
Linelet, an Ultra-Low Complexity,
Ultra-Low Latency Video Codec for
Adaptation of HD-SDI to Ethernet

Hans-Kristian Arntzen

Electronics System Design and Innovation

Supervisor: Andrew Perkis, IET
Co-supervisor: Odd Inge Hillestad, Nevion

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

i

Problem description

Line-based video compression for next generation broadcast signals over IP
In todays broadcast facilities, real-time digital video and associated audio and metadata is transported
within the facility using HD-SDI, a serial digital interface on an coax cable or optical fiber. A very
recent trend is that broadcasters are looking into how they can save cost and improve workflow by
moving towards transporting SDI signals over a packet-based commodity Ethernet networking infras-
tructure, using e.g. SMPTE 2022-6 for SDI over IP. 1

The bitrate of the HD-SDI payload alone is approximately 1.5 Gb/s, which means that video
edge devices and network access equipment need to be designed for 10GE. However, at the same
time, a new generation of production image formats are emerging, such as 4K/8K or Ultra HDTV
(UHD). With higher resolution and potentially higher frame rate, the bitrate of the corresponding
SDI signals increase significantly. For example, 4K/UHD-1 at 50 frames/sec with todays 4:2:2 10-bit
YCbCr video sampling require a 12 Gb/s SDI signal. In order to take advantage of 10GE networking
becoming commodity, some form of light-weight and near-zero latency video compression would be
advantageous in these systems.

The project shall look into the requirements for appropriate video compression technologies 2 for
such signals and develop, implement and evaluate a suitable algorithm.

1This initiative comes from the Joint Task Force on Networked Media, a collaboration between EBU, SMPTE and
Video Services Forum. (https://tech.ebu.ch/Jahia/site/tech/cache/offonce/groups/jtnm) A call for technology was con-
ducted in 2013 (https://tech.ebu.ch/docs/groups/jtnm/JT-NM RFT-120913.pdf), and a report was published with the re-
ceived proposals (https://tech.ebu.ch/webdav/site/tech/shared/groups/jtnm/GapAnalysisReport 231213.pdf).

2A current proposal sent to Joint Task Force on Networked Media is the codec ”TICO” from intoPIX
(http://www.videoservicesforum.org/download/jtnm/JTNM012-1.zip). It is based on compressing single scanlines, with
visually lossless compression from 1:2 to 1:4 compression rates.

ii

Summary
In this project we have designed, specified, implemented, optimized and evaluated a new ultra-low
latency (≤ 1 ms) and ultra-low complexity intra-only video compression codec, Linelet, which is able
to compress 1080p50 and beyond in real-time on regular desktop PC equipment. There are strong
indications that 4K@60 encoding is possible in real-time on powerful desktop equipment.

The broadcasting industry today is moving towards 4K and ultra-high definition resolutions and
this puts greater burdens on transmission equipment which need to transmit the highest quality video
material during production in real-time. We therefore see the need for a lightweight compression
solution which can keep the bandwidth down while keeping the pristine quality needed for production.
Such a solution must be cheap, fast and have near-zero latency in order to justify the cost of adding
compression. With a lightweight compression scheme we enable the possibility to transmit production
video over Ethernet links. We can compress 1.5 Gbit/s and 3.0 Gbit/s HD video into a 1 gigabit
ethernet link, or 12 Gbit/s 4K video down to a 10 gigabit ethernet link.

Linelet is based on the discrete wavelet transform and uses the 5/3 wavelet filter for simplicity
and reversibility of all operations. Linelets focus is transforming video data horizontally for near-
zero latency, but also allows for a simple method to exploit vertical redundancies. Exploiting vertical
redundancies lead to a 3 dB improvement in PSNR and vastly improved visual quality over a design
which only considers horizontal redundancy.

Linelets target use case is to be implemented in either an FPGA or ASIC, working with uncom-
pressed video signals in real-time. The codec is designed ground-up for simplicity, requires little
memory and avoids any expensive arithmetic. Entropy coding is vastly simplified over conventional
approaches which ensures very high encoder throughput (5 Gbit/s and beyond) even on desktop PC
hardware.

Using our software implementation of Linelet, we performed a small-scale subjective evaluation
with experts in the field based on recommendations in ITU-R BT.500 and the evaluation indicates
that Linelet remains visually lossless at 1:2, 1:4 and even 1:6 compression rates for very difficult test
sequences such as ParkJoy and Horse at a viewing distance of 3H. The experts were very familiar
with these sequences. Further tests should be carried out to verify this.

iii

Sammendrag (Norwegian)
I dette prosjektet har vi designet, spesifisert, implementert, optimisert og evaluert en ny ultra-low
latency (≤ 1 ms) og ultra-low complexity intra-only videokompresjonskodek, Linelet, som kan kom-
primere 1080p50 i sanntid på en vanlig stasjonær PC. Det er sterke indikasjoner på at 4K@60 vil
være mulig i sanntid på en kraftig stasjonær PC.

Kringkastingsbransjen ser i dag på 4K og ultra-høydefinisjonsformater og dette medfører enda
større belastning for transmisjonsutstyr som trenger å øverføre den høyeste kvalitet i produksjon i
sanntid. Vi ser derfor nytten i en lettvekts komprimeringsløsning som kan holde båndbredden nede
samtidig som vi beholder den ypperste kvalitet som trengs i produksjon. Løsningen må være billig,
rask og ha et tilnærmet ikke-eksisterende etterslep for at kompresjon skal være nyttig. Med lettvekts-
kompresjon legger vi til rette for at produksjonsvideo kan sendes over IP nettverk. Vi kan komprimere
1.5 Gbit/s og 3.0 Gbit/s HD ned til en 1 gigabit Ethernet-link eller 12 Gbit/s 4K video ned til en 10
gigabit Ethernet-link.

Linelet er basert på en diskret wavelet-transform og bruker 5/3-filteret for enkelhet og reversibilitet
i alle ledd. Linelet fokuserer på å transformere video horisontalt for tilnærmet ingen etterslep, men
tillater også en enkel metode for å utnytte redundans vertikalt. Å utnytte vertikal redundans førte til
en forbedring på 3 dB PSNR og store forbedringer visuelt over en løsning som bare tok hensyn til
horisontal redundans.

Linelets bruksområde er i enten en FPGA eller ASIC der den kan jobbe med ukomprimerte
videosignaler i sanntid. Kodeken er designet fra bunnen av med tanke på enkelhet, krever lite minne
og unngår dyre kostbare operasjoner. Entropikodingen er svært redusert i kompleksitet i forhold til
konvensjonelle metoder, noe som muliggjør svært høy ytelse (5 Gbit/s og mer) selv med en stasjonær
PC.

Med software-implementasjonen vår utførte vi en småskala subjektiv evaluering med eksperter
fra bransjen basert på retningslinjer i ITU-R BT.500. Evalueringen indikerer at Linelet holder seg
visuelt tapsfri på 1:2, 1:4 og selv 1:6 kompresjonsrater for veldig vanskelig testmateriale som ParkJoy
og Horse på en avstand tre ganger skjermhøyde. Ekspertene var veldig godt kjente med disse test-
sekvensene. Flere tester bør utføres for å verifisere testresultatene.

iv

Contents

Problem description . i
Summary . ii
Sammendrag (Norwegian) . iii

Abbreviations xii

1 Introduction 1
1.1 Broadcasting . 1
1.2 Technical challenges with 4K/UHD video . 2

1.2.1 Codec technology . 3
1.2.2 Networking and transmission technology 4
1.2.3 Display technology . 4

1.3 The light compression trend . 5
1.4 Creating a codec from scratch . 5
1.5 Roadmap for this project . 5
1.6 Thesis layout . 6

2 Video compression 7
2.1 Introduction . 7

2.1.1 Spatial redundancy . 7
2.1.2 Temporal redundancy . 7
2.1.3 Spectral redundancy . 7
2.1.4 The human visual system . 8

2.2 Signal decomposition . 8
2.3 Discrete cosine transform . 8

2.3.1 Frequency vs. time resolution . 9
2.3.2 Integer approximations . 9
2.3.3 Blocking artifacts and de-blocking . 10
2.3.4 Lapped transform . 10

2.4 Discrete wavelet transform . 10
2.4.1 Naming convention of wavelet subbands . 12
2.4.2 Frequency vs. time resolution . 12
2.4.3 Advantages of DWT . 14
2.4.4 Disadvantages of DWT . 14
2.4.5 Common wavelet filters . 15
2.4.6 Signal extension . 15
2.4.7 Lifting implementation of wavelet transforms 16

2.5 Prediction filter . 16
2.6 Entropy coding . 17

2.6.1 Variable length coding . 17
2.6.2 Arithmetic coding . 17

v

vi CONTENTS

2.6.3 Estimating probabilities . 18
2.7 Quantization . 18

2.7.1 Round-to-nearest . 18
2.7.2 Deadzone . 19
2.7.3 Vector quantization . 19

2.8 Video compression tradeoffs . 19
2.8.1 Hybrid video codecs . 20
2.8.2 Mathematically lossless intra . 20
2.8.3 Broadcast contribution . 21
2.8.4 Transmission media adaptation . 21

2.9 Rate control and latency . 21
2.9.1 Constant bit rate . 22
2.9.2 Variable bit rate with constrained buffers 22
2.9.3 End-to-end latency . 22

3 State of the art, ultra-low latency codecs 25
3.1 TICO . 25
3.2 Dirac Pro (VC2) - Low Delay . 25
3.3 VESA Display Stream Compression . 26
3.4 Comparison . 26

4 Linelet codec 27
4.1 Overview . 27
4.2 Splitting images into slices . 28
4.3 Colorspace . 29

4.3.1 Reversible color transform . 29
4.3.2 YCbCr . 29
4.3.3 Subsampling chroma . 30

4.4 Wavelet transforms . 30
4.4.1 Lifting implementation of vertical wavelet 30
4.4.2 Horizontal and vertical lifting implementation of Le Gall 5/3 wavelet 31
4.4.3 Signal extension . 32
4.4.4 Combining the vertical and horizontal transform 32
4.4.5 Numerical precision for lifting . 33
4.4.6 A pre/post-filter structure to mitigate slice boundary artefacts 33

4.5 Quantizer . 37
4.6 Precincts . 38
4.7 Highly simplified entropy coding - bitplane packing 39

4.7.1 Comparison to EZW and SPIHT algorithms 40
4.8 Signaling per-precinct bits . 40
4.9 Rate control . 42
4.10 Bitstream layout . 43

4.10.1 Syntax for a full frame . 43
4.10.2 Linelet header . 43
4.10.3 The slice syntax . 43
4.10.4 The scanline syntax . 44
4.10.5 Checksum . 44

4.11 Processing time performance . 44
4.11.1 Multithreading . 45
4.11.2 SIMD - Single instruction, multiple data . 45

CONTENTS vii

4.11.3 Considering hardware implementations . 45
4.11.4 Considering GPGPU application . 45

4.12 Noise power normalization . 46
4.13 Psychovisual tuning . 52

4.13.1 Contrast sensitivity function . 52
4.13.2 Psychovisually weighted quantization of Le Gall 5/3 wavelet 53
4.13.3 Complexity masking . 56

5 Method for subjective evaluation 57
5.1 Test environment . 57

5.1.1 Monitor . 57
5.1.2 Playback system . 57

5.2 Test material . 57
5.2.1 Test sequences and bitrates . 58

5.3 Test method . 59
5.3.1 Introduction and training sequence . 59
5.3.2 Grading scale . 59
5.3.3 Evaluation session . 60
5.3.4 Evaluation schema . 60

6 Method for objectively evaluating Linelet 61
6.1 Objective measures of distortion . 61

6.1.1 PSNR . 61
6.1.2 SS-SSIM . 61
6.1.3 Best objective metric . 62

6.2 Testing rate-distortion characteristics with different latencies 62
6.3 Testing multiple-generation encoding of Linelet . 62

6.3.1 Codec parameters . 62

7 Results 63
7.1 Subjective evaluation . 63

7.1.1 Individual test data . 66
7.1.2 PSNR and SS-SSIM for test sequences at tested bitrates 69
7.1.3 Global mean opinion score . 70
7.1.4 Correlating objective metrics with subjective test data 70
7.1.5 Test data . 70

7.2 Rate-distortion characteristics with different latencies 70
7.3 Multiple-generation encoding of Linelet . 72

8 Discussion 75
8.1 The choice of few experts against many non-expert test subjects in subjective evaluation 75
8.2 Can we be sure that Linelet fulfills requirements for visually losslessness? 75

8.2.1 Other methods to determine visually losslessness 76
8.3 Work left to be done in Linelet . 76

8.3.1 Hardware implementation concerns . 76
8.3.2 The still-image syntax . 76
8.3.3 Vertical wavelet transforms . 77
8.3.4 Can Linelet be simplified further? . 77
8.3.5 Entropy coding . 77
8.3.6 Alternatives to wavelet transform . 78
8.3.7 Potential tuning left to be done . 78

viii CONTENTS

9 Conclusion 79

Bibliography 80

A Creating test sequences 85
A.1 Creating raw YUV source . 85
A.2 Creating mathematically lossless reference source 85
A.3 Creating lossy tests . 85

B Evaluation schema 87

C Noise power normalization code 89

D Subjective and objective evaluation test data 97

E README.txt 103

List of Figures

2.1 Basis functions for the 8x8 2D DCT [1] . 9
2.2 Illustration of severe blocking artifacts [2] . 10
2.3 Critically sampled filterbank . 11
2.4 A 2-level 2-dimensional DWT [3] . 12
2.5 Frequency vs. time resolution for fourier transform and wavelet transforms [4] 13
2.6 Effect of low time resolution in JPEG (8x8 DCT) 13
2.7 Effect of higher time resolution in JPEG 2000 (DWT) 14
2.8 A real-time streaming system . 22

4.1 Overview of the Linelet encoder . 28
4.2 Vertical wavelet lifting scheme (Haar) . 31
4.3 Lifting implementation of Le Gall 5/3 wavelet . 31
4.4 Organizing 2 levels of wavelet decompositions in scanlines 32
4.5 2-level decomposition of 2D DWT in Linelet . 32
4.6 Block boundary filter bank model with pre/post-filtering [5] 34
4.7 Fast V-II prefilter lifting model [5] . 34
4.8 Le Gall 5/3 synthesis filter gain . 47
4.9 Le Gall 5/3 synthesis filter gain with 1 bit additional quantization of high-pass band. 47
4.10 Noise spectrum with 5 levels of Le Gall 5/3 decomposition 48
4.11 Noise spectrum with 5 levels of Le Gall 5/3 decomposition with 1 bit per level com-

pensation. 48
4.12 Noise spectrum with 5 levels of Le Gall 5/3 decomposition, fully weighted. 49
4.13 Unweighted noise spectrum for 2D Le Gall 5/3 transform. 50
4.14 Weighted noise spectrum for 2D Le Gall 5/3 transform. 51
4.15 Weighted noise spectrum for 2D Le Gall 5/3 with 5 levels of decomposition. 52
4.16 Extra quantization bits for spatial frequency. 54

7.1 Average mean opinion scores for given bitrate over all test sequences and experts . . 64
7.2 Average mean opinion scores for given bitrate over all ParkJoy/Horse sequences and

experts . 65
7.3 Average mean opinion scores for given bitrate over all DCI sequences and experts . . 66
7.4 Individial opinion scores for ParkJoy . 67
7.5 Individial opinion scores for Horse . 67
7.6 Individial opinion scores for DCI clip 1 . 68
7.7 Individial opinion scores for DCI clip 2 . 68
7.8 PSNR-Y for test sequences at tested bitrates . 69
7.9 SSIM-dB for test sequences at tested bitrates . 70
7.10 ParkJoy rate-distortion with 1 and 2 scanline slices 71
7.11 ParkJoy rate-distortion with 2 and 4 scanline slices 71
7.12 ParkJoy rate-distortion with 4 and 8 scanline slices 72
7.13 ParkJoy rate-distortion with 8 and 16 scanline slices 72

ix

x LIST OF FIGURES

7.14 Encoding loss over multiple generations for 500 Mbit/s ParkJoy (25 % compression) 73
7.15 Encoding loss over multiple generations for 300 Mbit/s ParkJoy (15 % compression) 73

List of Tables

2.1 Le Gall 5/3 wavelet filter coefficients . 15
2.2 CDF 9/7 wavelet filter coefficients . 15
2.3 Optimal variable length code for a simple distribution 17

4.1 Unary code . 41
4.2 Signed unary code . 41
4.3 Noise gains for figure 4.11 . 48
4.4 Noise gains for figure 4.12 . 49
4.5 Noise gains for figure 4.14 . 50
4.6 Weighted noise gains for 5 levels of decomposition 51
4.7 Sub-band spatial frequencies and quantization offsets for a 5-level wavelet decompo-

sition. 55
4.8 Quantization offsets for trivial psychovisual weighing with noise power normalization. 55

5.1 Bitrates used for evaluation of DCI sequences . 58

xi

xii LIST OF TABLES

Abbreviations

3D-TV = 3D television
4K = resolution with approximately 4000 horizontal pixels
8K = resolution with approximately 8000 horizontal pixels
API = application programming interface
ASIC = application specific integrated circuit
AVC = advanced video coding
BBC = British Broadcasting Corporation
CABAC = context adaptive binary arithmetic coding
CGI = computed generated imagery
CPU = central processing unit
CRT = cathode ray tube
CSF = contrast sensitivity function
DC = direct current (0 Hz)
DCI = digital cinema initiative
DCT = discrete cosine transform
DFT = discrete fourier transform
DPCM = differential pulse code modulation
DSIS = double-stimulus impairment scale
DWT = discrete wavelet transform
EBCOT = embedded block coding with optimal truncation
EBU = european broadcasting union
EZW = embedded zero-tree wavelets
FPGA = field-programmable gate array
GOP = group of pictures (MPEG)
GPGPU = general-purpose graphics processing unit
HD = high-definition
HDMI = high-definition multimedia interface
HD-SDI = high-definition serial digital interface
HDTV = high-definition television
HEVC = high-efficiency video coding
HVS = human visual system
IP = internet protocol
ISO = international organization for standardization
ITU = international telecommunication union
JPEG = joint photographic expert group
JT-NM = joint task force on networked media
KLT = Karhunen-Loeve transform
LCD = liquid crystal display
LSB = least significant bit (or byte)
LUT = look-up table
MDCT = modified discrete cosine transform
MOS = mean opinion score
MPEG = moving picture experts group
MSB = most significant bit (or byte)

LIST OF TABLES xiii

MSE = mean square error
NHK = Nihon Hoso Kyokai
NTSC = national television system committee
PAL = phase-alternating line
PC = personal computer
PSNR = peak signal-to-noise ratio
RCT = reversible color transform
RGB = red-green-blue
SDI = serial digital interface
SD-SDI = standard-definition serial digital interface
SDTV = standard-definition television
SECAM = séquentiel couleur à mémoire
SIMD = single-instruction, multiple data
SMPTE = society of motion picture and television engineers
SPIHT = set partitioning in hierarchical trees
SSE = streaming SIMD extensions
SSIM = structural similarity
TV = television
UHD = ultra-high definition

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Broadcasting
Broadcasting is the distribution of video and audio to a large audience simultaneously. The commu-
nication is one-way, from the broadcaster to multiple receivers. It is of great commercial and public
interest to provide television broadcasting to the population at large. Television broadcasting today is
a multi-billion dollar industry with consumers in nearly every household of the developed world.

When a consumer sees broadcast video content on a screen, the material has gone through several
steps before it ever reaches the eyes of the viewer. Each step on the way represents opportunities for
revenue.

• Content creation

• Contribution

• Content management and publishing

• Content distribution

• Display and reproduction technology

• Consumer

Innovations within this value chain are driven by constant desires from the industry to sell products
and consumers who desire new content and improved quality. Ultimately, all value flows backwards
from consumers. Without consumers, the value chain becomes meaningless. There is no need to
shoot productions which are never seen.

Not only quality of the content itself, but the quality of how the content is reproduced can be just as
important for the overall enjoyment of broadcast content. Display resolution is a concept that is often
associated with quality. Higher resolutions allow smaller details to be present in the image, and sharp
objects can remain sharp and crisp. Higher resolutions allow a more real world-like representation
of content. Over the history of television broadcasting, screen resolutions have increased to meet
consumer expectations of quality, and the resolution is still on the rise.

It is clear that at some point, increasing resolution further becomes meaningless. There is only so
much detail we can hope to perceive as humans. Is our current HDTV good enough? Is there any real
demand for higher resolutions? Will ultra-high definitions (UHD) allow us to experience content in a
way that is not possible with the current high-definition television?

Before the arrival of digital television, analog broadcasting was the norm with standards such as
NTSC, PAL and SECAM. With the arrival of digital television, digital equivalents of these standards

1

2 CHAPTER 1. INTRODUCTION

were created with 576 video lines (576i) for PAL/SECAM and 480 lines (480i) for NTSC. This family
of formats is referred to as standard-definition television (SDTV).

After a couple of decades experimenting with higher resolution broadcasting, standards bodies
settled on our current definition of high-definition television (HDTV). It is a format with either 720
lines progressive (720p), 1080 lines interlaced (1080i) or 1080 lines progressive (1080p) as defined
by ITU-R BT.709 [6]. The 1080 lines format is often referred to as ”full-HD”.

The industry believes ultra-high definition resolutions are meaningful, and they are starting to
look at 4K and UHD video formats which go far beyond the current standard resolutions for HDTV.
The promise is unparalleled picture quality and the sense of ”being there”.

For broadcasting of UHD, two formats have been standardized in ITU-R BT.2020 [7]. These
are 3840x2160 and 7680x4320 resolutions. Going from the 1920x1080 format (1080p), these new
formats are exactly 2 and 4 times the number of pixels horizontally and vertically. NHK of Japan have
committed themselves to 8K technology (Super Hi-Vision) [8], pushing the boundaries of human
perception even more. Their goal is to capture and transmit the 2020 Tokyo Olympics in this format.
They have conducted experimental transmissions over the air with this format successfully.

Right now, 4K is in a technology push stage. The industry is hoping for 4K to be a commercial
success, but there is not yet a convincing argument for consumers to go out and buy 4K TV sets.
There is an obvious lack of content in 4K, which also was the case with the now-dead stereoscopic 3D
trend. 4K might get critical mass with upcoming FIFA World Cup 2014 and 2016 Olympics which
will likely push 4K material. High quality content for new display technology does not guarantee
success however, as was the case with London 2012 Olympics failing to push 3D-TV technology. [9]

Stereoscopic display technology has been tried several times in the past, starting in the cinemas in
the 1950s with red/cyan anaglyph glasses. The basis of current stereoscopic technology is to display
two separate images to the eyes, and let the human brain recreate the 3D representation from that.
This is not without problems however. There are several distortions which can occur when one tries
to project a 3D space onto two screens, and then attempt to display that to the viewer. Many people
are affected by headaches and severe eye-strain using this technology. The trend of 3D-TV sets in
late 2000s and early 2010s faded out quickly, with CES 2013 marking the end of 3D-TV as the ”next
big thing”. [10] 4K has taken over as the new trend. Simply increasing resolution is an easy way to
progress forward as it can only improve current attributes (resolution), and not drastically change how
things work. It is obvious that display manufactures are trying to create a demand for new TV sets
after the 3D-TV flop. If everyone is happy with what they already have and unwilling to purchase
new TV sets, TV manufacturers will eventually go out of business.

The perceived quality of a video image is not based on screen resolution alone. Some experts
argue that for a jump to 4K to have any effect on visual quality, we cannot look at one parameter
at a time, we must also improve the frame rate and color representation, possibly an high-dynamic
range (HDR) representation. Doubling frame rate as well as jumping to 4K would not just quadruple
required bandwidth, but require eight times the bandwidth instead, a dramatic increase which might
not even be perceptible to the average viewer.

With higher and higher resolutions, for the quality improvement to even be visible, we need larger
display devices. We also need to sit close enough to the screen such that a larger field of view can
be covered. At some point, increasing the resolution becomes meaningless unless one is determined
to sit closer to the screen or buy much larger TVs. If one sits too close, it becomes more and more
difficult to have a good overview of the whole screen.

1.2 Technical challenges with 4K/UHD video

In order for 4K to become mainstream, technical challenges in the entire multimedia chain from
production to distribution must be solved.

1.2. TECHNICAL CHALLENGES WITH 4K/UHD VIDEO 3

1.2.1 Codec technology
Distribution

For distribution to consumers, the new HEVC/H.265 [11] codec was released and standardized by a
joint effort between ISO and ITU-T. Their previous video codec standard, H.264/AVC [12], has been
an extremely successful standard to date, being the codec of choice for use in broadcast HDTV, HD
movies (Blu-Ray) and internet streaming.

HEVC is essentially a continuation of H.264/AVC, similar in design, with added complexity in
the processing to allow for up to a 50 % reduction in bitrate at same quality. One of HEVCs main
goals is to allow the transition up to higher resolutions such as 4K.

Potential alternatives to HEVC are Google’s VP9 [13] and the still-in-research codec Daala by
xiph.org [14]. Both codecs aim to be just-as-good or better than HEVC while being royalty-free.

Still, 4K in distribution in the current state sounds unlikely. For distribution, we are still stuck
with 720p or 1080i. Not even 1080p is standard, and a further jump to 4K/UHD sounds very unlikely
to happen given that distribution links are very limited in bandwidth. If everyone moves to IP-based
distribution to the home in the future, bandwidth can be increased over time, but we likely have to
cater to limited-bandwidth transmission over the air in the near future.

