 : E88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , c r i t f l owSac , ’ y␣and␣ r ’ , ’F2 : F88 ’ )

;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text2 , ’ y␣and␣ r ’ , ’G1 :K1 ’ )
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vract , ’ y␣and␣ r ’ , ’G2 :G88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , rcca lcAlS , ’ y␣and␣ r ’ , ’H2 : H88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , c r i t f l owAlS , ’ y␣and␣ r ’ , ’ I2 : I88 ’ )

;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vP2 , ’ y␣and␣ r ’ , ’ J2 : J88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vP3 , ’ y␣and␣ r ’ , ’K2 :K88 ’ ) ;

t ext1 = { ’n ’ , ’ kappa ’ , ’ Bern␣rhom ’ , ’kCh ’ , ’ Chi␣ tp ’ , ’ kSi ’ , ’ Sim
␣tp ’ } ;

x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text1 , ’Data ’ , ’B1 :H1 ’ )
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vn , ’Data ’ , ’B2 : B88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vkappa , ’Data ’ , ’C2 : C88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vrhoBB , ’Data ’ , ’D2 :D88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vs l ipChi , ’Data ’ , ’E2 : E88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vtwopC , ’Data ’ , ’F2 : F88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vs l ipSim , ’Data ’ , ’G2 :G88 ’ ) ;
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , vtwopS , ’Data ’ , ’H2 : H88 ’ ) ;

t ext1 = { ’ datapunkt ’ , ’ r a c t ’ , ’ c r i t ␣ rc ’ , ’ sub␣ rc ’ , ’ c r i t r c −>
mcalc ’ , ’ c r i t i c a l ? ’ , ’ subrc−>mcalc ’ , ’ c r i t i c a l ? ’ } ;

x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , text1 , ’ AlSafran ’ , ’A1 :H1 ’ )
x l sw r i t e ( ’Output2␣ 1984 . x l sx ’ , betwr , ’ AlSafran ’ , ’A2 : H31 ’ ) ;

disp ( ’ Ferdig ! ’ ) ;

% vec to r = transpose ( l i n s p a c e (1 ,P1 ,1000) ) ;
% masserate = zeros (1000 ,1) ;
% fo r o = 1 : 1000
% t ry k k = vec to r (o ) ;
% masserate ( o ) = mflowAsheim (CdAs , ( t r y k k /P1) ) ;
% end
% x l s w r i t e ( ’ Graf . x l s x ’ , vec tor , ’Ark1 ’ , ’A2 : A1001 ’ ) ;
% x l s w r i t e ( ’ Graf . x l s x ’ , masserate , ’Ark1 ’ , ’B2 : B1001 ’ ) ;

105



C.2 The Hydro Model

clear a l l
% Dec lar ing g l o b a l and cons tant v a r i a b l e s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

global xg x l P1 P3 rhog1 rho l kappa A A2 rhoe1 Cc konst1 konst2
z w y

data = 508 ;

a = 1 ; % S l i p model : 1 : modChisholm , 2 : Chisholm 3: Simpson , 4 :
no s l i p , 5 : l i n e a r i z e d s l i p in i n t e g r a t i o n only

c = 1 ; % Densi ty : 1 : momentum, 2 : mix , 3 : cons tant rhog = const
rho e/m, 4 : gas exp . f o r (1) and (3)

d = 1 ; % In t e g r . meth . : 1 : o r i g i n a l , 2 : MATLAB, 3 : t r a p e z o i d a l

konst1 = 0 .6 ; % Orig ina l va lue , mod . Chisholm s l i p model : 0 .6
konst2 = −5 ; % Orig ina l va lue , mod . Chisholm s l i p model : −5
% −−− Chisholm : z = 1 , w = 1 , y = 1/2 or 1/4
% −−− mod . Chisholm : w = 1 , y = 1/2 , z has to be w i th in f o r i = 1

: data so t ha t xg i s de f i ned
% −−− Simpson : z = 1 , w = 1 , y = 1/6

% Reading the Input F i l e
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D1 = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’B2 ’ ) ;
Cto = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’C2 : C509 ’ ) ;
vP1 = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’E2 : E509 ’ ) ;
vP3 = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’F2 : F509 ’ ) ;
vxg = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’G2 : G509 ’ ) ;
vxo = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’H2 : H509 ’ ) ;
vxw = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’ I2 : I509 ’ ) ;
vrhog1 = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’ J2 : J509 ’ ) ;
vrhoo = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’K2 : K509 ’ ) ;
vrhow = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’L2 : L509 ’ ) ;
Cpg = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’M2 ’ ) ;
Cvg = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’N2 : N509 ’ ) ;
Cpo = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’O2 ’ ) ;
Cvo = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’P2 ’ ) ;
Cpw = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’Q2 ’ ) ;
Cvw = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’R2 ’ ) ;
[dummy, vtype ] = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’ S2 : S509 ’ ) ;
mmeas = x l s r e ad ( ’ Input . x l sx ’ , ’ Input ’ , ’T2 : T509 ’ ) ;
A = (pi /4)∗D1^2 ;
vA2 = A∗Cto ;
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% I n i t i a t i n g v a r a b l e s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vrhog2 = zeros ( data , 1 ) ;
v s l i p = zeros ( data , 1 ) ;
vkappa = zeros ( data , 1 ) ;
vrhoe1 = zeros ( data , 1 ) ;
vrhoe2 = zeros ( data , 1 ) ;
vrhoe3 = zeros ( data , 1 ) ;
v rho l = zeros ( data , 1 ) ;
vx l = zeros ( data , 1 ) ;
mc = zeros ( data , 1 ) ;
ms = zeros ( data , 1 ) ;
mcalc = zeros ( data , 1 ) ;
vP2 = zeros ( data , 1 ) ;
vP2c = zeros ( data , 1 ) ;
vP2s = zeros ( data , 1 ) ;
v c r i t = zeros ( data , 1 ) ;
d i f f = zeros ( data , 1 ) ;

