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Abstract
This thesis explores underwater noise from small boats. There has been an in-
creased focus on anthropogenic noise in the marine environment within the EU
in the past years. The focus of the thesis is to study the noise from the engines
and propellers of small boats, which is in general composed of both a harmonic
series, and broadband noise.

In this thesis, we apply two fundamental frequency estimators to a dataset con-
sisting of noise recorded in the waters outside Vealøs in order to extract the
harmonic signature of small vessels. We will explore estimators based upon the
Non-linear Least Squares method and Capons method, which can calculate the
fundamental frequency of harmonic noise in water. The estimators are adapted
in order to suit the dataset and evaluated based on accuracy and computation
time. Results show that the Capon estimator excels in performance at lower
signal to noise ratio with a slight advantage, but that it comes at a cost; the
Non-Linear Least Squares estimator has approximately one sixth of the Capon
estimators computation time. Since the estimator based on Non-linear Least
Squares method has so much lower computation time, this estimator is certainly
favourable as this fact opens possibilities for an increased number of samples with
lower or comparable computation time.
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Sammendrag
I denne masteroppgaven utforsker vi undervannsstøy fra små båter. De siste
årene har det vært økt fokus på antropogen støy i det marine miljø innenfor EU.
Fokuset i oppgaven er på støy fra motoren og propellen til små båter, som består
av en harmonisk rekke og bredbåndet støy.

I masteroppgaven bruker vi to fundamentalfrekvens estimatorer på et datasett
bestående av støyopptak fra små båter tatt i vannet utenfor Vealøs for å finne
den harmoniske signaturen til små fartøy. Vi vil utforske estimatorer basert
på henholdsvis “Non-linear Least Squares method” og “Capons method”, som
kan brukes til å beregne fundamentalfrekvensen til harmonisk støy. Vi tilpasser
metodene til støyen og evaluerer dem i henhold til treffsikkerhet og beregningstid.
Resultatene viser at “Capon” estimatoren utmerker seg på treffsikkerhet ved lav
signal til støyforhold, men at det koster; “Non-linear Least Squares” estimatoren
bruker en sjettedel av beregningstiden til “Capon” estimatoren. Siden “Non-
linear Least Squares” estimatoren utmerker seg i beregningstid er den å fore-
trekke. Spesielt siden det åpner for å beregne med lengere data segmenter og
fortsatt opprettholde forspranget i beregningstid.

v





Contents

1 Introduction 1

2 Theory 3
2.1 Radiated noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Lloyd’s mirror effect . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Doppler shift . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Method 7
3.1 Non-linear Least Squares Estimator . . . . . . . . . . . . . . . . . 7

3.1.1 Derivation of NLS Estimator . . . . . . . . . . . . . . . . . 7
3.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Capon Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Derivation of Capon Estimator . . . . . . . . . . . . . . . . 9
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Average line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Frequency tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Analysis of Dataset 17
4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Analysis of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Boat One . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Boat two . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Boat three . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Ambient noise . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results 25
5.1 Accuracy at low SNR . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Estimator applied to dataset . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Boat one . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Boat two . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Boat three . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



5.2.4 Ambient noise . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Discussion 43

7 Conclusion 47

References 49

A NLS estimator Matlab Implementation 51

B Capons estimator Matlab Implementation 53

C Autocorrelation matrix implementation - acorrmat.m 55



List of Figures

3.1 The number of possible harmonics for each fundamental frequency
in ζ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Normalized cost functions calculated with noise σ2 = 1. . . . . . . 15
3.3 Weighted and normalized cost functions from noise with noise σ2 =

1, and span = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Spectrogram of acoustic pressure from passage of boat number 1. 20
4.2 Spectrogram of acoustic pressure from passage of boat number 2. 21
4.3 Spectrogram of acoustic pressure from passage of boat number 3. . 22
4.4 Spectrum of the ambient noise sample. . . . . . . . . . . . . . . . . 23

5.1 Estimator hits from applying the estimators to synthetic data of
varying SNR. The blue line indicates the hits from the NLS esti-
mator, while the orange line displays that of the Capon estimator. 26

5.2 Spectrum of snapshot 150 from boat 1. . . . . . . . . . . . . . . . . 28
5.3 Cost function calculated for boat 1. The blue line represents the

cost function, while the orange line is the LOWESS line. . . . . . . 29
5.4 Normalized, weighted cost functions calculated for boat 1. The

upper plot shows the cost function for NLS, while the lowermost
plot shows Capon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Harmonic amplitudes of snapshot 150 for boat 1 calculated using
equation 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Tracking of fundamental frequency for boat 1. The blue line il-
lustrates the NLS result, while the orange line indicates that of
Capon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.7 Spectrogram of acoustic pressure radiation captured from boat 1.
The magenta and black lines indicate harmonic frequencies esti-
mated by Capon and NLS, respectively. See figure 4.1 for spectro-
gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.8 Spectrum of snapshot 150 from boat 2. . . . . . . . . . . . . . . . . 33
5.9 Cost function calculated for boat 2. In the upper sub-plot, we can

see the graphs for NLS, while Capons are in the lower sub-plot.
The blue line represents the cost function, while the orange line is
the LOWESS line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



5.10 Normalized, weighted cost functions calculated for boat 2. The
upper plot shows the cost function for NLS, while the lowermost
plot shows Capon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.11 Harmonic amplitudes of snapshot 150 for boat 2 calculated using
equation 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.12 Tracking of fundamental frequency for boat 2. The blue line il-
lustrates the NLS result, while the orange line indicates that of
Capon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.13 Spectrogram of acoustic pressure radiation captured from boat
2. The magenta lines indicate harmonic frequencies estimated by
Capon and the black lines those of NLS. See figure 4.2 for spec-
trogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.14 Spectrum of snapshot 1050 from boat 3. . . . . . . . . . . . . . . . 39
5.15 Cost function calculated for boat 3. In the upper sub-plot, we can

see the graphs for NLS, while Capons are in the lower sub-plot.
The blue line represents the cost function, while the orange line is
the LOWESS line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.16 Harmonic amplitudes of snapshot 1050 for boat 3 calculated using
equation 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.17 Cost function calculated for snapshot 150 of the ambient noise. In
the upper sub-plot, we can see the graphs for NLS, while Capons
are in the lower sub-plot. The blue line represents the cost func-
tion, while the orange line is the LOWESS line. . . . . . . . . . . . 41



List of Tables

2.1 Small boat noise sources. . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Description of dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Description of synthetic dataset used in hits against SNR compar-
ison of estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Average computation time for estimators on synthetic noise. . . . . 27
5.3 Estimated fundamental frequencies and raw cost function values

for boat passages (1-3) and for ambient noise (4). . . . . . . . . . . 42

xi





Nomenclature
ak,l Amplitude and phase of the l-th harmonic in the k-th harmonic series

a Vector of amplitude and phase information
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Chapter 1

Introduction
The focus of this thesis is to analyse noise radiated from small vessels, such
as recreational boats, with emphasis on estimating their harmonic signature,
often referred to as pitch estimation. The study is of interest in regards to
anthropogenic noise in the marine environment. There has been an increased
focus on this within the EU in the recent years. The work in this thesis has a
focus on recognizing noise from small boats by detecting their harmonic signature.
Not much work appears to have been done in order to classify noise from small
vessels. Previous work in the field, such as (Sorensen, Ou, Zurk, & Siderius,
2010) and (Ogden, Zurk, Jones, & Peterson, 2011), have focused on detecting and
tracking vessels in Marine Protected Areas, for activity which is not meant to be
present in such places. This thesis focuses on applying the estimation methods
developed by (Christensen, Stoica, & Jensen, 2007) to underwater acoustic data
due to small vessels. The dataset has been collected with the hydrophone sensors
on the NILUS (Networked Intelligent Under-water Sensor) nodes developed by
FFI.