Contribution

Broadcast contribution is the exchange of multimedia between professional users. A typical example
is multimedia transport from events such as concerts and sporting events, covered by an OB-Van 1

or an internal production studio. Another example is transport of multimedia content between two
studios. Multimedia content can be edited and post-processed in several stages at different locations
before being broadcast to consumers. [15]

For contribution purposes, we have different requirements for video compression. Video qual-
ity must approach lossless. The first realization is that completely uncompressed video is not fea-
sible when transmitting video over longer distances. Data rates for even the 720p60 10-bit 4:2:2
(1280x720) production format exceeds 1 Gbit/s, and it is obvious that uncompressed 4K video would
be even more difficult to handle.

JPEG2000 [16] has emerged as a popular alternative for these use cases. JPEG2000 is a still-
image codec based on the wavelet transform and was designed as a successor to the older JPEG
standard. JPEG2000 and JPEG are international standards defined by Internation Organization for
Standardization (ISO). In 2013, a technical recommendation was released by the Video Services Fo-
rum [17]. The goal of the technical recommendation is to create a framework for HDTV contribution
(up to 1080p60) where vendors of contribution technologies can be interoperable with JPEG2000
technology. [18]

While JPEG2000 encoding can be done in 4K, it is challenging. JPEG2000 is a complex codec,
with very advanced entropy coding which is difficult to implement at bitrates beyond 1 Gbit/s, espe-
cially with low latency (< 1 frame).

Production

In production, raw and uncompressed video is still by far the most common way to transmit video
information. The requirements on latency (ultra-low latency) and quality are such that compression
has not been very practical. There have been attempts, and allowing HD production video to be trans-
mitted over SD-SDI (270 Mbit/s) channels was a fairly popular way of reusing older SDI equipment
during the transition to HD, one example being Dirac Pro [19]. With the transition to 4K and beyond,
we will likely see a similar situation again.

1Outside broadcast van

4 CHAPTER 1. INTRODUCTION

In 2013, intoPIX announced a new codec - TICO [20] - which attempts to allow for compression
in the production space. It targets 1:2 to 1:4 compression while being visually lossless. intoPIX states
that TICO can scale to 4K and beyond.

1.2.2 Networking and transmission technology

For distribution of content to consumers, transmission is done at a fairly modest bitrate, ≈ 10 Mbit/s
for TV channels. The challenge with broadcast distribution is that bandwidth is at a premium, and
squeezing more content into fixed-bandwidth channels is challenging. 4K, with its increased reso-
lution will certainly require more bitrate than current HD broadcasting. However, for the purposes
of this section, we only concern ourselves with transmission technology in the production domain
where we concern ourselves with physical channels. In order to transmit ever-increasing datarates
over a physical link, networking and transmission technology must evolve along with it. In pro-
duction, where only the highest quality is acceptable, the boundaries for transmission technology is
pushed.

Serial Digital Interface

In HD production today, HD-SDI is ubiquitous. 1.485 Gbit/s HD-SDI can support 720p/1080i/1080p30
video formats, while a less common 2.97 Gbit/s interface can support full 1080p60 video signals with
10-bit 4:2:2 sampling. A large chunk of this bandwidth is reserved for blanking intervals, ancillary
data and audio.

For 4K to be possible over SDI, newer standards are in the making, with support for 6 Gbit/s and
12 Gbit/s.

Ethernet

Ethernet is a very common interface, used for transmission of IP packets. Typical configurations
support 1 Gbit/s, 10 Gbit/s, as well as possibilities for 40 Gbit/s and 100 Gbit/s (although far less
common).

In the industry, there is a growing desire to move as much as possible over to IP-based solutions
to avoid a plethora of dedicated communication equipment 2. [21, 22] With 10 Gbit/s ethernet links,
we could either multiplex several regular HD-SDI streams into the link or one 4K stream. Another
use case is transmitting one HD-SDI stream over a 1 Gbit/s ethernet link, which is commodity even
in the consumer market.

Both 4K over 10 Gbit/s and HD over 1 Gbit/s do not fit exactly inside a single link. To en-
able this, we need a light compression scheme which can reduce the bitrate by roughly 50 %. By
compressing further, we could fit more streams inside a single link. Packet based ethernet solutions
makes multiplexing and managing these streams easy compared to the very ”raw” serial format of
HD-SDI. Multicast transmission is also possible with IP and Ethernet which enables some interesting
applications.

1.2.3 Display technology

Display technology for 4K is available from many vendors, albeit still costly. It is being marketed
actively as a new feature by TV manufacturers. It is likely that we will have to see widespread
adoption of 4K diplays before broadcasting in 4K becomes viable.

2In the desktop PC market these days, we rarely see RS-232, parallel ports and special-purpose connectors for example.
USB is everywhere.

1.3. THE LIGHT COMPRESSION TREND 5

We saw a similar situation with the transition from SD to HD. Long before broadcasting in HD
was commonplace, the push to HD was motivated partly by gaming consoles as well and Blu-Ray
video. For many, the transition from SD to HD also meant upgrading from older CRT TV sets to
LCD or plasma, which were already HD-capable anyways.

Display manufacturers have begun to see the need for compression as the bandwidths required
to transmit 4K and beyond over the consumer-oriented HDMI and DisplayPort at high frame rates is
becoming more and more difficult. VESA recently released a specification for a new visually lossless,
low-latency compression standard for display devices [23]. The recent HDMI 2.0 standard introduced
support for 4K@50/60 with a total bandwidth of 18 Gbit/s. [24]

1.3 The light compression trend
It is clear from recent announcements of TICO and VESA Display Stream Compression that light
compression will probably be a new trend in video compression. Transmitting uncompressed 4K data
(10 Gbit/s and beyond) is taxing for hardware and the industry sees that adding some compression is
easier than transmitting ever-increasing datarates.

1.4 Creating a codec from scratch
In order to meaningfully evaluate technology requirements for adapting HD-SDI to packet based IP
networks, we either need to study an existing codec design (chapter 3) in detail and/or design a new
codec based on experience from other codecs.

At the start of the project, three codecs were available to us as potential candidates for study, Dirac
Pro [25] by the BBC, TICO [20] by intoPIX and VESA Display Stream Compression [23].

Between the three, TICO was found to be a codec targeted specifically towards the ultra-low la-
tency use case in production. Unfortunately, a TICO implementation was not available for evaluation
without signing non-disclosure agreements and for the purposes of this project would be meaningless
as results could not be published.

Specifications for VESA Display Stream Compression are so recent that no implementation is
available.

An open source implementation of Dirac Pro is available, with libschroedinger. Its low-latency
implementation was found very buggy however, and for comparison or evaluation it could not be
used. It was not possible to get in touch with libschroedinger developers.

Due to the apparent lack of easily available solutions to the given problem, we designed, specified
and implemented a new video codec which aims to fulfill the challenges of ultra-low latency com-
pression of HD-SDI signals at 4K and beyond. By developing a new codec from the ground up, we
have the option to study the effect of each codec component more easily and draw more meaningful
conclusions.

The Linelet codec developed here was inspired from publically available information on TICO as
well as ideas from Dirac.

1.5 Roadmap for this project
In this project we have designed, specificed and implemented a codec from the ground-up and per-
formed subjective evaluation with experts in the field. The project was conducted roughly in this
order:

• Look at existing codecs in the lightweight compression space, identify their common features.

6 CHAPTER 1. INTRODUCTION

• Realize that neither of them had any readily available public solution which could be tested.
Instead, design a codec based on similar principles, find possibilities for improvements.

• Implement this codec in software with the C programming language, create a public API for it
(liblinelet) and implement support for Linelet compression in libavcodec/FFmpeg 3 for conve-
nient testing.

• Test and refine the codec design on various test sequences, finding a sweet spot for psychovisual
tuning.

• Add regression tests and optimize the software implementation for multithreading and SIMD
for an overall ≈ 12-16x increase in performance over a simple C solution.

• Implement a command-line interface for convenient encoder and decoder support as well as
tools for measuring PSNR, SSIM and similar.

• Design a subjective test of Linelet based on guidelines from ITU-R BT.500 [26] with help from
experts in the field.

• Perform a subjective evaluation with experts using some critical test sequences.

• Evaluate the results from said test.

1.6 Thesis layout
In chapter 2, we present the basic theory for image and video compression. We look at the state-
of-the-art of ultra-low latency video compression in chapter 3. The Linelet codec is described in
chapter 4.

Testing methodologies for objective and subjective evaluation are found in chapter 6 and chap-
ter 5 respectively. Results for both objective and subjective evaluations are presented in chapter 7.
Discussion and conclusion are finally presented in chapter 8 and 9 respectively.

3http://www.ffmpeg.org/

Chapter 2

Video compression

In this chapter, we aim to explore the basics for various techniques which are commonly used for
image and video compression today, creating a theoretical basis for the development of the Linelet
codec (chapter 4). It is expected that the reader has basic knowledge of digital signal processing.

We also aim to look at various types of video codecs available today, study their strengths and see
where Linelet fits in (section 2.8).

2.1 Introduction

Video compression deals with the compression of still images put in a sequence. Theory for image
compression also applies to video compression.

Images and videos tend to contain very redundant information. The main theme of image and
video compression therefore revolves around exploiting various kinds of redundancies.

Only exploiting the redundancies directly leads to mathematically lossless compression, where
we can reconstruct an image or video sequence perfectly equivalent to the original, but (hopefully)
using fewer bits than the original source.

In lossy compression, we reduce bitrate further by introducing errors in the reconstruction. If
errors are introduced in a way that is not normally perceptible by humans, we call it visually lossless
compression.

2.1.1 Spatial redundancy

In a still image, neighboring pixels are usually highly correlated. Exploiting this redundancy is the
goal of signal decomposition (section 2.2).

2.1.2 Temporal redundancy

In video, there is very significant redundancy between successive frames which can be exploited.
Video codecs which exploit temporary redundancy typically fall into the hybrid video codec class
(section 2.8.1). It is not always desirable to exploit this redundancy due to its complexity.

2.1.3 Spectral redundancy

The most common way to represent color digitally is using the RGB (red, green, blue) system. How-
ever, there is some redundancy between these color channels which can be exploited.

7

8 CHAPTER 2. VIDEO COMPRESSION

2.1.4 The human visual system

The human visual system (HVS) is not perfect, and it has several factors which when taken into
account can allow more compression.

• Less sensitive to color than intensity

• Less sensitive to high spatial frequencies

This in turn means we can treat more video information as redundant which allows better compres-
sion.

2.2 Signal decomposition

Signal decomposition attempts to exploit spatial redundancies in an image. In image and video
codecs, we typically employ a time-to-frequency transform as we realize that highly correlated pixels
translate to energy concentrated in the lower-frequency bands.

In essence, we utilize redundancy in the signal by splitting the information into an important part
(low-pass) and a less important part (high-pass). This step is lossless, but it is vital to achieve good
compression.

Popular alternatives for this kind of approach are based on Discrete Cosine Transform (DCT) or
Discrete Wavelet Transform (DWT). Both transforms work in the frequency domain, but in signifi-
cantly different ways.

2.3 Discrete cosine transform

The Discrete Cosine Transform [27] expresses a sequence of data as a sum of oscillating cosine
functions at different frequencies (including DC). It is a special case of the Discrete Fourier Transform
(DFT) for real data. Symmetric extension is assumed which makes the resulting coefficients real.

The DCT has a property of energy compaction, which means the energy of the resulting coeffi-
cients is heavily concentrated in a few coefficients around the DC component. The DCT is a very
good approximation to the theoretical Karhunen-Loève transform (KLT) which optimally decorre-
lates coefficients. The DCT approximation only holds for highly correlated samples, which is the
case for most still images.

Applying the DCT to an entire image is not computationally practical, so in order to apply the
DCT to an image, one typically subdivides the image into N-by-N blocks. These blocks are then
independently transformed. Typical block sizes range from 4x4 to 16x16.

The one dimensional forward DCT can be expressed as such:

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
k = 0, . . . , N − 1 (2.1)

For two-dimensional transforms, DCT transforms are separable just like the DFT, and 2D trans-
forms can be achieved by transforming vertically and horizontally. After transforming an 8x8 block,
we get 64 coefficients which represent basis functions which oscillate at different frequencies (fig-
ure 2.1).

2.3. DISCRETE COSINE TRANSFORM 9

Figure 2.1: Basis functions for the 8x8 2D DCT [1]

Just like the fast fourier transform, a fast cosine transform optimization exists as DCT is just a
special case of DFT.

The inverse DCT transform takes the coefficients and adds the 64 different basis functions together
with weighting factors represented by the DCT coefficients.

2.3.1 Frequency vs. time resolution

Just like the discrete fourier transform, the choice of block length determines time and frequency
resolution.

Modern DCT-based codecs allow the block size to vary, which can allow a codec to select whether
or not time resolution (smaller block sizes) or frequency resolution (larger blocks) is most important.
It is up to an encoder to find the best choice of block sizes.

2.3.2 Integer approximations

While the conventional DCT is defined with real numbers (cosine), integer approximations exist,
which allow perfect reconstruction.

H.264 and HEVC use the integer transform which is an approximation to the DCT. Perfect re-
construction is important as it allows H.264 and HEVC video streams to have exactly one correct,

10 CHAPTER 2. VIDEO COMPRESSION

compliant output after decoding. When using the floating point DCT one needs to make approxima-
tions, and some rounding errors between implementations must be assumed.

2.3.3 Blocking artifacts and de-blocking

A common problem with block-based DCT codecs (block based in general) is that transforming
blocks independently can cause discontinuities when the blocks are quantized and transformed back
to the spatial domain (figure 2.2).

Figure 2.2: Illustration of severe blocking artifacts [2]

To remedy this, a deblocking filter can be run on the block boundaries after decoding. The de-
blocking filter must be adaptive and try to determine if the discontinuity observed was caused by
quantization or if it was caused by actual details in the source image.

2.3.4 Lapped transform

A way of avoiding blocking artifacts is letting the DCT transform basis functions overlap, i.e. using
basis functions which overlap into other blocks. The use of an overlapped DCT has been common in
audio codecs by the modified discrete cosine transform (MDCT), but its use in video codecs is not
very common. The JPEG XR ISO standard, as well as the upcoming Daala codec from xiph.org use
some form of overlapped DCT transform [14].

2.4 Discrete wavelet transform

The discrete wavelet transform [28] can be seen as a 2-band sub-band coding technique. The wavelet
transform low- and high-pass filters the input signal. After filtering, the low- and high-passed signals
are then decimated by two. Using the two decimated bands, it is possible to recover the original signal
by interpolating and applying synthesis filters as in figure 2.3.

2.4. DISCRETE WAVELET TRANSFORM 11

Analysis filters Synthesis filters

Decimation Interpolation

H1(z)

H2(z)

2:1

2:1

1:2

1:2

G1(z)

G2(z)

Approximation coefficients

Detail coefficients

+

Figure 2.3: Critically sampled filterbank

The low- and high-pass filters used are designed specifically to allow recovery of the source signal
even after decimation. Decimation adds aliasing to the two resulting signals, but the aliasing effects
can cancel each other out after synthesis.

If there are strong correlations in the input signal, the power of the resulting high-pass band is
significantly lowered.

For two-dimensional signals like images, the transform is applied in two directions with low-
and high-pass filters being applied vertically and horizontally, which gives four different sub-bands
instead of two.

For images, there are still significant redundancies left in an image after one transform. For further
decomposition, only the low/low-pass band (LL band) is filtered as the high-passed coefficients are
usually fairly well decorrelated already.

Figure 2.4 shows an image transformed with DWT in two dimensions. The resulting LL band is
transformed again into four bands which gives us two decomposition levels.

12 CHAPTER 2. VIDEO COMPRESSION

Figure 2.4: A 2-level 2-dimensional DWT [3]

2.4.1 Naming convention of wavelet subbands

With wavelet transforms, it is necessary to have a structured way of referring to the individual sub-
bands by name. In this report, we will use the convention of referring to sub-bands by decomposition
level and sub-band within that decomposition level.

With one level of decompositon, we have LL1, LH1, HL1 and HH1 bands. The first letter refers
to the horizontal sub-band and second letter the vertical sub-band. I.e. after a horizontal low-pass
and vertical high-pass we have the LH band. For each decomposition level, we increase the index
by one. If we want two decomposition levels, we can transform the LL1 sub-band, and obtain LL2,
LH2, HL2 and HH2 bands. As these four bands allow us to recover LL1, we can discard LL1.

2.4.2 Frequency vs. time resolution

A property of the wavelet transform is that frequency and time resolution varies. In the highest
frequency band, the frequency resolution is very low (half the original spectrum), but time resolution
is very high. In progressively lower frequency bands, the time resolution lowers while frequency
resolution increases (figure 2.5). This follows the uncertainty principle of signal processing that we
cannot obtain good frequency resolution and time resolution simultaneously.

2.4. DISCRETE WAVELET TRANSFORM 13

Figure 2.5: Frequency vs. time resolution for fourier transform and wavelet transforms [4]

In practice, this means that wavelet transforms and DCT have different characteristics when faced
with detailed parts (high frequency) of an image. DCT can express a high-frequency texture with a
single coefficient due to its high frequency resolution but low time resolution.

With its high time resolution at higher frequencies, edges can be represented with a few wavelet
coefficients. Sharp transitions tend to cause all coefficients in a DCT block to be affected as the
frequency response of a delta-impulse is uniform for all frequencies. This effect can often be seen as
mosquito noise in DCT-based codecs (figure 2.6). With DWT, the resulting artifacts (figure 2.7) are
not ”randomly” spread around like in JPEG, but are more compactly centered around the source.

Figure 2.6: Effect of low time resolution in JPEG (8x8 DCT)

14 CHAPTER 2. VIDEO COMPRESSION

Figure 2.7: Effect of higher time resolution in JPEG 2000 (DWT)

2.4.3 Advantages of DWT

Flexibility

Wavelet transforms are flexible in that the choice of filters is arbitrary (section 2.4.5).

Scalability

Wavelet transforms are scalable in that during decoding of an image, one can stop decoding at the
desired resolution, discarding higher resolution detail. E.g. we could simply discard the detail coeffi-
cients (figure 2.3) and only use the approximation coefficients.

Avoiding blocking artifacts

As the wavelet transform has no block boundary, blocking artifacts can be avoided entirely.

2.4.4 Disadvantages of DWT

Blurring artifacts

A common problem with wavelet-based compression is blurring. The blurring is introduced if the
power of high-frequency information is reduced too much during quantization (section 2.7). Zeroing
out the high-pass band is equivalent to low-pass filtering the original image, which shows up as
blurring.

Ringing artifacts

Depending on the wavelet filters used, ringing around edges can be a common artifact. The wavelet
filters used are usually ”ringy” in nature (negative values in filter coefficients), and a high-pass wavelet
coefficient represents a small ”ringing” region of the image. Introducing error to such a wavelet
coefficient is thus the same as adding a small ringing function to the resulting image.

2.4. DISCRETE WAVELET TRANSFORM 15

2.4.5 Common wavelet filters
Haar wavelet

The Haar wavelet is the simplest wavelet transform possible. It consists of taking the average (low-
pass) and difference (high-pass) of two samples.

H1(z) =
1 + z√

2
(2.2)

H2(z) =
z − 1√

2
(2.3)

While wavelet transforms in general avoid blocking artifacts, the Haar wavelet does not avoid
it. A decimated approximation sample and detail sample is only influenced by two samples, meaning
that two neighboring filtered samples are not computed from the same samples, i.e. a block transform.

Le Gall 5/3 wavelet

The 5/3 Le Gall wavelet is a reversible wavelet transform. It is particularly popular for mathemati-
cally lossless compression. It is also popular for its very simple implementation, which requires no
multiplications to implement. It is the default filter used for lossless compression in JPEG2000 [16].

|n| Analysis H1 Analysis H2 Synthesis G1 Synthesis G2

0 6/8 1 1 6/8
1 2/8 -1/2 1/2 -2/8
2 -1/8 -1/8

Table 2.1: Le Gall 5/3 wavelet filter coefficients

CDF 9/7 wavelet

The CDF 9/7 wavelet is an irreversible wavelet transform due to its floating point definition. It is
however recognized as a superior filter for lossy compression. It is the default filter used for lossy
compression in JPEG2000.

|n| Analysis H1 Analysis H2 Synthesis G1 Synthesis G2

0 +0.60294 +1.11508 +1.11508 +0.60294
1 +0.26686 -0.59127 +0.59127 -0.26686
2 -0.07822 -0.05754 -0.05754 -0.07822
3 -0.01686 +0.09127 -0.09127 +0.01686
4 +0.02674 +0.02674

Table 2.2: CDF 9/7 wavelet filter coefficients

2.4.6 Signal extension
When applying the wavelet transform at image boundaries, one must decide how samples outside
the image boundary should be treated. The method employed by JPEG2000 involves mirroring input
samples, i.e.

sext(n) =

s(−n) if n < 0

s(2nmax − n) if n > nmax

s(n) otherwise
(2.4)

16 CHAPTER 2. VIDEO COMPRESSION

where s(0) is the first sample.

2.4.7 Lifting implementation of wavelet transforms
Lifting is a method to more efficiently implement the filter bank used in wavelet transforms. The
lifting method updates input samples with filtered versions of other samples. These filtered samples
are then reused to compute and update other samples, where each iteration is called a lift. This
effectively reduces required computation by a factor of 2 compared to a convolution and decimation
approach as illustrated in figure 2.3.

Lifting also has the advantage of allowing an in-place transform, without consuming extra mem-
ory. Lifting methods also ensure that the transform is perfectly reversible as one can simply do the
lifting step in reverse order to get back to the original input.

The general lifting approach

Assume a block of N samples after lifting step l, xl[n]. For each lifting operation, we update one of
the variables based on other samples and other samples remain unchanged. The functions f l(·) can
be arbitrarely chosen. When updating xl[n], it is also possible to invert the result, as noted with the kl

factor.

xl+1[n] = kl · xl[n] + f l
(
{xl[m]},m ∈ [0, N − 1] ,m 6= n

)
, k ∈ {−1, 1} (2.5)

xl+1[m] = xl[m],m 6= n (2.6)

To reverse the operation, we simply step backwards, reversing all lifting steps.

xl[n] = kl · xl+1[n]− kl · f l
(
{xl+1[m]},m ∈ [0, N − 1] ,m 6= n

)
, k ∈ {−1, 1} (2.7)

xl[m] = xl+1[m],m 6= n (2.8)

While the wavelet filter coefficients in section 2.4.5 are defined in terms of convolution, it is
possible to find a lifting style implementation for them.

2.5 Prediction filter
In most block-based DCT codecs, a prediction filter is used in cooperation with DCT to decorrelate
over block boundaries. The prediction is usually done in the spatial domain, before DCT of prediction
error is performed. Several mathematically lossless video codecs use prediction filters exclusively to
exploit redundancies.

Prediction filters generally work by knowing previously decoded symbols (causal neighbors).
E.g., a simple prediction filter can work by subtracting the mean of neighboring causal symbols

P̂ (x, y) =
P (x− 1, y − 1) + P (x, y − 1) + P (x− 1, y) + P (x+ 1, y − 1)

4
(2.9)

One would then encode the prediction error P (x, y)−P̂ (x, y) instead of just P (x, y). The decoder
can reverse this by adding the prediction error to the predicted value.

To ensure correct decoding, the prediction must happen in-loop, i.e. the values used for prediction
must be the actual (distorted) decoded samples which is the only data the decoder has access to.

A downside with prediction is that it enforces a certain order on the encoding and decoding, which
can make parallelization techniques less efficient.

Prediction doesn’t necessarily have to be done between pixels of the same frame (intra-prediction),
it can also be done between frames of video (inter-prediction, motion compensation). Prediction

2.6. ENTROPY CODING 17

between frames is such a good way to exploit redundancy that hybrid video codecs 1 are in a class of
their own (section 2.8.1).

2.6 Entropy coding
After transform, prediction and quantization (section 2.7), the resulting coefficients (symbols) should
be encoded using as few bits as possible. The information entropy formula by Shannon [29] describes
the theoretical boundary for lossless compression when the probability distribution of symbols is
known.

H(X) = E{I(X)} =
∑
i∈Ax

P (i) · log2

(
1

P (i)

)
(2.10)

where H(X) is the minimum number of bits needed per symbol on average and I(x) is the infor-
mation gained by seeing symbol x. Rare symbols contain more information, and common symbols
contain little information. Packing coefficients in the bitstream while approaching the theoretical
optimum is the goal of the entropy coder.

2.6.1 Variable length coding
A well known example of variable length coding is the Huffman code. The Huffman code assigns a
fixed number of bits to every symbol. Common symbols are coded with fewer bits and uncommon
symbols are coded with more bits. Table 2.3 shows the optimal encoding of a simple distribution.

Symbol Probability Code (binary)
0 1/2 0
1 1/4 10
2 1/8 110
3 1/8 111

Table 2.3: Optimal variable length code for a simple distribution

The weakness of variable length coding is that one must spend at least 1 bit to encode a symbol.
This can be a great source of redundancy when the entropy H(X) is very low. A way to work
around this limitation is to encode more symbols at a time to ensure that no single ”super-symbol”
have entropy less than one bit, e.g. creating a codebook which considers all permutations of N
concatenated symbols. The limiting factor however is that the code alphabet grows exponentially.

Another weakness is that variable length codes cannot easily adapt to changing probability distri-
butions. The code is typically precomputed with an assumed probability distribution. To adapt, one
could compute several different code books and dynamically change these while coding, but this also
does not really scale beyond a couple codebooks.

2.6.2 Arithmetic coding
Arithmetic coding is a more efficient and computationally expensive compression algorithm.

The main improvements of arithmetic coding over variable length coding are that symbols can be
coded with fractional bits. Additionally, the estimation of symbol probabilities can be done dynami-
cally without recomputing any tables.

1Hybrid refers to both transform coding and prediction based coding

18 CHAPTER 2. VIDEO COMPRESSION

The main idea of arithmetic coding is to encode incoming symbols as two numbers between 0
and 1 with infinite precision. The difference between the two numbers express the probability of
having seen all the accumulated symbols so far. The arithmetic encoder encodes a binary number
range which unambiguously lies between the two numbers. The maximum number of bits required to
encode this range is equal to

B =

⌈
log2

(
1

P (x)

)⌉
+N (2.11)

which shows that as the message grows large, the constant N term becomes insignificant, and we can
approach the theoretical optimal.

