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Task Description

The problem is "Ship track estimation from single hydrophone data" and thesis

shall develop and test a model-based method for the estimation of the track of

a ship from its radiated acoustic noise recorded on a sensor unit (hydrophone)

placed on the seabed. A simple and efficient model that describes the spatial

structure of the acoustic field at short ranges shall be implemented. A ranging-

and-tracking algorithm for a moving ship based on matching of modeled and

measured amplitude data shall be implemented and applied to selected data

from measurements with the NILUS platform.
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Abstract

Passive acoustic range estimation and source tracking using hydrophones have

been a problem because of the complexity of the underwater channel. This

thesis is concerned with a fast method for the estimation of ship velocity and

horizontal range to a surface going vessel using acoustic data from a single hy-

drophone. The problem is of interest in applications for monitoring of noise

from commercial shipping and ship traffic. There has been many who have

developed different method for similar problems and this thesis is based on a

matched field inversion method.

This method used the analytic Lloyd mirror propagation model which assumes

constant sound speed, homogeneous horizontal layers and a single bottom layer,

which has reduces accuracy at larger range (300 meter), but is simple and fast.

The cost function for matching the recorded data and the modeled data was a

modified Bartlett function which calculates the deviation between the ratio of

the two data sets and was sensitive to variation in the signal. To reduce the vari-

ance in the recorded signal the welch spectral estimation was used. The ASHS

and ASDE was implemented for a more efficient search through the parameter

space, but a 2D search through the velocity and range parameters was also made

to study the uncertainty of the estimations and the effect the different parame-

ters had on the cost function loss. The results of the estimation was compared

with the recorded AIS data of the unknown parameters.

The results in this thesis indicate that a close estimation of the ship velocity and

horizontal range was possible with the 2D search when presented with a sig-

nal with good SNR, reduced variance, low range, good estimation of the source

depth, low search interval and a sufficient amount of data which can be used

in the estimation. Which also makes it possible to use these parameters for

ship tracking. An observation which where made was that the source depth

changed the outcome of the estimation drastically. Close estimation with the

global search algorithms required higher SNR and knowledge of the unknown

parameters that could reduce the search interval.
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Sammendrag

Passiv akustisk avstands estimering og kildesporing ved hjelp av hydrofoner har

vært et problem på grunn av kompleksiteten i undervannskanalen. Denne av-

handlingen er opptatt av en rask metode for estimering av skips hastighet og ho-

risontal avstand til skip ved hjelp av akustiske data fra en enkelt hydrofon. Pro-

blemet er av interesse for anvendelser innen overvåking av støy fra kommersiell

skipsfart og skipstrafikk. Det har vært mange som har utviklet andre metode for

lignende problemer, og denne oppgaven er basert på en matchet felt inversjon

metode.

Denne metoden anvender den analytiske Lloyd mirror propagasjons modellen

som forutsetter konstant lydhastighet, homogene horisontale lag, og et enkelt

bunnsjikt, som har redusert nøyaktighet ved større avstander ( 300 meter), men

er en enkel og rask modell. Kost funksjonen for å sammenliknet de målte data-

ene og de modelerte dataene var en modifisert Bartlett funksjon som beregner

forskjellen mellom forholdet i de to datasettene, og var naturligvis følsomme for

variasjoner i signalet. For å redusere variasjonen i det målte signalet så ble en

welch spektral estimering brukt. ASHS og ASDE har blitt implementert for et mer

effektivt søke igjennom parameter rommet, men et 2D søk igjennom hastighet

og avstands parameterene ble også gjort for åstudere usikkerheten i estimatene

og hvordan de ulike parametrene påvirket kost funksjons tapet. Resultatene av

estimeringene ble sammenlignet med de AIS registrerte dataene av de ukjente

parametrene.

Resultatene i denne avhandlingen indikerer at en god estimering av skipets has-

tighet og den horisontale avstanden var mulig med et 2D søk når metoden ble

gitt med et signal med god SNR, redusert varians, kort avstands parameter, god

estimering av kildedybde og tilstrekkelig mengde data som kan brukes i estime-

ringen. En observasjon som ble gjort var at kilde dybden endrer resultatet av

estimeringen drastisk og ble da brukt som en tredje ukjent parameter i de glo-

bale søkealgoritmene. Godt estimering med de globale søkealgoritmene krevde

høyere SNR og kunnskap om de ukjente parametrene som kan redusere søkein-

tervallet.
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Chapter 1

Introduction

This chapter consists of an introduction to the thesis, with previous work, inter-

est of subject and a structure of the thesis.

1.1 Background

There has been interest in range estimation and ship tracking for various rea-

sons since the creation of the ship. This may be accomplished by using various

methods on recorded hydrophone data.

Some bio-acoustician have used a single hydrophone to calculate the depth/range

of phonating diving animals, where the standard one-hydrophone localization

method uses multi path transmissions of the animal phonations as a substitute

for a vertical hydrophone array, [11]. Others are interesting in ship localization

using ship noise, [17]. The approach to achieve this was using an array of hy-

drophones, where the relative arrival times are used as data in an array element

localization inversion method to estimate both the hydrophone and ship loca-

tion based on an iterated linearization of the acoustic ray equations. The Mar-

itime Systems Division has been interesting in passive acoustic tracking, [22].

This method uses covariance matrix of the pseudo-coordinate track represen-

tation for tracking. These are just a few who have taken an interest in this kind

of estimations, but there is not known to be not many who have explored the

problem that is presented.

1



2 CHAPTER 1. INTRODUCTION

FFI have provided the problem for this thesis and has developed a demonstrator

system for sensor networks underwater, named NILUS (Networked Intelligent

Underwater Sensors) from [20]. The battery-powered sensor nodes are released

into the water and lands on the ocean floor, where they can detect the pass-

ing ships on or in the water, and send this information to the operations center

through sub sea network. NILUS was designed to evaluate and demonstrate the

potential for sensor networks under water and has been used in several trials and

exercises both nationally and internationally. FFI wants to use this system for

range estimations and source tracking of ships to monitoring noise from com-

mercial shipping and ship traffic. The NILUS uses passive hydrophones and is

equipped with a single hydrophone which can be used for range and ship veloc-

ity estimation, see [21].

This thesis is based on the project "Ship range estimation from single hydrophone

data", which has been done as preparation to the thesis, started fall 2013, and

was delivered 20th of December the same year. Gathering of information on the

theory and testing by simulations with synthetic data was done in the project

and the method used in the project is the same as in the thesis. The method,

which is used in this thesis, is a matched field method used by Wilmut and Chap-

man, see [18]. One important difference is that their work has been done to es-

timate range for a source being dragged by a boat, rather using the emitted ship

noise in the estimation. The inversion method compares the recorded propaga-

tion field with a modeled propagation field and finds the parameters which gives

the best match of propagation.

Inversion methods are effective in estimating large number of unknown parame-

ters. Such methods are applied for example in the oil industry, in seismic, where

large areas of ocean floor are supposed to be mapped with large arrays of hy-

drophones. Global search algorithms are usually utilized for optimizing the in-

version methods for more efficiency. In this case it’s particularly interesting to

see how the Lloyd mirror propagation model are handling the problem because

of it simplicity.

1.2 Objectives

The main objectives in this thesis are

1. Use signal processing on the recorded data to reduce the variance in the

noisy signal and extract the recorded amplitude data at a given frequency
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at a given time.

2. Further develop the matched field method from the project, such as make

an global search algorithm and expand operating area of the propagation

model.

3. Find sufficient estimates of the horizontal range and ship velocity for some

of the recorded data sets which FFI has provided for recreating the ship

path as tracking.

1.3 Approach

There will be used signal processing tools such as FFT (fast Fourier transforma-

tion), PSD (Power Spectral Density) and Welch spectral estimation to process

the measured data, such that the amplitude value of the recorded pressure can

be extracted. A faster search will be achieved by using the two global search algo-

rithms, ASHS and ASDE, and the propagation model will be modified such that

this method can be used for cases where the receiver isn’t at the sea floor for fur-

ther study. Good estimation will be found by choosing appropriate parameters

in the search model, signal processing models and propagation model. The pa-

rameters are found by studying the recorded data and changing the parameters

accordingly with trial and error.

1.4 Structure of the Report

The objective of this thesis is to explore if the method in [18] is adequate for es-

timation in the presented problem and if sufficient estimations can be achieved

by using the Lloyd mirror as the propagation model. The work in this thesis is

divided into three parts, a signal processing part for handle the recorded hy-

drophone data, a matched field inversion part which consists of a propagation

model, cost function and a search algorithm and the last part is applying the

method for the recorded data.

The report of the thesis is therefor structured in this way:

• Establishing the theory of the signal processing and the matched field in-

version method in chapter 2.
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• The experimental set up is described and environmental data is given in

chapter 3.

• How the method is applied is described in section 4.1.

• The implemented matched field method is tested with synthetic noisy data

and its theoretical limitations is found in section 4.4.

• The implemented method is applied on the recorded data in section 4.5 .

• The results are evaluated and discussed in both section 4.5 and chapter 5.



Chapter 2

Theory

In this chapter a introduction will be given to the theory of the different methods

used in the matched field inversion method.

2.1 Signal processing

The acoustical noise, which is generated by a traveling ship, is recorded, ampli-

fied and converted from analog to discrete data. The information that is inter-

esting in this case is the pattern of the acoustical propagation through time and

over frequencies. This information is extracted by Fourier transformation of seg-

ments of time and averaged. This section is inspired by Stian Cowards thesis [7],

which uses the same methods for processing the discrete data and is a former

student at NTNU,.

2.1.1 Fourier Transform

Fourier transformation transform the signal in time domain into frequency do-

main. This makes it possible to analyze the signal in the frequency domain.

The analog time segment x(t ), which is sampled at a rate Fs = 1
∆t , will create the

discrete time signal x(n∆t ) = x(n). The discrete Fourier transform (DFT) of a

finite energy signal of length N, can then be defined as

5



6 CHAPTER 2. THEORY

X (k) = 1

N

N−1∑
n=0

x(n)exp(−i 2πnk/N ) n,k = 0, ..., N −1 (2.1)

from Digital Signal Processing [19, p. 456], where

k = f

∆ f
(2.2)

this is the same as FFT in Matlab, except of 1/N . Here ∆ f is the frequency reso-

lution of the frequency bin.

∆ f = Fs

N
. (2.3)

The length of the signal in seconds is

T = N

Fs
= 1

∆ f
. (2.4)

2.1.2 Power Spectral Density

The power spectral density (PSD) is often used when considering the source

level, but in this case the amplitude of the signal is the required information.

The pwelch function in MATLAB returns the PSD of the welch spectral estima-

tion, which is described in section 2.1.3, and the PSD is studied to calculate the

amplitude of the signal and to present the recorded data.

The power spectral density of a random stationary process can be obtained by

the Wiener-Khintchine theorem, by computing the Fourier transform of the au-

tocorrelation function see [19, p. 966], that is

Γ( f ) =
∫ ∞

−∞
γ(τ)exp(−i 2π f τ)dτ (2.5)

where

γ(τ) = E [x∗(t ) · x(t +τ)]. (2.6)
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For a discrete finite signal with the Fourier transformation in equation 2.1, the

PSD can be defined, from [19, p. 969], as

PSD(k) = 2
|X (k)|2
∆ f

= 2

Fs N
|

N−1∑
n=0

x(n)exp(−i 2πnk/N )|2 n,k = 0,1, ..., N −1

(2.7)

where the Fourier transforms symmetrical frequencies is summed up, hence the

factor of 2. The amplitude can be converted by just inverting this process, but

keep the absolute value.

2.1.3 Welch spectral estimation

The welch spectral estimation is an method where a window function is applied

to the time signal to estimate the PSD.

The function of the window is that the discontinuous and attenuation of the sig-

nal at the start and the end is removed, which will reduce spectral leakage. There

are large variety of window functions, see [9], and can be chosen to the prob-

lem presented. The hanning window, which is used here, is based on the power

of the cosine. Compared to an rectangular window, this gives lower side-lobes

and wider main lobe. This will say less spectral leakage, but the width of the

main-lobe controls the ability to distinguish between two close spectral compo-

nents, which affects the frequency resolution. Therefor there is a natural trade

of between frequency resolution and spectral leakage. When the DFT length has

the same length as the signal the effect on the resolution from both the window

function and the DFT, limits the resolution to the same amount. The frequency

resolution for a hanning window for T = 1 in this case is approximate 1.4 Hz,

where the main lobe is −3 dB and side-lobe is −31.5 dB. Max amplitude error is

discussed in [9], where this error is −3.9 dB for the rectangular window and −1.4

dB for the hanning window.