% Pre−Ca l cu l a t i on s
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i = 1 : data
sumx = vxg ( i ) + vxo ( i ) + vxw( i ) ;
vxg ( i ) = vxg ( i ) / sumx ;
vxo ( i ) = vxo ( i ) / sumx ;
vxw( i ) = vxw( i ) / sumx ;
vxl ( i ) = vxo ( i ) + vxw( i ) ;
WC = vxw( i )∗vrhoo ( i ) / max( (vxw( i )∗vrhoo ( i )+vxo ( i )∗vrhow ( i )

) ,1 e−30 ) ;
vrho l ( i ) = vrhoo ( i )∗(1−WC) + vrhow ( i )∗WC ;
Cpmix = vxg ( i )∗Cpg+vxo ( i )∗Cpo+vxw( i )∗Cpw ;
Cvmix = vxg ( i )∗Cvg( i )+vxo ( i )∗Cvo+vxw( i )∗Cvw ;

% vkappa ( i ) = Cpmix / Cvmix ;
vkappa ( i ) = Cpg / Cvg( i ) ;

end

% t i c
% fo r abc = 1 : 100

% The Hydro Choke Model
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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% error1min1 = 1000 ;
% error1min2 = 1000 ;
% error1min3 = 1000 ;
% error1min4 = 1000 ;
% error1min5 = 1000 ;
% error1min6 = 1000 ;
% fo r Cc = 0.50 : 0.01 : 0.65
% d i f f 1 = zeros (86 ,1) ;
% d i f f 2 = zeros (60 ,1) ;
% d i f f 3 = zeros (123 ,1) ;
% d i f f 4 = zeros (96 ,1) ;
% d i f f 5 = zeros (59 ,1) ;
% d i f f 6 = zeros (84 ,1) ;
for i = 1 : data

i f ( strcmp ( vtype ( i ) , ’ORIF ’ ) )
i f ( Cto ( i ) == 0.02 )

Cc = 0.57 ;
e l s e i f ( Cto ( i ) == 0.032 )

Cc = 0.52 ;
e l s e i f ( Cto ( i ) == 0.052 )

Cc = 0.57 ;
end

else
i f ( Cto ( i ) == 0.02 )

Cc = 0.61 ;
e l s e i f ( Cto ( i ) == 0.032 )

Cc = 0.55 ;
e l s e i f ( Cto ( i ) == 0.052 )

Cc = 0.51 ;
end

end
xg = vxg ( i ) ;
x l = 1 − xg ;
P1 = vP1( i ) ;
P3 = vP3( i ) ;
i f ( c == 3 )

% rhog1 = vrhog1 ( i ) ;
temp = vkappa ( i ) ;
rhog1 = vrhog1 ( i ) .∗ ( 1 + (P3 . /P1) . ^ ( 1 . / temp) ) / 2 ;
vrhog1 ( i ) = rhog1 ;

% For cons tant rhog : s e t kappa = 1e30 ;
kappa = 1e30 ;

else
rhog1 = vrhog1 ( i ) ;
kappa = vkappa ( i ) ;

end
rho l = vrho l ( i ) ;
w = 1 ;
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i f ( a == 1 )
z = 1 + konst1 .∗exp( konst2 .∗ xg ) ;
y = 1/2 ;

e l s e i f ( a == 2 )
z = 1 ;

e l s e i f ( a == 3 )
z = 1 ;
y = 1/6 ;

end
A2 = vA2( i ) ;
rhoe1 = momdens(P1 , 1 , 4 , 4 ) ; %% Spec i a l case : no s l i p at

p o s i t i o n 1
rhoe3 = momdens(P3 , 1 , 4 , 4 ) ; %% Spec i a l case : no s l i p at

p o s i t i o n 3

% Maximum as c r i t i c a l po in t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( xg == 0 )

P2c = 0 .1 ;
else

derivmflow12 = @(P) mflow12deriv (P, a , c , d ) ;
P2c = fzero ( derivmflow12 , [ 1 P1−1]) ;
i f ( isnan (P2c ) )

P2c = f indtop (P1) ;
end

end
% % Cr i t i c a l p re s sure

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% i f ( xg == 0 )
% P2c = 0.1 ;
% e l s e
% mflow = @(P) sqmflow12 (P, a , c , d ) − sqmflowc (P, a , c )

;
% P2c = f z e r o (mflow , [2 P1−1]) ;
% end
% No pres sure recovery

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P2s = P3 ;

%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vP2c ( i ) = P2c ;
mc( i ) = sqrt ( sqmflowc (P2c , a , c ) ) ;
ms( i ) = sqrt ( sqmflow12 (P2s , a , c , d ) ) ;
vP2s ( i ) = P2s ;
i f ( P2s < vP2c ( i ) )

mcalc ( i ) = mc( i ) ;
v c r i t ( i ) = 1 ;
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tmpP = P2c ;
else

mcalc ( i ) = ms( i ) ;
vP2s ( i ) = P2s ;
tmpP = P2s ;

end
vP2( i ) = tmpP ;
i f ( c == 3 )

vrhog2 ( i ) = rhog1 ;
else

vrhog2 ( i ) = gasdens i ty (tmpP) ;
end
i f ( a == 2 )