To make the algorithm practical, several approximations must be made. Finite precision of proba-
bilites along with finite precision of the accumulated probability ensures that some redundancy must
be accepted.

If the symbols to be encoded are binary, a look-up table simplification can be made. All current
video compression standards encode binary decisions. A well known example is the CABAC encoder
found in H.264/AVC and H.265/HEVC.

2.6.3 Estimating probabilities

Optimal entropy coding relies on knowing the correct probability distributions. In practical video
compression, one can only get a rough estimate of these distributions, and distributions are not con-
stant across a video or image.

Arithmetic coders usually solve this by using a frequency count estimate or a finite state machine.
Encoders and decoders must have the exact same probability estimates for this to work, so the exact
probability estimation method must be rigorously defined by a codec.

2.7 Quantization

After transforming and predicting a video frame, the redundancy has been reduced, but it is inher-
ently a lossless process. An inverse transform would perfectly recover the original data assuming the
transforms are exact reversible.

To reduce the entropy of the resulting signal even further, the coefficients are quantized. This
allows the coefficients to be represented with fewer bits. Both the DCT and DWT transforms tend
to make most high-frequency samples close to 0. Quantizing these coefficients often produces large
strings of zeroes, which is very beneficial for entropy coding later on.

Quantizers can be linear or non-linear. For video compression, linear quantizers tend to be most
useful as they are very simple to implement. Two well known non-linear (logarithmic) quantizers
include a-law and µ-law, schemes used for telephony.

2.7.1 Round-to-nearest

A common linear quantizer. If ∆ is power-of-2, it can be implemented as a binary shift operation.

Q(x) =

⌊
x

∆
+

1

2

⌋
(2.12)

x̂ = Q(x) ·∆ (2.13)

2.8. VIDEO COMPRESSION TRADEOFFS 19

2.7.2 Deadzone

As entropy coding favors long strings of zeroes, it can be beneficial to force values which come close
to 0 after quantization to 0 for the purposes of avoiding breaking a long string of zeroes.

Q(x) = sign(x) ·
⌊
|x|
∆

⌋
(2.14)

This quantization approach ensures that the region around 0 is twice as large as for any other
quantization level. In the literature, a deadzone quantizer is good for lower bitrates, while uniform
quantization is very-near optimal for higher bitrates. [30]

Deadzone adds more distortion than a round-to-nearest quantizer due to the larger region around
0, but ideally, it will reduce entropy better than round-to-nearest such that the rate-distortion perfor-
mance is overall improved.

Dequantization of deadzone is slightly more complicated than round-to-nearest as the result de-
pends on the sign.

x̂ = sign (Q(x)) ((|Q(x)|+ δ) ·∆) (2.15)

where δ is generally 0.5. It is important to clarify that sign(0) = 0.

2.7.3 Vector quantization

Vector quantization is a method where multiple input values (vector) are mapped to a single quantized
index.

In theory, vector quantization can exploit redundancies between values and thus obtain better
rate-distortion properties than scalar quantization. It is possible to obtain theoretically optimal rate-
distortion by use of vector quantization only without signal decomposition, but this is mostly a theo-
retical result as one will potentially need very large vectors, and even larger code books which scale
exponentially in size with vector length.

In practice, the initial signal decomposition step is assumed to mostly decorrelate all samples.
When values are perfectly decorrelated, simple scalar quantization is just as good as vector quantiza-
tion and far simpler.

2.8 Video compression tradeoffs

In video compression, there are several trade-offs which must be made in the design, which makes
creating the ultimate video codec for all cases almost impossible.

Some desirable properties of video codecs are:

• Low complexity

• Good compression vs. quality

• Low latency

• Deterministic and simple rate control

As there are different use cases for video compression, several types of video codecs exist which
attempt to optimize for their particular use cases.

20 CHAPTER 2. VIDEO COMPRESSION

2.8.1 Hybrid video codecs
Hybrid video codecs attempt to optimize the compression rate down to bitrates suitable for media end-
consumers (1:100 to 1:1000 compression rates). To achieve this degree of compression, correlation
in-between frames (temporal redundancy) is exploited using motion compensation, a method where
a predicted frame is synthesized from other frames with offsets which correspond to motion in the
video.

The name hybrid comes from the combination of a transform codec and a predictive codec. The
current frame is predicted from previous (and/or future) frames with motion compensation, and the
prediction error is encoded as a still image with transform coding. To allow seeking and error recov-
ery, frames have to be encoded without reference to other frames (intra) at regular intervals.

Hybrid video codecs are almost always based on the DCT, as the block based structure fits well
with motion compensation, which is also performed in a block-based fashion. Dirac is a notable
exception to this, which uses DWT with overlapped block motion compensation (OBMC), but it has
been found not competitive with recent DCT-based hybrid video codecs.

There have been attempts at 3D wavelets - wavelets which also filter temporally - but it has not
been very successful.

Hybrid video codecs have very good compression, but tend to have high complexity, high latency
and non-trivial rate control. The drawbacks can be reduced by sacrificing compression performance.

Some hybrid video codecs

• H.265/HEVC

• H.264/AVC

• Theora

• Daala (research)

• VP8/VP9

• Dirac

2.8.2 Mathematically lossless intra
This type of video codec is designed to be an alternative to storing raw uncompressed video. These
are typically used for archival and/or video editing purposes and are useful in cases where only 100%
perfection in reproduction is allowed.

The focus of these codecs is supporting high bit-depths, and to have good compression/speed
tradeoffs. They generally do not exploit temporal redundancies as it makes working with the image
material difficult. If one were to change one frame, many encoded frames would be affected as they
all depend on each other via prediction.

Some lossless intra codecs

• FFV1

• HuffYUV

• H.264/AVC, using QP = 0

• UTVideo

• MagicYUV

2.9. RATE CONTROL AND LATENCY 21

2.8.3 Broadcast contribution

Broadcast contribution is a class of video codecs that are designed to transmit very-high quality video
between professional producers and consumers of video. Cases here can include live feeds from
sporting events and concerts as well as transmission of material in-between studios. Compression
rates here are typically 1:10 (100-200 Mbit/s for HD) [31].

Codecs for contribution must allow repeated encoding/decoding without significant loss in qual-
ity [32], have low latency (approx. 1 frame or less), reasonable complexity and deterministic rate
control. Degradations in quality should also not significantly affect the result of the final encode
targeted end-consumers.

Due to the requirement of repeated encoding/decoding, contribution codecs are intra-only. Hybrid
video coding is not very practical for this use case as editing a single frame requires decoding and
re-encoding an entire GOP.

Some broadcast contribution codecs

• JPEG2000 broadcast profile

• H.264 intra/AVC-I

2.8.4 Transmission media adaptation

Transmission media adaptation is a class of video codecs where very low latency (≤ 1ms), very low
complexity and deterministic rate control are top priority. This completely sacrifices compression
performance, but these codecs compensate by operating at very high bit rates (typically 1:2 to 1:4
compression ratios).

Proposed use cases for this class of codecs is adapting HD-SDI signals to packed based IP net-
works, or lower bit-rate requirements for transmission equipment at higher resolutions.

Some transmission media adaptation codecs

• Linelet

• TICO

• Dirac Pro - Low Delay

• VESA Display Stream Compression

2.9 Rate control and latency

In real-time scenarios such as contribution, transmission media adaptation and real-time streaming, a
maximum latency constraint as well as a limited bandwidth constraint must be met at the same time.

A problem with entropy coding is that one does not know the final bitrate until one has actually
performed entropy coding. This has the effect that achieving the desired bitrate becomes a feedback
system where one must monitor the resulting bitrates, and adapt accordingly. The adaptation might
have to pessimize its estimation to ensure that maximum buffer size constraints are guaranteed to be
met. In worst case, one might have to re-encode parts of the video to ensure that buffer size constraints
are met, or simply discard data.

22 CHAPTER 2. VIDEO COMPRESSION

2.9.1 Constant bit rate
Constant bit rate allocates a fixed bandwidth per unit time. This ensures minimum latency, but qual-
ity cannot be constant. Constant bit-rate rate allocation aims to optimize quality within the bitrate
constraint.

Embedded entropy coding

In many wavelet entropy coding schemes such as EZW [33], SPIHT [34] and EBCOT (JPEG2000) [16],
a bitstream is organized such that a prefix of the stream is a lower-quality representation of the orig-
inal bitstream. When such an entropy coding scheme is used, constant bit rate becomes trivial to
implement as one can simply stop entropy coding when the desired bitrate is met. This scheme works
by successively refining the resulting image where most significant information is moved first in the
stream.

2.9.2 Variable bit rate with constrained buffers
Variable bit rate allows bitrates to temporarily increase beyond the average bitrate to be able to encode
video with a more uniform quality. As the bitrate is allowed to increase, the receiver must account
for increases in transmission time which adds latency as the receiver must maintain a sliding window
buffer to soak up variability in the bitrate.

Allowing variable bit rates lessens the problem of rate control as bitrates are allowed to fluctuate
slightly per frame. With hybrid video codecs, a scheme like this is natural as intra-only frames (I-
frames) take up far more bandwidth than motion-compensated frames (P-frames).

2.9.3 End-to-end latency
When discussing end-to-end latency, there are several factors which come into play. Total end-to-end
latency is the sum of all latencies in the entire chain (figure 2.8).

Camera Encoder Channel Buffer Decoder Display

Figure 2.8: A real-time streaming system

• Camera latency - The latency from first scanline is seen at camera lens until the camera sends
data to the encoder.

• Encoder latency - The latency from data is received at the encoder until it transmits encoded
data for the input data.

• Channel latency - Network latency. Time from a packet is sent until it is received at the
decoder.

• Buffer latency - A buffer is an intentional latency added to compensate for variable delay
other places in the system. A display needs to output image data at a constant rate, but the
streaming system might have jitter several places in the system making smooth video otherwise
impossible.

• Decoder latency - Time for encoded data to appear at decoder until it is decoded and sent to
buffer.

• Display latency - Latency of the display system.

2.9. RATE CONTROL AND LATENCY 23

For an encoder, camera and display latencies are irrelevant as they are fixed parameters outside
the scope of a codec. The channel is also mostly irrelevant. The only restriction of the channel is the
bitrate. If our average bitrate is less or equal to channel bitrate, we assume it adds a fixed latency.

This leaves encoder, decoder and buffer latencies. Depending on the rate control method used, we
might require the use of a buffer. For variable bit rate with constrained buffers we intentionally add
latency to be able to temporarily use higher bitrates than the average. To achieve minimum latency,
we must use constant bit rate.

This leaves encoder and decoder latencies. These latencies are highly codec dependent, but we
can study the latency of a hypothetical low-latency codec. We assume that the codec implementation
is pipelined, i.e. the encoder and decoder do several steps in parallel at the cost of added latency.

The encoder pipeline

The encoder has three tasks:

• Receive input data

• Encode input data

• Transmit encoded data

If we assume the codec encodes one scanline at a time, a pipelined encoder architecture can do
these steps simultaneously:

• Receive scanline N

• Encode scanline N − 1

• Transmit scanline N − 2

We see that the latency of this encoder is 2 scanlines. Instead of transmitting the ideal scanline N ,
N − 2 is transmitted. The time to transmit a scanline cannot exceed the time to receive one scanline
or the pipeline would stall, so we assume constant bit rate.

The decoder pipeline

The decoder has three tasks as well:

• Receive data from buffer

• Decode input data

• Transmit decoded data to display

Again, we assume a pipeline, and 2 scanline latency. The overall latency is then 4 scanlines. For
a (3840x2160) 4K video at 60 Hz we have a latency of 31 µs contributed from encoder and decoder
alone for constant bit rate.

24 CHAPTER 2. VIDEO COMPRESSION

Chapter 3

State of the art, ultra-low latency codecs

During the initial research for codecs which would fit the problem description, three potential codecs
were identified. Of these three codecs, only Dirac Pro has a publicly available specification which
can be studied in detail. [35]

3.1 TICO
In 2013, intoPIX announced a new codec, TICO [20], which is designed to tackle the challenges of
ultra-low latency compression at very high resolutions.

From publicly available information [36], the codec is based on compressing single scanlines.
A Le Gall 5/3 wavelet transform is applied to the scanline horizontally. The resulting wavelet co-
efficients are represented with sign-magnitude. To meet target bitrates, least-significant bits can be
discarded, which should be equivalent to deadzone quantization.

Wavelet coefficients are grouped in precincts. It is not clear from the presentation exactly how the
wavelet coefficients are packed, but it appears there is no conventional entropy coding applied to the
coefficients.

At the time, there is no publicly available data on how well the codec performs in practice. Nor is
there publicly available software which can be used to make evaluations.

TICO is designed to be implemented on an FPGA. It does not require external memory and can
be implemented very cheaply on minimal silicon.

3.2 Dirac Pro (VC2) - Low Delay
Dirac and Dirac Pro are codecs developed by the BBC [25]. The specification defines a hybrid video
codec based on the discrete wavelet transform as well as a intra-only production oriented codec which
is a subset of the full Dirac specification.

Dirac supports a wide range of wavelet filters from the simplest Haar transform to even longer
wavelet filters than the CDF 9/7.

Dirac Pro supports a low-delay syntax profile which enforces a fixed bitrate per image slice,
suitable for very low-delay operation. In addition, arithmetic coding is turned off. The slice structure
appears to be fairly flexible, with possibilities of subdividing both horizontally and vertically. For
very low-latency operation, one could use a slice height equal to a few scanlines.

Even in low-latency mode where arithmetic coding is turned off, Dirac Pro employs an exp-
golomb variable-length code to encode wavelet coefficients.

Unlike TICO, Dirac Pro Low delay allows for vertical wavelet transforms as well as horizontal,
which should in theory allow for better compression as vertical redundancies can be exploited as well.

Dirac also adds intra prediction of DC wavelet coefficients.

25

26 CHAPTER 3. STATE OF THE ART, ULTRA-LOW LATENCY CODECS

3.3 VESA Display Stream Compression
In 2014, VESA announced a new visually lossless compression standard designed for use in the
physical link layer of transmitting video data to displays [23]. It is stated to operate at 8 bit/pixel, a
compression ratio of 1:3 for 8 bit per channel video data (24 bpp).

The codec is based on DPCM, indexed color history (ICH), rate control and some form of entropy
coding. It is based on adaptive prediction to handle challenges with computer graphics. Computer
graphics tend to have many flat regions (very easy to code), but some regions with high amounts
of detail which is difficult to encode with a single toolkit. Like TICO, it is scanline oriented. For
colorspace transform, it uses the reversible YCgCo transform.

3.4 Comparison
These three codecs do not have any obvious similarity in the design. Two of them are based on
wavelets (TICO, Dirac), and two of them are based on compressing single scanlines (TICO, VESA).
Two of them have some kind of entropy coding scheme of coefficients (VESA, Dirac), but there is no
codec design that applies to all of them.

In terms of simplicity, TICO is likely a winner. There is even less information on the internal
design of VESA DSC, so it’s not clear if VESA DSC is actually simpler.

Dirac, even in low-latency mode appears to be on the complex side. The use of an exp-golomb
variable length code suggests that the Low Delay syntax is just a simplified version of the full Dirac
specification.

Chapter 4

Linelet codec

4.1 Overview

The linelet video codec developed in this project is designed to address several goals which must be
met to be useful for the purpose of adapting HD-SDI signals to ethernet and production.

• Ultra-low latency, end-to-end codec latency should be a few scanlines.

• Ultra-low complexity, the implementation should be simple enough to allow tiny hardware
implementations and a throughput of several Gbit/s on off-the-shelf PC hardware.

• Performance scalability, the codec should facilitate a highly parallelized implementation on
PC hardware (at cost of latency). Efficient GPGPU implementations should also be feasible.
The design should also allow fine-grained parallelism to facilitate use of SIMD-like process-
ing 1.

• Deterministic rate-control, the implementation should be able to easily target any bit-rate, e.g.
an encoded scanline must be able to fit inside a fixed buffer size. Ideally, rate control decisions
should be possible to make before any entropy coding is done.

• Visually lossless compression, only light compression rates are required to fit HD-SDI pay-
loads into ethernet links, but the resulting artefacts must remain imperceptible to human eyes.
Bitrates from 1:2 compression down to 1:4 compression should remain visually lossless for all
sensible material.

• Mathematically lossless, the codec should be able to target mathematically lossless compres-
sion. When it is not possible to fit mathematically lossless data into buffers, the quality (visually
lossless) should be gracefully degraded to meet required bit rates.

• Robustness, decoding and recompressing the video stream up to 7 times (EBU requirement)
should be possible without any significant loss in quality. The codec processing should be
designed so that errors do not accumulate significantly.

• High bit-depth, in production, 10-bit per color and beyond is commonly used. The codec
should support higher bitrates with one common processing chain.

1Single instruction, multiple data

27

28 CHAPTER 4. LINELET CODEC

Color transform /
DC shift

Inter-slice prefiltering
(optional)

Discrete Wavelet Transform
(scanlines = 1 => horizontal only)

Rate allocatorQuantizerBitstream packing

Input video slice
(1 - 16 scanlines)

Channel

Figure 4.1: Overview of the Linelet encoder

For Linelet, we chose a discrete wavelet based encoder. Each step of the encoder was designed
with processing requirements in mind. Especially the bitstream packing was designed for optimal
speed. It sacrifices compression efficiency for performance. The design of the bitstream packing
also affects the rate allocator, which can target a fixed bitrate before any encoding is performed.
Performing rate control before any encoding greatly reduces the complexity of the implementation.

All processing (except for quantization) in Linelet are all fully reversible ensuring fully lossless
and lossy encoding with the same toolset. The fully reversible nature of Linelet also allows successive
decoding and encoding to be performed with minimum additional loss (usually zero additional loss).

4.2 Splitting images into slices

To achieve ultra-low delay operation, the encoder must start sending out packets as soon as source
image data is available. Due to bandwidth constraints of transmission cables and hardware, scanlines
of the input image are assumed to be received in raster order one after another with a time delay.

If the encoder needs to wait until the entire image is received to begin encoding, an entire frame
of latency is already added to the end-to-end latency.

To alleviate this, it was deemed necessary to split the source image into slices, sub-images which
can be decoded and encoded independently. Slices are encoded and treated as separate entities which
makes it feasible to begin encoding and transmitting as soon as the corresponding sub-images are
received at the encoder.

The slice concept is found in several video codecs, e.g. in H.264, FFV1 and JPEG2000 (where
the concept is dubbed tiles). While H.264 and JPEG2000s slices/tiles are very flexible in which parts
of the image to put into a slice, a Linelet slice consists of a fixed number of scanlines.

Slices also allow completely parallel encoding of the input image. Fully parallel encoding however
requires more slices to be buffered up at the same time, so the latency must increase. Parallelizing
an encode on the slice level is however mostly useful for software implementations where ultra-low
latencies are not possible or meaningful anyways.

The number of scanlines supported was chosen to be in the range of 1 to 16. Increasing the number
of scanlines to 32 and beyond was not found to meaningfully increase compression performance.
Increasing the possible number of scanlines makes hardware decoding costlier to implement (more
memory required to decode all valid bitstreams) and latency would increase.

4.3. COLORSPACE 29

4.3 Colorspace

Linelet supports two representations of color images. While RGB is generally used as the final color
representation on display devices, it is possible to exploit some redundancy between color channels
by using a luminance/chroma representation (YCbCr).

There are several standardized ways for converting between RGB and YCbCr, which makes talk-
ing about YCbCr color spaces less useful without also specifing which particular color matrix is used.

4.3.1 Reversible color transform

The reversible color transform (JPEG2000 RCT) is designed to be able to losslessly represent RGB
while getting some gain by reducing the redundancy between channels.

Y =

⌊
R + 2G+B

4

⌋
− 2bits−1 (4.1)

Cb = B −G (4.2)

Cr = R−G (4.3)

The subtraction of 2bits−1 ensures that all components have a dynamic range centered around 0,
which is useful as Linelet (and most wavelet codecs) operate on signed coefficients.

It is important to note that while the dynamic range of Y does not increase, the dynamic range of
Cb and Cr must increase with one bit due to the subtraction.

The inverse can be computed as

G = Y −
⌊
Cb + Cr

4

⌋
+ 2bits−1 (4.4)

R = Cr +G (4.5)

B = Cb +G (4.6)

4.3.2 YCbCr

YCbCr is a representation commonly used in broadcast television (ITU-R BT.601 [37] and ITU-
R BT.709 [6]). It is related to RGB with floating point coefficients, which makes the conversion
between the two irreversible.

YCbCr as defined in BT.601 and BT.709 does not use the entire digital range of values. Some
headroom at top (240-255) and bottom (0-15) is reserved for 8-bit video. Occasionally, the full range
(0-255) is used. This also makes it necessary to specify full-range or TV-range (16-239) in some
cases.

As Linelet wants input samples to have dynamic ranges centered around 0, input YCbCr values
are simply DC-shifted as a preprocessing step.

Y ′ = Y − 2bits−1 (4.7)

Cb′ = Cb− 2bits−1 (4.8)

Cr′ = Cr − 2bits−1 (4.9)

30 CHAPTER 4. LINELET CODEC

4.3.3 Subsampling chroma

When using a YCbCr representation, it is common to reduce the resolution of chrominance chan-
nels. This decision is made based on the human visual system, which is better at spotting details in
luminance (gray tone) than color details. Three common formats for YCbCr are:

• 4:4:4 - No subsampling

• 4:2:2 - Horizontal chroma resolution halved

• 4:2:0 - Both horizontal and vertical chroma resolution halved

For production, 4:4:4 and 4:2:2 are the most common, while 4:2:0 is common for broadcast dis-
tribution. As Linelet is a scanline oriented codec, it was found worthwhile to support horizontal
subsampling only, i.e. 4:4:4 and 4:2:2.

4.4 Wavelet transforms

Linelet uses a horizontal wavelet transform as well as an optional vertical transform. The Le Gall 5/3
filter is used both horizontally and vertically.

The very simple Haar wavelet was used for vertical transforms instead of Le Gall in the experi-
mentation phase, but the 5/3 filter was found to achieve significantly better results at target bitrates.
The Haar vertical wavelet was kept as an alternative to Le Gall in the implementation.

The vertical transform is considered of less importance as the number of scanlines is fixed from
1 to 16, which limits the number of vertical decomposition levels available. If there is only a single
scanline in a slice, the vertical transform is disabled for obvious reasons anyways.

4.4.1 Lifting implementation of vertical wavelet

Vertical transforms in Linelet are implemented as an in-place lifting transform between scanlines.

The Haar vertical lifting step considers two vertically adjacent samples A and B which result in a
low-passed sample Al, and high-passed sample Bl.

After one level of decomposition has been computed, we only consider scanlines which contain
low-passed Al samples, and lift those further in a butterfly pattern (figure 4.2). For the 5/3 filter, we
employ the scheme in figure 4.3, just vertically.

4.4. WAVELET TRANSFORMS 31

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

S

S

S

S

S

S

S

S

L1

H1

L1

H1

L1

H1

L1

H1

H2

L2

H1

H1

H2

L2

H1

H1

L3

H1

H2

H1

H3

H1

H2

H1

Figure 4.2: Vertical wavelet lifting scheme (Haar)

4.4.2 Horizontal and vertical lifting implementation of Le Gall 5/3 wavelet
In the horizontal lifting scheme, we consider a line of samples. After lifting, even-index samples will
be low-pass and odd samples high-pass.

The lifting formula is borrowed from JPEG2000. First, odd samples (high-pass) are computed,
then even samples.

sl[2n+ 1] = s[2n+ 1]−
⌊
s[2n] + s[2n+ 2]

2

⌋
(4.10)

sl[2n] = s[2n] +

⌊
sl[2n− 1] + sl[2n+ 1] + 2

4

⌋
(4.11)

input

high-pass

low-pass

-1/2 -1/2 -1/2

1 1

1 1

1/4 1/4 1/4

Figure 4.3: Lifting implementation of Le Gall 5/3 wavelet

In the Linelet software implementation, interleaving low-pass and high-pass samples as in fig-
ure 4.3 is not a good idea due to cache locality and parallelization concerns. Instead, the two resulting

32 CHAPTER 4. LINELET CODEC

sub-bands are written to separate buffers. The lifting scheme however, still holds as the intermediate
results for high-pass band are used to compute subsequent results for low-pass band.

For vertical Le Gall transform, in-place lifting is used, i.e. low-passed and high-passed scanlines
are interleaved as in figure 4.2. Contrary to the horizontal transform, interleaving scanlines is not a
problem as samples are still tightly packed within a scanline.

In figure 4.4 we see how subbands are split up and organized into a scanline structure.

Line 1

Line 2

Line 3

Line 4

HL1

LH1HH1

LH2HH2

LH1HH1

HL1 LL2HL2

Figure 4.4: Organizing 2 levels of wavelet decompositions in scanlines

4.4.3 Signal extension
Linelet borrows the signal extension used by JPEG2000 (section 2.4.6).

When only two samples are being lifted (vertically), the Le Gall 5/3 lifting step reduces to a simple
Haar lifting step due to signal extension.

4.4.4 Combining the vertical and horizontal transform
To get an effective 2D transform, vertical and horizontal transforms must be applied in an interleaving
pattern as in figure 4.5.

Vertical DWT Horizontal DWT Vertical DWT Horizontal DWT

Line 1

Line 2

Line 3

Line 4

L1

H1

L1

H1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

L2

H2

LL2 HL2

LH2 HH2

Figure 4.5: 2-level decomposition of 2D DWT in Linelet

If the number of horizontal decompositions is larger than vertical ones, we can simply continue to
decompose the LLn sub-band horizontally as desired.