If the window function is w(n),n = 0,1, ..., Ns −1, the incoherent gain (normal-

ization) factor can be defined by

G I NC = 1

Ns

Ns−1∑
n=0

w(n)2. (2.8)
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The welch spectral estimation method is taken from [9] and divides the signal

x(n) of length M into L different overlapping segments with length Ns ,

x j (n) = x(n + j D)
n = 0,1, ..., Ns −1

j = 0,1, ...,L−1
(2.9)

where the j D is start of the jth segment. If D = Ns , there is no overlap and the

welch method is just like the Bartlett’s method. If the D = Ns /2, the overlap is 50

%, which is perfect for the hanning window and L = 2M/Ns −1.

The PSD for one segment, j, is then

PSD j (k) = 2
|Xw, j (k)|2
∆ f G I NC

= 2

Fs NGI NC
|

N−1∑
n=0

x j (n)exp(−i 2πnk/N )|2 n,k = 0,1, ..., N−1

(2.10)

where Xw, j (k) represent the Fourier transformation of the segment j, with a win-

dow function. The average PSD is then

PSD(k) = 1

L

L−1∑
j=0

PSD j (k). (2.11)

2.2 Propagation model

There are two propagation models which are used in this thesis: Lloyd mirror

model and RAM (Range dependent acoustical model). The RAM is a numerical

solution of the parabolic equation method, based on the split-step Padè solution

and is the same as in the project. The RAM is only used to be compared with the

Lloyd mirror and is further described in appendix A. The Lloyd mirror model has

been modified to consider the receiver at other depths than the sea floor and the

basis is taken from the project.

Lloyd mirror is a classic optical experiment to produce interference pattern and

study both constructive and destructive interference. The model is analytical

and assume the ocean have horizontal homogeneous layers, which implies that

the propagation paths are straight lines. The system is a shallow water waveg-

uide where the bottom is considered to be an infinite layer, which gives only

reflection from the sea surface and the sea floor.
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Figure 2.1: The Lloyd mirror paths, taken from [29, p. 34]

In figure 2.1, the water depth is db , receiver depth is dw and source depth is

ds . The source is S00 and mirror sources is S0X , where X is number of mirror

sources. The field is formulated by the coherent sum of the contributions of the

source and its images, where the images are the contribution of the reflections.

There will be two sets of images from both the sea surface and sea floor, but in

the case where the receiver is located at the sea floor there is only one set of

images. This is shown in figure 2.1 where the direct path and the first surface

reflected path is a pair. This setup is a multi path field where the components

can be organized into pairs in orders, where the two first sets of the images from

both the sea surface and sea floor is the first order. To specify, the first order

is the contribution of the first four ray paths, the two first rays which hits the

surface and the other two are the direct path and the path which is reflected only

from the sea floor (the paths of the pair and their reflection from the sea floor).

The number of reflections from the sea floor and sea surface increases with the

order. For the case where the receiver is at the sea floor the traveling range of

the considered path and its reflection are assumed to be equal. The calculated

pressure of the direct path and it’s reflection at the receiver is given by
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pd = e i kRd

Rd
+V

e i kRr

Rr
(2.12)

where V is the plane-wave reflection coefficient at the sea floor, Rd the distance

from the source to the receiver, Rr the distance the reflection paths travels from

the source to the receiver and wave number is k = 2π f /cw with f being the fre-

quency of the signal and cw being the sound speed in water.

V = mcos(θw )−ncos(θs )

mcos(θw )+ncos(θs )
(2.13)

where m = ρs /ρw and n = cw /cs , with ρs and ρw are the density in the sediment

and the water, cs is the sound speed in the sediment and θw and θs are the inci-

dent angle into and out of the sea floor. The reflection coefficient is given in [3,

p. 62], this reflection coefficient is used because it is simple and fast to compute.

The components of the field can be separated into down going and up going

paths. The Down going paths and its increasing order of bottom reflections are

the direct paths and isn’t reflected from the sea surface before going downward.

The up going paths are the mirror image of the first surface reflection and its in-

creasing order of bottom reflections. This is done by multiplying the field by −1

whenever the the image ray intersects the sea surface images, and by V when-

ever the image ray intersects the ocean bottom images. The sea surfaces gives a

perfect reflection with a 180◦ phase shift. The slant range of this paths are iden-

tified by

R1− =
√

(2ndb +dw −ds )2 + r 2

R2− =
√

((2n +1)db +dw −ds )2 + r 2

R1+ =
√

(2ndb +dw +ds )2 + r 2

R2+ =
√

((2n +1)db +dw +ds )2 + r 2

(2.14)

where the − and + are respectively the down going and up going ray paths, r

is the horizontal distance between the source and receiver and n is the order of

bottom reflection. The slant range can easily be derived by using simple geom-

etry and figure 2.1, assuming straight ray paths. For the case where the receiver

is at the sea floor, the slant range is given by R− =
√

((2n +1)dw −ds )2 + r 2 and

R+ =
√

((2n +1)dw +ds )2 + r 2. The contribution from the down going field is
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then given by

p1− =
∞∑

j=0
(−1) j (V1−) j e i kR1−

R1−

p2− =
∞∑

j=0
(−1) j (V2−) j+1 e i kR2−

R2−
,

(2.15)

and the up going field by

p1+ =
∞∑

j=0
(−1) j+1(V1+) j e i kR1+

R1+

p2+ =
∞∑

j=0
(−1) j+1(V2+) j+1 e i kR2+

R2+

(2.16)

where j is the order of bottom reflection and V1−, V2−, V1+ and V2+ are the

reflection coefficient from the ocean bottom for the different incident angels de-

rived by the slant range and water depth. The total field is

pt = p1−+p2−+p1++p2+ (2.17)

and for practical application for this case the summation in equation 2.15) and

(2.16 can be limited to three pairs (third oder of Lloyd mirror), see [18, p. 941].

The Transmission loss can be calculated by comparing the modeled pressure

with a reference pressure at 1 meter, like in [12, p. 100],

T L = 20l og10(
p

pr e f
) (2.18)

where the modeled pressure is p and pr e f is the reference pressure at 1 meter

and is calculated as pr e f = e i k .

2.3 Cost function

The cost function is the function which matches the recorded data and the mod-

eled data. A cost function (loss function) is a function which maps one or more
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variables onto a real number which represents the "cost" of the system. For an

optimization problem this value represent the loss and the point is to minimize

it. The lower the loss are, the closer to the optimized system it gets.

The [18] propose a cost function and this is the used in this thesis. The multi

tone signal is modeled by the Lloyd mirror field model di , f (m) and is compared

with a recorded or synthetic data di , f , where the number of time intervals (time

blocks) is given by i = 1,2, ...,nt . This time intervals are transformed into the

frequency domain and the number of frequency is given by f = 1,2, ...,n f . The

amplitude data of the Lloyd mirror modeled can be found by taking the absolute

value of the calculated pressure. The cost function is given by:

E f (m) = 1−
(∑nt

i=1 d̃i , f d̃i , f (m)
)2∑nt

i=1 d̃ 2
i , f

∑nt
i=1 d̃ 2

i , f (m)
(2.19)

which is the Bartlett mismatch, where d̃i , f and d̃i , f (m) are di , f and di , f (m) with

their time averages subtracted. For data with multiple frequencies, a suitable

cost function is given by

E(m) =
[ n f∏

f =1
E f (m)

]1/n f

(2.20)

where the E f (m) is the misfit at the individual frequency from 2.19 and the E(m)

is the overall misfit. The cost function from [18] is derived from [28].

2.4 Search Algorithm

For inversion problems there are usually many unknown parameters and they

might vary over large intervals, for effectively finding the best estimation of the

parameters a nonlinear global optimization algorithms can be applied. The prob-

lem presented only have two parameters that are considered to be unknown, the

horizontal range and the ship velocity. This thesis explores three different search

algorithms: simple 2D search, ASHS (Adaptiv Simplex Harmonic Search) and

ASDE (Adaptiv Simplex Differential Evolution).

The simple 2D search algorithm only work for two parameters and searches through

both parameters by applying the cost function on each combination. This makes
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a 2D matrix with a value at each combination of the parameters. The simple 2D

search algorithm is slow because it has to calculate the cost at each combina-

tion of the parameters before a search for the minimum value in this 2D matrix

can be made. The global search algorithm is possibly faster with the appropriate

control parameters, but the random global search algorithms ASHS and ASDE

isn’t that simple.

The code of the ASHS and ASDE is take from Niklas S. Skyberg thesis, a former

student at NTNU. HS is based on the search for good sounding harmonies when

improvising. DE is an evolution based global optimization algorithm, where it

takes inspiration of evolution steps to optimized the solution. The ASHS and

ASDE algorithms are randomly searching through the parameter space by hav-

ing a chance of basing the new parameters, which will be explore, on previ-

ously explored parameters which gave low loss, or creating an entire new ran-

dom combination of parameters. This is further description in [23], where the

HS and DE are based on [24] and [26].





Chapter 3

Experiment

In this chapter the data set which will be used in the estimation will be de-

scribed. This includes the equipment, ship recordings, location data and the

environment data. The experiment report is called NGAS10 (Next Generation

Autonomous System 2010) sea trials and was performed in 2010 by FFI, the in-

formation is not open for the public to read, but I have had access to the neces-

sary data for the estimation. The experiment are described in [7] and the data is

taken from this thesis, where the data is from the same sea trial.

3.1 Sea trial

The recording system is an easily deployable autonomous underwater sensor

network, called NILUS (Network Intelligent Underwater sensor) [21], and have

acoustical and magnetic sensors. The NGAS10 sea trial used NILUS nodes and

they was deployed several times for recording the ship noise amongst other things.

Only one of this node locations is used in this thesis for horizontal range and ve-

locity estimation, the depth and coordinates can be found in table I and can be

seen on the map in figure 3.1.

Table I: Depth and coordinates at the four NILUS locations, taken from [7].

NILUS location Depth (m) Latitude Longitude
A 196 59N 28.363 10E 29.142

15
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Figure 3.1: The location of the NILUS node locations outside Horten in Breian-
gen, using the coordinates in table I and a map from Kartverket [15].

3.2 Acoustical Sensors

The NILUS nodes are equipped with two different types of acoustic sensors that

are described in [21] and [7], where the DIFAR (Directional Frequency Analy-

sis and Recording) was suitable. This sensor has a known frequency response,

where the usable frequency range is from 10 Hz to 3 kHz. The estimation is inter-

ested in frequencies between 50 Hz to 1 kHz, which is cowered by this. The fac-

tory specification of the passive hydrophone is give in [8]. The acoustical mea-

surement data is recorded on a memory card with sampling frequency of 18 kHz

and 24-bit A/D-converter. The recorded data is later decimated to a sampling

frequency of 9 kHz and converted into 16-bit a wav-files.

The acoustical modem of the NILUS-node saturated an internal amplifier when

it was transmitting and in addition to this problem, there seemed to be some

sort of amplitude clipping of the recorded signal at high intensities. The received

pressure is normally high at the ships CPA and the recording of the ships passing

at a distance shorter than 500-700 meters seemed to experience this clippings.
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The maximum deployment depth is a few hundred meters and the accuracy of

the displacement is a few meters, this accuracy is dependent on the water speed

and the depth. The NILUS node has sensor to measure the depth of the node

with an accuracy of ±3 meters of the true depth, see [7], this data is logged and

compared with echo-sounders and charts.

3.3 Acoustic data

The GPS information from the AIS data was recorded for the ship passings. To

ensure a measurement uninfluenced by other ships, there must be a sufficient

time before and after a ship passing where no other ships are in the near vicinity.

There is a lot of activity in the fjord and this causes the background noise to be

generally high. Smaller vessels as fishing boats and similar, which are not using

the AIS system, are operating in the area and might cause unregistered influence

on the recording of the ship passing because of higher potential of high SNR. The

high background noise and clipping of the amplitude results in low SNR.

There has been given two different recordings of ship passing which has been

thought to be suitable for range and velocity estimation. This recordings don’t

have any or a lot of amplitude clipping in the relevant part of the recording (the

recording around the CPA), have relative high SNR such that the propagation

pattern is visible and enough time between ship passings. The two ships are

Småen and Jumbo and Jumbo is a cargo ship which makes it more likely to be

suitable in this thesis. Småen is a smaller vessels and might not be as suitable as

Jumbo.

3.4 AIS data

The AIS records data of the ships continuously and for the AIS to give the nec-

essary information the data has been parsed by Høgskolen i Ålesund [13] and

processed by FFI. This gives the time and distance to each node located at CPA.

