
Evaluation of cache architectures for a
low-power microcontroller system

Vinicius Almeida Carlos

Embedded Computing Systems

Supervisor: Bjørn B. Larsen, IET

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

Reducing energy consumption has become a mantra in the Embedded Systems
industry. The energy consumption of a memory system of a microcontroller-
based embedded system accounts for a great part of the total energy consumption.
Furthermore, Flash memories, as the ones usually employed in this kind of system
are very power hungry elements. With that premises in mind, this project tries
to tackle this problem by analysing the impact of adding a cache system to such
existent microcontroller system. It performs this task by going in two directions at
the same time: on one of them it evaluates a set of new cache architectures using
a high level simulation environment, while on the other it implements a cache
system in the register-transfer level with the goal of performing accurate power
measurements. This text is the report of how these tasks were accomplished, which
results were obtained and what criticisms and conclusions can be derived from it.

ii

Contents

List of Abbreviations 2

1 Introduction 3
1.1 Problem description (extracted from[2]) 3
1.2 Tasks . 5

2 Cache Architectures for Low Power (extracted from[2]) 8
2.1 Circuit Techniques . 8

2.1.1 Way-Decay Cache . 8
2.1.2 Drowsy Caches . 9

2.2 Architectures . 10
2.2.1 Tiny Caches / Loop Caches 10

2.2.1.1 Dynamic Loop Cache (DLC) 10
2.2.1.2 Preloaded Loop Cache (PLC) 11
2.2.1.3 Hybrid Loop Cache (HLC) 11
2.2.1.4 Adaptive Loop Cache (ALC) 11

2.2.2 Scratchpad . 11
2.2.2.1 Dynamically allocated 12
2.2.2.2 Statically allocated: 12

2.2.3 Associative Memory / Content-Addressable Memory 13
2.2.4 Way-Prediction . 14

2.2.4.1 Way-Halting . 15
2.2.5 Indexing / Hashing . 16
2.2.6 Tag Omission . 18
2.2.7 Phased Caches (new) . 19

3 Method 21
3.1 High Level Simulations . 21

3.1.1 Architectures Selected . 21
3.1.1.1 Direct-mapped, two-way and four-way phased caches 22
3.1.1.2 Way-halting . 23

3.1.2 Simulation environment (contains text from[2]) 24

iii

3.2 SystemVerilog Implementation . 27
3.2.1 Design of the Cache Controller 27

3.2.1.1 Defining the Memory System 28
3.2.1.2 Detailed Design Description 30
3.2.1.3 Functional Verification 33
3.2.1.4 Synthesis . 35
3.2.1.5 Power Simulations 35

3.3 Experiments . 36
3.3.1 High-level Simulations . 36

3.3.1.1 Energy Models . 37
3.3.1.2 Calculating Energy Consumption 39
3.3.1.3 Benchmark . 40

3.3.2 SystemVerilog . 40

4 Results 43
4.1 High Level Simulations . 43

4.1.1 Hit Rates . 43
4.1.1.1 Benefits of the Indexing Solution 43
4.1.1.2 Hits and Misses Comparison 44

4.1.2 Energy Consumption . 49
4.1.2.1 Way-halting . 49
4.1.2.2 Phased Caches . 50
4.1.2.3 Memory Types . 54
4.1.2.4 All Cache Architectures Compared 56

4.2 SystemVerilog Implementation . 60
4.2.1 High Level and SystemVerilog Implementations Compared . . 60
4.2.2 Cache System Module . 66

5 Discussion 70
5.1 Indexing solution . 70
5.2 Cache Architectures . 70

5.2.1 Energy Consumption . 70
5.3 Phased Caches . 71
5.4 Way-halting . 71
5.5 SystemVerilog Implementation . 71

6 Conclusions and future work 73
6.1 Future Work . 75

Bibliography 77

A Description of the digital attachments 81
A.1 Bit-selection (indexing) optimal algorithm 81
A.2 High Level simulation environment 81

iv

A.3 SystemVerilog implementations . 81
A.4 Graphs . 82
A.5 TFE 4520 - Semester Project Report 82

Evaluation of Cache Architectures for a Low-Power Microcontroller System 1

List of Abbreviations

SRAM Static Random-Access Memory

SPM Scratchpad Memory

LSBs Least Significant Bits

DM Direct-mapped

DVS Dynamic Voltage Scaling

DLC Dynamic Loop Cache

PC Program Counter

LCC Loop Cache Controller

PLC Preloaded Loop Cache

HLC Hybrid Loop Cache

ALC Adaptive Loop Cache

BB Basic Block

CAM Content-Addressable Memory

BTB Branch Target Buffer

HBTC History-Based Tag-Comparison

AHB Advanced High-performance Bus

NVM Non-volatile Memory

DUT Device Under Test

HC Hand-coded

RF Register File

RTL Register-transfer Level

2

Chapter 1

Introduction

This master thesis is a straight continuation of last semester project [2]. And
as such, it delves deeper into the matter of whether adding a cache system to a
microcontroller-based system can improve its energy efficiency. It does that by
attacking the problem in two different fronts: on one hand it evaluates new cache
architectures by extending the high level simulation environment developed in [2],
while on the other hand it takes the solution proposed in [2] (direct-mapped cache
with indexing) and goes all the way down to the hardware implementation with
the main purpose of validating the findings obtained in [2].

Moreover, as a development over [2], it includes, for the sake of completeness and
continuity, entire sections from last semester project report. However, whenever
that happens an acknowledgment is placed on the title of the section, as can be
seen in the introduction presented below.

1.1 Problem description (extracted from[2])

It is a well-known fact that energy consumption is of great concern on battery
powered embedded systems. Even though improvements on battery capacity have
been made in the past years, they are unable to keep up with the increase of energy
consumption of such systems. In general terms, many techniques can be devised to
tackle this problem, as described for instance in [22]. Nevertheless, the focus here
is on microcontroller based systems, in which memory systems are responsible for a
great part of the system total energy consumption. In particular, Flash memories,
as the one used in the target system of this project, are power hungry elements.

The baseline architecture of the target system of this project, displaying the
connection between the microprocessor and the Flash memory, can be seen on

3

Chapter 1. Introduction

figure 1.1.

Figure 1.1: Baseline Architecture.

The aim of this project is to extend this architecture by adding a small Static
Random-Access Memory (SRAM) to the system, in order to avoid, as much as
possible, accesses to the main memory (the Flash memory). The extended version
is depicted on figure 1.2.

As can be seen in the figure 1.2, the SRAM added to the system will be used
to store instructions only. This small SRAM can then either be an instruction
cache (I-cache) or a Scratchpad Memory (SPM). Either way, the purpose remains
the same. More importantly, they still represent a great part of the total power
consumption of the system, therefore careful design of these elements is paramount
to reduce overall energy consumption.

4 Vinicius Almeida Carlos

Chapter 1. Introduction

Figure 1.2: Extended Architecture.

1.2 Tasks

In [2] two cache architectures were evaluated in a high level simulation environment
with very interesting results, however, as presented in the future work section in
[2], there is room for further exploration and questions to be answered. The tasks
presented below aim at answering those questions.

Task 1: Evaluate in a high level simulation environment a new cache architecture.

This task comprises the implementation and simulation of the cache architecture
named Way-halting in the Python simulation environment developed during the
last semester project. For reasons that will be clear later, the Way-halting evaluated
here is a 4-way set associative cache, with the four Least Significant Bits (LSBs)
as the halting bits.

Task 2: Evaluate the Direct-mapped (DM) with indexing cache architecture
against a set of applications.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 5

Chapter 1. Introduction

In [2], due to certain limitations, the indexing solution was evaluated only against
one application, however to properly assess the contribution of using indexing
in a direct-mapped cache it is important to evaluate it with more applications.
Therefore, in this master thesis, two other applications are to be employed for such
task.

Task 3: Implement the direct-mapped cache with indexing in SystemVerilog.

A conclusion drawn from [2] was that the direct-mapped cache with indexing is a
very good solution in terms of area, latency and energy consumption. However,
the high level simulations can give only an estimate of what would be the energy
consumption of such architecture, therefore it is highly interesting to evaluate
how this cache architecture can perform in real hardware. For example, the high
level simulations do not take into account the energy consumption of the cache
controller itself, which includes, among other things, the energy dissipated in the
hardware responsible for performing the indexing function. For that reason this
cache controller is implemented in SystemVerilog and power simulations are used
to get the numbers that later are compared to the ones obtained with the high
level simulations.

The implementation of this cache architecture in SystemVerilog, which takes most
of the time dedicated to this master thesis, serves also as a training exercise in
both a new hardware description language and a design methodology employed by
Nordic Semiconductor, the company that supports this project.

Task 4: Evaluate the direct-mapped cache with different types of SRAMs.

In [2] only one type of memory was used while performing the high level simulations.
In this master thesis the simulations are performed with two types of memories.
Moreover, while in [2], due to the memory generator tool (Artisan) constraint, not
all possible memory sizes were evaluated, in this master thesis an attempt to find
the global minimum in terms of energy consumption is performed.

Task 5: Implement and evaluate the direct-mapped cache as a phased cache.

As will be clear later on this text, phased cache is a different way to implement the
tag and data lookup on a cache line. Both the high level and the SystemVerilog
versions of the direct-mapped cache are to be implemented and evaluated as phased
caches.

Task 6: Implement and evaluate the 2-way and 4-way as a phased cache.

On [5] it was concluded that a DM cache offers better results in terms of energy
efficiency compared to their n-way set associative counterparts. However, this

6 Vinicius Almeida Carlos

Chapter 1. Introduction

project aims at evaluating how they perform when implemented as phased caches.
It is mainly interested in checking whether the fact that not all ways are accessed
in every memory read helps at all. The 2-way and 4-way are implemented with a
Random Replacement policy.

As can be seen by the tasks devised for this project, there are different parallel
paths to be followed in the course of this master thesis and this fact will become
apparent over the entire text, in which the sections will most of the times be
split between the high level and the SystemVerilog implementations. Thus the
remainder of this text is organized as follows: Chapter 2 introduces the cache
architectures researched last semester with an added section explaining the phased
cache concept. Chapter 3 explains the simulation environment developed in Python
and the design steps and final result of the SystemVerilog implementation. It also
describes the methodology employed to obtain the values for energy consumption
in the SystemVerilog implementation. And finally list all the experiments that
take place in the scope of this project. Chapter 4 presents the results related to
the aforementioned tasks, while Chapter 5 discusses the most relevant points of the
project and Chapter 6 draws conclusions and proposes future work.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 7

Chapter 2

Cache Architectures for Low
Power (extracted from[2])

(This text assumes the reader is familiar with basics on cache. For an excellent
introduction, please read Chapter 7 of [20]).

Caches are usually employed to hide the ever existing latency between the processor
and the main memory. However, due to cost constraints, there is a limit to the size
of these memories.

Caches are on the critical path of systems, hence contributing to much of a
microprocessor system’s power and energy consumption. For example, in [31], it is
reported that caches may consume approximately 50% of a microprocessor’s power.
And, as shown in [13], instruction caches consume more energy than data caches,
therefore this literature research focused on solutions that were more relevant to
instruction caches.

Although the main interest of this project is on architectures for caches that can
reduce energy consumption, circuit level techniques were also taken into account,
as a possibility for a future work, and thus are also briefly presented in the next
section.

2.1 Circuit Techniques

2.1.1 Way-Decay Cache

The idea, as presented in [15], is that after some period of time the cache will
start to suffer more misses (spacial and temporal locality decrease overtime), that

8

Chapter 2. Cache Architectures for Low Power (extracted from[2])

is when there is opportunity to shut down some of the cache ways to reduce energy
consumption. Thus, additional structures (basically counters) are added to the
cache architecture to monitor the hits and misses and make a decision on when
it is time to shut down some ways or turn them on again. The shutting down
mechanism is performed with a circuit technique called gated-GND. An extra
transistor is added to the ground path or supply voltage of the SRAM cell, as
shown in 2.1, taken from [15]. The rationale is that, by turning off parts of the
circuit, static power can be saved (no leakage). For a 8-way-64K bytes instruction
cache, under the SPECint95 benchmark, an average of 7.39% of energy saving is
reported.

Figure 2.1: Gate-GND Technique

2.1.2 Drowsy Caches

This technique also focus on reducing current leakage, hence reducing static power
consumption. As described in [12][4][11], the idea is to implement Dynamic Voltage
Scaling (DVS) by changing the basic SRAM cell by introducing 2 transistors to
control the voltage (as can be seen in 2.2, taken from [12]), enabling the memory
to go to a state-preserving, low power drowsy mode. However, this solution requires
that a prediction policy is implemented in order to determine when to put the cache
lines in drowsy mode. Furthermore, there is a penalty of waking-up those lines
when needed, increasing (slightly) the time to access the data. For a 2-way-32K

Evaluation of Cache Architectures for a Low-Power Microcontroller System 9

Chapter 2. Cache Architectures for Low Power (extracted from[2])

bytes instruction cache, under SPEC2000, an average of 25% leakage reduction is
reported.

Figure 2.2: Drowsy Memory Cell

2.2 Architectures

2.2.1 Tiny Caches / Loop Caches

The starting point of this approach is the fact that the power per access of a
memory begins to increase steeply at a size around 128 or 256 instructions ([7]).
Therefore it is interesting to keep the size of the memory to a minimum.