To ensure the transform is reversible, the order of transformations matter. For simplicity the
vertical transform was to be done first, reason being it would reduce code complexity, and allowed
faster iteration when experimenting with different vertical transform types.

4.4. WAVELET TRANSFORMS 33

4.4.5 Numerical precision for lifting

Neither the Le Gall filter nor the Haar wavelet are able to express the output with same dynamic range
as the input. With certain input signals, it is possible that the dynamic range of filtered data increases.
As the internal numerical precision inside the Linelet encoder is fixed, this gives a maximum bit-depth
that is guaranteed to never overflow any arithmetic operation. Proving an exact value is non-trivial
with multiple decomposition levels, but 12-bit input was experimentally found to be the maximum
possible input bit depth with 16-bit arithmetic.

13-bit input was in artificial edge cases 2 found to rarely overflow operations. If 12-bit is used,
neither the RCT nor pre/post filtering (section 4.4.6) can be used as they increase the dynamic range
to 13-bit.

4.4.6 A pre/post-filter structure to mitigate slice boundary artefacts

For vertical wavelet transform in Linelet, signal extension at slice boundaries cause a discontinuity
between slices. At low bitrates this causes a striping artefact, a horizontal-only blocking artifact. With
JPEG2000 [16], a similar problem can arise from the use of tiles at lower bitrates, as a discontinu-
ity is introduced, usually called the tiling artefact. For the sake of clarity, striping (Linelet), tiling
(JPEG2000) and blocking (DCT) artefacts are essentially synonyms, but refers to different codecs.

While Linelet targets very high bitrates (1:2 to 1:4) where striping effect is not a problem, it was
deemed useful to explore techniques to improve visual quality for lower bitrates such as 1:10 to 1:20
as well. Some relevant techniques are enumerated below.

Line-based continuous wavelet transform

Low-latency, blocking-less 2D wavelet transforms can be implemented by employing a line-buffered
wavelet transform [38]. The idea is to output data from the wavelet transform as soon as the data
required to compute it is available. E.g. with the 5/3 filter, we need to receive scanline N + 2 to
output the low-pass band for line N . The same requirement holds for every decomposition level. The
latency builds up quite fast as each line of latency in decomposition level N corresponds to two lines
of latency in the N − 1 decomposition level. The lowest-frequency basis functions of wavelets are
thus very long.

Overall latency must be added equal to the length of the longest basis function. For 3-4 vertical
decomposition levels with Le Gall 5/3, the latency would be well over 20 scanlines on top of the
number of scanlines already in a slice. The proposal in [38] also requires several tiers with buffering
for each decomposition level, which could be complex to implement and difficult to fit into the simple
slice structure of Linelet.

Single-Sample Overlap

JPEG2000 Part 2 (Extensions) describes a method, Single-Sample Overlap, which can be used to
mitigate the tiling artefact while not requiring the wavelet transform itself to overlap. The idea is
to let tiles overlap with one row and column at every subband so that low-pass sample coefficients
overlap each other. The cost is a slightly increased file size as overlapping rows and columns have to
be redundantly coded. [39] As the ”tiles” in Linelet are very small vertically, sample overlap is likely
to add far more overhead than any gain acheived with the method. It is also very likely a patented
method.

2Fully saturated white noise where each sample was either maximum or minimum of the dynamic range.

34 CHAPTER 4. LINELET CODEC

Pre/post-processing lifting structure

A method to mitigate this effect - which does not require a scheme like in [38], nor overlapping - was
experimented with instead. In the literature, spatial-domain lifting structures similar to what is used
in overlapped DCT-based codecs have been attempted for use in wavelet codecs. The pre/post-lifting
structure use was borrowed from [5].

Figure 4.6: Block boundary filter bank model with pre/post-filtering [5]

The purpose of the pre-filter in figure 4.6 is to introduce discontinuities, i.e. blocking artifacts, so
that the inverse post-filter will effectively apply a deblocking filter.

An attractive property of this scheme is that added latency is fairly low (a few scanlines, or as
little as 1 scanline for 2-line filter) as well as being completely modular, i.e. adding this functionality
does not require the slice processing to change. It can be optionally enabled at the encoder side as
long as the decoder is signaled that post-filtering must be applied after decoding. [5] also suggests
that post-filtering can be used even without pre-filtering for deblocking purposes, but this would only
be usable as a pure post-processing technique at very low bitrates.

To be fully reversible for lossless compression, a lifting implementation can be used. [5] suggests
the use of a Fast V lifting structure (figure 4.7).

Figure 4.7: Fast V-II prefilter lifting model [5]

4.4. WAVELET TRANSFORMS 35

2, 4 and 8-line pre/post filters were implemented using the optimal integer coefficients in [5] 3.
Essentially, what figure 4.7 does is extracting high-pass components in the lower scanlines (left

butterflies), scaling up the high-passed lines (center V matrix), and reversing the low/high-pass ex-
traction (right butterflies). The inverse process would extract the high-passed components, but reduce
their amplitude instead, achieving the desired low-pass deblocking effect.

Problems with multiple decoding/encoding passes

An important requirement of production codecs is that they must allow multiple generations of en-
coding without any significant loss in quality.

With the pre/post filtering structure, this is a problem as while the prefilter followed by postfilter
is perfectly reversible, the postfilter followed by prefilter is not. The postfilter attenuates high-pass
samples, and the quantization error introduced cannot be recovered.

With multiple generations of encoding, the decoded output is fed back into the encoder, which
means the postfilter in the decoder is followed directly by the prefilter in the encoder. As mentioned,
this is not guaranteed to be reversible, and we will introduce additional errors.

Coding gain of pre/post lifting structure

Pre-filtering could also potentially improve coding gain of the wavelet transform due to a possibility
to decorrelate across slices, but this was not found to be the case in Linelets implementation, quite
contrary. Despite slightly reduced coding gain for lossless material, pre/post-filtering gave significant
gains both PSNR-wise and visually at lower bitrates. To gain an insight as to why this happens, we
look at theoretical transform coding gains with and without prefiltering structures using a simple 2-
line Haar transform. We also look at reconstructed errors (MSE) when the high-pass band has been
quantized entirely to 0, as is common at lower bitrates. Reconstructed errors are calculated with and
without pre/post-filtering.

For the purpose of this analysis we assume an image consisting of 4 scanlines with a slice height
of 2 (two slices). We assume that vertical samples are correlated with each other and follow anAR(1)
model, i.e., the autocorrelation of samples are given by the formula

Rxx(l) = ρ|l|σ2
x (4.12)

We pick out a column vector of the image v = [a, b, c, d]T . The variance for each sample is σ2
x.

For one level of decomposition with the Haar wavelet lifting scheme 4, we obtain

vh =

[
a+ b

2
, b− a, c+ d

2
, d− c

]T
(4.13)

which has variance for resulting coefficients equal to

E[diag{vhvT
h}] = σ2

x

[
2 + 2ρ

4
, 2− 2ρ,

2 + 2ρ

4
, 2− 2ρ

]T
(4.14)

It is important to note that the Haar lifting scheme is a biorthogonal transform, not orthonormal,
and for uncorrelated input places more power in high-pass band than low-pass. We use a weighted
coding gain formula to compute the sub-band coding gain [40]

GT =
σ2
x

N

√
ΠN−1

b=0

(
Gbσ2

Yb

) (4.15)

3These coefficients are computed for 9/7 filter only, but seemed to work for 5/3 as well.
4For 2 samples and signal extension, Le Gall 5/3 filter reduces to Haar as well.

36 CHAPTER 4. LINELET CODEC

where sub-band synthesis gains are 2 for low-pass and 0.5 for high-pass band. For Haar transform
with a given AR(1) model with ρ, this computes to

GT =
2

4
√

(2 + 2ρ)2(2− 2ρ)2
(4.16)

If we assume ρ = 0.95 as is common for still image coding analysis, we obtain a coding gain of

AR95dB = 10 log10

(
2√

3.9 · 0.1

)
≈ 5.055dB (4.17)

We now apply a 2-line prefilter structure to the input as in figure 4.7 with scaling factor S0 = 2.

vp =

[
a,

3b

2
− c

2
,
3c

2
− b

2
, d

]T
(4.18)

and after Haar transform

vph =

[
a

2
+

3b

4
− c

4
,
3b

2
− c

2
− a, d

2
+

3c

4
− b

4
, d− 3c

2
− b

2

]T
(4.19)

Again, we find the variance of resulting coefficients

E[diag{vphvT
ph}] = σ2

x [A,B,A,B]T (4.20)

where

A =
14 + 6ρ− 4ρ2

16
(4.21)

B =
14− 18ρ+ 4ρ2

4
(4.22)

which gives us a coding gain for ρ = 0.95 of

GT =
1

4

√
(2A)2

(
B
2

)2 =
1√

2.01125 · 0.06375
≈ 2.79271 (4.23)

10 log10 (2.79271) ≈ 4.46dB (4.24)

a result which is 0.5 dB lower than simply transforming without prefiltering. This loss corresponds to
roughly 0.08 bit per sample, approximately the lossless coding loss that is observed on real test data.

In this analysis we have not considered that prefiltering the signal increases its power before
transform. If prefiltering a signal increases signal power, the postfilter must attenuate the signal,
causing an attenuation of quantization errors, hence giving us increased coding gain. We reuse (4.18)
and study variance for this signal.

E[diag{vpvT
p }] = σ2

x

[
1,

10− 6ρ

4
, 1,

10− 6ρ

4

]
(4.25)

We average over the vector and obtain a variance of

σ2
xp

σ2
x

=
14− 6ρ

8
(4.26)

which for ρ = 0.95 computes to a ratio of 1.0375, or 10 log10(1.0375) ≈ 0.16dB, not enough to
compensate for the lower coding gain with prefiltering. In practice, these approximations appear to
hold for lossy coding at very high bitrates (1:2 compression rates and above), and makes pre/post-
filtering not worthwhile for very-high bitrate coding.

4.5. QUANTIZER 37

At much lower bitrates however, when high-pass bands are quantized to 0 most of the time, we
observe that pre/post filtering begins to improve PSNR. To simulate this low-bitrate case, we zero out
the reconstructed pass-band for (4.13), and perform inverse transform.

v̂h =

[
a+ b

2
,
a+ b

2
,
c+ d

2
,
c+ d

2

]T
(4.27)

we take the error vector eh = v̂h − v and compute the error

E[eTheh] = (2− 2ρ)σ2
x (4.28)

If we take the pre/post-filtering case however, we reconstruct a vector after inverse Haar transform

v̂ph =

[
2a+ 3b− c

4
,
2a+ 3b− c

4
,
2d+ 3c− b

4
,
2d+ 3c− b

4

]T
(4.29)

and postfiltered

v̂php =

[
2a+ 3b− c

4
,
6a+ 8b+ 2d

16
,
2a+ 8c+ 6d

16
,
2d+ 3c− b

4

]T
(4.30)

with error vector

ephp =

[
−2a+ 3b− c

4
,
6a− 8b+ 2d

16
,
2a− 8c+ 6d

16
,
−2d+ 3c− b

4

]T
(4.31)

which computes to an error

E[eTphpephp] = σ2
x(2A+ 2B) (4.32)

where

A =
14− 18ρ+ 4ρ2

16
(4.33)

B =
104− 96ρ− 32ρ2 + 24ρ3

256
(4.34)

A is MSE for samples a and d, while B is MSE for samples b and c. For ρ = 0.95 we obtain
A ≈ 0.031875 and B ≈ 0.0175664, a very marginal overall improvement over (4.28) with ρ = 0.95.
The interesting take from this however is that samples closest to the slice boundary (b and c) have a
significantly reduced MSE compared to edge samples (a and d). As we increase the image height,
almost all scanlines will be affected by the postfilter, and we can assume a quite significant overall
gain. In practice for 2-line slices, gains between 1 dB and 1.5 dB have been observed when applying
pre/post filtering at 1:4 compression rates for some material.

4.5 Quantizer
The quantizer in Linelet is a simple round-to-nearest quantizer. Distance between quantization levels
are always power-of-two to avoid any multiplication and division in the quantizer implementation and
to ensure that repeated dequantization and quantization can be done without any additional loss.

The downside of such a coarse quantizer is reduced ability to accurately normalize quantization
noise and account for perceptual weighting (section 4.12, 4.13).

A uniform deadzone quantizer, as usually found in wavelet codecs, was not used as it was found
to drastically reduce PSNR at same bitrates. This is likely because there is no conventional entropy
coder in Linelet, and merging zero runs is not a very useful way to reduce bitrate.

The Linelet quantizer can be expressed in the C programming language as

38 CHAPTER 4. LINELET CODEC

int16_t quantize(int16_t input, unsigned step_size_log2)
{

unsigned q = step_size_log2;
if (q == 0)

return input; // No quantization

// We can choose 1 << (q - 1) here as well.
// Then we would round up instead of rounding down when
// we’re quantizing something right between two indices.
// Round-down is better in Linelet as
// quantized coefficients
// are represented with twos-complement,
// and the range of twos-complement is slightly larger
// for negative numbers.

int16_t rounding = (1 << (q - 1)) - 1;

// Assume right-shift is arithmetic.
int16_t quantized = (input + rounding) >> q;
return quantized;

}

Dequantizing becomes trivial with round-to-nearest.

int16_t dequantize(int16_t quantized, unsigned step_size_log2)
{

return quantized << step_size_log2;
}

With this simple quantizer, we clarify that quantizing by N bits means that we quantize such that
step size log2 is N. In section 4.12 and section 4.13 we will also refer to quantizer ”offsets”. This is
an offset applied to step size log2.

4.6 Precincts
After each scanline has been wavelet transformed and quantized, the coefficients for each sub-band
in a scanline is divided into precincts, an idea which is borrowed from JPEG2000.

The precinct size is power-of-two for simplicity and the image width must be divisible by this
size. The precinct size per subband depends on the decomposition level where low-frequency bands
have fewer samples per precinct.

subband precinct samples =
subband width

full image component width
· constant (4.35)

where a constant of 64 or 128 has been found to give best results. This scaling of precinct size ensures
that we will always be able to divide a subband into precincts. A precinct size of 128 allows for all
the common HD formats and beyond, 1280x720, 1920x1080, 2K, 4K, etc.

For subsampled chroma, i.e. 4:2:2, number of precinct samples is halved for chroma channels.
Number of horizontal wavelet decompositions is reduced by one to ensure that (4.35) is always divis-
ible.

The trade-off with using smaller precincts is that bitrate can be significantly reduced, but requires
more processing 5. At very low bitrates (1:40 compression and below), the cost of signaling precincts
becomes a very significant overhead, and using larger precincts can be better.

5With the current software implementation, this is a very significant overhead.

4.7. HIGHLY SIMPLIFIED ENTROPY CODING - BITPLANE PACKING 39

4.7 Highly simplified entropy coding - bitplane packing
After rearranging the (quantized) subbands into precincts, a very lightweight ”entropy coding” scheme
is employed. To be able to scale up to several Gbit/s on PC hardware, coefficients cannot be coded on
a bit-by-bit basis like in binary arithmetic encoding. Even in dedicated hardware encoders, arithmetic
coding tends to be the bottleneck even at rates like 100-200 Mbit/s, so this must be avoided at all cost
to be able to scale to lightly compressed 4K and beyond with cheap hardware.

A per-coefficient variable length code would likely be too slow as well, as encoded bits must still
be treated on a bit-by-bit basis, making several Gbit/s throughput and appropriate rate control difficult.
With higher bitrates, performance reduces drastically in variable-length codecs, as seen with ultrafast
JPEG encoders [41].

The solution proposed by Linelet is to treat all samples in a precinct the same way. First, the range
of the samples is studied. If all samples in a precinct is denoted by P = (p1, p2, p3, . . . , pn), then

pmin = min(0, p1, p2, p3, . . . , pn) (4.36)

pmax = max(0, p1, p2, p3, . . . , pn) (4.37)

We then need to see how many bits we need to represent numbers with this range using twos-
complement signed integers. This can be efficiently done by using the count leading zeroes primitive
usually available as dedicated instructions on PC hardware.

// Pseudo-code
bits(minimum, maximum)
{

if minimum == 0 && maximum == 0
return 0

minimum = bitwise_not(minimum)
value = max(minimum, maximum)

// Assuming value is 32 bit. Add 1 for sign bit.
return (32 - count_leading_zeroes(value)) + 1

}

If both pmin and pmax are 0, as can often happen at lower bitrates, we do not have to encode the
precinct at all.

Another big gain using this method is that to study the effects of quantization on bitrate for rate
control purposes, we only have to look at the quantized values for pmin and pmax instead of re-scanning
every coefficient.

After deciding how many bits are needed to pack the coefficients in a precinct we consider 8
coefficients at the same time. The MSB of the 8 coefficients are extracted and packed into a single
byte. We then extract the next bit of the same coefficients, etc, until we reach the LSB. This guaranteed
that we can extract one (or multiple bytes even) at a time.

If the precinct has 2 or 4 samples only we can pack 4 bitplanes or 2 bitplanes into a single byte
respectively. Precincts with only 1 sample is not supported. Precincts with less than 8 samples are
quite inefficient to begin with, and their use should be limited anyways.

Packing like this is trivial to implement in hardware (shuffling bits around), and very efficient
on the x86 architecture, which has an SSE instruction pmovmskb for doing bitplane extraction (sec-
tion 4.11.2).

Bitplane unpacking during decode can be implemented very simply as well. In hardware it should
just be shuffling bits in place, and on PC architecture we can create a look-up table of 256 entries

40 CHAPTER 4. LINELET CODEC

which expands the 8 bits to 8 bytes. A single shift and OR-instruction can then move the bitplanes
into place very efficiently and is completed with a sign extension.

On x86 PC hardware, packing 20+ Gbit/s is easy to achieve with this scheme. It is mostly for this
reason that Linelet claims to be an ultra-low complexity video codec.

4.7.1 Comparison to EZW and SPIHT algorithms
Both EZW [33] and SPIHT [34] algorithms have a concept of bitplanes where wavelet coefficients are
coded from MSB down to LSB. Both methods use a hierarchical tree structure where higher-frequency
subbands become children of lower-frequency subbands. Encoding the wavelet coefficients consists
of walking the tree and encoding decisions on a bitplane-by-bitplane basis. Both methods maintain a
list of which coefficients are currently deemed significant, and which are not.

A bitplane is encoded in two or more steps (passes). In one pass, coefficients which are already
significant get coded directly. In another pass, non-significant coefficients are studied and the entropy
coder then makes a decision whether or not the coefficient becomes significant. If so, it encodes a
sign bit and puts the coefficients in the set of ”significant” ones.

One gain of the tree structure is to be able to signal that all insignificant children of a coefficient re-
main insignificant. This allows EZW and SPIHT to spend relatively few bits signaling low-amplitude
wavelet coefficients located in higher-frequency subbands.

We see that Linelets idea of bitplanes is quite similar. The main differences however are that
Linelet makes a decision for significance over all coefficients in a precinct and there is no tree struc-
ture. If one coefficient becomes significant, so does all other coefficients. We therefore just have to
signal at which bitplane all coefficients become significant (section 4.8). One very large coefficient
(e.g. at sharp edges) in a precinct is enough to cause many other coefficients (which might have been
0) to become significant.

It is obvious that the proposed bitplane packing cannot approach the theoretical entropy. However,
the speed gain in bitplane packing is so immense that it was deemed worthwhile to take a big loss in
compression efficiency.

It was found that at 1:2 compression rate, the bit plane packing is just 20-25% above the theoret-
ical entropy 6, and actually gave considerably better compression performance than the exp-golomb
variable-length code used by Dirac Pro Low Delay.

As the compression goes below 1:4, it was found that the theoretical entropy approaches 60% of
the achieved bitrate. It still remains competitive with exp-golomb.

4.8 Signaling per-precinct bits
As each precinct is packed with a varying number of bits per sample, the number of bits used must be
signaled in the bitstream beforehand.

A very simple way to do this is to allocate a fixed number of bits. If the number of bits per
precinct is assumed to not exceed 15, we could allocate 4 bits per precinct, making the encoding
trivial to implement. At target compression rates 1:2 to 1:4, this usually works out to a fixed bitstream
overhead of 1.5-3.0%, which might be acceptable, but at lower bitrates, this fixed overhead becomes
a big bottleneck where a very large part of the bitstream is allocated just to signal precinct bits.

To mitigate the problem, a very simple variable length code was implemented. First, it was found
that the number of precinct bits was quite correlated across a sub-band. Simple, first order prediction
could then be used.

// Pseudo-code
encode_precinct_bits(bits, num_precincts)

6Found by estimating coefficient distributions in the different subbands individually, no context adaptation

4.8. SIGNALING PER-PRECINCT BITS 41

{
for i in range(num_precincts)
{

// bits[-1] == 0
if bits[i - 1] > 0

encode_signed_unary(bits[i] - bits[i - 1])
else

encode_unary(bits[i])
}

}

A simple prefix-free variable length code to code the prediction error was created based on the
unary code. The unary code is quite trivial and was found to get close enough (10% redundancy) to
the actual entropy of predicted values:

Input (decimal) Code (binary)
0 0
1 10
2 110
3 1110
4 11110
5 111110
6 1111110
n (n ones)0

Table 4.1: Unary code

As the prediction error can be negative, the code was extended to be signed.

Input (decimal) Code (binary)
0 0
1 100
-1 101
2 1100
-2 1101
n (|n| ones)0(sign bit)

Table 4.2: Signed unary code

The encoder chooses the unary code (table 4.1) if the value predicted from is 0 (prediction error
cannot be negative) and the signed unary code (table 4.2) if prediction error can be negative. The only
difference between the two is the sign bit at the end.

Using this code tended to give a 50% reduction in overhead vs. coding 4 bits per precinct, and
even more for lower bitrates.

An important consideration in choosing the (signed) unary code is that it is trivial to compute how
many bits it takes to encode an array of symbols, which is very useful for rate control (section 4.9).

// Pseudo-code
coding_cost(current, prev)
{

if prev > 0
{

42 CHAPTER 4. LINELET CODEC

predicted = current - prev
if predicted != 0

return abs(predicted) + 2
else

return 1
}
else
{

return current + 1
}

}

compute_cost(bits, num_precincts)
{

cost = 0
for i in range(num_precincts)

cost += coding_cost(bits[i], bits[i - 1]) // bits[i - 1] == 0
bytes = (cost + 7) >> 3 // Round up to nearest byte.
return bytes

}

To speed this process up even more, we can compute a 256-entry LUT which covers the cost of
all combinations of prev and current.

4.9 Rate control
An important design consideration is how rate control is handled. To meet latency and bandwidth
guarantees, Linelet must be able to degrade the quality to be able to fit a slice into a given buffer size.

A strength of Linelet is that after wavelet transform and subdividing subbands into precincts we
can directly compute the required buffer size to pack all coefficients without having to perform entropy
coding.

As adding distortion (quantization) reduces bitrate, a naive way to ensure we meet our required
target can be implemented as such:

// Pseudo-code
rate_control(slice, buffer_size)
{

quantization_level = 0 // assume 0 is lossless

required_size, precinct_ranges =
compute_slice_size(slice, quantization_level)

while required_size > buffer_size
{

quantization_level++
required_size = compute_slice_size_cached(slice,

quantization_level, precinct_ranges)
}

}

Due to the bitplane packing approach used, we only need to know the minimum/maximum range
of each precinct. This greatly simplifies the rate control, since we can reuse precinct ranges when

4.10. BITSTREAM LAYOUT 43

computing required size. Essentially, we can add more quantization to one subband in the slice, see
how many bytes we have saved, and continue iterating like this until the required rate is met. No en-
tropy coding is required to compute the required sizes which greatly improves encoder performance.
Iterating like this is guaranteed to complete in finite time, which is useful for real-time implementa-
tions.

For variable bit rate rate control, we can simply enforce a fixed quantizer level, and encode the
result as-is.

An important rate-distortion problem to solve is finding the optimal subbands to add distortion to.
This problem is tackled in section 4.12 and section 4.13.

4.10 Bitstream layout
The fundamental unit of the Linelet bitstream is the slice, which represents N scanlines worth of video
information.

There are a certain number of parameters which apply to all slices. To avoid redundancy, we can
group several slices together into a full frame, which allows us to specify codec parameters once per
frame (or rarer).

As Linelet is intra-only, we only need to concern ourselves with a still-image syntax. A video can
be made by simply concatenating images together with meta-data such as frame rates, timestamps,
etc.

The bitstream layout here is only meant to give a rough overview how the codec organizes data.
It does not serve as a specification for the Linelet codec.

4.10.1 Syntax for a full frame
linelet_frame()
{

header_magic() // LINELET1
linelet_header()
for slice in slices
{

slice_syntax()
}

}

4.10.2 Linelet header

The linelet header specifies codec parameters such as width, height, bit-depth, color transform, num-
ber of wavelet decompositions, pre/post filtering, etc.

In addition to this, it contains a table of offsets which point to all slices in the image. This allows
trivial multithreaded decoding. We only really need a table like this if slices are encoded at a variable
bitrate. In an ultra-low latency setup, we would use a fixed number of bytes per slice so we implicitly
know the offsets and sizes of each slice and this table becomes redundant.

4.10.3 The slice syntax

A slice consists of video components (Y, Cb and Cr), and associated wavelet sub-bands for each
component. With vertical wavelet transforms, the highest frequency bands would normally span
multiple scanlines, but to keep simplicity, only individual scanlines are considered. Sub-bands which

44 CHAPTER 4. LINELET CODEC

span multiple scanlines are simply split up. This means that the number of sub-bands per scanline is
variable, but it remains fixed across different slices.

slice_syntax()
{

for component in components
{

for line in component[lines]
{

scanline_syntax(component[line][subbands_count])
}

}
checksum()

}

4.10.4 The scanline syntax
In a scanline we find quantization levels for all subbands, packed wavelet subbands and a small
bitstream to signal how subbands should be unpacked.

scanline_syntax()
{

quantization_levels()
for subband in subbands[component][line]
{

precinct_bits = predictive_signed_unary(subband[width] /
subband[samples_per_precinct])

unpacked_subband = packed_subband(precinct_bits)
}

}

Subbands are ordered highest-frequency first. Quantization parameters apply to all sub-bands in
a scanline. This structure implies that different quantizer levels can be applied to different parts of a
sub-band if the sub-band spans several scanlines.