The draft is necessary for calculating the depth of the source, but is unknown for

the ship passing as described in [7] and therefor average of the reported drafts of

the ship is used in the estimation of the source depth.

The position of the ship is sent at different intervals, see [25], and even fewer

might have been recorded by the AIS receiver. Because of this there may occur
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(a) Småen (b) Jumbo

Figure 3.2: The distance between the NILUS-A and the ship using the AIS record-
ing.

error when estimating time and location at the CPA between the NILUS-node

and the ship. This are dealt with as described in [7] by interpolating the tracking.

The figures 3.2b and 3.2b shows the recorded distance between the NILUS-node

and the passing of Småen and Jumbo. The recordings also shows that the ships

are traveling with constant ship velocity and in a straight path, except for the first

two minutes of the Småen recording.

3.5 Environment data

The wind speed during the 17th and 18th of June had a mean of about 7 m/s, and

there was no noticeable rain occurring during the period of the recordings, as de-

scribed in [7]. This indicates calm weather that should not influence the record-

ing very much, see section 4.1.4 on noise. This suits the propagation model

which isn’t considering rain or uneven sea surface in the calculation.

A CTD (conductivity, temperature, depth) probe, see [2], was used to take SSP

(sound speed profile) measurements at several times and locations during the

sea trials. The SSP is shown over depth in figure 3.3, where some were taken at

shallow and deep water, they are however very similar at the overlapping depths.

This shows that there exist a horizontal homogeneous water column throughout

the area and a sound propagation channel at 30-40 meter can be considered to

be present during the trial. Change in weather condition might be responsible

for the variation in the upper layer.
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Figure 3.3: The sound speed profile at different locations in Breiangen during the
recording over depth, taken from [7].

The a representative of the 09-A recording is used in RAM, because the location

of this measurement is in the area of the NILUS-node and is considered to be a

good presentation of the SSP during the ship recording. As the SSP is only shown

down to 100 meters the sound speed can be considered constant down to 200

meter. The Lloyd mirror assume constant sound speed and when looking at 09-

A a reasonable presentation of the sound speed in the water layer will be 1482

m/s.

The bottom properties are found from a sea map from Kartverket, see figure 3.1

and there is marked Cy, Cy M and S at some locations. The marks stands for Clay,

Clay and Mud and Sand and some typical values are in table II which have taken

it from [14, p. 39]. There is no other known survey of the area and it marks some

elevations where the bottom is harder rock, but this can’t be considered in the

Lloyd mirror model.

The bottom properties can be considered to be clay and mud, there is no specific
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Table II: The properties of clay, silt and sand, found in [14, p. 39]

Bottom type Density (kg/m3) Sound speed (m/s) Attenuation (dB/λ)
Clay 1500 1500 0.2
Silt 1700 1575 1.0

Sand 1900 1650 0.8

value for mud, but it should be somewhere between clay and silt. The top layer is

assumed to be dominated by clay, only compressional properties are considered

and the sediment properties for the Lloyd mirror model are assumed to be cs

1502 m/s and ρs 1500 kg/m3. RAM assumes the top layer consists mostly by clay

with a depth of 100 meters and the second layer to be mostly mud.

The ship passing over sea floor with almost constant depth will be most suited

for the estimation, such as ships coming from Drammen, see sea map 3.1. The

depth of the bottom profiles for this passings ranges around 200 meters, which

gives the propagation model some uncertainty.
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Method and Results

In this chapter the methods used to process the recored data and the methods

used in the inversion problem are described. The results using these methods

on synthetic and recorded data is represented and evaluated.

4.1 Method

It is assumed that the ship travels with constant velocity and in a straight path,

which is a fair assumption when considering the AIS data in section 3.4. The ship

path can then be recreated in time with the horizontal range between the ship

and the receiver at the the closest point of approach, dcpa , and the boats veloc-

ity, vs . The horizontal range and ship velocity are unknown and this problem is

solved by applying a matched field inversion method, based on the method in

[18] with some adjustments and modifications, to estimate this parameters. The

methods used on the recored data and in the inversion method are described

and discussed in this section.

4.1.1 Matched Field Inversion

The matched field method consists of a propagation model, cost function and a

search algorithm. The cost function described in section 2.3 matches the acous-

tical propagation field of some chosen recorded data with modeled data. The

21



22 CHAPTER 4. METHOD AND RESULTS

modeled data are created with the Lloyd mirror model described in the section

2.2 with horizontal range and ship velocity parameters chosen by a search al-

gorithm. The search algorithm determines the parameters in the propagation

model and applies the cost function each time and stops when the search algo-

rithms stop criteria has been met. This can be looked at as a loop and is illus-

trated in section 4.1.3.

4.1.1.1 Propagation model

The Lloyd mirror model calculates the pressure at a certain range and frequency,

this value is considered as the Fourier transform at this parameters. To calculate

the amplitude from this value, the absolute value is found.

The source used in this thesis is a point source. The source could be looked at

as some kind of distributed source, but the Lloyd pattern is clearly visible for

the point source. A distributed source is also difficult to predict, because the

inversion method should be applied to different ship types and the distribution

of the ships are unknown. The Lloyd mirror model isn’t considering absorption

in the layers either, but this isn’t that important as this loss can be considered

relative small for the frequencies which are considered (50-1000Hz), when the

absorption is 0.4 dB/λ.

In the project a short study was performed on the how accurate the Lloyd mir-

ror model was, where the Lloyd mirror was compared with the RAM model as

the synthetic data. The accuracy for good estimation for the model was consid-

ered to be around 300 meters. The sound speed profile didn’t seem to affect the

matched field estimation in a noticeable way and the bathymetry of the sea floor

seemed to affect the accuracy of the model for higher range.

4.1.1.2 Construct ship path

The method for creating the modeled data will be established in this section.

The cost function isn’t using each step in time and in frequency for comparison,

that would take a lot of time and use a lot of data when the interesting area of

data is the 2 first minutes of the signal from 50-1000 Hz. From the project, the

cost function seem only to need data from some frequencies at some points in

time to establish how the propagation field are for both sets of data. The mea-

sured signal is recorded over time, where both the boat velocity and dcpa are
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unknown, but the modeled data can only be change in sense of time by chang-

ing the range parameter. The Lloyd mirror model can easily create data for any

frequency, but calculating the pressure for a given time is a problem and is solved

by reconstructing the ship path, where the assumption of constant ship velocity

and straight traveling path is important.

Figure 4.1: Reconstructing ship path, take from the project

The view in the figure 4.1 is from above while the ship is passing by, emitting

noise all the time. The figure shows the idea of how the reconstruction of the

ship path is done, where i is the number on the time blocks which has been

Fourier transformed and nt is the number of time blocks used. By using the

known time interval between each measurement and the dcpa , the range Di be-

tween the source and the i ’th time block can be calculated with simple geometry

Di =
√

D2
cpa + (i ·Rstep )2 (4.1)

with the step range calculated as Rstep = T vs , where T is the length of the of the

time block in seconds. The wanted horizontal range is the point in the middle of

the time blocks as shown in figure 4.1, but the calculated CPA from the recorded

data will be at the start of the time block. This problem can be solved by moving

the start of the CPA for the modeled data a half step in the ’after CPA’ direction.

Because of the bathymetry of the experiment, the ship path is not wanted to be

reconstructed symmetrical around the dc pa as in the figure. There is no problem

creating the propagation field with any number of time blocks in either direction,

but it has to correspond with which data in the recorded data are used in the

estimation.

The tracking of the ship path can be done by using the equation 4.1 to calculated
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the horizontal distance when the parameters are estimated. Equation 2.14 in

section2.2 can be used to calculate the slant range between the receiver and the

ship if this is desired, after some small modifications are made in the equation.

4.1.1.3 Loss and search

There is one thing that is important to know about the cost function when it

compares the two sets of data, and that is it checks the ratio between data in

the data set and compares this with each other, which results in comparing the

change over time and frequency in the two data sets. By subtracting the data set

with the average value of the data set, the cost function normalize the magnitude

and ensure that the ratio and not the magnitude between the different data sets

are compared.

The cost function may prove to give low loss (cost function error) at other combi-

nations of parameters than the real parameters, as was discovered in the project

and this is the reason for the thesis to exploring the three different search algo-

rithms: simple 2D search, ASHS (Adaptive Simplex Harmonic Search) and ASDE

(Adaptive Simplex Differential Evolution). By using a global search algorithm

the application of the method is extended to consider more than two unknown

variable, where the 2D search is limited to two unknown parameters. There is

no time restriction for the algorithm in this thesis, because the focus of study is

to see if the method can find good estimations of the unknown parameters, but

may be in focus in future studies.

The simple two dimensional search through the parameter space only need to

classify the boundaries of the parameter interval. But the two global search al-

gorithms are a bit more complex, because appropriate control parameters have

to be set for the algorithms. A search with good exploration is desired to be sure

that the global solution is found on the account of multiple local minimums in

the parameter space. These control parameters also depends on the size of the

parameter intervals which is searched through. After some trial and error of esti-

mating the parameters, where the Lloyd mirror is compared with it self (no noise

synthetic data), the control parameters in table III where found for search over

large parameter intervals.

Where the DE starting population is Npop , the crossover constant is C R and am-

plification constant is Fwei g ht . For HS the starting population is H MS, H MC R

is the probability of basing the new parameters on the previous, PAR controls
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Table III: Control parameters for ASHS and ASDE.

ASHS ASDE
H MS 100 Npop 120

H MC R 0.4 C R 0.8
PAR 0.4 Fwei g ht 0.6
FW (ub-lb)/50

ng lobal 171 nlocal 254

rate if adjustment and ub and lb is the upper and lower boundaries of the pa-

rameters.

The population is fairly high and the rate of mutation is average, as is the mag-

nitude of the mutation. Large population ensure that the search is done for a

large space, but each time it is mutating it’s changed with an average magni-

tude. This parameters balances between exploitation and exploration of the pa-

rameters space. The stop criteria is a minimum loss tolerated, this value is not

adaptable and will not change as the search for the best solution goes on. In case

the search algorithm doesn’t find sufficient low estimates, a max number of cost

function runs is set for both the global and local part of the adaptive simplex

global algorithms, ng lobal and nloca, which gives the algorithm a lot of time

to find a good estimate.

4.1.2 Process recorded data

The recorded data are a discrete signal and by using the signal processing method

in section 2.1, the data which is needed in the cost function can be extracted. For

the measured data to extract time and frequency data the time signal has to be

separated into certain time lengths, by Fourier transform this time blocks with

the FFT function in MATLAB the signal will be represented in both time and fre-

quency domain.

Before any values can be taken out of this propagation spectrum, the CPA has

to be found. This is done the same way as in [18, p. 944], where the amplitude

value for all the frequencies is summed at each time block and the point with

the highest value is the CPA. The recorded data has some clipping, which makes

finding the point of highest value at the CPA hard. Instead the area with a large

amount of high values are found and the CPA is found by a search through this

area for the highest value. Each time block is sampled at a given rate and as long
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as the process for finding the right values of the measured data corresponds to

the modeled data, see 4.1, there will be no problem choosing values around the

CPA.

This signal will have a lot of variance, because the signal is ship noise, which

can be reduced with the welch spectral estimation method. The frequency res-

olution will be sacrificed in this process so how much information is lost in the

spectral estimation has to be considered. The resolution must be high enough

that the propagation pattern is visible, otherwise the inversion method may not

find good estimations. It is also preferred that the averaging method gives fre-

quency bands of 1 Hz for a sufficient representation of the propagation over both

frequency and range. The chosen frequencies and time blocks can be extracted

from the data set after the amplitude of averaged data set are calculated.

4.1.3 Overview

The methods described in 4.1.1 and4.1.2 are presented by a step by step block

diagram for an easy and graspable overview of the system.

Where the recorded signal is sent for processing and the predetermined param-

eters are feed to the signal processing and matched field inversion. When the

process is done it returns the best estimated parameters found.
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Figure 4.2: A step by step block diagram of estimation method.
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4.1.4 Noise

In this section the noise contribution of the ocean is discussed for creating syn-

thetic noisy data and a method for estimating the ships source depth is pre-

sented.

