
Ultra-low voltage embedded processor
system for Internet-of-Things
microcontrollers

Danton Canut Benemann

Embedded Computing Systems

Supervisor: Snorre Aunet, IET

Department of Electronics and Telecommunications

Submission date: July 2014

Norwegian University of Science and Technology

Title: Ultra-Low Voltage Embedded Processor
System for the Internet of Things Microcontrolers

Student: Danton Canut Benemann

Problem description:

It is predicted that billions of embedded devices will soon be connected to the internet.
End nodes will typically contain a microcontroller to collect, process, and interpret
sensory input data. Many of these will run from small batteries and may need to
harvest energy from the environment to achieve an acceptable battery lifetime. The
microcontroller typically includes a CPU, memories, buses, and peripherals. The
student should design the embedded processor system within the microcontroller.

The system should be able to run from a wide supply voltage range. The system
should be implemented in an low- voltage standard cell library using state-of-the-art
design techniques.

The system should support voltage scaling from the nominal voltage down to
the subthreshold voltage domain, allowing a wide tradeoff between performance
and power consumption. The student should analyze the system properties and
compare them to an identical system implemented using traditional libraries and
design techniques.

Responsible professor: Snorre Aunet, NTNU-IET
Supervisor: Frode Pedersen, ATMEL

Abstract

As devices get an ever increasing foothold on the internet and the
Internet of Things becomes the usual landscape in the mass consumer
electronic products is necessary to bring embedded processors capable of
bringing performance to the micro controllers of such devices. compares Is
the intention of this project to compare under different scenarios suitable
for the applications two embedded processors form Atmel’s one AVR 8-bit
and an AVR32 UC3 to identify which is the one that has the lowest power
consumption, lowest energy consumption. It has been shown that the
AVR has the less power consumption(about half) but in terms of energy
the AVR32 is less taxing. A test bench was implemented including SPI
communication modules and memories,This is due to the long execution
times of the AVR which are for 1.5 to 10 longer than the AVR32. These
conclusions scale when implementing on lower feature size (this project
uses UMC’s 130nm typical process library and UMC’s 65 typical process
library). Also the conclusion stand when restricting the standard library
such that an “Ultra low voltage” friendly net list is produced and tested
yielding similar results.

i

Preface

This Master Thesis was carried out as a part of the study program
European Masters in Embedded Computing Systems at Department
of Electronics and Telecommunications of the Norwegian University of
Science and Technology under the supervision of Prof. Snorre Aunet. The
work was done at the Atmel office in Trondheim under the supervision of
Frode Pedersen during period between January and July 2014.

iii

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

1 Introduction 1
1.1 Historical Perspective . 2

1.1.1 Internet of Things . 2
1.1.2 Related Work . 2

1.2 Asigment Interpretation . 3
1.3 Contributions . 3
1.4 Report Organization . 4

2 Background 5
2.1 Power . 5

2.1.1 Dynamic Power . 5
2.1.2 Static Power . 6
2.1.3 Dynamic Voltage Frequency Scaling (DVFS) and Voltage Islands 7
2.1.4 Near- Threshold Voltage (NTC) and Sub-Threshold Voltage

(STC) . 7
2.2 Heterogenous Computing . 8

2.2.1 8/16bit cores vs 32-bit cores 9

3 Implementation 11
3.1 Setup and Work Flow . 11

3.1.1 Hardware . 12
3.1.2 Software . 15

3.2 Synthesis . 17
3.2.1 Synthesis script . 17
3.2.2 Libraries . 18

3.3 Power and Energy Analysis . 19
3.3.1 Power . 19

v

3.3.2 Energy . 19

4 Results 21
4.1 Synthesis AVR and AVR32 . 21

4.1.1 Library variation . 21
4.1.2 Area Comparison . 22
4.1.3 Timing Achieved . 22

4.2 Power and Energy comparison between the AVR and AVR32 23
4.2.1 8-bit Math Test . 24
4.2.2 8-bit Switch Test . 27
4.2.3 16-bit Math Test . 30
4.2.4 16-bit Switch Test . 33
4.2.5 32-bit Math Test . 36
4.2.6 RAM Write Test . 39
4.2.7 Serial Peripherial Interface (SPI) Read and Wirte Test 42
4.2.8 Tranfer Control Protocol / Internet Protocol Checksum Com-

putation (TCP/IP Checksum Computation) Test 45
4.2.9 Summary . 48

5 Discussion 49
5.1 Synthesis . 49

5.1.1 Area . 49
5.1.2 Timing . 49

5.2 Power and Energy . 50
5.2.1 AVR vs AVR32 . 50
5.2.2 Core vs System . 51
5.2.3 NTV and STV . 51

5.3 Future Work . 51
5.3.1 Test Cases and Peripherals 51
5.3.2 Real STV, NTV and More Libraries 52
5.3.3 Tools and Testing Cores at the Same Time 52
5.3.4 Cores . 52

5.4 Conclusions . 52

References 53

vi

List of Figures

2.1 NMOS.[24] . 6
2.2 Energy per Operation and Delay vs Voltage.[11] 8
2.3 big.LITTLE system.[13] . 9
2.4 8-bit Central Procesing Unit (CPU) Comparison[16] 9
2.5 Atmel’s Product Range [6] . 10

3.1 AVR core (AVR) setup . 13
3.2 AVR32 UC core (AVR32) setup . 14

4.1 Area footprint . 23
4.2 Power Graphs for the 8-bit Math Test 24
4.3 Energy Graphs for the 8-bit Math Test 24
4.4 Power Density Graphs for the 8-bit Math Test 24
4.5 CPU % Power Graphs for the 8-bit Math Test 24
4.6 Power Graphs for the 8-bit Switch Test 27
4.7 Energy Graphs for the 8-bit Switch Test 27
4.8 Power Density Graphs for the 8-bit Switch Test 27
4.9 CPU % Power Graphs for the 8-bit Switch Test 27
4.10 Power Graphs for the 16-bit Math Test 30
4.11 Energy Graphs for the 16-bit Math Test 30
4.12 Power Density Graphs for the 16-bit Math Test 30
4.13 CPU % Power Graphs for the 16-bit Math Test 30
4.14 Power Graphs for the 16-bit Switch Test 33
4.15 Energy Graphs for the 16-bit Switch Test 33
4.16 Power Density Graphs for the 16-bit Switch Test 33
4.17 CPU % Power Graphs for the 16-bit Switch Test 33
4.18 Power Graphs for the 32-bit Math Test 36
4.19 Energy Graphs for the 32-bit Math Test 36
4.20 Power Density Graphs for the 32-bit Math Test 36
4.21 CPU % Power Graphs for the 32-bit Math Test 36
4.22 Power Graphs for the RAM Test . 39
4.23 Energy Graphs for the RAM Test . 39

vii

4.24 Power Density Graphs for the RAM Test 39
4.25 CPU % Power Graphs for the RAM Test 39
4.26 Power Graphs for the SPI Test . 42
4.27 Energy Graphs for the SPI Test . 42
4.28 Power Density Graphs for the SPI Test 42
4.29 CPU % Power Graphs for the SPI Test 42
4.30 Power Graphs for the TCP/IP Checksum Test 45
4.31 Energy Graphs for the TCP/IP Checksum Test 45
4.32 Power Density Graphs for the TCP/IP Checksum Test 45
4.33 CPU % Power Graphs for the TCP/IP Checksum Test 45

viii

List of Tables

3.1 Address Map . 15

4.1 Area vs targeted time . 22
4.2 Timing Achieved for each net-list . 23
4.3 Power Comparisons 8-bit Math Test . 25
4.4 Energy Comparisons 8-bit Math Test . 25
4.5 8-bit Math Energy Estimation for Near-Threshold Voltage (NTV) and

Sub-Threshold Voltage (STV) . 26
4.6 Power Comparisons 8-bit Switch Test 28
4.7 Energy Comparisons 8-bit Switch Test 28
4.8 8-bit Switch Energy Estimation for NTV and STV 29
4.9 Power Comparisons 16-bit Math Test 31
4.10 Energy Comparisons 16-bit Math Test 31
4.11 16-bit Math Energy Estimation for NTV and STV 32
4.12 Power Comparisons 16-bit Switch Test 34
4.13 Energy Comparisons 16-bit Switch Test 34
4.14 16-bit Switch Energy Estimation for NTV and STV 35
4.15 Power Comparisons 32-bit Math Test 37
4.16 Energy Comparisons 32-bit Math Test 37
4.17 32-bit Math Energy Estimation for NTV and STV 38
4.18 Power Comparisons RAM Test . 40
4.19 Energy Comparisons RAM Test . 40
4.20 RAM Energy Estimation for NTV and STV 41
4.21 Power Comparisons SPI Test . 43
4.22 Energy Comparisons SPI Test . 43
4.23 SPI Energy Estimation for NTV and STV 44
4.24 Power Comparisons TCP/IP Checksum Test 46
4.25 Energy Comparisons TCP/IP Checksum Test 46
4.26 TCP/IP Checksum Energy Estimation for NTV and STV 47

ix

List of Acronyms

Vdd suplply voltage.

Vth threshold voltage.

AHB Advance High Performance Bus.

AMBA Advance Microcontroller Bus Architecture.

APB Advance Peripherial Bus.

ARM Advance Risc Machine.

AVR AVR core.

AVR bus AVR Bus System.

AVR32 AVR32 UC core.

CMOS Complematry Metal Oxide Semiconductor.

CPU Central Procesing Unit.

DSP Digital Signal Processor.

DVE Discovery Visualization Enviroment.

DVFS Dynamic Voltage Frequency Scaling.

GPIO General Purpose Input Output.

HDL Hardware Description Language.

I/O Input/ Output.

IoT Internet of Things.

xi

nMOS n-channel Metal Oxide Semiconductor.

NTNU Norwegian University of Science and Technology.

NTV Near-Threshold Voltage.

pMOS p-channel Metal Oxide Semiconductor.

RISC Reduced Instruction Set Computer.

RTL Register Transfer Level.

SAIF file Switching Activity Interchange File.

SoC System on Chip.

SPI Serial Peripherial Interface.

STV Sub-Threshold Voltage.

TCP Transfer Control Protocol.