4.10.5 Checksum
In order to create a more robust system which can tolerate losses when Linelet is transmitted over IP,
a checksum was added to the slice syntax in order to be able to detect if a slice stream was corrupted,
either via packet losses or reordering which can be a problem with IP/Ethernet based transmission.

We chose an ultra-fast non-cryptographic checksum implementation, xxhash 7, which was fast
enough to avoid adding much overhead to the Linelet encoder. xxhash is licensed under the BSD
3-clause license which allows commercial use. The checksum implementation itself can be trivially
replaced, as long as it is fast enough. If checksumming is implemented at a higher level (outside
Linelet), a checksum here can probably be omitted.

4.11 Processing time performance
During the design of Linelet, optimizing for processing time was considered the most important
aspect. Where compromises had to be made, processing time would take priority.

7https://code.google.com/p/xxhash/

4.11. PROCESSING TIME PERFORMANCE 45

Performance gains should be acheived in both hardware and software implementations. Certain
designs will only be efficient in either software or hardware which should be avoided.

4.11.1 Multithreading
Designing for multithreading is very important as it allows optimal utilization of general purpose
processing hardware. The trend today is that additional computational power is added in the form of
multiple processor units. Linelet can be trivially multithreaded as all image slices can be processed
independently.

4.11.2 SIMD - Single instruction, multiple data
All significant processing in Linelet was designed with SIMD-processing in mind. Most modern
CPU hardware contains special vector instructions which allow for one operation (e.g. addition) to be
performed on multiple values independently (vector addition).

// "Normal" loop to perform 8 additions
for i in 0 to 7
{

output[i] = a[i] + b[i]
}

// SIMD-like processing
output[0:7] = a[0:7] + b[0:7]

For Linelet, this is very useful as all major processing is done on large chunks of data with the
exact same processing being done on each data sample.

x86s SSE and ARMs NEON instruction sets for example allow for one instruction to operate on
128-bits of data. Linelets basic unit of computation is a 16-bit integer, which optimally allows us to
speed up computation by a factor of 8x as we can process 8 integers per instruction instead of one.

Linelet was fully optimized for MMX2, SSE2, SSSE3 and SSE4.1 instruction sets. Overall, a
4x overall improvement over the C implementation was observed. Most of the individual processing
functions gave close to 8x improvement. The rate allocator however, is mostly serial code and could
not be parallelized well. There is also significant I/O overhead which cannot be optimized away.

4.11.3 Considering hardware implementations
While no hardware design was made for the Linelet codec during the project, we can claim that
Linelet is a very hardware friendly codec. No processing step requires multiplication of any kind,
only addition, subtraction and shift operations are needed. This allows very small, cheap and compact
hardware.

The memory usage is also fairly limited. Only memory to hold one or two slices at one time
is required, which can feasibly be done with on-chip memory rather than requiring use of external
memory.

4.11.4 Considering GPGPU application
Using graphics cards as general purpose computation devices have become feasible the last years due
to APIs such as OpenCL and CUDA. GPUs have far higher computational throughput than CPUs but
getting close to the theoretical throughput of these devices requires very high levels of parallelism.

46 CHAPTER 4. LINELET CODEC

One problem with a GPGPU implementation is that low levels of latency cannot be feasibly
reached with conventional GPUs. Transferring memory between CPU and GPU is quite costly, and
optimal throughput would only be possible when the GPU is processing large amounts of data at one
time.

Still, moving wavelet, colorspace processing as well as pre/post-filtering to the GPU should be a
good way to improve performance as all these operations are trivially parallelized.

4.12 Noise power normalization

When using orthonormal transforms (e.g. DCT), adding distortion to one transformed coefficient
corresponds to a distortion in the spatial domain. The mean square error (MSE) of the transformed
coefficients corresponds directly to the MSE in the spatial domain assuming that coefficients are
uncorrelated. For biorthogonal transforms however, this is not the case. Different gains are applied
to different coefficients during inverse transform, and distortion applied to each coefficient will have
different degrees of distortion in the spatial domain.

For biorthogonal sub-band coding such as wavelets, individual sub-bands have different gain fac-
tors during synthesis and as sub-bands represent different frequency bands, we will end up with a
non-flat noise spectrum after synthesis if we are not careful.

In the Linelet case, we need to study the Le Gall 5/3 wavelet and look at the effects of quantization
on the overall noise. For noise normalization purposes, we want to find quantization levels such that
the noise is as white (i.e. flat spectrum) as possible. Having a way to ensure a flat noise spectrum is a
good starting point for further refinements when we might want to use a weighted noise spectrum in
psychovisual optimizations (section 4.13).

Matlab code to generate the plots in this section can be found in appendix C.

One decomposition level case

We can first assume the simplest case, where we have one decomposition level and quantization noise
has been added to both sub-bands with equal power. For Le Gall 5/3 synthesis we have a low-pass
synthesis filter:

G1(z) = 1 +
1

2

(
z−1 + z1

)
(4.38)

and high-pass synthesis filter:

G2(z) =
6

8
− 2

8

(
z−1 + z1

)
− 1

8

(
z−2 + z2

)
(4.39)

If we assume that low-pass and high-pass coefficients are all uncorrelated we obtain an overall syn-
thesis filter (and hence noise) response

|G(ω)|2 = |G1(ω)|2 + |G2(ω)|2 (4.40)

whose plot can be seen in figure 4.8.

4.12. NOISE POWER NORMALIZATION 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Normalized frequency (angular / pi)

G
a
in

 (
d
B

)

Synthesis filter gain Le Gall 5/3

Figure 4.8: Le Gall 5/3 synthesis filter gain

6 dB corresponds to 1 bit. If we quantize the high-pass band by one additional bit, i.e. let the
quantizer step size be twice as large as the one for low-pass band, we obtain a noise response which
is far more flat than the previous result (figure 4.9).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Normalized frequency (angular / pi)

G
a
in

 (
d
B

)

Synthesis filter gain Le Gall 5/3 (1 bit extra quantization on high−pass)

Figure 4.9: Le Gall 5/3 synthesis filter gain with 1 bit additional quantization of high-pass band.

We cannot hope to achieve a perfectly white spectrum, but the approach of adding extra quantiza-
tion noise to the high-pass band appears to be a good way of flattening the resulting spectrum.

Multiple decomposition level case

For multiple decomposition levels we will move from a mathematical definition to simulated results.
We generate gaussian white noise as input signal, apply 5 levels of wavelet decompositions, add white
noise (ideal quantization noise) to all sub-bands with same variance and study the final noise spectrum
after inverse transform.

48 CHAPTER 4. LINELET CODEC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Normalized frequency (angular / pi)

G
a

in
 (

d
B

)

Synthesis filter gain Le Gall 5/3 (5 levels)

Figure 4.10: Noise spectrum with 5 levels of Le Gall 5/3 decomposition

We now attempt the same scheme as in the single decompostion level case. For each higher
frequency sub-band, we add 6 dB (1 bit) of additional noise (table 4.3).

Sub-band Noise gain (dB) bits
L5 0 0
H5 6 1
H4 12 2
H3 18 3
H2 24 4
H1 30 5

Table 4.3: Noise gains for figure 4.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
18

20

22

24

26

28

30

32

34

Normalized frequency (angular / pi)

G
a

in
 (

d
B

)

Synthesis filter gain Le Gall 5/3 (5 levels, 1 bit per level)

Figure 4.11: Noise spectrum with 5 levels of Le Gall 5/3 decomposition with 1 bit per level compensation.

This is far from flat. To get a reasonably flat spectrum we must take into account that during
synthesis of two sub-bands, zero-inserting interpolation is performed which reduces power by half, i.e.
3 dB. Therefore, noise from lower-frequency sub-bands will be implicitly attenuated through multiple
synthesis steps. If we use noise gains from table 4.3 and add noise equal to (3 · synthesis steps)dB we
end up with table 4.4 and figure 4.12.

4.12. NOISE POWER NORMALIZATION 49

Sub-band Noise gain (dB) bits
L5 0 + 5 · 3 0 + 5 · 0.5
H5 6 + 5 · 3 1 + 5 · 0.5
H4 12 + 4 · 3 2 + 4 · 0.5
H3 18 + 3 · 3 3 + 3 · 0.5
H2 24 + 2 · 3 4 + 2 · 0.5
H1 30 + 1 · 3 5 + 1 · 0.5

Table 4.4: Noise gains for figure 4.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
34

34.5

35

35.5

36

36.5

37

37.5

Normalized frequency (angular / pi)

G
a

in
 (

d
B

)

Synthesis filter gain Le Gall 5/3 (5 levels, fully weighed)

Figure 4.12: Noise spectrum with 5 levels of Le Gall 5/3 decomposition, fully weighted.

This result is almost as flat as the single decomposition level case and can be considered good
enough for our purposes.

Two-dimensional decompositions

Extending the previous results to two dimensions is simple. Wavelet transforms are separable and we
assume that we can use the appropriate weighting for horizontal and vertical transforms individually
and add them 8 to obtain the two-dimensional weighting factor.

In figure 4.13 we see that the low-passed gain is approx 12 dB rather than 6 dB.

8Multiplication in the linear domain, but additive in terms of bits and dB.

50 CHAPTER 4. LINELET CODEC

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−5

0

5

10

Horizontal freq. (angular / pi)

Synthesis filter gain 2D Le Gall 5/3

Vertical freq. (angular / pi)

G
a
in

 (
d
B

)

−4

−2

0

2

4

6

Figure 4.13: Unweighted noise spectrum for 2D Le Gall 5/3 transform.

Using weighting factors of table 4.5 we see the result of weighting in figure 4.14.

Sub-band Noise gain (dB) bits
LL1 0 0
LH1 6 1
HL1 6 1
HH1 12 2

Table 4.5: Noise gains for figure 4.14

4.12. NOISE POWER NORMALIZATION 51

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Horizontal freq. (angular / pi)

Synthesis filter gain 2D Le Gall 5/3, weighed

Vertical freq. (angular / pi)

G
a
in

 (
d
B

)

6.5

7

7.5

8

8.5

9

9.5

10

Figure 4.14: Weighted noise spectrum for 2D Le Gall 5/3 transform.

We see a similarity with figure 4.9, except that the top at ω ≈ 0.6π is now twice as large in terms
of dB.

With 5 levels of 2D decompositions, we apply noise as we would expect from table 4.6. We also
account for interpolation attenuation with 6 dB per level instead of 3 dB as we interpolate horizontally
and vertically. The result in figure 4.15 is fairly well weighted as we would expect.

Sub-band Noise gain (dB) bits
LL5 0 0
LH5 6 1
HL5 6 1
HH5 12 2
LH4 12 2
HL4 12 2
HH4 18 3
LH3 18 3
HL3 18 3
HH3 24 4
LH2 24 4
HL2 24 4
HH2 30 5
LH1 30 5
HL1 30 5
HH1 36 6

Table 4.6: Weighted noise gains for 5 levels of decomposition

52 CHAPTER 4. LINELET CODEC

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

71

Horizontal freq. (angular / pi)

Synthesis filter gain 2D Le Gall 5/3, (5 levels, weighed)

Vertical freq. (angular / pi)

G
a

in
 (

d
B

)

66.5

67

67.5

68

68.5

69

69.5

70

70.5

Figure 4.15: Weighted noise spectrum for 2D Le Gall 5/3 with 5 levels of decomposition.

4.13 Psychovisual tuning
The goal is to add distortion in a way that is least noticable to the human visual system. With the
sub-band coding approach in Linelet, the only choice for the encoder to make is how much it will
quantize the individual sub-bands. As we have multiple color channels (luma/chroma), we will have
to evaluate which color channels we are willing to quantize as well.

4.13.1 Contrast sensitivity function
The constrast sensitivity function (CSF) is a function which describes how sensitive the human visual
system is to visual patterns at various spatial frequencies measured in cycles per degree (cpd). [42]
uses the contrast sensitivity function to optimize JPEG2000 visually and this optimization is used as
a basis for visually optimizing Linelet.

[42] implements a non-adaptive (classic) scheme, as well as a spatially-adaptive scheme. When
using weighting factors based on frequency, good frequency resolution (DCT) would be preferable,
but wavelet transforms have poor frequency resolution at higher frequencies (good time resolution).
We therefore need to make quantization decisions for a wide range of frequencies at once, which is not
necessarily optimal. [42] overcomes this by being spatially adaptive (utilizing higher time resolution),
but such optimization are not practical for an ultra-low complexity codec.

For a classical CSF optimization, we will find a representative cpd for all individual sub-bands,
calculate their contrast sensitivities and use the result to compute quantization weighting factors. We
can use the center frequency in a sub-band as the representative cpd for the sub-band. This is a very
rough assumption, especially at higher frequency sub-bands.

To find cycles per degree, we first find pixels per degree (ppd) for the display device. If we assume
a viewing distance v in meters and a screen with a resolution of r dpi we find ppd as

fS =
2v tan(0.5◦)r

0.0254
(4.41)

4.13. PSYCHOVISUAL TUNING 53

We assume the video signal is sampled at Nyquist rate, so the maximum cpd observed is half this
resolution

cpdmax = 0.5 · fS ≈ 0.34 · v · r (4.42)

The contrast sensitivity function itself is not uniquely defined. The CSF must be found empirically
and results vary between studies. The luminance CSF plotted in [42] shows a peak in sensitivity
at approx. 4 cpd. This non monotonous decrease in sensitivity with frequency is problematic for
implementation. [42] mentions that optimizing for a close viewing distance can cause sub-bands
other than the LL sub-band to be deemed most important. If LL is coarsely quantized because of this,
moving further away from the screen can introduce visible artifacts, as the LL sub-band suddenly
becomes most significant. For this reason, we can flatten the CSF to avoid this scenario.

4.13.2 Psychovisually weighted quantization of Le Gall 5/3 wavelet

For sake of simplicity, we just want to find usable quantization weighting factors which work well in
most cases. Essentially, we want the quantization noise to be shaped in a way that corresponds well
with the inverse sensitivity of the human visual system.

A closed-form function for the CSF plotted in [42] was not found, so a useful luminance CSF
definition proposed by Manos and Sakrison [43] was used instead

csf(f) = 2.6 (0.0192 + 0.114f) exp
(
−(0.114f)1.1

)
(4.43)

where f is spatial frequency in cycles per degree. For two dimensions, we assume that direction of
the frequency does not matter, and we use f =

√
f 2
x + f 2

y .

The CSF is a linear definition, so to find a definition in terms of bits we can quantize by, we invert
the CSF and take its base-2 logarithm.

B(f) = log2

(
1

csf(f)

)
(4.44)

A plot of B(f) is seen in figure 4.16. We see a large peak in sensitivity at ≈ 8 cpd. As mentioned, we
can simply flatten the CSFs values below this maximum sensitivity to avoid a strong dependency on
viewing distance. The number of samples in the lowest-frequency bands are so few that losing some
compression efficiency for those samples should be considered negligible.

54 CHAPTER 4. LINELET CODEC

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Cycles per degree (cpd)

B
it
s

Luminance added quantization bits

Figure 4.16: Extra quantization bits for spatial frequency.

To find our CSF weighted quantization step size, we can use our normalized quantization param-
eters from section 4.12 and increase the step sizes based on B(f). We have not considered chroma
channels here. We make a simple approximation that we can add one extra bit of quantization to
chroma. Ideally, chroma would be quantized using its own CSF, but appropriate data for chroma
contrast is not as readily available nor important.

Quantization offsets

If we assume a 96 dpi monitor viewed at a 1.5 meters distance, we obtain a maximum cpd (4.42) of

cpdmax = 0.34 · 96 · 2 ≈ 49 (4.45)

For 5 levels of decomposition, we compute spatial frequencies for the individual sub-bands by
taking the middle frequency horizontally and vertically and compute f =

√
f 2
x + f 2

y . In table 4.7 we
see the offsets we can add to our quantization matrix in table 4.6.

4.13. PSYCHOVISUAL TUNING 55

Sub-band cpd/cpdmax bits B(cpd)
LL5 0.0221 1.5756

LH5, HL5 0.0494 0.7318
HH5 0.0663 0.4655

LH4, HL4 0.0988 0.1798
HH4 0.1326 0.0546

LH3, HL3 0.1976 0.0625
HH3 0.2652 0.2587

LH2, HL2 0.3953 0.9144
HH2 0.5303 1.8096

LH1, HL1 0.7906 3.8637
HH1 1.0607 6.2622

Table 4.7: Sub-band spatial frequencies and quantization offsets for a 5-level wavelet decomposition.

Actually using the results from tables generated like this directly turned out to be complicated.
The table drastically changes with minor changes in viewing conditions and it’s not easy to find a
generic result. There is also a problem that Linelet has a very coarse quantizer and fractional bit
offsets are not possible.

A very crude approximation to the results generated by the CSF curves is to simply assume that
each decomposition level is equivalent to 1 bit. The modified quantization table used in the Linelet
implementation is shown in table 4.8. Noise power normalization is also taken into account.

Sub-band bits
LL5 0
LH5 1
HL5 1
HH5 2
LH4 3
HL4 3
HH4 4
LH3 5
HL3 5
HH3 6
LH2 7
HL2 7
HH2 8
LH1 9
HL1 9
HH1 10

Table 4.8: Quantization offsets for trivial psychovisual weighing with noise power normalization.

The positive side of such a trivial approximation is that this scheme applies easily to any number
of decompositions and any viewing distance despite not being particular accurate. It is also very easy
to compute the quantization offset without any lookup-table. For every low-pass filtering operation
horizontally or vertically, we simply subtract 1 bit of quantization.

Actually quantizing HH1 by 10 bits is very unlikely. If we quantize HH1 by less, we would end
up with negative quantization bits for some of the lower sub-bands. Obviously, this means we should
simply not quantize these sub-bands at all.

56 CHAPTER 4. LINELET CODEC

4.13.3 Complexity masking
Complexity masking is a technique often used by block-based DCT encoders which utilize psycho-
visual optimizations. The idea of complexity masking is that in segments of images which feature a
lot of visual energy (i.e. detail), it is harder to notice compression artifacts. Conversely, in segments
with little visual energy (flatter regions), loss of visual energy energy is quite noticable. The encoder
can study the image on a block-by-block basis and adjust the quantizer accordingly.

Such functionality is not possible in Linelet as quantizers apply to an entire subband. The precinct
structure could allow for variable quantizers per precinct, but this has not been explored.

Chapter 5

Method for subjective evaluation

A subjective evaluation of Linelet was carried out at Café Media at NTNU using the guidelines of
ITU-R BT.500 [26] as a basis for the evaluation. The purpose of the test was to evaluate how experts
would react to losses in quality when encoding with Linelet, most importantly the compression rates
where losses would start to become visible to the experts.

Two experts well versed in evaluation of codecs, Per Bøhler and Odd-Inge Hillestad, participated
in this evaluation. We refer to these as Expert 1 and Expert 2, but which number corresponds to which
expert is intentionally obscured.

Experts according to BT.500 have expertise in image artefacts which can occur during the test.
They should not, however, have intimate knowledge of the particular system or have been directly
involved in the development of the system.

It must be clarified that this test is not really a subjective test as is normally done with BT.500, but
rather an expert evaluation.

5.1 Test environment
The test environment of Café Media is certified to comply with BT.500s recommendations. The
experts involved deemed the environment representative for evaluating broadcast signals.

Viewing distance was set to 3H, i.e. three times the monitors active display height.

5.1.1 Monitor

The monitor used was a Pioneer PDP-5000EX running over HDMI at 1080p50. The monitor ran in
”game” mode with default settings, without any post-processing or scaling applied. Brightness and
contrast settings were calibrated using guidelines from ITU-R BT.814 [44].

5.1.2 Playback system

Arch Linux x86 64 operating system with mpv media player for playback. The playback machine
was equipped with a Solid-State Disk drive to be able to stream lossless 1080p50 clips in realtime
(190 MB/s maximum throughput).

5.2 Test material
Test material was based on the 4K RGB variant of the DCI Standard Evaluation Material (StEM) [45]
as well as test sequences ParkJoy and Horse from SVT and NRK respectively.

57

58 CHAPTER 5. METHOD FOR SUBJECTIVE EVALUATION

The DCI set consists of a series of 16-bit TIFF images at 24 frames per second. It also includes
audio, but audio was not included for this evaluation.

Using a 4K source was not practical for this test as no such display device was available, and the
bandwidth required for playback would exceed the capabilities of available hardware. The source
was downscaled from the original 4096x1714 resolution to 2048x857 4:2:2 10-bit YUV using the
ITU-R BT.709 color matrix [6] and then cropped down to 1920x816 to avoid scaling when displayed
on 1080p monitors.

The 1080p50 variant of ParkJoy was obtained from [46]. The series of still images were converted
to 4:2:2 10-bit YUV with ITU-R BT.709 color matrix. Horse was obtained directly from external
sources and went through the same processing as ParkJoy.

5.2.1 Test sequences and bitrates

Three 10 second clips were extracted from DCI StEM to be used during evaluation and training.

dci1 Start frame 06400, 240 frames

dci2 Start frame 10100, 240 frames

dci3 Start frame 04300, 240 frames

parkjoy and horse are 10 seconds long (500 frames), and were used as-is.
The uncompressed bitrate for the DCI sequences is 752 Mbit/s 1 and 2 Gbit/s for the 1080p50

material 2. 8 different bitrates were targeted (table 5.1). These were expected to cover the range of
(visually) lossless to extremely annoying.

Bitrate DCI (Mbit/s) Bitrate ParkJoy/Horse (Mbit/s) (% of uncompressed)
375 1000 50
260 700 35
188 500 25
150 400 20
112 300 15
75 200 10
38 100 5
19 50 2.5

Table 5.1: Bitrates used for evaluation of DCI sequences

The lossless reference clip was also used as a test clip along with the lossy ones. The mean
impairment for the lossless clip should be very close to 100, imperceptible (section 5.3.2), and can be
useful to evaluate the evaluation bias of the experts.

The particular command-lines used for creating the raw YUV source and test sequences can be
found in appendix A. Test sequences were encoded with constant bitrate per slice, which represents
the worst case for quality at a given bitrate.

11920× 816× 20× 24 (10-bit 4:2:2 is 20 bits per pixel)
21920× 1080× 20× 50 (10-bit 4:2:2 is 20 bits per pixel)

5.3. TEST METHOD 59

5.3 Test method
The Double-Stimulus Impairment Scale (DSIS) method from ITU-R BT.500 was used. This test
methodology was used for its focus on comparing against a reference source, instead of only evaluat-
ing quality in isolation (Single Stimulus) which would not be useful for judging visual losslessness.

The DSIS session according to BT.500 should not last more than 30 minutes. This limits the
number of test clips and number of bitrates which can be tested. For this test, the session was extended
to 45 minutes. It was decided that this was necessary to get meaningful results as the number of
experts was low.

5.3.1 Introduction and training sequence
The experts were introduced to the subjective test, how test material would be presented, which arte-
facts would be expected to occur and how the subjects were expected to evaluate the material using
the grading scale (section 5.3.2).

The sequence dci3 was used for purposes of training. The experts were shown the range of quality
(2.5% to lossless) present in the test session.

After the training session, experts were allowed to ask questions if the test procedure was not clear
from the initial explanation.

5.3.2 Grading scale
The grading scale as defined by BT.500 is a five-step scale.

5 imperceptible

4 perceptible, but not annoying

3 slightly annoying

2 annoying

1 very annoying

To improve accuracy and allow for a more fine-grained evaluation, the scale was extended to 100
points (0 to 100), reusing the terminology from BT.500.

100 imperceptible

80 perceptible, but not annoying

60 slightly annoying

40 annoying

20 very annoying

0 (lowest possible score)

The score 100 was clarified to the experts as a score to be used when he was convinced the
impairment was imperceptible. 80 would be used when the experts were convinced of a perceptible
impairment. Values between two anchor points were to be used for varying degrees of certainty.

60 CHAPTER 5. METHOD FOR SUBJECTIVE EVALUATION

5.3.3 Evaluation session
The test sequences were presented to the experts using the Variant II model as declared in the DSIS
method. This model displays the same test sequence twice in a row. BT.500 recommends this for
video sequences and tests where very small differences are to be evaluated.

A test sequence was presented along with the reference sequence in the following order

1 Reference sequence (10 s)

2 Mid-gray tone (3 s)

3 Test sequence (10 s)

4 Mid-gray tone (3 s)

5 Reference sequence (10 s)

6 Mid-gray tone (3 s)

7 Test sequence (10 s)

8 Mid-gray tone (8 s)

Voting for the result is to happen only in step 8 according to DSIS, although the figures in BT.500
indicate that voting can also happen during steps 5 to 8.

The 8 steps are repeated back to back for all test sequences. One test sequence is roughly one
minute long with Variant II, which allows for about 35 test sequences if one allows 10 minutes for
introduction, training sequences and questions.

36 test sequences in total were used. dci1, dci2, parkjoy and horse were used during evaluation,
using the 8 different bitrates plus lossless for each sequence.

The order of the bitrates used for test sequences were psuedo-random and unknown to both experts
and us during the test session (double-blind). The reference source used was always guaranteed to
change per iteration to avoid problems where experts could lose track of which clip was reference and
which was test.

The test results for the first three sequences were not discarded as recommended by BT.500 as
the number of available experts was not large enough to justify discarding test data. Discarding test
results would also add the possibility of discarding results from the lossless test sequence.