4.1.4.1 Ambient Noise

Ocean ambient noise is complex and random. The noise is it is related to area

of the sea, weather conditions and the frequency and most of the contributions

is shown in spring [5]. The contribution of rain is very high for shallow water,

but there is no or little rain during the recordings as discussed in section 3.5 and

will therefore not affect the the signal. The ship noise is supposed to be the signal

and is discussed in section 4.1.4.2. Then the ambient noise may be considered to

be mainly a contribution of turbulence, wind and thermal noise for the relevant

frequencies. The power of the noise can be calculated by the formula taken from

[1]

Nt = 17−30log ( f )

Nw = 50+7.5w1/2 +20l og ( f )−40log ( f +0.4)

Nth =−15+20log ( f )

(4.2)

where Nt is the noise contribution from the turbulence, the Nw is from the wind,

the Nth is thermal noise and w and f is the wind speed and frequency. This is

the noise used in testing the method for noisy data.

4.1.4.2 Ship Noise and source depth

The ships noise is emitted at frequencies up to 10 kHz, but the bandwidth of the

noise depends on the ship and for commercial ships the frequency is known to

peak at 50 - 150 Hz. To cower the most important frequencies the bandwidth

can be considered approximately to be 50 -1000 Hz, from [16]. Surface vessels

radiates noise in a complex way and the underwater noise emitted from the ship

comes mainly from

• The propeller

• The propulsion machinery
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• The hydraulic flow over the hull

The main source of noise is the propeller and account for around 80-85 % of the

ship-radiated noise power, where the noise comes from cavitations. The pro-

peller creates both broadband and tonal noise, which comes from the blade fre-

quency and their harmonics. It’s then appropriate to say that the source local-

ization would be close to the propeller. The effective source depth can then be

considered to be the ships depth minus 85 % of the propeller diameter and is

defined as

ds = D −0.85P (4.3)

where D is the ship draft and P is the diameter of the propeller, from [27, p. 1231].

If no data about the propeller is available, a provisional method may be to set the

propeller diameter as half the ship draft.

P = D

2
. (4.4)

The source depth are be difficult to determine, because the draft and depth of

propeller variates from ship to ship and their cargo. This is just an estimation

of the source depth when including that the draft is unknown and only a mean

value is provided.

4.2 Ship information

The required ship information is listed in table IV, such as ship name and type,

the location of the recording, the speed of the vessel, the distance at the CPA

from the AIS data and the average draft. The average source depth is calculated

from the draft using formula 4.3 and 4.4, where the information of the propeller

of the vessel is unknown. The information of the recordings for the ships are in

table V, where the time at CPA from start of time sample, the time sample length,

start and end, the date of the recording was done and the direction the boat was

traveling in.
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4.3 Received data

In this section the recorded data has been processed and is presented with an

example of the Lloyd model propagation data.

The received data is processed as described in the section 4.1.2. The signal is

separated into segments of 1 seconds and the welch spectral estimation method

is used on this segment to reduce the variance. The length of each segment is

9000 samples and a 9000 points fast Fourier transform is used to yield the fre-

quencies such that the amplitude and PSD can be calculated for each 1 second

time block. The amplitude values are summed at each time block to find the

time of CPA.

The welch function separates the 1 second time block in 3 segments with 50 %

overlapping, but the pwelch method uses the closest number of samples from

bellow of the factor of 2 for this process, which yields a ∆ f ≈ 1.

The two time signals are chosen because of the high SNR which makes the Lloyd

mirror pattern visible. The raw data of the two boats are shown in appendix B.1.

4.3.1 Jumbo at NILUS-A

In this section the results of the signal processing of at NILUS-A for the Jumbo

passing are shown.

Figure 4.3: The sum of amplitude value over frequencies at each time block of
Jumbo.
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Figure 4.3 shows the sum of the amplitude values over the frequencies for each

time block. This shows that the point of CPA is at 04:52 after the start of the time

sample. There occur some clipping from the internal communication device on

the NILUS-sensor at more than one point after the CPA and it’s important not to

select this time blocks in the matched field method. The bathymetry before CPA

is more or less flat as mention in chapter 3, which is in agreement with choosing

data before CPA.

(a) The PSD over time and frequencies.
(b) The welch estimation over time and fre-
quencies.

Figure 4.4: PSD and welch spectral estimation of Jumbo over frequency and time.

(a) The PSD at CPA. (b) The welch estimation at CPA.

Figure 4.5: PSD and welch spectral estimation over frequency for the time block
at CPA of Jumbo.

The figure 4.4 shows the PSD compared with the welch spectral estimation of the

signal over time and frequencies and in figure 4.5 the propagation over frequen-

cies is taken out at CPA to study further the effect of the welch estimation. Only
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the 4 first minutes before and after the CPA are shown, because the matched field

model only selects data up to 3 minutes away from the CPA, due to the fact that

data beyond this point has low SNR. The minimum level is caped in the figures

at 60 dB for the PSD and 120 dB for the welch estimation, which is done to make

the Lloyd mirror pattern more visible. The PSD have lover limit to better show

the propagation pattern close to the CPA.

The time of CPA is not quite perfect as can be seen especially in figure 4.4a and

some in figure 4.4b, because the CPA might be a bit more to the right of the CPA

where the propagation pattern seems to start. This is an error which has to be

taken into consideration when looking for good estimation of the parameters.

The propagation pattern is visible, especially in figure 4.4b over longer range,

which makes it more likely a good estimation of the parameters can be found.

The magnitude of the power level of the recorded signal seems to be very high,

but may be because the ship is traveling considerable close to the receiver and

the ship traffic in the area might have contributed to this levels.

The figures shows that the variance and SNR increases with the frequency and

the welch estimation lower the variance considerably. It is highly apparent in

the figures 4.5a and 4.5b that the levels are smoothed for low frequencies. The

variance is still a bit high for frequencies above1 kHz after welch estimation, but

for the relevant frequencies (50-1000 Hz) the variance is considerable lower.

Another observation is that the recordings after the CPA, even if it is moved a bit

to the right, are stretched out over time compared to the data before the CPA.

This is very visible when looking at the raw time sample in figure B.1a in ap-

pendix B.1, and is most likely caused by propagation effects.

4.3.2 Småen at Nilus-A

In this section the results of the signal processing of at NILUS-A for the Småen

passing are shown.

The amplitude values over the frequencies is summed to find the closest point

of approach as shown in figure 4.6. The CPA occur at 06:48 after the start of the

time sample. Unlike Jumbo, Småen has a lot of clipping in its signal which makes

it hard for the time block selecting algorithm, because the data with clipping

are useless in the matched field method. The best time blocks are before CPA

because of the bathymetry for småen as for Jumbo, but there are 3 areas with

clipping before the 3 minutes mark. The clippings are avoided by making the
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Figure 4.6: The sum of amplitude value over frequencies at each time block of
Småen.

algorithm doing the signal processing not choose these time blocks.

(a) The PSD over time and frequencies.
(b) The welch estimation over time and fre-
quencies.

Figure 4.7: PSD and welch spectral estimation of Småen over frequency and
time.

The figure 4.7 shows the PSD compared with the welch spectral estimation of the

signal over time and frequencies and in figure 4.8 the propagation over frequen-

cies is taken out at CPA to be studied further. The propagation is shown for the

same time and frequencies as Jumbo.

The detection of CPA had some problem for Småen as the Jumbo sample, which

can be seen from the figures 4.7 and 4.6, but the Småens CPA is found close to
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(a) The PSD at CPA. (b) The welch estimation at CPA.

Figure 4.8: PSD and welch spectral estimation over frequency for the time block
at CPA of Småen.

one of the clippings close to the CPA. The CPA may be a bit after the current

CPA where the propagation pattern seems to start and where the highest value

is, when not considering the areas with clipping. The error of CPA at Jumbo can

be considered to be manageable, but it’s not advantageous to have the CPA at

data with clippings, so this is solved by just manually move the CPA a bit to the

right of the CPA for the Småen case to avoid clipping. This is an error which

has to be taken into consideration when analyzing the results of the matched

field inversion. The Lloyd mirror pattern is visible, as can be seen in figure 4.7b,

which makes it likely a good estimation of the parameters can be found.

From figure 4.7b there seems to be another ship passing by around 4 minutes

before CPA, but this seems to occur at the same time as Småen changes course

when considering the recorded AIS distance in figure 3.2a, which makes it plau-

sible that this pattern is made by Småen. There are no visible change in the

recording to say that this affects the passing of Småen at CPA, but it is hard to say

with all the clippings and might be necessary to take into consideration when

looking for good estimations. Time blocks further away than 2 minutes should

be avoided for the matched field method to ensure that this doesn’t affect the

estimation and to avoid clippings. The magnitude of the power of the recorded

signal seems to be high for this recording too and may be of same reasons at

mentioned for Jumbo.

The Småen passing seems to take a shorter time than Jumbo which is easily

explained by a higher ship velocity, but this cause the propagation pattern to

change more rapidly over time than for Jumbo which can be seen in figure 4.4b
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and 4.7. This combined with lower SNR makes the propagation pattern to be less

visible than for Jumbo.

Småen seems to suffer from a little more variance than Jumbo and even if the

welch reduces this considerably the variance is still visible for higher frequencies

than 1 kHz after welch estimation. The relevant frequencies (50-1000 Hz) seems

to have low enough variance for the matched field method. It is very apparent

when comparing the figures 4.5a and 4.8b that the levels are smoothed for low

frequencies like the Jumbo case.

4.3.3 Example of propagation model

To illustrate the propagation field an example of the third order Lloyd mirror

and Ram is made based on the data from Jumbo. The purpose is to see the com-

parison between propagation field for the models and to compare it with the

recorded propagation field.

Table VI: The parameters used in the example of the Lloyd mirror and RAM prop-
agation model.

Shared Lloyd mirror RAM
f 1 - 3000 Hz cw 1482 m/s SP 09-A ρs 2 1800 kg/m3

ds 3.2 m cs 1502 m/s cs 1 1500 m/s αs 1 0.2 dB/λ
db 200 m ρw 1000 kg/m3 cs 2 1615 m/s αs 2 0.9 dB/λ
dw 200 m ρs 1500 kg/m3 ρw 1000 kg/m3 dc 100 m

r 1 - 3000 m Lo 3 ρs 1 1500 kg/m3

The parameters necessary for creating the Lloyd mirror and RAM propagation

fields are listed in table VI. The table is separated into parameters which is shared

in both models, exclusive Lloyd mirror model parameters and RAM parameters,

where Lo is the order of the Lloyd mirror model, SP is the sound speed profile,

cs 1 and cs 2 are the sound speed in the sediment in the middle and bottom, ρs 1

and ρs 2 are the density in the sediment in the middle and bottom and the dc is

the depth of the first sediment layer. The rest of the parameters are described in

the theory chapter 2. The RAM model is considering two homogeneous layers

in the ocean floor and the sound speed profile 09-A as described in the environ-

mental data section 3.5.

The propagation fields are shown in figure 4.19 and are displayed as transmis-

sion loss over range and frequencies with a reference of 1 mPa as described in
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(a) The third order Lloyd mirror propaga-
tion field.

(b) The RAM propagation field.

Figure 4.9: Example of propagation field over range and frequencies, created by
the Lloyd mirror and RAM propagation models.

the theory. Both RAM and the Lloyd mirror models are range and frequency de-

pendent as the figures shows. The propagation field made by RAM and the third

order of Lloyd mirror seem to be closely matched at short range and slowly dif-

fers as the range increases as described in the project, but it’s a bit difficult to see

the details in these figures.

4.4 Estimation of noisy synthetic data

In this section synthetic data with added noise is matched with modeled data to

see how the method behaves for ideal noisy data. The limitations of the method

when facing a noisy signal is useful when analyzing the recorded data.

The Noise is constructed from the equations 4.2, which gives a good estimation

on how ambient noise is distributed over the frequencies. The noise is added

to the signal in three steps. Firstly the noise and the synthetic propagation field

without add noise are created. Secondly the created noise is scaled in compar-

ison with the synthetic data at CPA in dB. The scaling is done by first take the

average amplitude value over the chosen frequencies for the constructed noise

and the synthetic data, to preserve the frequency distribution, and find the value

which will adjust the noise to the desired level of SNR. This is done with the for-

mula Nad j = As
An 10SN R/20 , where the Nad j is the constant which the noise will be

adjusted with, the As and An is the mean value of the synthetic data and the

noise and SNR is the signal to noise ratio that is desired in dB. This formula is
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modified from the formula for power in [29, p. 20] when considering the ampli-

tude value. The noise is adjusted and will be the mean value of the distribution

of the noise with variance around this mean. For example, with a variance of 1,

the mean value will alter with a magnitude equal to the mean value in either di-

rection. The variance is created by using the randn function in MATLAB, which

has a gauss distribution. The third step is adding this noise to the different fre-

quencies for all the data in the synthetic propagation field.