TCP/IP Checksum Computation Tranfer Control Protocol / Internet Protocol
Checksum Computation.

VCD file IEEE standard waveform database dumpfile.

VCS Verilog Compiler Simulator.

VPD file Synopsys waveform database dumpfile.

xii

Chapter1Introduction

In today’s world the number of devices featuring features enabled by embedded
systems is increasing. At the core of these devices there is a System on Chip (SoC)
consisting of at least a CPU a General Purpose Input Output (GPIO), a memory
and a bus connecting all. From the user /environment perspective the goal of these
SoC is to react to stimulus on the GPIO. In a well implemented system the reaction
to the stimuli is a appropriate according to a program stored in the memory ran by
the CPU. The human machine interfaces for the majority of this systems are very
limited or non existent. But these machines are the cornerstone of modern consumer
products which features have become standard of living in modern industrialized
societies.

At the same time there is a huge pressure towards have higher integration between
devices by means of sharing data, collaborating to solve tasks, accessing remote
peripherals, producing data, etc. All of that will enable the implementation of
interesting and useful features such as load balancing in an electric grid by timing
when and where electric consumers can get online and how much power it can be
drawn form there. For this to happen SoC besides the CPU, memory GPIO and bus
it must contain at least one communication module that enables it to communicate
with other devices. And the vast majority of this embedded systems will have limited
access to electrical power.

Since the set of tasks that is expected to be performed by the embedded systems
varies a lot depending on the application one might be tempted to think that different
CPUs will perform better than others performing certain tasks. Parallel to that it
is known that the amount of power used by any electronic device is proportional
to the squared of the voltage. The juxtaposition of the previous two statements
mean that in order to implement an efficient device whose energy consumption is as
low as possible -so it can be operated with a constrained power budget like a small
battery or by harvesting energy- It is necessary to study different CPUs performing
the same tasks. It is also necessary to watch the effect that the use of different

1

2 1. INTRODUCTION

implementations of different on the energy consumption. The goal of this thesis to
observe the energy consumption in an 8-bit implementation of Atmel’s popular AVR
core and in a 32-bit AVR32 and to quantify the impact different process technology
and reduced library more suitable to a ultra low voltage library.

1.1 Historical Perspective

1.1.1 Internet of Things

In 1999 Kevin Ashton was the first person to use the term Internet of Things (IoT) [2]
during a presentation for Procter & Gamble identifying the potential of integrating
the RFID technology in the supply chain to gather data and the internet. He points
out that most of the information available on the internet has been either been
input by a human or triggered by a human action. The accuracy, consistency and
flow of this data then is dependent of human accuracy, consistency and latency.
Thanks to RFID technology and similar technologies data can be automatically be
uploaded to the internet with the accuracy, consistency and latency of machines. Is
also Ashton’s view that this automatic data gathering capabilities and easy access
thru the internet will empower machines to reduce waste, increase efficiency and
alert when maintenance task should be performed.

Meanwhile in 2004 an article published on Scientific American [21] made the
analogy of the segmentation of different communication protocols for devices to
comunicate such as ZigBee, Bluetooth, etc. to the Arpanet and other Internet
predecessors in the 1960’s and makes a very good case why devices should use the
same internet standards to exchange information. Among the main advantages
identified by the article are packet switched networks, unique addressing for each
nodes

1.1.2 Related Work

This work builds on the idea to use the AVR as a coprocessor for the AVR32 exposed
in the master thesis of M Sc. Yahsir Mahmood[20]. It is also used a modified version
of his test bench for benchmarking the AVR32. On his thesis M. Sc Mahmood goes
thru the process of designing an energy efficient AVR Bus System (AVR bus) to
Advance Peripherial Bus (APB) needed to access the peripherals with the AVR and
the AVR32[20]. In this work however instead of using the AVR bus to APB bridge
an AVR bus to Advance High Performance Bus (AHB) bridge is used as it enables
the AVR to access the same high performance RAM as the AVR32 and puts the
AVR on the same heretical level as AVR32.

1.2. ASIGMENT INTERPRETATION 3

1.2 Asigment Interpretation

The following tasks were proposed and executed to address the problem:

Task 1: Set up a test bench that connects RAM, SPI communication modules and
other periferials via an AMBA AHB lite bus with a CPU.

Task 2: Test access to memory and peripherals connected in task 1 using an AVR
and an AVR32 and confirm it function correctly.

Task 3: Choose a set of test programs to benchmark that perform tasks of a simple
but representative IoT application.

Task 4: Synthesize the set-ups used for task 2 in different feature sizes and with
different constraints.

Task 5: Perform power analysis on the results of task 4 running the test programs
established on task 3.

Task 6: Compute the energy used to perform each test program under each net-lists.

Upon completion of these tasks data the following objectives are achieved:

Objective 1: Identify the effect on power and energy consumption that constraining
the standard cells that the synthesis tool can use under different scenarios.

Objective 2: Identify which scenarios favor the architecture of the AVR32 and
which favor the aAVR.

Objective 3: Test if the conclusions from objective 2 stands if feature size is changed.

Objective 4: Extrapolate the energy and power figures if implemented on an ultra
low voltage library.

1.3 Contributions

A test bench that accepts any core that interfaces thru AHB bus. Eight different test
relevant to the IoT scenario to better understand the power, energy consumption of
the AVR and AVR32. A comparison consisting of 640 experiments where libraries
and timing contains and feature size core and application were varied to monitor the
power and energy consumption and an estimate of what to expect when moving to
the STV and NTV domains.

4 1. INTRODUCTION

1.4 Report Organization

This report is organized as:

Chapter 1: Introduction Introduces the master thesis, provides some historical
perspective, states how the problem was interpreted, how it was approached,
summarizes the contributions of the thesis and shows how the report is orga-
nized.

Chapter 2: Background Provides the theoretical background on the components
of power on a Complematry Metal Oxide Semiconductor (CMOS) circuit,
examines some techniques to save power while paying performance penalty
such as Dynamic Voltage Frequency Scaling (DVFS) and voltage islands and
explains the potentials saving that can be achived by reducing the voltage
near and below the threshold region. Also comments on the advantage of
heterogenous computing and shows two commercial examples.

Chapter 3: Implementation Describe the work flow that was followed, the com-
ponents that were used, how were used, the tests that were performed and how
they were performed the tools that were used for testing.

Chapter 4: Results Shows the result obtained by the methodology proposed.
Address each test and extracts and directs attention to interesting facts derived
from the results .

Chapter 5: Discussion Analyzes the results and provides some explanations .

Chapter2Background

2.1 Power

There are two sources of power dissipation by a CMOS circuit [22]

Ptotal = Pdynamic + Pstatic (2.1)

2.1.1 Dynamic Power

Dynamic power is consumed when changing the logic level the inputs of a gate, this
causes the n-channel Metal Oxide Semiconductor (nMOS) and p-channel Metal Oxide
Semiconductor (pMOS) transistors to switch. From figure it is appreciated that any
switching activity will cause that the pMOS and the nMOS transistors are in the
conducting state at the same time causing a short circuit current to flow between
suplply voltage (Vdd) and GND. At the same time the effective load capacitance is
discharged or charged causing further power consumption. [22]

Pdynamic = Pswitching + Pshort circuit (2.2)

It is possible to express:

Pshort circuit = Ishort circuitVDD (2.3)

Where Pshort circuit is the average short-circuit power, Ishort circuit is the average
short-circuit current.

For quantifying the power dissipated by the switching activity we need to know
two quantities the effective capacitance driven by the gate and how often this capacity
(switching frequency) is charge/discharge.The effective capacitance is dependent of
the gate, interconnect and the load. The switching frequency is dependent of the
logic and clock frequency. After some mathematics and analysis of the circuit is
possible to express the average swtiching power as: [22]

Pswtiching = αCV 2
DD f (2.4)

5

6 2. BACKGROUND

Where Pswtiching is the average swtiching power, α is the activity factor that
expresses in terms of the clock frequency the charging/ discharging, C is the effective
capacitance and f is the clock frequency.

2.1.2 Static Power

Figure 2.1: NMOS.[24]

Static power for CMOS has three main contributors. Subthreshold leakage, gate
leakage drain and source diffusion leakage.[22]

Pstatic = (Isub + Igate + Ijunct)VDD (2.5)

Figure 2.1 shows the junction of semiconductor materials that form an pMOS
transistor. Thru these junctions and thanks to minority carriers there is a leakage
current. The gate leakage can be reduced by substituting the silicon dioxide with high
dielectric materials between the gate and the semiconductor substrate.[12] Leakage
of the junctions can be reduced by doping [1]and voltage on the body[8].

When operating on the subthreshold region the MOS transistor then can be
modeled as bipolar transistor as shown by Figure bla the and equation 2.6 describes
the behavior of the current flowing from drain to source.[22]

Isub = Ids0e
Vgs−Vt0+ηVds−κγVsb

nvT

(
1 − e

−Vds
vT

)
(2.6)

Where Ids0 is the current at threshold it is dependent of process and geometry, Vgs is
the voltage between the gate and source, Vt0 threshold voltage when Vsource = Vbody,
η DIBL coefficient, Vds voltage between drain and source, κγ body effect (geometry,
dielectric, surface potential, etc), Vsb Voltage between source and body, vT Termal
voltage. [22]

2.1. POWER 7

From equations 2.5 and 2.3 have a linear dependency to VDD, but is worth noticing
that Isub is exponentialy dependant of Vds at the same time equation 2.4 shows a
quadratic dependency to VDD. Then it is shown that lowering the operating voltage is
a way to save power. Nevertheless reducing the voltage can degrade the performance
as it reduces de current that goes from drain to source and with that the time that
is required to drive the loads increasing delays.