5.3.4 Evaluation schema
During the evaluation session, experts wrote down their assessment on paper. The schema used is
found in appendix B.

Chapter 6

Method for objectively evaluating Linelet

6.1 Objective measures of distortion

When objectively evaluating quality, it is necessary to obtain a value representing quality with an
algorithm. Two popular alternatives for computing a quality metric are PSNR and SSIM.

6.1.1 PSNR

PSNR (peak signal-to-noise ratio) is the simplest distortion measure which is useful for evaluating
image quality.

PSNRdB = 20 log10

(
2bits − 1√

MSE

)
(6.1)

MSE =
1

N

N−1∑
i=0

(xi − x̂i)2 (6.2)

6.1.2 SS-SSIM

Single-scale structural similiarity is a measure which takes into account more than more pixel at a
time and aims to extract a structural quality metric.

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
xµ

2
y + C1)(σ2

x + σ2
y + C2)

(6.3)

where C1 =
(
0.01 ·

(
2bits − 1

))2 and C2 =
(
0.03 ·

(
2bits − 1

))2 are twiddle factors which avoid
division by 0.

The means, covariances and variances are computed on a block-per-block basis for luminance
channel only. In this case, we choose 8-by-8 blocks. To get an SSIM for the entire image, we
average the SSIM value for several blocks sampled at different positions. We can for example sample
all possible block offsets with a stride of 4 pixels horizontally and vertically to ensure that blocks
overlap.

SSIM values tend to be very close to 1 and small differences in SSIM amount to large changes in
visual quality. To get a value which is easier to compare, we use a dB variant of SSIM.

SSIMdB = −10 log10 (1− SSIM) (6.4)

61

62 CHAPTER 6. METHOD FOR OBJECTIVELY EVALUATING LINELET

6.1.3 Best objective metric
The best objective metric is the metric which best correlates with results from subjective evaluation.
In the literature, SSIM is reported to be a better metric than PSNR [47]. However, a separate study
by Rahayu et.al. [48] found that the PSNR metric performs better than SSIM for high quality cinema
material. It is noted in [48] that most studies on SSIM tend to test on lower quality and resolutions.

As Linelet targets the upper level of quality (visually lossless), using a PSNR quality metric is
justified.

6.2 Testing rate-distortion characteristics with different latencies
Linelet has a configurable amount of latency. 1 to 16 scanlines can be packed in one single slice, and
this parameter determines the latency as well as number of vertical wavelet decompositions 1. The
purpose of this test is to see how adding vertical transforms affects the compression rate.

For this test, we use the same ParkJoy test sequence as used in the subjective evaluation (chap-
ter 5). We generate PSNR plots for 1, 2, 4, 8 and 16 scanlines latency with and without pre/post
filtering. Compression rates range from 3 % (0.6 bpp) to 50 % (10 bpp).

6.3 Testing multiple-generation encoding of Linelet
Codecs used in production must be able to encode and decode several times without significant quality
loss.

For this test, we use the same ParkJoy test sequence as used in the subjective evaluation (chap-
ter 5). Four test scenarios are used:

• 500 Mbit/s (25 % compression), without pre/post filter, 7 generations

• 500 Mbit/s (25 % compression), with pre/post filter, 7 generations

• 300 Mbit/s (15 % compression), without pre/post filter, 7 generations

• 300 Mbit/s (15 % compression), with pre/post filter, 7 generations

As mentioned in section 4.4.6, multiple generation encoding with pre/post filtering is not fully re-
versible as postfilter followed by prefilter is not reversible.

It is useful to test different bitrates as while all slice processing in Linelet is fully reversible,
encoding errors can cause issues after decoding if decoded samples lie outside the dynamic range for
YCbCr. In that case, clipping is necessary and this error will be introduced in subsequent encoding
passes. Lower bitrates are more likely to introduce errors which require clipping.

6.3.1 Codec parameters
Codec parameters used for this test are:

• 8 scanlines per slice

• 0 or 8 line pre/post filter

• 5 decomposition levels

• 64 samples per precinct

1log2(scanlines)

Chapter 7

Results

7.1 Subjective evaluation

The number of experts in this test was only 2. The results here should not be treated as a true subjective
evaluation, but we can treat this as an expert evaluation.

BT.500 Annex 2 [26] suggests the use of a per-sequence/per-bitrate evaluation. This would only
give two data points per test, and therefore completely useless for taking mean and standard deviation.
BT.500 also defines a per-bitrate evaluation where data points would be mean and standard deviation
over all sequences and all experts. The deviations are likely to come from the differences in the test
clips and not necessarily from deviations between experts. To get more data points, we will take the
latter approach.

To present the mean opinion scores, the 0-100 score used during the test is re-normalized back to
the typical 5-grade impairment scale by dividing by 20 1.

For each compression rate, a 95 % confidence interval for the mean is given. A confidence interval
with so few data points should be used with care. Since only two experts were involved in this test
we also present all the individual opinion scores for each test clip which allows us to see trends more
clearly (section 7.1.1).

BT.500 suggests using a screening process to eliminate test subjects which often give values far
outside the confidence intervals. This step was skipped as eliminating expert evaluations with so few
data points was not deemed useful.

A ”hidden reference”, i.e. lossless sequence was used in the subjective evaluation. In figures 7.1,
7.2 and 7.3, the mean opinion scores are reported as 100 % compression rate for the hidden reference
test sequence.

A figure for all test sequences together are given along with separate figures for ParkJoy and Horse
sequences and the two DCI sequences are presented. In terms of scene complexity, ParkJoy and Horse
are arguably far more ”difficult” source material than DCI.

1A score of 20 mapped to very annoying

63

64 CHAPTER 7. RESULTS

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compression rate (%)

M
e
a
n
 o

p
in

io
n
 s

c
o
re

Lower bound 95% confidence (mean)

Mean

Upper bound 95% confidence (mean)

0 2 4 6 8 10 12 14 16 18 20

Bits per pixel

Figure 7.1: Average mean opinion scores for given bitrate over all test sequences and experts

7.1. SUBJECTIVE EVALUATION 65

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compression rate (%)

M
e
a
n
 o

p
in

io
n
 s

c
o
re

Lower bound 95% confidence (mean)

Mean

Upper bound 95% confidence (mean)

0 2 4 6 8 10 12 14 16 18 20

Bits per pixel

Figure 7.2: Average mean opinion scores for given bitrate over all ParkJoy/Horse sequences and experts

66 CHAPTER 7. RESULTS

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compression rate (%)

M
e
a
n
 o

p
in

io
n
 s

c
o
re

Lower bound 95% confidence (mean)

Mean

Upper bound 95% confidence (mean)

0 2 4 6 8 10 12 14 16 18 20

Bits per pixel

Figure 7.3: Average mean opinion scores for given bitrate over all DCI sequences and experts

From the graphs we see that below 15 % compression, the deviations begin to drastically increase
and the mean opinion scores start to drop very fast. Especially for the DCI clips, the lower compres-
sion rates 2.5 % and 5 % gave wildly different scores between the experts.

For ParkJoy and Horse, the results are more consistent. Both experts were very familiar with these
two test sequences and had an easier time spotting errors in them.

It is interesting to note that the lossless source gave a MOS of slightly above 4 and not close to 5
as expected. This gives a good indication that the expert evaluations were biased in their opinion.

7.1.1 Individual test data

In figure 7.4, 7.5, 7.6 and 7.7 we present the opinion score plots for the experts individually.

7.1. SUBJECTIVE EVALUATION 67

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compression rate (%)

O
p
in

io
n
 s

c
o
re

Expert 1

Expert 2

0 2 4 6 8 10 12 14 16 18 20
Bits per pixel

Figure 7.4: Individial opinion scores for ParkJoy

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compression rate (%)

O
p
in

io
n
 s

c
o
re

Expert 1

Expert 2

0 2 4 6 8 10 12 14 16 18 20
Bits per pixel

Figure 7.5: Individial opinion scores for Horse

ParkJoy and Horse are well known sequences to the experts and the results are quite consistent
between the two. There is no indication that artifacts at 15 % compression is visible to any of the
experts.

68 CHAPTER 7. RESULTS

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Compression rate (%)

O
p
in

io
n
 s

c
o
re

Expert 1

Expert 2

0 2 4 6 8 10 12 14 16 18 20
Bits per pixel

Figure 7.6: Individial opinion scores for DCI clip 1

The results for DCI clip 1 are fairly consistent. Results for expert 1 indicates that 10 % compres-
sion is slightly visible, first at 5 % compression do we see an obvious drop in quality.

0 10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

Compression rate (%)

O
p

in
io

n
 s

c
o

re

Expert 1

Expert 2

0 2 4 6 8 10 12 14 16 18 20
Bits per pixel

Figure 7.7: Individial opinion scores for DCI clip 2

This test clip turned out to be very difficult to spot any errors in, even at 1:40 compression (2.5 %)

7.1. SUBJECTIVE EVALUATION 69

for one of the experts. The results are wildly inconsistent. This is a hint that the test sequence is poor
for use in evaluation.

7.1.2 PSNR and SS-SSIM for test sequences at tested bitrates

It was clear that encoding ParkJoy and Horse was far more difficult than the DCI clips. On average,
roughly 2 bpp extra (10 % of uncompressed) bitrate was required to obtain same objective quality
(SSIM) as the DCI clips (figure 7.8 and figure 7.9).

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

65

70

Compression rate (%)

P
S

N
R

−
Y

 (
d

B
)

ParkJoy

Horse

DCI1

DCI2

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

Figure 7.8: PSNR-Y for test sequences at tested bitrates

The DCI clips have very similar objective quality curves, both with PSNR and SSIM metrics.
ParkJoy and Horse are similar as well.

An interesting test point is that there is no indication that 1:6 compression of ParkJoy (≈ 15 %)
was visible to any of the experts 2, despite the fact that this clip had a very poor PSNR of 33.75 dB.
This indicates that Linelet does a good job of ”hiding” the distortions present in this clip.

2Both experts gave a score of 90 on the 0 to 100 scale

70 CHAPTER 7. RESULTS

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

Compression rate (%)

S
S

IM
 (

d
B

)
[−

1
0

lo
g

1
0

(1
 −

 S
S

IM
)]

ParkJoy

Horse

DCI1

DCI2

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

Figure 7.9: SSIM-dB for test sequences at tested bitrates

7.1.3 Global mean opinion score

Global mean opinion score across all sequences and experts was 3.74.

7.1.4 Correlating objective metrics with subjective test data

As the amount of test data is so sparse, it is meaningless to attempt correlating test data with objective
metrics. We do however, observe a clear trend in the two expert evaluations. At none of the clips do
15 % compression sequences receive a score which indicate that the experts are able to see any loss
when we consider the scores given to the ”hidden” reference clip and scores given to sequences with
higher bitrates.

7.1.5 Test data

Test data used to generate the results can be found in appendix D.

7.2 Rate-distortion characteristics with different latencies

First, we present the difference in PSNR by using 1 scanline slices and 2 scanlines slices. In fig-
ure 7.10 we see a tremendous gain in PSNR at same bitrate, a 3 dB increase. At lower bitrates, the
effect of pre/post-filtering on PSNR is noticable.

7.2. RATE-DISTORTION CHARACTERISTICS WITH DIFFERENT LATENCIES 71

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

Compression rate (%)

P
S

N
R

−
Y

 (
d

B
)

 1 line

 2 lines w/o prepost

 2 lines w/ prepost

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

Figure 7.10: ParkJoy rate-distortion with 1 and 2 scanline slices

In figure 7.11 we observe that going from 2 to 4-line slices does not improve the rate-distortion
curve significantly at higher bitrates. Below 15 % compression however (see figure 7.11), increasing
to 4 lines starts to improve the rate distortion significantly.

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

Compression rate (%)

P
S

N
R

−
Y

 (
d
B

)

 2 lines w/o prepost

 2 lines w/ prepost

 4 lines w/o prepost

 4 lines w/ prepost

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

4 6 8 10 12 14
22

24

26

28

30

32

34

Compression rate (%)

P
S

N
R

−
Y

 (
d
B

)

 2 lines w/o prepost

 2 lines w/ prepost

 4 lines w/o prepost

 4 lines w/ prepost

0 0.5 1 1.5 2 2.5 3

Bits per pixel

Figure 7.11: ParkJoy rate-distortion with 2 and 4 scanline slices

Beyond 4 lines, diminishing returns start to kick in as we observe in figure 7.12 and figure 7.13.
For each decomposition level, a smaller and smaller part of the frequency band is affected.

72 CHAPTER 7. RESULTS

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

Compression rate (%)

P
S

N
R

−
Y

 (
d
B

)

 4 lines w/o prepost

 4 lines w/ prepost

 8 lines w/o prepost

 8 lines w/ prepost

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

4 6 8 10 12 14
22

24

26

28

30

32

34

Compression rate (%)

P
S

N
R

−
Y

 (
d

B
)

 4 lines w/o prepost

 4 lines w/ prepost

 8 lines w/o prepost

 8 lines w/ prepost

0 0.5 1 1.5 2 2.5 3

Bits per pixel

Figure 7.12: ParkJoy rate-distortion with 4 and 8 scanline slices

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

Compression rate (%)

P
S

N
R

−
Y

 (
d

B
)

 8 lines w/o prepost

 8 lines w/ prepost

16 lines w/o prepost

16 lines w/ prepost

0 1 2 3 4 5 6 7 8 9 10

Bits per pixel

4 6 8 10 12 14
22

24

26

28

30

32

34

Compression rate (%)

P
S

N
R

−
Y

 (
d

B
)

 8 lines w/o prepost

 8 lines w/ prepost

16 lines w/o prepost

16 lines w/ prepost

0 0.5 1 1.5 2 2.5 3

Bits per pixel

Figure 7.13: ParkJoy rate-distortion with 8 and 16 scanline slices

It is clear that vertical transforms can give great increases in quality at a given bitrate. Just going
from 1 to 2 scanlines allows us to reduce bits per pixel by 1.

7.3 Multiple-generation encoding of Linelet

Over 7 generations of encoding and decoding we observe an additional loss of approx. 0.05 dB
for pre/post-filtered encodes. After the first encode of 500 Mbit/s parkjoy (figure 7.14), subsequent
encodes remain mathematically lossless. While the plot for 300 Mbit/s (figure 7.15) suggests that
non-pre/post filtered encodes remain lossless after first generation, per frame studies show occasional
additional losses of < 0.0005 dB. This is assumed to be caused by spurious clipping of the decoded
signals.

7.3. MULTIPLE-GENERATION ENCODING OF LINELET 73

1 2 3 4 5 6 7
39.54

39.56

39.58

39.6

39.62

39.64

39.66

39.68

39.7

Generation

P
S

N
R

−
Y

 (
d
B

)

Encoding loss over multiple generations for 500 Mbit/s ParkJoy

500 Mbit/s, no pre/post filter

500 Mbit/s, 8−line pre/post filter

Figure 7.14: Encoding loss over multiple generations for 500 Mbit/s ParkJoy (25 % compression)

1 2 3 4 5 6 7

33.03

33.04

33.05

33.06

33.07

33.08

33.09

Generation

P
S

N
R

−
Y

 (
d
B

)

Encoding loss over multiple generations for 300 Mbit/s ParkJoy

300 Mbit/s, no pre/post filter

300 Mbit/s, 8−line pre/post filter

Figure 7.15: Encoding loss over multiple generations for 300 Mbit/s ParkJoy (15 % compression)

This indicates that multiple generation loss with Linelet is mostly insignificant. It is very impor-

74 CHAPTER 7. RESULTS

tant to note that this result is only valid when we assume that the exact same Linelet encoder with
same parameters is used. The reason we can achieve a mathematically lossless encoding after first
generation is that the rate control will deduce all quantization levels used by the first generation. Since
all operations are reversible, there is zero additional loss. Dequantization in decoding followed by the
same quantization in encoding is lossless in Linelet.

Chapter 8

Discussion

8.1 The choice of few experts against many non-expert test sub-
jects in subjective evaluation

Linelet is designed to be used in production. Linelet is not assumed to ever be encoded or decoded
outside a highly controlled production environment. It is not relevant to test with consumers as they
will never see such material anyways.

It is far more valuable to test with a few experts which really know and understand the require-
ments for production-quality material. Relying on expert evaluation however means that BT.500s
requirements for subjective evaluation could not be met, which dictates a certain number of test sub-
jects.

If testing with consumers is to be useful, one would have to test with a complete encoding chain,
from production codecs all the way down to distribution codecs. Consumers would then evaluate how
adding Linelet compression affects the quality of the final distribution stream. Even so, it is very
unlikely that any useful test data could be obtained as Linelet operates at distortion levels way below
that of distribution codecs.

8.2 Can we be sure that Linelet fulfills requirements for visually
losslessness?

In the expert evaluation, two clips were used, ParkJoy and Horse which are very well known in the
industry. Especially ParkJoy is very often used in critical codec evaluations due to its very high scene
complexity. The use of DCI test sequences however was criticized for being too difficult to find
compression artifacts in. The sequences were too out-of-focus and blurry to be useful in subjective
evaluation. Test clip dci2 was considered very difficult to find errors in due to the darker scene along
with heavy rain which obscured compression artifacts if one did not know exactly where to look for
artifacts.

Even though only 1:2 to 1:4 compression rates are the target for Linelet, not even 1:6 compression
was visible to the experts for ParkJoy. We consider it unlikely that 1:4 would be visually lossy for any
sensible material at a sensible viewing distance. More expert evaluations and different kinds of tests
are required to verify this.

One of the experts noted that Linelet did surprisingly well on ParkJoy and that most codecs fall
apart very quickly on this test clip. Most of the typical image artifacts which tend to affect ParkJoy
were avoided.

There are of course other kinds of difficult test material and such an important desicion should
not be based on two test clips alone. CGI material was not tested for example. CGI material often

75

76 CHAPTER 8. DISCUSSION

has very sharp lines and contours which is difficult for transform-based codecs to handle gracefully.
Animation (cartoons) is also a similar case. Handling sequences with lots of text is also a difficult
case to consider. It is probably worthwhile to test Linelet extensively with these kinds of test material
as well.

8.2.1 Other methods to determine visually losslessness
A more difficult test to pass for visually losslessness could be performed by using a split screen view,
seeing the reference and lossy version side-by-side for direct comparison. The splitting point could
be changed at will to easily compare certain regions of the video.

Swapping out still images (reference and test) at will is also a popular method of determining
visual losslessness. However, this method might not be too useful for video as it is not impossible
that certain artifacts can be masked when viewed at a high framerate.

For subjective testing purposes in this project, using the DSIS method in BT.500 was deemed
the most useful as it is well known, and ultimately, the material will be viewed at a certain distance
without the reference source anyways.

8.3 Work left to be done in Linelet
Linelet as it stands is a complete codec. Its decoding could in theory be written as a specification and
implemented independently by a third party.

There are however some codec designs which are left to consider before freezing the specifica-
tion. Most of these designs are complexity and performance tradeoffs. If Linelet is implemented
in hardware, we assume that some issues will come up which might lead to a desire of altering the
specification slightly to meet hardware demands.

8.3.1 Hardware implementation concerns
While Linelet is designed for easy implementation in hardware, the design has not been verified
thoroughly with hardware implementation experts. It is possible that some seemingly efficient designs
would be difficult and/or expensive to implement in hardware.

8.3.2 The still-image syntax
Currently, Linelet specifies a still-image syntax which can encode a still image to disk. This still
image consists of a header with codec parameters as well as a table of offsets to slices for easy
multithreading. After the header, a sequence of Linelet slices are found which represent the entire
image top-to-bottom.

For a real, ultra-low latency implementation in hardware, such a syntax is likely ”strange”. A
real ultra low-latency system will just transmit Linelet slices, one after the other with fixed bitrate.
One only needs a way of configuring a decoder so that it knows certain codec parameters. These
parameters are the same for every slice (and frames in a video), and there is no need to transmit
redundant configuration data for every single slice.

True real-time operation is not likely to work in practice if codec parameters could change every
slice anyways as memory allocation or recomputation of tables is potentially required. It is assumed
that these considerations will be resolved if Linelet is implemented in hardware.

At any rate, the ”core” element of Linelet is the slice syntax. It is not expected that this has to
change much. How slices are grouped together and managed on the other hand is what is left to
decide.

8.3. WORK LEFT TO BE DONE IN LINELET 77

8.3.3 Vertical wavelet transforms

Currently, Linelet employs a vertical wavelet transform. To keep latency and memory consumption
low, the image is subdivided into smaller ”slices” which are then encoded independently.

The slice structure is very easy to work with. Slices can be trivially parallelized, latencies are
easily computed and fixed buffer sizes can be allocated in hardware.

This study introduced a novel and optional pre/post filtering structure between slices in an attempt
to reduce compression artifacts at lower bitrates. This adds a slight latency cost as we need to receive
some additional scanlines before we can start encoding a slice.

It is possible that the pre/post filtering structure can be replaced with a continuous wavelet trans-
form. We can still keep our slice structure as-is. However, there will be a tighter dependence between
slices as the wavelet coefficients will depend on wavelet coefficients in neighboring slices. With pre/-
post filtering, we apply the filters outside the realm of the wavelet transform, but if we were to use
continuous transforms, we would have to use a more sophisticated vertical transform implementation.

If continuous wavelet transforms are settled on, the latency will slightly increase. In the slice
method, signal extension at slice boundaries must be used which limits the possible latency. With
continuous transforms, the encoder must wait until the longest wavelet basis function has died out
before the line can be transmitted. In order to get same latency for pre/post as continuous transforms,
the number of scanlines in a slice might have to be reduced (i.e. vertical decompositions) to get
equivalent latency.

This project has not attempted to implement a continuous wavelet scheme in Linelet, but it is
definitely a possibility to explore as it would solve the slice boundary artifact gracefully and possibly
improve rate distortion significantly.

8.3.4 Can Linelet be simplified further?

Linelets requirements are 1:2 to 1:4 compression while being visually lossless. It might very well be
the case that Linelet has more complexity than what is really needed to achieve this goal considering
the very favorable expert evaluation. If Linelet is to be simplified, pre/post filtering support can be
dropped as well as reducing the possible number of vertical wavelet transforms. Variable length code
of per-precinct bit signalling could also be simplified.

8.3.5 Entropy coding

Linelets entropy coding is intentionally very primitive and simple in order to scale to 5 Gbit/s+
throughput on desktop PC equipment. We believe however, that if Linelet is to make drastic im-
provements in visual quality, the entropy coding would be the first to change. In informal tests, it was
found that bitrate can potentially be dramatically reduced with proper entropy coding.

However, by going down this route one of the great strengths of Linelet is removed, deterministic
rate-control and super-high encoder throughput. Entropy coding throughput is a very real challenge
in high-end codecs.

A potential improvement is not splitting up sub-bands over scanlines. Instead of having long
horizontal precincts, it might be better to use more compact square precincts. This has not been
experimented with. If this is implemented however, the slice syntax would obviously have to change
significantly.

We believe it is unlikely that the entropy coding of Linelet can be significantly improved without
sacrificing speed, especially on PC hardware.

78 CHAPTER 8. DISCUSSION

8.3.6 Alternatives to wavelet transform
During this project the alternative of using a different kind of transform has not been considered. The
wavelet transform is certainly a very popular transform these days in the production quality bracket
of video and image compression. Digital Cinema uses JPEG2000, broadcast contribution is moving
towards JPEG2000 and lots of production equipment shoots directly to JPEG2000. Both Dirac Pro
and TICO are based on wavelets. In this quality bracket, the DCT appears to be rarely used.

There are several factors which can explain why the DCT is not very popular in this space. First, it
is obvious that a ”classic” block-based JPEG-like codec would not work. Having any kind of blocking
is very dubious. Modern distribution codecs work around this by employing an adaptive deblocking
filter. However, this step is not reversible. This means we would likely see a quite severe multi-
generation loss which is not acceptable in production. JPEG2000 after all is well known to have far
better multi-generation loss over MPEGs DCT codecs [32].

Even if deblocking is not acceptable, one can still look to a lapped-DCT approach as is considered
in the new Daala research codec from xiph.org. Here, a pre/post filtering structure is used, which is
quite similar to the pre/post filter in Linelet. This project did not have time to explore if a lapped-DCT
approach would make sense for Linelet.

A final concern with DCT codecs is how entropy coding is performed. By far, the normal com-
pression method for DCT is a block-by-block compression scheme where the DCT block is serialized
into a vector (swizzling), with some adaptive encoding scheme which exploits the fact that most co-
efficients will be 0 after quantization. This approach can be problematic for performance however.
Wavelets produce higher frequency subbands which consists of many samples. Working with a large
number of samples at a time is easy to parallelize and easy to encode. The ultra-fast entropy cod-
ing method of Linelet heavily exploits this. With DCT, this kind of optimization cannot be easily
exploited.

Finally, wavelets allows trivially varying the number of vertical lines in a slice. With DCT, many
different transforms would have to be implemented, for example 4x4, 8x8 and 16x16. For smaller
slices, perhaps a 8x2 or 16x1 transform would also be necessary to exploit enough redundancy.

With wavelets, the same 5/3 filter can be used over and over. The only thing to consider is how
many decompositions are applied.

8.3.7 Potential tuning left to be done
Even if a codec specification is frozen, encoders still have the flexibility to improve its implementa-
tion. In Linelet, it is up to the encoder to decide how sub-bands should be quantized in order to meet
the optimal quality at a given bitrate.

This Linelet software implementation is very primitive in this regard. It follows a fixed pattern
in how to add distortion to a slice in order to meet bitrate targets. It does not attempt to take into
consideration energy distribution of sub-bands or any kind of adaptive method. It would likely be too
slow anyways.