LM = ( x l /xg )∗sqrt ( vrhog2 ( i ) / rho l ) ;
i f ( LM > 1 )

y = 1/2 ;
v s l i p ( i ) = s l i p f u n c t i o n ( vrhog2 ( i ) , 1 ) ;
vrhoe2 ( i ) = momdens(tmpP, 1 , 1 , c ) ;

else
y = 1/4 ;
v s l i p ( i ) = s l i p f u n c t i o n ( vrhog2 ( i ) , 3 ) ;
vrhoe2 ( i ) = momdens(tmpP, 1 , 3 , c ) ;
disp ( i ) ;

end
else

v s l i p ( i ) = s l i p f u n c t i o n ( vrhog2 ( i ) , a ) ;
vrhoe2 ( i ) = momdens(tmpP, 1 , a , c ) ;

end
vrhoe1 ( i ) = rhoe1 ;
vrhoe3 ( i ) = rhoe3 ;

end % End for−i 1 : data
% end
% time = toc

% S t a t i s t i c s
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for i = 1 : data

d i f f ( i ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
end
e r r o r 1 = mean(abs ( d i f f ) ) ;
s tdev = std ( d i f f ) ;
e r r o r 2 = mean( d i f f ) ;
% a1 = 0 ;
% a2 = 0 ;
% a3 = 0 ;
% a4 = 0 ;
% a5 = 0 ;
% a6 = 0 ;
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% for i = 1 : data
% i f ( strcmp ( v type ( i ) , ’ORIF’ ) )
% i f ( Cto ( i ) == 0.02 )
% a1 = a1 + 1 ;
% d i f f 1 ( a1 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( Cto ( i ) == 0.032 )
% a2 = a2 + 1 ;
% d i f f 2 ( a2 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( Cto ( i ) == 0.052 )
% a3 = a3 + 1 ;
% d i f f 3 ( a3 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% end
% e l s e
% i f ( Cto ( i ) == 0.02 )
% a4 = a4 + 1 ;
% d i f f 4 ( a4 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( Cto ( i ) == 0.032 )
% a5 = a5 + 1 ;
% d i f f 5 ( a5 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% e l s e i f ( Cto ( i ) == 0.052 )
% a6 = a6 + 1 ;
% d i f f 6 ( a6 ) = 100∗( mcalc ( i )−mmeas( i ) ) / mmeas( i ) ;
% end
% end
% end
% error11 = mean( abs ( d i f f 1 ) ) ;
% error12 = mean( abs ( d i f f 2 ) ) ;
% error13 = mean( abs ( d i f f 3 ) ) ;
% error14 = mean( abs ( d i f f 4 ) ) ;
% error15 = mean( abs ( d i f f 5 ) ) ;
% error16 = mean( abs ( d i f f 6 ) ) ;
% i f ( error11 < error1min1 )
% error1min1 = error11 ;
% Cdopt1 = Cc ;
% end
% i f ( error12 < error1min2 )
% error1min2 = error12 ;
% Cdopt2 = Cc ;
% end
% i f ( error13 < error1min3 )
% error1min3 = error13 ;
% Cdopt3 = Cc ;
% end
% i f ( error14 < error1min4 )
% error1min4 = error14 ;
% Cdopt4 = Cc ;
% end
% i f ( error15 < error1min5 )
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% error1min5 = error15 ;
% Cdopt5 = Cc ;
% end
% i f ( error16 < error1min6 )
% error1min6 = error16 ;
% Cdopt6 = Cc ;
% end
% end % End for−CC
% f p r i n t f ( ’ORIFICE:\n ’ )
% f p r i n t f ( ’ Cto=0.020:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt1 , error1min1 ) ;
% f p r i n t f ( ’ Cto=0.032:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt2 , error1min2 ) ;
% f p r i n t f ( ’ Cto=0.052:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt3 , error1min3 ) ;
% f p r i n t f ( ’CAGE:\n ’ )
% f p r i n t f ( ’ Cto=0.020:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt4 , error1min4 ) ;
% f p r i n t f ( ’ Cto=0.032:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt5 , error1min5 ) ;
% f p r i n t f ( ’ Cto=0.052:\n ’ )
% f p r i n t f ( ’Cd : %4.2 f and a b s o l u t e average error : %8.6 f \n ’ ,

Cdopt6 , error1min6 ) ;

disp ( ’ Begynner␣å␣ s k r i v e ␣ t i l ␣ f i l ’ ) ;
% Writing to Output f i l e
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

text1 = { ’ xg ’ , ’ xo ’ , ’xw ’ , ’P2 ’ , ’ mcalc ’ , ’ P2c ’ , ’mc ’ , ’ P2s ’ , ’
ms ’ , ’ rhog1 ’ , ’ rhog2 ’ , ’ kappa ’ , ’ rho l ’ , ’ s l i p ’ , ’ c r i t i c a l ? ’ ,
’ rhoe1 ’ , ’ rhoe2 ’ , ’ rhoe3 ’ } ;

t ext2 = { ’ Standard␣ dev i a t i on : ’ ; ’Abs . ␣Average␣Rel . ␣ e r r o r : ’ ; ’
Average␣Rel . ␣ e r r o r : ’ ; ’ C r i t i c a l ␣ po in t s : ’ } ;

x l sw r i t e ( ’Output . x l sx ’ , text1 , ’ Output1 ’ , ’B1 : S1 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vxg , ’ Output1 ’ , ’B2 : B509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vxo , ’ Output1 ’ , ’C2 : C509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vxw , ’Output1 ’ , ’D2 : D509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vP2 , ’Output1 ’ , ’E2 : E509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , mcalc , ’ Output1 ’ , ’F2 : F509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vP2c , ’ Output1 ’ , ’G2 : G509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , mc , ’ Output1 ’ , ’H2 : H509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vP2s , ’ Output1 ’ , ’ I2 : I509 ’ ) ;
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x l sw r i t e ( ’Output . x l sx ’ , ms , ’ Output1 ’ , ’ J2 : J509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhog1 , ’ Output1 ’ , ’K2 : K509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhog2 , ’ Output1 ’ , ’L2 : L509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vkappa , ’Output1 ’ , ’M2:M509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhol , ’ Output1 ’ , ’N2 : N509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , v s l i p , ’ Output1 ’ , ’O2 : O509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , v c r i t , ’ Output1 ’ , ’P2 : P509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhoe1 , ’ Output1 ’ , ’Q2 : Q509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhoe2 , ’ Output1 ’ , ’R2 : R509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , vrhoe3 , ’ Output1 ’ , ’ S2 : S509 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , text2 , ’ Output1 ’ , ’A511 : A514 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , stdev , ’ Output1 ’ , ’C511 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , e r ror1 , ’ Output1 ’ , ’C512 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , e r ror2 , ’ Output1 ’ , ’C513 ’ ) ;
x l sw r i t e ( ’Output . x l sx ’ , sum( v c r i t ) , ’ Output1 ’ , ’C514 ’ ) ;
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D Input Data
Applies to both data sets:

CP,G 1020 J/kg
CP,o 2160 J/kg
CV,o 2010 J/kg
CP,w 4170 J/kg
CV,w 4170 J/kg

D.1 Porsgrunn data
d1 = 0.0779m

An extract of the Porsgrunn data set follows:

Cto = A2/A1 P1 P3 xg xo xw rhog1
1 0.02 8.47E+05 7.62E+05 1.0000 0.0000 0.0000 6.4059
2 0.02 1.00E+06 7.57E+05 1.0000 0.0000 0.0000 7.5864
3 0.02 1.22E+06 7.52E+05 1.0000 0.0000 0.0000 9.2270
4 0.02 1.39E+06 7.34E+05 1.0000 0.0000 0.0000 10.5451
5 0.02 8.37E+05 7.63E+05 0.0000 1.0000 0.0000 6.3891
6 0.02 9.18E+05 7.54E+05 0.0000 1.0000 0.0000 7.0074
7 0.02 1.06E+06 7.43E+05 0.0000 1.0000 0.0000 8.0664
8 0.02 1.25E+06 7.43E+05 0.0000 1.0000 0.0000 9.5417
9 0.02 1.49E+06 7.31E+05 0.0000 1.0000 0.0000 11.3386
10 0.02 8.36E+05 7.51E+05 0.0000 0.0000 1.0000 6.3815
11 0.02 9.74E+05 7.47E+05 0.0000 0.0000 1.0000 7.4119
12 0.02 1.24E+06 7.52E+05 0.0000 0.0000 1.0000 9.4361
13 0.02 1.58E+06 7.38E+05 0.0000 0.0000 1.0000 12.0235
14 0.02 8.41E+05 7.43E+05 0.0076 0.8626 0.1300 6.3998
15 0.02 9.50E+05 7.49E+05 0.0083 0.8802 0.1110 7.2517
16 0.02 1.14E+06 7.57E+05 0.0038 0.8677 0.1280 8.7020
17 0.02 1.31E+06 7.50E+05 0.0000 0.8829 0.1170 9.9688
18 0.02 1.40E+06 7.43E+05 0.0000 0.8648 0.1350 10.6537
19 0.02 8.74E+05 7.69E+05 0.0121 0.4336 0.5540 6.6715
20 0.02 1.01E+06 7.50E+05 0.0095 0.4506 0.5400 7.7097
21 0.02 1.15E+06 7.45E+05 0.0015 0.4565 0.5420 8.7513
22 0.02 1.38E+06 7.49E+05 0.0009 0.4529 0.5460 10.5015
23 0.02 8.87E+05 7.84E+05 0.0095 0.0917 0.8990 6.7499
24 0.02 9.84E+05 7.40E+05 0.0075 0.0711 0.9210 7.4421
25 0.02 1.17E+06 7.39E+05 0.0035 0.0901 0.9060 8.8488
26 0.02 1.38E+06 7.36E+05 0.0035 0.0793 0.9170 10.5340
27 0.02 1.08E+06 7.53E+05 0.0843 0.7846 0.1310 8.2186
28 0.02 1.20E+06 7.59E+05 0.0401 0.8524 0.1080 9.1600
29 0.02 1.40E+06 7.72E+05 0.0282 0.8819 0.1260 10.6537
30 0.02 1.48E+06 7.53E+05 0.0189 0.8655 0.1160 11.2278
31 0.02 1.06E+06 7.49E+05 0.0786 0.3786 0.5420 8.0664
32 0.02 1.21E+06 7.53E+05 0.0413 0.4207 0.5380 9.2078
33 0.02 1.44E+06 7.61E+05 0.0293 0.4381 0.5330 10.9920
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Cto = A2/A1 P1 P3 xg xo xw rhog1
34 0.02 1.55E+06 7.53E+05 0.0169 0.4478 0.5360 11.7952
35 0.02 1.16E+06 7.73E+05 0.0822 0.0578 0.8600 8.8274
36 0.02 1.44E+06 7.66E+05 0.0576 0.0977 0.8450 10.9581
37 0.02 1.48E+06 7.59E+05 0.0343 0.0411 0.9250 11.2625
38 0.02 1.25E+06 7.34E+05 0.1329 0.7341 0.1340 9.5122
39 0.02 1.42E+06 7.36E+05 0.0771 0.8104 0.1130 10.8059
40 0.02 1.34E+06 7.32E+05 0.1309 0.3761 0.4930 10.1971
41 0.02 1.43E+06 7.42E+05 0.0677 0.4199 0.5130 10.8820
42 0.02 1.41E+06 7.62E+05 0.1181 0.0966 0.7850 10.7298
43 0.02 1.47E+06 7.34E+05 0.0610 0.1101 0.8290 11.1864
44 0.02 1.42E+06 7.39E+05 0.1574 0.7216 0.1210 10.8059
45 0.02 1.40E+06 7.16E+05 0.1518 0.3552 0.4940 10.8207
46 0.02 1.45E+06 7.31E+05 0.1340 0.1020 0.7630 11.2424
47 0.02 9.50E+05 7.55E+05 0.0456 0.8211 0.1330 7.2517
48 0.02 1.18E+06 7.63E+05 0.0283 0.0708 0.9010 9.0074
49 0.02 1.32E+06 8.04E+05 0.0153 0.8558 0.1290 10.0140
50 0.02 1.50E+06 7.77E+05 0.0102 0.8829 0.1070 11.3796
51 0.02 1.15E+06 7.60E+05 0.0326 0.0710 0.8960 8.7513
52 0.02 1.17E+06 7.54E+05 0.0222 0.4889 0.4880 8.9310
53 0.02 1.40E+06 8.23E+05 0.0202 0.4429 0.5370 10.6209
54 0.02 1.50E+06 7.68E+05 0.0099 0.4465 0.5430 11.4147
55 0.02 9.73E+05 7.58E+05 0.0406 0.0875 0.8720 7.4272
56 0.02 1.13E+06 7.36E+05 0.0270 0.0727 0.9000 8.5991
57 0.02 1.47E+06 8.01E+05 0.0214 0.0863 0.8920 11.1864
58 0.02 1.53E+06 7.75E+05 0.0099 0.0937 0.8960 11.6072
417 0.02 2.39E+06 1.34E+06 0.2841 0.6519 0.0637 16.7884
418 0.02 2.85E+06 1.24E+06 0.2289 0.6651 0.1060 19.1468
419 0.02 1.99E+06 1.14E+06 0.2591 0.0585 0.6820 14.3046
420 0.02 2.43E+06 1.14E+06 0.2511 0.0498 0.6990 17.4675
421 0.02 3.06E+06 1.30E+06 0.2406 0.0640 0.6950 21.3729
422 0.02 3.71E+06 1.51E+06 0.2444 0.0619 0.6940 24.9925
423 0.02 1.55E+06 1.05E+06 0.0635 0.8238 0.1130 11.6870
424 0.02 2.54E+06 1.39E+06 0.0570 0.8300 0.1130 18.4193
425 0.02 3.21E+06 1.63E+06 0.0514 0.8376 0.1110 23.0072
426 0.02 3.78E+06 1.87E+06 0.0513 0.8325 0.1170 25.8168
427 0.02 1.56E+06 9.72E+05 0.0768 0.0822 0.8410 11.8713
428 0.02 2.30E+06 1.29E+06 0.0613 0.0849 0.8540 17.6112
429 0.02 3.11E+06 1.29E+06 0.0584 0.0763 0.8650 22.2905
430 0.02 1.88E+06 1.14E+06 0.0267 0.8449 0.1280 14.3064
431 0.02 2.63E+06 1.35E+06 0.0234 0.8550 0.1220 19.5905
432 0.02 3.20E+06 1.54E+06 0.0147 0.8611 0.1240 23.3427
433 0.02 3.85E+06 1.75E+06 0.0149 0.8576 0.1270 27.3558
434 0.02 1.72E+06 1.13E+06 0.0382 0.0820 0.8800 12.8509
435 0.02 2.76E+06 1.32E+06 0.0328 0.0784 0.8890 20.6211
436 0.02 3.47E+06 1.60E+06 0.0301 0.0836 0.8860 25.6923
437 0.02 3.94E+06 1.83E+06 0.0318 0.0791 0.8890 28.8260
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Cto = A2/A1 P1 P3 xg xo xw rhog1
438 0.02 2.21E+06 1.04E+06 0.0060 0.0777 0.9160 16.7145
487 0.02 1.59E+06 9.91E+05 0.0000 0.0000 1.0000 12.3668
488 0.02 2.35E+06 1.05E+06 0.0000 0.0000 1.0000 18.0501
489 0.02 2.74E+06 1.08E+06 0.0000 0.0000 1.0000 20.6595
490 0.02 3.14E+06 1.12E+06 0.0000 0.0000 1.0000 23.3190
491 0.02 3.53E+06 1.16E+06 0.0000 0.0000 1.0000 25.5984