Table VII: The parameters used in creating the synthetic data.

tlen 1 s f 100 200 400 600 800 Hz cw 1500 m/s
tbet 5 ds 2.2 m cs 1700 m/s
w 4 db 200 m ρw 1000 kg/m3

Lo 3 dw 200 m ρs 1900 kg/m3

sbal 2 dcpa 250 m vs 10 knots
dcpai 100 - 500 m vsi 2 - 20 knots

The necessary parameters for creating both synthetic and modeled data are given

in table VII, where tlen are the length of the a time block in seconds, tbet are

number of time blocks spacing between each time block used and tnum are the

number of time blocks used, this are time parameters which decides which am-

plitudes from the propagation field which are used in the matching. The dcpai

and vsi are the boundaries for the unknown parameter dcpa and vs that are used

in the search algorithm. The other parameters have already been discussed in

the theory chapter 2 or in section 4.1, except the parameter sbal , which decided

how many time blocks in the one direction of the CPA are used, the rest of the

time blocks are then on the other side of the CPA. The direction of the sbal de-

pends on which direction is believed to result in good estimations. The direction

is of no relevance for the synthetic case, because both synthetic and modeled

data are created with the Lloyd mirror model and is symmetric around CPA.

The estimation of the synthetic data is done by comparing the synthetic data,

which is a Lloyd mirror model of order 5 with added noise, with the modeled data

which is order 3. Both models uses the same parameters in table VII, except of

the dcpa and vs , which are replaced with the boundaries in creating the modeled

data. The study then can be divided into testing low SNR and high variance in

the noise, low number of time blocks and how the global search algorithms was

handling noisy data. The number of frequencies has already been studied in the

project.
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4.4.1 Low SNR and high variance

Low SNR and high variance is studied first and the tnum is set to be constant

while different values of SNR and variance is tested, the noise is random gener-

ated for each case.

(a) Result of a bit lower SNR and high vari-
ance. (b) Result of low SNR and average variance.

(c) Result of very low SNR and average vari-
ance.

(d) Result where the noise is dominant, but
low variance.

Figure 4.10: 2D search of synthetic data, plotting the cost function error at each
combination of the parameters with normal scaled loss. The SNR and variance
of the noise are changed between each figure with tnum 24, where a SNR of 10 dB
is considered on the edge of good SNR, see table IX for the estimated parameters
and the noise used in the estimation.

The plots in figure 4.10 shows the 2D search algorithm in normal scale with dif-

ferent SNR and magnitude of variance. It is shown in normal scale because it

was hard to see some of the areas with low loss with dB scale and the error value

are of interest.
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Table VIII: The estimated parameters of 2D search with noisy synthetic data from
the figures in 4.10.

Figure Estimated ship Estimated hor. tnum SNR (dB) variance
velocity (m/s) range (m)

4.10a 5.12 251 24 5 1.0
4.10b 5.12 250 24 0 0.3
4.10c 5.23 251 24 -5 0.5
4.10d 5.12 251 24 -40 0.1

It seems to be a pattern of low loss almost linear with rising parameter values.

This pattern of potential good estimations also seem to be dependent on the

magnitude of the SNR and the variance. High variance increases the number of

such patterns and visa versa, when considering the figures in 4.10. High differ-

ence in the magnitude between the compared models also creates more areas

with seemingly good estimates, but is a little displaced in the parameter space.

First of we have the variance which creates more such areas or rather makes

them more visible. This can be explained by that there exist combinations of

parameters which creates propagation patterns which are to some extent sim-

ilar to the synthetic propagation pattern. By looking at the Loyd propagation

field in figure 4.9a in section 4.3, the similar propagation patterns are repeating

it self at different range and frequencies and it is not unthinkable that the nor-

malized ratio gives low loss for them. When some variance is added to the syn-

thetic propagation pattern the low loss pattern will change and will give higher

loss when using the cost function. So compared with the other similar patterns,

the synthetic pattern isn’t that different anymore, which creates the pattern of

good estimates. If the variance is high enough, another set off parameters might

be considered the best estimation, because the variance changes the synthetic

propagation pattern so much it almost can’t be distinguished from other sim-

ilar propagation patterns. The high number of this low loss patterns might be

because the dcpa is fairly high and close to the limitation of the Lloyd mirror

model.

High difference in the magnitude between the two data sets creates high loss,

as shown in figure 4.10d, and the low loss pattern is displaced in the parameter

space. The reason for the displacement to lower velocity seem to be the combi-

nation of high noise and some variance, which cause the cost function recognize

it as another part of the propagation field. The variance is high for low SNR be-

cause it is scaled with it and this creates very high loss for all parameters in the
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parameter space, 0.8 as a minimum, which makes the areas with low loss seems

to point to wrong parameters. The search in figure 4.10d still finds the correct pa-

rameters even though it doesn’t look it when studying the figure. However, this

is synthetic data and not data from a real recording, consequently, it will create

a perfect propagation field as a basis.

A limit to low SNR doesn’t seem the be present, as it is further shown in figure

B.2d in appendix B.2. The matched field inversion finds the correct parameter

values as long as there is no or low variance in the noise compared with the am-

plitude value, even though it finds other areas with low loss and has generally

very high loss as in figure 4.10d it recognizes the ratio of the values and finds the

correct parameters. When adding variance to the noise there is a whole other

matter and the propagation field is not as easily recognized. The variance mag-

nitude is changing with SNR and which doesn’t make pinpointing the limitation

very easy, but variance usually depend on the magnitude of noise so it’s not a bad

approximation. This is why it is important to reduce the variance in the record-

ing.

4.4.2 Low number of time blocks

Different numbers of tnum with different variance is tested to find the lowest

number of time blocks which could be used, where the SNR is set to 10 dB.

Table IX: The estimated parameters of 2D search with noisy synthetic data from
the figures in 4.11.

Figure Estimated ship Estimated hor. tnum SNR (dB) variance
velocity (m/s) range (m)

4.11a 5.12 250 12 10 1.0
4.11b 5.43 289 10 10 1.0
4.11c 5.12 250 8 10 0.3
4.11d 7.12 435 6 10 0.3

In the figures in 4.11 there is present a new pattern which was only partly visible

in the figures 4.10c and is very visible for low number of tnum as shown in figure

4.11d especially. This pattern is created when searching through low values of

ship velocity and can be explain by that the low number of time blocks around

a point looks very similar to any other point because the pattern around isn’t

explored thoroughly. The ship velocity decides how far the boat has traveled
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(a) Result of a bit lower tnum and high
variance.

(b) Result of low tnum and high vari-
ance.

(c) Result of even lower tnum , but aver-
age variance.

(d) Result of very low tnum and average
variance.

Figure 4.11: 2D search of synthetic data, plotting the cost function error at each
combination of the parameters with normal scaled loss. The tnum and variance
of the noise are changed between each figure with SNR 10 dB, where a tnum of 16
is considered on the edge of enough data, see table IX for the estimated param-
eters, noise and parameter used in the estimation.

at each time block and higher boat speed mens larger areas which is explored,

which is very important when handling low number of time blocks.

Another observation, which isn’t very clear from the figures in 4.10 and 4.11, is

that by increasing tnum the higher the error is generally. This occur only for vari-

ating data and is caused by the fact that the error of the cost function is calcu-

lated by the ratio between the two fields. The cost function will return high error

when matching a lot of values with low variating noise compared to less values

with the same low variating noise, because it is more data to find error in as can

be seen when comparing figures 4.11a and 4.11b. The method will be more accu-

rate with high tnum , but all combinations of the parameters will generally return
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higher loss. On the other hand the SNR is highest at CPA and a very large number

of time blocks may not be an advantage if it uses data with no traces of the signal

left in it.

The limitation of tnum isn’t easily found, because it varies with the variance just

like the limitations of the SNR. The figure 4.11c shows, the method can find good

estimations for low number of time blocks as long as the variance is low, but

should be sufficiently high to ensure that the low loss pattern doesn’t affect the

estimation of the parameters. This pattern seems to move up the velocity pa-

rameter as the range increases, so when considering large range intervals a suf-

ficiently high number of time blocks should be considered.

4.4.3 Global algorithm

Both the global algorithms, ASHS and ASDE, is used in the estimation to see how

the quality of the estimations both of them can produce. They are set to run 10

times with a new generated noise for each iteration to see if they only finds one

set of parameters or finds other sets.

Table X: The mean estimated parameters of the global algorithms for noisy syn-
thetic data from the figures in 4.12.

Figure Global Mean ship Mean hor. tnum SNR (dB) variance
algorithm velocity (m/s) range (m)

4.12a
ASHS 5.32 260 14 10 1.0
ASDE 5.32 257 14 10 1.0

4.12b
ASHS 5.18 250 24 5 1.0
ASDE 5.18 240 24 5 1.0

4.12c
ASHS 5.23 260 24 5 0.5
ASDE 5.23 257 24 5 0.5

The stop criteria is a minimum value of the error returned from the cost function

and, as the figures in 4.10 shows, this stop criteria has to be changed with the case

presented to find the correct estimation of the parameters. This value should

preferable be set to the error at the correct parameters, but without knowing the

parameters this value is hard to guess when presented with a number of areas

with low loss. The global algorithms are very fast at finding estimation which

fulfill the criteria, so the procedure used to find this criteria was just simply trial

and error starting with a high error value and run the global algorithm until it
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(a) Result with good SNR, high variance and
low tnum .

(b) Result with low SNR, high variance and
high tnum .

(c) Result with low SNR, average variance
and high tnum .

Figure 4.12: ASHS and ASDE search of synthetic data, the blue line is the esti-
mated value, the red the mean value of the estimates and the green line is the
real value. The tnum , SNR and variance of the noise are changed between each
figure, see table X for the estimated parameters and the noise and parameter
used in the estimation.
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starts to use a long time to find a good estimation. When one of the global algo-

rithms are using long time it either have problem finding parameters that fulfill

the stop criteria (if there are any), or the parameter space which it’s searching

through are very large, or the algorithm has been very unlucky with the start

population and it uses some time to find the global minimum, or it’s stuck in the

a local minimum loss area and the mutation in the global algorithms isn’t doing

its job. Another way of finding an agreeable stop criteria error is to either use the

simple 2D search to find the areas with good estimations or set the stop criteria

very low and run the global algorithm once. This will make the algorithm stop

only by the reaching the maximum number of function calls and will find lowest

loss possible in the parameter space, but both of this methods takes a lot of time

compared with trial and error. On the other hand if two areas with almost equal

loss is presented it will be hard find the best stop criteria with trial and error.

The figures in 4.12 shows both parameters when using ASHS and ASDE for 3

different cases with the estimated parameter, average of the estimated and real

value of the parameter. The algorithm doesn’t always find the correct parame-

ters as shown in the figures, which indicates that the error of the stop criteria

can be a little lower. For the estimations with low deviation from the real value

is searching in the correct area of low loss, but stops on the way to the absolute

minimum and this indicates that the search algorithm needed a little more time

before the correct parameters was found and the stop criteria should be lower.

The estimations which isn’t close to the real value are found because the algo-

rithm is stuck in a local low loss area and finds a good enough loss to fulfill the

stop criteria. New estimations could be found by lowering the stop criteria, but it

is interesting to see how good the algorithms is at finding the correct parameters

without perfect stop criteria.

The global search algorithm seems to be more sensitive of large variance than

the simple 2D search, which is caused by an uncertain stop criteria. When the

variance is high the general error is higher which increases the chance of finding

another area with low enough loss to fulfill the stop criteria, as described before.

The fact that a new noise is generated at each iteration opens the possibility that

the data sett is especially variating in the iterations that estimates the wrong pa-

rameter values. This is also observed for the 2D search, where some estimations

give parameter values that isn’t corresponding well with the correct values and

has generally higher loss in the parameter space than the given SNR and vari-

ance would normally imply. The global algorithm seems also to be a little more

sensitive to the number of time block used, but this is most likely caused by the

low loss pattern a small tnum creates and random noise.
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The error of the parameters and cost function of the figures 4.12 is found in ap-

pendix B.2, where more result of the simulations of both simple 2D search and

the global algorithms can be found.

4.5 Estimation of recorded data

In this section the matched field inversion method is used to estimate the pa-

rameters of the recorded data. The 2D search is used first to analyze the area of

loss and the ASHS and ASDE is used on the recording with the source depth ds

as an additional unknown parameter.

Table XI: The parameters which are used to create the modeled data.