However, this ”blindness” of Linelet can be a strength in some sense. A common mistake of
many codecs, DCT and wavelet alike, is to only optimize for PSNR in which the quantizer is lead
to quantize in such a way that far too many high frequency components are zeroed out because large
rate distortion gains can be made locally. The PSNR metric tends to ”like” blur, but human eyes do
not. In flatter regions, these quantizers can easily turn textures into completely ”flat” and blurred out
regions. This loss of visual energy can be very problematic for visual quality even if PSNR remains
high.

Chapter 9

Conclusion

To address growing needs in the broadcasting industry, we designed, specified, implemented, opti-
mized and evaluated a new lightweight compression codec, Linelet, which targets compression ratios
1:2 to 1:4 while remaining visually lossless. The codec was designed entirely with processing ef-
ficiency in mind. As a result, the implementation can encode or decode 1080p50 10-bit 4:2:2 and
beyond in real-time on regular desktop PC hardware. There are strong indications that 4K@60 en-
coding is possible in real-time on powerful desktop equipment.

To evaluate our work, we designed a subjective evaluation based on ITU-R BT.500 with help from
experts in the field. Two experts helped evaluate the Linelet implementation using two very critical
test sequences, ParkJoy and Horse. The tests indicate that 1:2 and 1:4, and even 1:6 compression are
visually lossless. More testing is required to ensure that this test result really holds in practice across
a large range of video sequences and expert evaluations.

Linelet supports a simple method to exploit vertical redundancy within slices. We found that just
by increasing slice height from 1 to 2 scanlines, we could obtain a 3 dB PSNR gain. Going beyond 2
scanlines further improves compression, but the gains beyond 2 scanlines are not as significant. We
consider vertical transforms to be a useful coding tool for ultra-low latency video codecs.

To further improve vertical transforms, we implemented a pre/post filtering structure. We found
there is some coding gain with pre/post filtering, but it depends on many factors. This filter works
best at lower bitrates, far below the target 1:2 to 1:4 compression rates.

We tested multiple-generation loss with same coding parameters for all generations, and found
that without pre/post filtering, Linelet is essentially mathematically lossless. With pre/post filtering
added, a minimal 0.05 dB loss was observed over 7 generations.

There are still some Linelet codec design considerations to be made, but such decisions can be
made during implementation in hardware. While Linelet was implemented in software here, the
design was made to facilitate easy and efficient hardware implementation. We have outlined some of
these concerns in the discussion chapter.

We propose that Linelet is a useful contribution in the area of low-latency video compression
and is a candidate to be implemented in production. We believe the requirements for a lightweight
production codec are fulfilled.

79

80 CHAPTER 9. CONCLUSION

Bibliography

[1] http://upload.wikimedia.org/wikipedia/commons/2/23/Dctjpeg.png, [Online; accessed 2014-03-
19].

[2] http://people.xiph.org/∼xiphmont/demo/daala/screendoor.png, [Online; accessed 2014-03-19].

[3] http://en.wikipedia.org/wiki/File:Jpeg2000 2-level wavelet transform-lichtenstein.png, [On-
line; accessed 2014-03-24].

[4] http://en.wikipedia.org/wiki/File:STFT and WT.jpg, [Online; accessed 2014-03-19].

[5] J. Liang, C. Tu, and T. Tran, “Optimal block boundary pre/post-filtering for wavelet-
based image and video compression,” in Image Processing, 2004. ICIP ’04. 2004 In-
ternational Conference on, vol. 1, Oct 2004, pp. 303–306 Vol. 1, [Online version:
http://thanglong.ece.jhu.edu/Tran/Pub/wtpre.pdf; accessed 2014-03-28].

[6] ITU-R, “BT.709-5: Parameter values for the HDTV standards for production and international
programme exchange.”

[7] ——, “BT.2020: Parameter values for ultra-high definition television systems for production
and international programme exchange.”

[8] http://www.nhk.or.jp/strl/english/aboutstrl1/r1.htm, [Online; accessed 2014-05-19].

[9] http://www.satellitemarkets.com/news-analysis/4k-tv-technology-push-or-demand-pull, [On-
line; accessed 2014-05-21].

[10] “3D TV is dead,” http://www.extremetech.com/extreme/145168-3d-tv-is-dead, [Online; ac-
cessed 2014-04-25].

[11] ISO and ITU-T, “H.265: High efficiency video coding,” 2013.

[12] ——, “MPEG-4 Part 10 (AVC) / H.264,” 2003.

[13] http://www.webmproject.org/vp9/, [Online; accessed 2014-04-02].

[14] http://people.xiph.org/∼xiphmont/demo/daala/demo1.shtml, [Online; accessed 2014-03-19].

[15] Peter Schelkens, Athanassios Skodras, and Touradj Ebrahimi, The JPEG 2000 Suite, 2009, pp.
393-395.

[16] ISO/IEC, “JPEG 2000 Core coding system (Part 1),” 2000.

[17] “Video Services Forum - About VSF],” http://www.videoservicesforum.org/about vsf.shtml,
[Online; accessed 2013-10-03].

81

82 BIBLIOGRAPHY

[18] Video Services Forum, “Transport of JPEG 2000 Broadcast Profile video in MPEG-2
TS over IP,” http://www.videoservicesforum.org/activity groups/VSF TR-01 2013-04-15.pdf,
Tech. Rep., 2013, [Online; accessed 2013-09-12].

[19] http://www.youtube.com/watch?v=HVFFq44UvLA, [Online; accessed 2014-05-26].

[20] http://www.intopix.com/uploaded/Download%20Products/intoPIX-TICO%20FLYER
ALTERA.pdf, [Online; accessed 2014-04-02].

[21] https://tech.ebu.ch/docs/techreview/trev 2012-Q4 SDI-over-IP Laabs.pdf, [Online; accessed
2014-05-09].

[22] http://www.videoservicesforum.org/jt-nm/phase1.shtml, [Online; accessed 2014-05-09].

[23] “VESA Display Stream Compression,” http://www.vesa.org/featured-articles/
vesa-and-mipi-alliance-announce-the-adoption-of-vesas-new-display-stream-compression-standard/,
[Online; accessed 2014-04-26].

[24] http://www.hdmi.org/manufacturer/hdmi 2 0/, [Online; accessed 2014-05-23].

[25] “About Dirac,” http://diracvideo.org/about-dirac/, [Online; accessed 2014-04-02].

[26] ITU-R, “BT.500-13: Methodology for the subjective assessment of the quality of television
pictures.”

[27] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” Computers, IEEE Transac-
tions on, vol. C-23, no. 1, pp. 90–93, Jan 1974.

[28] S. Mallat, “Multifrequency channel decompositions of images and wavelet models,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 12, pp. 2091–2110, Dec 1989.

[29] Claude E. Shannon, A Mathematical Theory of Communication, 1948.

[30] David S. Taubman and Michael W. Marcellin, JPEG2000 - Image compression fundamentals,
standards and practice, 2002, pp. 106-107.

[31] Peter Schelkens, Athanassios Skodras, and Touradj Ebrahimi, The JPEG 2000 Suite, 2009, pp.
390.

[32] O. Alay and H. Stephansen, “The effect of multi-generation encoding in broadcast contribution
on the end-user video quality,” in Packet Video Workshop (PV), 2012 19th International, 2012,
pp. 113–118.

[33] J. Shapiro, “An embedded hierarchical image coder using zerotrees of wavelet coefficients,” in
Data Compression Conference, 1993. DCC ’93., 1993, pp. 214–223.

[34] A. Said and W. Pearlman, “A new, fast, and efficient image codec based on set partitioning in
hierarchical trees,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 6,
no. 3, pp. 243–250, Jun 1996.

[35] “Dirac Specification,” http://diracvideo.org/download/specification/dirac-spec-latest.pdf, [On-
line; accessed 2014-04-10].

[36] “JTNM request for technology, intoPIX,” http://videoservicesforum.org/download/jtnm/
JTNM012-1.zip, [Online; accessed 2014-04-25].

BIBLIOGRAPHY 83

[37] ITU-R, “BT.601-7: Studio encoding parameters of digital television for standard 4:3 and wide
screen 16:9 aspect ratios.”

[38] Jose Oliver and M. P. Malumbres, “A fast wavelet transform for image coding with low memory
consumption,” 2004.

[39] Peter Schelkens, Athanassios Skodras, and Touradj Ebrahimi, The JPEG 2000 Suite, 2009, pp.
95-97.

[40] David S. Taubman and Michael W. Marcellin, JPEG2000 - Image compression fundamentals,
standards and practice, 2002, pp. 193.

[41] “CUDA JPEG encoder,” http://www.fastvideo.ru/english/products/software/cuda-jpeg-encoder.
htm, [Online; accessed 2014-03-31].

[42] M. Nadenau, J. Reichel, and M. Kunt, “Wavelet-based color image compression: exploiting
the contrast sensitivity function,” Image Processing, IEEE Transactions on, vol. 12, no. 1, pp.
58–70, Jan 2003.

[43] J. Mannos and D. Sakrison, “The effects of a visual fidelity criterion of the encoding of images,”
Information Theory, IEEE Transactions on, vol. 20, no. 4, pp. 525–536, Jul 1974.

[44] ITU-R, “BT.814-2: Specifications and alignment procedures for setting of brightness and con-
trast of displays.”

[45] “DCI Standard Evaluation Material,” http://www.dcimovies.com/StEM/, [Online; accessed
2014-03-05].

[46] ftp://vqeg.its.bldrdoc.gov/HDTV/SVT MultiFormat/1080p50 CgrLevels SINC FILTER
SVTdec05 /2 ParkJoy 1080p50 CgrLevels SINC FILTER SVTdec05 /, [Online; accessed
2014-03-30].

[47] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error vis-
ibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4, pp.
600–612, April 2004.

[48] Fitri N. Rahayu, Ulrich Reiter, Touradj Ebrahimi, Andrew Perkis, and Peter Svensson, “SS-
SSIM and MS-SSIM for Digital Cinema Applications,” 2009.

84 BIBLIOGRAPHY

Appendix A

Creating test sequences

A.1 Creating raw YUV source
The sequence of images was concatenated to create the video stream.
ffmpeg -i input.tif -f rawvideo -c:v rawvideo \

-vf scale=2048:857:out_color_matrix=bt709 -pix_fmt yuv422p10le raw_2k.yuv
Crop to 1080p
ffmpeg -f rawvideo -s 2048x857 -pix_fmt yuv422p10le \

-i raw_2k.yuv -vf crop=1920:816:64:25 raw_1080p.yuv

A.2 Creating mathematically lossless reference source
colorspace 1 is BT.709 in FFmpeg.
ffmpeg -f rawvideo -r 24 -pix_fmt yuv422p10le -s 1920x816 -colorspace 1 \

-i raw_1080p.yuv -c:v liblinelet -q:v 0 test_reference.llv

A.3 Creating lossy tests
100 Mbit/s.
ffmpeg -f rawvideo -r 24 -pix_fmt yuv422p10le -s 1920x816 -colorspace 1 \

-i raw_1080p.yuv -c:v liblinelet -b:v 100000k \
-slice_height 16 -precinct_samples 64 -slice_filter 3 test_100.llv

The linelet codec settings used were

• 16 scanlines per slice

• 64 samples precinct

• 5 horizontal decompositions

• 8 line pre/post filter

85

86 APPENDIX A. CREATING TEST SEQUENCES

Appendix B

Evaluation schema

87

Test assessment, Linelet

Page 1

Name / date

Duration (s)
Imperceptible 100 Reference sequence 10

Perceptible, not annoying 80 Gray tone 3

Slightly annoying 60 Test sequence 10

Annoying 40 Gray tone 3

Very annoying 20 Reference sequence 10

(Lowest possible score) 0 Gray tone 3

Test sequence 10

8

Test clip No. Score
1 21
2 22
3 23
4 24
5 25
6 26
7 27
8 28
9 29

10 30
11 31
12 32
13 33
14 34
15 35
16 36
17
18
19
20

Gray tone / Vote

Appendix C

Noise power normalization code

1 f u n c t i o n [even , odd] = l i f t f o r w a r d (s i g)

3 even = s i g (1 : 2 : end) ;
odd = s i g (2 : 2 : end) ;

5

% Forward 5 / 3
7 odd = odd − 0 . 5 ∗ even − 0 . 5 ∗ [even (2 : end) even (end)] ;

even = even + 0 . 2 5 ∗ [odd (1) odd (1 : end − 1)] + 0 . 2 5 ∗ odd ;

matlab/lift forward.m

f u n c t i o n s i g = l i f t i n v e r s e (even , odd)
2

% I n v e r s e 5 / 3
4 even = even − 0 . 2 5 ∗ [odd (1) odd (1 : end − 1)] − 0 . 2 5 ∗ odd ;

odd = odd + 0 . 5 ∗ even + 0 . 5 ∗ [even (2 : end) even (end)] ;
6

s i g = z e r o s (1 , l e n g t h (even) + l e n g t h (odd)) ;
8 s i g (1 : 2 : end) = even ;

s i g (2 : 2 : end) = odd ;

matlab/lift inverse.m

1 f u n c t i o n [l l , lh , h l , hh] = l i f t f o r w a r d 2 d (s i g)

3 % V e r t i c a l f o r w a r d l i f t
even = s i g (1 : 2 : end , :) ;

5 odd = s i g (2 : 2 : end , :) ;

7 odd = odd − 0 . 5 ∗ even − 0 . 5 ∗ [even (2 : end , :) ; even (end , :)] ;
even = even + 0 . 2 5 ∗ [odd (1 , :) ; odd (1 : end − 1 , :)] + 0 . 2 5 ∗ odd ;

9

% H o r i z o n t a l l i f t s
11 l l = even (: , 1 : 2 : end) ;

h l = even (: , 2 : 2 : end) ;
13 h l = h l − 0 . 5 ∗ l l − 0 . 5 ∗ [l l (: , 2 : end) l l (: , end)] ;

l l = l l + 0 . 2 5 ∗ [h l (: , 1) h l (: , 1 : end − 1)] + 0 . 2 5 ∗ h l ;
15

l h = odd (: , 1 : 2 : end) ;
17 hh = odd (: , 2 : 2 : end) ;

hh = hh − 0 . 5 ∗ l h − 0 . 5 ∗ [l h (: , 2 : end) l h (: , end)] ;
19 l h = l h + 0 . 2 5 ∗ [hh (: , 1) hh (: , 1 : end − 1)] + 0 . 2 5 ∗ hh ;

matlab/lift forward 2d.m

89

90 APPENDIX C. NOISE POWER NORMALIZATION CODE

1 f u n c t i o n s i g = l i f t i n v e r s e 2 d (l l , lh , h l , hh)

3 % H o r i z o n t a l i n v e r s e l i f t s
l l = l l − 0 . 2 5 ∗ [h l (: , 1) h l (: , 1 : end − 1)] − 0 . 2 5 ∗ h l ;

5 h l = h l + 0 . 5 ∗ l l + 0 . 5 ∗ [l l (: , 2 : end) l l (: , end)] ;

7 l h = l h − 0 . 2 5 ∗ [hh (: , 1) hh (: , 1 : end − 1)] − 0 . 2 5 ∗ hh ;
hh = hh + 0 . 5 ∗ l h + 0 . 5 ∗ [l h (: , 2 : end) l h (: , end)] ;

9

even = z e r o s (s i z e (l l , 1) , s i z e (l l , 2) + s i z e (hl , 2)) ;
11 odd = z e r o s (s i z e (lh , 1) , s i z e (lh , 2) + s i z e (hh , 2)) ;

13 even (: , 1 : 2 : end) = l l ;
even (: , 2 : 2 : end) = h l ;

15 odd (: , 1 : 2 : end) = l h ;
odd (: , 2 : 2 : end) = hh ;

17

% V e r t i c a l i n v e r s e l i f t s
19 even = even − 0 . 2 5 ∗ [odd (1 , :) ; odd (1 : end − 1 , :)] − 0 . 2 5 ∗ odd ;

odd = odd + 0 . 5 ∗ even + 0 . 5 ∗ [even (2 : end , :) ; even (end , :)] ;
21

23 s i g = z e r o s (s i z e (even , 1) + s i z e (odd , 1) , s i z e (even , 2)) ;
s i g (1 : 2 : end , :) = even ;

25 s i g (2 : 2 : end , :) = odd ;

matlab/lift inverse 2d.m

1 power spec t rum = z e r o s (1 , 8 ∗ 1024) ;
window = k a i s e r (8 ∗ 1024 , 2 0 . 0) ’ ;

3

f o r i = 1 : 1024
5 s i g = randn (1 , 8 ∗ 1024) ;

7 [l1 , h1] = l i f t f o r w a r d (s i g) ;
[l2 , h2] = l i f t f o r w a r d (l 1) ;

9 [l3 , h3] = l i f t f o r w a r d (l 2) ;
[l4 , h4] = l i f t f o r w a r d (l 3) ;

11 [l5 , h5] = l i f t f o r w a r d (l 4) ;

13 q = 0 . 0 0 5 ;

15 h1 = h1 + q ∗ (r and (1 , l e n g t h (h1)) − 0 . 5) ;
h2 = h2 + q ∗ (r and (1 , l e n g t h (h2)) − 0 . 5) ;

17 h3 = h3 + q ∗ (r and (1 , l e n g t h (h3)) − 0 . 5) ;
h4 = h4 + q ∗ (r and (1 , l e n g t h (h4)) − 0 . 5) ;

19 h5 = h5 + q ∗ (r and (1 , l e n g t h (h5)) − 0 . 5) ;
l 5 = l 5 + q ∗ (r and (1 , l e n g t h (l 5)) − 0 . 5) ;

21

l 4 = l i f t i n v e r s e (l5 , h5) ;
23 l 3 = l i f t i n v e r s e (l4 , h4) ;

l 2 = l i f t i n v e r s e (l3 , h3) ;
25 l 1 = l i f t i n v e r s e (l2 , h2) ;

s i g o u t = l i f t i n v e r s e (l1 , h1) ;
27

power spec = f f t ((s i g o u t − s i g) .∗ window) ;
29 power spec = power spec . ∗ c o n j (power spec) ;

power spec t rum = power spec + power spec t rum ;
31 end

91

33 power spec t rum = power spec t rum (1 : end / 2) ;
p l o t (l i n s p a c e (0 , 1 , l e n g t h (power spec t rum)) , 10 ∗ l og10 (power spec t rum)) ;

35 x l a b e l (’ Normal ized f r e q u e n c y (a n g u l a r / p i) ’) ;
y l a b e l (’ Gain (dB) ’) ;

37 t i t l e (’ S y n t h e s i s f i l t e r g a i n Le G a l l 5 / 3 (5 l e v e l s) ’) ;
s a v e a s (gcf , ’ l e g a l l n o i s e . eps ’) ;

39

power spec t rum = z e r o s (1 , 8 ∗ 1024) ;
41 window = k a i s e r (8 ∗ 1024 , 2 0 . 0) ’ ;

43 f o r i = 1 : 1024
s i g = randn (1 , 8 ∗ 1024) ;

45

[l1 , h1] = l i f t f o r w a r d (s i g) ;
47 [l2 , h2] = l i f t f o r w a r d (l 1) ;

[l3 , h3] = l i f t f o r w a r d (l 2) ;
49 [l4 , h4] = l i f t f o r w a r d (l 3) ;

[l5 , h5] = l i f t f o r w a r d (l 4) ;
51

q = 0 . 0 0 5 ;
53

% Add e r r o r (weighed)
55 h1 = h1 + 32 ∗ q ∗ (r and (1 , l e n g t h (h1)) − 0 . 5) ;

h2 = h2 + 16 ∗ q ∗ (r and (1 , l e n g t h (h2)) − 0 . 5) ;
57 h3 = h3 + 8 ∗ q ∗ (r and (1 , l e n g t h (h3)) − 0 . 5) ;

h4 = h4 + 4 ∗ q ∗ (r and (1 , l e n g t h (h4)) − 0 . 5) ;
59 h5 = h5 + 2 ∗ q ∗ (r and (1 , l e n g t h (h5)) − 0 . 5) ;

l 5 = l 5 + 1 ∗ q ∗ (r and (1 , l e n g t h (l 5)) − 0 . 5) ;
61

l 4 = l i f t i n v e r s e (l5 , h5) ;
63 l 3 = l i f t i n v e r s e (l4 , h4) ;

l 2 = l i f t i n v e r s e (l3 , h3) ;
65 l 1 = l i f t i n v e r s e (l2 , h2) ;

s i g o u t = l i f t i n v e r s e (l1 , h1) ;
67

power spec = f f t ((s i g o u t − s i g) .∗ window) ;
69 power spec = power spec . ∗ c o n j (power spec) ;

power spec t rum = power spec + power spec t rum ;
71 end

73 power spec t rum = power spec t rum (1 : end / 2) ;
p l o t (l i n s p a c e (0 , 1 , l e n g t h (power spec t rum)) , 10 ∗ l og10 (power spec t rum)) ;

75 x l a b e l (’ Normal ized f r e q u e n c y (a n g u l a r / p i) ’) ;
y l a b e l (’ Gain (dB) ’) ;

77 t i t l e (’ S y n t h e s i s f i l t e r g a i n Le G a l l 5 / 3 (5 l e v e l s , 1 b i t p e r l e v e l) ’) ;
s a v e a s (gcf , ’ l e g a l l n o i s e w e i g h e d . eps ’) ;

79

power spec t rum = z e r o s (1 , 8 ∗ 1024) ;
81 window = k a i s e r (8 ∗ 1024 , 2 0 . 0) ’ ;

83 f o r i = 1 : 1024
s i g = randn (1 , 8 ∗ 1024) ;

85

[l1 , h1] = l i f t f o r w a r d (s i g) ;
87 [l2 , h2] = l i f t f o r w a r d (l 1) ;

[l3 , h3] = l i f t f o r w a r d (l 2) ;
89 [l4 , h4] = l i f t f o r w a r d (l 3) ;

[l5 , h5] = l i f t f o r w a r d (l 4) ;
91

q = 0 .005 ∗ s q r t (2) ;

92 APPENDIX C. NOISE POWER NORMALIZATION CODE

93

% Add e r r o r (weighed)
95 h1 = h1 + 1 ∗ 32 ∗ q ∗ (r and (1 , l e n g t h (h1)) − 0 . 5) ;

h2 = h2 + s q r t (2) ∗ 16 ∗ q ∗ (r and (1 , l e n g t h (h2)) − 0 . 5) ;
97 h3 = h3 + s q r t (4) ∗ 8 ∗ q ∗ (r and (1 , l e n g t h (h3)) − 0 . 5) ;

h4 = h4 + s q r t (8) ∗ 4 ∗ q ∗ (r and (1 , l e n g t h (h4)) − 0 . 5) ;
99 h5 = h5 + s q r t (1 6) ∗ 2 ∗ q ∗ (r and (1 , l e n g t h (h5)) − 0 . 5) ;

l 5 = l 5 + s q r t (1 6) ∗ 1 ∗ q ∗ (r and (1 , l e n g t h (l 5)) − 0 . 5) ;
101

l 4 = l i f t i n v e r s e (l5 , h5) ;
103 l 3 = l i f t i n v e r s e (l4 , h4) ;

l 2 = l i f t i n v e r s e (l3 , h3) ;
105 l 1 = l i f t i n v e r s e (l2 , h2) ;

s i g o u t = l i f t i n v e r s e (l1 , h1) ;
107

power spec = f f t ((s i g o u t − s i g) .∗ window) ;
109 power spec = power spec . ∗ c o n j (power spec) ;

power spec t rum = power spec + power spec t rum ;
111 end

113 power spec t rum = power spec t rum (1 : end / 2) ;
p l o t (l i n s p a c e (0 , 1 , l e n g t h (power spec t rum)) , 10 ∗ l og10 (power spec t rum)) ;

115 x l a b e l (’ Normal ized f r e q u e n c y (a n g u l a r / p i) ’) ;
y l a b e l (’ Gain (dB) ’) ;

117 t i t l e (’ S y n t h e s i s f i l t e r g a i n Le G a l l 5 / 3 (5 l e v e l s , f u l l y weighed) ’) ;
s a v e a s (gcf , ’ l e g a l l n o i s e w e i g h e d s i z e . eps ’) ;

matlab/noise power.m

%%
2 p o i n t s = 6 4 ;

power spec t rum = z e r o s (p o i n t s , p o i n t s) ;
4 window = k a i s e r (p o i n t s , 5 . 0) ∗ k a i s e r (p o i n t s , 5 . 0) ’ ;

6 f o r i = 1 : 1024
s i g = randn (p o i n t s , p o i n t s) ;

8

[l l , lh , h l , hh] = l i f t f o r w a r d 2 d (s i g) ;
10

q = 0 . 0 0 5 ;
12 l l = l l + q ∗ (r and (s i z e (l l)) − 0 . 5) ;

l h = l h + q ∗ (r and (s i z e (l h)) − 0 . 5) ;
14 h l = h l + q ∗ (r and (s i z e (h l)) − 0 . 5) ;

hh = hh + q ∗ (r and (s i z e (hh)) − 0 . 5) ;
16

s i g o u t = l i f t i n v e r s e 2 d (l l , lh , h l , hh) ;
18

power spec = f f t 2 ((s i g o u t − s i g) .∗ window) ;
20 power spec = power spec . ∗ c o n j (power spec) ;

power spec t rum = power spec + power spec t rum ;
22 end

24 power spec t rum = f f t s h i f t (power spec t rum) ;

26 %%

28 [x , y] = meshgr id (− p o i n t s / 2 : p o i n t s / 2 − 1) ;
x = x / (p o i n t s / 2) ;

30 y = y / (p o i n t s / 2) ;

32 power = 10 ∗ l og10 (power spec t rum) ;

93

34 s u r f (x , y , power) ;
c o l o r b a r ;

36 x l a b e l (’ H o r i z o n t a l f r e q . (a n g u l a r / p i) ’) ;
y l a b e l (’ V e r t i c a l f r e q . (a n g u l a r / p i) ’) ;