rhoo rhow cvg Choke type Meas m
1 810 1000 724 ORIF 0.051
2 810 1000 724 ORIF 0.091
3 810 1000 724 ORIF 0.129
4 810 1000 724 ORIF 0.158
5 810 1000 724 ORIF 0.574
6 810 1000 724 ORIF 0.897
7 810 1000 724 ORIF 1.270
8 810 1000 724 ORIF 1.650
9 810 1000 724 ORIF 2.010
10 810 1000 724 ORIF 0.765
11 810 1000 724 ORIF 1.290
12 810 1000 724 ORIF 1.910
13 810 1000 724 ORIF 2.300
14 810 1000 724 ORIF 0.661
15 810 1000 724 ORIF 0.949
16 810 1000 724 ORIF 1.360
17 810 1000 724 ORIF 1.650
18 810 1000 724 ORIF 1.860
19 810 1000 724 ORIF 0.656
20 810 1000 724 ORIF 1.080
21 810 1000 724 ORIF 1.490
22 810 1000 724 ORIF 1.870
23 810 1000 724 ORIF 0.707
24 810 1000 724 ORIF 1.120
25 810 1000 724 ORIF 1.590
26 810 1000 724 ORIF 1.990
27 810 1000 724 ORIF 0.642
28 810 1000 724 ORIF 1.030
29 810 1000 724 ORIF 1.373
30 810 1000 724 ORIF 1.620
31 810 1000 724 ORIF 0.669
32 810 1000 724 ORIF 1.090
33 810 1000 724 ORIF 1.510
34 810 1000 724 ORIF 1.810
35 810 1000 724 ORIF 0.746
36 810 1000 724 ORIF 1.210
37 810 1000 724 ORIF 1.550
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rhoo rhow cvg Choke type Meas m
38 810 1000 724 ORIF 0.633
39 810 1000 724 ORIF 1.010
40 810 1000 724 ORIF 0.736
41 810 1000 724 ORIF 1.130
42 810 1000 724 ORIF 0.820
43 810 1000 724 ORIF 1.240
44 810 1000 724 ORIF 0.685
45 810 1000 724 ORIF 0.740
46 810 1000 724 ORIF 0.809
47 810 1000 724 ORIF 0.611
48 810 1000 724 ORIF 1.130
49 810 1000 724 ORIF 1.360
50 810 1000 724 ORIF 1.730
51 810 1000 724 ORIF 1.030
52 810 1000 724 ORIF 1.200
53 810 1000 724 ORIF 1.500
54 810 1000 724 ORIF 1.890
55 810 1000 724 ORIF 0.731
56 810 1000 724 ORIF 1.140
57 810 1000 724 ORIF 1.620
58 810 1000 724 ORIF 2.050
417 771 990 740 ORIF 0.668
418 771 990 740 ORIF 0.956
419 771 990 740 ORIF 0.647
420 771 990 740 ORIF 0.843
421 771 990 740 ORIF 1.075
422 771 990 740 ORIF 1.268
423 771 990 740 ORIF 0.946
424 771 990 740 ORIF 1.521
425 771 990 740 ORIF 1.785
426 771 990 740 ORIF 2.022
427 771 990 740 ORIF 1.047
428 771 990 740 ORIF 1.592
429 771 990 740 ORIF 2.293
430 771 990 740 ORIF 1.364
431 771 990 740 ORIF 1.838
432 771 990 740 ORIF 2.288
433 771 990 740 ORIF 2.536
434 771 990 740 ORIF 1.435
435 771 990 740 ORIF 2.325
436 771 990 740 ORIF 2.775
437 771 990 740 ORIF 3.063
438 771 990 740 ORIF 2.650
487 771 990 740 ORIF 2.100
488 771 990 740 ORIF 3.130
489 771 990 740 ORIF 3.578
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rhoo rhow cvg Choke type Meas m
490 771 990 740 ORIF 3.995
491 771 990 740 ORIF 4.412