A loop cache is a tagless cache, which stores the instructions of different loops and
uses a controller to determine when the instructions should be fetched from the
loop cache or from the next level on the memory hierarchy. The four variations
available in the literature are presented in the following sections.

2.2.1.1 DLC

In this type of loop cache, the loop detection is done dynamically based on the
behavior of the Program Counter (PC). In the original proposal, as described
in [7], the Loop Cache Controller (LCC) detects that a loop is happening by

10 Vinicius Almeida Carlos

Chapter 2. Cache Architectures for Low Power (extracted from[2])

observing the PC. When a branch with a negative offset happens, the LCC starts
caching the instructions being fetched after this branch instruction. When the
same branch instruction is executed again, the LCC knows that a loop is being
executed, therefore the instructions are then fetched from the loop cache, hence
not from the main memory. The drawback of this implementation is that it only
works for loops with straight-line execution, rendering this solution quite limited.

2.2.1.2 PLC

As the name suggests, the idea (proposed in [7]) is to preload into the cache
the loops which represent the best candidates in terms of energy saving. This
is performed based on profiling of the application. This solution achieves better
energy savings than the DLC, however the obvious downside is the need for
profiling, which means that it requires support of a set of external tools. Moreover,
it is completely application-dependent.

2.2.1.3 HLC

Also proposed in [7], it basically combines DLC and PLC into one cache. It offers
even better results than the PLC.

Varying the loop cache sizes from 32 to 512 instructions, around 60% to 70% of
reduction of fetches from L1 cache is reported, under the Mibench and Powerstone
benchmarks.

2.2.1.4 ALC

Proposed in [23], this solution tries to mimic the results of HLC, but without the
need of profiling the application beforehand. It accomplishes that by implementing
an enhanced version of the LCC, which takes care of determining during runtime
the loops that should be cached. It produces better results than HLC when the
cache size is smaller than 128 instructions, otherwise an increase of 5% on average
is reported.

2.2.2 Scratchpad

Scratchpad memory (SPM) is a small, fast SRAM memory that can be used to store
parts of code or data of an application. It takes up part of the full memory address
space, providing fast and low power access to its contents. It is an interesting
solution in comparison to caches because it does not contain any of the extra
structures a cache needs (tags, muxes and comparators). The challenge then

Evaluation of Cache Architectures for a Low-Power Microcontroller System 11

Chapter 2. Cache Architectures for Low Power (extracted from[2])

becomes determining which sections of code (or data) should be mapped into the
scratchpad, in order to maximize energy savings.

The two basic variants of this approach are regarding whether to perform this
allocation dynamically or statically. The former offers more flexibility and explore
more opportunities during the lifetime of the application, however, as pointed out
in [1], the overhead of moving chunks of memory between the main memory and
the SPM might lead to performance degradation in terms of speed and energy in
comparison to a static solution.

2.2.2.1 Dynamically allocated

In this type of solution, the set of instructions/data loaded into the SPM changes
over time. This change happens with help from the compiler, which places special
instructions telling when and what to copy from main memory (or L1 cache, in
other words, the next level of memory in the hierarchy).

There are then algorithms focusing on making this dynamic placement as efficient
as possible. In [9], basic blocks (BB) are the smallest unit of code that can be
transferred to the SPM. Then, based on temporal relationship between the BBs (a
metric called concomitance), instructions to move those BBs to SPM are inserted
in the code. In [18], “the length of transfer blocks can be adjusted in increments
of one instruction”. According to [18], their algorithm “achieves 31% instruction
delivery energy reduction over even an ideal coarse-grain algorithm”.

2.2.2.2 Statically allocated:

There are two ways to perform static placement of code/data into SPM: compiler-
aware allocation or post-compiling allocation. They both rely on the same principle,
which is identifying the most suitable pieces of code/data to be moved permanently
to the SPM. The main difference between these two methods is regarding the input
for this identification process. For a compiler-aware allocation, the input is the
source code, while for the post-compiler, it is a binary file. While the former is
more flexible, the latter is more general, since it can be applied to any scenario,
without knowledge or customization of the compiling tools.

Post-compiler allocation: In this approach, the following actions are necessary:

1) Identify, in the executable file, all units of code (or data) that are candidates
to be placed in the SPM.

2) Given the set of candidates, solve a basic Knapsack ([16]) optimization
problem, that is, find the best suitable set of blocks of code that can be
placed in the SPM, in order to minimize energy consumption.

12 Vinicius Almeida Carlos

Chapter 2. Cache Architectures for Low Power (extracted from[2])

3) Patch the binary file, based on the solution found in item 2.

Both [1] and [28] developed their solutions based on these steps. The most
important difference between them is the granularity considered when selecting
a candidate to be placed in the SPM. In [1], they work with a fine-grain block
boundary, with minimum size equal to one single instruction, whereas in [28] only
BB and procedures are considered as possible candidates. Unfortunately, these two
works cannot be directly compared because they use different benchmarks, however
both report a significant energy reduction in comparison to a system without SPM.

2.2.3 Associative Memory / Content-Addressable Memory

An associative memory (or Content-Addressable Memory (CAM)) is a type of
memory in which one can search an input data against all values present at the
memory in parallel, that is, it compares the input data with all stored values at
the same time. That is usually used for devices that need very fast search times.
On the other hand, it is a very power hungry type of memory. However, if kept at
smalls sizes (namely 32 to 64 entries), it can be used for low power devices as well.
The general idea of using CAM for caches is to store the tags in a CAM and the
cache blocks in a normal SRAM. That way the tag search can be sped up, giving a
hit rate of a 32-way associative memory, while keeping the power consumption to
lower levels.

In figure 2.3, taken from [32], a basic structure of a CAM used to store the tag part
of a cache entry is shown. As can be seen in the figure, the tag is fed into the CAM
and all lines from the CAM will have the result of the search at the same time. If
there is a match in any of the entries, its output will be driven to ’1’ (high/VCC)
and that can be used to drive the cache line that contains the desired data.

Although using CAM seems like an interesting solution, besides the fact that size
must be kept to a limit, it is also important to mention that CAM memory cells
are different from SRAM memory cells at the transistor level, therefore needing
special design, making it not possible to use standard memory libraries during the
design of the circuit.

In order to cope with the CAM size as the limiting factor, the author on [30]
proposes to split the tag memory into two different memories: a CAM and a
normal SRAM fully associative memory. A different direction was proposed on
[3], in which the idea is to change the CAM cell circuitry to perform serial bit
comparisons in order to save energy. It performs the serial bit comparison only
for the 4 least signficant bits (LSBs), since most of the hits can be determined by
these bits. Then, if it matches, the rest of the comparison is performed in parallel.
Problem with this approach: 25% slower than normal CAM.

In [32], the author employs sub-banking, that is, split the memory in smaller banks,

Evaluation of Cache Architectures for a Low-Power Microcontroller System 13

Chapter 2. Cache Architectures for Low Power (extracted from[2])

Figure 2.3: CAM Tag.

in which only one bank is active at a time, based on the address being requested.
Each sub-bank contains a CAM memory to store the tags and drive the cache lines,
when a hit occurs.

2.2.4 Way-Prediction

In set-associative caches, both the tag arrays and the data arrays are accessed
in parallel (as can be seen in figure 2.4, taken from [20]). Thus, on a n-way
set associative cache, n ways are accessed in parallel and then, based on the
tag comparison, the data from the correct way is selected to be the output.
However, in every hit, only one way holds the correct data, therefore the other
n − 1 ways accesses are useless, resulting in wasted energy. The idea is then to
apply mechanisms that allow to predict the way that should be accessed next,
saving the energy of reading from the other ways.

This kind of solution relies on adding extra structures to help with the prediction,
such as extra bits to the Branch Target Buffer (BTB). The big disadvantage of
this type of solution is the extra latency added to the access time when a miss

14 Vinicius Almeida Carlos

Chapter 2. Cache Architectures for Low Power (extracted from[2])

Figure 2.4: Example of 4-way Associative Cache.

prediction happens.

An alternative to way-prediction is to perform serial access to tags and ways,
guaranteeing that only the correct way is accessed at all times. The obvious
problem is the increase of as much as 60% on access time, as depicted in [21].

2.2.4.1 Way-Halting

A similar idea, but with a slightly different take, is way-halting. Given the same
assumption as above, the intention now is, instead of predicting the way, to avoid
accessing the wrong ways. This method was proposed on [31].

In order to do that, a small fully associative memory is used to determine the ways
that should be accessed. It works in the following way:

The tag bits are split into 2, where the four LSBs are used as address to the fully
associative memory. The rationale behind using the four LSBs is that with those
bits it is possible to determine, most of the times, whether a hit happens or not.
Then the fully associative memory is accessed in parallel with the index decoder.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 15

Chapter 2. Cache Architectures for Low Power (extracted from[2])

Thus, only those ways where there was a hit on the fully associative memory will
actually be accessed, saving the dynamic power that would be used to read from
the other ways.

The interesting advantage over the way-prediction solution is the fact that there
is no extra latency added to the cache access, since the fully associative tag
comparison happens in parallel with index decoding, as depicted on figure 2.5,
taken from [31].

Figure 2.5: Baseline Architecture for Way-Halting Cache

Instead of using CAM, the author implements the fully associative memory using
normal SRAM memory cells.

For a 4-way-8K bytes cache, under the Mediabench, Powerstone and Spec2k
benchmarks, reductions on power consumption ranging from 45% to 60% are
reported.

2.2.5 Indexing / Hashing

As described in [29], a direct-mapped cache has many advantages in comparison
to n-way associative caches. Some of them are listed below:

• Less power consumption per access.

• Less area (only one array of data and tags, no multiplexers).

• Faster access times.

• Easier to implement.

However, the biggest problem with DM caches is the higher miss rate, when
compared to n-way associative caches. This elevated number of misses comes
from the fact that many addresses end up being mapped to the same location
in the cache, resulting in what is called conflict misses. These facts are behind the
motivation for the solution presented in this section.

16 Vinicius Almeida Carlos

Chapter 2. Cache Architectures for Low Power (extracted from[2])

It is important then to understand that the mapping from the main memory address
to the cache address is basically a hashing function. The standard way to realize
this translation between addresses is to take n LSBs from the full address and use
it as the address of the cache line, as can be seen on figure 2.6, taken from [20].

Figure 2.6: Basic Direct-Mapped Cache.

Although very easy to implement, this form of mapping is far from ideal, rendering
many conflicts in the cache. The intention of indexing/hashing is then to change
the access pattern of the memory address by using some hashing functions with
the set of indexes bits. This is the general idea of all hashing/indexing approaches.
What may varies is how the implementation is done and rather or not the hashing
function is dynamically reconfigurable.

On [29] for example, reconfigurable decoders are used. Through prior profiling of
the application, the configuration of the decoders are determined. It is reported an
improvement in the number of conflicts, achieving similar numbers of a 2-way cache.
On [6], a zero-overhead scheme is presented, where the hashing function is nothing
more than a bit-selection function, that is, based also on application profiling, a
heuristic algorithm is used to determine the set of address bits that should be used

Evaluation of Cache Architectures for a Low-Power Microcontroller System 17

Chapter 2. Cache Architectures for Low Power (extracted from[2])

to address the cache. In this specific work, it is reported more improvements for
data than to instruction caches. The bit-selection function is called a zero-overhead
solution because no extra hardware is needed to perform the hashing function,
differently from the XOR-based functions, in which the hashing function relies on
XOR gates placed between the main memory address and the cache address. A
similar solution to [6], but with an optimal algorithm, is described on [19]. On [27],
the algorithm presented on [19] is adapted to XOR-based functions.

2.2.6 Tag Omission

Because caches are much smaller memories than the main memory, it cannot
hold all data (or instructions) at all time. That is why every cache line is also
composed by the tag, a portion of the address of the original location of the data
in the main memory, to allow a checking to be performed every time an access
to the cache happens, making sure that the right data is being fetched from the
cache. Nevertheless, tag checking during every cache access contributes to the total
amount of power consumed by caches. This is the motivation behind the solutions
presented in this section. Note that this is somehow intertwined with the idea of
loop caches, which are tagless caches, and scratchpads. The key difference is that
loop caches and scratchpads do not even have tag arrays in their architecture, while
the aim of the solutions presented in this section is to minimize the access to the
existent tag arrays of the caches.

The first idea, as presented in [17], is based on the concepts of intrablock and
interblock flows. Assume that two instructions are fetched from the cache. If
both instructions fall into the same cache line (or intrablock), then for the second
instruction it is not necessary to perform tag comparison because it is certain that
it will be a hit. Therefore only for interblock flows the tag check must be performed.

In [8] this notion was extended to be able to handle a larger window of memory
accesses without the need to check tags. The basic idea behind this approach is
the fact that the state of caches changes only when there is a miss, which means
that new instructions must be fetched from the main memory. Thus, between
two misses, the state of the cache remains stable. Therefore if an instruction is
accessed repeatedly during this stable-time (as called by the author of the paper),
only at the first reference a tag check has to be performed. To be able to detect
the conditions for not performing unnecessary tag checks, the cache proposed in
the paper, called History-Based Tag-Comparison (HBTC) cache, records execution
footprints in an extended Branch Target Buffer (BTB) [8]. It is important to note
that the HBTC cache works only with direct-mapped instruction caches.