2.1.3 Dynamic Voltage Frequency Scaling (DVFS) and Voltage
Islands

DVFS scaling is a technique used to save power. It reduces de voltage and frequency
when the work load is low (meaning the timing constrains are more relaxed) and
increases the voltage and frequency when the work load is high (meaning the timing
contains are tighter). For achieving an energy efficient implementation it is required
that voltage/ frequency regulator is an efficient one, the granularity of the voltage
and frequency to choose from allow to adapt at any processor workload. The main
goal is to consume less energy, this means that the power savings for a task must be
greater than the time increase for the same task.[7]

It is possible to have different voltages on a SoC this technique is known as
voltage islands. Each island operates on a different voltage level .This technique
allows blocks to be grouped together on an island where the voltage presents the
right compromise between the power savings and performance degradation. It does
not require the regulation overhead that DVFS and it is not aware of the workload
situation. [14]

2.1.4 Near- Threshold Voltage (NTC) and Sub-Threshold
Voltage (STC)

As stated in the previously, reducing the voltage dramatically reduce the power
consumed. Figure 2.2 shows the relationship between the energy spent for operation,
the delay and the supply voltage. More energy is saved from the transition from
super-thresholdvoltage to NTV than form NTV to STV this is due to the increase
in leakage that is observed when Vdd < threshold voltage (Vth). The same figure
also shows an exponential growth on the delay in the STV region. It is of particular
interest the existence of a minimum on the energy per operation curve that indicates
there is a voltage in the sub-threshold region that is optimum form the energy
perspective but comes at the cost of increased delay. [11]

8 2. BACKGROUND

Figure 2.2: Energy per Operation and Delay vs Voltage.[11]

2.2 Heterogenous Computing

Kummar et al. have shown that higher energy efficiency can be achieved on a SoC
by using heterogenous cores.[17] By definition an heterogenous core system is a
multi-core system made up by different cores. There are difference in terms of energy
efficiency, performance, power consumption and capabilities between different cores.
There are energy efficient cores that are suitable for simple operations and high
performance cores capable of performing complex task but the power consumption is
high. Having both on the same SoC allow to have the best of both worlds.

Industry have taken notice of this and there are examples of heterogenous muli-
cores that feature an energy efficient core and a high performance core being deployed
such as:

Advance Risc Machine (ARM) exploits the energy efficiency of the Cortex- A7
core (LITTLE) and the high performance of the Cortex- A15 (big) in its big.LITTLE
architecture shown on Figure 2.3. ARM is quick to notice that despite labeling the
Cortex-A7 as LITTLE it features micro-architecture advances that culminates on
performance than implementations of the Cortex-A8 at a fraction of the power.[13]

NVIDIA uses a power optimized Cortex A9 core(companion core) and four
performance optimized Cortex A9 cores (main cores) in its Tegra 3 formerly known
as Kal-El. The companion core is limited to 500MHz [23]

2.2. HETEROGENOUS COMPUTING 9

Figure 2.3: big.LITTLE system.[13]

2.2.1 8/16bit cores vs 32-bit cores

Since the smbedded systems environment is diverse, system performance is difficult to
define. Some applications require realtime guarantees, others require high precision
and/or fast measurement peripherals, others have very limited energy/power contains
and finally there are the ones that require lots of computing power.[16] Figure 2.4a
shows the benchmark obtained after running the code on Figure 4.2b. It is shown that
the AVR is a good candidate to be considered for be a LITTLE like co- processor. For
an heterogenous system. 8/16 bit processors have the problem that they not support

(a) Code Size and Execution

(b) Sample Code

Figure 2.4: 8-bit CPU Comparison[16]

large memory space since the mayority of them feature only 16.bit address bus. This
an other limitations have open the door for 32-bit cores that might be not the right
solution due its increase complexity, Nevertheless there are application areas that
require some of the extra performance offered by the 32-bit alternative for a small part

10 2. BACKGROUND

of the application providing further motivation for an heterogenous architecture.[16]
Figure 2.5 Shows Atmel’s portfolio for 8-bit and 32-bit micro controllers.

Figure 2.5: Atmel’s Product Range [6]

Chapter3Implementation

This chapter is divided in three sections. Setup and Work Flow covers the hardware
and test cases used for this project. Synthesis explains how the synthesis was
performed and declares the libraries used to produce the net-lists on which the power
analysis was performed. And the power analysis section go thru the generation of the
reports and data gathering and manipulation. Data that is presented in Chapter 4

3.1 Setup and Work Flow

This section is divided into two main parts. The first part describes the hardware
used and the second describes the software used. It is very important to note that
there is no silicon used for this project.

The basic work flow is as follows:

Step 1: The hardware is defined at the RTL label and a test program is prepared.

Step 2: Synopsys’ Verilog Compiler Simulator (VCS) to produce a Synopsys wave-
form database dumpfile (VPD file).

Step 3: Verify the correct functionality using Discovery Visualization Enviroment
(DVE).

Step 4: Test case is prepared on C or asm and compile them with AVR-toolchain
or AVR32-toolchain (depending on the targeted processor) to produce the
executable.

Step 5: Use executable, VCS, and DVE to check function, start and end times of
the program or interesting subroutine.

Step 6: Use Synopsys’ design complier and synthesis script to produce the appro-
priate net-list and save the it for future usage.

11

12 3. IMPLEMENTATION

Step 7: Transform the VPD file into a IEEE standard waveform database dumpfile
(VCD file) and this into a Switching Activity Interchange File (SAIF file) for
this last transformation the tool requires the start and end time of interest.

Step 8: Use Synopsys’ design compiler and power analysis script with the net-list
generated on step 6 and the SAIF file on the step 7

Step 9: Extract and analyze the data outputted on the power report generated on
step 8.

3.1.1 Hardware

In order to be able to compare the energy consumption of the AVR32 and the AVR
they must be tested under the same circumstances. Figure 3.2 and 3.1 show the test
environments for both processors. As it is shown the test environments are as similar
as it can be. The only mayor difference is that the AVR setup includes a bridge AVR
bus to AHB. This bridge is not necessary for the AVR32 since it has native interface
for AHB.

3.1.1.1 AVR32 UC core

The AVR32 is a Super Harvard architecture 32-bit processor that features a compact
Reduced Instruction Set Computer (RISC) instruction set including Digital Signal
Processor (DSP) instructions fully orthogonal. This processor has two AHB interfaces
one for the program memory and other for data and peripheral communication, RAM
interface, 15 32-bit wide general purpose registers 32-bit wide stack pointer, program
counter and link register. It is a 3- stage pipeline processor allowing one instruction
per clock cycle for most instructions.[5]

3.1.1.2 AVR core

The AVR is a Harvard architecture 8-bit RISC processor. It has 32 registers 8-bits
wide, The last six is are concatenated in pairs to form a 16-bit wide pointers to
address the data space. Since it is a Harvard architecture the program memory and
the data memory are not only physically separated but they have separate address
spaces, separate data and address lines and the data memory is accessed by using
the same instructions as the Input/ Output (I/O). [4]

The AVR data bus is synchronous based on master/ slave scene and has 16-bit
for addresses, 8-bit for data form the master, 8-bits for data from the slave, write,
read, wait, single bus cycle and burst signals. This bus allow single access operation,
this means that on the same clock cycle the master puts the address on the address
lines and either send data or receives it and is ready for another operation on the
next clock cycle if there is no wait signal form the slave.[3]

3.1. SETUP AND WORK FLOW 13

Figure 3.1: AVR setup

3.1.1.3 Advance High Performance Bus

AHB is a multi master bus protocol part of the Advance Microcontroller Bus Archi-
tecture (AMBA) family of open protocols for on-chip communications created by
ARM. AHB is the high performance bus that supports high clock frequency. It is a
pipelined bus that uses the master/ slave scheme which means the master on the
first clock cycle put the address and the appropriate control signals and the next
clock cycle it expects a reply form the slave (transfer complete, error, wait state or
split transaction) and puts the next address on the bus. [18]

For the scope of this project it is used the single master AHB lite standard which
is a simpler implementation[19] and the bridge implemented is constrained to simple

14 3. IMPLEMENTATION

Figure 3.2: AVR32 setup

write 1 and simple read that allow the slaves to add wait states.

3.1.1.4 Top and Test bench

Figure 3.2 and Figure 3.1 shows what is instantiated at the top level and how it
interfaces with the test bench. The top-level include the processor core (AVR or
AVR32) AHB, APB busses -in the case of the AVR the AHB to AVR bus- two SPI
modules a timer, two memory modules. The test bench has the clock generator,
RAMs, program memory and the program memory loader that takes the .hex file
and loads the memory with it.

1Due the mismatch between the 32-bit wide data bus from the AHB and the 8-bit wide data
bus from the AVR bus all write operations are a read/ modify operations

3.1. SETUP AND WORK FLOW 15

Peripherial Base Address
AHB RAM 0x00000000
APB RAM 0xFFFF0000

Timer 0xFFFF2000
SPI 1 0xFFFF3000
SPI 2 0xFFFF4000
Mem 1 0xFFFF0000
Mem 2 0xFFFF0000

Table 3.1: Address Map

Table 3.1 shows the peripherals with it is corresponding Base Address.

3.1.2 Software

This section explains what the each test do. All this were written in C (except for
the case of the SPI for the AVR which was written in assembly) and complied by
the AVR toolchain and AVR32 toolchain to produce the executable code needed by
the processors.

All the test were proposed thinking on an IoT scenario were a micro controller
gets data from a sensor via a communication peripheral (SPI was chosen due its
simplicity and huge popularity), the communication is bidirectional -the data streams
are simulated by the test bench- performs some arithmetic manipulation (addition
correcting systematic error and multiplication for sensitivity error correction), testing
this value against a parameter and use Transfer Control Protocol (TCP) to connect
to the internet. Due to board range of applications for the arithmetic manipulation
three tests were proposed -8, 16, and 32 bit- and due to the unknown amount of cases
to be handled two tests were proposed -8 and 16 bit-. The TCP is a complex protocol
and with the support given by media access hardware undefined it is difficult to
specify what to test. The computing the check sum of a TCP packet was chosen due
to its importance when determining data integrity and assuming simple hardware
that implements complete functionality for layers 1 to 3 of the OSI model.

3.1.2.1 8-bit Math Test

This test in its main defines two 8-bit operands and calls a function that adds and a
function that multiplies. It takes 4340ns for the AVR and 1220ns for the AVR32 to
finish.

16 3. IMPLEMENTATION

3.1.2.2 8-bit Switch Test

This test in its main defines a 8-bit operand and calls a function that selects the case
and returns a 8-bit value to the main. It takes 1700ns for the AVR and 980ns for the
AVR32 to finish.

