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Abstract

Energy consumption is one of the main concerns when designing battery powered embedded
systems. On microcontroller systems, the memory systems is responsible for a great part of
the total energy consumption. Flash memories, as the ones usually employed in this kind
of system are very power hungry elements. Therefore this project aimed at investigating
cache architectures that could be applied to a specific microcontroller system composed of a
microcontroller and a Flash memory in order to improve their energy efficiency. Later on,
simulations on the target environment were performed to determine the best solution for the
given system. The results of these experiments are then presented at the end of the text,
where a critical analysis of these findings is also provided.



ii



Contents

1 Introduction 2
1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Cache Architectures for Low Power 5
2.1 Circuit Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Way-Decay Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Drowsy Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Tiny Caches / Loop Caches . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1.1 Dynamic Loop Cache (DLC) . . . . . . . . . . . . . . . . . 7
2.2.1.2 Preloaded Loop Cache (PLC) . . . . . . . . . . . . . . . . . 8
2.2.1.3 Hybrid Loop Cache (HLC) . . . . . . . . . . . . . . . . . . 8
2.2.1.4 Adaptive Loop Cache (ALC) . . . . . . . . . . . . . . . . . 8

2.2.2 Scratchpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2.1 Dynamically allocated . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.2 Statically allocated: . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Associative Memory / Content-Addressable Memory . . . . . . . . . 10
2.2.4 Way-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Indexing / Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Tag Omission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Method 16
3.1 Architectures Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Hashing / Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.1 Bit-selection function explained . . . . . . . . . . . . . . . . 17

3.1.2 Scratchpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . 19

3.2 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Calculating Energy Consumption . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



4 Results 29
4.1 Direct-Mapped Cache with Optimal Indexing . . . . . . . . . . . . . . . . . 29

4.1.1 Hits and Misses Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Scratchpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 DM cache plus SPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 DM cache-only versus SPM-only . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Discussion 38
5.1 Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Tools and Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusions and future work 40
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 42

A Bit-selection optimal algorithm 45

B Simulation Environment 52

Evaluation of Cache Architectures for a Low-Power Microcontroller System 1



Chapter 1

Introduction

It is a well-known fact that energy consumption is of great concern on battery powered
embedded systems. Even though improvements on battery capacity have been made in
the past years, they are unable to keep up with the increase of energy consumption of
such systems. In general terms, many techniques can be devised to tackle this problem,
as described for instance in [23]. Nevertheless, the focus here is on microcontroller based
systems, in which memory systems are responsible for a great part of the system total energy
consumption. In particular, Flash memories, as the one used in the target system of this
project, are power hungry elements.

The baseline architecture of the target system of this project, displaying the connection
between the microprocessor and the Flash memory, can be seen on figure 1.1.

Figure 1.1: Baseline Architecture.
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Chapter 1. Introduction

The aim of this project is to extend this architecture by adding a small Static Random-Access
Memory (SRAM) to the system, in order to avoid, as much as possible, accesses to the main
memory (the Flash memory). The extended version is depicted on figure 1.2.

Figure 1.2: Extended Architecture.

As can be seen in the figure 1.2, the SRAM added to the system will be used to store
instructions only. This small SRAM can then either be an instruction cache (I-cache) or a
scratchpad memory (SPM). Either way, the purpose remains the same. More importantly,
they still represent a great part of the total power consumption of the system, therefore
careful design of these elements is paramount to reduce overall energy consumption.

Therefore, it is the goal of this project to assess memory system architectures, in order to
find the best suitable options for the target embedded system.

The specific tasks pertaining to this project are listed in the following section.

1.1 Tasks

Task 1: Realize a broad literature research on the field of cache architectures for energy
consumption reduction.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 3



Chapter 1. Introduction

The intention behind this task is to obtain a wide overview of the possibilities available in
terms of cache memories when it comes to reducing energy consumption, independent on
whether they are suitable or not for the simulations to be performed in the scope of this
project. The solutions that cannot be directly applied to this project can serve as ideas for
further exploration in future projects.

Task 2: Select two or more memory system architectures to be later evaluated through
simulation.

This task comprises not only critically choosing which solutions should be evaluated, but also
implementing any required algorithm or tool for the given architectures before the simulation
phase starts.

Task 3: Perform high-level simulations with the selected architectures and an actual
application.

In this task, the selected architectures must be put to test, enabling analysis to be performed
on the obtained results.
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Chapter 2

Cache Architectures for Low Power

(This text assumes the reader is familiar with basics on cache. For an excellent introduction,
please read Chapter 7 of [20]).

Caches are usually employed to hide the ever existing latency between the processor and the
main memory. However, due to cost constraints, there is a limit to the size of these memories.

Caches are on the critical path of systems, hence contributing to much of a microprocessor
system’s power and energy consumption. For example, in [32], it is reported that caches may
consume approximately 50% of a microprocessor’s power. And, as shown in [11], instruction
caches consume more energy than data caches, therefore this literature research focused on
solutions that were more relevant to instruction caches.

Although the main interest of this project is on architectures for caches that can reduce
energy consumption, circuit level techniques were also taken into account, as a possibility for
a future work, and thus are also briefly presented in the next section.

2.1 Circuit Techniques

2.1.1 Way-Decay Cache

The idea, as presented in [14], is that after some period of time the cache will start to
suffer more misses (spacial and temporal locality decrease overtime), that is when there is
opportunity to shut down some of the cache ways to reduce energy consumption. Thus,
additional structures (basically counters) are added to the cache architecture to monitor the
hits and misses and make a decision on when it is time to shut down some ways or turn
them on again. The shutting down mechanism is performed with a circuit technique called
gated-GND. An extra transistor is added to the ground path or supply voltage of the SRAM
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Chapter 2. Cache Architectures for Low Power

cell, as shown in 2.1, taken from [14]. The rationale is that, by turning off parts of the circuit,
static power can be saved (no leakage). For a 8-way-64K bytes instruction cache, under the
SPECint95 benchmark, an average of 7.39% of energy saving is reported.

Figure 2.1: Gate-GND Technique

2.1.2 Drowsy Caches

This technique also focus on reducing current leakage, hence reducing static power
consumption. As described in [10][3][9], the idea is to implement Dynamic Voltage Scaling
(DVS) by changing the basic SRAM cell by introducing 2 transistors to control the voltage
(as can be seen in 2.2, taken from [10]), enabling the memory to go to a state-preserving, low
power drowsy mode. However, this solution requires that a prediction policy is implemented
in order to determine when to put the cache lines in drowsy mode. Furthermore, there is
a penalty of waking-up those lines when needed, increasing (slightly) the time to access the
data. For a 2-way-32K bytes instruction cache, under SPEC2000, an average of 25% leakage
reduction is reported.
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Figure 2.2: Drowsy Memory Cell

2.2 Architectures

2.2.1 Tiny Caches / Loop Caches

The starting point of this approach is the fact that the power per access of a memory begins
to increase steeply at a size around 128 or 256 instructions ([6]). Therefore it is interesting
to keep the size of the memory to a minimum.

A loop cache is a tagless cache, which stores the instructions of different loops and uses a
controller to determine when the instructions should be fetched from the loop cache or from
the next level on the memory hierarchy. The four variations available in the literature are
presented in the following sections.

2.2.1.1 Dynamic Loop Cache (DLC)

In this type of loop cache, the loop detection is done dynamically based on the behavior
of the program counter (PC). In the original proposal, as described in [6], the loop cache
controller (LCC) detects that a loop is happening by observing the PC. When a branch with
a negative offset happens, the LCC starts caching the instructions being fetched after this
branch instruction. When the same branch instruction is executed again, the LCC knows
that a loop is being executed, therefore the instructions are then fetched from the loop cache,
hence not from the main memory. The drawback of this implementation is that it only works
for loops with straight-line execution, rendering this solution quite limited.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 7
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2.2.1.2 Preloaded Loop Cache (PLC)

As the name suggests, the idea (proposed in [6]) is to preload into the cache the loops which
represent the best candidates in terms of energy saving. This is performed based on profiling
of the application. This solution achieves better energy savings than the DLC, however the
obvious downside is the need for profiling, which means that it requires support of a set of
external tools. Moreover, it is completely application-dependent.

2.2.1.3 Hybrid Loop Cache (HLC)

Also proposed in [6], it basically combines DLC and PLC into one cache. It offers even better
results than the PLC.

Varying the loop cache sizes from 32 to 512 instructions, around 60% to 70% of reduction of
fetches from L1 cache is reported, under the Mibench and Powerstone benchmarks.

2.2.1.4 Adaptive Loop Cache (ALC)

Proposed in [24], this solution tries to mimic the results of HLC, but without the need of
profiling the application beforehand. It accomplishes that by implementing an enhanced
version of the LCC, which takes care of determining during runtime the loops that should
be cached. It produces better results than HLC when the cache size is smaller than 128
instructions, otherwise an increase of 5% on average is reported.

2.2.2 Scratchpad

Scratchpad memory (SPM) is a small, fast SRAM memory that can be used to store parts of
code or data of an application. It takes up part of the full memory address space, providing
fast and low power access to its contents. It is an interesting solution in comparison to
caches because it does not contain any of the extra structures a cache needs (tags, muxes
and comparators). The challenge then becomes determining which sections of code (or data)
should be mapped into the scratchpad, in order to maximize energy savings.

The two basic variants of this approach are regarding whether to perform this allocation
dynamically or statically. The former offers more flexibility and explore more opportunities
during the lifetime of the application, however, as pointed out in [1], the overhead of moving
chunks of memory between the main memory and the SPM might lead to performance
degradation in terms of speed and energy in comparison to a static solution.
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2.2.2.1 Dynamically allocated

In this type of solution, the set of instructions/data loaded into the SPM changes over time.
This change happens with help from the compiler, which places special instructions telling
when and what to copy from main memory (or L1 cache, in other words, the next level of
memory in the hierarchy).

There are then algorithms focusing on making this dynamic placement as efficient as possible.
In [8], basic blocks (BB) are the smallest unit of code that can be transferred to the SPM.
Then, based on temporal relationship between the BBs (a metric called concomitance),
instructions to move those BBs to SPM are inserted in the code. In [17], "the length of
transfer blocks can be adjusted in increments of one instruction". According to [17], their
algorithm "achieves 31% instruction delivery energy reduction over even an ideal coarse-grain
algorithm".

2.2.2.2 Statically allocated:

There are two ways to perform static placement of code/data into SPM: compiler-aware
allocation or post-compiling allocation. They both rely on the same principle, which is
identifying the most suitable pieces of code/data to be moved permanently to the SPM.
The main difference between these two methods is regarding the input for this identification
process. For a compiler-aware allocation, the input is the source code, while for the post-
compiler, it is a binary file. While the former is more flexible, the latter is more general,
since it can be applied to any scenario, without knowledge or customization of the compiling
tools.

Post-compiler allocation: In this approach, the following actions are necessary:

1) Identify, in the executable file, all units of code (or data) that are candidates to be
placed in the SPM.

2) Given the set of candidates, solve a basic Knapsack ([15]) optimization problem, that
is, find the best suitable set of blocks of code that can be placed in the SPM, in order
to minimize energy consumption.

3) Patch the binary file, based on the solution found in item 2.

Both [1] and [29] developed their solutions based on these steps. The most important
difference between them is the granularity considered when selecting a candidate to be placed
in the SPM. In [1], they work with a fine-grain block boundary, with minimum size equal
to one single instruction, whereas in [29] only BB and procedures are considered as possible
candidates. Unfortunately, these two works cannot be directly compared because they use
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different benchmarks, however both report a significant energy reduction in comparison to a
system without SPM.

2.2.3 Associative Memory / Content-Addressable Memory

An associative memory (or Content-Addressable Memory (CAM)) is a type of memory in
which one can search an input data against all values present at the memory in parallel, that
is, it compares the input data with all stored values at the same time. That is usually used
for devices that need very fast search times. On the other hand, it is a very power hungry
type of memory. However, if kept at smalls sizes (namely 32 to 64 entries), it can be used
for low power devices as well. The general idea of using CAM for caches is to store the tags
in a CAM and the cache blocks in a normal SRAM. That way the tag search can be sped
up, giving a hit rate of a 32-way associative memory, while keeping the power consumption
to lower levels.

In figure 2.3, taken from [33], a basic structure of a CAM used to store the tag part of a
cache entry is shown. As can be seen in the figure, the tag is fed into the CAM and all lines
from the CAM will have the result of the search at the same time. If there is a match in any
of the entries, its output will be driven to ’1’ (high/VCC) and that can be used to drive the
cache line that contains the desired data.