For a DM cache with 16KB - 32 bytes on the cache line a reduction of about
90% on tag comparisons was reported, leading to about 15% reduction on energy
consumption.

18 Vinicius Almeida Carlos

Chapter 2. Cache Architectures for Low Power (extracted from[2])

The drawbacks of this solution are the need of a BTB in the microprocessor and
the fact that extra cycles are added to the cache access when an invalid footprint
is found.

2.2.7 Phased Caches (new)

In a regular direct-mapped cache the tag and data lookup are performed at the
same time, even when internally the tag and data arrays are two separate memory
elements as it is defined in the CACTI model [14] and portrayed on figure 2.7.

Figure 2.7: Cache memory internal architecture (taken from [14]).

The idea behind a phased cache is to split up the tag and data lookups into two
different points in time, in that manner the tag lookup is performed prior to the
data lookup which is interesting in terms of energy consumption because when
there is a miss, that is, a match was not found in the tag array then there is no
need to access the data array, therefore saving energy. The obvious drawback of
this design is the fact that the latency of a cache access increases dramatically.
For instance if both tag and data arrays are accessed synchronously then two clock
cycles are needed to perform one read.

Another important issue regarding phased caches is how the memory is internally
organized. On one hand the phased cache can be implemented with two different
memories for the tag and the data arrays, or it can be designed as a single
entity with phased accesses. By using two different memories the design becomes

Evaluation of Cache Architectures for a Low-Power Microcontroller System 19

Chapter 2. Cache Architectures for Low Power (extracted from[2])

easier because off-the-shelf SRAM components can be used, however, a specifically
designed memory unit is better optimized in terms of latency and particularly
in terms of energy consumption because of the internal logic that can be shared
between the tag and data arrays.

20 Vinicius Almeida Carlos

Chapter 3

Method

In this chapter, the preparations and the methodology employed to perform the
desired experiments are described. Firstly, the high level simulation environment
developed in Python, along with the new memory systems being evaluated, is
described. Later, the details related to the SystemVerilog implementation are
provided. Finally, the experiments realized in the scope of this project are
presented.

3.1 High Level Simulations

3.1.1 Architectures Selected

In [2] the direct-mapped cache with indexing and the scratchpad memory were
evaluated in a high level simulation environment. In this work new cache
architectures are added to the simulation environment and the rationale behind
such decisions are presented below. (For a full explanation of how the indexing
solution works, please refer to [2]).

It is important to mention that the same requirements and constraints applied to
[2] when choosing which architectures should be evaluated were also taken into
consideration this time. These requirements and constraints, quoted from [2], are:

• The internal signals of the microprocessor are not visible to the memory
system, all that is available are the addresses and data (instructions) that
come through the bus.

• The whole system should work under the same system clock.

• Preferably, no processor stalling should happen.

21

Chapter 3. Method

• Area and current leakage should be kept to a minimum.

• The microprocessor does not have a Branch Target Buffer (BTB).

• Given the fact that a proprietary compiler is being used, no compiler
techniques can be employed.

3.1.1.1 Direct-mapped, two-way and four-way phased caches

As explained before, the basic concept of a phased cache is the separation between
the tag and data lookups. The realization that the microcontroller system being
evaluated in this master thesis could benefit from a phased cache comes from the
observation of how the memory system is connected to the microcontroller. The
memory system communicates with a microcontroller through an AHB-Lite bus,
using pipelined transactions, which means that each transaction is performed in
two different steps composed of an address phase and a data phase. An example
of such transaction can be seen in the timing diagram in figure 3.1.

Figure 3.1: Pipelined memory access (taken from [24]).

The idea is then to use the address phase to perform the tag lookup, hence being
able to determine whether a hit occurred before it actually needs the data to be
available, which is in the next clock cycle. Thus, by the beginning of the data
phase it is already known whether the instruction should be fetched from the Flash
memory or the data array.

Taking advantage of the fact that the data array is not accessed all the time, the
idea of evaluating also the two-way and four-way set associative caches came into
being. While in [2] and [5] these two solutions were deemed worse than the direct-
mapped version, it was considered worth investigating how they would perform
when implemented as phased caches.

As with the other caches evaluated, each line of each way stores only one word (in
other words, cache block size: 32 bits).

22 Vinicius Almeida Carlos

Chapter 3. Method

3.1.1.2 Way-halting

The other cache architecture being evaluated is the Way-halting solution presented
in [31]. It has a similar goal as the phased cache, but it is implemented in a
completely different way. It also splits the memory access in two different stages,
so that in the first phase it performs a parallel lookup in all cache lines using the
least significant bits of the address, then only for the ways in which there was
a match the final lookup is performed. As explained in section 2.2.4.1 and fully
described in [31], the main benefit of this solution comes from avoiding accessing
the ways that are known not to hold the desired data.

To better understand how this works and why it is an attractive idea, it is
interesting to look at an example (also taken from [31]). In figure 3.2, a snapshot
of an access to a given address in the cache is shown. In this scenario, the tag has
21 bits (the addresses are represented in hexadecimal).

Figure 3.2: Snapshot of access to a way-halting cache (taken from [31]).

In the way-halting architecture described in [31] the 4 LSBs, stored in the fully-
associative memory called halt-array, are compared simultaneously in all ways. For
the given example, that would result in the following comparisons, in which the 4
LSBs of the desired tag (00007216) are 00102:

• 00102 == 01102? No, hence way0 halted.

• 00102 == 01002? No, hence way1 halted as well.

• 00102 == 00102? Yes, way2 not halted.

• 00102 == 00112? No, way3 also halted.

Therefore, instead of fully accessing 4 ways, only one way was accessed plus the
halt-arrays.

The way-halting cache implemented in this project has the following configuration:

• It is a 4-way set associative cache.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 23

Chapter 3. Method

• Each line in each way stores only one word (32 bits).

• It uses the 4 least significant bits (LSB) in the way-halting array.

• It uses the Random Replacement policy.

This setup is a mixture between the configuration proposed by [31] and what is
possible to implement in the target microcontroller system. The main restriction
applied to the original architecture is the fact that the cache line is composed of
only one word, instead of 8 in the original one. This constraint is due to the fact
that 32 bits is the width of the connection between the microcontroller and the
Flash memory and that in order to fetch more words to put in the cache, more
clock cycles would be needed, which is an unwanted situation.

3.1.2 Simulation environment (contains text from[2])

For clarity, the system being simulated is shown again on figure 3.3.

Figure 3.3: Simulated system.

To perform the desired evaluations, a high-level simulation environment that
mimics the accesses to the memory system was developed in Python [26]. This

24 Vinicius Almeida Carlos

Chapter 3. Method

environment was used basically to calculate the total energy consumption for an
execution of a given program trace. A basic overview of the environment can
be seen in the class diagram provided in figure 3.4 (new cache architectures not
included in the diagram).

Figure 3.4: Simulation Environment Class Diagram.

In order for a simulation to happen, the following elements should be present:

• Simulation object.

• Program trace.

• Memory System.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 25

Chapter 3. Method

The simulation object is in control of the execution. It sets up the system with
the desired parameters and runs the simulation. The program trace acts as the
processor, providing the addresses of instructions that should be fetched from
memory. The memory system is the core of the environment, since it is its behavior
that the simulation is trying to reproduce. Its basic functionality is implemented
in the Read method.

A memory system can be composed of many memory elements, thus being able
to represent different hardware configurations. For example, to simulate a system
composed of a Flash memory and DM cache, the objects DMCache and FlashMemory
can be combined to form a memory system of the type CachedMemorySystem.

It is very important to mention that, although a high-level simulation environment,
such as the one used here, increases dramatically the time spent on the evaluation
phase (not only because it is faster to run, but also because it is quicker to
implement than a more detailed version written in Verilog, for example), it hides
essential issues that must not be overlooked when it comes to actual hardware
implementation.

For example, for the CachedMemorySystem, the Read method is implemented as
presented below.

def Read(self, address):

hit = self.dm_cache.Read(address)
self.cache_energy += self.dm_cache.energy_per_read
if hit == 1:

return
else:

self.miss_count += 1
self.cache_energy += self.dm_cache.energy_per_write
self.Flash_energy += self.Flash.energy_per_read

What this method is modeling is the following:

1. The DM cache checks whether the contents of address is in the cache. If it
is, it adds the energy spent reading from cache and no access to the Flash
memory is made.

2. If there is a miss, then data must be read from the Flash memory and written
into the cache. The energy consumption of both accesses is computed.

What is implicitly assumed in this scenario is the fact that the entire reading
operation fits the requirements described in section 3.1.1, in particular those
regarding time, which are reproduced below:

• The whole system should work under the same system clock.

26 Vinicius Almeida Carlos

Chapter 3. Method

• Preferably, no processor stalling should happen.

Therefore, before proceeding any further, an analysis of whether that would be
possible to be implemented in hardware was made.

The very same concerns were observed when implementing the new cache architec-
tures being evaluated in this master thesis. Thus, the following memory systems
classes were added to the simulation environment: PhasedDMCacheMemorySystem,
PhasedCacheMemorySystem (play the role of 2-way and 4-way phased caches) and
WayHaltingCacheMemorySystem.

3.2 SystemVerilog Implementation

On [2], the direct-mapped cache with indexing solution was presented and evaluated
using the simulation environment described in the previous section. To further
validate the findings obtained previously, a register-transfer level implementation
of the solution was performed in the scope of this master thesis up to the point
in which it was possible to run power simulations in the developed cache system.
However, instead of implementing the regular direct-mapped cache controller, it
was decided, based on early findings on the high level simulations, that the phased
cache version would be implemented. As it will become clear later on, when the
results are presented, the gains obtained by using the phased cache are somewhat
modest, however, from the designer perspective, implementing the phased cache
version is a bit more challenging, therefore more interesting for the purpose of a
design exercise.

This section presents the design steps employed in developing the direct-mapped
cache with indexing controller along with the explanation and requirements that
guided such implementation. It also describes briefly the set of tools utilized in the
process.

3.2.1 Design of the Cache Controller

A block diagram of the cache controller with its main elements and connections
to the other parts of the system is shown on figure 3.5. The main task of a cache
controller is to coordinate the accesses to the given memory elements presented in
the system, such as the Flash memory and SRAM memory. Therefore, a critical
issue in the design of such a cache controller is to determine which types of memories
must be used and the interface between these components.

Because the ultimate goal of Nordic Semiconductor is to include a cache system into
one of their microcontroller systems, a fair amount of time of the design process
was dedicated to studying existent components and interfaces that would need to

Evaluation of Cache Architectures for a Low-Power Microcontroller System 27

Chapter 3. Method

Figure 3.5: Block diagram of the cache system.

be part of the cache system in case it got integrated to Nordic’s System-on-Chip.
However, after careful consideration, it was opted to isolate the design of the cache
system in order to facilitate and speed up the evaluation of its energy efficiency.
Thus, a simplified interface to the Non-volatile Memory (NVM) was chosen, leaving
more room for the decision of which type of memory and interface should be used
for the tag array and the data array, which is how the memory is organized on the
phased cache.

3.2.1.1 Defining the Memory System

The first design question that needed to be answered was whether to use a single
port or a dual-port memory. However, it is clear to see that, given the pipelined
nature of the memory accesses, the best option was to use a dual-port memory.

The next issue was to decide whether an asynchronous or synchronous RAM should
be used for the tag array. In order to better understand this challenge, it is
interesting to analyze again the timing diagram, shown on figure 3.1, of a basic
memory transfer between the microcontroller and the memory system. It is in the
address phase (the clock cycle in which the address is setup), that the tag array

28 Vinicius Almeida Carlos

Chapter 3. Method

must be accessed. Nevertheless, it is only some time after the positive edge of
the clock signal that the address signal becomes stable, leaving then two ways to
access the tag memory: asynchronously, which means that after the address signal
becomes stable, it will take n nanoseconds for the contents of the tag array to
be available, where n corresponds to the memory reading delay, or synchronously,
using then the negative edge to synchronize the access to the tag array.

In this particular case, there are two main issues that should be considered
when choosing between these two solutions: timing and power consumption.
An asynchronous RAM is by design more power-hungry than its synchronous
counterpart, however, by using an asynchronous RAM, the access to the tag array
can start before the negative edge of the clock. That results in a less stringent
timing requirement, because not only the tag memory should be accessed during
the address phase but also the hit signal must be asserted before the end of the clock
cycle, which means comparing the output from the tag array with the tag bits from
the address signal. Therefore, with the goal of keeping the timing requirement less
tight, an investigation of whether an asynchronous RAM would have acceptable
power consumption levels was conducted.

Power estimation for Asynchronous RAM

Asynchronous RAMs are not as common as synchronous ones mainly due to their
power efficiency, as previously explained. For example, at Nordic Semiconductor
there are no asynchronous RAM libraries available, which means no datasheet
information. Therefore a procedure was envisioned in order to estimate the power
consumption of an asynchronous RAM. It consisted of the following steps:

• Implementing in Verilog an asynchronous RAM module;

• Synthesizing this module in order to get average power consumption values;

• Synthesizing the SRAM models provided by the Artisan tool to get their
average power consumption values;

• Defining a relationship between the values obtained through synthesis and
the ones from the datasheet from the Artisan tool in order to obtain the
energy per read and per write values of the asynchronous RAM.