A lot of work in the field of pitch estimation is performed with speech in mind.
Previous work, as (Nehorai & Porat, 1986) and (Wise, Caprio, & Parks, 1976),
usually consider either filter based methods or statistical methods similar to the
Maximum Likelihood Estimator. Our focus is on the Non-linear Least Squares
and Capon estimators presented by (Christensen et al., 2007) and investigated
in (Faltin, 2014), applied to noise similar to that introduced by (Ogden et al.,
2011), containing both a harmonic noise component, and a broadband noise com-
ponent.

Chapter 2 introduces the signal model, and relevant acoustic theory used in the
thesis. In Chapter 3, we develop our estimators, and comment on aspects that are
vital for these kinds of estimators. Chapter 4 presents an analysis of the dataset.
We present our results in Chapter 5, and discuss them in Chapter 6. Finally, in
Chapter 7, we draw a conclusion from our experience with the estimators.
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Chapter 2

Theory
In this chapter we will present relevant acoustic theory for this thesis. We will
focus our view on how our dataset originates from the marine environment, and
how it is affected from this.

2.1 Radiated noise

Noise from small boats consist of an harmonic and a broadband part. In our
application, we will think of the harmonic part of the noise as our signal, and
broadband noise as part of the total noise. In addition to the noise from our
vessel, we have to assume that there is ambient noise, but we assume this to
complement the broadband noise of our vessels. Table 2.1, adapted from (Ogden
et al., 2011), lists the ship components and effects which are likely to contribute
with harmonic noise and their relationships. The table states that both factors
in the engine, like the Revolutions Per Minute (RPM), and the propeller, for
example its number of blades (Nb), affect the radiated harmonic noise.

Harmonic noise is defined as a sound composed of a series of sinusoidal tones
with frequencies which are integer multiples of a fundamental f1. We define our
signal by

s(n) =
L∑
l=1

al sin (2πf1ln+ φ(l)) (2.1)

where n is a time index, and al is an (unknown) coefficient. The noise includes
L harmonics with frequency f1 · l and phase φ(l). In our situation we have to
assume the harmonic signal to be distorted by both additive coloured noise and
different effects that affect sounds in an ocean environment. The major effects

3



Table 2.1: Small boat noise sources.

Engine Rates

Cylinder Firing Rate fCF = fCR/2
Crankshaft Rotation Rate fCR = RPM/60
Engine Speed RPM

Engine Firing Rate fEF = NcfCF

Number of Cylinders Nc

Propeller Rates

Shift Rotation Rate fSR = fCR/Λg
Gear Ratio Λg
Blade Rotation Rate fBR = NbfSR

Number of Blades Nb

we can expect to affect our data are dispersion, waveguide cutoff, Lloyd’s mirror
effect, and Doppler shift. The received signal on our hydrophone is thus

x(n) =
L∑
l=1

al sin (2πf1ln+ φ(l)) + w(n) (2.2)

where w(n) denotes broadband noise consisting of everything in the received
signal excluding the harmonic part defined in equation 2.1.

2.1.1 Dispersion

When acoustic waves propagate in water, different parts of the spectrum travels
at slightly different speeds. This can result in signal distortion with distance.
Thus, the harmonics observed at the hydrophone may be out of sync with each
other when the signal is propagating over long ranges (Hovem, 2012, p. 156-157).
In our case, this effect is most likely a problem only for very long ranges. (Faltin,
2014, p. 6)

4



2.1.2 Waveguide

We can consider the marine environment to be an acoustic waveguide; a structure
where acoustic waves can propagate. A waveguide can have several modes which
define how sound is carried in the medium. For example, an ideal waveguide has
an infinitely hard and totally reflecting seabed, and total reflection and a phase
shift at the surface. The lowest frequency that can propagate, or cutoff frequency,
in such a waveguide is (Hovem, 2012, p. 159-163)

f0,m = c0
4D (2m− 1) (2.3)

Where D is the sea depth, and c0 is the nominal sound speed. The mode number,
m, defines which mode we are considering. Frequencies below the cutoff frequency
of mode 1 will not propagate over longer distances in the waveguide.

2.1.3 Lloyd’s mirror effect

The Lloyd’s mirror effect is easily spotted in noise from passing ships and is
sometimes called the bathtub effect. The effect comes from the different arrival
times and phase shifts of signals travelling in direct paths from the source to
the receiver, and signals that travel in alternative paths. The signal arriving
at multiple times with different travel distances makes up for a received signal
with multiple phase distortions. These distortions can cancel out the signal at
some places in the spectrum, and amplify it in other. This is a range dependant
transmission effect, and the effect changes as the source is moving.

2.1.4 Doppler shift

As we are looking at the harmonic frequencies in our signals, which are the
noises that boats radiate when they pass by our sensor, we have to expect to see
a frequency shift from the Doppler effect; sound received from a source which is
moving towards a stationary observer appears to have a higher frequency than
what it originally radiated. The opposite happens when the source is moving
away from the observer. The effect occurs because of the difference in speed
between source and observer.
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2.2 Signal Model

The signal used in this thesis are determined by K fundamental frequencies ωk
and an unknown number of harmonics with amplitudes and phases described
by ak,l. We assume the sampled signal x(n) has a time varying fundamental
frequency ω(t). For simplicity we define x̃(n) for n ∈ {0, 1, · · · , N − 1} to be a
snapshot of x(n) where we assume ωk to be stationary. The observed signal is
then (Christensen et al., 2007)

x̃(n) = Re
{

K∑
k=1

(
L∑
l=1

ak,le
jωkln

)}
+ w(n) (2.4)

where w(n) is additive noise, and Re{·} denotes the real part of a complex
number. In this thesis we assume one fundamental frequency, or source, implying
K = 1. The number of harmonics, L, are assumed unknown.

Our signal snapshot can be expressed as equation (2.6). a represents the am-
plitude and phase information of the signal. The Z matrix, which is a Vander-
monde matrix, represents the frequency information in the signal, and is calcu-
lated from

Z =


1 1 · · · 1

exp (jω) exp (2jω) · · · exp (Ljω)
exp (2jω) exp (4jω) · · · exp (2Ljω)

...
...

. . .
...

exp ((N − 1)jω) exp (2(N − 1)jω) · · · exp (L(N − 1)jω)

 (2.5)

We define w to be the vector of noise. We can then express the signal snap-
shot

x̃ = Za+w (2.6)

We define ζ to be the range of angular frequencies where we expect the funda-
mental frequency to be located. The Z matrix is calculated for every frequency
ω in ζ. The objective for our estimator is then to find the best estimate for ω̂1
within ζ, for a given snapshot of data, x̃.
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Chapter 3

Method
In this chapter we will present the signal processing methods used in this the-
sis work. These methods are the Non-linear Least Squares and Capon Meth-
ods. Both of these methods are based on the signal model presented in section
2.2.

3.1 Non-linear Least Squares Estimator

3.1.1 Derivation of NLS Estimator

The derivation of the NLS estimator is from (Faltin, 2014).

We want to find an expression for ω̂1, the estimated fundamental frequency of
the harmonic part of the N length column vector x. We assume that ω1 ∈ ζ.
The Vandermonde matrix Z is a function of ζ. In this derivation we assume
Z ∈ CN×L, and that I is the L × L identity matrix. The definition of the
Non-linear Least Squares problem is

ω̂1 = arg min
ζ
‖x− Z a‖22 (3.1)

Where ‖ · ‖2 denotes the L2 norm. To minimize this expression, we minimize the
error ε = x − Za, by setting it equal to 0, which implies (Aster, Borchers, &
Thurber, 2011)

Za = x (3.2)

Since Z is in general not invertible, we have to multiply by ZH on both sides in
order to make a separable. By doing this, as well as multiplying by the inverse
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matrix of ZH Z we end up with equation (3.3), expressing â in terms of Z and
x. (·)H denotes the Hermitian, or the complex transpose.

â = (ZH Z)−1ZH x (3.3)

This equation can be used to estimate the harmonic amplitudes once the funda-
mental frequency is known. By inserting equation (3.3) into equation (3.1) we
get

ω̂1 = arg min
ζ
‖x−Z(ZHZ)−1ZHx‖22 (3.4)

This expression can be simplified by multiplying with xH inside the norm.