Figure 2.3: CAM Tag.
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Although using CAM seems like an interesting solution, besides the fact that size must be
kept to a limit, it is also important to mention that CAM memory cells are different from
SRAM memory cells at the transistor level, therefore needing special design, making it not
possible to use standard memory libraries during the design of the circuit.

In order to cope with the CAM size as the limiting factor, the author on [31] proposes to split
the tag memory into two different memories: a CAM and a normal SRAM fully associative
memory. A different direction was proposed on [2], in which the idea is to change the CAM
cell circuitry to perform serial bit comparisons in order to save energy. It performs the serial
bit comparison only for the 4 least signficant bits (LSBs), since most of the hits can be
determined by these bits. Then, if it matches, the rest of the comparison is performed in
parallel. Problem with this approach: 25% slower than normal CAM.

In [33], the author employs sub-banking, that is, split the memory in smaller banks, in which
only one bank is active at a time, based on the address being requested. Each sub-bank
contains a CAM memory to store the tags and drive the cache lines, when a hit occurs.

2.2.4 Way-Prediction

In set-associative caches, both the tag arrays and the data arrays are accessed in parallel (as
can be seen in figure 2.4, taken from [20]). Thus, on a n-way set associative cache, n ways
are accessed in parallel and then, based on the tag comparison, the data from the correct
way is selected to be the output. However, in every hit, only one way holds the correct data,
therefore the other n− 1 ways accesses are useless, resulting in wasted energy. The idea is
then to apply mechanisms that allow to predict the way that should be accessed next, saving
the energy of reading from the other ways.

This kind of solution relies on adding extra structures to help with the prediction, such as
extra bits to the Branch Target Buffer (BTB). The big disadvantage of this type of solution
is the extra latency added to the access time when a miss prediction happens.

An alternative to way-prediction is to perform serial access to tags and ways, guaranteeing
that only the correct way is accessed at all times. The obvious problem is the increase of as
much as 60% on access time, as depicted in [22].

A similar idea, but with a slightly different take, is way-halting. Given the same assumption
as above, the intention now is, instead of predicting the way, to avoid accessing the wrong
ways. This method was proposed on [32].

In order to do that, a small fully associative memory is used to determine the ways that
should be accessed. It works in the following way:

The tag bits are split into 2, where the four LSBs are used as address to the fully associative
memory. The rationale behind using the four LSBs is that with those bits it is possible

Evaluation of Cache Architectures for a Low-Power Microcontroller System 11
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Figure 2.4: Example of 4-way Associative Cache.

to determine, most of the times, whether a hit happens or not. Then the fully associative
memory is accessed in parallel with the index decoder. Thus, only those ways where there
was a hit on the fully associative memory will actually be accessed, saving the dynamic power
that would be used to read from the other ways.

The interesting advantage over the way-prediction solution is the fact that there is no extra
latency added to the cache access, since the fully associative tag comparison happens in
parallel with index decoding, as depicted on figure 2.5, taken from [32].

Instead of using CAM, the author implements the fully associative memory using normal
SRAM memory cells.

For a 4-way-8K bytes cache, under the Mediabench, Powerstone and Spec2k benchmarks,
reductions on power consumption ranging from 45% to 60% are reported.

12 Vinicius Almeida Carlos
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Figure 2.5: Baseline Architecture for Way-Halting Cache

2.2.5 Indexing / Hashing

As described in [30], a direct-mapped (DM) cache has many advantages in comparison to
n-way associative caches. Some of them are listed below:

• Less power consumption per access.

• Less area (only one array of data and tags, no multiplexers).

• Faster access times.

• Easier to implement.

However, the biggest problem with DM caches is the higher miss rate, when compared to
n-way associative caches. This elevated number of misses comes from the fact that many
addresses end up being mapped to the same location in the cache, resulting in what is called
conflict misses. These facts are behind the motivation for the solution presented in this
section.

It is important then to understand that the mapping from the main memory address to the
cache address is basically a hashing function. The standard way to realize this translation
between addresses is to take n LSBs from the full address and use it as the address of the
cache line, as can be seen on figure 2.6, taken from [20].

Although very easy to implement, this form of mapping is far from ideal, rendering many
conflicts in the cache. The intention of indexing/hashing is then to change the access
pattern of the memory address by using some hashing functions with the set of indexes bits.
This is the general idea of all hashing/indexing approaches. What may varies is how the
implementation is done and rather or not the hashing function is dynamically reconfigurable.

On [30] for example, reconfigurable decoders are used. Through prior profiling of the
application, the configuration of the decoders are determined. It is reported an improvement

Evaluation of Cache Architectures for a Low-Power Microcontroller System 13
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Figure 2.6: Basic Direct-Mapped Cache.

in the number of conflicts, achieving similar numbers of a 2-way cache. On [5], a zero-overhead
scheme is presented, where the hashing function is nothing more than a bit-selection function,
that is, based also on application profiling, a heuristic algorithm is used to determine the set
of address bits that should be used to address the cache. In this specific work, it is reported
more improvements for data than to instruction caches. The bit-selection function is called a
zero-overhead solution because no extra hardware is needed to perform the hashing function,
differently from the XOR-based functions, in which the hashing function relies on XOR gates
placed between the main memory address and the cache address. A similar solution to [5],
but with an optimal algorithm, is described on [18]. On [27], the algorithm presented on [18]
is adapted to XOR-based functions.

14 Vinicius Almeida Carlos
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2.2.6 Tag Omission

Because caches are much smaller memories than the main memory, it cannot hold all data
(or instructions) at all time. That is why every cache line is also composed by the tag, a
portion of the address of the original location of the data in the main memory, to allow a
checking to be performed every time an access to the cache happens, making sure that the
right data is being fetched from the cache. Nevertheless, tag checking during every cache
access contributes to the total amount of power consumed by caches. This is the motivation
behind the solutions presented in this section. Note that this is somehow intertwined with
the idea of loop caches, which are tagless caches, and scratchpads. The key difference is that
loop caches and scratchpads do not even have tag arrays in their architecture, while the aim
of the solutions presented in this section is to minimize the access to the existent tag arrays
of the caches.

The first idea, as presented in [16], is based on the concepts of intrablock and interblock flows.
Assume that two instructions are fetched from the cache. If both instructions fall into the
same cache line (or intrablock), then for the second instruction it is not necessary to perform
tag comparison because it is certain that it will be a hit. Therefore only for interblock flows
the tag check must be performed.

In [7] this notion was extended to be able to handle a larger window of memory accesses
without the need to check tags. The basic idea behind this approach is the fact that the
state of caches changes only when there is a miss, which means that new instructions must
be fetched from the main memory. Thus, between two misses, the state of the cache remains
stable. Therefore if an instruction is accessed repeatedly during this stable-time (as called by
the author of the paper), only at the first reference a tag check has to be performed. To be
able to detect the conditions for not performing unnecessary tag checks, the cache proposed in
the paper, called History-Based Tag-Comparison (HBTC) cache, records execution footprints
in an extended Branch Target Buffer (BTB) [7]. It is important to note that the HBTC cache
works only with direct-mapped instruction caches.

For a DM cache with 16KB - 32 bytes on the cache line a reduction of about 90% on tag
comparisons was reported, leading to about 15% reduction on energy consumption.

The drawbacks of this solution are the need of a BTB in the microprocessor and the fact
that extra cycles are added to the cache access when an invalid footprint is found.

Evaluation of Cache Architectures for a Low-Power Microcontroller System 15



Chapter 3

Method

.

In this chapter, the preparations and the methodology employed to perform the desired
experiments are outlined. Firstly, the cache architectures chosen for evaluation are presented,
along with the rationale supporting such decisions. Later, the simulation environment, in
which the actual evaluations take place, is described. And finally, the experiments realized in
the scope of this project are listed, along with an explanation on how the energy consumption
is calculated for each scenario.

3.1 Architectures Selected

The basic criteria used to select which architectures should be evaluated was obviously energy
savings capability. However, because this work focus on a specific architecture (depicted
previously on figure 1.2), the following requirements and constraints were also taken into
consideration:

• The internal signals of the microprocessor are not visible to the memory system, all
that is available are the addresses and data (instructions) that come through the bus.

• The whole system should work under the same system clock.

• Preferably, no processor stalling should happen.

• Area and current leakage should be kept to a minimum.

• The microprocessor does not have a Branch Target Buffer (BTB).

• Given the fact that a proprietary compiler is being used, no compiler techniques can
be employed.

16
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Time-to-market is usually also an important constraint when searching for new solutions in
embedded systems. The same constraint was applied to this project, in which only solutions
that were rendered feasible in the time frame available were examined.

The selected architectures are presented below.

3.1.1 Hashing / Indexing

As explained in section 2.2.5, DM caches are faster, smaller and consume less energy per
access than its n-associative counterparts. Moreover, the results reported on [4] demonstrate
that, for a system with a very similar configuration to the one in this project, DM cache
outperforms 2-way and fully associative caches in terms of energy consumption.

The main problem with DM, as mentioned before, is the high number of conflicts. Therefore,
a solution that improves DM in its weakest point is definitely worth looking at.

The solution presented in [19] was selected for implementation. It contains an optimal
algorithm, based on Binary Decision Diagrams (BDDs) and Algebraic Decision Diagrams
(ADDs), for finding the set of addresses bits that should be used to perform the mapping
between the main memory and the cache. In [28], an implementation with XOR-mapping
function is proposed, with slightly better results than [19]. However, giving the limited time
available, [19] was chosen, leaving room for future work to be done with [28].

Before jumping into specifics about the algorithm, it is also important to mention that the
DM caches used in this project have a line size of only one word (32 bits). That is the case
because 32 bits is also the width of the data bus between the microcontroller and the Flash
memory. If a bigger line size was chosen, for example 64 bits, it would be impossible to fill
the cache line during one single clock cycle, which would then result in processor stalling.

3.1.1.1 Bit-selection function explained

It is not the intention of this section to fully describe how the bit-selection algorithm works,
for that the reader is referred to [19], but rather briefly explain the idea behind it.

(The following example was taken from [19], to which a slight modification was made and
more details were added for ease of understanding).

Assume that the main memory of a system is composed of 8 entries, hence from log2 8 = 3, it
can be conclude that 3 bits (let’s call them a2a1a0) are needed to address this memory. Now
assume that a DM cache is present as well, with 4 entries and therefore 2 bits to address it,
resulting in the configuration shown in 3.1.

Given this basic configuration, the following options are available for bit-selection (that is,
which bits should be used to address the DM cache):
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Figure 3.1: Basic Main Memory & DM cache Configuration

1. a1 and a0, which is the same as the standard bit-selection of DM caches (the least
significant bits).

2. a2 and a0.

3. a2 and a1.

Now assume the following trace (sequence of addresses) is executed: 0, 1, 5, 3, 1, 5, 6, 7, 6.
What the algorithm calculates, in a symbolic way, which is translated to BDDs and ADDs,
is the number of conflict misses that would occur if a given bit-selection was employed.

For example, to calculate the number of conflict misses that happens between the first access
to address 1 (0012, in binary) and its next occurrence, the algorithm checks in which situations
contents of address 1 would be evicted from the cache.

Therefore, for the sequence 0012, 1012, 0112, 0012 (in binary), it is easy to see that:

1. if a1 and a0 are used, accessing address 1012 would evict 0012 from the cache, resulting
in 1 conflict miss when the next access to 0012 happens.

2. if a2 and a0 are used, accessing address 0112 would also evict 0012 from the cache,
resulting in 1 conflict miss when the next access to 0012 happens.

3. if a2 and a1 are used, no conflict happens, therefore 0012 would still be present on the
next access to 0012.

The algorithm performs this calculation for the entire program trace and outputs the mapping
with less number of conflict misses.

For more details about the implementation, please check appendix A.

18 Vinicius Almeida Carlos



Chapter 3. Method

3.1.2 Scratchpad

Scratchpads match perfectly the requirements of the target system: low-power, small and
fast. Because there are no tags involved, there also no conflicts, which means no processor
stalling. Furthermore, the target system already has a SRAM memory that can be used as
a SPM.

The main decision to be made was regarding how to map instructions to the SPM. Given
that no compiler techniques could be employed, the available solution was the post-compiling
approach.

As explained in section 2.2.2, the two post-compiling solutions differ basically on the
granularity of the code considered as a candidate to be allocated in the SPM. For this
project, only procedures are considered as candidates. This granularity was chosen for the
following reasons:

- Procedures do not need any extra branch instructions to be inserted in the original
binary file, making it easier to perform patching of the binary file later.

- Given the fact that the amount of SRAM available to be used as SPM in the target
system is not an issue, as reported in [29], using procedure granularity results in the
same amount of energy saving as basic block granularity for SPM of the size of 4K
bytes.