A different approach to find the energy per operation values would be using the
same methodology applied to obtain the power consumption values of the cache
system, that will be described later in the text. However, at that time, this
procedure was not entirely clear and therefore, in order to speed up the design
phase, it was decided in favor of the technique described in this section.

The values obtained with such method, which will be disclosed in the experiments
section, were deemed satisfactory at that time, hence validating the use of the

Evaluation of Cache Architectures for a Low-Power Microcontroller System 29

Chapter 3. Method

asynchronous RAM for the tag array.

3.2.1.2 Detailed Design Description

The block diagram of the cache controller was already shown on figure 3.5 in the
previous section and figure 3.6 provides a detailed view of its interface.

Each one of the modules connected to the cache controller core have their signals
described in this figure. On column Sync there is the information of whether the
signal is synchronized to the ahbHclk or is an asynchronous one. Note also that
some signals are parametrized and these parameters depend basically on the size of
the memory connected to the controller (NB TAG for example means the number
of bits in the tag).

Timing requirements

As explained before, the Hit signal must be determined before the end of the
AHB-Lite address phase. This means that the SRAMaddrR, SRAMceTag and
SRAMreTagR signals into the SRAM must be ready early enough for a reading to
be realized at the tag memory before the end of the clock cycle.

This behavior is summarized in figure 3.7.

30 Vinicius Almeida Carlos

Chapter 3. Method

Figure 3.6: Cache controller interface.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 31

Chapter 3. Method

212019181716151413121110987654321

SRAMweTagW

T3T2SRAMtagOutW

SRAMweDataW

D3D2SRAMdataOutW

C3C2SRAMaddrW

D2D1SRAMdataInR

Hit

T5XXXT4XXXT3XXXT2XXXT1XXXSRAMtagInR

C5C4C3C2C1SRAMaddrR

A5A4A3A2A1ahbHAddr

ahbHClk

tRtRtRtR

qmhd

wpzlxgyc

ojfb

niea

87654321

Page 1 of 1

03.06.2013file:///C:/Users/vica/Documents/timing_diagram2.svg

Figure 3.7: Timing diagram for cache controller.

In this figure, all possible scenarios while fetching an instruction from memory are
depicted. In the following there is a brief description of each case:

- Hit occurred (time-steps: 2 to 8): note that the cache address (SRAMaddrR)
was determined as soon as the AHB address signal (ahbHAddr) was stable
and that lead to the reading of the tag array which was compared to the
current address. Since a hit happened, the Hit signal was asserted before the
end of the first clock cycle. This signal enabled the reading from the data
array from the cache and this data is put on SRAMdataInR.

- Miss after a Hit (time-steps: 5 to 12): Hit signal is determined before
the end of clock cycle, which in this case represents a miss. That enables
the signals to the NVM memory which fetches the correct instruction.
As the data is fetched, the SRAM is prepared to update its contents, as
can be seen on signals SRAMweDataW, SRAMweTagW and SRAMaddrW.
SRAMdataOutW and SRAMtagOutW become ready and everything is
written into the SRAM at the end of the clock cycle (time-step 12).

- Miss after Miss (time-steps: 13 to 20): same as above.

- Hit after Miss (time-steps: 17 to 20): On this case the data must be read
from the data array on the edge of the clock cycle at the end of time-step 16,

32 Vinicius Almeida Carlos

Chapter 3. Method

while at the same time data must be written into the data array, therefore
demanding a dual-port SRAM memory.

Cache initialization

Before reset is performed, the cache contains invalid information. That is an
issue particularly regarding the valid bit, a bit present in every cache line
informing whether or not that cache line contains useful data. In this case, a
register file is used to store this valid bit, therefore a basic reset is all that is
needed to initialize the cache.

Indexing configuration

The cache controller provides the possibility of configuring the mapping
between the address bits (coming from the AHB-Lite bus) and the address
bits used to select the cache line. For a thorough explanation on how
this works, refer to [2]. In order to perform this configuration, the input
indexingConfig must be used, as explained in figure 3.6.

Read Operation

As mentioned before, as far as the instruction cache is concerned, only read
operations must be handled by the cache controller. Besides the AHB-Lite
bus signals, this cache controller also features a signal called Hit, that goes
high as soon as the data is read and tag-compared, which means that by the
end of the address phase of the AHB-Lite bus, the read will be performed
and the Hit signal will be set as quickly as the read operation at the SRAM
happens. This signal can be used to control a second level memory, such as
a Flash memory, for example, to determine whether or not a read should be
performed in this second level memory.

3.2.1.3 Functional Verification

The verification framework is displayed on 3.8. The first thing to notice
about it is the fact that the device under test (DUT) is not actually the
cache controller, but what is called a cache system (DMCacheSystem in the
block diagram), which is a combination of the cache controller and the volatile
memory elements (namely the valid bit, tag and data arrays). The reason
for that is that, while the design efforts concentrate on the logic of the cache
controller, the controller is nothing more than an orchestrator for the memory

Evaluation of Cache Architectures for a Low-Power Microcontroller System 33

Chapter 3. Method

elements. Moreover, later on, when carrying out the power simulations, the
actual memory elements must be present in order to obtain relevant energy
consumption values and having the test bench set up this way facilitates this
task. It is also important to bring attention to the fact that the NVM and
the microcontroller are part of the test bench and are ultimately just mockup
implementations, behaving as the real ones would.

DMCacheSystem

testAssertions

test_DMCacheController

ClockGenerator

Extra signals

testDriver_DMCacheController

AHB-Lite Bus

DMCacheController

SRAM Memories

TV1

TV2

TVn

Figure 3.8: Verification framework.

Other elements present in this framework, as can be seen in the figure, are
the test driver, which is responsible for generating the relevant signals to the
DUT, a separate, configurable clock generator and the test vectors (called
TV1, TV2 and TVn in the figure), which corresponds to the various scenarios
being tested.

The test vectors provide configuration parameters to the test bench in order
to verify as many scenarios as possible. There are in total 32 test vectors.
And as it is the case with the high level simulations, these test vectors go
through the trace file corresponding to the execution of the Bluetooth Low
Energy application and check the contents of each memory element at every
clock cycle. It also counts the number of hits that happened during such

34 Vinicius Almeida Carlos

Chapter 3. Method

execution and compare to the expected results.

In order to run all these test cases, the simulation environment provided by
Nordic Semiconductor is used. That is comprised of a set a scripts responsible
for coordinating the test execution and generating the simulation output
reports.

3.2.1.4 Synthesis

As for the verification, the tools and set of template scripts provided by Nordic
Semiconductor were used in order to synthesize the cache system. Both logic
and memory elements are synthesized to 180 nm technology.

3.2.1.5 Power Simulations

In order to perform the desired power simulations, the tool Primetime PX
from Synopsys [25] was used.

The tool allows for different types of power analysis, such as average or time-
based power analysis. Different files format are also accepted as input. The
basic power analysis flow employed in this project is portrayed in figure 3.9.

Figure 3.9: Power Analysis Flow (taken from [25]).

Evaluation of Cache Architectures for a Low-Power Microcontroller System 35

Chapter 3. Method

According to [25], “the VCD-based analysis is extremely accurate since all
the factors contributing to power consumption are supported in an accurate
form”. The VCD files used in this flow were obtained by running the
experiments described later on in section 3.3.2.

In this analysis mode, the power report outputs the average value of three
components of power dissipation, namely: leakage, switching and internal
power. A simple but clear explanation of these three components is provided
on [25]. The power report also presents the average power for each hierarchical
instance inside the module, such as the cache controller core, the AHB-Lite
slave, the tag array, the data array and so on.

It is important to mention that the parasitic information, as shown as part
of the power analysis flow, was not present when the power simulations were
performed. In order to get the parasitic information, it would be necessary to
go up to the layout level of the cache system and this project stopped at the
gate-level netlist. While this means less accuracy, in terms of final results,
previous reports from other cases at Nordic Semiconductor showed that the
variation in the outcome is related mostly to the switching power, which in
turn does not represent a great part of the total power consumption, as will
be clear when the results are presented.

3.3 Experiments

3.3.1 High-level Simulations

For this project, the memory systems modeled and evaluated on the
simulation environment described previously are listed below. Between
brackets is the name of the class used to model each scenario.

– Flash memory only. Used for comparison against all other scenarios.
[FlashMemorySystem]

– Flash memory + DM cache (with sizes 128, 256, 512, 1K, 2K, 4K, 8K,
16K and 32K bytes). [CachedMemorySystem].

– Flash memory + DM cache with indexing (with sizes 128, 256, 512, 1K,
2K, 4K, 8K, 16K and 32K bytes). [CachedMemorySystem].

– Flash memory + DM phased cache (with sizes 128, 256, 512, 1K, 2K,
4K, 8K, 16K and 32K bytes). [PhasedDMCacheMemorySystem].

– Flash memory + DM phased cache with indexing (with sizes 128, 256,
512, 1K, 2K, 4K, 8K, 16K and 32K bytes). [PhasedDMCacheMemorySystem].

36 Vinicius Almeida Carlos

Chapter 3. Method

– Flash memory + 2-way set associative phased cache (with sizes 256, 512,
1K, 2K, 4K, 8K, 16K, 32K and 64K bytes). [PhasedCacheMemorySystem].

– Flash memory + 4-way set associative phased cache (with sizes 512, 1K,
2K, 4K, 8K, 16K, 32K, 64K and 128K bytes). [PhasedCacheMemorySystem].

– Flash memory + 4-way halting (with sizes 512, 1K, 2K, 4K, 8K and 16K
bytes). [WayHaltingCacheMemorySystem].

All the relevant parameters used throughout the simulations are listed on
tables 3.1, 3.2 and 3.3 (please note that E/R means Energy per Read and
E/W means Energy per Write in these tables). The parameters related to
the Flash memory were provided by Nordic Semiconductor, while the cache
parameters were obtained as explained in the following section.

Parameter Value
Clock 16 MHz

Flash size 256 kB
Flash energy per read 0.500 nJ
Flash leakage power 0 W

Flash access time 30 ns

Table 3.1: Main parameters used during simulations.

Size (bytes) E/R Tag E/W Tag E/R Data E/W Data E/R Line E/W Line
128 0.0084 0.0054 0.0114 0.0072 0.0126 0.0078
256 0.009 0.0066 0.012 0.0084 0.0138 0.0096
512 0.0102 0.0078 0.0144 0.0114 0.0156 0.0126

1024 0.0132 0.0114 0.0186 0.0174 0.0204 0.0192
2048 0.0144 0.0156 0.0276 0.0342 0.0312 0.039
4096 0.021 0.0216 0.0474 0.054 0.054 0.0612

Table 3.2: Register File memory parameters (energy per access in nJ).

3.3.1.1 Energy Models

As presented in [2], the Artisan tool was used to provide the energy per
read/write values for the high level simulations. However, for this master
thesis different values were obtained. The first reason for that is that, as
explained before, there is the need to use a dual-port memory instead of single
port, which was the type utilized in [2]. Moreover, in [2] only one type of
technology was used, which was the Register File memory type. In this master
thesis a different type of technology, a SRAM memory type, was employed

Evaluation of Cache Architectures for a Low-Power Microcontroller System 37

Chapter 3. Method

Size (bytes) E/R Tag E/W Tag E/R Data E/W Data E/R Line E/W Line
128 0.0282 0.0312 0.06 0.0702 0.0768 0.09
256 0.027 0.03 0.06 0.0708 0.0756 0.0894
512 0.0258 0.0288 0.0612 0.072 0.075 0.0888

1024 0.0258 0.0282 0.063 0.075 0.075 0.09
2048 0.0264 0.0288 0.066 0.0804 0.0774 0.0948
4096 0.0294 0.0324 0.0726 0.0906 0.0828 0.1044
8192 0.0336 0.0372 0.084 0.111 0.0936 0.1248

16384 0.0342 0.0378 0.114 0.1416 0.1272 0.159
32768 0.0366 0.039 0.1764 0.2058 0.1914 0.2238

Table 3.3: SRAM parameters (energy per access in nJ).

in order to gauge the impact it would have in the cache system. These two
types of memories differ in their internal organization, mainly the storage
element. In a Register File memory type, the basic storage element is a D
flip-flop, while in the other it is the SRAM cell. (A word of caution is advised
here to avoid further confusion: in terms of concept, the memory employed
in the cache system is called throughout the entire text as an SRAM, such as
in the introduction section. However, this conceptual SRAM memory can be
implemented in different ways and the two ways cited above are connected to
the names the Artisan tool gives to them, which is a Register File memory
and a SRAM memory, as just explained).

Yet another change made regarding [2] was in the energy values of memories
in which the size was larger than the maximum allowed by the Artisan tool. In
[2] a polynomial approximation was used to estimate the energy values of the
memories of size larger than 4K bytes. This approximation is disregarded in
this project and instead new values were obtained by implementing in Verilog
memories of a larger size by combining two or more of the 4K bytes memories
and getting average power values after synthesizing them. It turned out that
these values were much higher than the ones used in [2], and in fact they
were too high to be used at all, hence they were dropped altogether, leaving
only the datasheet values obtained with the Artisan tool. Nevertheless, it is
worth noting that the SRAM version of the Artisan tool is able to generate
larger memories, up to 32K bytes.

Due to the phased cache implementation, energy values were obtained for
the different tag and data arrays. Therefore, for each memory type there are
values for the tag (with varying number of bits), data (always 32 bits) and
full-line, which combines tag and data into one line.