3.1.2.3 16-bit Math Test

This test in its main defines two 16-bit operands and calls a function that adds and
a function that multiplies. It takes 5680ns for the AVR and 1340ns for the AVR32
to finish.

3.1.2.4 16-bit Switch Test

This test in its main defines a 16-bit operand and calls a function that selects the
case and returns a 16-bit value to the main. It takes 2120ns for the AVR and 980ns
for the AVR32 to finish.

3.1.2.5 32-bit Math Test

This test in its main defines two 32-bit operands and calls a function that adds and
a function that multiplies. It takes 10720ns for the AVR and 1160ns for the AVR32
to finish.

3.1.2.6 RAM Write Test

This test in its main performs 100 RAM writes. It takes 30340ns for the AVR and
6640ns for the AVR32 to finish.

3.1.2.7 SPI Read and Wirte Test

This test its main sets up SPI 1, SPI 2, then performs 10 times a SPI read on SPI 1,
a multiplication, 8-bit shift and a write on SPI 2. The program for the AVR first
configures the bridge to access the I/O space and then proceeds to do the same as
the program for the AVR32 and after that it configures back the bridge to address
the memory space. It takes 18820ns for the AVR and 8560ns for the AVR32 to finish.

3.1.2.8 TCP/IP Checksum Computation Test

This test in its main computes the check sum field of a 120 byte TCP frame. which
is a set of 16-bit sum, shift and byte swap operations. It takes 37220ns for the AVR
and 7900ns for the AVR32 to finish.

3.2. SYNTHESIS 17

3.2 Synthesis

The goal of the synthesis is to translate the Register Transfer Level (RTL) code to a
net-list of interconnected logic gates chosen from a library.

The synthesis is done by the Synopsys’ design compiler following the instructions
and contains stated by the synthesis scripts.

Performing the synthesis is paramount for this project. Changes done on the
constrains and library selection produced the variation in results that will be presented
on Chapter 4 and discussed on Chapter 5. To produce a net-list a library is chosen, a
clock period is targeted and a maximum area is defined. For all cases the maximum
area set to zero knowing it will be impossible to the tool to achieve this but will force
the tool to get the smallest possible, the tool is also instructed to do its best effort.
Per each library used ten clock periods were targeted, form 1ns to 10ns with a step
of one nano second. Aditionaly the tool is intructed to keep the hierarchy -this is
don e so the power analisys is heriarchial as well-

3.2.1 Synthesis script

The script commands the tool to do:

Step 1: Analyze.

Step 2: Elaborate.

Step 3: Link.

Step 4: Load the library with the standard cells.

Step 5: Load the constrains (area, timing, wire model).

Step 6: Compile the design (clock gating is performed at this stage).

Step 7: Write net-lists.

The set of steps defined before will produce a net list that would be used on
power and energy analysis described later this chapter. Ideally for this project a STV
or NTV library should be used for this project but no such library was available so a
super threshold voltage library was restricted to simulate the restriction in terms of
gates that are present in a subthreshold voltage libraries.

The synthesis tool produces the following reports:

18 3. IMPLEMENTATION

Area: Reports the area taken bay the combinational logic, non combinational and
sequential and the hierarchical distribution.

Clock Gating: Shows the elements that are clock gated with its inputs, outputs
and related registers. Presents the elements that were not able to be clock
gated and the violation that will ocur if gated. It also displays a summary
with the number of clock gating elements, the number of registers gated, the
number of registers ungated.

Resources: Reports on the resources shared by the modules, the implementations
and the multiplexors added.

Power: Presents a power consumption estimate.

Timing: Shows critical paths, different points on the path and the time it takes
from point to point. Gives a summary on the required data time and the arrival
of that data and computes the slack.

References: Reports the cells that were used, library of origin, area per cell number
of cells used and the total area that type of cell takes on the design

All Violators: Reports on the modules that violate the timing and the area con-
strictions and by how much it is missed.

3.2.2 Libraries

Two base libraries were used to produce the net-list used in this thesis. UMC’s
130nm FSC0H_D generic core and UMC’s 65nm FSE0K_D generic core. To see
the effect of feature size on energy consumption. For the understanding the effects
of a 130nm low voltage library two the cells available for the synthesis tool in two
different stages. Both of this libraries are super-threshold voltage. There was no
sub-threshold voltage nor near-treshold voltage available.

3.2.2.1 UMC′s FSC0H_D Generic Core

No restrictions

This is a high performance 130nm library that provide support arithmetic cells
for data-path design. The corner used was typical process 1.2 V at 25oC with a gate
density of 250000 gates per mm2 featuring a drawn gate length of 0.12µm with a
power consumption of 6nW/MHz/gate[9].

Restricted (ltd)

3.3. POWER AND ENERGY ANALYSIS 19

For these synthesis the tool was not allowed to use any gate with more inputs
than two and the maximum outputs is two as well. This is the most restricted the
library can get.

Restricted (ltd2)

For these synthesis the tool was allowed to use the same gates as the (ltd) case
plus gates with a fan-in and fan-out of three.

3.2.2.2 UMC′s FSE0K_D Generic Core

This is a low leakage 65nm library that provide support arithmetic cells for data-path
design. The corner used was typical process 1.2 V at 25oC with a gate density
of 900000 gates per mm2 featuring a drawn gate length of 0.06µm with a power
consumption of 1.9nW/MHz/gate[10].

3.3 Power and Energy Analysis

3.3.1 Power

Before doing the power analysis two things have to be ready. A net list produced by
the synthesis tool and a SAIF file that contains the switching activity caused by a
test program. For the power analysis again Synopsys’ design complier is used with a
report power script. The power script first it loads the library data base, it is very
important to use the same library used during the synthesis. Then it reads the SAIF
file and reports the power used by each component of the top level and the total
power.

3.3.2 Energy

The energy is obtained by multiplying the power (average power) results obtained by
the report of the power analysis and multiply it by the time spent on the task (the
time difference between the end time and start time used for generating the SAIF file)
both the energy and power results are only valid for the test case being studied on
the net list tested, since at its core it was generated with the switching activity the
program caused. For purposose of this thesis the effects described on Section 2.1.4will
be estimated a black box and the results descriibed shown by Figure 2.2 apply directly
system wide. By using the (3.1) the total energy consumption is estimated where
∆ energy consumption factor expresed as the ratio of the energy consumed when
changing form the super-threshold voltage to the NTV or STV this wil yield to Etotal
being the energy consumed by the system under the NTV or STV conditions.

Etotal = ∆Etotal Super (3.1)

20 3. IMPLEMENTATION

Based on Johnsen preliminary results[15] for the design of the Full-Custom
SubNear-Threshold Cell Library in 130nm CMOS the values used for the STV case
(350mV) ∆ = 0.072 and for the NTV case (400mV) ∆ = 0.094. Only the result
produced by netlist wiht a target clock period of 10ns will be used for the estimation.
The net-list 130nmltd will be used for NTV and STV and the 130ltd2 ones for NTV.

Chapter4Results

In this section the results of the synthesis process with the different restrictions and
the power analysis data will be presented in graph.

4.1 Synthesis AVR and AVR32

Ten different clock periods were targeted to produce ten net lists for each core
set-up (AVR or AVR32) and library (UMC’s FSC0H_D Generic Core -130nm-,
UMC’s FSC0H_D Generic Core Restricted -130nmltd-,UMC’s FSC0H_D Generic
Core Restricted -130nmltd2- or UMC’s FSE0K_D Generic Core) a total of 80 net
lists-65nm-.

4.1.1 Library variation

4.1.1.1 UMC’s FSC0H_D Generic Core Unrestricted (130nm)

This is the base case. Against the results obtained by this set of net lists comparisons
will be made since all the available cells are used and power optimization technique
clock gating was done successfully.

4.1.1.2 UMC’s FSC0H_D Generic Core Restricted (130nmltd)

This case is the best substitute candidate for a subthreshold voltage since all the
gates with fan-ins and fan-outs larger than two were restricted.The clock gating cells
were restricted so no clock gating was not performed. This case also takes the largest
surface on the wafer.

4.1.1.3 UMC’s FSC0H_D Generic Core Restricted (130nmltd2)

This case is the best substitute candidate for a STV since all the gates with fan-ins
and fan-outs larger than three were restricted.The clock gating cells were restricted

21

22 4. RESULTS

so no clock gating was not performed. This case also takes the largest surface on the
wafer.

4.1.1.4 UMC’s FSE0K_D Generic Core (65nm)

This case give us information on how power, area and timing scales for the super-
threshold operation it is important as a reference point to observe the effect that
feature size has on power and energy. This case also takes the smallest surface on
the wafer.

4.1.2 Area Comparison

Figure 4.1 shows that for every case and every core restricting the clock period below
certain point causes the area to increase -around 4 ns for the AVR32 and around
3 ns AVR. Table 4.1 show some interesting comparisons that help us to watch the
effects of the library constriction and core selection.

Target 130nm 130nmltd 130nmltd2 65nm
(ns/µm2) AVR AVR32 AVR AVR32 AVR AVR32 AVR AVR32
1 160634. 347241. 316990. 714925. 301690. 675180. 41094.4 99675.8
2 147715. 343153. 313741. 716474. 295957. 677208. 38298.6 92870.7
3 143369. 336020. 296455. 697892. 283271. 655172. 33063. 73243.8
4 130395. 284294. 285102. 636489. 273185. 609820. 30820.8 65494.4
5 125878. 269527. 280718. 625014. 270459. 598123. 30456.6 63887.7
6 124987. 266066. 280163. 619191. 269422. 596939. 30056 62560.3
7 124535. 264314. 279270. 614902. 269146. 587792. 29964.8 61721.6
8 124333. 260168. 279156. 608965. 268594. 587566. 29899.8 61392.3
9 124255. 256329. 279073. 607360. 268558. 582834 29817.9 61009.3
10 124250. 255328 279068. 607254. 268501. 581165. 29815.4 60802.2

Table 4.1: Area vs targeted time

4.1.3 Timing Achieved

Table 4.2 shows that for every case and every core restricting the clock period below
certain point causes the synthesis tool to fail to achieve the timing goal -around 4 ns
for the AVR32 and around 3 ns AVR and there is minimum clock period achieved
-around 3.1 ns for the AVR32 and 2 ns for the AVR using 130nm feature size-. For
the 65nm library the minimum clock period is smaller -around 1.7 ns AVR and 2.4
ns for the AVR32-.