Lloyd mirror
f 100 200 300 500 600 800 cw 1482 m/s

Lo 3 ρw 1000 kg/m3

db 200 m dw 200 m

The parameters given in table XI is based on the environmental data in section

3.5. This parameters are the basis in the Lloyd mirror model and the other pa-

rameters are changed to find a better estimation. There are six parameters which

are frequently changed to find estimations which matches better with the real

values. This parameters are the frequency values, ds , tnum , tbet , cs and ρs . The

real value for this parameters are not certain, but a basis for the values are taken

in the project and chapter 3.

This frequencies are found by analyzing the spectrum of the ship recording and

find areas where frequency values have good SNR and have a visible propagation

pattern. Different frequencies in this areas are tried out and are given in the fol-

lowing sections. It is desired that the frequencies are spread out over the interval

50 - 1000 Hz.

The rest of the parameters was chosen with trial and error by using the knowl-

edge of how they affect the propagation field and the experience from the project.

The recorded AIS data are assumed to be the real values of the unknown param-

eters and are given in table IV.

4.5.1 Jumbo at Nilus-A
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(a) Result with almost the expected set of
parameters with medium search intervals.

(b) Result with high bottom properties
with medium search intervals.

(c) Result with almost the expected set of
parameters with large search intervals.

(d) Result with high bottom properties
with large search intervals.

Figure 4.13: 2D search of Jumbo, plotting the cost function error at each com-
bination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and the
search intervals are searched for good results, see table XII for the estimated pa-
rameters and parameters used in the estimation.

The 2D search of the recorded signal of Jumbo at NILUS-A is given in figures 4.13

and the estimated parameters of the figures are given in table XII. These plots are

given in dB scale, because the areas of low loss will be more visible and the cost

function error isn’t in the same focus as the synthetic data analyzes. The log scale

is calculated with EdB = 20log (E). The figures presented are the best estimations

which was found for different combinations of parameters. Further exploration

of the parameter space is shown in appendix B.3.1. The data is selected with a

chosen number of tnum and tbet , where sbal is 2 after CPA and the rest are before.

This is done because the position of the CPA accurate and it is desired that values

close to the CPA should be in the estimation to ensure high SNR for the recorded

data, the rising bathymetry will most likely not affect
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the propagation in a significant way because of the low boat speed and low num-

ber of time blocks in this direction. Some estimations with sbal 0 time blocks af-

ter the CPA was done, but they gave a slightly larger cost function error and other

parameters.

There is an area around the parameter values found by the AIS with low loss.

The area stretches for about 15 meters in either direction and 0.75 m/s up and

down in the boat speed parameter. This area is quite large and there are two

separate minimum values of the loss in this area which creates some uncertainty

when searching for the least loss estimation. At least it seems like this area is

more or less the largest in the parameter space and makes it easy for the search

algorithms to find it.

There are made some observations of how the error in the parameter space is

changing with the different parameters. Change in frequencies change both er-

ror and the the location of the areas with low loss in the parameter space. The

figure 4.4b, shows that the frequency values bellow 80 Hz might not represent

the propagation field in a good way. There are different frequency values which

have the same high value over long range as frequency 128 Hz and is therefore

avoided, seems like some kind of frequency clipping. There are values around

100 and 500 Hz with high SNR and is important in the matched field inversion.

The frequencies 103, 308, 476, 550, 720 and 890 Hz are found to give good results

and is used for all the results presented in this section and in the appendix B.3.1.

The source depth given in table IV is close to the one that is found to give the

best estimations of the parameters. This parameter is found to be change the

estimation a lot and is a important factor for finding good parameters. This is

caused by that the whole propagation field is changed and moved in range when

the source depth is changed.

The density and sound speed in the bottom element doesn’t seem to move the

areas of low loss much, but has more affect on the magnitude of the error at the

different areas for the Jumbo recording, which will alter the areas with least loss,

especially for a search over large intervals. These parameters changes the re-

flection coefficient, which changes the magnitude of the propagation at longer

range. As the figures 4.13b and 4.13d shows and is further explored in the figures

in 4.13 and B.8 in appendix B.3.1, the cs and ρs are increased to 1516 m/s and

1520 kg/m3 to find estimations which corresponds well with the real parameter

values, when considering medium sized intervals. The values of 1516 m/s and

1520 kg/m3 are adequate possibilities, because the clay may not be as dominant

as first assumed. Large intervals as in figure 4.13d has to change the sediment
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parameters closer to silt than clay or mud, which might be an incorrect assump-

tion when considering the environmental data, even though the values of this

parameters are a bit uncertain.

The parameters tnum and tbet , which are chosen for the best estimations gives a

relative large number of values, but doesn’t explore the length of the propagation

very much. The step range correlates with the ship velocity where high values

explores a large length of the propagation field, but isn’t very in dept and visa

versa. The time step of 1 isn’t preferred which will result in similar problems

as with low tnum and therefor it is preferred that when tbet decreases the tnum

should be increased.

Looking at large boundaries the sequence of areas with low loss are in a line

across the parameter space like the noisy synthetic data, but with a higher slope

and may be caused by the short horizontal range the ship is passing by at. The

error of the estimations are fairly high, from 0.4130 and up, which is caused by

the SNR and variance in the signal. This also causes some other parameters than

the real parameters to be closely matched with the processed data.

The ASHS and ASDE search are represented in the figures 4.14 and 4.15 where

a new estimation of the parameters is made at each iteration. The real param-

eter values are given in IV and the real value used for ds is considered to be ds

which gives the best estimation of the parameters in the 2D search. The tnum

and tbet are 24 and 3 for this two cases shown here, with bottom properties cs

1516 m/s and ρs 1520 kg/m3. The error in the last figure is the calculated differ-

ence between the estimated parameter value and the real parameter value and

are made to more closely see the difference between the estimated and real pa-

rameter error. Further exploration of the global search is given in appendix B.3.1.

This search seems to be fairly accurate and similar to the 2D search when the

search interval is for small range such as 10 to 100 meters, see figure 4.14. The

ship velocity is either 3.2 or 3.25 m/s and range is either 68 or 71 meters which

are close to the assumed real values, but the ds is jumping up and down and

don’t seem to have a constant value. This is because the ds have more than one

value, which combined with the other parameters gives almost the same error as

the best estimation from the 2D search.

With a range interval of 10 to 500 meters the ASHS and ASDE has a chance of

find the same solution as the 2D search. There are also solutions at 56 and 108

meters and 2.8 and 3.8 m/s for various source depths. This shows that a search

over to large an interval is more uncertain when using the global algorithm than
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure 4.14: ASHS and ASDE search of Jumbo, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.13a,
the ds are unknown and with average search intervals, see table XIII for the mean
estimated parameters and the parameters used in the estimation.



52 CHAPTER 4. METHOD AND RESULTS

(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure 4.15: ASHS and ASDE search of Jumbo, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.13a,
the ds are unknown and with large search intervals, see table XIII for the mean
estimated parameters and the parameters used in the estimation.
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the 2D search, which is caused by using more unknown parameters and the vari-

ance in the signal. The figures in 4.13 for the 2D search shows that there is a min-

imum at 56 meters and 2.7 m/s that the global search algorithm finds because

both fulfill the stop criteria. The solution of 108 meter is caused by the source

depth, which moves the area of low loss in the parameter space. With enough

variance in the signal the error of least loss is so high that this point fulfill the

stop criteria.

The ASHS and ASDE are operating a little differently, where the ASDE seems gen-

erally faster than the ASHS and finds more consistent parameters. This may be

caused by how the different global algorithms work or the control parameters

might not give the algorithms exactly the same searching properties.

4.5.2 Småen at Nilus-A

The 2D search of the recorded signal of Småen at NILUS-A is given in figures

4.16 with dB scale and the estimated parameters of the figures are given in table

XIV. The figures presented is the best estimations which was found for the dif-

ferent combinations of parameters. Further exploration of the parameter space

is shown in appendix B.3.2. The data is selected with a chosen number of tnum

and tbet , where 0 of the time blocks are after CPA and the rest are before. This

was found to give the best estimation for the recording and the CPA is moved 2

time blocks after the calculated CPA to avoid the clipping.

The area of low loss for Småen stretches over a much larger area around the pa-

rameters found by AIS than for Jumbo. About 3.5 m/s up and down the velocity

parameter and 30 meters in both direction of the horizontal range parameter,

and there are at least 4 points that can be looked at as a possible solution. This

creates a lot of uncertainty of which values are the best estimated. There is a also

another large area around 16 m/s and 500 meter with low loss, which makes the

estimation of the parameters more uncertain.

The figure 4.7b shows that the frequency values bellow 120 Hz might not repre-

sent the propagation field in a good way. The propagation field isn’t as visible for

this recording as for Jumbo. There are high SNR around 400 and some around

900 Hz which is important to select some values from these areas. The frequen-

cies 138, 235, 343, 479, 680 and 878 Hz gives appropriate results and is used for

all the results presented in this section and in the appendix B.3.2.
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(a) Result with the expected set of parame-
ters with a bit large time block spacing and
small search intervals.

(b) Result with the expected set of parame-
ters with small search intervals.

(c) Result with the expected set of parame-
ters with a bit large time block spacing and
large search intervals.

(d) Result with the expected set of parame-
ters with large search intervals.

Figure 4.16: 2D search of Småen, plotting the cost function error at each com-
bination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and the
search intervals are searched for good results, see table XIV for the estimated
parameters and parameters used in the estimation.

The source depth which is given in table IV isn’t as close to the value that gives

good estimations of the parameters as for the Jumbo case. The parameters tnum

and tbet that are chosen for the best estimations gives a relative large range and

high number of time blocks, which stretch out to the -2 minutes mark, but doesn’t

go into details.

For the Småen case the cs 1502 m/s and ρs 1500 kg/m3 finds relative good es-

timations for range up to 2000 meters, as the figures in 4.16a and 4.16d shows.

Figure 4.16d and figure 4.16a on the other hand shows that even closer
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estimation of the parameter at short range, but doesn’t work for larger intervals.

The 2D search finds some close parameter values at other values of cs and ρs as

shown in the appendix B.3.2.

The areas of good estimations in the parameter space for Småen seems to be

larger than for the ones in Jumbo, this shows that the signal might consist of

larger variance and low SNR. Another option is the distance at CPA is very close

and the vessel is light with a low source depth, which has a flatter propagation

field. This may be the reason for large area of low loss if it is combining this with

lower SNR than Jumbo and some variance in the signal.

When looking at the search over larger intervals of range and velocity, the low

loss line becomes more visible, but it’s moved up in the parameter space com-

pared with Jumbo and the synthetic data. This may be caused by the short dcpa ,

because the transmission loss is low from this point to a fairly large range if the

modeled propagation field in figure 4.19 can represent this case, which makes it

more unique than dcpa at longer range.

The ASHS and ASDE search of Småen are represented in the figures 4.17 and B.9.

The parameter value that are assumed to be the real ones are given in IV and the

real value of ds is considered to be the calculated ds , because the one used in

the 2D search have such a large area with low loss. More results from the global

algorithms are given in appendix B.3.1.

The global search finds some relative close estimation of the parameters when

using cs 1500 m/s and ρs 1502 kg/m3 with tnum 24, tbet 5 and tbet 6 for small

parameter intervals. The range estimation seems to be fairly close, but with a

higher boat speed and a changing source depth and is caused by the large low

loss area. Figures 4.16d and B.13b shows that the area with good estimations is

around 1 to 20 meters in range and from 8 to 10 m/s for tbet 6, but around 20 me-

ters and 10 m/s for tbet 5. This is a whole other matter for the average and large

parameter interval where the horizontal range is estimated to be 100 meters and

the ship velocity is 10 m/s. The 2D search seem to have a point at 10 m/s which

has low loss and with different source depth there is apparently a range at 100

meters which has lower loss than shorter range, as shown in appendix B.3.2.

The ASHS and ASDE are for this case operating more or less similar and find

more or less the same value. This may be caused by the fact that the search,

which yielded good estimations for Småen, is done over smaller intervals of the

parameters.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure 4.17: ASHS and ASDE search of Småen, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16a,
the ds are unknown and with small search intervals, see table XV for the mean
estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure 4.18: ASHS and ASDE search of Jumbo, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16b,
the ds are unknown and with small search intervals, see table XV for the mean
estimated parameters and the parameters used in the estimation.
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4.5.3 Summary of results

The best estimations of the parameters and its error are displayed in tables XVI

and XVII.

Table XVI: Best estimated ship velocity with velocity error.

Recording Ship Estimated Ship Ship velocity
velocity (m/s) velocity (m/s) error (m/s)

Jumbo at NILUS-A 2.83 2.63 0.20
Småen at NILUS-A 7.20 8.04 0.84

Table XVII: Best estimated horizontal range at CPA with range error.