ω̂1 = arg min
ζ
‖xHx− xHZ(ZHZ)−1ZHx‖22 (3.5)

The first expression in the norm of equation (3.5) only depends on x, meaning
that it is dependant of ζ. Instead of minimizing the difference of the two terms,
we can therefore maximize the second term. (Christensen et al., 2007; Kay,
1993)

ω̂1 = arg max
ζ
xHZ(ZHZ)−1ZHx (3.6)

It is this equation we can use to perform the estimation. An interesting thing
though, is that ZHZ approaches N · I as N becomes large (Christensen et al.,
2007). We can therefore skip this inverse part of the estimator. Thus, the esti-
mator can be expressed

ω̂1 = arg max
ζ
xHZZHx (3.7)

If we had used a weighted signal model as suggested in (Faltin, 2014), we would
have to use equation 3.6 in order to get a correct equation.

3.1.2 Implementation

Our implementation of the NLS estimator is dependant on having the following
variables pre determined.
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1. x[n] - signal snapshot vector

2. N - snapshot length

3. ζ - vector of angular frequencies in which to search for the fundamental
frequency

4. L - number of harmonics

5. spann - LOWESS span parameter

In our implementation we have assumed that L is unknown. What we do to make
this transparent in these works is to calculate the maximum number of harmonics
that can fit inside the Nyquist frequency of fs/2 for each frequency in ζ.

When these variables are known, we generate a Vandermonde matrix Z from
equation 2.5 for each frequency in ζ. We can then calculate equation 3.6, and put
the value in our cost function, JNLS (ζ). When the cost function is calculated for
every ζ value, we can find our estimate; ω̂1 is the frequency in ζ which corresponds
to the largest value for our cost function, JNLS (ζ). The implementation of the
NLS estimator which is used in this thesis can be found in appendix A

3.2 Capon Estimator

3.2.1 Derivation of Capon Estimator

The derivation of the Capon estimator is from (Faltin, 2014).

The Capon estimator derivation is based on finding the L filters in Γ that pass
all the power at specific frequencies. In this derivation we define the autocor-
relation matrix R = E{xxH} ∈ CN×N , the Vandermonde matrix Z ∈ CN×L,
the harmonic amplitude matrix C ∈ CL×L, the set of filters which define the
method Γ ∈ CL×N , and I is the L× L identity matrix. To generalize we define
C = I, meaning that we assume unitary harmonic amplitudes. This filter design
problem is defined by the statement (Christensen et al., 2007; Stoica & Moses,
2005)

min
Γ

Tr
[
ΓHRΓ

]
subject to ΓHZ = C (3.8)

where Tr [·] denotes the trace operator. Equation (3.8) is solved using Lagrange
multipliers. We want to minimize f(Γ) = ΓHRΓ with the constraint g(Γ) =

9



ΓHZ −C. We define

F (Γ, λ) = f(Γ)− λg(Γ) = ΓHRΓ− λ(ΓHZ −C) (3.9)

to be the Lagrange function. The method of Lagrange multipliers involves mini-
mizing the partial derivatives of F , where f is the function we want to minimize,
g is the constraint, and λ is the Lagrange multiplier. This introduces equations
(Petersen & Pedersen, 2012)

∂F (Γ, λ)
∂Γ = (RH +R) Γ− λZ = 0 (3.10)

∂F (Γ, λ)
∂λ

= ΓHZ − C = 0 (3.11)

Now we have two unknowns in (3.10), and we need to reduce this number to one.
Looking at equation (3.11) we can see that this yields the exact same statement
as the constraint in equation (3.8). Also, by definition, since R is hermitian
R+RH = 2R

ΓHZ = C (3.12)

Note that this is the same as

ZHΓ = CH (3.13)

Now, we start to reformulate (3.10) to find an expression for λ. Multiplying by
the inverse of 2R leads to

Γ = λ(2R)−1Z (3.14)

By realizing that we can enforce the left side of equation (3.14) to become CH =
ZHΓ by multiplying with ZH we can introduce the constraint. Thus we have
utilized two equations, and we can get solutions for the two variables

CH = λZH(2R)−1Z (3.15)
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Now, we simply separate λ from the matrices and obtain

λ = (ZH(2R)−1Z)−1CH (3.16)

Inserting equation (3.16) into equation (3.10) gives

(2R) Γ = 2Z(ZH(R)−1Z)−1CH (3.17)

We multiply with the inverse of R to get an expression for the minimizing
Γ0

Γ0 = (R)−1Z(ZH(R)−1Z)−1CH (3.18)

We now have the minimizing Γ0, and we can go further towards finding an expres-
sion for the optimal Capon estimator. We start by inserting the optimal Γ0 into
the the function which we minimized. Though, we need to find ΓH0 first.

ΓH0 = C ((ZH(R)−1Z)H)−1ZH((R)−1)H (3.19)

Inserting the expressions for Γ0 and ΓH0 into ΓHRΓ

ΓH0 RΓ0 = C ((ZHR−1Z)H)−1ZH(R−1)HRR−1Z(ZHR−1Z)−1CH (3.20)

Reducing this by recognizing that RR−1 = I and that ZH(R−1)HZ =
(ZHR−1Z)H gives us this equation

ΓH0 RΓ0 = C (ZHR−1Z)−1CH (3.21)

This is the minimized output of the filter that passes the power at L harmonic
frequencies defined in equation (3.8). Though, this is not exactly what we want.
We are searching for a set of filters which pass the maximum amount of power
in specific frequencies. This can be done by searching for the argument of the
maximum of the trace defined by inserting 3.21 into 3.8

ω̂1 = arg max
ζ

Tr
[
C
(
ZHR−1Z

)−1
CH

]
(3.22)
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If x is real, meaning that R is symmetric, we could simplify further using eigen-
value decomposition as in (Christensen et al., 2007). To do this, we define V and
E to be the matrices of eigenvectors and eigenvalues ofR such thatR = V EV −1.
We insert C = I, implying unitary harmonics amplitudes. The estimator can be
expressed

ω̂1 = arg max
ζ

Tr
[(
ZHV E−1/2

(
ZHV E−1/2

)H)−1
]

(3.23)

Unlike the NLS estimator, the Capon estimator does not give an estimator for
the harmonic amplitude and phase information. For an estimate of the amplitude
and phase of the harmonics we will use equation 3.2.

3.2.2 Implementation

Like the NLS estimator, the Capon estimator needs a number of values and
vectors before calculations start. These values and vectors are the same as the
NLS needed. However, the Capon estimator, equation 3.23, has some aspects
which make it more difficult to implement; the equation includes two matrix
inversions. These are known to be calculation inefficient. The inner inversion
was solved by applying an eigenvalue decomposition, which means that we can
get through the first inversion with the inversion of a diagonal matrix. The
second inversion is harder to implement, and a Singular Value Decomposition is
favourable. In this implementation, we use the pinv.m function which is built
into Matlab.

When these factors are known, we start by estimating our sample autocorrelation
or autocovariance matrices. In appendix C a simple Matlab implementation of an
autocorrelation matrix function is listed. After applying the eig.m function to get
the eigenvalues, E, and eigenvectors, V , we calculate the product P = V E−1/2.
By doing this we have calculated all the frequency independent factors, and we
are left with two instances of the Z matrix multiplied by P

ω̂1 = arg max
ζ

Tr
[(
ZHP

(
ZHP

)H)−1
]

(3.24)

When the product is calculated, we can take the trace of its inverse. Searching
for the estimated fundamental is done by finding the ζ value which corresponds

12



to the maximum of the estimators output. The Capon estimator implementation
can be found in appendix B.

Due to the Capon product, ZHP
(
ZHP

)H
, being reported close to singular for

small values of ζ by the cond.m function in Matlab, we cannot search in extremely
low frequencies. Therefore, we set a lowest possible ζ value equivalent to 10 Hz.
This workaround does solve the problem for snapshot lengths larger then a tenth
of the numerical value of the sampling frequency with our dataset.