Again, for these high level simulations, as in [2] the datasheet values were
divided by 2, following the advice from Nordic Semiconductor.

38 Vinicius Almeida Carlos

Chapter 3. Method

The final values for energy per access can be seen on tables 3.2 and 3.3.

3.3.1.2 Calculating Energy Consumption

The energy consumption calculation depends on the memory system being
evaluated. For the memory systems with cache, it is necessary to know the
number of hits and misses. For every miss in the cache, data must be retrieved
from the Flash memory and then written in the cache. The calculation is
unique for each architecture modeled.

The equations used in these different setups are:

DM cache:

FlashEnergyConsumption = NumberOfMisses ∗ FlashEnergyPerRead

CacheEnergyConsumption =
NumberOfMisses ∗ (CacheEnergyPerRead + CacheEnergyPerWrite) +

NumberOfHits ∗ CacheEnergyPerRead

TotalEnergyConsumption =
FlashEnergyConsumption + CacheEnergyConsumption

Phased DM cache:

FlashEnergyConsumption = NumberOfMisses ∗ FlashEnergyPerRead

CacheEnergyConsumption =
NumberOfMisses ∗ (CacheEnergyPerReadTag +

CacheEnergyPerWrite) + NumberOfHits ∗
(CacheEnergyPerReadTag + CacheEnergyPerReadData)

TotalEnergyConsumption =
FlashEnergyConsumption + CacheEnergyConsumption

Phased n-way cache:

FlashEnergyConsumption = NumberOfMisses ∗ FlashEnergyPerRead

CacheEnergyConsumption =
NumberOfMisses ∗ (CacheEnergyPerReadTag ∗ NumberOfWays +

CacheEnergyPerWrite) +NumberOfHits ∗ (CacheEnergyPerReadTag ∗
NumberOfWays + CacheEnergyPerReadData)

TotalEnergyConsumption =
FlashEnergyConsumption + CacheEnergyConsumption

Evaluation of Cache Architectures for a Low-Power Microcontroller System 39

Chapter 3. Method

Way-halting:

FlashEnergyConsumption = NumberOfMisses ∗ FlashEnergyPerRead

CacheEnergyConsumption =
[(NumberOfWays − NumberOfWaysHalted) ∗ CacheEnergyPerRead +
EnergyPerReadHaltArray ∗ NumberOfWays] ∗ (NumberOfMisses +

NumberOfHits) + NumberOfMisses ∗ (CacheEnergyPerWrite +
EnergyPerWriteHaltArray)
TotalEnergyConsumption =

FlashEnergyConsumption + CacheEnergyConsumption

It is important to notice that there is no factor for static power consumption
in the equations above. That is the case because the values obtained for
energy per read and write for the memories evaluated already include this
component. Furthermore, the n-way set associative does not include the
energy dissipated in the multiplexer responsible to select the correct way
when a hit happens.

3.3.1.3 Benchmark

For this project, a set of applications was provided by Nordic Semiconductor.
They are three in total and each one of them uses a different wireless
communication protocol. The first one of them is a Bluetooth Low Energy
(BLE) application, running a heart-rate monitor profile, which is an example
application used in the Bluetooth Software Development Kits available at
Nordic Semiconductor. The second and third ones are sample applications
using the protocols ANT and Gazelle (a Nordic Semiconductor proprietary
wireless protocol) to make the microcontroller communicate with a wireless
device.

3.3.2 SystemVerilog

The main purpose of the experiments carried out in the scope of the
SystemVerilog implementation was to measure the power consumption of the
cache system. In order to do that, two types of tests were envisioned: power
simulation test cases and application test cases. Both types are described
below.

Power simulation test cases

In this scenario, a small, controlled test is executed in which the cache system
behavior can be easily observed. These tests go through different phases of

40 Vinicius Almeida Carlos

Chapter 3. Method

activity such as idle, cache hits in sequence, cache misses in sequence and
normal operation, which is basically hits and misses spread out randomly
over time. These tests are much quicker to run than the application tasks
(minutes versus hours) and give great insight into the power consumption of
the cache system as a whole. Furthermore, they were also used to determine
the energy per read and energy per write values of the tag and data arrays of
the SystemVerilog implementation. This is how this was done: as explained
before, the power analysis gives the average power consumption of each
module inside the cache system, thus for each phase in the test case, such
as cache hits in sequence, which ultimately represents only read operations,
the power consumption values for each memory element (tag and data) were
obtained and divided by the length of time of such phase (remember that
Power = Energy/Time). The same was applied for the sequence of misses,
which issues writes to the memory every clock cycle. However, due to the
pipelined nature of the accesses, when a miss occurs, in the next clock cycle
a write will occur on both tag and data arrays, but at the same time a read
will take place in the tag array, hence making the final value for energy per
write of the tag array not that straightforward to calculate, which is probably
the cause for the small imprecision mentioned later in section 4.2.1.

Application test cases

These tests represent the final goal of this project in terms of the
SystemVerilog implementation. It measures the power consumption of the
cache system while running the Bluetooth Low Energy application, which is
one of the applications also executed in the high level simulations. These
results are later compared against one another.

The same list of cases is applied to both the application and the power
simulation test cases. Each case varies the following variables: memory
type and memory size. The application test cases also varies the
type of communication with the microcontroller. As explained before,
the microcontroller communicates with the cache system using pipelined
AHB-Lite bus transactions, however, there might be wait states between
transactions. Therefore the application test cases can be of types: pipelined
and with wait states.

For the memory type there are three different options, namely a hand-coded
(HC) Verilog implementation, a Register File library version provided by the
Artisan tool and a SRAM library version also provided by the Artisan tool.
Please note that these options apply only to the data array of the memory
system since the tag array was defined as an asynchronous RAM implemented
in Verilog.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 41

Chapter 3. Method

The memory sizes vary differently according to the type of memory. For both
the hand-coded and the Register File versions the size varies from 128 bytes
to 4096 bytes, while the SRAM version goes up to 16384 bytes.

42 Vinicius Almeida Carlos

Chapter 4

Results

As it is the case with other sections of this master thesis, this part of the text
is again split between the high level simulations results and the SystemVerilog
results. Nevertheless, at the end of this section the two are combined when
a comparison between both results is presented.

The results presented here try to answer the questions raised on the
introduction of this text.

4.1 High Level Simulations

4.1.1 Hit Rates

4.1.1.1 Benefits of the Indexing Solution

One of the limitations of [2] was the fact that only one application was
evaluated in terms of how much improvement could be observed by employing
the indexing solution to a DM cache. For this project, other two applications
were evaluated. The figure 4.1 presents this result in a summarized manner.
In this figure we can observe the percentage of miss reduction obtained by
using the indexing solution. The results vary greatly depending on the cache
size and application, as expected, since this solution is completely dependent
on the mapping from the main memory address and the cache addresses.
In general terms it presents only modest improvements, ranging from 0%
to around 9% for caches of 8192 bytes. For the Gazelle application the
improvements cease at the size of 4096 bytes, that is due to the fact that this
is a small application in which its working set can entirely fit into the cache,
no matter which mapping is used. Nevertheless, an outstanding improvement

43

Chapter 4. Results

can be observed for both the BLE and ANT applications, reaching the peak
of almost 60% for the ANT application at cache size of 16384 bytes. This
is a clear indication that while no guarantees can be made regarding miss
reduction, given the basic nature of the implementation, it is definitely worth
trying to apply such technique.

0

10

20

30

40

50

60

128 256 512 1024 2048 4096 8192 16384 32768 65536

P
e

rc
e

n
ta

ge

Size (bytes)

Miss Reduction Percentage
All Applications

ANT BLE Gazelle

Figure 4.1: Miss reduction comparison.

4.1.1.2 Hits and Misses Comparison

The hit rate and miss rate of caches are extensively used to measure cache
performance. It basically represents how successful a cache system is in
avoiding accesses to the lower memory levels.

In the following figures, the results comparing all cache implementations
against the set of applications available are presented. It is important to note
that not all cache architectures can be implemented in all possible sizes. That
restriction is in place because of what have already been explained before in
section 3.3.1.1, that is, there are limits to the size of a single memory array.
Thus, for instance, a 2-way set associative cache has as minimum size 256
bytes, because each way must be at least 128 bytes, which is the minimum
size of a single memory array that can be generated by the Artisan tool. It
is also worth mentioning that the sizes present in the X axis of each graph
is normalized to the number of words that a cache can store. For example, a
DM cache of 512 bytes, can store 128 words, which is the same amount of a

44 Vinicius Almeida Carlos

Chapter 4. Results

2-way set associative of 512 bytes (composed of two ways of 256 bytes). The
final size of each cache is ultimately different, which is relevant when looking
at the area footprint of each cache architecture. Furthermore, some of the
cache architectures were intentionally not implemented in all sizes, such as
the way-halting cache architecture. The reason for that will become apparent
when analyzing its results more closely in the following sections.

In figure 4.2 we see the number of hits for the ANT application. It is
interesting to note that the DM cache with indexing follows closely the
performance of the 2-way and 4-way caches up to the size of (even slightly
better at some points). Then it is outperformed in the next two cache sizes,
but gets close again at the size of 16384 bytes, which is when, as observed in
the previous section, the indexing solution provides a big boost in the number
of hits. At larger sizes the different basically disappears because the cache is
large enough to hold most of the application working set.

0

50000

100000

150000

200000

250000

300000

350000

400000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
b

e
r

H
it

s

Size (bytes)

Hit Rate Comparison
ANT Application

Direct-mapped Direct-mapped (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 4.2: Hit rate comparison for ANT application.

A similar trend can be observed in figure 4.3, however as the application
working set is significantly larger than the ANT one, the saturation is not
fully observed at the large cache sizes.

On the other hand, for the Gazelle application, shown in figure 4.4, this
saturation occurs even earlier than in the ANT application.

As a general remark, we can note that the hit rate performance of 2-way and
4-way caches are not significantly better than the DM cache with indexing

Evaluation of Cache Architectures for a Low-Power Microcontroller System 45

Chapter 4. Results

0

50000

100000

150000

200000

250000

300000

350000

400000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
ve

r
o

f
H

it
s

Size (bytes)

Hit Rate Comparison
BLE Application

Direct-mapped Cache Direct-mapped Cache (Indexing) Two-way Associative Four-way associative Way-halting

Figure 4.3: Hit rate comparison for BLE application.

(and sometimes are even worse).

A different way to look at the same metric is to analyze the number of misses
on each application. Figures 4.5, 4.6 and 4.7 present these results. By looking
at these graphs it is simpler to see for each cache sizes most of the misses are
actually compulsory ones, that is, misses that will happen independently of
the size of the cache, due to cold start (first time cache is being filled with
instructions).

46 Vinicius Almeida Carlos

Chapter 4. Results

0

50000

100000

150000

200000

250000

300000

350000

400000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
b

e
r

o
f

H
it

s

Size (bytes)

Hit Rate Comparison
Gazelle Application

Direct-mapped Direct-mapped (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 4.4: Hit rate comparison for Gazelle application.

0

50000

100000

150000

200000

250000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
b

e
r

o
f

M
is

se
s

Size (bytes)

Miss Rate Comparison
ANT Application

Direct-mapped Direct-mapped (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 4.5: Miss rate comparison for ANT application.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 47

Chapter 4. Results

0

50000

100000

150000

200000

250000

300000

350000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
b

e
r

o
f

M
is

se
s

Size (bytes)

Miss Rate Comparison
BLE Application

Direct-mapped Direct-mapped (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 4.6: Miss rate comparison for BLE application.

0

50000

100000

150000

200000

250000

300000

128 256 512 1024 2048 4096 8192 16384 32768 65536

N
u

m
b

e
r

o
f

M
is

se
s

Size (bytes)

Miss Rate Comparison
Gazelle Application

Direct-mapped Direct-mapped (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 4.7: Miss rate comparison for Gazelle application.

48 Vinicius Almeida Carlos

Chapter 4. Results

4.1.2 Energy Consumption

4.1.2.1 Way-halting

Later on this section comparisons among all cache architectures will be
presented. However, in order to highlight the results on the Way-
halting implementation, this solution was compared to its normal 4-way
set associative phased cache counterpart. Remember that the way-halting
modeled in this project is also a 4-way cache and therefore, as it can be seen
in the previous section, their hit rates are exactly the same.

In figure 4.8 we can see the comparison between these two cache architectures.
What is displayed in this graph is the improvement that is obtained by using
the way-halting solution instead of a 4-way set associative cache. What
can actually be observed is that the way-halting solution performance is
absolutely worse than the 4-way set associative phased cache, no matter which
application or which cache size is compared.

-25

-20

-15

-10

-5

0

512 1024 2048 4096 8192 16384

P
e

rc
e

n
ta

ge

Size (byte)

Four-way vs Way-halting
Energy Consumption Comparison

ANT BLE Gazelle

Figure 4.8: Way-halting vs 4-way phased cache comparison.