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 23

Figure 4.1: Area footprint

Target 130nm 130nmltd 130nmltd2 65nm
(ns) AVR AVR32 AVR AVR32 AVR AVR32 AVR AVR32
1 2.07 3.09 1.94 3.1 2.01 3.09 1.74 2.38
2 2.57 3.04 2.47 3.07 2.44 3.08 2.18 2.46
3 3.06 3.19 3.03 3.18 3 3.24 3.08 3.08
4 4.07 4.07 4 4 4 4 4.08 4.08
5 5.07 5.07 5 5 5 5 5.08 5.08
6 6.07 6.07 6 6 6 6 6.08 6.08
7 7.07 7.07 7 7 7 7 7.08 7.08
8 8.07 8.07 8 8 8 8 8.08 8.08
9 9.07 9.07 9 9 9 9 9.08 9.08
10 10.07 10.07 10 10 10 10 10.08 10.08

Table 4.2: Timing Achieved for each net-list

4.2 Power and Energy comparison between the AVR and
AVR32

24 4. RESULTS

4.2.1 8-bit Math Test

4.2.1.1 Super Threshold Voltage

(a) (b)

Figure 4.2: Power Graphs for the 8-bit Math Test

(a) (b)

Figure 4.3: Energy Graphs for the 8-bit Math Test

Figure 4.4: Power Density Graphs for
the 8-bit Math Test

Figure 4.5: CPU % Power Graphs for
the 8-bit Math Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 25

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.83 1.58 1.65 3.38 2.68 2.87(AVR32
AVR)130nmltd 1.84 1.66 1.71 3.32 2.79 2.93(AVR32
AVR)130nmltd2 1.85 1.61 1.69 3.28 2.59 2.8(AVR32
AVR)65nm 1.81 1.51 1.59 3.23 2.44 2.63(AVR32ltd
AVR32)130nm 1.11 1.05 1.1 1.18 1.09 1.15(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.13 1.07 1.1(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.4 0.32 0.36(AVRltd
AVR)130nm 1.08 1.04 1.06 1.16 1.1 1.12(AVRltd2
AVR)130nm 1.05 1.01 1.04 1.16 1.01 1.13(AVR65

AVR130)nm 0.41 0.4 0.4 0.41 0.38 0.39

Table 4.3: Power Comparisons 8-bit Math Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.51 0.44 0.46 0.95 0.75 0.81(AVR32
AVR)130nmltd 0.52 0.47 0.48 0.93 0.78 0.82(AVR32
AVR)130nmltd2 0.52 0.45 0.47 0.92 0.73 0.79(AVR32
AVR)65nm 0.51 0.43 0.45 0.91 0.69 0.74(AVR32ltd
AVR32)130nm 1.11 1.05 1.1 1.18 1.09 1.15(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.13 1.07 1.1(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.4 0.32 0.36(AVRltd
AVR)130nm 1.08 1.04 1.06 1.16 1.1 1.12(AVRltd2
AVR)130nm 1.05 1.01 1.04 1.16 1.01 1.13(AVR65

AVR132)nm 0.41 0.4 0.4 0.41 0.38 0.39

Table 4.4: Energy Comparisons 8-bit Math Test

26 4. RESULTS

In Figure 4.2a it is observed that the power consumption for the systems using
the AVR is very similar for the 130nmltd2 and 130nmltd cases when targeting
clock periods larger than 4ns, when targeting periods smaller there is a transition
around 3ns and in the vicinity of 2ns the 130ltd2 behaves similar to the 130nm case
mainly because the power consumption of the later grows faster than the 130nmltd.
Figure 4.2b shows that the AVR 130nmltd2 core consumes more power than its
counterparts the but the effect described earlier it is present here as well and around
the 3ns it is surpassed by the 130nmltd. The power consumption of the AVR32 65nm
is comparable with the power consumption with the implementations of the AVR
cores using the 130nm library. Figure 4.3a shows that systems with AVR32 cores
consume half the energy than the ones based on the AVR core, however Figure 4.3b
shows that if we compare just cores AVR32 cores energy expenditure is only 80%
(on average) the energy used by the AVR cores. Figure 4.5Timing restriction around
3ns produces AVR core that the smallest power fraction under the 130nmltd2 case.

4.2.1.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 2035.46 5034.4 5281.78 5320.84
NTV — — 496.487 500.159
STV — — — 383.1

AVR32
Super TV 866.2 2228.94 2411.94 2481.48

NTV — — 226.722 233.259
STV — — — 178.667

Table 4.5: 8-bit Math Energy Estimation for NTV and STV

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 27

4.2.2 8-bit Switch Test

4.2.2.1 Super Threshold Voltage

(a) (b)

Figure 4.6: Power Graphs for the 8-bit Switch Test

]

(a) (b)

Figure 4.7: Energy Graphs for the 8-bit Switch Test

Figure 4.8: Power Density Graphs for
the 8-bit Switch Test

Figure 4.9: CPU % Power Graphs for
the 8-bit Switch Test

28 4. RESULTS

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.88 1.64 1.72 3.39 2.81 2.98(AVR32
AVR)130nmltd 1.89 1.73 1.77 3.39 2.84 3.04(AVR32
AVR)130nmltd2 1.91 1.75 1.79 3.39 3.01 3.17(AVR32
AVR)65nm 1.81 1.55 1.61 3.19 2.52 2.67(AVR32ltd
AVR32)130nm 1.11 1.05 1.09 1.17 1.08 1.14(AVR32ltd2
AVR32)130nm 1.07 1.04 1.06 1.12 1.06 1.09(AVR3265

AVR32130)nm 0.4 0.36 0.38 0.38 0.32 0.35(AVRltd
AVR)130nm 1.08 1.04 1.06 1.15 1.09 1.12(AVRltd2
AVR)130nm 1.04 1. 1.01 1.08 0.99 1.02(AVR65

AVR130)nm 0.42 0.41 0.41 0.41 0.39 0.39

Table 4.6: Power Comparisons 8-bit Switch Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.08 0.95 0.99 1.96 1.62 1.72(AVR32
AVR)130nmltd 1.09 1. 1.02 1.95 1.64 1.75(AVR32
AVR)130nmltd2 1.1 1.01 1.03 1.95 1.73 1.83(AVR32
AVR)65nm 1.04 0.89 0.93 1.84 1.45 1.54(AVR32ltd
AVR32)130nm 1.11 1.05 1.09 1.17 1.08 1.14(AVR32ltd2
AVR32)130nm 1.07 1.04 1.06 1.12 1.06 1.09(AVR3265

AVR32130)nm 0.4 0.36 0.38 0.38 0.32 0.35(AVRltd
AVR)130nm 1.08 1.04 1.06 1.15 1.09 1.12(AVRltd2
AVR)130nm 1.04 1. 1.01 1.08 0.99 1.02(AVR65

AVR132)nm 0.42 0.41 0.41 0.41 0.39 0.39

Table 4.7: Energy Comparisons 8-bit Switch Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 29

Figure 4.6a it is observed that the power consumption for the systems using
the AVR for the 130nmltd2 and 130nm cases. Figure 4.6b shows that the all the
AVR based on the 130nm library consumes more or less the power than the AVR32
65nm. Figure 4.7a shows that all systems based on the 130nm library the differences
on energy consumption are small or null around the 4ns target, the same effect is
observed around the 3ns mark for the systems using the 65nm library. Figure 4.3b
shows the same behavior described for the power consumed by the cpus expenditure
is only 80% (on average) the energy used by the AVR cores. Figure 4.9 shows two
groups the ones based on the AVR32 architecture and the ones based on the AVR
architecture. It is interesting to note that for the AVR 130nm core fraction being
near 3ns smaller than the one near the 4ns and the AVR32 65nm is significant less.

4.2.2.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 788.8 1917.6 1931.2 2028.1
NTV — — 181.533 190.641
STV — — — 146.023

AVR32
Super TV 705.6 1815.94 1949.22 2019.78

NTV — — 183.227 189.859
STV — — — 145.424

Table 4.8: 8-bit Switch Energy Estimation for NTV and STV

30 4. RESULTS

4.2.3 16-bit Math Test

4.2.3.1 Super Threshold Voltage

(a) (b)

Figure 4.10: Power Graphs for the 16-bit Math Test

(a) (b)

Figure 4.11: Energy Graphs for the 16-bit Math Test

Figure 4.12: Power Density Graphs for
the 16-bit Math Test

Figure 4.13: CPU % Power Graphs for
the 16-bit Math Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 31

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 2.01 1.71 1.8 3.99 3.13 3.38(AVR32
AVR)130nmltd 2.02 1.81 1.87 3.82 3.29 3.44(AVR32
AVR)130nmltd2 2.03 1.76 1.84 3.87 3.07 3.31(AVR32
AVR)65nm 1.99 1.63 1.71 3.86 2.84 3.06(AVR32ltd
AVR32)130nm 1.12 1.08 1.1 1.18 1.1 1.15(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.13 1.05 1.09(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.4 0.32 0.36(AVRltd
AVR)130nm 1.08 1.04 1.06 1.16 1.1 1.12(AVRltd2
AVR)130nm 1.05 1.02 1.04 1.15 1.06 1.12(AVR65

AVR130)nm 0.42 0.4 0.41 0.41 0.39 0.39

Table 4.9: Power Comparisons 16-bit Math Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.48 0.4 0.43 0.94 0.74 0.8(AVR32
AVR)130nmltd 0.48 0.43 0.44 0.9 0.78 0.81(AVR32
AVR)130nmltd2 0.48 0.41 0.44 0.91 0.72 0.78(AVR32
AVR)65nm 0.47 0.38 0.4 0.91 0.67 0.72(AVR32ltd
AVR32)130nm 1.12 1.08 1.1 1.18 1.1 1.15(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.13 1.05 1.09(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.4 0.32 0.36(AVRltd
AVR)130nm 1.08 1.04 1.06 1.16 1.1 1.12(AVRltd2
AVR)130nm 1.05 1.02 1.04 1.15 1.06 1.12(AVR65

AVR132)nm 0.42 0.4 0.41 0.41 0.39 0.39

Table 4.10: Energy Comparisons 16-bit Math Test

32 4. RESULTS

In Figure 4.10a shows a group for the AVR cores and another for the AVR32 under
the 130nm library. The same effect is noted on Figure 4.10b with the AVR3265nm
on the same group as the AVR cores based on 130nm library Figure 4.11a exhibits
the same grouping behavior described for the power case with the note that the
AVR 65nm system is clustered with the systems with AVR32 130nm.Figure 4.3b
displays that if we compare just cores AVR32 cores energy expenditure is only 80%
(on average) the energy used by the AVR cores. Figure 4.5Timing restriction around
3ns produces AVR core that the smallest power fraction under the 130nmltd2 case.