3.3 Average line

For our dataset we have to expect that there are a number of harmonics in the
signal equal to the maximum possible for any given fundamental frequency to
ensure that the methods take key components into account.

Since we operate with an unknown number of harmonics, and expect them to
reside in the entire spectrum, we have to assure that the number of harmonics
we assume to be present for each frequency in ζ is the maximum of what is
possible. Because of this, we calculate the number of harmonics for a given
frequency after equation 3.25. Though, for very low frequencies we have set a
limit. In our applications, we set a maximum harmonic length, max (L) = 100.
We can calculate the number of harmonics for the resulting possible fundamental
frequencies in ζ by

L (ζ) = fs/2
ζ

(3.25)

The numbers in the resulting vector L is rounded downwards to the closest in-
teger. Calculating equation 3.25 with fs = 3000 Hz and ζ ∈ [10, 65] gives the
plot in figure 3.1. This interval is used for ζ throughout the thesis, and is chosen
because it both handles the issues we encountered with the Capon product being
close to singular below 10 Hz, and also make sure that we search at 2f1 in all
data samples, where f1 is the fundamental frequency in Hz.

This variable number of harmonics is necessary for our estimators as we assume
an unknown number of harmonics. If we guess too few harmonics we may lose
important signature harmonics. On the other hand, if we choose too many har-
monics, the estimators find multiple matches at the same frequencies, as should
be expected as we can think of them as cyclic FFTs; too many harmonics, and we
go multiple times through the spectrum. The result of having a variable number
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Figure 3.1: The number of possible harmonics for each fundamental frequency
in ζ.

of harmonics is that the estimators can result in higher cost functions in lower
frequencies than at higher frequencies, as we can see in figure 3.2. In this figure,
the cost functions are calculated from white noise with σ2 = 1 sampled at 3000
Hz.

From looking at figures 3.1 and 3.2, we can see that the averages of the cost
functions appear to be correlated with the number of harmonics. Therefore,
we have to do some modifications to get a good enough estimate for certain
SNRs. In (Faltin, 2014) we proposed using a weighted cost function to solve a
similar problem when we assumed that the harmonic amplitudes decrease with
the inverse exponential function such that each harmonic has a lower amplitude
than the previous one. This is not a good approach for the NILUS dataset; the
signal is filtered with a filter that helps against the decreasing frequency content
of the harmonics. In this thesis, we instead propose that we can look at the cost
functions with an average line subtracted.

An apparent alternative would be not to decimate the signal, but this would
imply that the sample length would have to be increased. With a fs of 9000 Hz,
and a fmin of 10 Hz, we would need a snapshot length of at least 900. Not just
to get a good resolution, but also to ensure that the Capon inverses would not
involve singular matrices. Since we do not correct the filtering in the hydrophone
sensor, we have a considerably higher frequency content below 2 kHz than above.
This means that fundamental frequencies including more harmonics below 2100
Hz would report a higher cost function than those above. Further, the number
of harmonics would have to be set to the least possible, setting an upper limit at
L = fs/ (2fmax), where fmax is the largest fundamental we guess. With a fmax

14
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Figure 3.2: Normalized cost functions calculated with noise σ2 = 1.

of 65 Hz, this limits us to 69 harmonics, implying that calculating with a ω of 20
would limit us to searching under 1400 Hz.

A way to implement the average line filter in Matlab is by using the built in
smooth.m function. This function includes a number of implementations that are
relevant for our use. These are the moving average and the Locally Weighted
Scatterplot Smoothing with both first (LOWESS) and second (LOESS) degree
polynomials. By using the local regression it appears that Matlab can find a
good fit for the average line of the cost functions. The smooth.m function has
an optional limitation parameter, span, which defines the percentage of the total
data to considerer when calculating the regression for each point. Throughout
the thesis work, we used a span of 0.15 as multiple trials with different values
indicated that span values in this region gave the best results.

Figure 3.3 shows the cost functions calculated from white noise after LOWESS
lines have been subtracted. Here, we can see that the new, weighted cost functions
look more like what we should expect when applying the estimators to white
Gaussian noise.

3.4 Frequency tracking

Frequency tracking is a vital part of an implementation of these kinds of es-
timators. In this thesis frequency tracking is done by plotting the estimated
fundamental frequency against snapshot number. This is fine for testing, but in
a real implementation one could use a logical filter to decide whether there is a
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Figure 3.3: Weighted and normalized cost functions from noise with noise
σ2 = 1, and span = 0.15.

frequency track or not. What we propose is a filter which defines a neighbour-
hood of fundamental frequencies, and if a large majority of this neighbourhood
has frequencies which are very similar we can assume all the snapshots to have
this fundamental. We could also check whether some snapshots had an estimated
fundamental with frequency equal f1/2, 3f1/2, or 2f1, as these are the most likely
misses in a snapshot with a signal of fundamental f1.

By applying such a filter, we can rectify faulty estimates from sudden sounds
in the spectrum. As long as we restrict it properly, by for example, requiring 8
out of 10 fundamentals to hit the same fundamental, we could justify rectifying
non-consecutive estimated fundamentals of frequencies equal to those relations
described above.
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Chapter 4

Analysis of Dataset

4.1 Dataset description

The dataset used to evaluate the methods presented in this thesis were recorded
in the waters outside Vealøs near Horten in the period June 24-26 2014 as part of
the “Vealøs 2014” dataset (Smistad, Buen, & Tollefsen, 2014). The hydrophone
sensor, which is the sensor used to capture the acoustical pressure variations in
water, is attached to the NILUS underwater sensor node. The waters near Vealøs
are shallow, meaning that the data are influenced by an environment resembling
a waveguide. The NILUS node, and thus the hydrophone sensor, is at a depth of
15,5 meters during these measurements.

The three examples used in this thesis are recorded June 24., between 14:00
UTC+2 and 17.15 UTC+2, while there was heavy traffic in the waters outside
Vealøs. The three boat passings are chosen because they are documented to be
of single boats, and since we know which type of boat they are. In addition, we
have included an out-take from the Vealøs 2014 dataset without any immediately
apparent boat noise. Table 4.1 lists the types of noise sources in the four data
samples of our dataset, and information such as boat length and speed, as well
as information about their CPA, or Closest Point of Approach, which is the
point in the boat trajectory that is closest to the observer. The boat speeds are
estimated from boat position data measured with a TruPulse 360oR Professional
Laser Rangefinder which is interpolated to estimate the boats trajectory. The
CPA time and range of the passages are calculated from the closest point in this
trajectory to the known position of the NILUS node. (Smistad et al., 2014)

17



Table 4.1: Description of dataset.

Number Type CPA time [UTC+2] Boat length [m] Boat speed [m/s] CPA range [m]

1 Cabin cruiser 16.36.29 5.49 13.42 71.74
2 Cabin cruiser 17.14.25 6.10 21.18 294.65
3 Sailboat 14.34.34 6.10 2.95 193.98
4 Ambient noise 04.45.23 N/A N/A N/A
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4.2 Analysis of data

We consider the quality of the three boat passages which the dataset consists of
using spectrograms, in a addition to that of the ambient noise using a spectrum.
The original sampling frequency in the dataset is 9 kHz. The data segments are
all decimated by a factor of three to decrease computation time for the estimation
methods, and limit the frequency content. By decimating the signal, in practice
we reduce the number of samples by three, as well as reduce the sampling fre-
quency to 3 kHz. This can be done since the hydrophone sensors transfer function
strongly dampens most signals over 2 kHz. The usable frequency range for data
from this sensor is in the range 10 Hz to 2 kHz, with a known frequency response
in between.