D.2 Field data
d1 = 0.10m

A2 P1 Psep xg xo xw rhog1
1 1.267E-04 1.895E+07 3.889E+06 0.9323 0.0677 0.0000 179.57
2 1.267E-04 1.894E+07 3.889E+06 0.3385 0.6615 0.0000 179.51
3 1.267E-04 1.895E+07 3.889E+06 0.4204 0.5796 0.0000 179.63
4 1.267E-04 1.893E+07 3.889E+06 0.4394 0.5606 0.0000 179.45
5 1.267E-04 1.897E+07 3.889E+06 0.4518 0.5482 0.0000 179.75
6 1.267E-04 1.891E+07 3.889E+06 0.4395 0.5605 0.0000 179.22
7 1.267E-04 1.890E+07 3.889E+06 0.4388 0.5612 0.0000 179.16
8 1.267E-04 1.891E+07 3.889E+06 0.4387 0.5613 0.0000 179.28
9 1.267E-04 1.895E+07 3.889E+06 0.4451 0.5549 0.0000 179.57
10 1.267E-04 1.888E+07 3.889E+06 0.4388 0.5612 0.0000 179.04
11 1.267E-04 1.893E+07 3.889E+06 0.4452 0.5548 0.0000 179.39
12 1.267E-04 1.888E+07 3.889E+06 0.4324 0.5676 0.0000 179.04
13 1.267E-04 2.205E+07 3.558E+06 0.3330 0.6670 0.0000 204.14
14 1.267E-04 1.864E+07 3.889E+06 0.6157 0.3843 0.0000 176.95
15 1.267E-04 1.878E+07 3.889E+06 0.8144 0.1856 0.0000 178.15
16 1.267E-04 1.885E+07 3.889E+06 0.6278 0.3722 0.0000 178.74
17 1.267E-04 1.883E+07 3.889E+06 0.6150 0.3850 0.0000 178.56
18 1.267E-04 1.886E+07 3.889E+06 0.6411 0.3589 0.0000 178.80
19 1.267E-04 1.884E+07 3.889E+06 0.6026 0.3974 0.0000 178.62
20 1.267E-04 1.884E+07 3.889E+06 0.5789 0.4211 0.0000 178.62
21 1.267E-04 1.882E+07 3.889E+06 0.6279 0.3721 0.0000 178.50
22 1.267E-04 1.885E+07 3.889E+06 0.5965 0.4035 0.0000 178.74
23 1.267E-04 1.886E+07 3.889E+06 0.5964 0.4036 0.0000 178.80
24 1.267E-04 1.880E+07 3.889E+06 0.6027 0.3973 0.0000 178.27
25 1.267E-04 1.881E+07 3.889E+06 0.6027 0.3973 0.0000 178.39
26 1.267E-04 1.882E+07 3.889E+06 0.5966 0.4034 0.0000 178.45
27 1.267E-04 1.877E+07 3.889E+06 0.6028 0.3972 0.0000 178.09
28 3.879E-04 1.471E+07 4.475E+06 0.5267 0.4733 0.0000 139.93
29 3.879E-04 1.463E+07 4.413E+06 0.4532 0.5468 0.0000 139.10
30 3.879E-04 1.460E+07 4.385E+06 0.4929 0.5071 0.0000 138.82
31 3.879E-04 1.462E+07 4.364E+06 0.4855 0.5145 0.0000 139.03
32 3.879E-04 1.455E+07 4.385E+06 0.4882 0.5118 0.0000 138.26
33 3.879E-04 1.453E+07 4.357E+06 0.4883 0.5117 0.0000 138.05
34 3.879E-04 1.458E+07 4.364E+06 0.4861 0.5139 0.0000 138.54
35 3.879E-04 1.448E+07 4.399E+06 0.4915 0.5085 0.0000 137.57
36 3.879E-04 1.455E+07 4.364E+06 0.4958 0.5042 0.0000 138.26
37 3.879E-04 1.447E+07 4.371E+06 0.4966 0.5034 0.0000 137.50
38 3.879E-04 1.447E+07 4.371E+06 0.4891 0.5109 0.0000 137.43
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A2 P1 Psep xg xo xw rhog1
39 3.879E-04 1.445E+07 4.371E+06 0.4942 0.5058 0.0000 137.29
40 3.879E-04 1.445E+07 4.371E+06 0.5071 0.4929 0.0000 137.29
41 3.879E-04 1.445E+07 4.357E+06 0.5071 0.4929 0.0000 137.29
42 3.879E-04 1.444E+07 4.357E+06 0.5071 0.4929 0.0000 137.22
43 3.879E-04 1.467E+07 4.357E+06 0.3139 0.6861 0.0000 139.51