That might seem surprising at a first glance, but it turns out to be a
completely normal result. The problem with this way-halting implementation
is the size of the cache line, which is only one word (32 bits). Thus, when such
line is fetched from memory, no neighbours come along, therefore addresses
with same tags are put in different ways, resulting in less ways being halted.
Remember that at each access to the cache, the 4 LSBs are compared in

Evaluation of Cache Architectures for a Low-Power Microcontroller System 49

Chapter 4. Results

parallel in all ways and only when a mismatch occurs in a given line is that
the particular way where this mismatch happened is halted, meaning that the
way containing the rest of the tag plus the data is not accessed. But because
the principle of locality is not properly explored, given the size of the cache
line, the LSBs of the tag do not vary as much as it would if a larger cache
line was used. In fact, across all simulations scenarios (different applications
and memory sizes), the average number of ways accessed each time is never
lower than 3.75.

What it is interesting to perceive is the fact that the 4-way phased cache
provides more “haltings” than the way-halting cache, due to the split between
the tag and data arrays. Full tags are compared simultaneously, however only
the data array from the way which has a tag matched is accessed.

These findings were obtained early enough to prevent further development
of the way-halting solution. That is mentioned to explain the fact that the
energy consumption of the fully-associative halt tag array existent in the way-
halting architecture was not even considered. To obtain energy models for
such type of memory would require an effort that clearly is not worth it.

4.1.2.2 Phased Caches

One of the questions to be answered by this project is regarding the energy
efficiency of phased caches. In the following figures the results of such analysis
are presented.

As explained before, two different types of memories were used in the high
level simulations: the Register File and SRAM. In figure 4.9 it is shown the
comparison between the normal DM cache and the DM phased cache using
the register file memory.

What is displayed in the figure is the amount of improvement obtained in
terms of energy consumption by using the phased cache instead of the regular
one. As can be seen by the negative values, the phased cache performance
is actually worse than the normal cache. Although this is not an expected
result, there is a reasonable explanation for that. To help understand why
this happened we should look at figure 4.10.

This figure plots the difference in the current values for read and write accesses
to the memory elements present in the DM phased cache memory system and
the one in the regular DM cache. It is worth remembering that the phased
cache memory system is composed of two separate elements: the tag and
data arrays. On the other hand, the normal DM cache memory system is
made of only one array (called here line array) that stores both the tag and
data. The combined size of tag plus data is the same as the full line present

50 Vinicius Almeida Carlos

Chapter 4. Results

-7

-6

-5

-4

-3

-2

-1

0

128 256 512 1024 2048 4096

P
e

rc
e

n
ta

ge

Size (bytes)

Direct-mapped vs DM Phased
Energy Consumption Comparison

ANT BLE Gazelle

Figure 4.9: DM cache and DM phased cache comparison for Register File memory.

in the DM cache, that is, if the tag array stores tags of size equal 5 bits in
the phased cache, then the line array of the normal DM cache stores 37 bits
(32 for the data + 5 for the tag). The data array of the phased cache holds
always 32 bits.

What can be realized from figure 4.10 is the fact that accessing the two
separate arrays from the phased cache is always more energy consuming than
accessing the line array from the DM cache. This is perfectly expected, since
by splitting the line into two different arrays, some overhead are brought
into existence (there two address decoders instead of one, for example).
Nevertheless, this difference is big enough to prevent the phased cache to take
advantage of the fact that the data array is not always accessed. Furthermore,
this difference keeps increasing together with the memory size and so does its
energy inefficiency, as shown in figure 4.9 (as a matter of fact, both figures 4.10
and 4.9 present the same trend).

However in figure 4.11, in which the DM and DM phased cache are
implemented with the SRAM memory, a slightly different result is observed.
In this case, for some sizes of memory, we have an improvement of the phased
DM cache over the normal one. Again the same trend can be detected in the
difference between current values for the two memory arrangements, as shown
in figure 4.12.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 51

Chapter 4. Results

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

128 256 512 1024 2048 4096

C
u

rr
e

n
t

(m
A

)

Size (bytes)

Memory Arragements Comparison

Reads

Writes

Figure 4.10: Difference in current values between phased and normal memory
arrays.

-25

-20

-15

-10

-5

0

5

10

128 256 512 1024 2048 4096 8192 16384 32768

P
e

rc
e

n
ta

ge

Size (bytes)

Direct-mapped vs DM Phased
Energy Consumption Comparison

ANT BLE Gazelle

Figure 4.11: DM cache and DM phased cache comparison for SRAM memory.

52 Vinicius Almeida Carlos

Chapter 4. Results

0

0.005

0.01

0.015

0.02

0.025

0.03

128 256 512 1024 2048 4096 8192 16384 32768

C
u

rr
e

n
t

(m
A

)

Size (bytes)

Memory Arrangements Comparison

Reads

Writes

Figure 4.12: Difference in current values between phased and normal memory
arrays.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 53

Chapter 4. Results

4.1.2.3 Memory Types

As could be seen in the previous section, the type of memory employed in
the memory system affects the outcome of the cache system. In this section
a more detailed analysis of such influence is presented.

In figure 4.13 is plotted the total energy consumption of running the BLE on
a system with a DM cache implemented with the Register File and SRAM
memories. This figure presents a feature that will be a constant in all plots
showing total energy consumption: a target line, in red, named Flash-only
which represents the total amount of energy consumption that would result
if no cache was added to the memory system, hence the “-only” in the name.
This facilitates the observation of whether a cache system would actually
contribute to energy consumption reduction or not.

0

50

100

150

200

250

128 256 512 1024 2048 4096 8192 16384 32768

En
e

rg
y

(u
J)

Size (bytes)

Direct-mapped cache
Total Energy Consumption

Register File Mem SRAM Mem Flash-only

Figure 4.13: Energy consumption of DM cache for different memory types.

As mentioned before, the Register File memory is limited to the size of 4096
bytes and the SRAM to 32768 bytes. It is clear to observe that for all available
sizes of the Register File memory it outperforms the SRAM version. Perhaps
even more interesting is the minimum point that can be spotted in the vertical
bars of the SRAM version. At the size of 16384 bytes this minimum is reached
and for the next size, even though the hit rate increases, as seen in figure 4.3,
the total energy consumption increases as well.

In figure 4.14 a comparison of all memory types for the DM phased cache
running the BLE application is shown. The names of the curves, such RF +
RF, mean the type of memory used for the tag and data arrays respectively.
Here the results from the SystemVerilog and the high level simulations begin
to merge. As explained previously, the design of the phased cache for
SystemVerilog implementation entails the use of a hand-coded Asynchronous
memory for the tag array, and estimations regarding energy consumption of

54 Vinicius Almeida Carlos

Chapter 4. Results

such component were realized prior to the coding phase. Those values were
fed to the high level simulations and are represented in this figure by the
Hand-coded + RF and Hand-coded + SRAM curves. As it will be presented
later, these values were actually greatly underestimated, therefore the values
gathered after running the power simulation experiments were also fed to the
high level simulations, although they were also divided by 2, as the ones from
the datasheet as explained before (they have the word “Measured” between
brackets in the figure).

0

50

100

150

200

250

128 256 512 1024 2048 4096 8192 16384 32768

En
e

rg
y

(u
J)

Size (bytes)

DM Phased Cache
Total Energy Consumption

Hand-coded + RF (Estimated) Hand-coded + SRAM (Estimated) Hand-coded + RF (Measured) Hand-coded + SRAM (Measured)

RF + RF RF + SRAM SRAM + SRAM Flash-only

Figure 4.14: Energy consumption of DM phased cache for different memory types.

After this explanation is quite expected that the values with the word
“Estimated” next to it are quite low and therefore will not take part in the
analysis.

This figure also shows other possible memory arrangements for the tag and
data arrays, such as tag array as a Register File memory and data array as
SRAM (named RF + SRAM in the figure).

As with the regular DM cache, the general observation is that the memory
type greatly influences the results and that using Register File memories seem
more beneficial, although their maximum size is limited.

The same behavior can be seen on 4.15.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 55

Chapter 4. Results

0

100

200

300

400

500

600

512 1024 2048 4096 8192 16384 32768 65536 131072

En
e

rg
y

(u
J)

Size (bytes)

Four-way Associative Cache
Total Energy Consumption

RF + RF RF + SRAM SRAM + SRAM Hand-coded + RF (Measured) Hand-coded + SRAM (Measured) Flash-only

Figure 4.15: Energy consumption of 4-way phased cache for different memory types.

4.1.2.4 All Cache Architectures Compared

So far the analysis focused on specific points of the project. In this section
the results of the comparison of all cache architectures modeled in the high
level simulation environment are presented.

In figure 4.16 the energy consumption values of all cache architectures for the
SRAM memory type are plotted. Although using the Register File memory
results in smaller absolute values, for the sake of comparison the data from
the SRAM memory type was used because larger cache sizes can be modeled
and hence displayed in the graph.

The first interesting observation is the fact that not all cache sizes seem to
be beneficial when it comes to improve energy efficiency, when using the
SRAM memory. Moreover, the 2-way and 4-way have worse performances in
comparison to the DM caches up to the size of 4096 bytes, despite the fact
that their hit rates, for most of the cases, are the same or better than the
ones from the DM cache. From that point on the energy consumption of all
caches (except way-halting) basically evens out. Up to 8192 bytes, the DM
caches with indexing (either phased or normal) offer better energy savings
than the rest. Then at 16384 bytes both the 2-way and 4-way outperfom
the DM caches, which is related to the difference in hit rate that can be
observed in figure 4.3. At 16384 bytes it is also the turning point for all
cache architectures, since it is after this size that energy consumption stops

56 Vinicius Almeida Carlos

Chapter 4. Results

0

50

100

150

200

250

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption of Cache Architectures
BLE Application

Direct-mapped Direct-mapped (Indexing) DM Phased DM Phased (Indexing)

Two-way Associative Four-way Associative Way-halting Flash-only

Figure 4.16: Comparison among all cache architectures using SRAM memory.

decreasing. This happens despite the fact the hit rate keeps increasing (and
there is a significant increase in the hit rate from 8192 to 16384 bytes for all
cache architectures). The explanation for such behavior can be devised after
looking at figure 4.17.

As can be seen in this figure, the energy per read and energy per write
values remain almost constant up to the size of 4096 bytes, increasing ever
so slightly. Nevertheless, after that the growth becomes steeper, having the
biggest change from 16384 to 32768 bytes, exactly at the same point in which
the energy consumption starts to rise again. Therefore what we see here is
the growth in the hit rate being unable to counterbalance the negative effect
of the high increase in the energy per read and write values.

However the same phenomenon is not perceived on figure 4.18 which shows
the comparison among the cache architectures running the BLE application
for the Register File memory. In this case there is a steady decrease in the
energy consumption of all cache architectures as their size grows. But it is
again the case on figure 4.19, for the 4-way phased cache.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 57

Chapter 4. Results

0

0.005

0.01

0.015

0.02

0.025

0.03

128 256

C
u

rr
e

n
t

(m
A

)

0

0.05

0.1

0.15

0.2

0.25

128 256 512 1024 2048 4096 8192 16384 32768

En
e

rg
y

(u
J)

Size (bytes)

Energy Values per Access for SRAM Memory

Read Write

Figure 4.17: Energy values for SRAM memory.

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192 16384

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption of Cache Architectures
BLE Application

Direct-mapped Direct-mapped (Indexing) DM Phased DM Phased (Indexing)

Two-way Associative Four-way Associative Way-halting Flash-only

Figure 4.18: Comparison among all cache architectures using Register File memory.

58 Vinicius Almeida Carlos

Chapter 4. Results

0

50

100

150

200

250

128 256 512 1024 2048 4096 8192 16384

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption of Cache Architectures
ANT Application

Direct-mapped Direct-mapped (Indexing) DM Phased DM Phased (Indexing)

Two-way Associative Four-way Associative Way-halting Flash-only

Figure 4.19: Comparison among all cache architectures using Register File memory.

By comparing the cache architectures it is possible to see that the DM caches
again outperform the others most of the times. That is not the case only for
the caches of size 4096 bytes.

On figure 4.20 the comparisons for the Gazelle application are portrayed. It
is interesting to note how much energy savings can be achieved in this case,
since this is a small application that fits almost entirely in the cache.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 59

Chapter 4. Results

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192 16384

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption of Cache Architectures
Gazelle Application

Direct-mapped Direct-mapped (Indexing) DM Phased DM Phased (Indexing)

Two-way Associative Four-way Associative Way-halting Flash-only

Figure 4.20: Comparison among all cache architectures using Register File memory.

4.2 SystemVerilog Implementation

4.2.1 High Level and SystemVerilog Implementations
Compared

The first result presented in this section, shown on figure 4.21 is also one
of the main results of this master thesis. It shows the energy consumption
of the cache system implemented in SystemVerilog for different cache sizes
and different types of memories. As mentioned before in section 3.3.2, these
numbers were obtained with PrimeTime PX Synopsys tool. It is important
to remember that the tag array in the this implementation is always an
asynchronous RAM memory written in Verilog, however, differently from the
high level simulations, which uses either a Register File or SRAM memory for
the data array, in the SystemVerilog implementation there is also a version
that uses a hand-coded synchronous memory for the data array. It is also
relevant to mention that the power analysis was performed in the cache
system only, therefore there is no information about the energy consumption
of the NVM (Flash) memory in the power reports. However, the data
presented in the following figures contain the total energy consumption of
the memory system (composed of Flash + cache), not only the cache system.
The energy consumption of the Flash memory is therefore the same used in
the high level simulations.