For all the spectrograms presented we can see that frequencies below 100 Hz are
damped to a high degree, and the lower harmonics are difficult to see without
zooming. This effect is likely due to the water outside Vealøs being shallow with
the depth of 15.5 meters. The approximate cut-off frequency of the first mode is
calculated using equation 2.3, assuming an ideal waveguide and a nominal sound
speed in water of 1500 meters per second to

f0,1 ≈
1500 m/s
4 · 15.5 m ≈ 24.2 Hz (4.1)

The largest issues with noise in our dataset are broadband noise effects such as
the Lloyd’s mirror effect, and the waveguide cutoff frequency.

4.2.1 Boat One

The first boat passage in the dataset has an approximate CPA distance of 71
meters. The spectrogram of this boat passage, figure 4.1, shows clear harmonic
lines in the region between 70 and 950 Hz. We can also notice the CPA time of
1 minute and 18 seconds from both the Doppler frequency shift, and the Lloyd’s
Mirror interference effects. Some of the harmonics in the lower parts of the
spectrum disappear in the broadband noise around the CPA, and a few of the
higher harmonics disappear in the Lloyd’s mirror effects. This is especially the
case for harmonics after CPA.

There are some fluctuation in the harmonic frequencies around 1 minute and 40
seconds. This fluctuation is likely due to a change in propeller RPM, which in
turn changes the fundamental frequency. We can also see that a considerable
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Figure 4.1: Spectrogram of acoustic pressure from passage of boat number 1.

amount of the higher harmonics get hidden by broadband noise around these
frequency fluctuations.

4.2.2 Boat two

The noise captured from the second boat appears somewhat cleaner than that of
the first boat; in the spectrogram, figure 4.1, we can see that the harmonics do
not get hidden by the Lloyd’s mirror effect to the same degree as for the first boat,
and around 120 seconds we can see clear signs of the harmonics disappearing in
the background noise after the passage. the CPA time is easily noticed around
the 70 seconds mark by the mentioned Lloyd’s mirror effect. The other effect
which has to be noted in this spectrogram is that in the areas between 40 and 80
seconds with noticeable low frequency noise; this is likely due to clipping in the
recording.
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Figure 4.2: Spectrogram of acoustic pressure from passage of boat number 2.

4.2.3 Boat three

Noise recorded from the third boat passage show one property which is present
for the passages of boats 1 and 2. As we can see in the spectrogram in figure 4.3,
there is a large amount of broadband noise in the frequency band between 400
and 900 Hz. We can also see some additional noise in the region around 150 Hz a
while before CPA and some time after. The broadband noise appears to be part
of the Lloyd’s mirror effect, and we can see a clear bathtub effect with a CPA
time around the 150 seconds marker. The fact that the noise has a Lloyd’s mirror
effect ensures that it is coming from some kind of vessel, and the logbook shows
that there is only one boat present at the time; a 6.1 meters long sailboat.

4.2.4 Ambient noise

The last sample from the Vealøs 2014 dataset we are presenting in this thesis
is a typical data segment with no passages done early in the morning, at 04.44
UTC+2 on June 25. In the spectrum of the data sample in figure 4.4, there are
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Figure 4.3: Spectrogram of acoustic pressure from passage of boat number 3.

some harmonic frequencies in the region 100 - 300 Hz and one apparently strong
frequency component at 757 Hz. These harmonics probably originate from a large
ship passage far out at sea, explaining the low SNR. Further, in the spectrum we
can see that the power of the noise is increasing in frequencies below 1 kHz and
decreasing in frequencies above. We can also see that the noise in the frequency
region between 500 and 1200 Hz has power equivalent to the harmonics between
100 and 300 Hz.
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Figure 4.4: Spectrum of the ambient noise sample.
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Chapter 5

Results

5.1 Accuracy at low SNR

In (Faltin, 2014, p. 16-20), we investigated how the estimators performed with
variable SNR by applying them to synthetic data with different SNR values, and
plot the number of estimation hits against SNR. We define a hit as the case
that the estimated fundamental is within an interval of 0.4 Hz centred around
the actual fundamental. We recalculate the simulations with the new weighting
presented in 3.3. The data used to generate the signals used in this plot is listed
in table 5.1. The dampening, d, is applied to the amplitude of the harmonics
after equation 5.1

al = exp (−d(l − 1)/L), l ∈ {1, · · · , L} (5.1)

Unlike in (Faltin, 2014, p. 16-20), where we did simulations for snapshots of
length N = {420, 630, 840} samples, we have only calculated using N = 500 in
these works. This is a considerably shorter snapshot length than the previous
calculations, comprising of 1/6 of a second, against 1/5 for the shortest snapshots
in the original calculations. However, results presented in figure 5.1 indicate that
the weighted algorithm outperform those in the original, where the hit percentage
at 0 dB was 80 and 97 for the NLS and Capon estimators, respectively. Results
from the new weighting show that both estimators get a hit percentage of 100
at 0 dB. It has to be mentioned that the result from the unweighted calculations
achieved a 0 percent hit rate at 6.5 dB SNR for both methods.

From figure 5.1 we can see that the Capon estimator has a slightly higher per-
formance than the NLS estimator at low SNR, though, the computation time is
also considerably higher. Table 5.2 lists the average computation time for each
method including the subtraction of the LOWESS line. Computation is done
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Figure 5.1: Estimator hits from applying the estimators to synthetic data of
varying SNR. The blue line indicates the hits from the NLS
estimator, while the orange line displays that of the Capon
estimator.

Table 5.1: Description of synthetic dataset used in hits against SNR comparison
of estimators.

f1 fs L d N σ2
min σ2

max

26.3783 3000 65 1 500 12 202
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Table 5.2: Average computation time for estimators on synthetic noise.

T̄NLS [s] T̄Capon [s]

5.71 34.95

inside a parfor loop on a currently fast CPU 1. This table clearly shows that
the NLS estimator is almost an order of magnitude faster to calculate at this
snapshot length.

5.2 Estimator applied to dataset

In this section the results from the estimators applied to data measured during
Vealøs 2014 are presented. The data presented in this are decimated by 3, and
divided into snapshots of 500 samples.

5.2.1 Boat one

To investigate the results of our estimators on the data from boat 1, we will
look into snapshot 150 where the fundamental estimates are successful with both
methods. Figure 5.2 shows the spectrum using the FFT of the snapshot. The
spectrum shows how there is little power in the frequencies below 200 Hz com-
pared to the frequencies above; the lower frequencies are strongly suppressed
because of the transfer function of the hydrophone sensor, and the waveguide
cutoff.

The top and bottom sub-plots in figure 5.3 display the raw cost functions and
LOWESS lines of NLS and Capon, respectively. Apart from the function values,
the cost functions appear very similar. The only apparent difference is how the
NLS cost function has a slightly higher dynamic range than that of Capon. Notice
how the NLS cost function has values in the range 0 - 5000, while Capon has a
range of 0 - 25. We can also see a local maximum at the true fundamental in
both figures. There is one problem though; the peak at the true fundamental is
not the global maximum of the graph. This is due to how the calculations are

1Intel Core i7 4790k
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Figure 5.2: Spectrum of snapshot 150 from boat 1.

applied to the dataset. From this knowledge, we can improve the cost function
by subtracting the LOWESS line introduced in section 3.3.

By normalizing the result from subtracting the LOWESS lines from their respect-
ing cost functions we get the new cost functions displayed in figure 5.4. In these
plots we can see that there is one frequency with a clearly higher cost function
than the rest. The frequency location of this peak is our estimate for the funda-
mental frequency, f1 = 25.081 Hz in this case. In the spectrum of the snapshot,
figure 5.2, we can see a high peak around 222 Hz, which corresponds with the
estimated harmonic series as the ninth harmonic.

Further, we can use the approximation done when deriving NLS to extract the
harmonic amplitudes of the estimated signal. By inserting the estimated funda-
mental into equation 3.2 we get figure 5.5. This figure has some striking similar-
ities with the spectrum in figure 5.2.