As previously described on 2.2.2.2, 3 steps are needed in order to fully perform the mapping
of code objects to the SPM. Step 1, namely, identifying the procedures in the binary file, was
developed in previous works. Step 3, or patching the binary file, is not needed in order to
perform the desired simulations. Step 2 is described below.

3.1.2.1 Optimization problem

As explained previously, determining which procedures must be place in the SPM is an
optimization problem, for which many solutions are available in the literature. For this
particular project, MinKnap [21] was adopted.

The basic problem to be solved is stated in the following equations [21]:

Maximize ∑n
j=1 pjxj

Subject to ∑n
j=1 wjxj ≤ c

xj ∈ {0, 1}, j = 1, . . . , n

where:

• n represents the total number of procedures found in the binary file.
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• pj represents the profit of moving a procedure j to the SPM. How this profit is calculated
is explained later on this section.

• wj stands for the cost of moving a procedure j to the SPM. It is basically its size in
bytes.

• x is the solution vector. When x of a given j is equal to 1, it means that the procedure
j must be placed in the SPM.

• c is the constraint, that is, the total size of the SPM.

Calculating the profit vector: As will be explained in the section 3.3, two different
solutions comprising SPM will be considered. One is using Flash and SPM only and the
other is using Flash, Cache and SPM. Therefore, the profit of moving a procedure to the
SPM depends on which solution is being employed.

Flash and SPM only: In this case, the profit of moving a single procedure from the Flash
memory to the SPM is calculated as:

pj = aj × (Eflash −Espm)

where pj represents profit of moving procedure j, aj is the number of total fetches, during
the execution of an application, that fall within the limits of procedure j, Eflash is the energy
spent when reading instruction from the Flash memory and Espm is the energy spent when
reading instruction from the SPM.

Flash, Cache and SPM: Now the calculation is not that straightforward anymore because
the total energy consumption of a procedure depends on how many hits and misses happened
in the cache while trying to fetch instructions that fall within its limits. Therefore, the profit
must be calculated as follows:

pj = (hj ×Ecache + mj × (2×Ecache + Eflash))− aj ×Espm

where hj is the number of hits that happen when accessing procedure j, mj is the number
of misses and Ecache is the energy spent accessing the cache.

3.2 Simulation environment

For clarity, the system being simulated is shown again on figure 3.2.

To perform the desired evaluations, a high-level simulation environment, that mimics the
accesses to the memory system, was developed in Python [26]. This environment was used
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Figure 3.2: Simulated system.

basically to calculate the total energy consumption for an execution of a given program trace.
A basic overview of the environment can be seen in the class diagram provided in figure 3.3.

In order for a simulation to happen, the following elements should be present:

• Simulation object.

• Program trace.

• Memory System.

The simulation object is in control of the execution. It sets up the system with the desired
parameters and runs the simulation. The program trace acts as the processor, providing the
addresses of instructions that should be fetched from memory. The memory system is the
core of the environment, since it is its behavior that the simulation is trying to reproduce.
Its basic functionality is implemented in the Read method.

A memory system can be composed of many memory elements, thus being able to represent
different hardware configurations. For example, to simulate a system composed of a Flash
memory and DM cache, the objects DMCache and FlashMemory can be combined to form a
memory system of the type CachedMemorySystem.

It is very important to mention that, although a high-level simulation environment, such as
the one used here, increases dramatically the time spent on the evaluation phase (not only
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because it is faster to run, but also because it is quicker to implement than a more detailed
version written in Verilog, for example), it hides essential issues that must not be overlooked
when it comes to actual hardware implementation.

For example, for the CachedMemorySystem, the Read method is implemented as presented
below.

def Read(self, address):

hit = self.dm_cache.Read(address)
self.cache_energy += self.dm_cache.energy_per_read
if hit == 1:

return
else:

self.miss_count += 1
self.cache_energy += self.dm_cache.energy_per_write
self.flash_energy += self.flash.energy_per_read

What this method is modeling is the following:

1. The DM cache checks whether the contents of address is in the cache. If it is, it adds
the energy spent reading from cache and no access to the Flash memory is made.

2. If there is a miss, then data must be read from the Flash memory and written into the
cache. The energy consumption of both accesses is computed.

What is implicitly assumed in this scenario is the fact that the entire reading operation
fits the requirements described in section 3.1, in particular those regarding time, which are
reproduced below:

• The whole system should work under the same system clock.

• Preferably, no processor stalling should happen.

In order for this assumption to be valid, an analysis of which hardware implementation could
support such requirements was performed, resulting in the design shown on figure 3.4.

This setup works because the access to cache and flash combined takes less time than the
length of the clock cycle (62.5 ns).
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Figure 3.3: Simulation Environment Class Diagram
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Figure 3.4: Flash memory + DM cache hardware implementation
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3.3 Experiments

For this project, the memory systems modeled and evaluated on the simulation environment
described previously are listed below. Between brackets is the name of the class used to
model each scenario.

• Flash memory only. Used for comparison against all other scenarios. [FlashMemorySystem]

• Flash memory + DM cache (with sizes 128, 256, 512, 1K, 2K, 8K and 16K bytes).
[CachedMemorySystem].

• Flash memory + DM cache with bit-selection (with sizes 128, 256, 512, 1K, 2K, 8K
and 16K bytes). [CachedMemorySystem].

• Flash memory + Scratchpad (with sizes 512, 1K, 2K and 4K bytes). [SPMMemorySystem]

• Flash memory + DM cache with bit-selection (with sizes 128, 256, 512, 1K, 2K, 8K and
16K bytes) + Scratchpad (with sizes 512, 1K, 2K and 4K). [SPMCacheMemorysystem]

All the relevant parameters used throughout the simulations are listed on tables 3.1, 3.2
and 3.3. The parameters related to the Flash memory were provided by Nordic
Semiconductor, while the DM cache and SPM parameters were obtained as explained in
the following section.

Parameter Value
Clock 16 MHz

Flash size 256 kB
Flash energy per read 0.500 nJ
Flash leakage power 0 W
Flash access time 30 ns

Cache size 128 - 16384 B
Cache line size 4 B
Scratchpad size 512 - 4096 B

Table 3.1: Main parameters used during simulations.

The

3.3.1 Energy Models

The first option when it comes to energy models for caches is the CACTI [12] tool. It models
the dynamic power, access time, area and leakage power of caches. Although widespread in
its use, this tool was not employed for this project because it is targeted on newer technologies
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Size (bytes) Energy per read (nJ) Energy per write (nJ) Access time (ns)
176 0.0174 0.0186 1.053
344 0.0264 0.0276 1.309
672 0.0276 0.0294 1.360
1312 0.03 0.0324 1.456
2560 0.0342 0.0378 1.642
4998 0.0402 0.0468 2.006
9728 0.0433 0.0495 2.053 (*)
18944 0.0473 0.0545 2.309 (*)

Table 3.2: Cache parameters. (*) Obtained through interpolation.

Size (bytes) Energy per read (nJ)
512 0.0186
1024 0.0222
2048 0.024
4096 0.0312

Table 3.3: SPM parameters.

only. The technology node of the cache memories to be evaluated in this project is larger
than the minimum available on the CACTI tool, which is 90 nm.

The Artisan tool [13] was used instead. This tool models a SRAM of a given size, targeting a
specific hardware implementation. When modeling the cache, the word size of the memories
being modeled with this tool reflected the size of tag array plus the size of the data array of
a cache line. Obviously, the tool does not model the comparator used to check for hits in the
tag array, nor the AND gate used to assert a hit. These components however do not have a
big impact in the energy consumption of a direct-mapped cache.

The Artisan tool available models only memories up to around 4K bytes, therefore the energy
per values for caches of size 9728 bytes and 18944 bytes were obtained via interpolation.

An issue detected with the values provided by the Artisan tool was that they were too
conservative. It did not match exactly the values obtained through power characterization
performed by Nordic Semiconductor on a memory of same size. Therefore the values provided
by the Artisan were divided by 2 to try to approximate them to more plausible ones.

The final values for energy per access can be seen on tables 3.2 and 3.3.
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3.3.2 Calculating Energy Consumption

The energy consumption calculation depends on the memory system being evaluated. For
the memory systems with cache, it is necessary to know the number of hits and misses. For
every miss in the cache, data must be retrieved from the Flash memory and then written in
the cache. For the memory systems with SPM it is simpler, since it is necessary to compute
only the number of times the SPM is accessed plus the number of times the Flash memory
is accessed. For the scenario which combines DM cache and SPM, both contributions are
taken into account.

The equations used in these different setups are:

DM cache only:

FlashEnergyConsumption = NumberOfMisses ∗ FlashEnergyPerRead

CacheEnergyConsumption = NumberOfMisses ∗ (CacheEnergyPerRead +
CacheEnergyPerWrite) + NumberOfHits ∗CacheEnergyPerRead

TotalEnergyConsumption = FlashEnergyConsumption + CacheEnergyConsumption

Scratchpad only:

FlashEnergyConsumption = NumberOfAccessesToF lash ∗ FlashEnergyPerRead

SPMEnergyConsumption = NumberOfAccessesToSPM ∗ SPMEnergyPerRead

TotalEnergyConsumption = FlashEnergyConsumption + SPMEnergyConsumption

DM cache and SPM combined:

FlashEnergyConsumption = NumberOfAccessesToF lash ∗ FlashEnergyPerRead

SPMEnergyConsumption = NumberOfAccessesToSPM ∗ SPMEnergyPerRead

CacheEnergyConsumption = NumberOfMisses ∗ (CacheEnergyPerRead +
CacheEnergyPerWrite) + NumberOfHits ∗CacheEnergyPerRead

TotalEnergyConsumption =
FlashEnergyConsumption + SPMEnergyConsumption + CacheEnergyConsumption

It is important to notice that there is no factor for static power consumption in the equations
above. That is the case because the values obtained for energy per read and write for the
memories evaluated already include this component.

3.3.3 Benchmark

For this project, only one program was available for evaluation. The software being executed
by the microcontroller system is a Bluetooth Low Energy application, running a heart-rate
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monitor profile. It is an example application used in the Bluetooth Software Development
Kits available at Nordic Semiconductor.
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Results

In this chapter the results from the different scenarios simulated are presented, along with
comparisons among them.

4.1 Direct-Mapped Cache with Optimal Indexing

For each of the cache sizes evaluated, the optimal indexing algorithm described in
section 3.1.1.1 was run for the application being analyzed, resulting in the indexing presented
in the table 4.1, in which an means that the bit n of the address bus is used to compose the
set of bits used to address the DM cache. Thus, a13a5a4a3a2 means that bits 13, 5, 4, 3 and
2, in this order, are used to address the cache line in the DM cache.

For ease of comparison, the indexing using in standard DM caches is also presented in
this table. The DM cache configuration with the standard mapping is called the baseline
implementation, because it is the one used as a base for comparison with the results obtained
with the optimal indexing mapping.

Size (bytes) Baseline Indexing Optimal Indexing
176 a6a5a4a3a2 a13a5a4a3a2
344 a7a6a5a4a3a2 a10a7a5a4a3a2
672 a8a7a6a5a4a3a2 a11a7a6a5a4a3a2
1312 a9a8a7a6a5a4a3a2 a11a8a7a6a5a4a3a2
2560 a10a9a8a7a6a5a4a3a2 a14a11a10a7a6a5a4a3a2
4998 a11a10a9a8a7a6a5a4a3a2 a15a10a9a8a7a6a5a4a3a2
9728 a12a11a10a9a8a7a6a5a4a3a2 a15a12a10a9a8a7a6a5a4a3a2
18944 a13a12a11a10a9a8a7a6a5a4a3a2 a14a12a11a10a9a8a7a6a5a4a3a2

Table 4.1: Baseline and Optimal Indexing.
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4.1.1 Hits and Misses Rates

As explained before, the main motivation behind finding an optimal indexing for DM caches
is to increase the hit rate, that is, the number of times data is found directly in the cache,
without the need to go to the main memory to fetch it. That, obviously, reduces the miss
rate, which is the number of times the data was not found in the cache and therefore an
access to the main memory was needed, resulting in a penalty from the point of view of
energy consumption.

In the figure 4.1 a comparison between the hit rates of the baseline and the optimal indexing
implementations is presented. The indexing version presents a better hit rate for all cache
sizes evaluated. It is interesting to note that the amount of improvement from one size
to another is not constant in any way. For instance, for cache size equal 176 bytes, the
improvement in the hit rate is better than for cache size equal 2560 bytes. This is due to
the fact that the optimal indexing is completely application-dependent. That means that an
optimal indexing can vary greatly from one application to the other.
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Figure 4.1: Hit rates for baseline and indexing implementations.