As expected, we see again the same behavior in terms of energy savings

60 Vinicius Almeida Carlos

Chapter 4. Results

0

100

200

300

400

500

600

64 128 256 512 1024 2048 4096 8192 16384

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption

Hand-coded Hand-coded (Indexing) RF RF (Indexing) SRAM SRAM (Indexing) Flash-only

Figure 4.21: Energy consumption of SystemVerilog implementation.

between the regular and the indexing versions of the DM phased caches as
observed in the high level simulations. Nonetheless, there is a big difference
in terms of absolute values when comparing the values from the high level
simulations and the ones from the SystemVerilog simulations. For example,
on the high level simulation results for the SRAM memory, it is only at the
cache size of 128 bytes that the total energy consumption including a cache
system is greater than the total energy consumption without a cache system,
however that is the case for all cache sizes in the results obtained with the
SystemVerilog implementation. The same big differences can be observed
for the Register File memory. In order to understand the reasons behind
such discrepancies, we must take a closer at the energy consumption of each
separate array (tag and data).

In the figures 4.22, 4.23 we can see the individual energy consumption of the
tag and data arrays respectively.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 61

Chapter 4. Results

0

10

20

30

40

50

60

70

80

90

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Tag Array Energy Consumption

Estimated Power Sim

Figure 4.22: Comparison between energy consumption of the tag array.

0

5

10

15

20

25

30

35

40

45

50

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Sizey (bytes)

Data Array Energy Consumption

Datasheet Power Sim

Figure 4.23: Comparison between energy consumption of the data array.

62 Vinicius Almeida Carlos

Chapter 4. Results

Note that although there are differences in the data array, the biggest
discrepancy happens at the tag array. To further analyze the matter, a
comparison between the individual energy per access values of the high level
and SystemVerilog simulations was made and the results are displayed in
the figures 4.24, 4.25, 4.26, 4.27. Before proceeding with the analysis, it is
important to make it very clear how the numbers plotted in these figures were
obtained.

0

0.05

0.1

0.15

0.2

0.25

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Tag Array Energy/Read Comparison

Power Sim Datasheet

Figure 4.24: Energy per read for tag array.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Data Array Energy/Read Comparison

Power Sim Datasheet

Figure 4.25: Energy per read for data array.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 63

Chapter 4. Results

0

0.05

0.1

0.15

0.2

0.25

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Axis Title

Tag Array Energy/Write Comparison

Power Sim Datasheet

Figure 4.26: Energy per write for tag array.

0

0.05

0.1

0.15

0.2

0.25

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Tag Array Energy/Write Comparison

Power Sim Datasheet

Figure 4.27: Energy per write for data array.

The energy per access values used in the high level simulations for the tag
array come from the power estimations previously explained in section 3.2.1.1
and the ones for the data array come from the datasheet (divided by 2). The
energy per access values for the SystemVerilog simulations were obtained
using the experiments described in section 3.3.2.

Having said that, it now becomes easy to understand why there is such a big
gap between their results from the high level simulation and the SystemVerilog
simulation. The methodology employed to estimate the energy consumption
of the asynchronous memory used in the tag array was flawed and led to

64 Vinicius Almeida Carlos

Chapter 4. Results

unrealistic values. Furthermore, the decision of dividing by 2 the datasheet
values for the data array seems to be too optimistic, hence contributing to
increase the final difference between these two scenarios.

In possession of this information another set of experiments was performed,
which comprised of adjusting the energy per access values of both the tag
and the data arrays used in the high level simulation of the DM phased cache
and executing the BLE application again. The results are then shown in
figure 4.28, in which HC means hand-coded and RF means Register File.

0

50

100

32 64 128 256

0

50

100

150

200

250

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption

HC + RF Python (Estimated) HC + RF Python (Tweaked) HC + RF Python (Fixed) HC + RF Power Sim Flash-only

Figure 4.28: Energy consumption with adjusted curves.

As can be seen in this figure, two new curves were generated: one with the
word Tweaked between parenthesis, in which the energy per access values
of the tag array were updated with the ones obtained in the SystemVerilog
experiments, and the other with the word Fixed between parenthesis, in which
not only the tag array uses the values from the SystemVerilog experiments
but also the data array uses the datasheet values without dividing them by
2. What can be seen now is that the Fixed curve is much closer to the actual
values although a little bit higher. A closer look at the data generated for this
curve indicates that the energy per read and energy per write values of the
tag array obtained as explained in section 3.3.2 also have a slight imprecision.

Since the energy consumption of the asynchronous RAM is actually much
higher than the expected, a new scenario was envisioned in which only
synchronous memories were employed. Therefore, a simulation in the Python
environment using a Register File memory as the tag array was performed,
although this time the datasheet values were not divided by 2. The result
of that simulation in comparison to the measured values from the power

Evaluation of Cache Architectures for a Low-Power Microcontroller System 65

Chapter 4. Results

simulation is shown on on figure 4.29. It is clear to see that, in general, the
new arrangement offers better prospects in terms of energy consumption.

0

50

100

150

200

250

128 256 512 1024 2048 4096

En
e

rg
y

(u
J)

Size (bytes)

Energy Consumption

RF + RF (Adjusted) HC + RF Power Sim Flash-only

Figure 4.29: Energy consumption with new only-synchronous scenario.

4.2.2 Cache System Module

In this section we take a look at some details regarding the power consumption
of the DM phased cache module implemented in SystemVerilog. The first
result, shown on figure 4.30, portrays the power breakdown of the main
modules that compose the cache system. These modules are:

– Cache Controller Core (named “core” in the figure), which is responsible
for coordinating the communication between the microcontroller and the
memory elements.

– Tag array (named “tag” in the figure).

– Data array (named “data” in the figure).

– Valid bit array (named “valid” in the figure).

The first interesting fact worth noticing is how little the cache controller
core represents in terms of power consumption when compared to the rest of
the system. As the memory size grows it becomes basically irrelevant. On
the other hand, as could be foreseen after reading the previous section, the
tag array is responsible for a great part of the system’s power consumption,

66 Vinicius Almeida Carlos

Chapter 4. Results

128 256 512 1024 2048 4096 8192 16384

0

10

20

30

40

50

60

70

80

90

100

Size (bytes)

P
e

rc
e

n
ta

ge

Power Breakdown per Module

core rf valid rf tag rf data rf core sram valid sram tag sram data sram core vlog valid vlog tag vlog data vlog

Figure 4.30: Power breakdown of cache system module.

becoming the most power-hungry element on the Register File version after
the size of 256 bytes and on the SRAM version after the size of 4096 bytes,
corroborating with the findings of the previous section. Interestingly enough,
the valid bit array also starts to take up a considerable amount of the total
power consumption as its size grows. That is expected since the valid bit
array is implemented also as a one-bit register file, which, as the synchronous
memory implemented in Verilog, does not scale very well.

In figures 4.31, 4.32 and 4.33 we see the power histogram of the cache system
for the three different memory types used as the data array (hand-coded
Verilog, Register File and SRAM). The power consumption was broke down
into switching power, internal power and leakage. As can be seen in all three
figures, the main element is the internal power, which, as explained in [25],
“is caused by the charging of internal loads as well as by the short-circuit
current between the N and P transistor of a gate when both are on”. Being
this system synthesized to a 180 nm technology, it was expected that leakage
would not represent a major issue.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 67

Chapter 4. Results

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

128 256 512 1024 2048 4096

P
o

w
e

r
(W

)

Size (byte)

Power Histogram
Hand-coded Memory

Switching Power Internal Power Leakage

Figure 4.31: Power histogram for hand-coded data array.

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

128 256 512 1024 2048 4096

P
o

w
e

r
(W

)

Size (bytes)

Power Histogram
RF Memory

Switching Power Internal Power Leakage

Figure 4.32: Power histogram for Register File data array.

68 Vinicius Almeida Carlos

Chapter 4. Results

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

128 256 512 1024 2048 4096 8192 16384

P
o

w
e

r
(W

)

Size (byte)

Power Histogram
SRAM Memory

Switching Power Internal Power Leakage

Figure 4.33: Power histogram for SRAM data array.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 69

Chapter 5

Discussion

In this chapter a summary of the main results described in the previous
sections are presented, along with an analysis of the key issues of this project.

5.1 Indexing solution

In this project, the indexing solution explained in [2] was further explored.
Although the number of applications used (three) was still small in
comparison to well-known benchmark suites, it still provided a good insight
into this technique capabilities. For example, as presented in section 4.1.1.1,
for one specific application and cache size an improvement of over 60% in
the hit rate was observed. Therefore, if application profiling is available,
applying this solution might result in huge improvements in terms of energy
savings, at a really low cost, since the overhead in terms of hardware in the
direct-mapped cache controller is minimum.

5.2 Cache Architectures

5.2.1 Energy Consumption

This project presented a broader investigation in terms of cache architectures
and their energy efficiency. Not only other five cache solutions were added to
the previous project, but also the influence of the type of memory employed
was evaluated. And, as can be seen from the results presented in section 4,
there is not a single answer as to which option is the best. The solution to
this relies in the design space exploration of these implementation, having

70

Chapter 5. Discussion

basically hit rate, energy per access values and area (which was not regarded
in this project) as the variables.

On a more specific note, it is worth mentioning the performance of the 2-
way and 4-way phased caches, which were included in order to evaluate
how the phased cache concept would affect their performances. As seen in
section 4.1.2.4, no remarkable gains can be achieved by using such solutions.

5.3 Phased Caches

Phased cache is a central element of this work and it is a concept that fits
neatly with the pipelined access to the memory. Nevertheless, as the results
proved, the solution did not render the improvements that were expected of
it. The main reason for that is the overhead that is present in both separate
arrays. That problem exists basically because two separate, standard memory
elements were used for each array. If instead a specifically designed memory
that combines both tag and data arrays was used, a different result might
had been obtained.

5.4 Way-halting

The way-halting is a very interesting cache architecture who aims at taking
advantage of the associativity of an n-way cache, while offering energy savings
by preventing some of the ways being read in every access. However, the
particular implementation used in this project can not benefit from it, since
to work properly the principle of locality has to be better explored. The
requirement of only one word per cache block imposed by the microcontroller
system is the culprit in this case. In hindsight, perhaps a more careful
analysis of the architecture prior to the high level implementation could
have prevented further exploration. Unfortunately that was not the case,
but at least the findings were obtained early enough to avoid additional
developments.

5.5 SystemVerilog Implementation

The high level simulations offer a quicker and simpler way to evaluate a cache
architecture, in comparison to the SystemVerilog implementation. That is
usually the case as one moves along through different levels of abstraction.
Nevertheless, the results from the SystemVerilog simulations are far more
trustworthy and actually challenge the findings acquired with the high level

Evaluation of Cache Architectures for a Low-Power Microcontroller System 71

Chapter 5. Discussion

simulations. All high level simulations were performed using the advice of
dividing by 2 the power consumption values found in the datasheet provided
by the Artisan tool.

In the figure 5.1 we can see the percentage of increase in energy consumption
that would result if the datasheet value was not divided by 2. Obviously this
percentage increases as the cache size grows, since it also increases the role of
the cache in the total amount of energy consumption of the memory system.

0

10

20

30

40

50

60

128 256 512 1024 2048 4096 8192 16384

P
er

ce
n

ta
ge

Size (byte)

Energy Consumption Increase

Direct-mapped Direct-mapped (Indexing) DM Phased DM Phased (Indexing) Two-way Associative Four-way Associative Way-halting

Figure 5.1: Increase in energy consumption for datasheet vs datasheet/2 scenarios.

Although the final results from the SystemVerilog simulations are reliable, the
methodology utilized during the design of the cache system was not without
shortcomings. The biggest problem, fully analyzed in section 4.2.1, is related
to how the estimation of power consumption of asynchronous memories was
carried out. In retrospect, it would have been more interesting to spend more
time obtaining accurate power consumption values for this type of memory.
That would have changed the course of the design of the cache controller, since
probably a synchronous RAM would have been used instead. Nonetheless,
making this change in the SystemVerilog code is not a very complex task and
can be a possible future development of this work.

Finally, it is important to highlight the impact that the logic to implement the
cache controller incurs in the total amount of energy consumed by the cache
system, which is really low. That means that by using a simple hardware and
the correct types of memories, there is room for considerable energy savings.

72 Vinicius Almeida Carlos

Chapter 6

Conclusions and future
work

This project, as described in section 1.2, was decomposed in different tasks.
An account of each of them is provided in the following paragraphs.

Task 1: Evaluate in a high level simulation environment a new cache
architecture.

A version of the way-halting cache architecture, presented in [31], was
implemented in the high level simulation environment and experiments were
performed and thoroughly examined throughout the course of this project.
And as can be observed by the results presented previously, this architecture
is not suitable for the targeted microcontroller system due to the tight
restriction in the number of words pertaining to each cache line (only one),
which in turn is related to the connection bandwidth between the Flash
memory and the microcontroller. If this restriction is ever lifted, then
the way-halting architecture might become a good candidate (and if that
happens, the high level simulation environment is ready to perform the
evaluations).

Task 2: Evaluate the direct-mapped (DM) with indexing cache architecture
against a set of applications.

Two other applications, the ANT and Gazelle sample programs, were added
to the Bluetooth Low Energy software used in [2], and again all necessary
analyses were carried out and discussed. And, although three is still a small
number for a benchmark suite, adding these two applications highlighted the

73

Chapter 6. Conclusions and future work

capabilities of the indexing technique in terms of improved hit rate (or miss
reduction), leading to the conclusion that this is indeed an attractive solution
(however only when profiling an application is a possibility).