Now, to see how the estimators perform, we introduce figures 5.6 and 5.7. Figure
5.6 shows the tracking of estimated fundamental frequency of the first boat. From
figure 5.6 we can see that the fundamental estimate is mostly stable, but has some
issues at different places. For example, there is a change in fundamental after
snapshot 450, indicating that the CPA is around this time. We can also see
that the estimator has some problems with finding a correct fundamental in this
region, but this is likely due to broadband noise, as we will investigate further.
Recall how we could see that the fundamental changed irregularly 1 minute and
40 seconds out in the file from the spectrogram in figure 4.1. The frequency track
also shows some changes in the fundamental around snapshots 545 and 595. These
changes in the fundamental frequency corresponds well with the fluctuations in
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Figure 5.3: Cost function calculated for boat 1. The blue line represents the
cost function, while the orange line is the LOWESS line.

29



10 20 30 40 50 60
−0.5

0

0.5

1

Frequency [Hz]

C
os
t
fu
nc

tio
n

Normalized, weighted cost functions

10 20 30 40 50 60
−0.5

0

0.5

1

Frequency [Hz]

C
os
t
fu
nc

tio
n

Figure 5.4: Normalized, weighted cost functions calculated for boat 1. The
upper plot shows the cost function for NLS, while the lowermost
plot shows Capon.
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Figure 5.5: Harmonic amplitudes of snapshot 150 for boat 1 calculated using
equation 3.2.
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Figure 5.6: Tracking of fundamental frequency for boat 1. The blue line
illustrates the NLS result, while the orange line indicates that of
Capon.

the spectrogram. In the snapshots where there is an estimator miss, we either
get a frequency which is 1/2f1, 3/2f1, or 2f1. This is not unexpected, as the cost
functions from our estimators are known to have somewhat large values at these
frequencies.

Figure 5.7 shows the spectrogram of the second boat with lines indicating the
estimated harmonic frequencies. The NLS harmonics are marked with black
lines, while the Capon harmonics are indicated by magenta lines. From this
figure we can clearly see how the lines fit well onto the harmonic lines in the
spectrogram. Snapshot 150 is located about twenty-five seconds into the file,
and from the spectrogram in figure 5.7 we can confirm that both estimators hit
the fundamental frequency of 25.08 Hz. We can also see that both estimators
follow changes in the fundamental. Notice how both estimators pick up the CPA
Doppler shift around 75 seconds, and the frequency tracking follows the spectrum
for all but 4 snapshots in the region around CPA. In the regions around the
Doppler shift, we can see that the estimators get some misses in estimating the
fundamental. This is likely due to the noise which appears in the lower is parts
of the spectrum; all harmonic lines in frequencies under 150 Hz disappear in
the broadband noise, and some of the higher harmonics disappear in the Lloyd’s
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Figure 5.7: Spectrogram of acoustic pressure radiation captured from boat 1.
The magenta and black lines indicate harmonic frequencies
estimated by Capon and NLS, respectively. See figure 4.1 for
spectrogram.

mirror effects around CPA. These effects result in fundamental estimate misses
corresponding with both 3/2f1 and 2f1. By inspecting the estimator results
in the region around the fluctuations at 1 minute and 40 seconds, we can see
that both estimators can, at least partially, follow the fundamental in the jumps
of fundamental frequency. Snapshot 150 is located about twenty-five seconds
into the file, and from the spectrogram in figure 5.7 we can confirm that both
estimators hit the fundamental frequency of 25.08 Hz.

5.2.2 Boat two

To learn more about the second boat passage, will go through the same procedure
as we did to boat 1. Again, we will look into snapshot 150, where both methods
estimate a fundamental of 27.89 Hz. Figure 5.8 displays the spectrum of the
snapshot. In this spectrum we can see a number of high peaks. The two largest
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Figure 5.8: Spectrum of snapshot 150 from boat 2.

of these, at 195.9 Hz and 836.8 Hz, correspond with the 7-th and 30-th harmonics,
respectively. Like in figure 5.2, we can see that noise in the lower frequencies are
strongly dampened. Notice how the power in snapshot 150 is an order of ten
higher than the power of this snapshot.

The raw cost functions calculated by NLS and Capon are displayed in figure 5.9.
Here we can see that there are local peaks in the areas of the true fundamental,
but as in figure 5.3, this peak is a local maximum. Therefore, the subtraction
of the LOWESS lines from their respective cost functions is necessary. By com-
paring these cost functions to those from boat 1, we can see that these have a
considerably lower range. The dynamic range in figure 5.9 is 0 to 120 for NLS
and 0 to 0.2 for Capon. This likely comes from this snapshot having an order
of magnitude lower power than the snapshot from boat 1. It also appears that
the NLS cost function has a higher variance around the LOWESS line than the
Capon Cost function has around its LOWESS line.

The cost functions modified by subtracting the LOWESS line and normalizing is
displayed in figure 5.10. Like we did in figure 5.4, we can see similarities between
the NLS and Capon plots, but here we can clearly see that NLS has a slightly
higher cost function in areas where we can confirm that the fundamental is not
located. Especially the lower frequencies have a higher cost function. Though,
this can be expected from hat we could see from figure 5.9, where we saw a higher
variance around the LOWESS line in the NLS cost function compared to that of
Capon. Since it might also indicate that the difference is frequency dependant,
this might be because the LOWESS line follows the Capon line better than the
NLS line in this case.
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Figure 5.9: Cost function calculated for boat 2. In the upper sub-plot, we can
see the graphs for NLS, while Capons are in the lower sub-plot. The
blue line represents the cost function, while the orange line is the
LOWESS line.
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Figure 5.10: Normalized, weighted cost functions calculated for boat 2. The
upper plot shows the cost function for NLS, while the lowermost
plot shows Capon.
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Figure 5.11: Harmonic amplitudes of snapshot 150 for boat 2 calculated using
equation 3.2.

The result from applying the estimated fundamental frequency into equation 3.2
to estimate the harmonic amplitudes can be seen in figure 5.11. In this figure,
we can see some similarities with the spectrogram.

Finally, to check the performance of the estimators, we introduce figures 5.12
and 5.13. Figure 5.12 shows the frequency tracking of the fundamental frequency
estimated using the two methods. From the frequency tracking, we can see that
both estimators perform well in the areas with good SNR in the middle, with
two misses in between snapshots 100 and 550. Both estimators also follow the
subtle frequency shift at CPA, which occurs around snapshot 400. The CPA time
seen from the estimator results being around 66 seconds corresponds with what
can be extracted from the spectrogram in figure 4.2. We can also see that the
estimators fail to get good consecutive estimates for the fundamental frequency
after snapshot 700, which is approximately around 116 seconds, and that they
fail for multiple snapshots in the range snapshot 550 - snapshot 700. At this
point, the boat is starting to disappear in the distance, and we can anticipate
that the SNR decreases.

Figure 5.13 shows the spectrogram for boat 2 with lines indicating the estimated
harmonic frequencies. The magenta and black lines illustrate NLS and Capon
frequencies, respectively. From the spectrogram we can see that the estimated
frequency lines fit well onto the harmonic lines for most of the 120 seconds boat
passage. By comparing this spectrogram to the one in figure 4.2, we can see that
the SNR decreases rapidly after 90 seconds, explaining why the estimator gets
such a sudden unstable behaviour.
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Figure 5.12: Tracking of fundamental frequency for boat 2. The blue line
illustrates the NLS result, while the orange line indicates that of
Capon.

37



Figure 5.13: Spectrogram of acoustic pressure radiation captured from boat 2.
The magenta lines indicate harmonic frequencies estimated by
Capon and the black lines those of NLS. See figure 4.2 for
spectrogram.
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Figure 5.14: Spectrum of snapshot 1050 from boat 3.

5.2.3 Boat three

Boat passage three yields some interesting properties that the prior two did not.
By looking at snapshot 1050, which is near the middle of the recording, we
investigate this passage further. The spectrum of the snapshot is shown in figure
5.14. As we can see in this figure, there is a large amount of noise between 400
Hz and 900 Hz.