4.2.3.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 2663.92 6554.72 6844.4 6935.28
NTV — — 643.374 651.916
STV — — — 499.34

AVR32
Super TV 1022.42 2641.14 2856.88 2953.36

NTV — — 268.547 277.616
STV — — — 212.642

Table 4.11: 16-bit Math Energy Estimation for NTV and STV

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 33

4.2.4 16-bit Switch Test

4.2.4.1 Super Threshold Voltage

(a) (b)

Figure 4.14: Power Graphs for the 16-bit Switch Test

(a) (b)

Figure 4.15: Energy Graphs for the 16-bit Switch Test

Figure 4.16: Power Density Graphs for
the 16-bit Switch Test

Figure 4.17: CPU % Power Graphs for
the 16-bit Switch Test

34 4. RESULTS

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.85 1.63 1.7 3.36 2.82 2.98(AVR32
AVR)130nmltd 1.88 1.7 1.75 3.45 2.89 3.06(AVR32
AVR)130nmltd2 1.88 1.69 1.75 3.42 2.94 3.08(AVR32
AVR)65nm 1.75 1.53 1.58 3.11 2.51 2.64(AVR32ltd
AVR32)130nm 1.1 1.06 1.09 1.16 1.08 1.14(AVR32ltd2
AVR32)130nm 1.07 1.04 1.05 1.11 1.07 1.09(AVR3265

AVR32130)nm 0.4 0.36 0.38 0.38 0.32 0.35(AVRltd
AVR)130nm 1.07 1.05 1.06 1.12 1.09 1.11(AVRltd2
AVR)130nm 1.03 1.01 1.02 1.08 1.02 1.05(AVR65

AVR130)nm 0.42 0.4 0.41 0.41 0.39 0.4

Table 4.12: Power Comparisons 16-bit Switch Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.86 0.75 0.78 1.56 1.3 1.38(AVR32
AVR)130nmltd 0.87 0.78 0.81 1.59 1.34 1.42(AVR32
AVR)130nmltd2 0.87 0.78 0.81 1.58 1.36 1.42(AVR32
AVR)65nm 0.81 0.71 0.73 1.44 1.16 1.22(AVR32ltd
AVR32)130nm 1.1 1.06 1.09 1.16 1.08 1.14(AVR32ltd2
AVR32)130nm 1.07 1.04 1.05 1.11 1.07 1.09(AVR3265

AVR32130)nm 0.4 0.36 0.38 0.38 0.32 0.35(AVRltd
AVR)130nm 1.07 1.05 1.06 1.12 1.09 1.11(AVRltd2
AVR)130nm 1.03 1.01 1.02 1.08 1.02 1.05(AVR65

AVR132)nm 0.42 0.4 0.41 0.41 0.39 0.4

Table 4.13: Energy Comparisons 16-bit Switch Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 35

The case for 16-bit math and 16-bit switch have very similar results. The only
thing that strikes out is that the energy consumption for both the system and the
CPU is smaller when using an AVR

4.2.4.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 973.08 2372.28 2423.16 2505.84
NTV — — 227.777 235.549
STV — — — 180.42

AVR32
Super TV 687.96 1785.56 1906.1 1965.88

NTV — — 179.173 184.793
STV — — — 141.543

Table 4.14: 16-bit Switch Energy Estimation for NTV and STV

36 4. RESULTS

4.2.5 32-bit Math Test

4.2.5.1 Super Threshold Voltage

(a) (b)

Figure 4.18: Power Graphs for the 32-bit Math Test

(a) (b)

Figure 4.19: Energy Graphs for the 32-bit Math Test

Figure 4.20: Power Density Graphs for
the 32-bit Math Test

Figure 4.21: CPU % Power Graphs for
the 32-bit Math Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 37

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.95 1.65 1.75 3.63 2.85 3.08(AVR32
AVR)130nmltd 1.96 1.74 1.8 3.59 2.99 3.14(AVR32
AVR)130nmltd2 1.94 1.73 1.8 3.57 2.97 3.15(AVR32
AVR)65nm 1.94 1.58 1.66 3.58 2.6 2.82(AVR32ltd
AVR32)130nm 1.12 1.05 1.09 1.18 1.08 1.14(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.14 1.05 1.09(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.41 0.32 0.36(AVRltd
AVR)130nm 1.07 1.05 1.06 1.13 1.09 1.11(AVRltd2
AVR)130nm 1.05 1.01 1.02 1.1 1.01 1.06(AVR65

AVR130)nm 0.41 0.4 0.41 0.4 0.38 0.39

Table 4.15: Power Comparisons 32-bit Math Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.21 0.18 0.19 0.39 0.31 0.33(AVR32
AVR)130nmltd 0.21 0.19 0.2 0.39 0.32 0.34(AVR32
AVR)130nmltd2 0.21 0.19 0.2 0.39 0.32 0.34(AVR32
AVR)65nm 0.21 0.17 0.18 0.39 0.28 0.31(AVR32ltd
AVR32)130nm 1.12 1.05 1.09 1.18 1.08 1.14(AVR32ltd2
AVR32)130nm 1.08 1.04 1.06 1.14 1.05 1.09(AVR3265

AVR32130)nm 0.41 0.36 0.39 0.41 0.32 0.36(AVRltd
AVR)130nm 1.07 1.05 1.06 1.13 1.09 1.11(AVRltd2
AVR)130nm 1.05 1.01 1.02 1.1 1.01 1.06(AVR65

AVR132)nm 0.41 0.4 0.41 0.4 0.38 0.39

Table 4.16: Energy Comparisons 32-bit Math Test

38 4. RESULTS

For this case Figure 4.18b reveals that the implementations of the AVR on the
130nm library consume roughly the same power as the AVR32 65nm while the
Figure 4.19b shows that the energy consumption of the AVR 65nm is roughly the
same as the AVR32s based on the 130nm library.At the same time Figure 4.19a show
that the AVR 65nm as a system consumes double the energy as the 130nm library
based AVR32.

4.2.5.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 5070.56 12478.1 12778.2 13217.8
NTV — — 1201.15 1242.47
STV — — — 951.679

AVR32
Super TV 864.2 2228.36 2417.44 2489.36

NTV — — 227.239 234.
STV — — — 179.234

Table 4.17: 32-bit Math Energy Estimation for NTV and STV

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 39

4.2.6 RAM Write Test

4.2.6.1 Super Threshold Voltage

(a) (b)

Figure 4.22: Power Graphs for the RAM Test

(a) (b)

Figure 4.23: Energy Graphs for the RAM Test

Figure 4.24: Power Density Graphs for
the RAM Test

Figure 4.25: CPU % Power Graphs for
the RAM Test

40 4. RESULTS

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 2.35 2.06 2.16 4.66 3.87 4.18(AVR32
AVR)130nmltd 2.38 2.13 2.2 4.74 3.6 4.19(AVR32
AVR)130nmltd2 2.39 2.18 2.24 4.72 3.98 4.39(AVR32
AVR)65nm 2.3 1.97 2.06 4.45 3.81 3.95(AVR32ltd
AVR32)130nm 1.1 1.02 1.09 1.15 1.03 1.12(AVR32ltd2
AVR32)130nm 1.07 1.03 1.06 1.1 1.04 1.08(AVR3265

AVR32130)nm 0.41 0.37 0.39 0.4 0.34 0.37(AVRltd
AVR)130nm 1.07 1.05 1.06 1.14 1.1 1.12(AVRltd2
AVR)130nm 1.03 1.01 1.01 1.05 1.01 1.02(AVR65

AVR130)nm 0.41 0.4 0.41 0.4 0.38 0.39

Table 4.18: Power Comparisons RAM Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.51 0.45 0.47 1.02 0.85 0.91(AVR32
AVR)130nmltd 0.52 0.47 0.48 1.04 0.79 0.92(AVR32
AVR)130nmltd2 0.52 0.48 0.49 1.03 0.87 0.96(AVR32
AVR)65nm 0.5 0.43 0.45 0.97 0.83 0.86(AVR32ltd
AVR32)130nm 1.1 1.02 1.09 1.15 1.03 1.12(AVR32ltd2
AVR32)130nm 1.07 1.03 1.06 1.1 1.04 1.08(AVR3265

AVR32130)nm 0.41 0.37 0.39 0.4 0.34 0.37(AVRltd
AVR)130nm 1.07 1.05 1.06 1.14 1.1 1.12(AVRltd2
AVR)130nm 1.03 1.01 1.01 1.05 1.01 1.02(AVR65

AVR132)nm 0.41 0.4 0.41 0.4 0.38 0.39

Table 4.19: Energy Comparisons RAM Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 41

In the case of RAM test Figure 4.22a shows that the AVR 130nmltd2 system, is
very close to the AVR 130nm one. It stands out that the AVR32 65nm system is
close to the AVRs130nm based Figure 4.22b show us a larger consumption by the
AVR32 65nm core than any of the AVRs. On the energy side the AVR 65nm system
consume slightly less energy than any of the AVR32 130nm spawned systems as
seen on the Figure 4.23a. Meanwhile Figure 4.23b show us a more complex picture
where the AVR32 130nm based CPUs consume less energy than the AVR 130nm
ones above the 5ns target. The Figure 4.24 shows three distinct on the top the 65nm
based systems followed by the AVR and AVR32 130nm -the ones that us the full
library- and the rest at the bottom. Figure 4.25 shows two groups the AVR32 on the
top between 62% and 72% and the AVR between 38% and 41%