Showing the same result, but with a different metric, the figure 4.2 presents the miss rates
for each cache size evaluated.

An interesting result is presented on figure 4.3, in which it is possible to see how much
improvement was achieved by using the DM cache with indexing in comparison with
the baseline implementation. Note again, that for the cache size equal 2560 bytes the
improvement was almost 0%.
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Figure 4.2: Miss rates for baseline and indexing implementations.
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Figure 4.3: Miss reduction from baseline to indexing, in percentage.

4.1.2 Energy Consumption

While hit rates are an interesting metric, only by analyzing the energy consumption of each
solution that any conclusions can be drawn. However, firstly, it is interesting to confirm one
of the main assumptions of this project, which is that adding a small SRAM to a memory
system can greatly improve its energy efficiency. This is exactly what the figure 4.4 shows. A
memory system composed of a Flash memory plus a DM cache consumes from 14% to 76%
less energy than a system composed of only a Flash memory. For a cache as small as 176
bytes, savings of 14% can be achieved.

Regarding the comparison on energy savings between the baseline and the indexing
implementations, the figure 4.5 summarizes the results obtained. As expected, as the hit
rate increases, the total energy consumption decreases. Following the same trend of the hit

Evaluation of Cache Architectures for a Low-Power Microcontroller System 31



Chapter 4. Results

0

10

20

30

40

50

60

70

80

176 344 672 1312 2560 4998 9728 18944

Energy Consumption Reduction 

% Savings

Figure 4.4: Energy savings by adding a DM cache to the memory system.

rates, the indexing version is slightly better than the baseline version.
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Figure 4.5: Energy consumption of baseline and indexing implementations comparison.

On figure 4.6 it is presented the improvement on energy savings achieved for the indexing
implementation in comparison to the baseline version. Not surprisingly, it presents exactly
the same pattern on the improvement on miss reductions seen on figure 4.3.
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4.2 Scratchpad

For each of the SPM sizes evaluated, the optimization problem described in section 3.1.2.1
was solved. As explained before, that meant finding the set of procedures to be allocate into
the SPM.

Since SPMs do not actually have the concept of hit rates, only the values regarding energy
consumption are presented in the following section.

4.2.1 Energy Consumption

The impact of having a SPM memory added to the memory system is shown on figure 4.7.
As for the DM caches, it is clear that adding a SPM to the memory system greatly improves
its energy efficiency.

It is important to note that two different scenarios were evaluated in terms of SPM. The first
one assumes that an already existent SRAM is present in the system and up to 4K bytes
are allowed to be used as SPM (while it certainly would be beneficial to have a bigger SPM,
more than 4K bytes would take up too much of the total amount of SRAM available). This
is the actual setup of the microcontroller system that this project has as target. However,
for evaluation purposes and to allow for more comparisons to be made, a different scenario
was envisioned in which SPMs of different sizes were added to the Flash memory to compose
the memory system.

These two setups differ basically in the energy per read of the SPM. For the first scenario, a
SRAM memory of fixed size was used, which implies that the energy per read for all different
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Figure 4.7: Energy savings by adding a SPM to the memory system.

sizes (from 512 bytes to 4K bytes) is the same, because the memory is the same, which is a
4K bytes SRAM. On the other hand, for the second scenario, different values for energy per
read were used for each SPM size. These values were already presented in table 3.3.

Results from both simulations are presented in the figure 4.8, in which SPM-Fixed refers
to the 4K SRAM memory while SPM-Variable assumes that the size of SPM added to the
memory system was not constant. As can be seen in this figure, the difference in energy
savings between these two scenarios is rather small.
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Figure 4.8: Energy consumption of memory systems with SPMs.
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4.3 DM cache plus SPM

For this type of memory system, composed of a Flash memory, DM cache and SPM, all 64
possible combinations were simulated. The results from these simulations are summarized
on figures 4.9 and 4.10. (Please note that a (I) added to the label of a curve means that it
is using the Indexing solution, as explained in the previous chapters).

In figure 4.9 all possible combinations were compared to the DM cache solution, named DM
cache-only. It is clear that the solutions combining DM cache and SPM are much better
than the DM cache-only ones. In particular for small cache sizes, the contribution of having
a SPM added to the system is paramount, improving the energy efficiency in about 32% for
a cache size of 128 bytes, for example.
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Figure 4.9: Energy consumption of DM cache-only versus DM cache + SPM solutions.

An interesting observation can be made by comparing the solutions for the DM caches with
standard mapping and those with optimal indexing. Again for the cache size of 128 bytes,
the baseline (or the one with standard mapping) implementation offers better results than
the indexing version. This is a completely normal outcome because the optimal indexing
was calculated based on the fact that all accesses to the memory were cacheable, that is, the
algorithm used as input the entire program trace. However after the optimization problem
was executed, and some portions of the program trace were re-mapped to the SPM, the set
of addresses that the cache sees has changed, therefore changing the balance of mapping of
addresses to the cache. A possible improvement could be made by running the Indexing
algorithm again to calculate the optimal mapping for the new set of addresses. While it
seems as an interesting idea, based on the results presented in the previous sections, it is
unlikely that this would ensue in big changes compared to the values already obtained and
displayed in figure 4.9.

In figure 4.10 all possible combinations were compared to the memory system composed of a
SPM but no cache, named SPM-only solution. As before, the combined solutions are better
than the SPM-only ones. It is worth noting the big impact that adding such a small cache
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(of size 128 bytes) had on the overall energy consumption of the system with a 512 bytes
SPM, as can be seen in the beginning of the plot of figure 4.9, in which a reduction on energy
consumption of around 20% was achieved in comparison to the version without cache.
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Figure 4.10: Energy consumption of SPM-only versus DM cache + SPM solutions.

4.4 DM cache-only versus SPM-only

The comparison among these two solutions can be summarized on figure 4.11. On this figure,
SPM-fixed means the SPM which used the SRAM already present in the system, hence with
a fixed energy per read value across the different sizes, while SPM-variable means a different
energy per read for each size. It is easy to see that for DM caches smaller than 2K bytes, the
energy consumption is smaller than that of the SPMs. However that is inverted for SPMs of
sizes 2K and 4K bytes. That is an expected result, since as the SPM grows, more functions
can be fit into the it, hence the number of accesses to the main memory decreases.

A very interesting conclusion can be drawn from the analysis of figure 4.12, which presents
the hit rates comparison between SPM and DM caches (even though SPM do not have the
concept of hit rates, here they were treated as the number of accesses made to the SPM
memory). For SPM of size 2K bytes, although it presents lower hit rate in comparison to the
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Figure 4.11: Energy consumption of DM caches and SPMs comparison.

DM cache, it still results in less energy consumption. That is due the fact that caches have
misses, while SPM do not. Moreover, as mentioned before, as the size of the SPM increases,
more functions (and bigger functions) fit into the SPM, boosting also the hit rate.

It is also interesting to note that there are no differences between the hit rates of SPM-fixed
and SPM-variable, hence only SPM-fixed, simply named SPM, is present in figure 4.12. The
small difference in the energy per read values of SPMs does not change the result of the
optimization problem, that is, the set of functions mapped to the SPM.
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Figure 4.12: Hit rates of DM caches and SPM comparison.
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Discussion

In this chapter, a summary and analysis of the results from simulations are presented. Later,
an evaluation of the tools and methods applied in this project is also provided.

5.1 Memory Systems

As became clear by the results from the previous section, adding either a DM cache or
a SPM (or both) to a memory system composed of a Flash memory greatly increases its
energy efficiency. This result corroborates with all previous works cited on section 2.

The indexing (or bit-selection) technique applied to the DM cache improved the energy
efficiency for every cache size. Although this improvement was not particularly impressive,
it still might be a good idea to employ it on an actual system. For example, for a cache
size of 1312 bytes, the indexing version saves around 4% in comparison with the standard
implementation. Furthermore, as previously stated, indexing is completely application-
dependent. For example, in the experimental results provided by [18], the reduction of
conflict misses for the Powerstone benchmark ranged from 0% to 100%, with an average of
19.2% for an instruction cache of size 1KB.

The SPM seems to be a very interesting solution. It sports a considerable amount of energy
saving with basically zero overhead, given the fact the target microcontroller system already
has a SRAM available to be used as scratchpad. Moreover, as expected, as the size of the
SPM increases, more functions can be placed in the SPM, increasing the energy savings.

It is important to mention the fact that using a fixed size 4K SRAM as the SPM, instead of
SRAMs of different sizes, did not affect expressively the results in energy savings.

The best solution regarding energy savings is certainly the combination of both DM cache
and SPM in the same memory system.
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Chapter 5. Discussion

When it comes to each individual solution, the decision about whether to add just a DM
cache or use SPM (with fixed energy per read value) clearly depends on the size of these
memories. For DM cache and SPM of size 512 bytes, the DM cache is around 11% more
energy efficient than the SPM. However, adding a DM cache implies in area overhead in the
chip, while SPM do not.

5.2 Tools and Benchmark

As explained before, the evaluations performed in this project targeted an actual
microcontroller system. Not only the selection of the architectures to be evaluated, as
described in section 3.1, were made with this system in mind, but also it shaped the way
simulations were performed. For example, instead of using generic benchmarks to evaluate
the solutions proposed, the software that actually runs in this system was used to perform
the simulations. This was particularly interesting because both architectures evaluated are
application-dependent, therefore the results of simulations are even more relevant.

The drawback is obvious: only one application was evaluated, thus the solutions were not
thoroughly put to test. It is possible that, for a different application, the DM cache can hold
better hit rates, becoming a more interesting solution at different sizes.

In terms of tool, the simulation tool written in Python proved to be very helpful to speed up
the simulations, while providing a simple output in terms of results.
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Chapter 6

Conclusions and future work

This project, as described in section 1.1, was decomposed in different tasks. An account of
each of them is provided in the following paragraphs.

Task 1: Realize a broad literature research on the field of cache architectures for energy
consumption reduction.

As can be seen on section 2, this task was fully accomplished. More than 20 papers were
researched, resulting in a sound foundation for future work in different cache solutions for
energy efficient memory systems. As predicted, not all ideas proposed in the papers could be
applied to this project. Some of the solutions focused on circuit techniques, which demand a
different evaluation approach. This is also the case with associative memories.

Tiny Caches seem to be an interesting approach, but it was discharged because it needs access
to the internal signals of the processor to be fully implemented. Way-prediction requires extra
micro-architecture structures which are not present in the microprocessor used in the target
system.

Task 2: Select two or more memory system architectures for evaluation through simulation.

This task was also fully accomplished, as exposed in section 3.1. As a result of this task,
an optimal bit-selection algorithm was implemented in C++. It makes used of a BDD and
ADD package called CUDD, available on [25].

This task comprises not only critically choosing which solutions should be evaluated, but also
implementing any needed algorithm or tool for the given architectures.

Task 3: Perform high-level simulations with the selected architectures and an actual
application.
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Chapter 6. Conclusions and future work

The accomplishment of this task is thoroughly described in chapters 3 and 4.

In more general terms, this project achieved its goal of evaluating different caches
architectures for a given microcontroller system. The basic conclusion to be drawn is that it
is highly advantageous to add a small SRAM to the memory system. There is a clear trade-off
between area overhead versus energy efficiency when it comes to both solutions evaluated.

6.1 Future Work

This project gives room to many interesting possibilities. In one hand, as mentioned before,
the literature research presented various ideas that can be used in different contexts. On
the other hand, in the scope of this project, at least another architecture could be modeled
in the high-level simulation environment for comparison with the already implemented ones.
A good candidate would be the way-halting cache architecture, presented in section 2.2.4.
The idea presented in [32] describes a 4-way halting cache, while for this project a possible
solution could be a 2-way halting cache.

As explained before, for this project only one application was simulated. Therefore, a further
improvement of this project would be to perform the simulations with different applications.
That would improve the quality of the comparisons and assessments of the solutions modeled.

Yet another step for this project would be to have the solutions here presented modeled in a
Hardware Description Language (HDL), such as Verilog, to validate the findings obtained.
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Appendix A

Bit-selection optimal algorithm

#include "cuddObj.hh"
#include <math.h>
#include <iostream>
#include <fstream>
#include <cassert>
#include <sstream>
#include <bitset>
#include <map>
#include <stdio.h>
#include <limits>

using namespace std;

int const NUMBER_OF_ADDRESS_BITS = 18;
int const NUMBER_OF_INDEX_BITS = 5;
int const MAX_NUMBER_OF_INDEX_BITS = 12;

// New type definition
typedef std::map<int, int> MemoryDict;
typedef std::map<std::pair<int, int>, int> PairDict;
typedef MemoryDict::const_iterator It;

/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] UNUSED = "$Id: testobj.cc,v 1.7 2012/02/05 01:06:40 fabio Exp fabio $";
#endif

/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/

static void testAdd(Cudd& mgr, int verbosity);

/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
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/**Function********************************************************************

Synopsis [Main program for testobj.]