The raw cost functions with LOWESS lines of snapshot 1050 from boat 3 is
displayed in figure 5.15. In this figure, we can see that there are no major peaks
in any of the cost functions. This confirms that the estimators are having a hard
time finding a harmonic series. Recall how we stated in section 4.2.3 that the
passage recording had issues with broadband noise in the frequencies between
400 and 900 Hz. Because of this issue, we would have to apply additional signal
processing to the data prior to performing an estimation.

Figure 5.16 shows estimated harmonic amplitudes for snapshot 1050. From the
figure, we can clearly see that harmonics 14 - 26 have higher amplitudes. With
the estimated fundamental of 33.9 Hz these harmonics represent the frequency
range 470 - 890 Hz, and corresponds with observation from the spectrum in figure
5.14.
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Figure 5.15: Cost function calculated for boat 3. In the upper sub-plot, we can
see the graphs for NLS, while Capons are in the lower sub-plot.
The blue line represents the cost function, while the orange line is
the LOWESS line.
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Figure 5.16: Harmonic amplitudes of snapshot 1050 for boat 3 calculated using
equation 3.2.
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Figure 5.17: Cost function calculated for snapshot 150 of the ambient noise. In
the upper sub-plot, we can see the graphs for NLS, while Capons
are in the lower sub-plot. The blue line represents the cost
function, while the orange line is the LOWESS line.

5.2.4 Ambient noise

Figure 4.4 in section 4.2.4 shows the spectrum of the ambient noise in the datasets
forth data sample. Figure 5.17 shows the raw cost functions and corresponding
LOWESS lines for snapshot 150 of the ambient noise. These plots show that the
cost functions calculated from ambient noise are considerably lower than those
in figures 5.3, 5.9 and 5.15. From comparing the cost function in figure 5.17
with those in 5.3 and 5.9, we can also see that there are no obvious harmonic
series. Furthermore, we can also notice that the form of the cost function from
the ambient noise appear very much like that in figure 3.2, where we investigated
the result form applying our estimators to white noise.
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Table 5.3: Estimated fundamental frequencies and raw cost function values for
boat passages (1-3) and for ambient noise (4).

Number JNLS,max JCapon,max fNLS,1 [Hz] fCapon,1 [Hz]

1 2896.6 4.2668 25.059 25.070
2 126.67 0.2045 27.897 27.897
3 101.03 0.1679 33.991 33.969
4 0.9232 0.0016 13.520 27.017

5.3 Summary of results

Table 5.3 displays the maximum values of the raw cost functions. This shows that
there is a large difference between the cost function values we get from ambient
noise and ship noise. These result indicate that we can discriminate between cost
functions with and without clear harmonic noise.

From table 5.3 we can see a clear difference in the peak values of the raw cost
functions. Recall how the CPA distances in table 4.1 was 71.74 meters and 294.65
meters for boat passages 1 and 2, respectively. The difference in maximum raw
cost function peaks value between these two boat passings is therefore intuitive
as the signal of the latter has propagated further, thus yielding a lower SNR,
even though boat two has a higher speed than boat 1.

Table 5.3 also lists the estimated fundamental frequencies by the two estimators.
From the first two samples we can see that the estimators hit at frequencies
which are close to each other, and in the region of the actual fundamental. For
the third boat passage we can also see that the estimators hit approximately
the same fundamental frequency. Though, this one is a bit higher than the
actual fundamental, which resides around 22.6 Hz in this time region. Lastly, the
estimators output different fundamentals for the last file, which contains ambient
sound.
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Chapter 6

Discussion
In this thesis, we have evaluated the NLS and Capon estimators from (Faltin,
2014), where we implemented the estimators and tested them against synthetic
noise. We have rewritten our Capon estimator for an entirely real signal, as
this is what our dataset includes. Since we can assume a real signal, and there-
fore a symmetric autocorrelation matrix, R, the Capon estimator computation
introduced by (Christensen et al., 2007) can be simplified with equation 3.23.
This enables faster computation, as we can compute a larger portion of the total
equation outside of the loop for varying fundamental frequency.

We have applied two fundamental frequency estimators to the Vealøs 2014
dataset gathered with the hydrophone sensor on the FFI developed NILUS under-
water measurement node. We recognize that the weighted signal model proposed
in the preliminary project, (Faltin, 2014), to handle the decreasing frequency
content amplitude in the harmonic series of small boats is unnecessary in this
case; data gathered using the hydrophone sensor is already processed in such a
way that these problems are reduced by its transfer function. What proved to be
a real issue with the dataset is the unknown number of harmonics. We handled
this by assuming an upper limit of possible harmonics, and calculate how many
harmonics each fundamental in ζ allow within the Nyquist rate.

Raw cost functions calculated by our estimators are problematic, as figures 5.3,
5.9, and 5.15 show. Their shape appear very similar to the graph of assumed
number of harmonics in figure 3.1, indicating correlation. This problem was
solved by applying local linear regression to the cost functions, and subtracting
the resulting LOWESS line. By doing this, we achieve a weighted cost function
which fits better with what is expected as output from the estimators. The
LOWESS line corrected cost functions presented in figures 5.4 and 5.10 show
that we get cost functions with a clear maximum value. We can also see that the
cost functions from the two different methods are very similar, and we can state
that the methods result in nearly identical cost functions.

The problem with correlation between number of harmonics and the raw cost
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functions could also have be solved by calculating with a set number of harmonics,
but this would require a very fine balance between number of harmonics and the
range of search frequencies in ζ. It is therefore optimal to have a variable number
of harmonics. However, if we had more knowledge about the possible range of
fundamental frequencies for small boats, a set number of harmonics might have
been a valid method, especially if this range is considerably smaller then what
we have assumed in this thesis.

We decimated the dataset used in this thesis by a factor of three before dividing
it into snapshots for calculation, effectively reducing the Nyquist rate to 1.5
kHz. In certain cases, this can be a problem as some boats may have signature
harmonics in frequencies above 1500 Hz. However, with the hydrophone sensor
filtering away most frequency contents over 2 kHz, decimation with a factor of
three works well for our estimators. This is possible because the estimators do
not rely on accurate pressure data, but rather good SNR, such that there is no
reason to compensate for the filter in the hydrophone sensor.

The broadband noise in the third data sample shows a possible result of relying
on a filter like that of the hydrophone sensor for this type of dataset. In this
sample, there is a considerable amount of broadband noise in the filters passband.
This leads to the Lloyd’s mirror effect having a very strong presence in the total
received sound. There are a number of ways we could have bypassed this in order
to get results from this data sample. The most obvious are applying a bandstop
filter to suppress the problematic frequency range, or decimating with a higher
factor. Decimating with a higher factor would also improve the computation time,
and is certainly an interesting solution if this should have been implemented into
a low power device, as it would both conserve power and omit problems arising
from the regions where the hydrophone sensor has its strongest amplification.
The fact that a case like the third boat passage can occur in the same dataset as
the first and second passages show that this kind of estimator relies on substantial
testing before a final implementation. Filtering away certain frequencies would
also limit the number of harmonics in the snapshot, and would therefore also
affect the estimators.

We have to take figure 5.1 into consideration; here we can see that the Capon
estimator can achieve up to 10 percent more hits in the regions below 0 dB
SNR. This figure clearly shows that the Capon estimator outperforms the NLS
estimator in the aspect of hit percentage. Table 5.2 lists the average computation
time for each method in the calculations used to generate figure 5.1. For the
considered snapshot length, N = 500, we can see that the NLS estimator is
faster than the Capon estimator with 5.71 seconds against 34.95 seconds. This
implies that the NLS estimator can calculate with larger snapshots, and thus
tackle lower SNR, while still processing the data faster. This is a key result in
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this thesis, and corresponds with what we experienced in (Faltin, 2014, p. 18),
where the computation time of the NLS estimator with a snapshot length of 840
was faster than that of the Capon estimator with a snapshot length of 420.