4.2.6.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 14502.5 35649.5 36013.6 38107.
NTV — — 3385.28 3582.06
STV — — — 2743.71

AVR32
Super TV 6261.52 16095.4 17210.9 17781.9

NTV — — 1617.82 1671.5
STV — — — 1280.3

Table 4.20: RAM Energy Estimation for NTV and STV

42 4. RESULTS

4.2.7 SPI Read and Wirte Test

4.2.7.1 Super Threshold Voltage

(a) (b)

Figure 4.26: Power Graphs for the SPI Test

(a) (b)

Figure 4.27: Energy Graphs for the SPI Test

Figure 4.28: Power Density Graphs for
the SPI Test

Figure 4.29: CPU % Power Graphs for
the SPI Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 43

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 2.09 1.88 1.95 6.91 5.57 6.1(AVR32
AVR)130nmltd 2.14 1.98 2.02 7. 5.57 6.31(AVR32
AVR)130nmltd2 2.11 1.94 1.99 6.91 5.6 6.09(AVR32
AVR)65nm 2.02 1.76 1.83 6.6 5.39 5.66(AVR32ltd
AVR32)130nm 1.11 1.07 1.09 1.18 1.1 1.14(AVR32ltd2
AVR32)130nm 1.06 1.02 1.05 1.1 1.05 1.08(AVR3265

AVR32130)nm 0.42 0.38 0.4 0.41 0.34 0.37(AVRltd
AVR)130nm 1.06 1.04 1.05 1.12 1.09 1.1(AVRltd2
AVR)130nm 1.04 1.01 1.03 1.1 1.04 1.08(AVR65

AVR130)nm 0.43 0.41 0.42 0.41 0.39 0.4

Table 4.21: Power Comparisons SPI Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.95 0.86 0.89 3.14 2.53 2.77(AVR32
AVR)130nmltd 0.97 0.9 0.92 3.19 2.53 2.87(AVR32
AVR)130nmltd2 0.96 0.88 0.91 3.14 2.55 2.77(AVR32
AVR)65nm 0.92 0.8 0.83 3. 2.45 2.57(AVR32ltd
AVR32)130nm 1.11 1.07 1.09 1.18 1.1 1.14(AVR32ltd2
AVR32)130nm 1.06 1.02 1.05 1.1 1.05 1.08(AVR3265

AVR32130)nm 0.42 0.38 0.4 0.41 0.34 0.37(AVRltd
AVR)130nm 1.06 1.04 1.05 1.12 1.09 1.1(AVRltd2
AVR)130nm 1.04 1.01 1.03 1.1 1.04 1.08(AVR65

AVR132)nm 0.43 0.41 0.42 0.41 0.39 0.4

Table 4.22: Energy Comparisons SPI Test

44 4. RESULTS

The SPI power figures present the same case a similar behavior between the AVRs
on the 130nm library and the AVR32 65nm.For the total system power expenditure
shows that AVR32 above the 3ns target synthesis periods it consumes energy as
shown by Figure 4.27a. Figure 4.27b Shows two groups the AVR 130nm based and
AVR32 65nm on the bottom and the AVR32 130nm cores no the top.

4.2.7.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 9372.36 22094.7 22734.6 23318.
NTV — — 2137.05 2191.89
STV — — — 1678.89

AVR32
Super TV 7507.12 18900.5 20124.6 20980.6

NTV — — 1891.71 1972.17
STV — — — 1510.6

Table 4.23: SPI Energy Estimation for NTV and STV

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 45

4.2.8 TCP/IP Checksum Computation Test

4.2.8.1 Super Threshold Voltage

(a) (b)

Figure 4.30: Power Graphs for the TCP/IP Checksum Test

(a) (b)

Figure 4.31: Energy Graphs for the TCP/IP Checksum Test

Figure 4.32: Power Density Graphs for
the TCP/IP Checksum Test

Figure 4.33: CPU % Power Graphs for
the TCP/IP Checksum Test

46 4. RESULTS

Total Power CPU Power
Max Min Mean Max Min Mean(AVR32

AVR)130nm 1.93 1.68 1.76 3.5 2.95 3.11(AVR32
AVR)130nmltd 1.93 1.75 1.8 3.48 2.92 3.11(AVR32
AVR)130nmltd2 1.94 1.75 1.81 3.46 3.04 3.17(AVR32
AVR)65nm 1.87 1.61 1.67 3.34 2.72 2.86(AVR32ltd
AVR32)130nm 1.11 1.05 1.09 1.17 1.07 1.13(AVR32ltd2
AVR32)130nm 1.08 1.03 1.05 1.11 1.05 1.08(AVR3265

AVR32130)nm 0.4 0.36 0.39 0.4 0.33 0.36(AVRltd
AVR)130nm 1.07 1.05 1.06 1.14 1.11 1.13(AVRltd2
AVR)130nm 1.03 1.01 1.02 1.08 1.03 1.06(AVR65

AVR130)nm 0.41 0.4 0.41 0.41 0.38 0.39

Table 4.24: Power Comparisons TCP/IP Checksum Test

Total Energy CPU Energy
Max Min Mean Max Min Mean(AVR32

AVR)130nm 0.41 0.36 0.37 0.74 0.63 0.66(AVR32
AVR)130nmltd 0.41 0.37 0.38 0.74 0.62 0.66(AVR32
AVR)130nmltd2 0.41 0.37 0.38 0.73 0.65 0.67(AVR32
AVR)65nm 0.4 0.34 0.35 0.71 0.58 0.61(AVR32ltd
AVR32)130nm 1.11 1.05 1.09 1.17 1.07 1.13(AVR32ltd2
AVR32)130nm 1.08 1.03 1.05 1.11 1.05 1.08(AVR3265

AVR32130)nm 0.4 0.36 0.39 0.4 0.33 0.36(AVRltd
AVR)130nm 1.07 1.05 1.06 1.14 1.11 1.13(AVRltd2
AVR)130nm 1.03 1.01 1.02 1.08 1.03 1.06(AVR65

AVR132)nm 0.41 0.4 0.41 0.41 0.38 0.39

Table 4.25: Energy Comparisons TCP/IP Checksum Test

4.2. POWER AND ENERGY COMPARISON BETWEEN THE AVR AND AVR32 47

Figure 4.30a and Figure 4.30b exibits the same behavior Figure 4.18a and Fig-
ure 4.18b. Figure 4.31a shows that the energy consumed by the AVR 65nm system
consumes more or less the same oiler as the AVR32 130nm library based systems.
Figure 4.31b exposes that the AVR32 cores consume less power than the AVR ones
-all form the 130nm library-

4.2.8.2 NTV and STV

(pJ) 65nm 130nm 130 ltd2 130 ltd
AVR

Super TV 17791.2 43696.3 44701.2 46450.6
NTV — — 4201.91 4366.35
STV — — — 3344.44

AVR32
Super TV 6083. 15610.4 16787.5 17324.7

NTV — — 1578.03 1628.52
STV — — — 1247.38

Table 4.26: TCP/IP Checksum Energy Estimation for NTV and STV

48 4. RESULTS

4.2.9 Summary

For the super- threshold voltage operation it has been shown the power consumption
of the AVR32 core is form 2.4 to 7 times (been 3.7 the mean) than the AVR core
but the energy spent by the AVR32 core is from 0.3 to 3.2 times (been 1.2 the mean)
the AVR. At the same time the total power consumed by the system -core, bus and
peripherals- when using the AVR32 form 1.5 to 2.4 times larger (been 1.8 the mean)
while in terms of energy expenditure when using the AVR32 core is form 0.2 to 1
times (been 0.6 the mean) times the AVR.

For the STV and NTV estimations it is shown that is more effective to reduce de
voltage than scaling to the 65nm library. For the NTV case using the 130ltd2 library
is more effective than using the 130ltd.

Chapter5Discussion

This chapter is decided into four sections to point out the most interesting parts in
comprehensible way. First synthesis process is discussed, then the results for the
power and energy experiments,after that there is some suggestions along with some
things I wanted to try and at the end the final conclusions are presented.

5.1 Synthesis

The synthesis was a very important part of this project. Overall the work on this area
was sufficient for running the power and energy experiments. The reports generated
provided useful insight to the net lists delivered by the synthesis tool. The libraries
provided were good for the initial approach to get insight on this how the different
parameters affect the energy and power. It is worth to remember that most of the
algorithms that are used for the synthesis are non exact and heuristics since the
problems solved by the tool are NP problems. It is very unlikely that the synthesis
find an optimal solution. Particularly intersting is the case of the net list for the AVR
130nmltd2 targeting 3ns that proves to be more efficient than other more relaxed
net-list.

5.1.1 Area

The results of the area were as expected, systems based on larger cores took a larger
area, smaller feature size library lead to smaller footprint. Restricting the library
forced the tool to find a larger solution and targeting a smaller clock period ended in
a larger net list as less logic depth is allowed until some point is reached in where
the area increases a lot but the timing is not met.

5.1.2 Timing

The synthesis tool was able to hit the targeted clock period with in some error until
it was so constraint that no solution was found and for some synthesis the achieved

49

50 5. DISCUSSION

time is larger than a previous solution and takes a larger area.

5.2 Power and Energy

Several experiments have been done on this work to watch the influence on power and
energy. Two cores were tested, different libraries were used and different conditions
for a library were imposed to make it more suitable for a STV and NTV. The system
is very limited in terms of number of peripherals and small memory. This emphases
the roll that the CPU has on the overall amount of power and energy used.

5.2.1 AVR vs AVR32

The heterogeneous architectures seen in Section 2.2 the cores are similar. For the
Kal-El they have different implementation of the same core and for the big.LITTLE
the same piece of code can be executed on both cores. While on this thesis the same
C code had to be complied, assembled and linked by a set of tools of the AVR and
AVR32.producing executable code that can not be executed on the that was not
intended to. On top of that the AVR is an 8-bit CPU and AVR32 is a 32-bit CPU. If
this is not different enough on top of that they interface with the system on different
busses adding complexity to the system and motivates to find out which tasks are
more energy efficient to be done on one core or another. All this differences en up
boiling in to three main contributing factors. Data width, execution time a task
takes and power consumed by the computation.