Description []

SideEffects [None]

SeeAlso []

******************************************************************************/
int
main(int argc, char **argv)
{

int verbosity = 0;

if (argc == 2) {
int retval = sscanf(argv[1], "%d", &verbosity);
if (retval != 1)

return 1;
} else if (argc != 1) {

return 1;
}

Cudd mgr(0,2);
cout << "wataheu\n";
testAdd(mgr,6);
return 0;

} // main

int ConvertStrToInt(string data){
int x;
std::stringstream str(data);
str >> x;
return x;

}

MemoryDict GetLastMemoryAccessedCache(vector<int> program_trace){

MemoryDict last_memory_access;

int number_of_mem_accesses = program_trace.size();
int address_i;

for (int i = 0; i < number_of_mem_accesses; i++){
address_i = program_trace[i];
last_memory_access[address_i] = i;

}

return last_memory_access;

}

bitset<NUMBER_OF_ADDRESS_BITS> CalculateDCP(int address_i, int address_j){
// cout << "\nxoring " << address_i << " , " << address_j << "\n";

bitset<NUMBER_OF_ADDRESS_BITS> address_i_bits(address_i);
bitset<NUMBER_OF_ADDRESS_BITS> address_j_bits(address_j);
bitset<NUMBER_OF_ADDRESS_BITS> xor_addresses = address_i_bits ^ address_j_bits;

// cout << xor_addresses;
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return xor_addresses;

}

void CalculateCP(bitset<NUMBER_OF_ADDRESS_BITS> DCP, vector<bitset<NUMBER_OF_ADDRESS_BITS> > &CP){

// if the vector is empty, just add it the DCP
/* cout << "\nCP ADDRESS " << &CP;

cout << "\nSize " << CP.size();*/
int size = CP.size();
if (CP.empty()){

CP.push_back(DCP);
return;

}
bitset<NUMBER_OF_ADDRESS_BITS> temp;

for (int i = 0; i < size; i++){
// make a AND with all elements from CP, one at a time

// cout << "\n\nDCP " << DCP.to_ulong() << " CP[" << i << "] " << CP[i].to_ulong() << "\n";
temp = DCP & CP[i];

// cout << "temp " << temp.to_ulong() << "\n";
if (temp == DCP){

CP[i] = temp;
return;

}
else if (temp == CP[i])

return;
else{

CP.push_back(DCP);
return;

}
}

return;

}

vector<bitset<NUMBER_OF_ADDRESS_BITS> > GeneratePatterns(int number_of_index_bits){

cout << " GeneratePatterns \n";
int number_of_addresses = pow(2, NUMBER_OF_ADDRESS_BITS);

cout << number_of_addresses << "\n";

vector<bitset<NUMBER_OF_ADDRESS_BITS> > patterns;

int count_number_of_ones = 0;
for (int i = 0; i < number_of_addresses; i++){

bitset<NUMBER_OF_ADDRESS_BITS> temp(i);

count_number_of_ones = 0;
for (int j = 0; j < NUMBER_OF_ADDRESS_BITS; j++){

if (temp[j] == 1)
count_number_of_ones++;

}

if (count_number_of_ones == number_of_index_bits){
patterns.push_back(temp);

}
}

return patterns;
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}

void Evaluate(vector<bitset<NUMBER_OF_ADDRESS_BITS> > &all_patterns, int number_of_index_bits, ADD &add_result){

cout << "\nStarting evaluation of cache size with " << number_of_index_bits << " indexes \n";

int minimum, temp_value;
minimum = std::numeric_limits<int>::max();

ADD eval_add;

DdNode* n;
DdNode min;
int inputs[NUMBER_OF_ADDRESS_BITS];
int bit;

for (int p = 0; p < all_patterns.size(); p++){

cout << "\nEvaluating: ";
for (int s = 0; s < NUMBER_OF_ADDRESS_BITS; s++){

bit = all_patterns[p][s];
cout << bit;
inputs[s] = bit;

}

cout << "\n";
eval_add = add_result.Eval(inputs);
eval_add.print(2, 6);

n = eval_add.getNode();
temp_value = n->type.value;
if (temp_value < minimum)

minimum = temp_value;
min = *n;

}

// finding the minimum
cout << "\nMinimum value: ";
cout << minimum;
cout << "\n";
cout << n;
cout << "\n";

return;

}

static void
testAdd(

Cudd& mgr,
int verbosity)

{

// initializing the ADD with background constant as plusInfinity, so we can
// actually see the 0
ADD pInf = mgr.plusInfinity();
mgr.SetBackground(pInf);

// creating the initial ADD vars and result
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ADD result = mgr.constant(0);

vector<BDD> y(NUMBER_OF_ADDRESS_BITS);

// initialize the ADD
int i;
for (i = 0; i < NUMBER_OF_ADDRESS_BITS; i++) {

y[i] = mgr.bddVar(i);
}

bitset<NUMBER_OF_ADDRESS_BITS> address_i_bits;
bitset<NUMBER_OF_ADDRESS_BITS> address_j_bits;
bitset<NUMBER_OF_ADDRESS_BITS> DCP;

// read from file and put it on an list of integers
std::string line;
int number;
ifstream myfile ("ant_tx.log.out");

int myints[] = {0, 1, 5, 6, 1, 5, 6, 7, 6};
vector<int> program_trace; // (myints, myints + sizeof(myints) / sizeof(int) );

// read the trace file and puts in the variable program_trace
if (myfile.is_open())
{

do {
getline (myfile,line);
number = ConvertStrToInt(line);
program_trace.push_back(number);

}
while ( myfile.good() );
myfile.close();

}

// cache the last index of each address in a dict like structure
// this is used to speed up the process of checking whether the current address
// being analysed is the last reference being made to it,
// if it is, then nothing should be done

MemoryDict last_memory_access;
last_memory_access = GetLastMemoryAccessedCache(program_trace);

// main body of the algorithm
// double loop to go over the addresses
bool index_found;
int number_of_mem_accesses = program_trace.size();
int address_i, address_j;
int last_access_of_address_i;

pair<int, int> pair_of_addresses;

BDD minterm, temp;

int pair_found;

for (int i = 0; i < number_of_mem_accesses; i++){

PairDict edge_cache;
vector<bitset<NUMBER_OF_ADDRESS_BITS> > CP;
vector<BDD> CP_BDD;
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// used to cache pairs in the same edge (address_i -> address_j)

address_i = program_trace[i];
last_access_of_address_i = last_memory_access[address_i];

index_found = last_access_of_address_i > i;

// this means that there will be a reference to address_i in the future
if (index_found){

for (int j = i + 1; j < number_of_mem_accesses; j++){
address_j = program_trace[j];

// if the addresses match, we found an edge, that is, a list
// of addresses for which the conflicts should be analysed
if (address_i == address_j){

// add CP to ADD
temp = mgr.bddZero();

for (int each_cp = 0; each_cp < CP.size(); each_cp++){

minterm = mgr.bddOne();
for (int bit_index = 0; bit_index < NUMBER_OF_ADDRESS_BITS; bit_index++){

if (CP[each_cp][bit_index] == 1)
minterm *= ~y[bit_index];

}
temp += minterm;

}
result += temp.Add();

break;
}

// i will cache the expression (ADD) for each pair of addresses
// because the same pair generates the same boolean expression
// which when "ORed" with same pair, will be simplified
// therefore there is no need to add it to the ADD
if (address_i > address_j)

pair_of_addresses = make_pair(address_j, address_i);
else

pair_of_addresses = make_pair(address_i, address_j);

pair_found = edge_cache.count(pair_of_addresses);

// if pair not found, then add expression to the ADD and add it to
// the cache, otherwise, do nothing =)
if (!pair_found){

edge_cache[pair_of_addresses] = 1;

DCP = CalculateDCP(address_i, address_j);
CalculateCP(DCP, CP);

}
}

}
}

cout << "\nresult", result.print(2,verbosity);
cout << "\n\n";

for (int n = NUMBER_OF_INDEX_BITS; n <= MAX_NUMBER_OF_INDEX_BITS; n++){
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vector<bitset<NUMBER_OF_ADDRESS_BITS> > patterns = GeneratePatterns(n);
Evaluate(patterns, n, result);

}

// vector<bitset<NUMBER_OF_ADDRESS_BITS> > all_patterns_2k = GeneratePatterns(NUMBER_OF_INDEX_BITS + 1);
// vector<bitset<NUMBER_OF_ADDRESS_BITS> > all_patterns_4k = GeneratePatterns(NUMBER_OF_INDEX_BITS + 2);
//
// Evaluate(all_patterns_2k, NUMBER_OF_INDEX_BITS + 1, result);
// Evaluate(all_patterns_4k, NUMBER_OF_INDEX_BITS + 2, result);

} // testAdd
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Simulation Environment

#===============================================================================
# General Simulation Parameters
#===============================================================================
MAIN_MEMORY_SIZE = 262144 #bytes
FLASH_ENERGY_PER_READ = 0.1593
SPM_ENERGY_PER_READ = 0.0218

#===============================================================================
# Specific Simulation Parameters
#===============================================================================
class DMCache_32Words:

energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 176 #bytes
mapping = "000010000000111100"
trace_file = "trace.log"

class DMCache_64Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 344 #bytes
mapping = "000000010010111100"
trace_file = "trace.log"

class DMCache_128Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 672 #bytes
mapping = "000000100011111100"
trace_file = "trace.log"

class DMCache_256Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 1312 #bytes
mapping = "000000100111111100"
trace_file = "trace.log"
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class DMCache_512Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 2560 #bytes
mapping = "000100110011111100"
trace_file = "trace.log"

class DMCache_1024Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 4998 #bytes
mapping = "001000011111111100"
trace_file = "trace.log"

class DMCache_2048Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 9728 #bytes
mapping = "001001011111111100"
trace_file = "trace.log"

class DMCache_4096Words:
energy_per_read = 0.3
energy_per_write = 0.3
cache_size = 9728 #bytes
mapping = "000101111111111100"
trace_file = "trace.log"
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’’’
Created on Nov 15, 2012

@author: vcarlos
’’’

import inspect
import scenarios

for name, obj in inspect.getmembers(scenarios):
if inspect.isclass(obj):

if name.startswith("Factory"):
if obj.build:

print "----------------------", name, "-------------------------"
# print name

sim = obj.Build()
sim.Run()
print sim
print

if __name__ == ’__main__’:
pass
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’’’
Created on Nov 3, 2012

@author: vcarlos
’’’

class Simulation(object):
’’’
Runs the simulation of the system
’’’

def __init__(self, memory_system, trace_file):
’’’
Constructor
’’’
self.memory_system = memory_system
self.trace_file_name = trace_file
self.program_trace = self._ReadProgramTrace()

def _ReadProgramTrace(self, ):
f = open(self.trace_file_name, "r")
program_trace = []
line = f.readline()
while line != "":

l = int(line, 16)
program_trace.append(l)
line = f.readline()

f.close()

return program_trace

def Run(self):

for each_address in self.program_trace:
self.memory_system.Read(each_address)

def __str__(self, *args, **kwargs):
result = "------------------------- Simulation Results -------------------------"
result += "\nProgram size: " + str(len(self.program_trace))
result += str(self.memory_system)
result += "\n"
return result

Evaluation of Cache Architectures for a Low-Power Microcontroller System 55



Appendix B. Simulation Environment

’’’
Created on Nov 3, 2012

@author: vcarlos
’’’
from sim import Simulation
from mem.flash import FlashMemory
from mem.memory_system import FlashMemorySystem, SPMMemorySystem, \

CachedMemorySystem, SPMCacheMemorySystem
from mem.cache import DMCache, XORDMCache
from mem.spm_builder import SPMBuilderWithCache, SPMBuilder
from param import sim1, sim2, sim3

#===============================================================================
# General Simulation Parameters
#===============================================================================
MAIN_MEMORY_SIZE = 262144 # bytes
FLASH_ENERGY_PER_READ = 0.500
SPM_ENERGY_PER_READ = 0.0312

#===============================================================================
# Current Simulation Parameters
#===============================================================================
current_sim = sim1
trace_file = current_sim.trace_file
analysis_file = current_sim.analysis_file

# LIST_OF_FUNCTIONS_WORK_SHEET = "/home/vcarlos/workspace/simulation/input/list_of_functions.xls"

#===============================================================================
# Cache Factories
#===============================================================================