Recording Horizontal Estimated horizontal Horizontal
range (m) range (m) range error (m)

Jumbo at NILUS-A 65 69 4
Småen at NILUS-A 3.75 1.04 2.71

This parameters can be used to recreate the ship path of the boat, which are

compared with the recorded AIS ship path in figure 4.19.

(a) Småen (b) Jumbo

Figure 4.19: The distance between the NILUS-A and the ship, where the blue line
is the AIS recordings and the red is the estimated ship path.

This shows that the estimated ship paths is closely matched to the recorded ship

paths close to the CPA, but starts to deviate at larger range.
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4.5.4 Uncertainty

There are several factors contribute to uncertainty of the parameter estimation

and is described here.

Figure 4.20: Cost function error in dB is plotted at each function call for each
variables during a run of ASHS with stop criteria of 0.001. The plots gives an
impression of each variables sensitivity.

The sensitivity analyses is given in figure 4.20, which gives an idea of which vari-

ables that have the largest impact on the cost function error. This analyzes is

done by setting all the parameters shown in 4.20 as unknown and run the ASHS

with a stop criteria of 0.001. It can be seen that some variables can have a more

than on value and return low loss. This indicates that these variables are less

sensitive and more difficult to estimate. These plots shows that the ship velocity

and the source depth are most sensitive and dcpa closely follows if very low loss

is considered, but is more inaccurate at higher loss.
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Another source of uncertainty is the sensors on the NILUS which has an accuracy

of ±3 dB, which affects the amplitude which is recorded and the propagation

field which is calculated from this signal.

Low SNR makes the propagation pattern less visible and the estimation will suf-

fer from it, but it’s hard to calculate in which extent this affects the estimation.

The signal processing will account for some loss of data where the welch estima-

tion reduces the frequency resolution and the values is smoothed.

The GPS account for two different sources of uncertainties which are the NILUS-

node location and the ship location. There is not given more data on how ac-

curate the position of the boat is and is assumed to be ± 10 meters from [10].

The AIS data is also given from the antenna on the ship which is most likely near

the cabin which usually is fairly close to the propeller. This gives an uncertain

amount of error which will be of a few meters. The NILUS-node has an accuracy

of around ±10 meters as well.

The source depth from the AIS data is calculated from the mean draft which will

give some error when using this value. The depth is assumed to be around ±1

meters.

The receiver depth have an accuracy of ±3 meters as described in section 3.2.

The last source is the Lloyd mirror model which isn’t a perfect reconstruction

and is only accurate for short range. This gives a lot of uncertainty when tnum

and tbet are large and the interval of the parameters causes the model to search

beyond it’s accurate range.





Chapter 5

Discussion

This thesis has developed a method for estimating ship velocity and the horizon-

tal range at CPA of a ship passing for ship tracking. FFI has deployed sensors to

record ship passings outside Horten and this method has been used on two such

recordings at a location. The method used are based on Willmut and Chapmans

matched field inversion which are tested for an array of hydrophones and a the

source is a sound projector, which generates continuous wave tones, see [18].

In this thesis the attention has been on reducing the variance of the noisy sig-

nal, make a suitable search algorithm and find sufficient results with the Lloyd

mirror propagation model.

There where two data samples suitable for the matched field inversion method

and some data in these recordings had problem with amplitude clipping, which

made some data in the recording useless and lead to manually avoiding this data

to prevent bad estimations. This combined with some variance in the signal after

welch spectral estimation, made that both the time blocks and frequency values

in the interval of 50 to 1000 Hz had to be manually chosen by analyzing the spec-

trum of the sample.

A reference for the estimation method to be compared with is necessary and

the recorded AIS data are used, which have some uncertainty. Together with

the uncertainty of the position of the sensor node the error of this recorded dis-

tance might be up to ±20 meters, which is high when considering the recorded

distance for the Småen and Jumbo are 3.75 and 65 meters. This might also af-

fect the assumption of constant velocity and straight ship path, but the recorded
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samples doesn’t give any visible sign of inconsistencies in the spectrum of the

recordings, which makes this less probable. The recorded ships velocity are 7.20

and 2.83 m/s and these values have unknown uncertainty, but they are based

on the path recorded by AIS and can be assumed to have an uncertainty related

with the uncertainty of the recorded distances.

First the method is tested with noisy synthetic data, where the measured data is

simulated with a noisy Lloyd mirror model. This estimations shows the limita-

tions of the method and the affect it has on the loss over the parameter space.

The observations that are made here are also made during the search for good

estimations in the Jumbo and Småen data samples, but the cause can be more

easily localized with ideal synthetic data. During these simulations it was discov-

ered that the variance is a deciding factor in finding good estimation, because of

how the cost function calculates the error. Thats why the limitation of the SNR is

dependent on the magnitude of the variance and is difficult to predict, but with

the figures presented in the results and the appendix, a limitation may be set at

5 dB when considering noise with variance. This is at the point of the limitation

and should be higher when not considering ideal data, between 10 and 15 dB.

The limitation of the number of time blocks in this simulations should at least

be 12. This value is low and a higher number should be used, especially when

there is no time limitation for the method.

The source depth is discovered to change the outcome of the estimation a lot,

but varies a lot when using it as the third unknown in the global algorithms. The

observations implies that the source depth is hard to estimate. The sensitivity

estimation shows that the source depth is very sensitive and should be easy to

estimate, which somewhat contradicts the observations. On the other hand, the

error of the cost function is fairly high for the estimation and not nearly as low

as 0.001 as in the sensitivity analyzes and may be the cause of this contradic-

tion. That is why a good recording of this parameter is desired, but there is only

recorded a mean draft for the ships involved. On the other hand the estimated

source depth seem to be inside the uncertainty of the AIS data.

The recording of Jumbo at NILUS-A have a sufficient SNR such that the propaga-

tion pattern is visible. When using 2D search a suitable source depth is used and

with average parameter interval and the bottom properties are considered to be

clay, the area of low loss expands ±15 meters and ±0.75 m/s. This area of low

loss can be looked at as a analytical approximation of the uncertainty of the es-

timation, where a possible solution may be found, like the two minimum points

which is hard to distinguish as the global minimum. This two points is caused by
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the fact that the recorded data doesn’t give a perfect propagation pattern because

of the lower SNR caused by ship traffic, some variance in the relevant frequency

interval, not perfect calculated CPA and that the channel isn’t ideal for the Lloyd

mirror model, like flat sea floor bathymetry. The least loss parameters found are

2.63 m/s and 69 meters and are sufficiently good estimations of the real values

if the estimations uncertainty is considered, which have lower uncertainty than

the real values. When considering large intervals of the parameters the estima-

tion finds the least loss values at very high parameter values and might be caused

by the lack of accuracy of Lloyd mirror model at this range. This is only relevant

when the boat distance is entirely unknown and not so much for this case. The

global search algorithm yields this two points in the low loss area as solutions

with various source depth, but there is found solution at lower loss with higher

source depth at around 120 meters and 4 m/s, which isn’t close to the real val-

ues and caused by not ideal propagation pattern. This makes the global search

algorithm only reliable for search interval bellow 100 meters for the Jumbo case.

The recording of Småen at NILUS-A are much like Jumbo but with lower SNR,

which cause less visible propagation pattern and it seems to be a little more vari-

ance in the signal too. When there is considered small parameter intervals and

clay as the bottom properties, the area of low loss for the 2D search expands ±30

meters and ±3.5 m/s with at least 4 points that can be the global solution and

is most likely caused by the same things as for Jumbo. The least loss parameters

found are 8.04 m/s and 1.04 meters and are close to the real parameter value, but

if the uncertainty of the estimation is considering it will be questionable good

because it has more uncertainty than the real values. When considering large in-

tervals of the parameters the estimation finds the least loss at higher parameters

like Jumbo, mots likely because of Lloyd mirror. When using the global search

algorithm the best values found are about 10 m/s, but with shifting source depth

and distance at CPA, which variates between about 1 to 20 meters. This is for

a small search intervals, but it finds better estimation about at about 100 me-

ters when considering larger and makes the global algorithm not reliable for the

Småen case when considering larger parameter intervals.

The global search algorithms for both Jumbo and Småen shows some resem-

blance to a local search algorithm, because they seem to choses one of the first

local minimum they find in the parameter space. This can be caused by the high

loss in the parameter space, which makes it hard to chose a stop criteria to fit the

search for the estimation. Another possibility is that the SNR and variance may

be low/high enough for the method to consider other parameters than the real

ones as equally good. The control parameters in the two global algorithms may
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also be as appropriate as first thought, this might make the algorithm more like a

local optimization algorithm. On the other hand, when considering estimation

for larger parameter intervals with more than one area of low loss it still finds the

area with least loss, so it may only be a problem with to stop criteria.

The ship tracking seems to be quite close to the AIS ship tracking, even over fairly

large range. The ship velocity is the accuracy over large range from CPA and the

dcpa is of course the accuracy at the CPA, which makes the uncertainty and the

evaluation of result of the tracking directly connected with the estimation of the

parameters.

Suggestions for future research and improvement of this method are

• Use the estimation method on more real data to find further study the

methods limitations.

• Resolve the problem with the clipping such that the whole data set might

be used in the matching inversion method and such that the propagation

field don’t have to be analyzed manually before using the method.

• Low SNR makes the propagation pattern less visible and the method will

suffer in accuracy from this and testing the NILUS-node at an area with

less traffic might improve the SNR.

• Reduce the variance further such that the propagation pattern is less vari-

ating.

• An improvement of the Lloyd mirror model might make estimations at

larger range more accurate.

• The source depth proved to be an important factor and a better estimation

of this would be preferred, the estimation may profit on more detailed bot-

tom properties as well.



Chapter 6

Conclusion

In this thesis a matched field inversion method has been developed to estimate

the horizontal range at CPA and ship velocity for tracking purposes using Lloyd

mirror propagation model. The measured data is recorded and processed ship

noise at a single hydrophone.

The estimation was performed on two time sample, which was provided by FFI.

The results points to some suggestions on what the estimation requires:

• The recorded data should have high enough SNR so the propagation pat-

tern is visible.

• The variance in the recording signal should be sufficiently reduced.

• A good estimation of the source depth should be acquired.

• The 2D search method should be used when the unknown parameters

have larger boundaries.

• ASHS and ASDE should be faster and can be applied when presented with

a problem with small parameter boundaries and sufficiently high SNR.

• A sufficient amount of data should be used in the estimation, such as 6

frequencies spread over the relevant frequencies (suggested 50 - 1000 Hz)

for 24 time blocks spread periodically over the ship path.

• The search of good estimations shouldn’t exceed the limitations of the prop-

agation model (suggested horizontal range limit of Lloyd mirror is 300 me-

ter and flat bathymetry).
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This method makes it possible to estimate the horizontal range and ship velocity

with some error at sufficiently small range and velocity, provided that most of

the suggestions are fulfilled, which makes it possible to track a ship. The method

may help establishing a routine that is suited for a easily deployable system such

as NILUS.
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Appendix A

RAM

There are two propagation models which are used: Lloyd mirror model and RAM

(Range dependent acoustical model). The Lloyd mirror is described in detail in

the theory chapter 2 and the RAM model is partly described here and in more

details in the project.

The RAM is a numerical solution of the parabolic equation method, based on the

split-step Padè solution and is an efficient method according to [6]. It handles

range dependent environments as a sequence of segments of range independent

environments, such as sound speed and Bathymetry.

The RAM is coded in FORTRAN in comparison with the rest of the code which

is coded in MATLAB. The Bathymetry is interpolated in range in the RAM code

to the current range step. All the input files are stored in an text file before it is

set into the RAM code. This inputs have to be selected properly and a guide has

been provided by FFI [4], where a ratio between the parameters are suggested to

ensure good results and it is possible to do a convergence test to see if it obtains

proper values.

Table XVIII: Control parameters in RAM.

dr 1.0 ndr 10
d z 0.25 nd z 4
zmpl t 100.0 np 5
ns 1 r s 0.0

The RAM code returns the transmission loss and to find the amplitude value of
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the RAM the calculations has to by inversed. The control parameters in the RAM

code are given in table XVIII. Where dr is the range steps, ndr range output

steps, d z is the depth steps, nd z depth output steps, zmpl t is the vertical extent

of the domain to output, np is Pade terms, ns is stability constraints and r s is

radius of stability constraint.