44 3.879E-04 1.464E+07 4.357E+06 0.4928 0.5072 0.0000 139.24
45 3.879E-04 1.463E+07 4.399E+06 0.4248 0.5752 0.0000 139.10
46 3.879E-04 1.462E+07 4.330E+06 0.4569 0.5431 0.0000 139.03
47 3.879E-04 1.456E+07 4.440E+06 0.4572 0.5428 0.0000 138.40
48 3.879E-04 1.460E+07 4.433E+06 0.4737 0.5263 0.0000 138.82
49 3.879E-04 1.460E+07 4.316E+06 0.4811 0.5189 0.0000 138.75
50 3.879E-04 1.452E+07 4.413E+06 0.4913 0.5087 0.0000 137.98
51 3.879E-04 1.451E+07 4.385E+06 0.4962 0.5038 0.0000 137.84
52 3.879E-04 1.449E+07 4.420E+06 0.4963 0.5037 0.0000 137.64
53 3.879E-04 1.451E+07 4.413E+06 0.5011 0.4989 0.0000 137.84
54 3.879E-04 1.453E+07 4.371E+06 0.5009 0.4991 0.0000 138.12
55 3.879E-04 1.445E+07 4.426E+06 0.5013 0.4987 0.0000 137.29
56 3.879E-04 1.444E+07 4.323E+06 0.5014 0.4986 0.0000 137.22
57 3.879E-04 1.444E+07 4.316E+06 0.5014 0.4986 0.0000 137.22
58 1.140E-03 1.014E+07 5.116E+06 0.3677 0.6323 0.0000 92.50
59 1.140E-03 8.170E+06 5.178E+06 0.5187 0.4813 0.0000 72.37
60 1.140E-03 8.025E+06 5.137E+06 0.5899 0.4101 0.0000 70.92
61 1.140E-03 7.929E+06 5.102E+06 0.5700 0.4300 0.0000 69.95
62 1.140E-03 7.867E+06 5.081E+06 0.5524 0.4476 0.0000 69.33
63 1.140E-03 7.832E+06 5.054E+06 0.5572 0.4428 0.0000 68.98
64 1.140E-03 7.791E+06 5.033E+06 0.5622 0.4378 0.0000 68.57
65 1.140E-03 7.763E+06 5.012E+06 0.5656 0.4344 0.0000 68.30
66 1.140E-03 7.736E+06 5.012E+06 0.5690 0.4310 0.0000 68.02
67 1.140E-03 7.695E+06 4.999E+06 0.5675 0.4325 0.0000 67.61
68 1.140E-03 7.688E+06 4.999E+06 0.5709 0.4291 0.0000 67.54
69 1.140E-03 7.660E+06 4.999E+06 0.5760 0.4240 0.0000 67.27
70 1.140E-03 7.639E+06 4.999E+06 0.5727 0.4273 0.0000 67.06
71 1.140E-03 7.681E+06 4.999E+06 0.5777 0.4223 0.0000 67.47
72 1.140E-03 7.619E+06 4.999E+06 0.5762 0.4238 0.0000 66.86
73 1.140E-03 9.508E+06 5.116E+06 0.4068 0.5932 0.0000 86.00
74 1.140E-03 8.191E+06 5.233E+06 0.4803 0.5197 0.0000 72.58
75 1.140E-03 8.060E+06 5.150E+06 0.4900 0.5100 0.0000 71.26
76 1.140E-03 7.970E+06 5.123E+06 0.4990 0.5010 0.0000 70.36
77 1.140E-03 7.915E+06 5.102E+06 0.5022 0.4978 0.0000 69.81
78 1.140E-03 7.853E+06 5.081E+06 0.5055 0.4945 0.0000 69.19
79 1.140E-03 7.832E+06 5.068E+06 0.5104 0.4896 0.0000 68.98
80 1.140E-03 7.784E+06 5.068E+06 0.5122 0.4878 0.0000 68.50
81 1.140E-03 7.743E+06 5.033E+06 0.5173 0.4827 0.0000 68.09
82 1.140E-03 7.715E+06 5.061E+06 0.5191 0.4809 0.0000 67.82
83 1.140E-03 7.757E+06 5.054E+06 0.5206 0.4794 0.0000 68.23
84 1.140E-03 7.743E+06 5.033E+06 0.5224 0.4776 0.0000 68.09
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A2 P1 Psep xg xo xw rhog1
85 1.140E-03 7.695E+06 5.033E+06 0.5243 0.4757 0.0000 67.61
86 1.140E-03 7.688E+06 5.033E+06 0.5260 0.4740 0.0000 67.54
87 1.140E-03 7.639E+06 5.033E+06 0.5279 0.4721 0.0000 67.06