#===============================================================================
# Baselines
#===============================================================================
class CacheFactory32WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0174
energy_per_write = 0.0186
cache_size = 176 # bytes
mapping = "000000000001111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory64WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0264
energy_per_write = 0.0276
cache_size = 344 # bytes
mapping = "000000000011111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory128WordsBaseline():
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@staticmethod
def Build():

energy_per_read = 0.0276
energy_per_write = 0.0294
cache_size = 672 # bytes
mapping = "000000000111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory256WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.03
energy_per_write = 0.0324
cache_size = 1312 # bytes
mapping = "000000001111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory512WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0342
energy_per_write = 0.0378
cache_size = 2560 # bytes
mapping = "000000011111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory1024WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0402
energy_per_write = 0.0468
cache_size = 4998 # bytes
mapping = "000000111111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory2048WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0433
energy_per_write = 0.0496
cache_size = 9728 # bytes
mapping = "000001111111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory4096WordsBaseline():

@staticmethod
def Build():

energy_per_read = 0.0473
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energy_per_write = 0.0545
cache_size = 18944 # bytes
mapping = "000011111111111100"

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

#===============================================================================
# Indexing
#===============================================================================
class CacheFactory32Words():

@staticmethod
def Build():

energy_per_read = 0.0174
energy_per_write = 0.0186
cache_size = 176 # bytes
mapping = current_sim.mapping["CacheFactory32Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory64Words():

@staticmethod
def Build():

energy_per_read = 0.0264
energy_per_write = 0.0276
cache_size = 344 # bytes
mapping = current_sim.mapping["CacheFactory64Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory128Words():

@staticmethod
def Build():

energy_per_read = 0.0276
energy_per_write = 0.0294
cache_size = 672 # bytes
mapping = current_sim.mapping["CacheFactory128Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory256Words():

@staticmethod
def Build():

energy_per_read = 0.03
energy_per_write = 0.0324
cache_size = 1312 # bytes
mapping = current_sim.mapping["CacheFactory256Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory512Words():
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@staticmethod
def Build():

energy_per_read = 0.0342
energy_per_write = 0.0378
cache_size = 2560 # bytes
mapping = current_sim.mapping["CacheFactory512Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory1024Words():

@staticmethod
def Build():

energy_per_read = 0.0402
energy_per_write = 0.0468
cache_size = 4998 # bytes
mapping = current_sim.mapping["CacheFactory1024Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory2048Words():

@staticmethod
def Build():

energy_per_read = 0.0433
energy_per_write = 0.0496
cache_size = 9728 # bytes
mapping = current_sim.mapping["CacheFactory2048Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

class CacheFactory4096Words():

@staticmethod
def Build():

energy_per_read = 0.0473
energy_per_write = 0.0545
cache_size = 18944 # bytes
mapping = current_sim.mapping["CacheFactory4096Words"]

return DMCache(MAIN_MEMORY_SIZE, cache_size, mapping, energy_per_read, energy_per_write)

#===============================================================================
# XORing
#===============================================================================

class CacheFactory256WordsXOR():

@staticmethod
def Build():

energy_per_read = 0.0174
energy_per_write = 0.0174
cache_size = 1312 # bytes

return XORDMCache(MAIN_MEMORY_SIZE, cache_size, "", energy_per_read, energy_per_write)
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#===============================================================================
# Memory System Factories
#===============================================================================
class FactoryFlashMemoryBaselineMemorySystem():

build = current_sim.run[’FactoryFlashMemoryBaselineMemorySystem’]

@staticmethod
def Build():

trace_file = current_sim.trace_file
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = FlashMemorySystem(flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

#===============================================================================
# SPM 512B Scenarios
#===============================================================================
class FactorySPM512MemorySystem():

build = current_sim.run[’FactorySPM512MemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
spm = SPMBuilder(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size)

memory_system = SPMMemorySystem(spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache256WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache256WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM512WithDMCache256WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache256WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache128WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache128WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache128WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache128WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)
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flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache32WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache32WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache32WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache32WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache64WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache64WordsMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache64WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache64WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache512WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache512WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM512WithDMCache512WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache512WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache1024WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache1024WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache1024WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache1024WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)
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flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache2048WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache2048WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache2048WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache2048WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache4096WordsMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache4096WordsMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM512WithDMCache4096WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM512WithDMCache4096WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 512 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

#===============================================================================
# SPM 1K Scenarios
#===============================================================================
class FactorySPM1kMemorySystem():

build = current_sim.run[’FactorySPM1kMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
spm = SPMBuilder(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size)

memory_system = SPMMemorySystem(spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM1kWithDMCache256WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache256WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache256WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache256WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache128WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache128WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)
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flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache128WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache128WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache32WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache32WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache32WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache32WordsBaselineMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache64WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache64WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache64WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache64WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM1kWithDMCache512WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache512WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache512WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache512WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache1024WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache1024WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)
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flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache1024WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache1024WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache2048WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache2048WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache2048WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache2048WordsBaselineMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache4096WordsMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache4096WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM1kWithDMCache4096WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM1kWithDMCache4096WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 1024 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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#===============================================================================
# SPM 2k Scenarios
#===============================================================================
class FactorySPM2kMemorySystem():

build = current_sim.run[’FactorySPM2kMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
spm = SPMBuilder(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size)

memory_system = SPMMemorySystem(spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache256WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache256WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache256WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache256WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
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dm_cache = CacheFactory256Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache128WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache128WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache128WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache128WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache32WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache32WordsMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache32WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache32WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache64WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache64WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM2kWithDMCache64WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache64WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache512WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache512WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache512WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache512WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
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dm_cache = CacheFactory512WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache1024WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache1024WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache1024WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache1024WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache2048WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache2048WordsMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache2048WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache2048WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM2kWithDMCache4096WordsMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache4096WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

78 Vinicius Almeida Carlos



Appendix B. Simulation Environment

class FactorySPM2kWithDMCache4096WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM2kWithDMCache4096WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 2048 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

#===============================================================================
# SPM 4k Scenarios
#===============================================================================
class FactorySPM4kMemorySystem():

build = current_sim.run[’FactorySPM4kMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
spm = SPMBuilder(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size)

memory_system = SPMMemorySystem(spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache256WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache256WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)
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flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache256WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache256WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache256WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory256Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache128WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache128WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache128WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache128WordsBaselineMemorySystem’]

@staticmethod
def Build():
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spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache128WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory128WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache32WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache32WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache32WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache32WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache32WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory32WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim
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class FactorySPM4kWithDMCache64WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache64WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache64WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache64WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache64WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory64WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache512WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache512WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache512WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory512WordsBaseline.Build()
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memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache1024WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache1024WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache1024WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache1024WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache1024WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory1024WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache2048WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache2048WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes
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# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache2048WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache2048WordsBaselineMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache2048WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory2048WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache4096WordsMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache4096WordsMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096Words.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

class FactorySPM4kWithDMCache4096WordsBaselineMemorySystem():

build = current_sim.run[’FactorySPM4kWithDMCache4096WordsBaselineMemorySystem’]
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@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = 4096 # bytes

# this is needed for pre-computation of best SPM mapping
sim = FactoryDMCache4096WordsBaselineMemorySystem.Build()
spm = SPMBuilderWithCache(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size, sim)

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
dm_cache = CacheFactory4096WordsBaseline.Build()

memory_system = SPMCacheMemorySystem(dm_cache, spm, flash_memory)
sim = Simulation(memory_system, trace_file)
return sim

#===============================================================================
# Control Scenario
#===============================================================================
class FactorySPMFullSizeMemorySystem():

’’’
This scenario assumes a SPM of the size of the full memory.
Used to compare with the results from analysis.txt
’’’

build = current_sim.run[’FactorySPMFullSizeMemorySystem’]

@staticmethod
def Build():

spm_energy_per_read = SPM_ENERGY_PER_READ
spm_size = MAIN_MEMORY_SIZE # bytes

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
spm = SPMBuilder(analysis_file, FLASH_ENERGY_PER_READ, spm_energy_per_read, spm_size)

memory_system = SPMMemorySystem(spm, flash_memory)
sim = Simulation(memory_system, trace_file)

# for f in spm.status:
# print spm.status[f], " , ", f
# print
# for f in spm.mapping:
# print f.number_fetches, ",", f.name, ",", hex(f.starting_address + 1)

return sim

#===============================================================================
# Cache-only Scenarios
#===============================================================================

class FactoryDMCache32WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache32WordsBaselineMemorySystem’]

@staticmethod
def Build():
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dm_cache = CacheFactory32WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache64WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache64WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory64WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache128WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache128WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory128WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache256WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache256WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory256WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache512WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache512WordsBaselineMemorySystem’]
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@staticmethod
def Build():

dm_cache = CacheFactory512WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache1024WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache1024WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory1024WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache2048WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache2048WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory2048WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache4096WordsBaselineMemorySystem():

build = current_sim.run[’FactoryDMCache4096WordsBaselineMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory4096WordsBaseline.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim
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class FactoryDMCache32WordsMemorySystem():

build = current_sim.run[’FactoryDMCache32WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory32Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache64WordsMemorySystem():

build = current_sim.run[’FactoryDMCache64WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory64Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache128WordsMemorySystem():

build = current_sim.run[’FactoryDMCache128WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory128Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache256WordsMemorySystem():

build = current_sim.run[’FactoryDMCache256WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory256Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
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memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache512WordsMemorySystem():

build = current_sim.run[’FactoryDMCache512WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory512Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache1024WordsMemorySystem():

build = current_sim.run[’FactoryDMCache1024WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory1024Words.Build()

flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache2048WordsMemorySystem():

build = current_sim.run[’FactoryDMCache2048WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory2048Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache4096WordsMemorySystem():

build = current_sim.run[’FactoryDMCache4096WordsMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory4096Words.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)
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sim = Simulation(memory_system, trace_file)
return sim

class FactoryDMCache256WordsXORMemorySystem():

build = current_sim.run[’FactoryDMCache256WordsXORMemorySystem’]

@staticmethod
def Build():

dm_cache = CacheFactory256WordsXOR.Build()
flash_memory = FlashMemory(MAIN_MEMORY_SIZE, FLASH_ENERGY_PER_READ)
memory_system = CachedMemorySystem(dm_cache, flash_memory)

sim = Simulation(memory_system, trace_file)
return sim

#
# def BuildDMCache2kBaseline(trace_file):
#
# CACHE_SIZE = 2048
# MAPPING = "000000011111111100"
# CACHE_ENERGY_PER_READ = 5
# CACHE_ENERGY_PER_WRITE = 8
#
# dm_cache = DMCache(MAIN_MEMORY_SIZE, CACHE_SIZE, MAPPING, CACHE_ENERGY_PER_READ, CACHE_ENERGY_PER_WRITE)
# flash_memory = FlashMemory(FLASH_ENERGY_PER_READ)
# memory_system = CachedMemorySystem(dm_cache, flash_memory)
#
# sim = Simulation(memory_system, trace_file)
# sim.Run()
#
# print sim
#
#
#
# def BuildDMCache2k(trace_file):
#
# CACHE_SIZE = 2048
# MAPPING = "001001011111111100"
# CACHE_ENERGY_PER_READ = 5
# CACHE_ENERGY_PER_WRITE = 8
#
# dm_cache = DMCache(MAIN_MEMORY_SIZE, CACHE_SIZE, MAPPING, CACHE_ENERGY_PER_READ, CACHE_ENERGY_PER_WRITE)
# flash_memory = FlashMemory(FLASH_ENERGY_PER_READ)
# memory_system = CachedMemorySystem(dm_cache, flash_memory)
#
# sim = Simulation(memory_system, trace_file)
# sim.Run()
#
# print sim
#
# def BuildDMCache4kBaseline(trace_file):
#
# CACHE_SIZE = 4096
# MAPPING = "000000111111111100"
# CACHE_ENERGY_PER_READ = 5
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# CACHE_ENERGY_PER_WRITE = 8
#
# dm_cache = DMCache(MAIN_MEMORY_SIZE, CACHE_SIZE, MAPPING, CACHE_ENERGY_PER_READ, CACHE_ENERGY_PER_WRITE)
# flash_memory = FlashMemory(FLASH_ENERGY_PER_READ)
# memory_system = CachedMemorySystem(dm_cache, flash_memory)
#
# sim = Simulation(memory_system, trace_file)
# sim.Run()
#
# print sim
#
#
#
# def BuildDMCache4k(trace_file):
#
# CACHE_SIZE = 4096
# MAPPING = "000101111111111100"
# CACHE_ENERGY_PER_READ = 5
# CACHE_ENERGY_PER_WRITE = 8
#
# dm_cache = DMCache(MAIN_MEMORY_SIZE, CACHE_SIZE, MAPPING, CACHE_ENERGY_PER_READ, CACHE_ENERGY_PER_WRITE)
# flash_memory = FlashMemory(FLASH_ENERGY_PER_READ)
# memory_system = CachedMemorySystem(dm_cache, flash_memory)
#
# sim = Simulation(memory_system, trace_file)
# sim.Run()
#
# print sim
#
#
# trace_file = "trace.log"