Task 3: Implement the direct-mapped cache with indexing in SystemVer-
ilog.

The task that certainly took up most of the time dedicated to this master
thesis was fully accomplished as well. All the details needed to explain the
results achieved were presented, however, given the fact that the design of
the cache module itself was not the main goal of this work and that it in
fact does feature any great novelty (in the end, it is a cache controller for a
direct-mapped cache, with a configurable mapping), not all the specifics of
the final hardware were presented. Furthermore, no emphasis was placed on
the design flow and all steps that it entails.

This task helped answer in a more precise way the question of whether adding
a cache system to a microcontroller system can improve its energy efficiency.
As the numbers presented before suggests, the answer is yes. This observation
combined with the results obtained both in this work and previously by [5]
in terms of hit rates of direct-mapped caches can give confidence that this is
the correct answer.

Moreover, the measurements performed in the scope of this project can be
used as a base to further exploration, even in the high level simulations, as
briefly hinted on section 5.5.

Task 4: Evaluate the direct-mapped cache with different types of SRAMs.

Another deficiency of [2] was overcome by this project when the effects of
choosing a different type of memory to implement the cache system were
analyzed. However, finding the global minimum for all scenarios was not
possible due to complications regarding the maximum size for a single memory
element described in section 3.3.1.1.

The answer to the question of whether the type of memory plays an important
role in the cache system is: yes. But the decision regarding which type of
memory should be used depends mainly on the size of the cache that one
wants to add to the system.

Task 5: Implement and evaluate the direct-mapped cache as a phased
cache.

A central topic of this master thesis, the accomplishment of this task is
completely depicted in the course of this text. And although the results

74 Vinicius Almeida Carlos

Chapter 6. Conclusions and future work

in terms of energy consumption of this technique were not satisfactory,
the rationale behind such findings were fully exploited, being the main
problem the overhead created by splitting the memory into two different
arrays. Nevertheless, it is safe to conclude that, had a more energy efficient
implementation of the tag and data split arrays been used, this solution would
certainly outperform the regular direct-mapped cache.

Task 6: Implement and evaluate the 2-way and 4-way as a phased cache.

This task was also finished in its entirety and as in task 5 the final results
were not appeasing. And that is even more interesting given the fact that
area was not even considered in this work (and 2-way and 4-way caches have
a larger area footprint in comparison to direct-mapped caches). Therefore,
when left to choose among these three setups: direct-mapped, 2-way and
4-way, direct-mapped seems to be the better choice.

6.1 Future Work

This project finishes a complete cycle in the evaluation of a specific
cache architecture (namely the DM cache with indexing), targeting a
microcontroller system. The results presented here can be used to guide
the decision of whether to include a cache system in the desired System-on-
chip or not. However, yet a more relevant outcome would be achieved by
integrating the designed cache system into an existent System-on-chip and
perform experiments running real applications in such system and gathering
the results.

There is always room for evaluation of new cache architectures, which now
can benefit not only of the high level simulation environment, but also the
environment built around the cache controller implemented in SystemVerilog,
offering the possibility of a fast track analysis of the implementation in a
lower level of abstraction. A good candidate would be Victim caches, first
introduced in [10]. It is a simple concept which fits the requirements of the
microcontroller targeted in this project, with an small area footprint.

Since area was just mentioned, another dimension on the design space
exploration could be added by analysing the impact in terms of area of each
cache solution presented in this work.

In terms of the phased cache solution, it would be very interesting to check its
perform with a memory specifically design for this purpose, instead of using
two different memories for the tag and data arrays.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 75

Chapter 6. Conclusions and future work

Furthermore, the other solution presented in [2], namely the Scratchpad
memory, could also be put to test in real applications by integrating it to
a System-on-chip. As pointed out in [2], this is a simpler task in comparison
to integrating a cache to a System-on-chip because it mainly relies on software
techniques.

76 Vinicius Almeida Carlos

Bibliography

[1] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini,
and Mauro Olivieri. A post-compiler approach to scratchpad mapping of
code. In Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems, CASES ’04, pages 259–
267, New York, NY, USA, 2004. ACM.

[2] Vinicius Almeida Carlos. Tfe 4520 semester project report. [Report
delivered in the scope of the course TFE4520; included in the appendix.],
2012.

[3] A. Efthymiou and J.D. Garside. A cam with mixed serial-parallel
comparison for use in low energy caches. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 12(3):325 –329, march 2004.

[4] K. Flautner, Nam Sung Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage power. In
Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on, pages 148 –157, 2002.

[5] Stian Fredrikstad. Saving energy in periodic embedded systems with
memory system techniques. Master’s thesis, Norwegian University of
Science and Technology, June 2012.

[6] Tony Givargis. Zero cost indexing for improved processor cache
performance. ACM Trans. Des. Autom. Electron. Syst., 11(1):3–25,
January 2006.

[7] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid. Tiny instruction
caches for low power embedded systems. ACM Trans. Embed. Comput.
Syst., 2(4):449–481, November 2003.

[8] Koji Inoue, Vasily Moshnyaga, and Kazuaki Murakami. Dynamic tag-
check omission: A low power instruction cache architecture exploiting
execution footprints. In Babak Falsafi and T.N. Vijaykumar, editors,

77

Bibliography

Power-Aware Computer Systems, volume 2325 of Lecture Notes in
Computer Science, pages 18–32. Springer Berlin Heidelberg, 2003.

[9] Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. A
novel instruction scratchpad memory optimization method based on
concomitance metric. In Proceedings of the 2006 Asia and South
Pacific Design Automation Conference, ASP-DAC ’06, pages 612–617,
Piscataway, NJ, USA, 2006. IEEE Press.

[10] N.P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on, pages 364–373, 1990.

[11] Nam Sung Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy in-
struction caches. leakage power reduction using dynamic voltage scaling
and cache sub-bank prediction. In Microarchitecture, 2002. (MICRO-
35). Proceedings. 35th Annual IEEE/ACM International Symposium on,
pages 219 – 230, 2002.

[12] Nam Sung Kim, K. Flautner, D. Blaauw, and T. Mudge. Circuit
and microarchitectural techniques for reducing cache leakage power.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
12(2):167 –184, feb. 2004.

[13] Soontae Kim, N. Vijaykrishnan, Mahmut Kandemir, Anand Sivasubra-
maniam, and Mary Jane Irwin. Partitioned instruction cache architec-
ture for energy efficiency. ACM Trans. Embed. Comput. Syst., 2(2):163–
185, May 2003.

[14] HP Labs. CACTI. http://www.hpl.hp.com/research/cacti/, 2012.
[Online; accessed 13-November-2012].

[15] Xin Lu and Yuzhuo Fu. Reducing leakage power in instruction cache
using wdc for embedded processors. In Proceedings of the 2005 Asia
and South Pacific Design Automation Conference, ASP-DAC ’05, pages
1292–1295, New York, NY, USA, 2005. ACM.

[16] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., New York, NY,
USA, 1990.

[17] Ramesh Panwar and David Rennels. Reducing the frequency of tag
compares for low power i-cache design. In Proceedings of the 1995
international symposium on Low power design, ISLPED ’95, pages 57–
62, New York, NY, USA, 1995. ACM.

[18] Jongsoo Park, James Balfour, and William James Dally. Fine-
grain dynamic instruction placement for l0 scratch-pad memory.

78 Vinicius Almeida Carlos

http://www.hpl.hp.com/research/cacti/

Bibliography

In Proceedings of the 2010 international conference on Compilers,
architectures and synthesis for embedded systems, CASES ’10, pages 137–
146, New York, NY, USA, 2010. ACM.

[19] K. Patel, E. Macii, L. Benini, and M. Poncino. Reducing cache misses by
application-specific re-configurable indexing. In Computer Aided Design,
2004. ICCAD-2004. IEEE/ACM International Conference on, pages 125
– 130, nov. 2004.

[20] David A. Patterson and John L. Hennessy. Computer Organization
and Design - The Hardware / Software Interface (Revised 4th Edition).
The Morgan Kaufmann Series in Computer Architecture and Design.
Academic Press, 2012.

[21] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and
Kaushik Roy. Reducing set-associative cache energy via way-prediction
and selective direct-mapping. In Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, MICRO 34,
pages 54–65, Washington, DC, USA, 2001. IEEE Computer Society.

[22] Jan Rabaey. Low Power Design Essentials. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[23] Marisha Rawlins and Ann Gordon-Ross. Lightweight runtime control
flow analysis for adaptive loop caching. In Proceedings of the 20th
symposium on Great lakes symposium on VLSI, GLSVLSI ’10, pages
239–244, New York, NY, USA, 2010. ACM.

[24] Prof. Dr.-Ing. Dominik Stoffel. Architecture of Digital Systems 2 -
Lecture material, 2011.

[25] Inc Synopsys. Expanding the Synopsys PrimeTime Solution with
Power Analysis. http://www.synopsys.com/Tools/Implementation/
SignOff/CapsuleModule/ptpx_wp.pdf, 2013. [Online; accessed 07-
June-2013].

[26] Guido van Rossum. Python Official Website. http://python.org/,
2012. [Online; accessed 13-November-2012].

[27] H. Vandierendonck and K. De Bosschere. Xor-based hash functions.
Computers, IEEE Transactions on, 54(7):800 – 812, july 2005.

[28] D.P. Volpato, A.K.I. Mendonca, L.C.V. dos Santos, and J.L. GuÌ and-
ntzel. A post-compiling approach that exploits code granularity in
scratchpads to improve energy efficiency. In VLSI (ISVLSI), 2010 IEEE
Computer Society Annual Symposium on, pages 127 –132, july 2010.

[29] Chuanjun Zhang. An efficient direct mapped instruction cache
for application-specific embedded systems. In Proceedings of the

Evaluation of Cache Architectures for a Low-Power Microcontroller System 79

http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/ptpx_wp.pdf
http://www.synopsys.com/Tools/Implementation/SignOff/CapsuleModule/ptpx_wp.pdf
http://python.org/

Bibliography

3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, CODES+ISSS ’05, pages 45–50, New
York, NY, USA, 2005. ACM.

[30] Chuanjun Zhang. A low power highly associative cache for embedded
systems. In Computer Design, 2006. ICCD 2006. International
Conference on, pages 31 –36, oct. 2006.

[31] Chuanjun Zhang, Frank Vahid, Jun Yang, and Walid Najjar. A way-
halting cache for low-energy high-performance systems. ACM Trans.
Archit. Code Optim., 2(1):34–54, March 2005.

[32] M. Zhang and K. Asanovic. Highly-associative caches for low-power
processors. In Kool Chips Workshop, MICRO, volume 33, 2000.

80 Vinicius Almeida Carlos

Appendix A

Description of the digital
attachments

The practical work performed in the scope of this project in the form of source
code, the original versions of the figures and the last semester report ([2]),
referenced many times throughout this text, are provided in the file attached
to this report.

A.1 Bit-selection (indexing) optimal algo-
rithm

C++ implementation that outputs the optimal indexing to be used for a
given trace file and cache size.

A.2 High Level simulation environment

High level simulation developed in Python in which the experiments were
carried.

A.3 SystemVerilog implementations

Includes code for the cache controller and memory elements.

81

Appendix A. Description of the digital attachments

A.4 Graphs

Contains high resolution version of the figures presented in Results section of
the master thesis.

A.5 TFE 4520 - Semester Project Report

The last semester report ([2]), referenced throughout this master thesis.

82 Vinicius Almeida Carlos

	List of Abbreviations
	Introduction
	Problem description (extracted fromvinicius)
	Tasks

	Cache Architectures for Low Power (extracted fromvinicius)
	Circuit Techniques
	Way-Decay Cache
	Drowsy Caches

	Architectures
	Tiny Caches / Loop Caches
	DLC
	PLC
	HLC
	ALC

	Scratchpad
	Dynamically allocated
	Statically allocated:

	Associative Memory / Content-Addressable Memory
	Way-Prediction
	Way-Halting

	Indexing / Hashing
	Tag Omission
	Phased Caches (new)

	Method
	High Level Simulations
	Architectures Selected
	Direct-mapped, two-way and four-way phased caches
	Way-halting

	Simulation environment (contains text fromvinicius)

	SystemVerilog Implementation
	Design of the Cache Controller
	Defining the Memory System
	Detailed Design Description
	Functional Verification
	Synthesis
	Power Simulations

	Experiments
	High-level Simulations
	Energy Models
	Calculating Energy Consumption
	Benchmark

	SystemVerilog

	Results
	High Level Simulations
	Hit Rates
	Benefits of the Indexing Solution
	Hits and Misses Comparison

	Energy Consumption
	Way-halting
	Phased Caches
	Memory Types
	All Cache Architectures Compared

	SystemVerilog Implementation
	High Level and SystemVerilog Implementations Compared
	Cache System Module

	Discussion
	Indexing solution
	Cache Architectures
	Energy Consumption

	Phased Caches
	Way-halting
	SystemVerilog Implementation

	Conclusions and future work
	Future Work

	Bibliography
	Description of the digital attachments
	Bit-selection (indexing) optimal algorithm
	High Level simulation environment
	SystemVerilog implementations
	Graphs
	TFE 4520 - Semester Project Report