The AVR can only perform 8-bit operations while the AVR32 can perform 32-bit
operations. This mean that the AVR will require several operations to do a 32-bit
math operation which is a clear disadvantage if there are a lot of 32-bit operations.
But not the other if the operations are 8 bit the hardware of the AVR32 is too large
and still consumes power and energy even if no useful work is done.

The AVR32 consumes more power than the AVR which might give us the idea that
on the long run the AVR32 will be more expensive to operate. That is particularly
good for the system is limited in power. Power can be limited because the power
source is limited or there is a constraint on the amount of heat that can be removed.

Execution time is very important for real time applications where knowing how
much time a task will take is needed to guarantee the task will meet the deadline.
But also is important because is needed to compute the total energy performing a
task will take. It is possible that a CPU requiring higher power but requiring less
time use less energy for solving the same task as a low power CPU that takes a
longer time to finish the task. As a matter of fact this is the main reason why the
systems based on the on the AVR32 use less energy for competing the tests than

5.3. FUTURE WORK 51

the AVR except for the cases were the difference of the execution time is not large
enough to counter the extra expenditure on power like 8-bit switch test. In which
the AVR just takes 1.73 times the time than for the AVR32.

5.2.2 Core vs System

As seen with the test cases for SPI, 16-bit switch and RAM the CPU energy
expenditure does not explains why the AVR32 based systems use less energy than
the AVR based systems use less energy on the task overall. That is the rest of the
peripherals contribution. Even on the RAM test case -the one where the CPUs use
the maximum energy share up to 70%- the system contribution is enough to make
the AVR32 systems use less energy. It is theoretically possible to have a large enough
system where the CPU choice does not make a difference on the power, and energy
profile. As a matter of fact if the peripherals were turned of during the RAM test
the systems based on the AVR would have been the more energy efficient.

5.2.3 NTV and STV

If the assumptions stated on Section 3.3.2 apply choosing least energy expenditure
implementation of the core then depends on the voltage management philosophy. If
it is STV and it is fixed then the 130nmltd is the best alternative. If for some reason
dynmaic voltage is needed (to adjust performance to work load) and the STV is not
needed then the best way to go is with the 130nmltd2 approach. If the system is
limited to super-threshold voltage then 130nm (without restrictions) will provide the
lowest energy/power foot print.

5.3 Future Work

There are a lot of interesting ways to extend the range of this project. To have a
better picture on how better to adapt to different conditions that might present in
different applications.

5.3.1 Test Cases and Peripherals

More cases must be added and profiled. some of them might be memories with
wait states, burst transactions shared caches, multiple masters tying to access a
salve simultaneously, interrupts, DMAs, going to/ waking form sleep states, sleep
states, watchdog routines, encryption etc. On the peripheries side USART, bluetooth,
ethernet, USB and ADCs, RFID readers are a good place to start to get a broader
picture on the huge set of applications useful under the IoT scope.

52 5. DISCUSSION

Other interesting thing will be to include the ability to turn on or off different
peripherals to quantify the contributions of them on the system and ultimately will
end giving the final application better control on the energy and power expenditure.

5.3.2 Real STV, NTV and More Libraries

As stated earlier there was no STV nor NTV library available for this project.
Performing the synthesis on such libraries will yield to more accurate results and
provide a more detail picture on the effects on power, leakage and timing. The use
of other libraries featuring different sizes will provide a better understanding on the
effects of seizing.

5.3.3 Tools and Testing Cores at the Same Time

The development of tools that address both cores at the same time will speed up
the generation and testing of cases. An interesting idea is to be able to target an
optimization target like performance, energy, power and permit the cooperation
between cores.

Also it is important to understand how the handover of tasks and the address of
shared resources affect the time a task takes, the power it draws, etc.

5.3.4 Cores

To test other cores (AVR AP7, megaAVR, tinyAVR and /or ARM Cortex M0+) and
different set-ups will help to encounter more suitable solutions to other environments
and applications.

5.4 Conclusions

This project has shown the great diversity provided by testing two different cores, in
one intense we have that the AVR32 is in general terms more energy efficient than
the AVR because it takes less time to do things. On the other hand if the main
source of power is a harvesting system that can not provide peaks of power but a
moderate supply then the AVR would be better since is easier to make it comply to
the power constrain.

References

[1] Agarwal, A., Mukhopadhyay, S., Kim, C., Raychowdhury, A., and Roy, K. (2005).
Leakage power analysis and reduction: models, estimation and tools. Computers
and Digital Techniques, IEE Proceedings, 152(3):353–368.

[2] Ashton, K. (2009). That ’Internet of Things’ Thing. "http://www.rfidjournal.
com/articles/view?4986".

[3] Atmel (2000). Module documentation 8-bit core - avr8_i6000. Confidental.

[4] Atmel (2012). 8-bit Atmel XMEGA A Microcontroller. "http://www.atmel.
com/Images/doc8077.pdf".

[5] Atmel (2013). 32-bit atmel avr microcontroller. "http://www.atmel.com/Images/
Atmel-32145-32-bit-Flash-MCU-UCL0_datasheet.pdf".

[6] Atmel (2014). Quick RefeRence Guide. "http://www.atmel.com/Images/doc4064.
pdf".

[7] Bo Zhai, D. B., Sylvester, D., and Flautner, K. (2005). Theoretical and practical
limits of dynamic voltage scaling. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions, 13(11):868–873.

[8] Chen, P.-Y., Fang, C.-C., Hwang, T., and Ma, H.-P. (2009). Leakage reduction,
variation compensation using partition-based tunable body-biasing techniques.
VLSI Design, Automation and Test, 2009. VLSI-DAT ’09. International Sympo-
sium on, pages 170–173.

[9] Corporation, F. T. (2003). 0.13um high performance high density standard cells-
fsc0h_d core cell. Technical report, Faraday Technology Corporation.

[10] Corporation, F. T. (2008). Fse0a_dhm_generic_core 65 nm low-power core
cell library. Technical report, Faraday Technology Corporation.

[11] Dreslinski, R., Wieckowski, M., Blaauw, D., Sylvester, D., and Mudge, T.
(2010). Near-threshold computing: Reclaiming moore’s law through energy
efficient integrated circuits. Proceedings of the IEEE, 98(2):253–266.

53

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://www.atmel.com/Images/doc8077.pdf
http://www.atmel.com/Images/doc8077.pdf
http://www.atmel.com/Images/Atmel-32145-32-bit-Flash-MCU-UCL0_datasheet.pdf
http://www.atmel.com/Images/Atmel-32145-32-bit-Flash-MCU-UCL0_datasheet.pdf
http://www.atmel.com/Images/doc4064.pdf
http://www.atmel.com/Images/doc4064.pdf

54 REFERENCES

[12] G. D. Wilk, R. M. Wallace, J. M. A. (2001). High-gate dielectrics: Current status
and materials properties considerations. Journal of Applied Physics, 89(10):5243–
5275.

[13] Greenhalgh, P. (2011). big.little processing with arm cortex-a15 & cortex-a7.
"http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf".

[14] Hu, J., Shin, Y., Dhanwada, N., and Marculescu, R. (2004). Architecting
voltage islands in core-based system-on-a-chip designs. Low Power Electronics
and Design, 2004. ISLPED ’04. Proceedings of the 2004 International Symposium
on, (August):180–185.

[15] Johnsen, G. (2014). Full-custom sub/near-threshold cell library in 130nm
cmos with im- plementation to an alu. Master’s thesis, Norges Teknisk-
Naturvitenskapelige Universitet (NTNU).

[16] Kristian Saether, I. F. (2014). Introducing a new breed of microcontrollers for
8/16-bit applications. "http://www.atmel.com/Images/doc7926.pdf".

[17] Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., and Tullsen, D. (2003).
Single-isa heterogeneous multi-core architectures: the potential for processor
power reduction. Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages 81–92.

[18] Limited, A. (1999). AMBA Specification (Rev 2.0). ARM Limited.

[19] Limited, A. (2006). AMBA 3 AHB-Lite Protocol v1.0 Specification. ARM
Limited.

[20] Mahmood-Qureshi, Y. (2013). Low-power optimized apb bus connection for
avr co-processor. Master’s thesis, Norges Teknisk-Naturvitenskapelige Universitet
(NTNU).

[21] Niel, G., Raffi, K., and Cohen, D. (2004). The internet of things. Scientific
American, 291(4):76–81.

[22] Niel H. E. Weste, D. M. H. (20011). CMOS VLSI Design a Circuits and
Systems Perspective. Addison-Wesley.

[23] nvida (2011). Variable smp - a multi-core cpu architecture for low power and
high performance. "http://www.nvidia.com/content/PDF/tegra_white_papers/
tegra-whitepaper-0911b.pdf".

[24] Robert Boylestad, L. N. (1999). Electronic Devices and Circuit Theory. Prentice
Hall.

http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.atmel.com/Images/doc7926.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Historical Perspective
	Internet of Things
	Related Work

	Asigment Interpretation
	Contributions
	Report Organization

	Background
	Power
	Dynamic Power
	Static Power
	Dynamic Voltage Frequency Scaling (DVFS) and Voltage Islands
	Near- Threshold Voltage (NTC) and Sub-Threshold Voltage (STC)

	Heterogenous Computing
	8/16bit cores vs 32-bit cores

	Implementation
	Setup and Work Flow
	Hardware
	Software

	Synthesis
	Synthesis script
	Libraries

	Power and Energy Analysis
	Power
	Energy

	Results
	Synthesis AVR and AVR32
	Library variation
	Area Comparison
	Timing Achieved

	Power and Energy comparison between the AVR and AVR32
	8-bit Math Test
	8-bit Switch Test
	16-bit Math Test
	16-bit Switch Test
	32-bit Math Test
	RAM Write Test
	spi Read and Wirte Test
	uip Test
	Summary

	Discussion
	Synthesis
	Area
	Timing

	Power and Energy
	AVR vs AVR32
	Core vs System
	NTV and STV

	Future Work
	Test Cases and Peripherals
	Real STV, NTV and More Libraries
	Tools and Testing Cores at the Same Time
	Cores

	Conclusions

	References