# get parameters for each scenario on module parameters

# BuildFlashMemoryBaseline(trace_file)
# BuildSPM1k(trace_file)
# BuildSPM4k(trace_file)
# BuildSPMFullSize(trace_file)

# BuildDMCache1kBaseline(trace_file)
# BuildDMCache1k(trace_file)
#
# BuildDMCache2kBaseline("trace.log")
# BuildDMCache2k("trace.log")
#
# BuildDMCache4kBaseline("trace.log")
# BuildDMCache4k("trace.log")

if __name__ == ’__main__’:
pass
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import abc

class Memory(object):

def __init__(self, size, energy_per_read):
self.energy_per_read = energy_per_read
self.size = size

@abc.abstractmethod
def Read(self, address):

return
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’’’
Created on Nov 3, 2012

@author: vcarlos
’’’
import abc

#===============================================================================
# MemorySystem
#===============================================================================
class MemorySystem(object):

’’’
classdocs
’’’

def __init__(self):
’’’
Constructor
’’’
self.total_energy = 0

@abc.abstractmethod
def Read(self, address):

return

#===============================================================================
# FlashMemorySystem
#===============================================================================
class FlashMemorySystem(MemorySystem):

def __init__(self, flash_memory):
super(FlashMemorySystem, self).__init__()
self.flash = flash_memory

self.flash_energy = 0

def Read(self, address):

self.flash_energy += self.flash.energy_per_read
return 1

def __str__(self, *args, **kwargs):
result = "\nMemory System composed of"
result += "\n"
result += "\nFlash Memory"
result += "\n"
result += "Total Energy: " + str(self.flash_energy)

return result

#===============================================================================
# CachedMemorySystem
#===============================================================================
class CachedMemorySystem(MemorySystem):

def __init__(self, dm_cache, flash_memory):
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super(CachedMemorySystem, self).__init__()
self.dm_cache = dm_cache
self.flash = flash_memory
self.miss_count = 0
self.hit_count = 0

self.cache_energy = 0
self.flash_energy = 0

def Read(self, address):

hit = self.dm_cache.Read(address)
self.cache_energy += self.dm_cache.energy_per_read
if hit == 1:

self.hit_count += 1
return 1

else:
self.miss_count += 1
self.cache_energy += self.dm_cache.energy_per_write
self.flash_energy += self.flash.energy_per_read
return 0

def __str__(self, *args, **kwargs):
result = "\nMemory System composed of"
result += "\nCache:"
result += "\n\tDM: " + str(self.dm_cache.size) + " bytes"
result += "\n\t\tMapping: " + self.dm_cache.mapping
result += "\n\t\tTotal Misses: " + str(self.miss_count)
result += "\n\t\tTotal Hits: " + str(self.hit_count)
result += "\n\t\tConflict Misses: " + str(self.dm_cache.GetTotalMissConflicts())
result += "\n\t\tEnergy: " + str(self.cache_energy)
result += "\n"
result += "\nFlash Memory"
result += "\n\tEnergy: " + str(self.flash_energy)
result += "\n"
result += "Total Energy: " + str(self.flash_energy + self.cache_energy)

# result += "\n\n number of sets: " + str(len(self.dm_cache.data))

return result

#===============================================================================
# SPMMemorySystem
#===============================================================================
class SPMMemorySystem(MemorySystem):

def __init__(self, spm, flash_memory):
super(SPMMemorySystem, self).__init__()
self.spm = spm
self.flash = flash_memory

self.spm_energy = 0
self.flash_energy = 0
self.cfa = 0

def Read(self, address):

hit = self.spm.Read(address)
if hit:
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self.spm_energy += self.spm.energy_per_read
return 1

else:
# print "address going to flash: ", hex(address)

self.cfa += 1
self.flash_energy += self.flash.energy_per_read
return 0

def __str__(self, *args, **kwargs):
result = "\nMemory System composed of"
result += "\nSPM:" + str(self.spm.size) + " bytes"
result += "\n\tEnergy: " + str(self.spm_energy)
result += "\n"
result += "\nFlash Memory"
result += "\n\tEnergy: " + str(self.flash_energy)
result += "\n"
result += "\nTotal Energy: " + str(self.flash_energy + self.spm_energy)

return result

#===============================================================================
# CachedWithFunctionsMemorySystem
#===============================================================================
class CachedWithFunctionsMemorySystem(CachedMemorySystem):

def __init__(self, dm_cache, flash_memory, list_of_functions):
super(CachedWithFunctionsMemorySystem, self).__init__(dm_cache, flash_memory)

self.mapping = list_of_functions
self.total = 0

def Read(self, address):
’’’

"Read" from memory and return 1 if found, 0 otherwise.
’’’
hit = super(CachedWithFunctionsMemorySystem, self).Read(address)
self.total+=1

for function in self.mapping:
if address >= function.starting_address and address <=function.final_address:

if hit == 1:
function.hit_count += 1

else:
function.miss_count += 1

break

return hit

#===============================================================================
# SPMCacheMemorySystem
#===============================================================================
class SPMCacheMemorySystem(MemorySystem):

def __init__(self, dm_cache, spm, flash_memory):
super(SPMCacheMemorySystem, self).__init__()

self.cached_ms = CachedMemorySystem(dm_cache, flash_memory)
self.spm_ms = SPMMemorySystem(spm, flash_memory)
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def Read(self, address):

hit = self.spm_ms.Read(address)
if not hit:

hit = self.cached_ms.Read(address)

return hit

def __str__(self, *args, **kwargs):
result = "\nMemory System composed of"
result += "\nCache:"
result += "\n\tDM: " + str(self.cached_ms.dm_cache.size) + " bytes"
result += "\n\t\tMapping: " + self.cached_ms.dm_cache.mapping
result += "\n\t\tTotal Misses: " + str(self.cached_ms.miss_count)
result += "\n\t\tTotal Hits: " + str(self.cached_ms.hit_count)
result += "\n\t\tConflict Misses: " + str(self.cached_ms.dm_cache.GetTotalMissConflicts())
result += "\n\t\tEnergy: " + str(self.cached_ms.cache_energy)
result += "\n"
result += "\n\tSPM:" + str(self.spm_ms.spm.size) + " bytes"
result += "\n\t\tEnergy: " + str(self.spm_ms.spm_energy)
result += "\n"
result += "\nFlash Memory"
result += "\n\tEnergy: " + str(self.spm_ms.flash_energy)
result += "\n"
result += "\nTotal Energy: " + str(self.spm_ms.flash_energy + self.spm_ms.spm_energy + self.cached_ms.cache_energy)

return result
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’’’
Created on Nov 3, 2012

@author: vcarlos
’’’
from mem.memory import Memory

class SPM(Memory):
’’’
In this abstraction of scratchpad, we will have mapping of all functions that are
located in the scratchpad. So, instead of a contiguous address space, lets say, from 0x0000 to 0xFFFF,
we will actually just have a mapping of FunctionN (address of instruction calling the function) to: yes,
it is on the scratchpad, or no, it is not in the scratchpad.

’’’

def __init__(self, size, energy_per_read):
’’’
Constructor
’’’
super(SPM, self).__init__(size, energy_per_read)
# contain the function objects that are mapped to scratchpad
self.mapping = []

# auxiliary data structure to return the actual number of "hits" for each function
# to be compared with the data on analysis.txt
self.status = {}

self.size = size

def Read(self, address):
’’’

"Read" from memory and return 1 if found, 0 otherwise.
’’’
for function in self.mapping:

if address >= function.starting_address and address <= function.final_address:
if self.status.has_key(function.name):

count = self.status[function.name]
self.status[function.name] = count + 1

else:
self.status[function.name] = 1

return 1
return 0
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’’’
Created on Nov 14, 2012

@author: vcarlos
’’’
from ctypes import *
import xlrd
from spm import SPM
from mem.memory_system import CachedWithFunctionsMemorySystem

class Function(object):

def __init__(self, times_function_called, number_fetches, function_name, starting_address, size):
self.times_function_called = times_function_called
self.number_fetches = number_fetches
self.name = function_name
self.starting_address = starting_address
self.size = size
final_address = starting_address + size
self.final_address = final_address
# see later where to put them
self.hit_count = 0
self.miss_count = 0

def __str__(self, *args, **kwargs):
res = "---------------Function------------------"
res += "\nName: " + self.name
res += "\nNumber of Fetches: " + str(self.number_fetches)
res += "\nstarting_address: " + str(self.starting_address)
res += "\nfinal_address: " + str(self.final_address)
res += "\nsize: " + str(self.size)
res += "\nhit_count: " + str(self.hit_count)
res += "\nmiss_count: " + str(self.miss_count)
res += "\n"

return res

def CreateListOfFunction(excel_worksheet):

book = xlrd.open_workbook(excel_worksheet)
sheet = book.sheet_by_index(0)

list_of_functions = []

for row in xrange(sheet.nrows-1):
row += 1
times_function_called = int(sheet.cell_value(row, 0))
number_fetches = int(sheet.cell_value(row, 1))
function_name = sheet.cell_value(row, 2)
starting_address = int(sheet.cell_value(row, 3), 16) - 1
size = int(sheet.cell_value(row, 4))
f = Function(times_function_called, number_fetches, function_name, starting_address, size)
list_of_functions.append(f)

return list_of_functions

def LoadMinknapSharedLibrary():
cdll.LoadLibrary("/home/vcarlos/workspace/test/src/minknap.so")
libc = CDLL("/home/vcarlos/workspace/test/src/minknap.so")
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return libc

def RunMinknap(list_of_functions, flash_energy_per_read, sram_energy_per_read, spm_size):
libc = LoadMinknapSharedLibrary()
number_of_functions = len(list_of_functions)

# create the input/output arrays for the minknap function
n = number_of_functions
# x has the solution array (0 or 1)
x = (c_uint*n)()
# p has the profit function. #fetches * (flash - sram)
p = (c_uint*n)()
# w is the cost, in number of bytes
w = (c_uint*n)()
c = spm_size

base_profit = flash_energy_per_read - sram_energy_per_read

# fill in the arrays with data from functions objects
for i, function in enumerate(list_of_functions):

# print "int(round(function.number_fetches * base_profit))", int(round(function.number_fetches * base_profit))
p[i] = int(round(function.number_fetches * base_profit))
w[i] = function.size

res = libc.minknap(n, p, w, x, c)

return res, x

def SPMBuilder(excel_worksheet, flash_energy_per_read, sram_energy_per_read, spm_size):
’’’
Constructs a SPM based on the trace analysis excel sheet.

It makes used of the shared library minknap.so to determine which functions should be placed on
the SPM.

The end results is an SPM object, with the functions that are allocated to it.

A function is an object of class Function.
’’’

# first create list of functions based on the excel work sheet
list_of_functions = CreateListOfFunction(excel_worksheet)
res, solution = RunMinknap(list_of_functions, flash_energy_per_read, sram_energy_per_read, spm_size)

#now I can create the SPM
spm = SPM(spm_size, sram_energy_per_read)
for i, sol in enumerate(solution):

if sol == 1:
func = list_of_functions[i]

# print func
spm.mapping.append(func)

return spm

def RunMinknap2(list_of_functions, flash_energy_per_read, sram_energy_per_read, spm_size, cache_energy_per_read, cache_energy_per_write):
libc = LoadMinknapSharedLibrary()
number_of_functions = len(list_of_functions)

# create the input/output arrays for the minknap function
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n = number_of_functions
# x has the solution array (0 or 1)
x = (c_uint*n)()
# p has the profit function.
p = (c_uint*n)()
# w is the cost, in number of bytes
w = (c_uint*n)()
c = spm_size

# here, spm.mapping has all functions
# now, I need to run a system with a cache, having the knowledge of those functions to determine
# the number of misses that happened on each function, so I can come with the correct profit value
# for putting a particular function into the scratchpad
# remember that, without a cache, the profit is all fetches * main_memory_energy - all_fetches * spm_energy
# now, because there is a cache, not all_fetches go to MM, some of them go to cache, so the calculation is
# number_hits * cache_energy + number_miss * (cache_energy*2 + mm_energy) - all_fetches * spm_energy

hit_energy = cache_energy_per_read
miss_energy = cache_energy_per_read + cache_energy_per_write + flash_energy_per_read

# fill in the arrays with data from functions objects
for i, function in enumerate(list_of_functions):

energy_mm = function.hit_count * hit_energy + function.miss_count * miss_energy
energy_spm = function.number_fetches * sram_energy_per_read

# print "int(round(energy_mm - energy_spm))", int(round(energy_mm - energy_spm))
p[i] = int(round(energy_mm - energy_spm))
w[i] = function.size

res = libc.minknap(n, p, w, x, c)

return res, x

def SPMBuilderWithCache(excel_worksheet, flash_energy_per_read, sram_energy_per_read, spm_size, simulation):
’’’
Constructs a SPM based on the trace analysis excel sheet.