rhoo rhow cvg Meas m.flow T Z M Opening
1 657.62 1000 740 3.362 350.928 0.7985 0.0221 32
2 657.67 1000 740 6.921 350.928 0.7985 0.0221 32
3 657.57 1000 740 5.831 350.928 0.7985 0.0221 32
4 657.72 1000 740 5.628 350.928 0.7984 0.0221 32
5 657.48 1000 740 5.484 350.928 0.7986 0.0221 32
6 657.92 1000 740 5.627 350.928 0.7983 0.0221 32
7 657.97 1000 740 5.635 350.928 0.7983 0.0221 32
8 657.87 1000 740 5.635 350.928 0.7984 0.0221 32
9 657.62 1000 740 5.568 350.928 0.7985 0.0221 32
10 658.07 1000 740 5.635 350.928 0.7982 0.0221 32
11 657.77 1000 740 5.760 350.928 0.7984 0.0221 32
12 658.07 1000 740 5.703 350.928 0.7982 0.0221 32
13 635.67 1000 740 12.007 350.928 0.8174 0.0221 32
14 659.82 1000 740 7.591 350.928 0.7973 0.0221 32
15 658.82 1000 740 5.924 350.928 0.7978 0.0221 32
16 658.32 1000 740 7.457 350.928 0.7981 0.0221 32
17 658.47 1000 740 7.591 350.928 0.7980 0.0221 32
18 658.27 1000 740 7.323 350.928 0.7981 0.0221 32
19 658.42 1000 740 7.725 350.928 0.7981 0.0221 32
20 658.42 1000 740 7.996 350.928 0.7981 0.0221 32
21 658.52 1000 740 7.457 350.928 0.7980 0.0221 32
22 658.32 1000 740 7.794 350.928 0.7981 0.0221 32
23 658.27 1000 740 7.794 350.928 0.7981 0.0221 32
24 658.72 1000 740 7.725 350.928 0.7979 0.0221 32
25 658.62 1000 740 7.725 350.928 0.7979 0.0221 32
26 658.57 1000 740 7.794 350.928 0.7980 0.0221 32
27 658.87 1000 740 7.725 350.928 0.7978 0.0221 32
28 688.76 1000 740 14.152 350.928 0.7958 0.0221 56
29 689.38 1000 740 16.054 350.928 0.7960 0.0221 56
30 689.59 1000 740 14.899 350.928 0.7961 0.0221 56
31 689.43 1000 740 15.104 350.928 0.7960 0.0221 56
32 690.00 1000 740 15.035 350.928 0.7963 0.0221 56
33 690.15 1000 740 15.035 350.928 0.7964 0.0221 56
34 689.79 1000 740 14.980 350.928 0.7962 0.0221 56
35 690.51 1000 740 14.845 350.928 0.7965 0.0221 56
36 690.00 1000 740 14.980 350.928 0.7963 0.0221 56
37 690.56 1000 740 14.709 350.928 0.7966 0.0221 56
38 690.62 1000 740 14.913 350.928 0.7966 0.0221 56
39 690.72 1000 740 14.777 350.928 0.7966 0.0221 56
40 690.72 1000 740 14.441 350.928 0.7966 0.0221 56
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rhoo rhow cvg Meas m.flow T Z M Opening
41 690.72 1000 740 14.441 350.928 0.7966 0.0221 56
42 690.77 1000 740 14.441 350.928 0.7967 0.0221 56
43 689.07 1000 740 23.280 350.928 0.7959 0.0221 56
44 689.28 1000 740 13.685 350.928 0.7960 0.0221 56
45 689.38 1000 740 15.926 350.928 0.7960 0.0221 56
46 689.43 1000 740 15.133 350.928 0.7960 0.0221 56
47 689.89 1000 740 15.520 350.928 0.7962 0.0221 56
48 689.59 1000 740 15.315 350.928 0.7961 0.0221 56
49 689.64 1000 740 15.383 350.928 0.7961 0.0221 56
50 690.20 1000 740 15.679 350.928 0.7964 0.0221 56
51 690.31 1000 740 15.251 350.928 0.7964 0.0221 56
52 690.46 1000 740 15.251 350.928 0.7965 0.0221 56
53 690.31 1000 740 15.386 350.928 0.7964 0.0221 56
54 690.10 1000 740 15.386 350.928 0.7963 0.0221 56
55 690.72 1000 740 15.386 350.928 0.7966 0.0221 56
56 690.77 1000 740 15.386 350.928 0.7967 0.0221 56
57 690.77 1000 740 15.386 350.928 0.7967 0.0221 56
58 722.93 1000 740 35.086 350.928 0.8292 0.0221 96
59 737.26 1000 740 25.302 350.928 0.8544 0.0221 96
60 738.29 1000 740 22.261 350.928 0.8565 0.0221 96
61 738.98 1000 740 22.791 350.928 0.8578 0.0221 96
62 739.43 1000 740 23.534 350.928 0.8587 0.0221 96
63 739.67 1000 740 23.332 350.928 0.8592 0.0221 96
64 739.97 1000 740 23.126 350.928 0.8599 0.0221 96
65 740.16 1000 740 22.994 350.928 0.8603 0.0221 96
66 740.36 1000 740 22.857 350.928 0.8607 0.0221 96
67 740.65 1000 740 22.925 350.928 0.8613 0.0221 96
68 740.70 1000 740 22.791 350.928 0.8614 0.0221 96
69 740.90 1000 740 22.586 350.928 0.8618 0.0221 96
70 741.05 1000 740 22.723 350.928 0.8621 0.0221 96
71 740.75 1000 740 22.522 350.928 0.8615 0.0221 96
72 741.19 1000 740 22.206 350.928 0.8624 0.0221 96
73 727.55 1000 740 27.043 350.928 0.8367 0.0221 96
74 737.11 1000 740 23.580 350.928 0.8541 0.0221 96
75 738.05 1000 740 22.564 350.928 0.8560 0.0221 96
76 738.69 1000 740 21.885 350.928 0.8572 0.0221 96
77 739.08 1000 740 21.618 350.928 0.8580 0.0221 96
78 739.53 1000 740 21.347 350.928 0.8589 0.0221 96
79 739.67 1000 740 21.142 350.928 0.8592 0.0221 96
80 740.02 1000 740 21.074 350.928 0.8600 0.0221 96
81 740.31 1000 740 20.869 350.928 0.8606 0.0221 96
82 740.51 1000 740 20.801 350.928 0.8610 0.0221 96
83 740.21 1000 740 20.733 350.928 0.8604 0.0221 96
84 740.31 1000 740 20.668 350.928 0.8606 0.0221 96
85 740.65 1000 740 20.602 350.928 0.8613 0.0221 96
86 740.70 1000 740 20.532 350.928 0.8614 0.0221 96
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rhoo rhow cvg Meas m.flow T Z M Opening
87 741.05 1000 740 20.465 350.928 0.8621 0.0221 96
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