The FORTRAN code of the RAM returns the propagation field with a range step

of dr up to a given maximum range, r max, and a new field has to be created for

each frequency desired. If the RAM was to be used in the parameter estimation

some problems would arise. Storing new values in a file for each new parame-

ter that is explored and creating a propagation field from 0 to r max is very time

consuming and the MATLAB script will crash because of memory usage when

storing new data in the file. The main propagation model which is desired to be

explored in this thesis is the Lloyd mirror, so an easy solution can been made by

just creating a large propagation field matrix with maximum possible range of

the parameter interval for each desired frequency. The values are picked from

this matrix rather than creating a new field for each parameter, this is time con-

suming and will limit the range resolution, but will not crash the script.



Appendix B

Results

In this appendix, more results has been added for more information to analyze.

The results in this chapter shows further how the method behaves for the differ-

ent parameters.

B.1 Received data

The signal recorded over time are shown in figures B.1a and B.1b.

(a) Jumbo. (b) Småen.

Figure B.1: The recorded time signal for Jumbo and Småen at NILUS-A.

For Jumbo the the amplitude of the signal is higher after the CPA than before

which is caused by the propagation effects. For Småen the amplitude of the sig-
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nal is a bit high around 2 minutes mark as discussed in section 4.3 and there is a

lot of amplitude clipping in the signal.

B.2 Synthetic simulation

Further testing of the tnum , SNR and variance of the noise with 2D search and

the global algorithms with the parameters in table VII.

Table XIX: The estimated parameters of 2D search with noisy synthetic data from
figures in B.2 and B.3.

Figure Estimated ship Estimated hor. tnum SNR (dB) variance
velocity (m/s) range (m)

B.2a 5.12 250 24 0 0.5
B.2b 5.32 250 24 0 1.0
B.2c 5.13 251 24 -5 0.5
B.2d 5.12 251 24 -100 0.0
B.3a 5.12 250 10 10 0.5
B.3b 5.12 250 10 10 1.0
B.3c 4.03 131 8 10 0.5
B.3d 5.12 250 8 10 0.1

Table XX: The mean estimated parameters from global algorithms for noisy syn-
thetic data from the figures B.5 and B.6.

Figure Global Mean ship Mean hor. tnum SNR (dB) variance
algorithm velocity (m/s) range (m)

B.5
ASHS 5.27 260 12 -5 0.3
ASDE 5.16 256 12 -5 0.3

B.6
ASHS 5.13 264 8 10 0.3
ASDE 5.23 259 8 10 0.3

In figure B.2 the SNR and variance is changed and gives more or less good re-

sults when the magnitude of the variance is small, which further show what was

discovered in section 4.4.

The figures in B.3 is made with 10 dB and different tnum and variance the figures

shows further that low number of tnum starts to make the low error pattern for

low velocity.



B.2. SYNTHETIC SIMULATION 77

(a) Result of low SNR and average vari-
ance.

(b) Result of low SNR and high variance.

(c) Result of very low SNR and average
variance.

(d) Result where the noise is dominant
and no variance.

Figure B.2: Further2D search of synthetic data, plotting the cost function error
at each combination of the parameters with normal scaled loss. The SNR and
variance of the noise are changed between each figure with tnum 24, where a SNR
of 10 dB is considered on the edge of good SNR, see table XIX for the estimated
parameters and the noise used in the estimation.

Further testing of the global algorithms is made to punctuate what was found in

section 4.4.

The error and parameter of the ASHS and ASDE results in 4.4 is given here in

figures B.4. The figures shows that the error variates with the magnitude of the

variance and the time used on finding a good estimation increases because ei-

ther of the cases mentioned in section 4.4.

The figures B.5 and B.6 show more testing with different tnum . These plots shows

further that a signal with variance makes the global search algorithms find more

than one good estimation of the parameters. Low number of time blocks also

makes the global search algorithm finding other parameters than the correct
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(a) Result of low tnum and average vari-
ance.

(b) Result of low tnum and high vari-
ance.

(c) Result of very low tnum and average
variance.

(d) Result of very low tnum and low vari-
ance.

Figure B.3: Further 2D search of synthetic data, plotting the cost function error at
each combination of the parameters with normal scaled loss. The tnum and vari-
ance of the noise are changed between each figure with SNR 10 dB, where a tnum

of 16 is considered on the edge of enough data, see table IX for the estimated
parameters, noise and parameter used in the estimation.

ones. This is discussed in section 4.4.



B.2. SYNTHETIC SIMULATION 79

(a) Error, function calls and time used
on estimation for 4.12a.

(b) Error of estimated parameters for
4.12a.

(c) Error, function calls and time used
on estimation for 4.12b.

(d) Error of estimated parameters for
4.12b.

(e) Error, function calls and time used
on estimation for 4.12c.

(f) Error of estimated parameters for
4.12c.

Figure B.4: Cost function error, number of function calls, time used and the error
of the parameters when searching with ASHS and ASDE for noisy synthetic data
of the cases in figure 4.12.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.5: ASHS and ASDE search of synthetic data, the blue line is the esti-
mated value, the red is the mean value of the estimates and the green line is the
real value. The search is done 10 times with average tnum , very low SNR and low
variance, see table XX for the mean estimated parameters and the parameters
used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.6: ASHS and ASDE search of synthetic data, the blue line is the esti-
mated value, the red is the mean value of the estimates and the green line is the
real value. The search is done 10 times with low tnum , good SNR and low vari-
ance, see table XX for the mean estimated parameters and the parameters used
in the estimation.
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B.3 Estimation of recorded data

B.3.1 Jumbo at NILUS-A

(a) Result with low number of time
blocks, higher time block spacing, a
bit high bottom properties and medium
search intervals.

(b) Result with a bit low number of time
blocks, a bit high bottom properties and
medium search intervals.

(c) Result with low number of time
blocks, a bit high bottom properties and
medium search intervals.

(d) Result with almost the expected pa-
rameters, apart from a bit high bot-
tom properties, low source depth and
medium search intervals.

Figure B.7: Further 2D search of Jumbo, plotting the cost function error at each
combination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and
the search intervals are searched for good results, see table XXI for the estimated
parameters and parameters used in the estimation.
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(a) Result with almost the expected param-
eters, apart from a bit high bottom prop-
erties, lower source depth and medium
search intervals.

(b) Result with high number of time blocks,
low time block spacing and medium
search intervals.

(c) Result with higher time block spac-
ing, a bit high bottom properties, low
source depth and medium search inter-
vals.

(d) Result with higher time block spac-
ing, a bit high bottom properties, lower
source depth and medium search inter-
vals.

(e) Result with almost the expected pa-
rameters, apart from higher time block
spacing and large search intervals.

(f) Result with higher time block spac-
ing, high bottom properties and large
search intervals.

Figure B.8: Further 2D search of Jumbo, plotting the cost function error at each
combination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and
the search intervals are searched for good results, see table XXI for the estimated
parameters and parameters used in the estimation.
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The figures in B.7 and B.8 shows further display of the 2D search algorithm for

Jumbo, log error for each combination of parameters. With results and proper-

ties in table XXI. There are some new observations in this figures which hasn’t

been mentioned before and that is that the pattern for few time blocks is visi-

ble for the simulation over large range. With some combination, as the figure

B.8f shows, gives best solution at low velocity but at large range and the reason-

ing behind this is the same as for low number of time blocks. This might cause

problem for the model if a ship passes by at longer range.

The figures shows how the search for the best estimation of the parameter value

was done. There are many solution of the problem which are close to real pa-

rameter value. The the number of time blocks and time block spacing adjusted

slightly until they converge on the best estimations, which is shown in this fig-

ures. Increasing the number of time blocks and spacing meets the problem of

low SNR at large range. The recorded data don’t seem to have continuously high

SNR and no variance which causes that some combination of the tnum and tbet

more favorable than others.

The source depth affect of the source depth on the estimation becomes very vis-

ible when looking at this figures. A lot of the figures are simulated with larger

sediment properties to see the affect of this parameters, which are relative little.

The properties of the sediment may have more affect on the estimation if the

recorded ship was at larger range.

The global algorithms in figures B.9, B.10 and B.11 uses cs 1502 m/s and ρs 1500

kg/m3. For larger intervals of the parameters the estimation is close, but vari-

ating and as figure B.11 shows, the search is random and might find estimates

with low enough loss for the stop criteria to be triggered and unfortunately this

is repeatedly the case in this figure.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.9: Further ASHS and ASDE search of Jumbo, the blue line is the esti-
mated value, the red is the mean value of the estimates and the green line is the
real value. The search is done 10 times with the same parameters as for figure
4.13a, the ds are unknown and with average search intervals, see table XXII for
the mean estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.10: Further ASHS and ASDE search of Jumbo, the blue line is the esti-
mated value, the red is the mean value of the estimates and the green line is the
real value. The search is done 10 times with the same parameters as for figure
4.13a, the ds are unknown and with large search intervals, see table XXII for the
mean estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.11: Further ASHS and ASDE search of Jumbo, the blue line is the esti-
mated value, the red is the mean value of the estimates and the green line is the
real value. The search is done 10 times with the same parameters as for figure
4.13a, the ds are unknown and with large search intervals and a bit larger ship
velocity interval, see table XXII for the mean estimated parameters and the pa-
rameters used in the estimation.
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B.3.2 Småen at NILUS-A

(a) Result with a bit high bottom prop-
erties and low search intervals.

(b) Result with a bit high bottom prop-
erties, low source depth and average
search intervals.

(c) Result with high bottom properties,
high source depth and average search
intervals.

(d) Result with the expected set of pa-
rameters with a bit large time block
spacing and average search intervals.

Figure B.12: Further 2D search of Småen, plotting the cost function error at each
combination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and
the search intervals are searched for good results, see table XXIII for the esti-
mated parameters and parameters used in the estimation.
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(a) Result with large number of time
blocks, a bit large time block spacing, high
bottom properties and small search inter-
vals.

(b) Result with higher source depth, a bit
high bottom properties and average search
intervals.

(c) Result with large number of time
blocks, higher source depth, a bit high
bottom properties and average search
intervals.

(d) Result with the expected set of pa-
rameters with average search interval.

(e) Result with the expected set of pa-
rameters with a bit large time block
spacing, high bottom properties and
large search interval.

(f) Result with the expected set of pa-
rameters with a bit large time block
spacing and large search interval.

Figure B.13: Further 2D search of Småen, plotting the cost function error at each
combination of the parameters with log scale loss. The tnum , tbet , ds , cs , ρs and
the search intervals are searched for good results, see table XXIII for the esti-
mated parameters and parameters used in the estimation.
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The figures in B.12 and B.13 shows further display of the 2D search algorithm for

Småen in log scale for each combination of parameters with results and prop-

erties in table XXIII. These figures shows some of the process on how the best

estimations are found, where there are very large areas with low loss with some

minimum points in them which makes the whole search difficult and its accu-

racy questionably. The best estimation seems to be figure B.12c when consider-

ing the error and the area of low loss, but to achieve this the sediment properties

has to be change to silt which doesn’t match with the predicted sediment. There

are also some very low loss points at larger range for this estimation which makes

it less good.

Figure B.13a shows that a higher number of time blocks used gives worse error as

discussed in section 4.4. This error may also occur because the search stretches

to the 3 min mark which is close to the other visible ship passing and gets an area

with a lot of clippings, which are avoided.

Figure B.12a and B.13a doesn’t manage to show how large the area with low loss

is and is better shown with other figures, where the error is quite high for all fig-

ures and might make the plot show high error as good estimations as shown in

figure B.13c, but is a bit contradicted by figureB.13b. This makes the simulation

a bit misleading and the figure may not be as appropriate for displaying the esti-

mation as first though.

The global algorithms in figures B.14, B.15, B.16 and B.17 uses cs 1502 m/s and ρs

1500 kg/m3. These figures further shows that the intended best estimation of the

parameters isn’t the globally best when considering different source depth. The

tbet 6 and tbet 5 cases seems to behave very much alike at larger search intervals

when ASHS and ASDE is used.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.14: ASHS and ASDE search of Småen, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16a,
the ds are unknown and with average search intervals, see table XXIV for the
mean estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.15: ASHS and ASDE search of Småen, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16a,
the ds are unknown and with large search intervals, see table XXIV for the mean
estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.16: ASHS and ASDE search of Jumbo, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16b,
the ds are unknown and with average search intervals, see table XXIV for the
mean estimated parameters and the parameters used in the estimation.
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(a) Error, function calls and time used on es-
timation.

(b) Estimated parameters.

(c) Error of estimated parameters.

Figure B.17: ASHS and ASDE search of Jumbo, the blue line is the estimated
value, the red is the mean value of the estimates and the green line is the real
value. The search is done 10 times with the same parameters as for figure 4.16b,
the ds are unknown and with large search intervals, see table XXIV for the mean
estimated parameters and the parameters used in the estimation.
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