Results from frequency estimators have shown that they are accurate. The spec-
trograms with lines indicating harmonic frequencies, as seen in figures 5.7 and
5.13, show that there are large regions with consecutive estimator hits. What we
can see from these spectrograms, is that as long as the estimators are stable for
consecutive snapshots, the lines match with the harmonic lines in the spectro-
gram. The frequency tracking plots presented in figures 5.6 and 5.12 show that
the majority of estimator misses result in frequencies that are 1/2, 3/2, and 2
multiples of the true fundamental. This suggests that a logical filter, like that
proposed in section 3.4 can be utilized to smooth the frequency tracking from
these estimators.

The numbers presented in table 5.3 suggest our estimators can both detect small
boats, and calculate their fundamental frequency. Detection can be done since
the cost functions of snapshots with harmonic noise can be discriminated against
those without by comparing their maximum values.
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Chapter 7

Conclusion
Throughout the thesis we have introduced the major problems we faced when
taking on the challenge of applying fundamental frequency estimators to a real,
authentic dataset. We have done this by continuing the work in (Faltin, 2014),
with the Non-linear Least Squares, and Capon estimators. The continuation
of the work includes rewriting the Capon estimator to handle real signals more
effectively.

From the results presented, we can clearly state that the NLS estimator is the best
choice for an implementation into a system. With the possibilities it introduces
with the estimated harmonic amplitudes, longer snapshot lengths, and shorter
computation time, it certainly outperforms the Capon estimator. However, the
Capon estimator performs slightly better at estimating the correct fundamental
frequency in the synthetic tests presented in section 5.1. The advantage we can see
in performance at these low SNRs does not weigh up for the longer computation
time the estimator uses.

Both estimators can do their intended job for the straight-forward parts of the
dataset, in boat passages 1 and 2, but they prove to have a hard time with boat
passage 3, which contains some additional broadband noise which clutters the
signal too much for both estimators. We can also see that the estimators can
be utilized to detect if there is a source (small vessel) present in water from
comparing cost function levels of the samples with and without a source.

Both the NLS and Capon estimators we have presented in this thesis can be
implemented with regards to a dataset which is similar to the one we have used
by utilizing our advises. A complete such system could recognize harmonic noise,
and estimate its harmonic signature.
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Appendix A

NLS estimator Matlab Implemen-
tation

1 function [NLSprod1,wNLSprod1] = NLS_impl8(xx,Zetat,LL,Nsnap,spann)
2 % NLS_impl8.m
3 % Ole Faltin, electronics student at NTNU, as part of the
4 % projectEstimation of harmonic signatures in underwater noise
5 % from small boats
6 % Masters Thesis for FFI - Dag Tollefsen
7 % 06.06.2016
8 %
9 % Method proposed by

10 % Christensen, M. G. and Stoica, P. and Jensen, S. H.
11 % The Multi-Pitch Estimation Problem: Some New Solutions
12 % IEEE International Conference on Acoustics, Speech, and Signal
13 % Processing, 3(1), 1221-1224.
14 %
15 % NLS Estimator implementation
16 % Calulates the fundamental frequency and the cost function.
17 %
18 % In:
19 % xx - Signal vector.
20 % Zetat - Array of angular frequencies where the fundamental is
21 % being searched for.
22 % LL - Number of harmonics in the signal.
23 % Nsnap - Snapshot length
24 % spann - regression span - 0<spann<=1
25 %
26 % Out:
27 % NLSprod1 - Cost function calculated using NLS.
28 % wNLSprod1 - Weighted cost function
29 %
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31

32 NLSprod1 = zeros(length(Zetat),1);
33 sTYPE = 'lowess'; % Type of smoothing. default: LOWESS
34

35 kk = 0;
36 while kk < length(Zetat) % Will execute once for each angular f.
37 kk = kk+1;
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38 zetakk = Zetat(kk); % extract current zeta
39

40 ll = 1:LL(kk); % Make ll for current w - LL(kk)
41

42 % Make Vandermonde matrix
43 ZZ = exp(1j*zetakk*(0:(Nsnap-1)).'*(ll));
44

45 NLSprod1(kk) = xx' * (ZZ * ZZ') * xx;
46 end
47 NLSprod1 = abs(NLSprod1);
48 % Perform smooting
49 yy = smooth(NLSprod1,spann,sTYPE);
50 wNLSprod1 = (NLSprod1) - (yy);
51

52 end
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Appendix B

Capons estimator Matlab Imple-
mentation

1 function [Caponc1,wCaponc1] = Capon_impl8(xx,Zetat,LL,Nsnap,spann)
2 % Capon_impl8.m
3 % Ole Faltin, electronics student at NTNU, as part of the
4 % project Estimation of harmonic signatures in underwater noise
5 % from small boats
6 % Masters Thesis for FFI - Dag Tollefsen
7 % 06.06.2015
8 %
9 % Method proposed by

10 % Christensen, M. G. and Stoica, P. and Jensen, S. H.
11 % The Multi-Pitch Estimation Problem: Some New Solutions
12 % IEEE International Conference on Acoustics, Speech, and
13 % Signal Processing, 3(1), 1221-1224.
14 %
15 % Capon estimator implementation
16 % Calulates the fundamental frequency and the cost function.
17 %
18 % In:
19 % xx - Signal vector.
20 % Zetat - Array of angular frequencies where the fundamental is
21 % being searched for.
22 % LL - Number of harmonics in the signal.
23 % Nsnap - Snapshot length
24 % spann - regression span - 0<spann<=1
25 %
26 % Out:
27 % Caponprod1 - Cost function calculated using Capon.
28 % wCaponprod1 - Weighted cost function
29 %
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31

32 % Common parameters
33 Caponc1 = zeros(length(Zetat),1);
34 sTYPE = 'lowess';
35

36 RR = acorrmat(xx); % Requires acorrmat.m
37
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38 [EVEC,EVAL] = eig(RR); % Eigen decomposition; assume real xx
39 EPROD = EVEC * diag(1./sqrt(diag(EVAL)));
40

41 kk = 0;
42 while kk < length(Zetat) % Will execute once for each angular f.
43 % w in Zetat
44 kk = kk+1;
45 zetakk = Zetat(kk); % extract current zeta
46 ll = 1:LL(kk);
47

48 % Make signal model for current w
49 ZZ = exp(1j*zetakk*(0:(Nsnap-1)).'*(ll));
50

51 % Calcualte product and take trace
52 Y3 = pinv(ZZ' * EPROD * (ZZ' * EPROD)');
53 Caponc1(kk) = abs(trace(Y3));
54 end
55

56 % Perform smooting
57 yy = smooth((Caponc1),spann,sTYPE);
58 wCaponc1 = (Caponc1) - (yy);
59

60 end

54



Appendix C

Autocorrelation matrix implemen-
tation - acorrmat.m

1 function [RR] = acorrmat(xx)
2 % acorrmat.m
3 % Ole Faltin, electronics student at NTNU, as part of the project
4 % Estimation of harmonic signatures in underwater noise from
5 % small boats
6 % Masters Thesis for FFI - Dag Tollefsen
7 % 11.05.2015
8 %
9 % Autocorrelation matrix implementation

10 % Calcualtes the autocorrelation matrix of a signal snapshot.
11 %
12 % In:
13 % xx - Signal snapshot vector. Should be real.
14 %
15 % Out:
16 % RR - Autocorrelation matrix.
17 %
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19

20 % Common parameters
21 Nsnap = length(xx); % Length of snapshot
22 mx = mean(xx); % Mean value of snapshot
23 rr = zeros(1,Nsnap); % Row vector for top row results
24

25 % Calculation
26 for k = 0:(Nsnap-1)
27 r = 0;
28 for n = 1:Nsnap-k % Correlation
29 r = r + sum((xx(n)-mx)*(xx(n+k)-mx)');
30 end
31 rr(1,k+1) = r;
32 end
33

34 % Generate first collumn.
35 cc=[rr(1),conj(rr(2:Nsnap))].';
36

37 % Use toeplitz.m to generate proper RR = autocorrelation matrix.
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38 RR = toeplitz(cc,rr);
39

40 end
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