38 z l a b e l (’ Gain (dB) ’) ;
t i t l e (’ S y n t h e s i s f i l t e r g a i n 2D Le G a l l 5 / 3 ’) ;

40 %s a v e a s (gcf , ’ l e g a l l n o i s e 2 d . eps ’) ;

42 %%
p o i n t s = 6 4 ;

44 power spec t rum = z e r o s (p o i n t s , p o i n t s) ;
window = k a i s e r (p o i n t s , 5 . 0) ∗ k a i s e r (p o i n t s , 5 . 0) ’ ;

46

f o r i = 1 : 1024
48 s i g = randn (p o i n t s , p o i n t s) ;

50 [l l , lh , h l , hh] = l i f t f o r w a r d 2 d (s i g) ;

52 q = 0 . 0 0 5 ;
l l = l l + 1 ∗ q ∗ (r and (s i z e (l l)) − 0 . 5) ;

54 l h = l h + 2 ∗ q ∗ (r and (s i z e (l h)) − 0 . 5) ;
h l = h l + 2 ∗ q ∗ (r and (s i z e (h l)) − 0 . 5) ;

56 hh = hh + 4 ∗ q ∗ (r and (s i z e (hh)) − 0 . 5) ;

58 s i g o u t = l i f t i n v e r s e 2 d (l l , lh , h l , hh) ;

60 power spec = f f t 2 ((s i g o u t − s i g) .∗ window) ;
power spec = power spec . ∗ c o n j (power spec) ;

62 power spec t rum = power spec + power spec t rum ;
end

64

power spec t rum = f f t s h i f t (power spec t rum) ;
66

%%
68

[x , y] = meshgr id (− p o i n t s / 2 : p o i n t s / 2 − 1) ;
70 x = x / (p o i n t s / 2) ;

y = y / (p o i n t s / 2) ;
72

power = 10 ∗ l og10 (power spec t rum) ;
74

s u r f (x , y , power) ;
76 c o l o r b a r ;

x l a b e l (’ H o r i z o n t a l f r e q . (a n g u l a r / p i) ’) ;
78 y l a b e l (’ V e r t i c a l f r e q . (a n g u l a r / p i) ’) ;

z l a b e l (’ Gain (dB) ’) ;
80 t i t l e (’ S y n t h e s i s f i l t e r g a i n 2D Le G a l l 5 / 3 , weighed ’) ;

%s a v e a s (gcf , ’ l e g a l l n o i s e 2 d w e i g h e d . eps ’) ;
82

%%
84 p o i n t s = 128 ;

power spec t rum = z e r o s (p o i n t s , p o i n t s) ;
86 window = k a i s e r (p o i n t s , 5 . 0) ∗ k a i s e r (p o i n t s , 5 . 0) ’ ;

88 f o r i = 1 : 1024
s i g = randn (p o i n t s , p o i n t s) ;

90

[l l 1 , lh1 , hl1 , hh1] = l i f t f o r w a r d 2 d (s i g) ;
92 [l l 2 , lh2 , hl2 , hh2] = l i f t f o r w a r d 2 d (l l 1) ;

94 APPENDIX C. NOISE POWER NORMALIZATION CODE

[l l 3 , lh3 , hl3 , hh3] = l i f t f o r w a r d 2 d (l l 2) ;
94 [l l 4 , lh4 , hl4 , hh4] = l i f t f o r w a r d 2 d (l l 3) ;

[l l 5 , lh5 , hl5 , hh5] = l i f t f o r w a r d 2 d (l l 4) ;
96

q = 0 . 0 0 5 ;
98 l l 5 = l l 5 + 32 ∗ 1 ∗ q ∗ (r and (s i z e (l l 5)) − 0 . 5) ;

100 l h 5 = l h 5 + 32 ∗ 2 ∗ q ∗ (r and (s i z e (l h 5)) − 0 . 5) ;
h l 5 = h l 5 + 32 ∗ 2 ∗ q ∗ (r and (s i z e (h l 5)) − 0 . 5) ;

102 hh5 = hh5 + 32 ∗ 4 ∗ q ∗ (r and (s i z e (hh5)) − 0 . 5) ;

104 l h 4 = l h 4 + 16 ∗ 8 ∗ q ∗ (r and (s i z e (l h 4)) − 0 . 5) ;
h l 4 = h l 4 + 16 ∗ 8 ∗ q ∗ (r and (s i z e (h l 4)) − 0 . 5) ;

106 hh4 = hh4 + 16 ∗ 16 ∗ q ∗ (r and (s i z e (hh4)) − 0 . 5) ;

108 l h 3 = l h 3 + 8 ∗ 32 ∗ q ∗ (r and (s i z e (l h 3)) − 0 . 5) ;
h l 3 = h l 3 + 8 ∗ 32 ∗ q ∗ (r and (s i z e (h l 3)) − 0 . 5) ;

110 hh3 = hh3 + 8 ∗ 64 ∗ q ∗ (r and (s i z e (hh3)) − 0 . 5) ;

112 l h 2 = l h 2 + 4 ∗ 128 ∗ q ∗ (r and (s i z e (l h 2)) − 0 . 5) ;
h l 2 = h l 2 + 4 ∗ 128 ∗ q ∗ (r and (s i z e (h l 2)) − 0 . 5) ;

114 hh2 = hh2 + 4 ∗ 256 ∗ q ∗ (r and (s i z e (hh2)) − 0 . 5) ;

116 l h 1 = l h 1 + 2 ∗ 512 ∗ q ∗ (r and (s i z e (l h 1)) − 0 . 5) ;
h l 1 = h l 1 + 2 ∗ 512 ∗ q ∗ (r and (s i z e (h l 1)) − 0 . 5) ;

118 hh1 = hh1 + 2 ∗ 1024 ∗ q ∗ (r and (s i z e (hh1)) − 0 . 5) ;

120 l l 4 = l i f t i n v e r s e 2 d (l l 5 , lh5 , hl5 , hh5) ;
l l 3 = l i f t i n v e r s e 2 d (l l 4 , lh4 , hl4 , hh4) ;

122 l l 2 = l i f t i n v e r s e 2 d (l l 3 , lh3 , hl3 , hh3) ;
l l 1 = l i f t i n v e r s e 2 d (l l 2 , lh2 , hl2 , hh2) ;

124 s i g o u t = l i f t i n v e r s e 2 d (l l 1 , lh1 , hl1 , hh1) ;

126 power spec = f f t 2 ((s i g o u t − s i g) .∗ window) ;
power spec = power spec . ∗ c o n j (power spec) ;

128 power spec t rum = power spec + power spec t rum ;
end

130

power spec t rum = f f t s h i f t (power spec t rum) ;
132

%%
134

[x , y] = meshgr id (− p o i n t s / 2 : p o i n t s / 2 − 1) ;
136 x = x / (p o i n t s / 2) ;

y = y / (p o i n t s / 2) ;
138

power = 10 ∗ l og10 (power spec t rum) ;
140

s u r f (x , y , power) ;
142 c o l o r b a r ;

x l a b e l (’ H o r i z o n t a l f r e q . (a n g u l a r / p i) ’) ;
144 y l a b e l (’ V e r t i c a l f r e q . (a n g u l a r / p i) ’) ;

z l a b e l (’ Gain (dB) ’) ;
146 t i t l e (’ S y n t h e s i s f i l t e r g a i n 2D Le G a l l 5 / 3 , (5 l e v e l s , weighed) ’) ;

%s a v e a s (gcf , ’ l e g a l l n o i s e 2 d w e i g h e d s i z e . eps ’) ;

matlab/noise power 2d.m

1 %% Unbiased

3 l o p a s s = f f t ([1 / 2 1 1 / 2] , 256) ;

95

l o p a s s = l o p a s s . ∗ c o n j (l o p a s s) ;
5 h i p a s s = f f t ([−1/8 −2/8 6 / 8 −2/8 −1/8] , 256) ;

h i p a s s = h i p a s s . ∗ c o n j (h i p a s s) ;
7

s p e c t r u m e s t = l o p a s s + h i p a s s ;
9 s p e c t r u m e s t = s p e c t r u m e s t (1 : end / 2) ;

11 power spec t rum = power spec t rum (1 : end / 2) ;

13 f i g u r e ;
p l o t (l i n s p a c e (0 , 1 , l e n g t h (s p e c t r u m e s t)) , 10 ∗ l og10 (s p e c t r u m e s t) , ’ k ’) ;

15 x l a b e l (’ Normal ized f r e q u e n c y (a n g u l a r / p i) ’) ;
y l a b e l (’ Gain (dB) ’) ;

17 t i t l e (’ S y n t h e s i s f i l t e r g a i n Le G a l l 5 / 3 ’) ;

19 s a v e a s (gcf , ’ l e g a l l b a s i c . eps ’) ;

21 %% One−b i t high−p a s s b i a s
l o p a s s = f f t ([1 / 2 1 1 / 2] , 256) ;

23 l o p a s s = l o p a s s . ∗ c o n j (l o p a s s) ;
h i p a s s = f f t (2 ∗ [−1/8 −2/8 6 / 8 −2/8 −1/8] , 256) ;

25 h i p a s s = h i p a s s . ∗ c o n j (h i p a s s) ;

27 s p e c t r u m e s t = l o p a s s + h i p a s s ;
s p e c t r u m e s t = s p e c t r u m e s t (1 : end / 2) ;

29

power spec t rum = power spec t rum (1 : end / 2) ;
31

f i g u r e ;
33 p l o t (l i n s p a c e (0 , 1 , l e n g t h (s p e c t r u m e s t)) , 10 ∗ l og10 (s p e c t r u m e s t) , ’ k ’) ;

x l a b e l (’ Normal ized f r e q u e n c y (a n g u l a r / p i) ’) ;
35 y l a b e l (’ Gain (dB) ’) ;

t i t l e (’ S y n t h e s i s f i l t e r g a i n Le G a l l 5 / 3 (1 b i t e x t r a q u a n t i z a t i o n on high−p a s s)
’) ;

37 s a v e a s (gcf , ’ l e g a l l b a s i c b i a s . eps ’) ;

matlab/noise power basic.m

1 f = l i n s p a c e (0 , 40 , 1024) ;

3 c s f = 2 . 6 ∗ (0 . 0 1 9 2 + 0 .114 ∗ f) .∗ exp (− ((0 .114 ∗ f) . ˆ 1 . 1)) ;
b = log2 (1 . / c s f) ;

5 %b = b − min (b) ;

7 p l o t (f , b) ;
x l a b e l (’ C yc l e s p e r d e g r e e (cpd) ’) ;

9 y l a b e l (’ B i t s ’) ;
t i t l e (’ Luminance added q u a n t i z a t i o n b i t s ’) ;

11 s a v e a s (gcf , ’ c s f−q u a n t . eps ’) ;

13 cpdmax = 4 9 ;
f r e q s = 1 /64 ∗ [

15 1 1
3 1

17 1 3
3 3

19 6 2
2 6

21 6 6
12 4

23 4 12

96 APPENDIX C. NOISE POWER NORMALIZATION CODE

12 12
25 24 8

8 24
27 24 24

48 16
29 16 48

48 4 8] ’ ;
31

f r e q s o u t = s q r t (sum (f r e q s . ∗ f r e q s , 1)) ;

matlab/csf.m

Appendix D

Subjective and objective evaluation test data

r a t e s = [2 . 5 5 . 0 1 0 . 0 1 5 . 0 2 0 . 0 2 5 . 0 3 5 . 0 5 0 . 0 1 0 0 . 0] ;
2

d c i 1 = [
4 10 20

60 50
6 80 80

90 80
8 90 90

90 82
10 90 85

90 80
12 90 80

] ;
14

d c i 2 = [
16 40 85

70 90
18 90 100

85 90
20 90 90

90 80
22 90 100

90 90
24 80 80

] ;
26

p a r k j o y = [
28 5 10

50 40
30 75 70

90 90
32 90 100

90 82
34 90 85

90 100
36 90 85

] ;
38

h o r s e = [
40 0 20

10 30
42 40 50

80 85
44 90 90

80 82

97

98 APPENDIX D. SUBJECTIVE AND OBJECTIVE EVALUATION TEST DATA

46 85 100
90 82

48 80 90
] ;

50

p s n r = [
52 23 .467 26 .662 30 .109 33 .755 37 .131 40 .287 46 .626 55 .705 % ParkJoy

25 .460 28 .026 31 .466 34 .794 38 .504 42 .588 49 .098 58 .324 % Horse
54 34 .484 38 .777 42 .631 45 .532 48 .376 51 .262 57 .085 65 .571 % DCI1

38 .068 41 .160 44 .037 46 .812 49 .110 52 .317 57 .795 68 .198 % DCI2
56] ;

58 ss im = [
5 . 4 0 8 . 2 3 11 .19 13 .92 16 .52 19 .10 24 .40 32 .95 % ParkJoy

60 5 . 8 1 8 . 0 4 10 .60 13 .00 15 .67 19 .40 25 .39 34 .63 % Horse
11 .54 14 .52 17 .15 19 .41 21 .89 24 .66 30 .09 38 .84 % DCI1

62 11 .11 13 .64 16 .12 18 .77 20 .94 24 .06 29 .46 40 .16 % DCI2
] ;

64

%% Horse
66 f i g u r e ;

ho ld on ;
68 p l o t (r a t e s (1 : end) , d c i 2 (: , 1) ’ / 20 , ’k−ˆ ’) ;

p l o t (r a t e s (1 : end) , d c i 2 (: , 2) ’ / 20 , ’k−s ’) ;
70 ho ld o f f ;

g r i d on ;
72

x l a b e l (’ Compress ion r a t e (%) ’) ;
74 y l a b e l (’ Opin ion s c o r e ’) ;

76 l e g e n d (’ E x p e r t 1 ’ , ’ E x p e r t 2 ’ , ’ L o c a t i o n ’ , ’ S o u t h E a s t ’) ;
a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;

78 t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 2 0] , ’
XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;

h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;
80 P = g e t (h , ’ P o s i t i o n ’) ;

s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 4 , P (3)]) ;
82

%% PSNR
84 f i g u r e ;

ho ld on ;
86 p l o t (r a t e s (1 : end − 1) , p s n r (1 , :) , ’ k−+ ’) ;

p l o t (r a t e s (1 : end − 1) , p s n r (2 , :) , ’ k−d ’) ;
88 p l o t (r a t e s (1 : end − 1) , p s n r (3 , :) , ’ k−s ’) ;

p l o t (r a t e s (1 : end − 1) , p s n r (4 , :) , ’ k−ˆ ’) ;
90 ho ld o f f ;

g r i d on ;
92 x l a b e l (’ Compress ion r a t e (%) ’) ;

y l a b e l (’PSNR−Y (dB) ’) ;
94

h = l e g e n d (’ Pa rkJoy ’ , ’ Horse ’ , ’DCI1 ’ , ’DCI2 ’) ;
96 s e t (h , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’) ;

%h = t i t l e (’PSNR−Y f o r t e s t s e q u e n c e s a t t e s t e d b i t r a t e s ’) ;
98 a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;

t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 1 0] , ’
XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;

100 h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;
P = g e t (h , ’ P o s i t i o n ’) ;

102 s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 2 , P (3)]) ;

99

104 s a v e a s (gcf , ’ p s n r . eps ’) ;

106 %% SSIM
f i g u r e ;

108 ho ld on ;
p l o t (r a t e s (1 : end − 1) , s s im (1 , :) , ’ k−+ ’) ;

110 p l o t (r a t e s (1 : end − 1) , s s im (2 , :) , ’ k−d ’) ;
p l o t (r a t e s (1 : end − 1) , s s im (3 , :) , ’ k−s ’) ;

112 p l o t (r a t e s (1 : end − 1) , s s im (4 , :) , ’ k−ˆ ’) ;
ho ld o f f ;

114 g r i d on ;
x l a b e l (’ Compress ion r a t e (%) ’) ;

116 y l a b e l (’SSIM (dB) [−10 log10 (1 − SSIM)] ’) ;

118 h = l e g e n d (’ Pa rkJoy ’ , ’ Horse ’ , ’DCI1 ’ , ’DCI2 ’) ;
s e t (h , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’) ;

120 %t i t l e (’ SS−SSIM f o r t e s t s e q u e n c e s a t t e s t e d b i t r a t e s ’) ;
a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;

122 t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 1 0] , ’
XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;

h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;
124 P = g e t (h , ’ P o s i t i o n ’) ;

s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 2 , P (3)]) ;
126

s a v e a s (gcf , ’ s s im . eps ’) ;
128

%% A l l
130 s c o r e s = [dc i1 ’ ; dc i2 ’ ; p a r k j o y ’ ; ho r se ’] / 2 0 ;

s c o r e s m e a n = mean (s c o r e s , 1) ;
132 s c o r e s d e v = 1 . 9 6 ∗ s t d (s c o r e s , 0 , 1) / s q r t (s i z e (s c o r e s , 1)) ;

134 s c o r e s m e a n o v e r a l l = mean (s c o r e s m e a n) ;

136 f i g u r e ;
ho ld on ;

138 p l o t (r a t e s , s c o r e s m e a n − s c o r e s d e v , ’k−+ ’) ;
p l o t (r a t e s , s co re s mean , ’k−d ’) ;

140 p l o t (r a t e s , s c o r e s m e a n + s c o r e s d e v , ’k−s ’) ;
ho ld o f f ;

142 g r i d on ;
x l a b e l (’ Compress ion r a t e (%) ’) ;

144 y l a b e l (’Mean o p i n i o n s c o r e ’) ;
h = l e g e n d (’ Lower bound 95% c o n f i d e n c e (mean) ’ , ’Mean ’ , ’ Upper bound 95%

c o n f i d e n c e (mean) ’) ;
146 s e t (h , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’) ;

%t i t l e (’ Mean o p i n i o n s c o r e s ove r a l l s e q u e n c e s and o b s e r v e r s ’) ;
148

a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;
150 t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 2 0] , ’

XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;
h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;

152 P = g e t (h , ’ P o s i t i o n ’) ;
s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 2 , P (3)]) ;

154

s a v e a s (gcf , ’ a l l . eps ’) ;
156

%% DCI on ly
158 s c o r e s = [dc i1 ’ ; dc i2 ’] / 2 0 ;

s c o r e s m e a n = mean (s c o r e s , 1) ;
160 s c o r e s d e v = 1 . 9 6 ∗ s t d (s c o r e s , 0 , 1) / s q r t (s i z e (s c o r e s , 1)) ;

100 APPENDIX D. SUBJECTIVE AND OBJECTIVE EVALUATION TEST DATA

162 f i g u r e ;
ho ld on ;

164 p l o t (r a t e s , s c o r e s m e a n − s c o r e s d e v , ’k−+ ’) ;
p l o t (r a t e s , s co re s mean , ’k−d ’) ;

166 p l o t (r a t e s , s c o r e s m e a n + s c o r e s d e v , ’k−s ’) ;
ho ld o f f ;

168 g r i d on ;
x l a b e l (’ Compress ion r a t e (%) ’) ;

170 y l a b e l (’Mean o p i n i o n s c o r e ’) ;
h = l e g e n d (’ Lower bound 95% c o n f i d e n c e (mean) ’ , ’Mean ’ , ’ Upper bound 95%

c o n f i d e n c e (mean) ’) ;
172 s e t (h , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’) ;

%t i t l e (’ Mean o p i n i o n s c o r e s ove r DCI s e q u e n c e s and o b s e r v e r s ’) ;
174

a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;
176 t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 2 0] , ’

XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;
h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;

178 P = g e t (h , ’ P o s i t i o n ’) ;
s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 2 , P (3)]) ;

180

s a v e a s (gcf , ’DCI . eps ’) ;
182

%% SVT /NRK
184 s c o r e s = [p a r k j o y ’ ; ho r se ’] / 2 0 ;

s c o r e s m e a n = mean (s c o r e s , 1) ;
186 s c o r e s d e v = 1 . 9 6 ∗ s t d (s c o r e s , 0 , 1) / s q r t (s i z e (s c o r e s , 1)) ;

188 f i g u r e ;
ho ld on ;

190 p l o t (r a t e s , s c o r e s m e a n − s c o r e s d e v , ’k−+ ’) ;
p l o t (r a t e s , s co re s mean , ’k−d ’) ;

192 p l o t (r a t e s , s c o r e s m e a n + s c o r e s d e v , ’k−s ’) ;
ho ld o f f ;

194 g r i d on ;
x l a b e l (’ Compress ion r a t e (%) ’) ;

196 y l a b e l (’Mean o p i n i o n s c o r e ’) ;
h = l e g e n d (’ Lower bound 95% c o n f i d e n c e (mean) ’ , ’Mean ’ , ’ Upper bound 95%

c o n f i d e n c e (mean) ’) ;
198 s e t (h , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’) ;

%t i t l e (’ Mean o p i n i o n s c o r e s ove r Pa rkJoy / Horse s e q u e n c e s and o b s e r v e r s ’) ;
200

a x e s p o s = g e t (gca , ’ P o s i t i o n ’) ;
202 t o p x = axes (’ P o s i t i o n ’ , a x e s p o s , ’ Co lo r ’ , ’ none ’ , ’XLim ’ , [0 2 0] , ’

XAxisLoca t ion ’ , ’ t o p ’ , ’ YAxisLoca t ion ’ , ’ r i g h t ’ , ’ YTick ’ , []) ;
h = x l a b e l (t op x , ’ B i t s p e r p i x e l ’) ;

204 P = g e t (h , ’ P o s i t i o n ’) ;
s e t (h , ’ P o s i t i o n ’ , [P (1) , P (2) − 0 . 0 2 , P (3)]) ;

206

s a v e a s (gcf , ’ p a r k j o y h o r s e . eps ’) ;

subjective/subjective.m

1 p s n r 5 0 0 0 = [3 9 . 6 7 4 39 .674 39 .674 39 .674 39 .674 39 .674 3 9 . 6 7 4] ;
p s n r 3 0 0 0 = [3 3 . 0 7 0 33 .070 33 .070 33 .070 33 .070 33 .070 3 3 . 0 7 0] ;

3

p s n r 5 0 0 8 = [3 9 . 6 1 9 39 .606 39 .594 39 .583 39 .574 39 .567 3 9 . 5 5 9] ;
5 p s n r 3 0 0 8 = [3 3 . 0 7 3 33 .066 33 .058 33 .050 33 .041 33 .031 3 3 . 0 2 0] ;

7 g e n e r a t i o n s = 1 : 7 ;

101

9 %% 500
f i g u r e ;

11 ho ld on ;
p l o t (g e n e r a t i o n s , p s n r 5 0 0 0 , ’k−ˆ ’) ;

13 p l o t (g e n e r a t i o n s , p s n r 5 0 0 8 , ’k−s ’) ;
ho ld o f f ;

15 l e g e n d (’ 500 Mbit / s , no p r e / p o s t f i l t e r ’ , ’ 500 Mbit / s , 8− l i n e p r e / p o s t f i l t e r ’) ;
x l a b e l (’ G e n e r a t i o n ’) ;

17 y l a b e l (’PSNR−Y (dB) ’) ;
t i t l e (’ Encoding l o s s ove r m u l t i p l e g e n e r a t i o n s f o r 500 Mbit / s Pa rkJoy ’) ;

19

s a v e a s (gcf , ’ p a r k j o y 5 0 0 . eps ’) ;
21

%% 300
23

f i g u r e ;
25 ho ld on ;

p l o t (g e n e r a t i o n s , p s n r 3 0 0 0 , ’k−ˆ ’) ;
27 p l o t (g e n e r a t i o n s , p s n r 3 0 0 8 , ’k−s ’) ;

ho ld o f f ;
29 l e g e n d (’ 300 Mbit / s , no p r e / p o s t f i l t e r ’ , ’ 300 Mbit / s , 8− l i n e p r e / p o s t f i l t e r ’) ;

x l a b e l (’ G e n e r a t i o n ’) ;
31 y l a b e l (’PSNR−Y (dB) ’) ;

t i t l e (’ Encoding l o s s ove r m u l t i p l e g e n e r a t i o n s f o r 300 Mbit / s Pa rkJoy ’) ;
33

s a v e a s (gcf , ’ p a r k j o y 3 0 0 . eps ’) ;

objective/objective.m

102 APPENDIX D. SUBJECTIVE AND OBJECTIVE EVALUATION TEST DATA

Appendix E

README.txt

===
Additional material for Linelet master thesis
===

In this archive, we present additional material which does fit
inside the report.

- Linelet source code.
- Linelet binaries for 64-bit Windows (Windows Vista or later).
- Scripts which were used to run the subjective evaluation
as well as objective metrics.

Test clips in RAW YUV format are *NOT* included here due to a
prohibitively large size. Which test clips were used is
laid out in the chapter 5 and can be obtained elsewhere.

Source code
================

Source code is found under linelet-source/linelet-source.zip.
The sole author of this code is Hans-Kristian Arntzen.
The exception to this is the xxhash implementation which is
licensed under BSD. A license header is included for this
in the relevant code.

In the source code, a patch for FFmpeg/libavcodec is also
included which is needed to build FFmpeg with Linelet support.
See the README.html included in the Linelet source.

Binaries
============

We include binaries for 64-bit Windows which can run on
Windows Vista or later. They are found in the binaries/ folder.

103

104 APPENDIX E. README.TXT

- linelet: The command-line utility for the Linelet codec,
built from linelet/linelet-source.zip.

- FFmpeg: The command-line utility for FFmpeg.
It was patched with Linelet support
(linelet/linelet-source.zip)
and otherwise built as-is with --enable-liblinelet.

- MPV: The MPV player. It was built as-is against dynamic
FFmpeg libraries.

- Various open source dynamic libraries which are needed to
run FFmpeg and MPV. They were built as-is.

Scripts
============

Scripts which were used to generate results for subjective
and objective evaluations (chapter 5 and 6) are found
in the scripts/ folder.