It makes used of the shared library minknap.so to determine which functions should be placed on
the SPM.

The end results is an SPM object, with the functions that are allocated to it.

A function is an object of class Function.
’’’

# first create list of functions based on the excel worksheet
list_of_functions = CreateListOfFunction(excel_worksheet)

dm_cache = simulation.memory_system.dm_cache
flash_memory = simulation.memory_system.flash
simulation.memory_system = CachedWithFunctionsMemorySystem(dm_cache, flash_memory, list_of_functions)

simulation.Run()

cache_energy_per_read = dm_cache.energy_per_read
cache_energy_per_write = dm_cache.energy_per_write

res, solution = RunMinknap2(list_of_functions, flash_energy_per_read, sram_energy_per_read, spm_size, cache_energy_per_read, cache_energy_per_write)

total = 0

#now I can create the SPM
spm = SPM(spm_size, sram_energy_per_read)
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for i, sol in enumerate(solution):
func = list_of_functions[i]
total += func.hit_count + func.miss_count
if sol == 1:

# print func
spm.mapping.append(func)

print "Total", total
assert total == 381661
return spm

#def Run():
# from scenarios import FactoryDMCache128Words
# sim = FactoryDMCache128Words.Build()
# SPMBuilderWithCache("/home/vcarlos/workspace/simulation/input/list_of_functions.xls", 0.1593, 0.0593, 4096, sim)
#
#
#Run()

#===============================================================================
# main
#===============================================================================
if __name__ == ’__main__’:

pass
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from mem.memory import Memory

class FlashMemory(Memory):

def __init__(self, size, energy_per_read):
super(FlashMemory, self).__init__(size, energy_per_read)
self.energy_per_read = energy_per_read
self.size = size

def Read(self, address):
’’’
Instruction is always in the given address.
’’’
return 1

102 Vinicius Almeida Carlos



Appendix B. Simulation Environment

’’’
Created on Nov 2, 2012

@author: vcarlos
’’’
import math
from mem.memory import Memory

class Cache(Memory):
’’’
Implements a cache behaviour
’’’

def __init__(self, size, main_memory_size, energy_per_read, energy_per_write):
’’’
Constructor
’’’
super(Cache, self).__init__(size, energy_per_read)
self.size = size
self.main_memory_size = main_memory_size
self.number_of_address_bits = int(math.log(main_memory_size, 2))
self.energy_per_read = energy_per_read
self.energy_per_write = energy_per_write

self.data = {}

class DMCache(Cache):

def __init__(self, main_memory_size, size, mapping, energy_per_read, energy_per_write):
super(DMCache, self).__init__(size, main_memory_size, energy_per_read, energy_per_write)
self.mapping = mapping

self._str_format = ’{0:0’ + str(self.number_of_address_bits) + ’b}’

def _MapAddress(self, address):
# format the address to binary like string
address = self._str_format.format(address)

# where we have ones, are those that form the address in the cache
mapped_address = ""
for i in xrange(self.number_of_address_bits):

if self.mapping[i] == "1":
mapped_address += address[i]

# return the integer (address on cache)
# print "mapped_address", mapped_address

return int(mapped_address,2)

def _ReadFromCache(self, full_address, cache_address):

value = full_address
# print full_address, cache_address

if self.data.has_key(cache_address):
value = self.data[cache_address]
v = value[-1]
if v != full_address:

# print cache_address, v, full_address
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# print bin(cache_address), bin(v), bin(full_address)
value.append(full_address)
self.data[cache_address] = value
return 0

else:
return 1

else:
# address not there yet, cold miss
self.data[cache_address] = [value]
return 0

return 0

def _ReadFromCache2(self, full_address, cache_address):

value = full_address
if self.data.has_key(cache_address):

if self.data[cache_address] == full_address:
return 1

else:
self.data[cache_address] = value
return 0

else:
# address not there yet, cold miss
self.data[cache_address] = value
return 0

def Read(self, address):
’’’

"Read" from memory and return 1 if hit, 0 if miss.
’’’

pos = self._MapAddress(address)
hit = self._ReadFromCache(address, pos)
return hit

def GetTotalMissConflicts(self):
total = 0
for item in self.data.iteritems():

# in each position there is a list with all addresses mapped to that position
conflicting_addresses = item[1]
conflicting_addresses.sort()

j = 0
number_of_addresses = len(conflicting_addresses)
if number_of_addresses > 1:

# print conflicting_addresses
while j < number_of_addresses:

address = conflicting_addresses[j]
c = conflicting_addresses.count(address)
total+= c - 1
j += c

return total

class XORDMCache(DMCache):

def __init__(self, main_memory_size, size, mapping, energy_per_read, energy_per_write):
super(XORDMCache, self).__init__(main_memory_size, size, mapping, energy_per_read, energy_per_write)
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def _MapAddress(self, address):

# format the address to binary like string
address = self._str_format.format(address)

bits = ""
for i in range(3, 9):

bits += str(int(address[-1*i+1]) ^ int(address[-1*i -6]))

#------------------------------------------------------------ reverse
a = bits
a = list(a)
a.reverse()
bits = ""
for i in a:

bits +=i

# print bits
pos = int(bits + address[-2:], 2)

# print bits + address[-2:]
# print pos

return pos

#===============================================================================
# Main
#===============================================================================
if __name__ == ’__main__’:

pass
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trace_file = "trace.log"
analysis_file = "input/list_of_functions.xls"
mapping = {

"CacheFactory32Words" : "000010000000111100",
"CacheFactory64Words" : "000000010010111100",
"CacheFactory128Words" : "000000100011111100",
"CacheFactory256Words" : "000000100111111100",
"CacheFactory512Words" : "000100110011111100",
"CacheFactory1024Words" : "001000011111111100",
"CacheFactory2048Words" : "001001011111111100",
"CacheFactory4096Words" : "000101111111111100"

}

run = {
"FactoryDMCache1024WordsBaselineMemorySystem" : True,
"FactoryDMCache1024WordsMemorySystem" : True,
"FactoryDMCache128WordsBaselineMemorySystem" : True,
"FactoryDMCache128WordsMemorySystem" : True,
"FactoryDMCache2048WordsBaselineMemorySystem" : True,
"FactoryDMCache2048WordsMemorySystem" : True,
"FactoryDMCache256WordsBaselineMemorySystem" : True,
"FactoryDMCache256WordsMemorySystem" : True,
"FactoryDMCache256WordsXORMemorySystem" : True,
"FactoryDMCache32WordsBaselineMemorySystem" : True,
"FactoryDMCache32WordsMemorySystem" : True,
"FactoryDMCache4096WordsBaselineMemorySystem" : True,
"FactoryDMCache4096WordsMemorySystem" : True,
"FactoryDMCache512WordsBaselineMemorySystem" : True,
"FactoryDMCache512WordsMemorySystem" : True,
"FactoryDMCache64WordsBaselineMemorySystem" : True,
"FactoryDMCache64WordsMemorySystem" : True,
"FactoryFlashMemoryBaselineMemorySystem" : True,
"FactorySPM512MemorySystem" : True,
"FactorySPM512WithDMCache1024WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache1024WordsMemorySystem" : True,
"FactorySPM512WithDMCache128WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache128WordsMemorySystem" : True,
"FactorySPM512WithDMCache2048WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache2048WordsMemorySystem" : True,
"FactorySPM512WithDMCache256WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache256WordsMemorySystem" : True,
"FactorySPM512WithDMCache32WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache32WordsMemorySystem" : True,
"FactorySPM512WithDMCache4096WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache4096WordsMemorySystem" : True,
"FactorySPM512WithDMCache512WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache512WordsMemorySystem" : True,
"FactorySPM512WithDMCache64WordsBaselineMemorySystem" : True,
"FactorySPM512WithDMCache64WordsMemorySystem" : True,
"FactorySPM1kMemorySystem" : True,
"FactorySPM1kWithDMCache1024WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache1024WordsMemorySystem" : True,
"FactorySPM1kWithDMCache128WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache128WordsMemorySystem" : True,
"FactorySPM1kWithDMCache2048WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache2048WordsMemorySystem" : True,
"FactorySPM1kWithDMCache256WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache256WordsMemorySystem" : True,
"FactorySPM1kWithDMCache32WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache32WordsMemorySystem" : True,
"FactorySPM1kWithDMCache4096WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache4096WordsMemorySystem" : True,
"FactorySPM1kWithDMCache512WordsBaselineMemorySystem" : True,
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"FactorySPM1kWithDMCache512WordsMemorySystem" : True,
"FactorySPM1kWithDMCache64WordsBaselineMemorySystem" : True,
"FactorySPM1kWithDMCache64WordsMemorySystem" : True,
"FactorySPM2kMemorySystem" : True,
"FactorySPM2kWithDMCache1024WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache1024WordsMemorySystem" : True,
"FactorySPM2kWithDMCache128WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache128WordsMemorySystem" : True,
"FactorySPM2kWithDMCache2048WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache2048WordsMemorySystem" : True,
"FactorySPM2kWithDMCache256WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache256WordsMemorySystem" : True,
"FactorySPM2kWithDMCache32WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache32WordsMemorySystem" : True,
"FactorySPM2kWithDMCache4096WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache4096WordsMemorySystem" : True,
"FactorySPM2kWithDMCache512WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache512WordsMemorySystem" : True,
"FactorySPM2kWithDMCache64WordsBaselineMemorySystem" : True,
"FactorySPM2kWithDMCache64WordsMemorySystem" : True,
"FactorySPM4kMemorySystem" : True,
"FactorySPM4kWithDMCache1024WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache1024WordsMemorySystem" : True,
"FactorySPM4kWithDMCache128WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache128WordsMemorySystem" : True,
"FactorySPM4kWithDMCache2048WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache2048WordsMemorySystem" : True,
"FactorySPM4kWithDMCache256WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache256WordsMemorySystem" : True,
"FactorySPM4kWithDMCache32WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache32WordsMemorySystem" : True,
"FactorySPM4kWithDMCache4096WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache4096WordsMemorySystem" : True,
"FactorySPM4kWithDMCache512WordsMemorySystem" : True,
"FactorySPM4kWithDMCache64WordsBaselineMemorySystem" : True,
"FactorySPM4kWithDMCache64WordsMemorySystem" : True,
"FactorySPMFullSizeMemorySystem" : True

}

Evaluation of Cache Architectures for a Low-Power Microcontroller System 107


	Introduction
	Tasks

	Cache Architectures for Low Power
	Circuit Techniques
	Way-Decay Cache
	Drowsy Caches

	Architectures
	Tiny Caches / Loop Caches
	Dynamic Loop Cache (DLC)
	Preloaded Loop Cache (PLC)
	Hybrid Loop Cache (HLC)
	Adaptive Loop Cache (ALC)

	Scratchpad
	Dynamically allocated
	Statically allocated:

	Associative Memory / Content-Addressable Memory
	Way-Prediction
	Indexing / Hashing
	Tag Omission


	Method
	Architectures Selected
	Hashing / Indexing
	Bit-selection function explained

	Scratchpad
	Optimization problem


	Simulation environment
	Experiments
	Energy Models
	Calculating Energy Consumption
	Benchmark


	Results
	Direct-Mapped Cache with Optimal Indexing
	Hits and Misses Rates
	Energy Consumption

	Scratchpad
	Energy Consumption

	DM cache plus SPM
	DM cache-only versus SPM-only

	Discussion
	Memory Systems
	Tools and Benchmark

	Conclusions and future work
	Future Work

	Bibliography
	Bit-selection optimal algorithm
	Simulation Environment

